Loading...
1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright(c) 2020 Cornelis Networks, Inc.
4 * Copyright(c) 2015-2020 Intel Corporation.
5 */
6
7#include <linux/poll.h>
8#include <linux/cdev.h>
9#include <linux/vmalloc.h>
10#include <linux/io.h>
11#include <linux/sched/mm.h>
12#include <linux/bitmap.h>
13
14#include <rdma/ib.h>
15
16#include "hfi.h"
17#include "pio.h"
18#include "device.h"
19#include "common.h"
20#include "trace.h"
21#include "mmu_rb.h"
22#include "user_sdma.h"
23#include "user_exp_rcv.h"
24#include "aspm.h"
25
26#undef pr_fmt
27#define pr_fmt(fmt) DRIVER_NAME ": " fmt
28
29#define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
30
31/*
32 * File operation functions
33 */
34static int hfi1_file_open(struct inode *inode, struct file *fp);
35static int hfi1_file_close(struct inode *inode, struct file *fp);
36static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
37static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
38static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
39
40static u64 kvirt_to_phys(void *addr);
41static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
42static void init_subctxts(struct hfi1_ctxtdata *uctxt,
43 const struct hfi1_user_info *uinfo);
44static int init_user_ctxt(struct hfi1_filedata *fd,
45 struct hfi1_ctxtdata *uctxt);
46static void user_init(struct hfi1_ctxtdata *uctxt);
47static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
48static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
49static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
50 u32 len);
51static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
52 u32 len);
53static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
54 u32 len);
55static int setup_base_ctxt(struct hfi1_filedata *fd,
56 struct hfi1_ctxtdata *uctxt);
57static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
58
59static int find_sub_ctxt(struct hfi1_filedata *fd,
60 const struct hfi1_user_info *uinfo);
61static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
62 struct hfi1_user_info *uinfo,
63 struct hfi1_ctxtdata **cd);
64static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
65static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
66static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
67static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
68 unsigned long arg);
69static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
70static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
71static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
72 unsigned long arg);
73static vm_fault_t vma_fault(struct vm_fault *vmf);
74static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
75 unsigned long arg);
76
77static const struct file_operations hfi1_file_ops = {
78 .owner = THIS_MODULE,
79 .write_iter = hfi1_write_iter,
80 .open = hfi1_file_open,
81 .release = hfi1_file_close,
82 .unlocked_ioctl = hfi1_file_ioctl,
83 .poll = hfi1_poll,
84 .mmap = hfi1_file_mmap,
85 .llseek = noop_llseek,
86};
87
88static const struct vm_operations_struct vm_ops = {
89 .fault = vma_fault,
90};
91
92/*
93 * Types of memories mapped into user processes' space
94 */
95enum mmap_types {
96 PIO_BUFS = 1,
97 PIO_BUFS_SOP,
98 PIO_CRED,
99 RCV_HDRQ,
100 RCV_EGRBUF,
101 UREGS,
102 EVENTS,
103 STATUS,
104 RTAIL,
105 SUBCTXT_UREGS,
106 SUBCTXT_RCV_HDRQ,
107 SUBCTXT_EGRBUF,
108 SDMA_COMP
109};
110
111/*
112 * Masks and offsets defining the mmap tokens
113 */
114#define HFI1_MMAP_OFFSET_MASK 0xfffULL
115#define HFI1_MMAP_OFFSET_SHIFT 0
116#define HFI1_MMAP_SUBCTXT_MASK 0xfULL
117#define HFI1_MMAP_SUBCTXT_SHIFT 12
118#define HFI1_MMAP_CTXT_MASK 0xffULL
119#define HFI1_MMAP_CTXT_SHIFT 16
120#define HFI1_MMAP_TYPE_MASK 0xfULL
121#define HFI1_MMAP_TYPE_SHIFT 24
122#define HFI1_MMAP_MAGIC_MASK 0xffffffffULL
123#define HFI1_MMAP_MAGIC_SHIFT 32
124
125#define HFI1_MMAP_MAGIC 0xdabbad00
126
127#define HFI1_MMAP_TOKEN_SET(field, val) \
128 (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
129#define HFI1_MMAP_TOKEN_GET(field, token) \
130 (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
131#define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \
132 (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
133 HFI1_MMAP_TOKEN_SET(TYPE, type) | \
134 HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
135 HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
136 HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
137
138#define dbg(fmt, ...) \
139 pr_info(fmt, ##__VA_ARGS__)
140
141static inline int is_valid_mmap(u64 token)
142{
143 return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
144}
145
146static int hfi1_file_open(struct inode *inode, struct file *fp)
147{
148 struct hfi1_filedata *fd;
149 struct hfi1_devdata *dd = container_of(inode->i_cdev,
150 struct hfi1_devdata,
151 user_cdev);
152
153 if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
154 return -EINVAL;
155
156 if (!refcount_inc_not_zero(&dd->user_refcount))
157 return -ENXIO;
158
159 /* The real work is performed later in assign_ctxt() */
160
161 fd = kzalloc(sizeof(*fd), GFP_KERNEL);
162
163 if (!fd || init_srcu_struct(&fd->pq_srcu))
164 goto nomem;
165 spin_lock_init(&fd->pq_rcu_lock);
166 spin_lock_init(&fd->tid_lock);
167 spin_lock_init(&fd->invalid_lock);
168 fd->rec_cpu_num = -1; /* no cpu affinity by default */
169 fd->dd = dd;
170 fp->private_data = fd;
171 return 0;
172nomem:
173 kfree(fd);
174 fp->private_data = NULL;
175 if (refcount_dec_and_test(&dd->user_refcount))
176 complete(&dd->user_comp);
177 return -ENOMEM;
178}
179
180static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
181 unsigned long arg)
182{
183 struct hfi1_filedata *fd = fp->private_data;
184 struct hfi1_ctxtdata *uctxt = fd->uctxt;
185 int ret = 0;
186 int uval = 0;
187
188 hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
189 if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
190 cmd != HFI1_IOCTL_GET_VERS &&
191 !uctxt)
192 return -EINVAL;
193
194 switch (cmd) {
195 case HFI1_IOCTL_ASSIGN_CTXT:
196 ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
197 break;
198
199 case HFI1_IOCTL_CTXT_INFO:
200 ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
201 break;
202
203 case HFI1_IOCTL_USER_INFO:
204 ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
205 break;
206
207 case HFI1_IOCTL_CREDIT_UPD:
208 if (uctxt)
209 sc_return_credits(uctxt->sc);
210 break;
211
212 case HFI1_IOCTL_TID_UPDATE:
213 ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
214 break;
215
216 case HFI1_IOCTL_TID_FREE:
217 ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
218 break;
219
220 case HFI1_IOCTL_TID_INVAL_READ:
221 ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
222 break;
223
224 case HFI1_IOCTL_RECV_CTRL:
225 ret = manage_rcvq(uctxt, fd->subctxt, arg);
226 break;
227
228 case HFI1_IOCTL_POLL_TYPE:
229 if (get_user(uval, (int __user *)arg))
230 return -EFAULT;
231 uctxt->poll_type = (typeof(uctxt->poll_type))uval;
232 break;
233
234 case HFI1_IOCTL_ACK_EVENT:
235 ret = user_event_ack(uctxt, fd->subctxt, arg);
236 break;
237
238 case HFI1_IOCTL_SET_PKEY:
239 ret = set_ctxt_pkey(uctxt, arg);
240 break;
241
242 case HFI1_IOCTL_CTXT_RESET:
243 ret = ctxt_reset(uctxt);
244 break;
245
246 case HFI1_IOCTL_GET_VERS:
247 uval = HFI1_USER_SWVERSION;
248 if (put_user(uval, (int __user *)arg))
249 return -EFAULT;
250 break;
251
252 default:
253 return -EINVAL;
254 }
255
256 return ret;
257}
258
259static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
260{
261 struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
262 struct hfi1_user_sdma_pkt_q *pq;
263 struct hfi1_user_sdma_comp_q *cq = fd->cq;
264 int done = 0, reqs = 0;
265 unsigned long dim = from->nr_segs;
266 int idx;
267
268 if (!HFI1_CAP_IS_KSET(SDMA))
269 return -EINVAL;
270 if (!user_backed_iter(from))
271 return -EINVAL;
272 idx = srcu_read_lock(&fd->pq_srcu);
273 pq = srcu_dereference(fd->pq, &fd->pq_srcu);
274 if (!cq || !pq) {
275 srcu_read_unlock(&fd->pq_srcu, idx);
276 return -EIO;
277 }
278
279 trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
280
281 if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
282 srcu_read_unlock(&fd->pq_srcu, idx);
283 return -ENOSPC;
284 }
285
286 while (dim) {
287 const struct iovec *iov = iter_iov(from);
288 int ret;
289 unsigned long count = 0;
290
291 ret = hfi1_user_sdma_process_request(
292 fd, (struct iovec *)(iov + done),
293 dim, &count);
294 if (ret) {
295 reqs = ret;
296 break;
297 }
298 dim -= count;
299 done += count;
300 reqs++;
301 }
302
303 srcu_read_unlock(&fd->pq_srcu, idx);
304 return reqs;
305}
306
307static inline void mmap_cdbg(u16 ctxt, u8 subctxt, u8 type, u8 mapio, u8 vmf,
308 u64 memaddr, void *memvirt, dma_addr_t memdma,
309 ssize_t memlen, struct vm_area_struct *vma)
310{
311 hfi1_cdbg(PROC,
312 "%u:%u type:%u io/vf/dma:%d/%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx",
313 ctxt, subctxt, type, mapio, vmf, !!memdma,
314 memaddr ?: (u64)memvirt, memlen,
315 vma->vm_end - vma->vm_start, vma->vm_flags);
316}
317
318static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
319{
320 struct hfi1_filedata *fd = fp->private_data;
321 struct hfi1_ctxtdata *uctxt = fd->uctxt;
322 struct hfi1_devdata *dd;
323 unsigned long flags;
324 u64 token = vma->vm_pgoff << PAGE_SHIFT,
325 memaddr = 0;
326 void *memvirt = NULL;
327 dma_addr_t memdma = 0;
328 u8 subctxt, mapio = 0, vmf = 0, type;
329 ssize_t memlen = 0;
330 int ret = 0;
331 u16 ctxt;
332
333 if (!is_valid_mmap(token) || !uctxt ||
334 !(vma->vm_flags & VM_SHARED)) {
335 ret = -EINVAL;
336 goto done;
337 }
338 dd = uctxt->dd;
339 ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
340 subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
341 type = HFI1_MMAP_TOKEN_GET(TYPE, token);
342 if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
343 ret = -EINVAL;
344 goto done;
345 }
346
347 /*
348 * vm_pgoff is used as a buffer selector cookie. Always mmap from
349 * the beginning.
350 */
351 vma->vm_pgoff = 0;
352 flags = vma->vm_flags;
353
354 switch (type) {
355 case PIO_BUFS:
356 case PIO_BUFS_SOP:
357 memaddr = ((dd->physaddr + TXE_PIO_SEND) +
358 /* chip pio base */
359 (uctxt->sc->hw_context * BIT(16))) +
360 /* 64K PIO space / ctxt */
361 (type == PIO_BUFS_SOP ?
362 (TXE_PIO_SIZE / 2) : 0); /* sop? */
363 /*
364 * Map only the amount allocated to the context, not the
365 * entire available context's PIO space.
366 */
367 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
368 flags &= ~VM_MAYREAD;
369 flags |= VM_DONTCOPY | VM_DONTEXPAND;
370 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
371 mapio = 1;
372 break;
373 case PIO_CRED: {
374 u64 cr_page_offset;
375 if (flags & VM_WRITE) {
376 ret = -EPERM;
377 goto done;
378 }
379 /*
380 * The credit return location for this context could be on the
381 * second or third page allocated for credit returns (if number
382 * of enabled contexts > 64 and 128 respectively).
383 */
384 cr_page_offset = ((u64)uctxt->sc->hw_free -
385 (u64)dd->cr_base[uctxt->numa_id].va) &
386 PAGE_MASK;
387 memvirt = dd->cr_base[uctxt->numa_id].va + cr_page_offset;
388 memdma = dd->cr_base[uctxt->numa_id].dma + cr_page_offset;
389 memlen = PAGE_SIZE;
390 flags &= ~VM_MAYWRITE;
391 flags |= VM_DONTCOPY | VM_DONTEXPAND;
392 /*
393 * The driver has already allocated memory for credit
394 * returns and programmed it into the chip. Has that
395 * memory been flagged as non-cached?
