Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * i2c-exynos5.c - Samsung Exynos5 I2C Controller Driver
4 *
5 * Copyright (C) 2013 Samsung Electronics Co., Ltd.
6*/
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10
11#include <linux/i2c.h>
12#include <linux/time.h>
13#include <linux/interrupt.h>
14#include <linux/delay.h>
15#include <linux/errno.h>
16#include <linux/err.h>
17#include <linux/platform_device.h>
18#include <linux/clk.h>
19#include <linux/slab.h>
20#include <linux/io.h>
21#include <linux/of.h>
22#include <linux/spinlock.h>
23
24/*
25 * HSI2C controller from Samsung supports 2 modes of operation
26 * 1. Auto mode: Where in master automatically controls the whole transaction
27 * 2. Manual mode: Software controls the transaction by issuing commands
28 * START, READ, WRITE, STOP, RESTART in I2C_MANUAL_CMD register.
29 *
30 * Operation mode can be selected by setting AUTO_MODE bit in I2C_CONF register
31 *
32 * Special bits are available for both modes of operation to set commands
33 * and for checking transfer status
34 */
35
36/* Register Map */
37#define HSI2C_CTL 0x00
38#define HSI2C_FIFO_CTL 0x04
39#define HSI2C_TRAILIG_CTL 0x08
40#define HSI2C_CLK_CTL 0x0C
41#define HSI2C_CLK_SLOT 0x10
42#define HSI2C_INT_ENABLE 0x20
43#define HSI2C_INT_STATUS 0x24
44#define HSI2C_ERR_STATUS 0x2C
45#define HSI2C_FIFO_STATUS 0x30
46#define HSI2C_TX_DATA 0x34
47#define HSI2C_RX_DATA 0x38
48#define HSI2C_CONF 0x40
49#define HSI2C_AUTO_CONF 0x44
50#define HSI2C_TIMEOUT 0x48
51#define HSI2C_MANUAL_CMD 0x4C
52#define HSI2C_TRANS_STATUS 0x50
53#define HSI2C_TIMING_HS1 0x54
54#define HSI2C_TIMING_HS2 0x58
55#define HSI2C_TIMING_HS3 0x5C
56#define HSI2C_TIMING_FS1 0x60
57#define HSI2C_TIMING_FS2 0x64
58#define HSI2C_TIMING_FS3 0x68
59#define HSI2C_TIMING_SLA 0x6C
60#define HSI2C_ADDR 0x70
61
62/* I2C_CTL Register bits */
63#define HSI2C_FUNC_MODE_I2C (1u << 0)
64#define HSI2C_MASTER (1u << 3)
65#define HSI2C_RXCHON (1u << 6)
66#define HSI2C_TXCHON (1u << 7)
67#define HSI2C_SW_RST (1u << 31)
68
69/* I2C_FIFO_CTL Register bits */
70#define HSI2C_RXFIFO_EN (1u << 0)
71#define HSI2C_TXFIFO_EN (1u << 1)
72#define HSI2C_RXFIFO_TRIGGER_LEVEL(x) ((x) << 4)
73#define HSI2C_TXFIFO_TRIGGER_LEVEL(x) ((x) << 16)
74
75/* I2C_TRAILING_CTL Register bits */
76#define HSI2C_TRAILING_COUNT (0xf)
77
78/* I2C_INT_EN Register bits */
79#define HSI2C_INT_TX_ALMOSTEMPTY_EN (1u << 0)
80#define HSI2C_INT_RX_ALMOSTFULL_EN (1u << 1)
81#define HSI2C_INT_TRAILING_EN (1u << 6)
82
83/* I2C_INT_STAT Register bits */
84#define HSI2C_INT_TX_ALMOSTEMPTY (1u << 0)
85#define HSI2C_INT_RX_ALMOSTFULL (1u << 1)
86#define HSI2C_INT_TX_UNDERRUN (1u << 2)
87#define HSI2C_INT_TX_OVERRUN (1u << 3)
88#define HSI2C_INT_RX_UNDERRUN (1u << 4)
89#define HSI2C_INT_RX_OVERRUN (1u << 5)
90#define HSI2C_INT_TRAILING (1u << 6)
91#define HSI2C_INT_I2C (1u << 9)
92
93#define HSI2C_INT_TRANS_DONE (1u << 7)
94#define HSI2C_INT_TRANS_ABORT (1u << 8)
95#define HSI2C_INT_NO_DEV_ACK (1u << 9)
96#define HSI2C_INT_NO_DEV (1u << 10)