396 */
397 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
398 break;
399 }
400 case RCV_HDRQ:
401 memlen = rcvhdrq_size(uctxt);
402 memvirt = uctxt->rcvhdrq;
403 memdma = uctxt->rcvhdrq_dma;
404 break;
405 case RCV_EGRBUF: {
406 unsigned long vm_start_save;
407 unsigned long vm_end_save;
408 int i;
409 /*
410 * The RcvEgr buffer need to be handled differently
411 * as multiple non-contiguous pages need to be mapped
412 * into the user process.
413 */
414 memlen = uctxt->egrbufs.size;
415 if ((vma->vm_end - vma->vm_start) != memlen) {
416 dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
417 (vma->vm_end - vma->vm_start), memlen);
418 ret = -EINVAL;
419 goto done;
420 }
421 if (vma->vm_flags & VM_WRITE) {
422 ret = -EPERM;
423 goto done;
424 }
425 vm_flags_clear(vma, VM_MAYWRITE);
426 /*
427 * Mmap multiple separate allocations into a single vma. From
428 * here, dma_mmap_coherent() calls dma_direct_mmap(), which
429 * requires the mmap to exactly fill the vma starting at
430 * vma_start. Adjust the vma start and end for each eager
431 * buffer segment mapped. Restore the originals when done.
432 */
433 vm_start_save = vma->vm_start;
434 vm_end_save = vma->vm_end;
435 vma->vm_end = vma->vm_start;
436 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
437 memlen = uctxt->egrbufs.buffers[i].len;
438 memvirt = uctxt->egrbufs.buffers[i].addr;
439 memdma = uctxt->egrbufs.buffers[i].dma;
440 vma->vm_end += memlen;
441 mmap_cdbg(ctxt, subctxt, type, mapio, vmf, memaddr,
442 memvirt, memdma, memlen, vma);
443 ret = dma_mmap_coherent(&dd->pcidev->dev, vma,
444 memvirt, memdma, memlen);
445 if (ret < 0) {
446 vma->vm_start = vm_start_save;
447 vma->vm_end = vm_end_save;
448 goto done;
449 }
450 vma->vm_start += memlen;
451 }
452 vma->vm_start = vm_start_save;
453 vma->vm_end = vm_end_save;
454 ret = 0;
455 goto done;
456 }
457 case UREGS:
458 /*
459 * Map only the page that contains this context's user
460 * registers.
461 */
462 memaddr = (unsigned long)
463 (dd->physaddr + RXE_PER_CONTEXT_USER)
464 + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
465 /*
466 * TidFlow table is on the same page as the rest of the
467 * user registers.
468 */
469 memlen = PAGE_SIZE;
470 flags |= VM_DONTCOPY | VM_DONTEXPAND;
471 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
472 mapio = 1;
473 break;
474 case EVENTS:
475 /*
476 * Use the page where this context's flags are. User level
477 * knows where it's own bitmap is within the page.
478 */
479 memaddr = (unsigned long)
480 (dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
481 memlen = PAGE_SIZE;
482 /*
483 * v3.7 removes VM_RESERVED but the effect is kept by
484 * using VM_IO.
485 */
486 flags |= VM_IO | VM_DONTEXPAND;
487 vmf = 1;
488 break;
489 case STATUS:
490 if (flags & VM_WRITE) {
491 ret = -EPERM;
492 goto done;
493 }
494 memaddr = kvirt_to_phys((void *)dd->status);
495 memlen = PAGE_SIZE;
496 flags |= VM_IO | VM_DONTEXPAND;
497 break;
498 case RTAIL:
499 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
500 /*
501 * If the memory allocation failed, the context alloc
502 * also would have failed, so we would never get here
503 */
504 ret = -EINVAL;
505 goto done;
506 }
507 if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) {
508 ret = -EPERM;
509 goto done;
510 }
511 memlen = PAGE_SIZE;
512 memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt);
513 memdma = uctxt->rcvhdrqtailaddr_dma;
514 flags &= ~VM_MAYWRITE;
515 break;
516 case SUBCTXT_UREGS:
517 memaddr = (u64)uctxt->subctxt_uregbase;
518 memlen = PAGE_SIZE;
519 flags |= VM_IO | VM_DONTEXPAND;
520 vmf = 1;
521 break;
522 case SUBCTXT_RCV_HDRQ:
523 memaddr = (u64)uctxt->subctxt_rcvhdr_base;
524 memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt;
525 flags |= VM_IO | VM_DONTEXPAND;
526 vmf = 1;
527 break;
528 case SUBCTXT_EGRBUF:
529 memaddr = (u64)uctxt->subctxt_rcvegrbuf;
530 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
531 flags |= VM_IO | VM_DONTEXPAND;
532 flags &= ~VM_MAYWRITE;
533 vmf = 1;
534 break;
535 case SDMA_COMP: {
536 struct hfi1_user_sdma_comp_q *cq = fd->cq;
537
538 if (!cq) {
539 ret = -EFAULT;
540 goto done;
541 }
542 memaddr = (u64)cq->comps;
543 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
544 flags |= VM_IO | VM_DONTEXPAND;
545 vmf = 1;
546 break;
547 }
548 default:
549 ret = -EINVAL;
550 break;
551 }
552
553 if ((vma->vm_end - vma->vm_start) != memlen) {
554 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
555 uctxt->ctxt, fd->subctxt,
556 (vma->vm_end - vma->vm_start), memlen);
557 ret = -EINVAL;
558 goto done;
559 }
560
561 vm_flags_reset(vma, flags);
562 mmap_cdbg(ctxt, subctxt, type, mapio, vmf, memaddr, memvirt, memdma,
563 memlen, vma);
564 if (vmf) {
565 vma->vm_pgoff = PFN_DOWN(memaddr);
566 vma->vm_ops = &vm_ops;
567 ret = 0;
568 } else if (memdma) {
569 ret = dma_mmap_coherent(&dd->pcidev->dev, vma,
570 memvirt, memdma, memlen);
571 } else if (mapio) {
572 ret = io_remap_pfn_range(vma, vma->vm_start,
573 PFN_DOWN(memaddr),
574 memlen,
575 vma->vm_page_prot);
576 } else if (memvirt) {
577 ret = remap_pfn_range(vma, vma->vm_start,
578 PFN_DOWN(__pa(memvirt)),
579 memlen,
580 vma->vm_page_prot);
581 } else {
582 ret = remap_pfn_range(vma, vma->vm_start,
583 PFN_DOWN(memaddr),
584 memlen,
585 vma->vm_page_prot);
586 }
587done:
588 return ret;
589}
590
591/*
592 * Local (non-chip) user memory is not mapped right away but as it is
593 * accessed by the user-level code.
594 */
595static vm_fault_t vma_fault(struct vm_fault *vmf)
596{
597 struct page *page;
598
599 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
600 if (!page)
601 return VM_FAULT_SIGBUS;
602
603 get_page(page);
604 vmf->page = page;
605
606 return 0;
607}
608
609static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
610{
611 struct hfi1_ctxtdata *uctxt;
612 __poll_t pollflag;
613
614 uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
615 if (!uctxt)
616 pollflag = EPOLLERR;
617 else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
618 pollflag = poll_urgent(fp, pt);
619 else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
620 pollflag = poll_next(fp, pt);
621 else /* invalid */
622 pollflag = EPOLLERR;
623
624 return pollflag;
625}
626
627static int hfi1_file_close(struct inode *inode, struct file *fp)
628{
629 struct hfi1_filedata *fdata = fp->private_data;
630 struct hfi1_ctxtdata *uctxt = fdata->uctxt;
631 struct hfi1_devdata *dd = container_of(inode->i_cdev,
632 struct hfi1_devdata,
633 user_cdev);
634 unsigned long flags, *ev;
635
636 fp->private_data = NULL;
637
638 if (!uctxt)
639 goto done;
640
641 hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
642
643 flush_wc();
644 /* drain user sdma queue */
645 hfi1_user_sdma_free_queues(fdata, uctxt);
646
647 /* release the cpu */
648 hfi1_put_proc_affinity(fdata->rec_cpu_num);
649
650 /* clean up rcv side */
651 hfi1_user_exp_rcv_free(fdata);
652
653 /*
654 * fdata->uctxt is used in the above cleanup. It is not ready to be
655 * removed until here.
656 */
657 fdata->uctxt = NULL;
658 hfi1_rcd_put(uctxt);
659
660 /*
661 * Clear any left over, unhandled events so the next process that
662 * gets this context doesn't get confused.
663 */
664 ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
665 *ev = 0;
666
667 spin_lock_irqsave(&dd->uctxt_lock, flags);
668 __clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
669 if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
670 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
671 goto done;
672 }
673 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
674
675 /*
676 * Disable receive context and interrupt available, reset all
677 * RcvCtxtCtrl bits to default values.
678 */
679 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
680 HFI1_RCVCTRL_TIDFLOW_DIS |
681 HFI1_RCVCTRL_INTRAVAIL_DIS |
682 HFI1_RCVCTRL_TAILUPD_DIS |
683 HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
684 HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
685 HFI1_RCVCTRL_NO_EGR_DROP_DIS |
686 HFI1_RCVCTRL_URGENT_DIS, uctxt);
687 /* Clear the context's J_KEY */
688 hfi1_clear_ctxt_jkey(dd, uctxt);
689 /*
690 * If a send context is allocated, reset context integrity
691 * checks to default and disable the send context.
692 */
693 if (uctxt->sc) {
694 sc_disable(uctxt->sc);
695 set_pio_integrity(uctxt->sc);
696 }
697
698 hfi1_free_ctxt_rcv_groups(uctxt);
699 hfi1_clear_ctxt_pkey(dd, uctxt);
700
701 uctxt->event_flags = 0;
702
703 deallocate_ctxt(uctxt);
704done:
705
706 if (refcount_dec_and_test(&dd->user_refcount))
707 complete(&dd->user_comp);
708
709 cleanup_srcu_struct(&fdata->pq_srcu);
710 kfree(fdata);
711 return 0;
712}
713
714/*
715 * Convert kernel *virtual* addresses to physical addresses.
716 * This is used to vmalloc'ed addresses.
717 */
718static u64 kvirt_to_phys(void *addr)
719{
720 struct page *page;
721 u64 paddr = 0;
722
723 page = vmalloc_to_page(addr);
724 if (page)
725 paddr = page_to_pfn(page) << PAGE_SHIFT;
726
727 return paddr;
728}
729
730/**
731 * complete_subctxt - complete sub-context info
732 * @fd: valid filedata pointer
733 *
734 * Sub-context info can only be set up after the base context
735 * has been completed. This is indicated by the clearing of the
736 * HFI1_CTXT_BASE_UINIT bit.
737 *
738 * Wait for the bit to be cleared, and then complete the subcontext
739 * initialization.
740 *
741 */
742static int complete_subctxt(struct hfi1_filedata *fd)
743{
744 int ret;
745 unsigned long flags;
746
747 /*
748 * sub-context info can only be set up after the base context
749 * has been completed.
750 */
751 ret = wait_event_interruptible(
752 fd->uctxt->wait,
753 !test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
754
755 if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
756 ret = -ENOMEM;
757
758 /* Finish the sub-context init */
759 if (!ret) {
760 fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
761 ret = init_user_ctxt(fd, fd->uctxt);
762 }
763
764 if (ret) {
765 spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
766 __clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
767 spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
768 hfi1_rcd_put(fd->uctxt);
769 fd->uctxt = NULL;
770 }
771
772 return ret;
773}
774
775static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
776{
777 int ret;
778 unsigned int swmajor;
779 struct hfi1_ctxtdata *uctxt = NULL;
780 struct hfi1_user_info uinfo;
781
782 if (fd->uctxt)
783 return -EINVAL;
784
785 if (sizeof(uinfo) != len)
786 return -EINVAL;
787
788 if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo)))
789 return -EFAULT;
790
791 swmajor = uinfo.userversion >> 16;
792 if (swmajor != HFI1_USER_SWMAJOR)
793 return -ENODEV;
794
795 if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
796 return -EINVAL;
797
798 /*
799 * Acquire the mutex to protect against multiple creations of what
800 * could be a shared base context.
801 */
802 mutex_lock(&hfi1_mutex);
803 /*
804 * Get a sub context if available (fd->uctxt will be set).
805 * ret < 0 error, 0 no context, 1 sub-context found
806 */
807 ret = find_sub_ctxt(fd, &uinfo);
808
809 /*
810 * Allocate a base context if context sharing is not required or a
811 * sub context wasn't found.