97#define HSI2C_INT_TIMEOUT (1u << 11)
98#define HSI2C_INT_I2C_TRANS (HSI2C_INT_TRANS_DONE | \
99 HSI2C_INT_TRANS_ABORT | \
100 HSI2C_INT_NO_DEV_ACK | \
101 HSI2C_INT_NO_DEV | \
102 HSI2C_INT_TIMEOUT)
103
104/* I2C_FIFO_STAT Register bits */
105#define HSI2C_RX_FIFO_EMPTY (1u << 24)
106#define HSI2C_RX_FIFO_FULL (1u << 23)
107#define HSI2C_RX_FIFO_LVL(x) ((x >> 16) & 0x7f)
108#define HSI2C_TX_FIFO_EMPTY (1u << 8)
109#define HSI2C_TX_FIFO_FULL (1u << 7)
110#define HSI2C_TX_FIFO_LVL(x) ((x >> 0) & 0x7f)
111
112/* I2C_CONF Register bits */
113#define HSI2C_AUTO_MODE (1u << 31)
114#define HSI2C_10BIT_ADDR_MODE (1u << 30)
115#define HSI2C_HS_MODE (1u << 29)
116
117/* I2C_AUTO_CONF Register bits */
118#define HSI2C_READ_WRITE (1u << 16)
119#define HSI2C_STOP_AFTER_TRANS (1u << 17)
120#define HSI2C_MASTER_RUN (1u << 31)
121
122/* I2C_TIMEOUT Register bits */
123#define HSI2C_TIMEOUT_EN (1u << 31)
124#define HSI2C_TIMEOUT_MASK 0xff
125
126/* I2C_MANUAL_CMD register bits */
127#define HSI2C_CMD_READ_DATA (1u << 4)
128#define HSI2C_CMD_SEND_STOP (1u << 2)
129
130/* I2C_TRANS_STATUS register bits */
131#define HSI2C_MASTER_BUSY (1u << 17)
132#define HSI2C_SLAVE_BUSY (1u << 16)
133
134/* I2C_TRANS_STATUS register bits for Exynos5 variant */
135#define HSI2C_TIMEOUT_AUTO (1u << 4)
136#define HSI2C_NO_DEV (1u << 3)
137#define HSI2C_NO_DEV_ACK (1u << 2)
138#define HSI2C_TRANS_ABORT (1u << 1)
139#define HSI2C_TRANS_DONE (1u << 0)
140
141/* I2C_TRANS_STATUS register bits for Exynos7 variant */
142#define HSI2C_MASTER_ST_MASK 0xf
143#define HSI2C_MASTER_ST_IDLE 0x0
144#define HSI2C_MASTER_ST_START 0x1
145#define HSI2C_MASTER_ST_RESTART 0x2
146#define HSI2C_MASTER_ST_STOP 0x3
147#define HSI2C_MASTER_ST_MASTER_ID 0x4
148#define HSI2C_MASTER_ST_ADDR0 0x5
149#define HSI2C_MASTER_ST_ADDR1 0x6
150#define HSI2C_MASTER_ST_ADDR2 0x7
151#define HSI2C_MASTER_ST_ADDR_SR 0x8
152#define HSI2C_MASTER_ST_READ 0x9
153#define HSI2C_MASTER_ST_WRITE 0xa
154#define HSI2C_MASTER_ST_NO_ACK 0xb
155#define HSI2C_MASTER_ST_LOSE 0xc
156#define HSI2C_MASTER_ST_WAIT 0xd
157#define HSI2C_MASTER_ST_WAIT_CMD 0xe
158
159/* I2C_ADDR register bits */
160#define HSI2C_SLV_ADDR_SLV(x) ((x & 0x3ff) << 0)
161#define HSI2C_SLV_ADDR_MAS(x) ((x & 0x3ff) << 10)
162#define HSI2C_MASTER_ID(x) ((x & 0xff) << 24)
163#define MASTER_ID(x) ((x & 0x7) + 0x08)
164
165#define EXYNOS5_I2C_TIMEOUT (msecs_to_jiffies(100))
166
167enum i2c_type_exynos {
168 I2C_TYPE_EXYNOS5,
169 I2C_TYPE_EXYNOS7,
170 I2C_TYPE_EXYNOSAUTOV9,
171};
172
173struct exynos5_i2c {
174 struct i2c_adapter adap;
175
176 struct i2c_msg *msg;
177 struct completion msg_complete;
178 unsigned int msg_ptr;
179
180 unsigned int irq;
181
182 void __iomem *regs;
183 struct clk *clk; /* operating clock */
184 struct clk *pclk; /* bus clock */
185 struct device *dev;
186 int state;
187
188 spinlock_t lock; /* IRQ synchronization */
189
190 /*
191 * Since the TRANS_DONE bit is cleared on read, and we may read it
192 * either during an IRQ or after a transaction, keep track of its
193 * state here.