812 */
813 if (!ret)
814 ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt);
815
816 mutex_unlock(&hfi1_mutex);
817
818 /* Depending on the context type, finish the appropriate init */
819 switch (ret) {
820 case 0:
821 ret = setup_base_ctxt(fd, uctxt);
822 if (ret)
823 deallocate_ctxt(uctxt);
824 break;
825 case 1:
826 ret = complete_subctxt(fd);
827 break;
828 default:
829 break;
830 }
831
832 return ret;
833}
834
835/**
836 * match_ctxt - match context
837 * @fd: valid filedata pointer
838 * @uinfo: user info to compare base context with
839 * @uctxt: context to compare uinfo to.
840 *
841 * Compare the given context with the given information to see if it
842 * can be used for a sub context.
843 */
844static int match_ctxt(struct hfi1_filedata *fd,
845 const struct hfi1_user_info *uinfo,
846 struct hfi1_ctxtdata *uctxt)
847{
848 struct hfi1_devdata *dd = fd->dd;
849 unsigned long flags;
850 u16 subctxt;
851
852 /* Skip dynamically allocated kernel contexts */
853 if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
854 return 0;
855
856 /* Skip ctxt if it doesn't match the requested one */
857 if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
858 uctxt->jkey != generate_jkey(current_uid()) ||
859 uctxt->subctxt_id != uinfo->subctxt_id ||
860 uctxt->subctxt_cnt != uinfo->subctxt_cnt)
861 return 0;
862
863 /* Verify the sharing process matches the base */
864 if (uctxt->userversion != uinfo->userversion)
865 return -EINVAL;
866
867 /* Find an unused sub context */
868 spin_lock_irqsave(&dd->uctxt_lock, flags);
869 if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
870 /* context is being closed, do not use */
871 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
872 return 0;
873 }
874
875 subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
876 HFI1_MAX_SHARED_CTXTS);
877 if (subctxt >= uctxt->subctxt_cnt) {
878 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
879 return -EBUSY;
880 }
881
882 fd->subctxt = subctxt;
883 __set_bit(fd->subctxt, uctxt->in_use_ctxts);
884 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
885
886 fd->uctxt = uctxt;
887 hfi1_rcd_get(uctxt);
888
889 return 1;
890}
891
892/**
893 * find_sub_ctxt - fund sub-context
894 * @fd: valid filedata pointer
895 * @uinfo: matching info to use to find a possible context to share.
896 *
897 * The hfi1_mutex must be held when this function is called. It is
898 * necessary to ensure serialized creation of shared contexts.
899 *
900 * Return:
901 * 0 No sub-context found
902 * 1 Subcontext found and allocated
903 * errno EINVAL (incorrect parameters)
904 * EBUSY (all sub contexts in use)
905 */
906static int find_sub_ctxt(struct hfi1_filedata *fd,
907 const struct hfi1_user_info *uinfo)
908{
909 struct hfi1_ctxtdata *uctxt;
910 struct hfi1_devdata *dd = fd->dd;
911 u16 i;
912 int ret;
913
914 if (!uinfo->subctxt_cnt)
915 return 0;
916
917 for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
918 uctxt = hfi1_rcd_get_by_index(dd, i);
919 if (uctxt) {
920 ret = match_ctxt(fd, uinfo, uctxt);
921 hfi1_rcd_put(uctxt);
922 /* value of != 0 will return */
923 if (ret)
924 return ret;
925 }
926 }
927
928 return 0;
929}
930
931static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
932 struct hfi1_user_info *uinfo,
933 struct hfi1_ctxtdata **rcd)
934{
935 struct hfi1_ctxtdata *uctxt;
936 int ret, numa;
937
938 if (dd->flags & HFI1_FROZEN) {
939 /*
940 * Pick an error that is unique from all other errors
941 * that are returned so the user process knows that
942 * it tried to allocate while the SPC was frozen. It
943 * it should be able to retry with success in a short
944 * while.
945 */
946 return -EIO;
947 }
948
949 if (!dd->freectxts)
950 return -EBUSY;
951
952 /*
953 * If we don't have a NUMA node requested, preference is towards
954 * device NUMA node.
955 */
956 fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
957 if (fd->rec_cpu_num != -1)
958 numa = cpu_to_node(fd->rec_cpu_num);
959 else
960 numa = numa_node_id();
961 ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
962 if (ret < 0) {
963 dd_dev_err(dd, "user ctxtdata allocation failed\n");
964 return ret;
965 }
966 hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
967 uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
968 uctxt->numa_id);
969
970 /*
971 * Allocate and enable a PIO send context.
972 */
973 uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
974 if (!uctxt->sc) {
975 ret = -ENOMEM;
976 goto ctxdata_free;
977 }
978 hfi1_cdbg(PROC, "allocated send context %u(%u)", uctxt->sc->sw_index,
979 uctxt->sc->hw_context);
980 ret = sc_enable(uctxt->sc);
981 if (ret)
982 goto ctxdata_free;
983
984 /*
985 * Setup sub context information if the user-level has requested
986 * sub contexts.
987 * This has to be done here so the rest of the sub-contexts find the
988 * proper base context.
989 * NOTE: _set_bit() can be used here because the context creation is
990 * protected by the mutex (rather than the spin_lock), and will be the
991 * very first instance of this context.
992 */
993 __set_bit(0, uctxt->in_use_ctxts);
994 if (uinfo->subctxt_cnt)
995 init_subctxts(uctxt, uinfo);
996 uctxt->userversion = uinfo->userversion;
997 uctxt->flags = hfi1_cap_mask; /* save current flag state */
998 init_waitqueue_head(&uctxt->wait);
999 strscpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
1000 memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
1001 uctxt->jkey = generate_jkey(current_uid());
1002 hfi1_stats.sps_ctxts++;
1003 /*
1004 * Disable ASPM when there are open user/PSM contexts to avoid
1005 * issues with ASPM L1 exit latency
1006 */
1007 if (dd->freectxts-- == dd->num_user_contexts)
1008 aspm_disable_all(dd);
1009
1010 *rcd = uctxt;
1011
1012 return 0;
1013
1014ctxdata_free:
1015 hfi1_free_ctxt(uctxt);
1016 return ret;
1017}
1018
1019static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
1020{
1021 mutex_lock(&hfi1_mutex);
1022 hfi1_stats.sps_ctxts--;
1023 if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
1024 aspm_enable_all(uctxt->dd);
1025 mutex_unlock(&hfi1_mutex);
1026
1027 hfi1_free_ctxt(uctxt);
1028}
1029
1030static void init_subctxts(struct hfi1_ctxtdata *uctxt,
1031 const struct hfi1_user_info *uinfo)
1032{
1033 uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1034 uctxt->subctxt_id = uinfo->subctxt_id;
1035 set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1036}
1037
1038static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1039{
1040 int ret = 0;
1041 u16 num_subctxts = uctxt->subctxt_cnt;
1042
1043 uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1044 if (!uctxt->subctxt_uregbase)
1045 return -ENOMEM;
1046
1047 /* We can take the size of the RcvHdr Queue from the master */
1048 uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) *
1049 num_subctxts);
1050 if (!uctxt->subctxt_rcvhdr_base) {
1051 ret = -ENOMEM;
1052 goto bail_ureg;
1053 }
1054
1055 uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1056 num_subctxts);
1057 if (!uctxt->subctxt_rcvegrbuf) {
1058 ret = -ENOMEM;
1059 goto bail_rhdr;
1060 }
1061
1062 return 0;
1063
1064bail_rhdr:
1065 vfree(uctxt->subctxt_rcvhdr_base);
1066 uctxt->subctxt_rcvhdr_base = NULL;
1067bail_ureg:
1068 vfree(uctxt->subctxt_uregbase);
1069 uctxt->subctxt_uregbase = NULL;
1070
1071 return ret;
1072}
1073
1074static void user_init(struct hfi1_ctxtdata *uctxt)
1075{
1076 unsigned int rcvctrl_ops = 0;
1077
1078 /* initialize poll variables... */
1079 uctxt->urgent = 0;
1080 uctxt->urgent_poll = 0;
1081
1082 /*
1083 * Now enable the ctxt for receive.
1084 * For chips that are set to DMA the tail register to memory
1085 * when they change (and when the update bit transitions from
1086 * 0 to 1. So for those chips, we turn it off and then back on.
1087 * This will (very briefly) affect any other open ctxts, but the
1088 * duration is very short, and therefore isn't an issue. We
1089 * explicitly set the in-memory tail copy to 0 beforehand, so we
1090 * don't have to wait to be sure the DMA update has happened
1091 * (chip resets head/tail to 0 on transition to enable).
1092 */
1093 if (hfi1_rcvhdrtail_kvaddr(uctxt))
1094 clear_rcvhdrtail(uctxt);
1095
1096 /* Setup J_KEY before enabling the context */
1097 hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
1098
1099 rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1100 rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB;
1101 if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1102 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1103 /*
1104 * Ignore the bit in the flags for now until proper
1105 * support for multiple packet per rcv array entry is
1106 * added.
1107 */
1108 if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1109 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1110 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1111 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1112 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1113 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1114 /*
1115 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1116 * We can't rely on the correct value to be set from prior
1117 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1118 * for both cases.
1119 */
1120 if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1121 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1122 else
1123 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1124 hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
1125}
1126
1127static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1128{
1129 struct hfi1_ctxt_info cinfo;
1130 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1131
1132 if (sizeof(cinfo) != len)
1133 return -EINVAL;
1134
1135 memset(&cinfo, 0, sizeof(cinfo));
1136 cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1137 HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1138 HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1139 HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1140 /* adjust flag if this fd is not able to cache */
1141 if (!fd->use_mn)
1142 cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1143
1144 cinfo.num_active = hfi1_count_active_units();
1145 cinfo.unit = uctxt->dd->unit;
1146 cinfo.ctxt = uctxt->ctxt;
1147 cinfo.subctxt = fd->subctxt;
1148 cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1149 uctxt->dd->rcv_entries.group_size) +
1150 uctxt->expected_count;
1151 cinfo.credits = uctxt->sc->credits;
1152 cinfo.numa_node = uctxt->numa_id;
1153 cinfo.rec_cpu = fd->rec_cpu_num;
1154 cinfo.send_ctxt = uctxt->sc->hw_context;
1155
1156 cinfo.egrtids = uctxt->egrbufs.alloced;
1157 cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt);
1158 cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2;
1159 cinfo.sdma_ring_size = fd->cq->nentries;
1160 cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1161
1162 trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo);
1163 if (copy_to_user((void __user *)arg, &cinfo, len))
1164 return -EFAULT;
1165
1166 return 0;
1167}
1168
1169static int init_user_ctxt(struct hfi1_filedata *fd,
1170 struct hfi1_ctxtdata *uctxt)
1171{
1172 int ret;
1173
1174 ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
1175 if (ret)
1176 return ret;
1177
1178 ret = hfi1_user_exp_rcv_init(fd, uctxt);
1179 if (ret)
1180 hfi1_user_sdma_free_queues(fd, uctxt);
1181
1182 return ret;
1183}
1184
1185static int setup_base_ctxt(struct hfi1_filedata *fd,
1186 struct hfi1_ctxtdata *uctxt)
1187{
1188 struct hfi1_devdata *dd = uctxt->dd;
1189 int ret = 0;
1190
1191 hfi1_init_ctxt(uctxt->sc);
1192
1193 /* Now allocate the RcvHdr queue and eager buffers. */
1194 ret = hfi1_create_rcvhdrq(dd, uctxt);
1195 if (ret)
1196 goto done;
1197
1198 ret = hfi1_setup_eagerbufs(uctxt);
1199 if (ret)
1200 goto done;
1201
1202 /* If sub-contexts are enabled, do the appropriate setup */
1203 if (uctxt->subctxt_cnt)
1204 ret = setup_subctxt(uctxt);
1205 if (ret)
1206 goto done;
1207
1208 ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
1209 if (ret)
1210 goto done;
1211
1212 ret = init_user_ctxt(fd, uctxt);
1213 if (ret) {
1214 hfi1_free_ctxt_rcv_groups(uctxt);
1215 goto done;
1216 }
1217
1218 user_init(uctxt);
1219
1220 /* Now that the context is set up, the fd can get a reference. */
1221 fd->uctxt = uctxt;
1222 hfi1_rcd_get(uctxt);
1223
1224done:
1225 if (uctxt->subctxt_cnt) {
1226 /*
1227 * On error, set the failed bit so sub-contexts will clean up
1228 * correctly.
1229 */
1230 if (ret)
1231 set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
1232
1233 /*
1234 * Base context is done (successfully or not), notify anybody
1235 * using a sub-context that is waiting for this completion.
1236 */
1237 clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1238 wake_up(&uctxt->wait);
1239 }
1240
1241 return ret;
1242}
1243
1244static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1245{
1246 struct hfi1_base_info binfo;
1247 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1248 struct hfi1_devdata *dd = uctxt->dd;
1249 unsigned offset;
1250
1251 trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
1252
1253 if (sizeof(binfo) != len)
1254 return -EINVAL;
1255
1256 memset(&binfo, 0, sizeof(binfo));
1257 binfo.hw_version = dd->revision;
1258 binfo.sw_version = HFI1_USER_SWVERSION;
1259 binfo.bthqp = RVT_KDETH_QP_PREFIX;
1260 binfo.jkey = uctxt->jkey;
1261 /*
1262 * If more than 64 contexts are enabled the allocated credit
1263 * return will span two or three contiguous pages. Since we only
1264 * map the page containing the context's credit return address,
1265 * we need to calculate the offset in the proper page.
1266 */
1267 offset = ((u64)uctxt->sc->hw_free -
1268 (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1269 binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1270 fd->subctxt, offset);
1271 binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1272 fd->subctxt,
1273 uctxt->sc->base_addr);
1274 binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1275 uctxt->ctxt,
1276 fd->subctxt,
1277 uctxt->sc->base_addr);
1278 binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1279 fd->subctxt,
1280 uctxt->rcvhdrq);
1281 binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1282 fd->subctxt,
1283 uctxt->egrbufs.rcvtids[0].dma);
1284 binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1285 fd->subctxt, 0);
1286 /*
1287 * user regs are at
1288 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1289 */
1290 binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1291 fd->subctxt, 0);
1292 offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
1293 sizeof(*dd->events));
1294 binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1295 fd->subctxt,
1296 offset);
1297 binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1298 fd->subctxt,
1299 dd->status);
1300 if (HFI1_CAP_IS_USET(DMA_RTAIL))
1301 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1302 fd->subctxt, 0);
1303 if (uctxt->subctxt_cnt) {
1304 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1305 uctxt->ctxt,
1306 fd->subctxt, 0);
1307 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1308 uctxt->ctxt,
1309 fd->subctxt, 0);
1310 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1311 uctxt->ctxt,
1312 fd->subctxt, 0);
1313 }
1314
1315 if (copy_to_user((void __user *)arg, &binfo, len))
1316 return -EFAULT;
1317
1318 return 0;
1319}
1320
1321/**
1322 * user_exp_rcv_setup - Set up the given tid rcv list
1323 * @fd: file data of the current driver instance
1324 * @arg: ioctl argumnent for user space information
1325 * @len: length of data structure associated with ioctl command
1326 *
1327 * Wrapper to validate ioctl information before doing _rcv_setup.
1328 *
1329 */
1330static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
1331 u32 len)
1332{
1333 int ret;
1334 unsigned long addr;
1335 struct hfi1_tid_info tinfo;
1336
1337 if (sizeof(tinfo) != len)
1338 return -EINVAL;
1339
1340 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1341 return -EFAULT;
1342
1343 ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
1344 if (!ret) {
1345 /*
1346 * Copy the number of tidlist entries we used
1347 * and the length of the buffer we registered.
1348 */
1349 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1350 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1351 sizeof(tinfo.tidcnt)))
1352 ret = -EFAULT;
1353
1354 addr = arg + offsetof(struct hfi1_tid_info, length);
1355 if (!ret && copy_to_user((void __user *)addr, &tinfo.length,
1356 sizeof(tinfo.length)))
1357 ret = -EFAULT;
1358
1359 if (ret)
1360 hfi1_user_exp_rcv_invalid(fd, &tinfo);
1361 }
1362
1363 return ret;
1364}
1365
1366/**
1367 * user_exp_rcv_clear - Clear the given tid rcv list
1368 * @fd: file data of the current driver instance
1369 * @arg: ioctl argumnent for user space information
1370 * @len: length of data structure associated with ioctl command
1371 *
1372 * The hfi1_user_exp_rcv_clear() can be called from the error path. Because
1373 * of this, we need to use this wrapper to copy the user space information
1374 * before doing the clear.
1375 */
1376static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
1377 u32 len)
1378{
1379 int ret;
1380 unsigned long addr;
1381 struct hfi1_tid_info tinfo;
1382
1383 if (sizeof(tinfo) != len)
1384 return -EINVAL;
1385
1386 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1387 return -EFAULT;
1388
1389 ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
1390 if (!ret) {
1391 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1392 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1393 sizeof(tinfo.tidcnt)))
1394 return -EFAULT;
1395 }
1396
1397 return ret;
1398}
1399
1400/**
1401 * user_exp_rcv_invalid - Invalidate the given tid rcv list
1402 * @fd: file data of the current driver instance
1403 * @arg: ioctl argumnent for user space information
1404 * @len: length of data structure associated with ioctl command
1405 *
1406 * Wrapper to validate ioctl information before doing _rcv_invalid.
1407 *
1408 */
1409static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
1410 u32 len)
1411{
1412 int ret;
1413 unsigned long addr;
1414 struct hfi1_tid_info tinfo;
1415
1416 if (sizeof(tinfo) != len)
1417 return -EINVAL;
1418
1419 if (!fd->invalid_tids)
1420 return -EINVAL;
1421
1422 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1423 return -EFAULT;
1424
1425 ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
1426 if (ret)
1427 return ret;
1428
1429 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1430 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1431 sizeof(tinfo.tidcnt)))
1432 ret = -EFAULT;
1433
1434 return ret;
1435}
1436
1437static __poll_t poll_urgent(struct file *fp,
1438 struct poll_table_struct *pt)
1439{
1440 struct hfi1_filedata *fd = fp->private_data;
1441 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1442 struct hfi1_devdata *dd = uctxt->dd;
1443 __poll_t pollflag;
1444
1445 poll_wait(fp, &uctxt->wait, pt);
1446
1447 spin_lock_irq(&dd->uctxt_lock);
1448 if (uctxt->urgent != uctxt->urgent_poll) {
1449 pollflag = EPOLLIN | EPOLLRDNORM;
1450 uctxt->urgent_poll = uctxt->urgent;
1451 } else {
1452 pollflag = 0;
1453 set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1454 }
1455 spin_unlock_irq(&dd->uctxt_lock);
1456
1457 return pollflag;
1458}
1459
1460static __poll_t poll_next(struct file *fp,
1461 struct poll_table_struct *pt)
1462{
1463 struct hfi1_filedata *fd = fp->private_data;
1464 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1465 struct hfi1_devdata *dd = uctxt->dd;
1466 __poll_t pollflag;
1467
1468 poll_wait(fp, &uctxt->wait, pt);
1469
1470 spin_lock_irq(&dd->uctxt_lock);
1471 if (hdrqempty(uctxt)) {
1472 set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1473 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
1474 pollflag = 0;
1475 } else {
1476 pollflag = EPOLLIN | EPOLLRDNORM;
1477 }
1478 spin_unlock_irq(&dd->uctxt_lock);
1479
1480 return pollflag;
1481}
1482
1483/*
1484 * Find all user contexts in use, and set the specified bit in their
1485 * event mask.
1486 * See also find_ctxt() for a similar use, that is specific to send buffers.
1487 */
1488int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1489{
1490 struct hfi1_ctxtdata *uctxt;
1491 struct hfi1_devdata *dd = ppd->dd;
1492 u16 ctxt;
1493
1494 if (!dd->events)
1495 return -EINVAL;
1496
1497 for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
1498 ctxt++) {
1499 uctxt = hfi1_rcd_get_by_index(dd, ctxt);
1500 if (uctxt) {
1501 unsigned long *evs;
1502 int i;
1503 /*
1504 * subctxt_cnt is 0 if not shared, so do base
1505 * separately, first, then remaining subctxt, if any
1506 */
1507 evs = dd->events + uctxt_offset(uctxt);
1508 set_bit(evtbit, evs);
1509 for (i = 1; i < uctxt->subctxt_cnt; i++)
1510 set_bit(evtbit, evs + i);
1511 hfi1_rcd_put(uctxt);
1512 }
1513 }
1514
1515 return 0;
1516}
1517
1518/**
1519 * manage_rcvq - manage a context's receive queue
1520 * @uctxt: the context
1521 * @subctxt: the sub-context
1522 * @arg: start/stop action to carry out
1523 *
1524 * start_stop == 0 disables receive on the context, for use in queue
1525 * overflow conditions. start_stop==1 re-enables, to be used to
1526 * re-init the software copy of the head register
1527 */
1528static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1529 unsigned long arg)
1530{
1531 struct hfi1_devdata *dd = uctxt->dd;
1532 unsigned int rcvctrl_op;
1533 int start_stop;
1534
1535 if (subctxt)
1536 return 0;
1537
1538 if (get_user(start_stop, (int __user *)arg))
1539 return -EFAULT;
1540
1541 /* atomically clear receive enable ctxt. */
1542 if (start_stop) {
1543 /*
1544 * On enable, force in-memory copy of the tail register to
1545 * 0, so that protocol code doesn't have to worry about
1546 * whether or not the chip has yet updated the in-memory
1547 * copy or not on return from the system call. The chip
1548 * always resets it's tail register back to 0 on a
1549 * transition from disabled to enabled.
1550 */
1551 if (hfi1_rcvhdrtail_kvaddr(uctxt))
1552 clear_rcvhdrtail(uctxt);
1553 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1554 } else {
1555 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1556 }
1557 hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
1558 /* always; new head should be equal to new tail; see above */
1559
1560 return 0;
1561}
1562
1563/*
1564 * clear the event notifier events for this context.
1565 * User process then performs actions appropriate to bit having been
1566 * set, if desired, and checks again in future.
1567 */
1568static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1569 unsigned long arg)
1570{
1571 int i;
1572 struct hfi1_devdata *dd = uctxt->dd;
1573 unsigned long *evs;
1574 unsigned long events;
1575
1576 if (!dd->events)
1577 return 0;
1578
1579 if (get_user(events, (unsigned long __user *)arg))
1580 return -EFAULT;
1581
1582 evs = dd->events + uctxt_offset(uctxt) + subctxt;
1583
1584 for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1585 if (!test_bit(i, &events))
1586 continue;
1587 clear_bit(i, evs);
1588 }
1589 return 0;
1590}
1591
1592static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
1593{
1594 int i;
1595 struct hfi1_pportdata *ppd = uctxt->ppd;
1596 struct hfi1_devdata *dd = uctxt->dd;
1597 u16 pkey;
1598
1599 if (!HFI1_CAP_IS_USET(PKEY_CHECK))
1600 return -EPERM;
1601
1602 if (get_user(pkey, (u16 __user *)arg))
1603 return -EFAULT;
1604
1605 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
1606 return -EINVAL;
1607
1608 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1609 if (pkey == ppd->pkeys[i])
1610 return hfi1_set_ctxt_pkey(dd, uctxt, pkey);
1611
1612 return -ENOENT;
1613}
1614
1615/**
1616 * ctxt_reset - Reset the user context
1617 * @uctxt: valid user context
1618 */
1619static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
1620{
1621 struct send_context *sc;
1622 struct hfi1_devdata *dd;
1623 int ret = 0;
1624
1625 if (!uctxt || !uctxt->dd || !uctxt->sc)
1626 return -EINVAL;
1627
1628 /*
1629 * There is no protection here. User level has to guarantee that
1630 * no one will be writing to the send context while it is being
1631 * re-initialized. If user level breaks that guarantee, it will
1632 * break it's own context and no one else's.
1633 */
1634 dd = uctxt->dd;
1635 sc = uctxt->sc;
1636
1637 /*
1638 * Wait until the interrupt handler has marked the context as
1639 * halted or frozen. Report error if we time out.
1640 */
1641 wait_event_interruptible_timeout(
1642 sc->halt_wait, (sc->flags & SCF_HALTED),
1643 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1644 if (!(sc->flags & SCF_HALTED))
1645 return -ENOLCK;
1646
1647 /*
1648 * If the send context was halted due to a Freeze, wait until the
1649 * device has been "unfrozen" before resetting the context.