194 */
195 int trans_done;
196
197 /*
198 * Called from atomic context, don't use interrupts.
199 */
200 unsigned int atomic;
201
202 /* Controller operating frequency */
203 unsigned int op_clock;
204
205 /* Version of HS-I2C Hardware */
206 const struct exynos_hsi2c_variant *variant;
207};
208
209/**
210 * struct exynos_hsi2c_variant - platform specific HSI2C driver data
211 * @fifo_depth: the fifo depth supported by the HSI2C module
212 * @hw: the hardware variant of Exynos I2C controller
213 *
214 * Specifies platform specific configuration of HSI2C module.
215 * Note: A structure for driver specific platform data is used for future
216 * expansion of its usage.
217 */
218struct exynos_hsi2c_variant {
219 unsigned int fifo_depth;
220 enum i2c_type_exynos hw;
221};
222
223static const struct exynos_hsi2c_variant exynos5250_hsi2c_data = {
224 .fifo_depth = 64,
225 .hw = I2C_TYPE_EXYNOS5,
226};
227
228static const struct exynos_hsi2c_variant exynos5260_hsi2c_data = {
229 .fifo_depth = 16,
230 .hw = I2C_TYPE_EXYNOS5,
231};
232
233static const struct exynos_hsi2c_variant exynos7_hsi2c_data = {
234 .fifo_depth = 16,
235 .hw = I2C_TYPE_EXYNOS7,
236};
237
238static const struct exynos_hsi2c_variant exynosautov9_hsi2c_data = {
239 .fifo_depth = 64,
240 .hw = I2C_TYPE_EXYNOSAUTOV9,
241};
242
243static const struct of_device_id exynos5_i2c_match[] = {
244 {
245 .compatible = "samsung,exynos5-hsi2c",
246 .data = &exynos5250_hsi2c_data
247 }, {
248 .compatible = "samsung,exynos5250-hsi2c",
249 .data = &exynos5250_hsi2c_data
250 }, {
251 .compatible = "samsung,exynos5260-hsi2c",
252 .data = &exynos5260_hsi2c_data
253 }, {
254 .compatible = "samsung,exynos7-hsi2c",
255 .data = &exynos7_hsi2c_data
256 }, {
257 .compatible = "samsung,exynosautov9-hsi2c",
258 .data = &exynosautov9_hsi2c_data
259 }, {},
260};
261MODULE_DEVICE_TABLE(of, exynos5_i2c_match);
262
263static void exynos5_i2c_clr_pend_irq(struct exynos5_i2c *i2c)
264{
265 writel(readl(i2c->regs + HSI2C_INT_STATUS),
266 i2c->regs + HSI2C_INT_STATUS);
267}
268
269/*
270 * exynos5_i2c_set_timing: updates the registers with appropriate
271 * timing values calculated
272 *
273 * Timing values for operation are calculated against 100kHz, 400kHz
274 * or 1MHz controller operating frequency.
275 *
276 * Returns 0 on success, -EINVAL if the cycle length cannot
277 * be calculated.
278 */
279static int exynos5_i2c_set_timing(struct exynos5_i2c *i2c, bool hs_timings)
280{
281 u32 i2c_timing_s1;
282 u32 i2c_timing_s2;
283 u32 i2c_timing_s3;
284 u32 i2c_timing_sla;
285 unsigned int t_start_su, t_start_hd;
286 unsigned int t_stop_su;
287 unsigned int t_data_su, t_data_hd;
288 unsigned int t_scl_l, t_scl_h;
289 unsigned int t_sr_release;
290 unsigned int t_ftl_cycle;
291 unsigned int clkin = clk_get_rate(i2c->clk);
292 unsigned int op_clk = hs_timings ? i2c->op_clock :
293 (i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ) ? I2C_MAX_STANDARD_MODE_FREQ :
294 i2c->op_clock;
295 int div, clk_cycle, temp;
296
297 /*
298 * In case of HSI2C controllers in ExynosAutoV9:
299 *
300 * FSCL = IPCLK / ((CLK_DIV + 1) * 16)
301 * T_SCL_LOW = IPCLK * (CLK_DIV + 1) * (N + M)
302 * [N : number of 0's in the TSCL_H_HS]
303 * [M : number of 0's in the TSCL_L_HS]
304 * T_SCL_HIGH = IPCLK * (CLK_DIV + 1) * (N + M)
305 * [N : number of 1's in the TSCL_H_HS]
306 * [M : number of 1's in the TSCL_L_HS]
307 *
308 * Result of (N + M) is always 8.
309 * In general case, we don't need to control timing_s1 and timing_s2.
310 */
311 if (i2c->variant->hw == I2C_TYPE_EXYNOSAUTOV9) {
312 div = ((clkin / (16 * i2c->op_clock)) - 1);
313 i2c_timing_s3 = div << 16;
314 if (hs_timings)
315 writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_HS3);
316 else
317 writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_FS3);
318
319 return 0;
320 }
321
322 /*
323 * In case of HSI2C controller in Exynos5 series
324 * FPCLK / FI2C =
325 * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + 2 * FLT_CYCLE
326 *
327 * In case of HSI2C controllers in Exynos7 series
328 * FPCLK / FI2C =
329 * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + FLT_CYCLE
330 *
331 * clk_cycle := TSCLK_L + TSCLK_H
332 * temp := (CLK_DIV + 1) * (clk_cycle + 2)
333 *
334 * Constraints: 4 <= temp, 0 <= CLK_DIV < 256, 2 <= clk_cycle <= 510
335 *
336 * To split SCL clock into low, high periods appropriately, one
337 * proportion factor for each I2C mode is used, which is calculated
338 * using this formula.
339 * ```
340 * ((t_low_min + (scl_clock - t_low_min - t_high_min) / 2) / scl_clock)
341 * ```
342 * where:
343 * t_low_min is the minimal value of low period of the SCL clock in us;
344 * t_high_min is the minimal value of high period of the SCL clock in us;
345 * scl_clock is converted from SCL clock frequency into us.
346 *
347 * Below are the proportion factors for these I2C modes:
348 * t_low_min, t_high_min, scl_clock, proportion
349 * Standard Mode: 4.7us, 4.0us, 10us, 0.535
350 * Fast Mode: 1.3us, 0.6us, 2.5us, 0.64
351 * Fast-Plus Mode: 0.5us, 0.26us, 1us, 0.62
352 *
353 */
354 t_ftl_cycle = (readl(i2c->regs + HSI2C_CONF) >> 16) & 0x7;
355 temp = clkin / op_clk - 8 - t_ftl_cycle;
356 if (i2c->variant->hw != I2C_TYPE_EXYNOS7)
357 temp -= t_ftl_cycle;
358 div = temp / 512;
359 clk_cycle = temp / (div + 1) - 2;
360 if (temp < 4 || div >= 256 || clk_cycle < 2) {
361 dev_err(i2c->dev, "%s clock set-up failed\n",
362 hs_timings ? "HS" : "FS");
363 return -EINVAL;
364 }
365
366 /*
367 * Scale clk_cycle to get t_scl_l using the proption factors for individual I2C modes.