1650 */
1651 if (sc->flags & SCF_FROZEN) {
1652 wait_event_interruptible_timeout(
1653 dd->event_queue,
1654 !(READ_ONCE(dd->flags) & HFI1_FROZEN),
1655 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1656 if (dd->flags & HFI1_FROZEN)
1657 return -ENOLCK;
1658
1659 if (dd->flags & HFI1_FORCED_FREEZE)
1660 /*
1661 * Don't allow context reset if we are into
1662 * forced freeze
1663 */
1664 return -ENODEV;
1665
1666 sc_disable(sc);
1667 ret = sc_enable(sc);
1668 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
1669 } else {
1670 ret = sc_restart(sc);
1671 }
1672 if (!ret)
1673 sc_return_credits(sc);
1674
1675 return ret;
1676}
1677
1678static void user_remove(struct hfi1_devdata *dd)
1679{
1680
1681 hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1682}
1683
1684static int user_add(struct hfi1_devdata *dd)
1685{
1686 char name[10];
1687 int ret;
1688
1689 snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1690 ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1691 &dd->user_cdev, &dd->user_device,
1692 true, &dd->verbs_dev.rdi.ibdev.dev.kobj);
1693 if (ret)
1694 user_remove(dd);
1695
1696 return ret;
1697}
1698
1699/*
1700 * Create per-unit files in /dev
1701 */
1702int hfi1_device_create(struct hfi1_devdata *dd)
1703{
1704 return user_add(dd);
1705}
1706
1707/*
1708 * Remove per-unit files in /dev
1709 * void, core kernel returns no errors for this stuff
1710 */
1711void hfi1_device_remove(struct hfi1_devdata *dd)
1712{
1713 user_remove(dd);
1714}
1/*
2 * Copyright(c) 2015, 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47#include <linux/poll.h>
48#include <linux/cdev.h>
49#include <linux/vmalloc.h>
50#include <linux/io.h>
51
52#include <rdma/ib.h>
53
54#include "hfi.h"
55#include "pio.h"
56#include "device.h"
57#include "common.h"
58#include "trace.h"
59#include "user_sdma.h"
60#include "user_exp_rcv.h"
61#include "aspm.h"
62#include "mmu_rb.h"
63
64#undef pr_fmt
65#define pr_fmt(fmt) DRIVER_NAME ": " fmt
66
67#define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
68
69/*
70 * File operation functions
71 */
72static int hfi1_file_open(struct inode *, struct file *);
73static int hfi1_file_close(struct inode *, struct file *);
74static ssize_t hfi1_write_iter(struct kiocb *, struct iov_iter *);
75static unsigned int hfi1_poll(struct file *, struct poll_table_struct *);
76static int hfi1_file_mmap(struct file *, struct vm_area_struct *);
77
78static u64 kvirt_to_phys(void *);
79static int assign_ctxt(struct file *, struct hfi1_user_info *);
80static int init_subctxts(struct hfi1_ctxtdata *, const struct hfi1_user_info *);
81static int user_init(struct file *);
82static int get_ctxt_info(struct file *, void __user *, __u32);
83static int get_base_info(struct file *, void __user *, __u32);
84static int setup_ctxt(struct file *);
85static int setup_subctxt(struct hfi1_ctxtdata *);
86static int get_user_context(struct file *, struct hfi1_user_info *, int);
87static int find_shared_ctxt(struct file *, const struct hfi1_user_info *);
88static int allocate_ctxt(struct file *, struct hfi1_devdata *,
89 struct hfi1_user_info *);
90static unsigned int poll_urgent(struct file *, struct poll_table_struct *);
91static unsigned int poll_next(struct file *, struct poll_table_struct *);
92static int user_event_ack(struct hfi1_ctxtdata *, int, unsigned long);
93static int set_ctxt_pkey(struct hfi1_ctxtdata *, unsigned, u16);
94static int manage_rcvq(struct hfi1_ctxtdata *, unsigned, int);
95static int vma_fault(struct vm_area_struct *, struct vm_fault *);
96static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
97 unsigned long arg);
98
99static const struct file_operations hfi1_file_ops = {
100 .owner = THIS_MODULE,
101 .write_iter = hfi1_write_iter,
102 .open = hfi1_file_open,
103 .release = hfi1_file_close,
104 .unlocked_ioctl = hfi1_file_ioctl,
105 .poll = hfi1_poll,
106 .mmap = hfi1_file_mmap,
107 .llseek = noop_llseek,
108};
109
110static struct vm_operations_struct vm_ops = {
111 .fault = vma_fault,
112};
113
114/*
115 * Types of memories mapped into user processes' space
116 */
117enum mmap_types {
118 PIO_BUFS = 1,
119 PIO_BUFS_SOP,
120 PIO_CRED,
121 RCV_HDRQ,
122 RCV_EGRBUF,
123 UREGS,
124 EVENTS,
125 STATUS,
126 RTAIL,
127 SUBCTXT_UREGS,
128 SUBCTXT_RCV_HDRQ,
129 SUBCTXT_EGRBUF,
130 SDMA_COMP
131};
132
133/*
134 * Masks and offsets defining the mmap tokens
135 */
136#define HFI1_MMAP_OFFSET_MASK 0xfffULL
137#define HFI1_MMAP_OFFSET_SHIFT 0
138#define HFI1_MMAP_SUBCTXT_MASK 0xfULL
139#define HFI1_MMAP_SUBCTXT_SHIFT 12
140#define HFI1_MMAP_CTXT_MASK 0xffULL
141#define HFI1_MMAP_CTXT_SHIFT 16
142#define HFI1_MMAP_TYPE_MASK 0xfULL
143#define HFI1_MMAP_TYPE_SHIFT 24
144#define HFI1_MMAP_MAGIC_MASK 0xffffffffULL
145#define HFI1_MMAP_MAGIC_SHIFT 32
146
147#define HFI1_MMAP_MAGIC 0xdabbad00
148
149#define HFI1_MMAP_TOKEN_SET(field, val) \
150 (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
151#define HFI1_MMAP_TOKEN_GET(field, token) \
152 (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
153#define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \
154 (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
155 HFI1_MMAP_TOKEN_SET(TYPE, type) | \
156 HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
157 HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
158 HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
159
160#define dbg(fmt, ...) \
161 pr_info(fmt, ##__VA_ARGS__)
162
163static inline int is_valid_mmap(u64 token)
164{
165 return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
166}
167
168static int hfi1_file_open(struct inode *inode, struct file *fp)
169{
170 struct hfi1_filedata *fd;
171 struct hfi1_devdata *dd = container_of(inode->i_cdev,
172 struct hfi1_devdata,
173 user_cdev);
174
175 if (!atomic_inc_not_zero(&dd->user_refcount))
176 return -ENXIO;
177
178 /* Just take a ref now. Not all opens result in a context assign */
179 kobject_get(&dd->kobj);
180
181 /* The real work is performed later in assign_ctxt() */
182
183 fd = kzalloc(sizeof(*fd), GFP_KERNEL);
184
185 if (fd) {
186 fd->rec_cpu_num = -1; /* no cpu affinity by default */
187 fd->mm = current->mm;
188 atomic_inc(&fd->mm->mm_count);
189 fp->private_data = fd;
190 } else {
191 fp->private_data = NULL;
192
193 if (atomic_dec_and_test(&dd->user_refcount))
194 complete(&dd->user_comp);
195
196 return -ENOMEM;
197 }
198
199 return 0;
200}
201
202static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
203 unsigned long arg)
204{
205 struct hfi1_filedata *fd = fp->private_data;
206 struct hfi1_ctxtdata *uctxt = fd->uctxt;
207 struct hfi1_user_info uinfo;
208 struct hfi1_tid_info tinfo;
209 int ret = 0;
210 unsigned long addr;
211 int uval = 0;
212 unsigned long ul_uval = 0;
213 u16 uval16 = 0;
214
215 hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
216 if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
217 cmd != HFI1_IOCTL_GET_VERS &&
218 !uctxt)
219 return -EINVAL;
220
221 switch (cmd) {
222 case HFI1_IOCTL_ASSIGN_CTXT:
223 if (uctxt)
224 return -EINVAL;
225
226 if (copy_from_user(&uinfo,
227 (struct hfi1_user_info __user *)arg,
228 sizeof(uinfo)))
229 return -EFAULT;
230
231 ret = assign_ctxt(fp, &uinfo);
232 if (ret < 0)
233 return ret;
234 ret = setup_ctxt(fp);
235 if (ret)
236 return ret;
237 ret = user_init(fp);
238 break;
239 case HFI1_IOCTL_CTXT_INFO:
240 ret = get_ctxt_info(fp, (void __user *)(unsigned long)arg,
241 sizeof(struct hfi1_ctxt_info));
242 break;
243 case HFI1_IOCTL_USER_INFO:
244 ret = get_base_info(fp, (void __user *)(unsigned long)arg,
245 sizeof(struct hfi1_base_info));
246 break;
247 case HFI1_IOCTL_CREDIT_UPD:
248 if (uctxt)
249 sc_return_credits(uctxt->sc);
250 break;
251
252 case HFI1_IOCTL_TID_UPDATE:
253 if (copy_from_user(&tinfo,
254 (struct hfi11_tid_info __user *)arg,
255 sizeof(tinfo)))
256 return -EFAULT;
257
258 ret = hfi1_user_exp_rcv_setup(fp, &tinfo);
259 if (!ret) {
260 /*
261 * Copy the number of tidlist entries we used
262 * and the length of the buffer we registered.
263 * These fields are adjacent in the structure so
264 * we can copy them at the same time.
265 */
266 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
267 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
268 sizeof(tinfo.tidcnt) +
269 sizeof(tinfo.length)))
270 ret = -EFAULT;
271 }
272 break;
273
274 case HFI1_IOCTL_TID_FREE:
275 if (copy_from_user(&tinfo,
276 (struct hfi11_tid_info __user *)arg,
277 sizeof(tinfo)))
278 return -EFAULT;
279
280 ret = hfi1_user_exp_rcv_clear(fp, &tinfo);
281 if (ret)
282 break;
283 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
284 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
285 sizeof(tinfo.tidcnt)))
286 ret = -EFAULT;
287 break;
288
289 case HFI1_IOCTL_TID_INVAL_READ:
290 if (copy_from_user(&tinfo,
291 (struct hfi11_tid_info __user *)arg,
292 sizeof(tinfo)))
293 return -EFAULT;
294
295 ret = hfi1_user_exp_rcv_invalid(fp, &tinfo);
296 if (ret)
297 break;
298 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
299 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
300 sizeof(tinfo.tidcnt)))
301 ret = -EFAULT;
302 break;
303
304 case HFI1_IOCTL_RECV_CTRL:
305 ret = get_user(uval, (int __user *)arg);
306 if (ret != 0)
307 return -EFAULT;
308 ret = manage_rcvq(uctxt, fd->subctxt, uval);
309 break;
310
311 case HFI1_IOCTL_POLL_TYPE:
312 ret = get_user(uval, (int __user *)arg);
313 if (ret != 0)
314 return -EFAULT;
315 uctxt->poll_type = (typeof(uctxt->poll_type))uval;
316 break;
317
318 case HFI1_IOCTL_ACK_EVENT:
319 ret = get_user(ul_uval, (unsigned long __user *)arg);
320 if (ret != 0)
321 return -EFAULT;
322 ret = user_event_ack(uctxt, fd->subctxt, ul_uval);
323 break;
324
325 case HFI1_IOCTL_SET_PKEY:
326 ret = get_user(uval16, (u16 __user *)arg);
327 if (ret != 0)
328 return -EFAULT;
329 if (HFI1_CAP_IS_USET(PKEY_CHECK))
330 ret = set_ctxt_pkey(uctxt, fd->subctxt, uval16);
331 else
332 return -EPERM;
333 break;
334
335 case HFI1_IOCTL_CTXT_RESET: {
336 struct send_context *sc;
337 struct hfi1_devdata *dd;
338
339 if (!uctxt || !uctxt->dd || !uctxt->sc)
340 return -EINVAL;
341
342 /*
343 * There is no protection here. User level has to
344 * guarantee that no one will be writing to the send
345 * context while it is being re-initialized.
346 * If user level breaks that guarantee, it will break
347 * it's own context and no one else's.
348 */
349 dd = uctxt->dd;
350 sc = uctxt->sc;
351 /*
352 * Wait until the interrupt handler has marked the
353 * context as halted or frozen. Report error if we time
354 * out.
355 */
356 wait_event_interruptible_timeout(
357 sc->halt_wait, (sc->flags & SCF_HALTED),
358 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
359 if (!(sc->flags & SCF_HALTED))
360 return -ENOLCK;
361
362 /*
363 * If the send context was halted due to a Freeze,
364 * wait until the device has been "unfrozen" before
365 * resetting the context.