368 */
369 if (op_clk <= I2C_MAX_STANDARD_MODE_FREQ)
370 t_scl_l = clk_cycle * 535 / 1000;
371 else if (op_clk <= I2C_MAX_FAST_MODE_FREQ)
372 t_scl_l = clk_cycle * 64 / 100;
373 else
374 t_scl_l = clk_cycle * 62 / 100;
375
376 if (t_scl_l > 0xFF)
377 t_scl_l = 0xFF;
378 t_scl_h = clk_cycle - t_scl_l;
379 t_start_su = t_scl_l;
380 t_start_hd = t_scl_l;
381 t_stop_su = t_scl_l;
382 t_data_su = t_scl_l / 2;
383 t_data_hd = t_scl_l / 2;
384 t_sr_release = clk_cycle;
385
386 i2c_timing_s1 = t_start_su << 24 | t_start_hd << 16 | t_stop_su << 8;
387 i2c_timing_s2 = t_data_su << 24 | t_scl_l << 8 | t_scl_h << 0;
388 i2c_timing_s3 = div << 16 | t_sr_release << 0;
389 i2c_timing_sla = t_data_hd << 0;
390
391 dev_dbg(i2c->dev, "tSTART_SU: %X, tSTART_HD: %X, tSTOP_SU: %X\n",
392 t_start_su, t_start_hd, t_stop_su);
393 dev_dbg(i2c->dev, "tDATA_SU: %X, tSCL_L: %X, tSCL_H: %X\n",
394 t_data_su, t_scl_l, t_scl_h);
395 dev_dbg(i2c->dev, "nClkDiv: %X, tSR_RELEASE: %X\n",
396 div, t_sr_release);
397 dev_dbg(i2c->dev, "tDATA_HD: %X\n", t_data_hd);
398
399 if (hs_timings) {
400 writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_HS1);
401 writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_HS2);
402 writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_HS3);
403 } else {
404 writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_FS1);
405 writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_FS2);
406 writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_FS3);
407 }
408 writel(i2c_timing_sla, i2c->regs + HSI2C_TIMING_SLA);
409
410 return 0;
411}
412
413static int exynos5_hsi2c_clock_setup(struct exynos5_i2c *i2c)
414{
415 /* always set Fast Speed timings */
416 int ret = exynos5_i2c_set_timing(i2c, false);
417
418 if (ret < 0 || i2c->op_clock < I2C_MAX_FAST_MODE_PLUS_FREQ)
419 return ret;
420
421 return exynos5_i2c_set_timing(i2c, true);
422}
423
424/*
425 * exynos5_i2c_init: configures the controller for I2C functionality
426 * Programs I2C controller for Master mode operation
427 */
428static void exynos5_i2c_init(struct exynos5_i2c *i2c)
429{
430 u32 i2c_conf = readl(i2c->regs + HSI2C_CONF);
431 u32 i2c_timeout = readl(i2c->regs + HSI2C_TIMEOUT);
432
433 /* Clear to disable Timeout */
434 i2c_timeout &= ~HSI2C_TIMEOUT_EN;
435 writel(i2c_timeout, i2c->regs + HSI2C_TIMEOUT);
436
437 writel((HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
438 i2c->regs + HSI2C_CTL);
439 writel(HSI2C_TRAILING_COUNT, i2c->regs + HSI2C_TRAILIG_CTL);
440
441 if (i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ) {
442 writel(HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr)),
443 i2c->regs + HSI2C_ADDR);
444 i2c_conf |= HSI2C_HS_MODE;
445 }
446
447 writel(i2c_conf | HSI2C_AUTO_MODE, i2c->regs + HSI2C_CONF);
448}
449
450static void exynos5_i2c_reset(struct exynos5_i2c *i2c)
451{
452 u32 i2c_ctl;
453
454 /* Set and clear the bit for reset */
455 i2c_ctl = readl(i2c->regs + HSI2C_CTL);
456 i2c_ctl |= HSI2C_SW_RST;
457 writel(i2c_ctl, i2c->regs + HSI2C_CTL);
458
459 i2c_ctl = readl(i2c->regs + HSI2C_CTL);
460 i2c_ctl &= ~HSI2C_SW_RST;
461 writel(i2c_ctl, i2c->regs + HSI2C_CTL);
462
463 /* We don't expect calculations to fail during the run */
464 exynos5_hsi2c_clock_setup(i2c);
465 /* Initialize the configure registers */
466 exynos5_i2c_init(i2c);
467}
468
469/*
470 * exynos5_i2c_irq: top level IRQ servicing routine
471 *
472 * INT_STATUS registers gives the interrupt details. Further,
473 * FIFO_STATUS or TRANS_STATUS registers are to be check for detailed
474 * state of the bus.