366 */
367 if (sc->flags & SCF_FROZEN) {
368 wait_event_interruptible_timeout(
369 dd->event_queue,
370 !(ACCESS_ONCE(dd->flags) & HFI1_FROZEN),
371 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
372 if (dd->flags & HFI1_FROZEN)
373 return -ENOLCK;
374
375 if (dd->flags & HFI1_FORCED_FREEZE)
376 /*
377 * Don't allow context reset if we are into
378 * forced freeze
379 */
380 return -ENODEV;
381
382 sc_disable(sc);
383 ret = sc_enable(sc);
384 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB,
385 uctxt->ctxt);
386 } else {
387 ret = sc_restart(sc);
388 }
389 if (!ret)
390 sc_return_credits(sc);
391 break;
392 }
393
394 case HFI1_IOCTL_GET_VERS:
395 uval = HFI1_USER_SWVERSION;
396 if (put_user(uval, (int __user *)arg))
397 return -EFAULT;
398 break;
399
400 default:
401 return -EINVAL;
402 }
403
404 return ret;
405}
406
407static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
408{
409 struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
410 struct hfi1_user_sdma_pkt_q *pq = fd->pq;
411 struct hfi1_user_sdma_comp_q *cq = fd->cq;
412 int done = 0, reqs = 0;
413 unsigned long dim = from->nr_segs;
414
415 if (!cq || !pq)
416 return -EIO;
417
418 if (!iter_is_iovec(from) || !dim)
419 return -EINVAL;
420
421 hfi1_cdbg(SDMA, "SDMA request from %u:%u (%lu)",
422 fd->uctxt->ctxt, fd->subctxt, dim);
423
424 if (atomic_read(&pq->n_reqs) == pq->n_max_reqs)
425 return -ENOSPC;
426
427 while (dim) {
428 int ret;
429 unsigned long count = 0;
430
431 ret = hfi1_user_sdma_process_request(
432 kiocb->ki_filp, (struct iovec *)(from->iov + done),
433 dim, &count);
434 if (ret) {
435 reqs = ret;
436 break;
437 }
438 dim -= count;
439 done += count;
440 reqs++;
441 }
442
443 return reqs;
444}
445
446static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
447{
448 struct hfi1_filedata *fd = fp->private_data;
449 struct hfi1_ctxtdata *uctxt = fd->uctxt;
450 struct hfi1_devdata *dd;
451 unsigned long flags;
452 u64 token = vma->vm_pgoff << PAGE_SHIFT,
453 memaddr = 0;
454 void *memvirt = NULL;
455 u8 subctxt, mapio = 0, vmf = 0, type;
456 ssize_t memlen = 0;
457 int ret = 0;
458 u16 ctxt;
459
460 if (!is_valid_mmap(token) || !uctxt ||
461 !(vma->vm_flags & VM_SHARED)) {
462 ret = -EINVAL;
463 goto done;
464 }
465 dd = uctxt->dd;
466 ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
467 subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
468 type = HFI1_MMAP_TOKEN_GET(TYPE, token);
469 if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
470 ret = -EINVAL;
471 goto done;
472 }
473
474 flags = vma->vm_flags;
475
476 switch (type) {
477 case PIO_BUFS:
478 case PIO_BUFS_SOP:
479 memaddr = ((dd->physaddr + TXE_PIO_SEND) +
480 /* chip pio base */
481 (uctxt->sc->hw_context * BIT(16))) +
482 /* 64K PIO space / ctxt */
483 (type == PIO_BUFS_SOP ?
484 (TXE_PIO_SIZE / 2) : 0); /* sop? */
485 /*
486 * Map only the amount allocated to the context, not the
487 * entire available context's PIO space.
488 */
489 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
490 flags &= ~VM_MAYREAD;
491 flags |= VM_DONTCOPY | VM_DONTEXPAND;
492 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
493 mapio = 1;
494 break;
495 case PIO_CRED:
496 if (flags & VM_WRITE) {
497 ret = -EPERM;
498 goto done;
499 }
500 /*
501 * The credit return location for this context could be on the
502 * second or third page allocated for credit returns (if number
503 * of enabled contexts > 64 and 128 respectively).
504 */
505 memvirt = dd->cr_base[uctxt->numa_id].va;
506 memaddr = virt_to_phys(memvirt) +
507 (((u64)uctxt->sc->hw_free -
508 (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK);
509 memlen = PAGE_SIZE;
510 flags &= ~VM_MAYWRITE;
511 flags |= VM_DONTCOPY | VM_DONTEXPAND;
512 /*
513 * The driver has already allocated memory for credit
514 * returns and programmed it into the chip. Has that
515 * memory been flagged as non-cached?
516 */
517 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
518 mapio = 1;
519 break;
520 case RCV_HDRQ:
521 memlen = uctxt->rcvhdrq_size;
522 memvirt = uctxt->rcvhdrq;
523 break;
524 case RCV_EGRBUF: {
525 unsigned long addr;
526 int i;
527 /*
528 * The RcvEgr buffer need to be handled differently
529 * as multiple non-contiguous pages need to be mapped
530 * into the user process.
531 */
532 memlen = uctxt->egrbufs.size;
533 if ((vma->vm_end - vma->vm_start) != memlen) {
534 dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
535 (vma->vm_end - vma->vm_start), memlen);
536 ret = -EINVAL;
537 goto done;
538 }
539 if (vma->vm_flags & VM_WRITE) {
540 ret = -EPERM;
541 goto done;
542 }
543 vma->vm_flags &= ~VM_MAYWRITE;
544 addr = vma->vm_start;
545 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
546 memlen = uctxt->egrbufs.buffers[i].len;
547 memvirt = uctxt->egrbufs.buffers[i].addr;
548 ret = remap_pfn_range(
549 vma, addr,
550 /*
551 * virt_to_pfn() does the same, but
552 * it's not available on x86_64
553 * when CONFIG_MMU is enabled.
554 */
555 PFN_DOWN(__pa(memvirt)),
556 memlen,
557 vma->vm_page_prot);
558 if (ret < 0)
559 goto done;
560 addr += memlen;
561 }
562 ret = 0;
563 goto done;
564 }
565 case UREGS:
566 /*
567 * Map only the page that contains this context's user
568 * registers.
569 */
570 memaddr = (unsigned long)
571 (dd->physaddr + RXE_PER_CONTEXT_USER)
572 + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
573 /*
574 * TidFlow table is on the same page as the rest of the
575 * user registers.
576 */
577 memlen = PAGE_SIZE;
578 flags |= VM_DONTCOPY | VM_DONTEXPAND;
579 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
580 mapio = 1;
581 break;
582 case EVENTS:
583 /*
584 * Use the page where this context's flags are. User level
585 * knows where it's own bitmap is within the page.
586 */
587 memaddr = (unsigned long)(dd->events +
588 ((uctxt->ctxt - dd->first_user_ctxt) *
589 HFI1_MAX_SHARED_CTXTS)) & PAGE_MASK;
590 memlen = PAGE_SIZE;
591 /*
592 * v3.7 removes VM_RESERVED but the effect is kept by
593 * using VM_IO.
594 */
595 flags |= VM_IO | VM_DONTEXPAND;
596 vmf = 1;
597 break;
598 case STATUS:
599 memaddr = kvirt_to_phys((void *)dd->status);
600 memlen = PAGE_SIZE;
601 flags |= VM_IO | VM_DONTEXPAND;
602 break;
603 case RTAIL:
604 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
605 /*
606 * If the memory allocation failed, the context alloc
607 * also would have failed, so we would never get here
608 */
609 ret = -EINVAL;
610 goto done;
611 }
612 if (flags & VM_WRITE) {
613 ret = -EPERM;
614 goto done;
615 }
616 memlen = PAGE_SIZE;
617 memvirt = (void *)uctxt->rcvhdrtail_kvaddr;
618 flags &= ~VM_MAYWRITE;
619 break;
620 case SUBCTXT_UREGS:
621 memaddr = (u64)uctxt->subctxt_uregbase;
622 memlen = PAGE_SIZE;
623 flags |= VM_IO | VM_DONTEXPAND;
624 vmf = 1;
625 break;
626 case SUBCTXT_RCV_HDRQ:
627 memaddr = (u64)uctxt->subctxt_rcvhdr_base;
628 memlen = uctxt->rcvhdrq_size * uctxt->subctxt_cnt;
629 flags |= VM_IO | VM_DONTEXPAND;
630 vmf = 1;
631 break;
632 case SUBCTXT_EGRBUF:
633 memaddr = (u64)uctxt->subctxt_rcvegrbuf;
634 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
635 flags |= VM_IO | VM_DONTEXPAND;
636 flags &= ~VM_MAYWRITE;
637 vmf = 1;
638 break;
639 case SDMA_COMP: {
640 struct hfi1_user_sdma_comp_q *cq = fd->cq;
641
642 if (!cq) {
643 ret = -EFAULT;
644 goto done;
645 }
646 memaddr = (u64)cq->comps;
647 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
648 flags |= VM_IO | VM_DONTEXPAND;
649 vmf = 1;
650 break;
651 }
652 default:
653 ret = -EINVAL;
654 break;
655 }
656
657 if ((vma->vm_end - vma->vm_start) != memlen) {
658 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
659 uctxt->ctxt, fd->subctxt,
660 (vma->vm_end - vma->vm_start), memlen);
661 ret = -EINVAL;
662 goto done;
663 }
664
665 vma->vm_flags = flags;
666 hfi1_cdbg(PROC,
667 "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n",
668 ctxt, subctxt, type, mapio, vmf, memaddr, memlen,
669 vma->vm_end - vma->vm_start, vma->vm_flags);
670 if (vmf) {
671 vma->vm_pgoff = PFN_DOWN(memaddr);
672 vma->vm_ops = &vm_ops;
673 ret = 0;
674 } else if (mapio) {
675 ret = io_remap_pfn_range(vma, vma->vm_start,
676 PFN_DOWN(memaddr),
677 memlen,
678 vma->vm_page_prot);
679 } else if (memvirt) {
680 ret = remap_pfn_range(vma, vma->vm_start,
681 PFN_DOWN(__pa(memvirt)),
682 memlen,
683 vma->vm_page_prot);
684 } else {
685 ret = remap_pfn_range(vma, vma->vm_start,
686 PFN_DOWN(memaddr),
687 memlen,
688 vma->vm_page_prot);
689 }
690done:
691 return ret;
692}
693
694/*
695 * Local (non-chip) user memory is not mapped right away but as it is
696 * accessed by the user-level code.
697 */
698static int vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
699{
700 struct page *page;
701
702 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
703 if (!page)
704 return VM_FAULT_SIGBUS;
705
706 get_page(page);
707 vmf->page = page;
708
709 return 0;
710}
711
712static unsigned int hfi1_poll(struct file *fp, struct poll_table_struct *pt)
713{
714 struct hfi1_ctxtdata *uctxt;
715 unsigned pollflag;
716
717 uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
718 if (!uctxt)
719 pollflag = POLLERR;
720 else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
721 pollflag = poll_urgent(fp, pt);
722 else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
723 pollflag = poll_next(fp, pt);
724 else /* invalid */
725 pollflag = POLLERR;
726
727 return pollflag;
728}
729
730static int hfi1_file_close(struct inode *inode, struct file *fp)
731{
732 struct hfi1_filedata *fdata = fp->private_data;
733 struct hfi1_ctxtdata *uctxt = fdata->uctxt;
734 struct hfi1_devdata *dd = container_of(inode->i_cdev,
735 struct hfi1_devdata,
736 user_cdev);
737 unsigned long flags, *ev;
738
739 fp->private_data = NULL;
740
741 if (!uctxt)
742 goto done;
743
744 hfi1_cdbg(PROC, "freeing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
745 mutex_lock(&hfi1_mutex);
746
747 flush_wc();
748 /* drain user sdma queue */
749 hfi1_user_sdma_free_queues(fdata);
750
751 /* release the cpu */
752 hfi1_put_proc_affinity(fdata->rec_cpu_num);
753
754 /*
755 * Clear any left over, unhandled events so the next process that
756 * gets this context doesn't get confused.
757 */
758 ev = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) *
759 HFI1_MAX_SHARED_CTXTS) + fdata->subctxt;
760 *ev = 0;
761
762 if (--uctxt->cnt) {
763 uctxt->active_slaves &= ~(1 << fdata->subctxt);
764 mutex_unlock(&hfi1_mutex);
765 goto done;
766 }
767
768 spin_lock_irqsave(&dd->uctxt_lock, flags);
769 /*
770 * Disable receive context and interrupt available, reset all
771 * RcvCtxtCtrl bits to default values.
772 */
773 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
774 HFI1_RCVCTRL_TIDFLOW_DIS |
775 HFI1_RCVCTRL_INTRAVAIL_DIS |
776 HFI1_RCVCTRL_TAILUPD_DIS |
777 HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
778 HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
779 HFI1_RCVCTRL_NO_EGR_DROP_DIS, uctxt->ctxt);
780 /* Clear the context's J_KEY */
781 hfi1_clear_ctxt_jkey(dd, uctxt->ctxt);
782 /*
783 * Reset context integrity checks to default.