475 */
476static irqreturn_t exynos5_i2c_irq(int irqno, void *dev_id)
477{
478 struct exynos5_i2c *i2c = dev_id;
479 u32 fifo_level, int_status, fifo_status, trans_status;
480 unsigned char byte;
481 int len = 0;
482
483 i2c->state = -EINVAL;
484
485 spin_lock(&i2c->lock);
486
487 int_status = readl(i2c->regs + HSI2C_INT_STATUS);
488 writel(int_status, i2c->regs + HSI2C_INT_STATUS);
489
490 /* handle interrupt related to the transfer status */
491 switch (i2c->variant->hw) {
492 case I2C_TYPE_EXYNOSAUTOV9:
493 fallthrough;
494 case I2C_TYPE_EXYNOS7:
495 if (int_status & HSI2C_INT_TRANS_DONE) {
496 i2c->trans_done = 1;
497 i2c->state = 0;
498 } else if (int_status & HSI2C_INT_TRANS_ABORT) {
499 dev_dbg(i2c->dev, "Deal with arbitration lose\n");
500 i2c->state = -EAGAIN;
501 goto stop;
502 } else if (int_status & HSI2C_INT_NO_DEV_ACK) {
503 dev_dbg(i2c->dev, "No ACK from device\n");
504 i2c->state = -ENXIO;
505 goto stop;
506 } else if (int_status & HSI2C_INT_NO_DEV) {
507 dev_dbg(i2c->dev, "No device\n");
508 i2c->state = -ENXIO;
509 goto stop;
510 } else if (int_status & HSI2C_INT_TIMEOUT) {
511 dev_dbg(i2c->dev, "Accessing device timed out\n");
512 i2c->state = -ETIMEDOUT;
513 goto stop;
514 }
515
516 break;
517 case I2C_TYPE_EXYNOS5:
518 if (!(int_status & HSI2C_INT_I2C))
519 break;
520
521 trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
522 if (trans_status & HSI2C_NO_DEV_ACK) {
523 dev_dbg(i2c->dev, "No ACK from device\n");
524 i2c->state = -ENXIO;
525 goto stop;
526 } else if (trans_status & HSI2C_NO_DEV) {
527 dev_dbg(i2c->dev, "No device\n");
528 i2c->state = -ENXIO;
529 goto stop;
530 } else if (trans_status & HSI2C_TRANS_ABORT) {
531 dev_dbg(i2c->dev, "Deal with arbitration lose\n");
532 i2c->state = -EAGAIN;
533 goto stop;
534 } else if (trans_status & HSI2C_TIMEOUT_AUTO) {
535 dev_dbg(i2c->dev, "Accessing device timed out\n");
536 i2c->state = -ETIMEDOUT;
537 goto stop;
538 } else if (trans_status & HSI2C_TRANS_DONE) {
539 i2c->trans_done = 1;
540 i2c->state = 0;
541 }
542
543 break;
544 }
545
546 if ((i2c->msg->flags & I2C_M_RD) && (int_status &
547 (HSI2C_INT_TRAILING | HSI2C_INT_RX_ALMOSTFULL))) {
548 fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
549 fifo_level = HSI2C_RX_FIFO_LVL(fifo_status);
550 len = min(fifo_level, i2c->msg->len - i2c->msg_ptr);
551
552 while (len > 0) {
553 byte = (unsigned char)
554 readl(i2c->regs + HSI2C_RX_DATA);
555 i2c->msg->buf[i2c->msg_ptr++] = byte;
556 len--;
557 }
558 i2c->state = 0;
559 } else if (int_status & HSI2C_INT_TX_ALMOSTEMPTY) {
560 fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
561 fifo_level = HSI2C_TX_FIFO_LVL(fifo_status);
562
563 len = i2c->variant->fifo_depth - fifo_level;
564 if (len > (i2c->msg->len - i2c->msg_ptr)) {
565 u32 int_en = readl(i2c->regs + HSI2C_INT_ENABLE);
566
567 int_en &= ~HSI2C_INT_TX_ALMOSTEMPTY_EN;
568 writel(int_en, i2c->regs + HSI2C_INT_ENABLE);
569 len = i2c->msg->len - i2c->msg_ptr;
570 }
571
572 while (len > 0) {
573 byte = i2c->msg->buf[i2c->msg_ptr++];
574 writel(byte, i2c->regs + HSI2C_TX_DATA);
575 len--;
576 }
577 i2c->state = 0;
578 }
579
580 stop:
581 if ((i2c->trans_done && (i2c->msg->len == i2c->msg_ptr)) ||
582 (i2c->state < 0)) {
583 writel(0, i2c->regs + HSI2C_INT_ENABLE);
584 exynos5_i2c_clr_pend_irq(i2c);
585 complete(&i2c->msg_complete);
586 }
587
588 spin_unlock(&i2c->lock);
589
590 return IRQ_HANDLED;
591}
592
593/*
594 * exynos5_i2c_wait_bus_idle
595 *
596 * Wait for the bus to go idle, indicated by the MASTER_BUSY bit being
597 * cleared.