784 * (writes to CSRs probably belong in chip.c)
785 */
786 write_kctxt_csr(dd, uctxt->sc->hw_context, SEND_CTXT_CHECK_ENABLE,
787 hfi1_pkt_default_send_ctxt_mask(dd, uctxt->sc->type));
788 sc_disable(uctxt->sc);
789 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
790
791 dd->rcd[uctxt->ctxt] = NULL;
792
793 hfi1_user_exp_rcv_free(fdata);
794 hfi1_clear_ctxt_pkey(dd, uctxt->ctxt);
795
796 uctxt->rcvwait_to = 0;
797 uctxt->piowait_to = 0;
798 uctxt->rcvnowait = 0;
799 uctxt->pionowait = 0;
800 uctxt->event_flags = 0;
801
802 hfi1_stats.sps_ctxts--;
803 if (++dd->freectxts == dd->num_user_contexts)
804 aspm_enable_all(dd);
805 mutex_unlock(&hfi1_mutex);
806 hfi1_free_ctxtdata(dd, uctxt);
807done:
808 mmdrop(fdata->mm);
809 kobject_put(&dd->kobj);
810
811 if (atomic_dec_and_test(&dd->user_refcount))
812 complete(&dd->user_comp);
813
814 kfree(fdata);
815 return 0;
816}
817
818/*
819 * Convert kernel *virtual* addresses to physical addresses.
820 * This is used to vmalloc'ed addresses.
821 */
822static u64 kvirt_to_phys(void *addr)
823{
824 struct page *page;
825 u64 paddr = 0;
826
827 page = vmalloc_to_page(addr);
828 if (page)
829 paddr = page_to_pfn(page) << PAGE_SHIFT;
830
831 return paddr;
832}
833
834static int assign_ctxt(struct file *fp, struct hfi1_user_info *uinfo)
835{
836 int i_minor, ret = 0;
837 unsigned int swmajor, swminor;
838
839 swmajor = uinfo->userversion >> 16;
840 if (swmajor != HFI1_USER_SWMAJOR) {
841 ret = -ENODEV;
842 goto done;
843 }
844
845 swminor = uinfo->userversion & 0xffff;
846
847 mutex_lock(&hfi1_mutex);
848 /* First, lets check if we need to setup a shared context? */
849 if (uinfo->subctxt_cnt) {
850 struct hfi1_filedata *fd = fp->private_data;
851
852 ret = find_shared_ctxt(fp, uinfo);
853 if (ret < 0)
854 goto done_unlock;
855 if (ret) {
856 fd->rec_cpu_num =
857 hfi1_get_proc_affinity(fd->uctxt->numa_id);
858 }
859 }
860
861 /*
862 * We execute the following block if we couldn't find a
863 * shared context or if context sharing is not required.
864 */
865 if (!ret) {
866 i_minor = iminor(file_inode(fp)) - HFI1_USER_MINOR_BASE;
867 ret = get_user_context(fp, uinfo, i_minor);
868 }
869done_unlock:
870 mutex_unlock(&hfi1_mutex);
871done:
872 return ret;
873}
874
875static int get_user_context(struct file *fp, struct hfi1_user_info *uinfo,
876 int devno)
877{
878 struct hfi1_devdata *dd = NULL;
879 int devmax, npresent, nup;
880
881 devmax = hfi1_count_units(&npresent, &nup);
882 if (!npresent)
883 return -ENXIO;
884
885 if (!nup)
886 return -ENETDOWN;
887
888 dd = hfi1_lookup(devno);
889 if (!dd)
890 return -ENODEV;
891 else if (!dd->freectxts)
892 return -EBUSY;
893
894 return allocate_ctxt(fp, dd, uinfo);
895}
896
897static int find_shared_ctxt(struct file *fp,
898 const struct hfi1_user_info *uinfo)
899{
900 int devmax, ndev, i;
901 int ret = 0;
902 struct hfi1_filedata *fd = fp->private_data;
903
904 devmax = hfi1_count_units(NULL, NULL);
905
906 for (ndev = 0; ndev < devmax; ndev++) {
907 struct hfi1_devdata *dd = hfi1_lookup(ndev);
908
909 if (!(dd && (dd->flags & HFI1_PRESENT) && dd->kregbase))
910 continue;
911 for (i = dd->first_user_ctxt; i < dd->num_rcv_contexts; i++) {
912 struct hfi1_ctxtdata *uctxt = dd->rcd[i];
913
914 /* Skip ctxts which are not yet open */
915 if (!uctxt || !uctxt->cnt)
916 continue;
917 /* Skip ctxt if it doesn't match the requested one */
918 if (memcmp(uctxt->uuid, uinfo->uuid,
919 sizeof(uctxt->uuid)) ||
920 uctxt->jkey != generate_jkey(current_uid()) ||
921 uctxt->subctxt_id != uinfo->subctxt_id ||
922 uctxt->subctxt_cnt != uinfo->subctxt_cnt)
923 continue;
924
925 /* Verify the sharing process matches the master */
926 if (uctxt->userversion != uinfo->userversion ||
927 uctxt->cnt >= uctxt->subctxt_cnt) {
928 ret = -EINVAL;
929 goto done;
930 }
931 fd->uctxt = uctxt;
932 fd->subctxt = uctxt->cnt++;
933 uctxt->active_slaves |= 1 << fd->subctxt;
934 ret = 1;
935 goto done;
936 }
937 }
938
939done:
940 return ret;
941}
942
943static int allocate_ctxt(struct file *fp, struct hfi1_devdata *dd,
944 struct hfi1_user_info *uinfo)
945{
946 struct hfi1_filedata *fd = fp->private_data;
947 struct hfi1_ctxtdata *uctxt;
948 unsigned ctxt;
949 int ret, numa;
950
951 if (dd->flags & HFI1_FROZEN) {
952 /*
953 * Pick an error that is unique from all other errors
954 * that are returned so the user process knows that
955 * it tried to allocate while the SPC was frozen. It
956 * it should be able to retry with success in a short
957 * while.
958 */
959 return -EIO;
960 }
961
962 for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts; ctxt++)
963 if (!dd->rcd[ctxt])
964 break;
965
966 if (ctxt == dd->num_rcv_contexts)
967 return -EBUSY;
968
969 /*
970 * If we don't have a NUMA node requested, preference is towards
971 * device NUMA node.
972 */
973 fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
974 if (fd->rec_cpu_num != -1)
975 numa = cpu_to_node(fd->rec_cpu_num);
976 else
977 numa = numa_node_id();
978 uctxt = hfi1_create_ctxtdata(dd->pport, ctxt, numa);
979 if (!uctxt) {
980 dd_dev_err(dd,
981 "Unable to allocate ctxtdata memory, failing open\n");
982 return -ENOMEM;
983 }
984 hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
985 uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
986 uctxt->numa_id);
987
988 /*
989 * Allocate and enable a PIO send context.
990 */
991 uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize,
992 uctxt->dd->node);
993 if (!uctxt->sc) {
994 ret = -ENOMEM;
995 goto ctxdata_free;
996 }
997 hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
998 uctxt->sc->hw_context);
999 ret = sc_enable(uctxt->sc);
1000 if (ret)
1001 goto ctxdata_free;
1002
1003 /*
1004 * Setup shared context resources if the user-level has requested
1005 * shared contexts and this is the 'master' process.
1006 * This has to be done here so the rest of the sub-contexts find the
1007 * proper master.
1008 */
1009 if (uinfo->subctxt_cnt && !fd->subctxt) {
1010 ret = init_subctxts(uctxt, uinfo);
1011 /*
1012 * On error, we don't need to disable and de-allocate the
1013 * send context because it will be done during file close
1014 */
1015 if (ret)
1016 goto ctxdata_free;
1017 }
1018 uctxt->userversion = uinfo->userversion;
1019 uctxt->flags = hfi1_cap_mask; /* save current flag state */
1020 init_waitqueue_head(&uctxt->wait);
1021 strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
1022 memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
1023 uctxt->jkey = generate_jkey(current_uid());
1024 INIT_LIST_HEAD(&uctxt->sdma_queues);
1025 spin_lock_init(&uctxt->sdma_qlock);
1026 hfi1_stats.sps_ctxts++;
1027 /*
1028 * Disable ASPM when there are open user/PSM contexts to avoid
1029 * issues with ASPM L1 exit latency
1030 */
1031 if (dd->freectxts-- == dd->num_user_contexts)
1032 aspm_disable_all(dd);
1033 fd->uctxt = uctxt;
1034
1035 return 0;
1036
1037ctxdata_free:
1038 dd->rcd[ctxt] = NULL;
1039 hfi1_free_ctxtdata(dd, uctxt);
1040 return ret;
1041}
1042
1043static int init_subctxts(struct hfi1_ctxtdata *uctxt,
1044 const struct hfi1_user_info *uinfo)
1045{
1046 unsigned num_subctxts;
1047
1048 num_subctxts = uinfo->subctxt_cnt;
1049 if (num_subctxts > HFI1_MAX_SHARED_CTXTS)
1050 return -EINVAL;
1051
1052 uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1053 uctxt->subctxt_id = uinfo->subctxt_id;
1054 uctxt->active_slaves = 1;
1055 uctxt->redirect_seq_cnt = 1;
1056 set_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags);
1057
1058 return 0;
1059}
1060
1061static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1062{
1063 int ret = 0;
1064 unsigned num_subctxts = uctxt->subctxt_cnt;
1065
1066 uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1067 if (!uctxt->subctxt_uregbase) {
1068 ret = -ENOMEM;
1069 goto bail;
1070 }
1071 /* We can take the size of the RcvHdr Queue from the master */
1072 uctxt->subctxt_rcvhdr_base = vmalloc_user(uctxt->rcvhdrq_size *
1073 num_subctxts);
1074 if (!uctxt->subctxt_rcvhdr_base) {
1075 ret = -ENOMEM;
1076 goto bail_ureg;
1077 }
1078
1079 uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1080 num_subctxts);
1081 if (!uctxt->subctxt_rcvegrbuf) {
1082 ret = -ENOMEM;
1083 goto bail_rhdr;
1084 }
1085 goto bail;
1086bail_rhdr:
1087 vfree(uctxt->subctxt_rcvhdr_base);
1088bail_ureg:
1089 vfree(uctxt->subctxt_uregbase);
1090 uctxt->subctxt_uregbase = NULL;
1091bail:
1092 return ret;
1093}
1094
1095static int user_init(struct file *fp)
1096{
1097 unsigned int rcvctrl_ops = 0;
1098 struct hfi1_filedata *fd = fp->private_data;
1099 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1100
1101 /* make sure that the context has already been setup */
1102 if (!test_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags))
1103 return -EFAULT;
1104
1105 /* initialize poll variables... */
1106 uctxt->urgent = 0;
1107 uctxt->urgent_poll = 0;
1108
1109 /*
1110 * Now enable the ctxt for receive.
1111 * For chips that are set to DMA the tail register to memory
1112 * when they change (and when the update bit transitions from
1113 * 0 to 1. So for those chips, we turn it off and then back on.
1114 * This will (very briefly) affect any other open ctxts, but the
1115 * duration is very short, and therefore isn't an issue. We
1116 * explicitly set the in-memory tail copy to 0 beforehand, so we
1117 * don't have to wait to be sure the DMA update has happened
1118 * (chip resets head/tail to 0 on transition to enable).
1119 */
1120 if (uctxt->rcvhdrtail_kvaddr)
1121 clear_rcvhdrtail(uctxt);
1122
1123 /* Setup J_KEY before enabling the context */
1124 hfi1_set_ctxt_jkey(uctxt->dd, uctxt->ctxt, uctxt->jkey);
1125
1126 rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1127 if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1128 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1129 /*
1130 * Ignore the bit in the flags for now until proper
1131 * support for multiple packet per rcv array entry is
1132 * added.
1133 */
1134 if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1135 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1136 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1137 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1138 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1139 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1140 /*
1141 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1142 * We can't rely on the correct value to be set from prior
1143 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1144 * for both cases.
1145 */
1146 if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1147 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1148 else
1149 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1150 hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt->ctxt);
1151
1152 /* Notify any waiting slaves */
1153 if (uctxt->subctxt_cnt) {
1154 clear_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags);
1155 wake_up(&uctxt->wait);
1156 }
1157
1158 return 0;
1159}
1160
1161static int get_ctxt_info(struct file *fp, void __user *ubase, __u32 len)
1162{
1163 struct hfi1_ctxt_info cinfo;
1164 struct hfi1_filedata *fd = fp->private_data;
1165 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1166 int ret = 0;
1167
1168 memset(&cinfo, 0, sizeof(cinfo));
1169 cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1170 HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1171 HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1172 HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1173 /* adjust flag if this fd is not able to cache */
1174 if (!fd->handler)
1175 cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1176
1177 cinfo.num_active = hfi1_count_active_units();
1178 cinfo.unit = uctxt->dd->unit;
1179 cinfo.ctxt = uctxt->ctxt;
1180 cinfo.subctxt = fd->subctxt;
1181 cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1182 uctxt->dd->rcv_entries.group_size) +
1183 uctxt->expected_count;
1184 cinfo.credits = uctxt->sc->credits;
1185 cinfo.numa_node = uctxt->numa_id;
1186 cinfo.rec_cpu = fd->rec_cpu_num;
1187 cinfo.send_ctxt = uctxt->sc->hw_context;
1188
1189 cinfo.egrtids = uctxt->egrbufs.alloced;
1190 cinfo.rcvhdrq_cnt = uctxt->rcvhdrq_cnt;
1191 cinfo.rcvhdrq_entsize = uctxt->rcvhdrqentsize << 2;
1192 cinfo.sdma_ring_size = fd->cq->nentries;
1193 cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1194
1195 trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, cinfo);
1196 if (copy_to_user(ubase, &cinfo, sizeof(cinfo)))
1197 ret = -EFAULT;
1198
1199 return ret;
1200}
1201
1202static int setup_ctxt(struct file *fp)
1203{
1204 struct hfi1_filedata *fd = fp->private_data;
1205 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1206 struct hfi1_devdata *dd = uctxt->dd;
1207 int ret = 0;
1208
1209 /*
1210 * Context should be set up only once, including allocation and
1211 * programming of eager buffers. This is done if context sharing
1212 * is not requested or by the master process.
1213 */
1214 if (!uctxt->subctxt_cnt || !fd->subctxt) {
1215 ret = hfi1_init_ctxt(uctxt->sc);
1216 if (ret)
1217 goto done;
1218
1219 /* Now allocate the RcvHdr queue and eager buffers. */
1220 ret = hfi1_create_rcvhdrq(dd, uctxt);
1221 if (ret)
1222 goto done;
1223 ret = hfi1_setup_eagerbufs(uctxt);
1224 if (ret)
1225 goto done;
1226 if (uctxt->subctxt_cnt && !fd->subctxt) {
1227 ret = setup_subctxt(uctxt);
1228 if (ret)
1229 goto done;
1230 }
1231 } else {
1232 ret = wait_event_interruptible(uctxt->wait, !test_bit(
1233 HFI1_CTXT_MASTER_UNINIT,
1234 &uctxt->event_flags));
1235 if (ret)
1236 goto done;
1237 }
1238
1239 ret = hfi1_user_sdma_alloc_queues(uctxt, fp);
1240 if (ret)
1241 goto done;
1242 /*
1243 * Expected receive has to be setup for all processes (including
1244 * shared contexts). However, it has to be done after the master
1245 * context has been fully configured as it depends on the
1246 * eager/expected split of the RcvArray entries.
1247 * Setting it up here ensures that the subcontexts will be waiting
1248 * (due to the above wait_event_interruptible() until the master
1249 * is setup.
1250 */
1251 ret = hfi1_user_exp_rcv_init(fp);
1252 if (ret)
1253 goto done;
1254
1255 set_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags);
1256done:
1257 return ret;
1258}
1259
1260static int get_base_info(struct file *fp, void __user *ubase, __u32 len)
1261{
1262 struct hfi1_base_info binfo;
1263 struct hfi1_filedata *fd = fp->private_data;
1264 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1265 struct hfi1_devdata *dd = uctxt->dd;
1266 ssize_t sz;
1267 unsigned offset;
1268 int ret = 0;
1269
1270 trace_hfi1_uctxtdata(uctxt->dd, uctxt);
1271
1272 memset(&binfo, 0, sizeof(binfo));
1273 binfo.hw_version = dd->revision;
1274 binfo.sw_version = HFI1_KERN_SWVERSION;
1275 binfo.bthqp = kdeth_qp;
1276 binfo.jkey = uctxt->jkey;
1277 /*
1278 * If more than 64 contexts are enabled the allocated credit
1279 * return will span two or three contiguous pages. Since we only
1280 * map the page containing the context's credit return address,
1281 * we need to calculate the offset in the proper page.
1282 */
1283 offset = ((u64)uctxt->sc->hw_free -
1284 (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1285 binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1286 fd->subctxt, offset);
1287 binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1288 fd->subctxt,
1289 uctxt->sc->base_addr);
1290 binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1291 uctxt->ctxt,
1292 fd->subctxt,
1293 uctxt->sc->base_addr);
1294 binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1295 fd->subctxt,
1296 uctxt->rcvhdrq);
1297 binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1298 fd->subctxt,
1299 uctxt->egrbufs.rcvtids[0].dma);
1300 binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1301 fd->subctxt, 0);
1302 /*
1303 * user regs are at
1304 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1305 */
1306 binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1307 fd->subctxt, 0);
1308 offset = offset_in_page((((uctxt->ctxt - dd->first_user_ctxt) *
1309 HFI1_MAX_SHARED_CTXTS) + fd->subctxt) *
1310 sizeof(*dd->events));
1311 binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1312 fd->subctxt,
1313 offset);
1314 binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1315 fd->subctxt,
1316 dd->status);
1317 if (HFI1_CAP_IS_USET(DMA_RTAIL))
1318 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1319 fd->subctxt, 0);
1320 if (uctxt->subctxt_cnt) {
1321 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1322 uctxt->ctxt,
1323 fd->subctxt, 0);
1324 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1325 uctxt->ctxt,
1326 fd->subctxt, 0);
1327 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1328 uctxt->ctxt,
1329 fd->subctxt, 0);
1330 }
1331 sz = (len < sizeof(binfo)) ? len : sizeof(binfo);
1332 if (copy_to_user(ubase, &binfo, sz))
1333 ret = -EFAULT;
1334 return ret;
1335}
1336
1337static unsigned int poll_urgent(struct file *fp,
1338 struct poll_table_struct *pt)
1339{
1340 struct hfi1_filedata *fd = fp->private_data;
1341 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1342 struct hfi1_devdata *dd = uctxt->dd;
1343 unsigned pollflag;
1344
1345 poll_wait(fp, &uctxt->wait, pt);
1346
1347 spin_lock_irq(&dd->uctxt_lock);
1348 if (uctxt->urgent != uctxt->urgent_poll) {
1349 pollflag = POLLIN | POLLRDNORM;
1350 uctxt->urgent_poll = uctxt->urgent;
1351 } else {
1352 pollflag = 0;
1353 set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1354 }
1355 spin_unlock_irq(&dd->uctxt_lock);
1356
1357 return pollflag;
1358}
1359
1360static unsigned int poll_next(struct file *fp,
1361 struct poll_table_struct *pt)
1362{
1363 struct hfi1_filedata *fd = fp->private_data;
1364 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1365 struct hfi1_devdata *dd = uctxt->dd;
1366 unsigned pollflag;
1367
1368 poll_wait(fp, &uctxt->wait, pt);
1369
1370 spin_lock_irq(&dd->uctxt_lock);
1371 if (hdrqempty(uctxt)) {
1372 set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1373 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt->ctxt);
1374 pollflag = 0;
1375 } else {
1376 pollflag = POLLIN | POLLRDNORM;
1377 }
1378 spin_unlock_irq(&dd->uctxt_lock);
1379
1380 return pollflag;
1381}
1382
1383/*
1384 * Find all user contexts in use, and set the specified bit in their
1385 * event mask.
1386 * See also find_ctxt() for a similar use, that is specific to send buffers.
1387 */
1388int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1389{
1390 struct hfi1_ctxtdata *uctxt;
1391 struct hfi1_devdata *dd = ppd->dd;
1392 unsigned ctxt;
1393 int ret = 0;
1394 unsigned long flags;
1395
1396 if (!dd->events) {
1397 ret = -EINVAL;
1398 goto done;
1399 }
1400
1401 spin_lock_irqsave(&dd->uctxt_lock, flags);
1402 for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts;
1403 ctxt++) {
1404 uctxt = dd->rcd[ctxt];
1405 if (uctxt) {
1406 unsigned long *evs = dd->events +
1407 (uctxt->ctxt - dd->first_user_ctxt) *
1408 HFI1_MAX_SHARED_CTXTS;
1409 int i;
1410 /*
1411 * subctxt_cnt is 0 if not shared, so do base
1412 * separately, first, then remaining subctxt, if any
1413 */
1414 set_bit(evtbit, evs);
1415 for (i = 1; i < uctxt->subctxt_cnt; i++)
1416 set_bit(evtbit, evs + i);
1417 }
1418 }
1419 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1420done:
1421 return ret;
1422}
1423
1424/**
1425 * manage_rcvq - manage a context's receive queue
1426 * @uctxt: the context
1427 * @subctxt: the sub-context
1428 * @start_stop: action to carry out
1429 *
1430 * start_stop == 0 disables receive on the context, for use in queue
1431 * overflow conditions. start_stop==1 re-enables, to be used to
1432 * re-init the software copy of the head register
1433 */
1434static int manage_rcvq(struct hfi1_ctxtdata *uctxt, unsigned subctxt,
1435 int start_stop)
1436{
1437 struct hfi1_devdata *dd = uctxt->dd;
1438 unsigned int rcvctrl_op;
1439
1440 if (subctxt)
1441 goto bail;
1442 /* atomically clear receive enable ctxt. */
1443 if (start_stop) {
1444 /*
1445 * On enable, force in-memory copy of the tail register to
1446 * 0, so that protocol code doesn't have to worry about
1447 * whether or not the chip has yet updated the in-memory
1448 * copy or not on return from the system call. The chip
1449 * always resets it's tail register back to 0 on a
1450 * transition from disabled to enabled.
1451 */
1452 if (uctxt->rcvhdrtail_kvaddr)
1453 clear_rcvhdrtail(uctxt);
1454 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1455 } else {
1456 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1457 }
1458 hfi1_rcvctrl(dd, rcvctrl_op, uctxt->ctxt);
1459 /* always; new head should be equal to new tail; see above */
1460bail:
1461 return 0;
1462}
1463
1464/*
1465 * clear the event notifier events for this context.
1466 * User process then performs actions appropriate to bit having been
1467 * set, if desired, and checks again in future.
1468 */
1469static int user_event_ack(struct hfi1_ctxtdata *uctxt, int subctxt,
1470 unsigned long events)
1471{
1472 int i;
1473 struct hfi1_devdata *dd = uctxt->dd;
1474 unsigned long *evs;
1475
1476 if (!dd->events)
1477 return 0;
1478
1479 evs = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) *
1480 HFI1_MAX_SHARED_CTXTS) + subctxt;
1481
1482 for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1483 if (!test_bit(i, &events))
1484 continue;
1485 clear_bit(i, evs);
1486 }
1487 return 0;
1488}
1489
1490static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned subctxt,
1491 u16 pkey)
1492{
1493 int ret = -ENOENT, i, intable = 0;
1494 struct hfi1_pportdata *ppd = uctxt->ppd;
1495 struct hfi1_devdata *dd = uctxt->dd;
1496
1497 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) {
1498 ret = -EINVAL;
1499 goto done;
1500 }
1501
1502 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1503 if (pkey == ppd->pkeys[i]) {
1504 intable = 1;
1505 break;
1506 }
1507
1508 if (intable)
1509 ret = hfi1_set_ctxt_pkey(dd, uctxt->ctxt, pkey);
1510done:
1511 return ret;
1512}
1513
1514static void user_remove(struct hfi1_devdata *dd)
1515{
1516
1517 hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1518}
1519
1520static int user_add(struct hfi1_devdata *dd)
1521{
1522 char name[10];
1523 int ret;
1524
1525 snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1526 ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1527 &dd->user_cdev, &dd->user_device,
1528 true, &dd->kobj);
1529 if (ret)
1530 user_remove(dd);
1531
1532 return ret;
1533}
1534
1535/*
1536 * Create per-unit files in /dev
1537 */
1538int hfi1_device_create(struct hfi1_devdata *dd)
1539{
1540 return user_add(dd);
1541}
1542
1543/*
1544 * Remove per-unit files in /dev
1545 * void, core kernel returns no errors for this stuff
1546 */
1547void hfi1_device_remove(struct hfi1_devdata *dd)
1548{
1549 user_remove(dd);
1550}