598 *
599 * Returns -EBUSY if the bus cannot be bought to idle
600 */
601static int exynos5_i2c_wait_bus_idle(struct exynos5_i2c *i2c)
602{
603 unsigned long stop_time;
604 u32 trans_status;
605
606 /* wait for 100 milli seconds for the bus to be idle */
607 stop_time = jiffies + msecs_to_jiffies(100) + 1;
608 do {
609 trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
610 if (!(trans_status & HSI2C_MASTER_BUSY))
611 return 0;
612
613 usleep_range(50, 200);
614 } while (time_before(jiffies, stop_time));
615
616 return -EBUSY;
617}
618
619static void exynos5_i2c_bus_recover(struct exynos5_i2c *i2c)
620{
621 u32 val;
622
623 val = readl(i2c->regs + HSI2C_CTL) | HSI2C_RXCHON;
624 writel(val, i2c->regs + HSI2C_CTL);
625 val = readl(i2c->regs + HSI2C_CONF) & ~HSI2C_AUTO_MODE;
626 writel(val, i2c->regs + HSI2C_CONF);
627
628 /*
629 * Specification says master should send nine clock pulses. It can be
630 * emulated by sending manual read command (nine pulses for read eight
631 * bits + one pulse for NACK).
632 */
633 writel(HSI2C_CMD_READ_DATA, i2c->regs + HSI2C_MANUAL_CMD);
634 exynos5_i2c_wait_bus_idle(i2c);
635 writel(HSI2C_CMD_SEND_STOP, i2c->regs + HSI2C_MANUAL_CMD);
636 exynos5_i2c_wait_bus_idle(i2c);
637
638 val = readl(i2c->regs + HSI2C_CTL) & ~HSI2C_RXCHON;
639 writel(val, i2c->regs + HSI2C_CTL);
640 val = readl(i2c->regs + HSI2C_CONF) | HSI2C_AUTO_MODE;
641 writel(val, i2c->regs + HSI2C_CONF);
642}
643
644static void exynos5_i2c_bus_check(struct exynos5_i2c *i2c)
645{
646 unsigned long timeout;
647
648 if (i2c->variant->hw == I2C_TYPE_EXYNOS5)
649 return;
650
651 /*
652 * HSI2C_MASTER_ST_LOSE state (in Exynos7 and ExynosAutoV9 variants)
653 * before transaction indicates that bus is stuck (SDA is low).
654 * In such case bus recovery can be performed.
655 */
656 timeout = jiffies + msecs_to_jiffies(100);
657 for (;;) {
658 u32 st = readl(i2c->regs + HSI2C_TRANS_STATUS);
659
660 if ((st & HSI2C_MASTER_ST_MASK) != HSI2C_MASTER_ST_LOSE)
661 return;
662
663 if (time_is_before_jiffies(timeout))
664 return;
665
666 exynos5_i2c_bus_recover(i2c);
667 }
668}
669
670/*
671 * exynos5_i2c_message_start: Configures the bus and starts the xfer
672 * i2c: struct exynos5_i2c pointer for the current bus
673 * stop: Enables stop after transfer if set. Set for last transfer of
674 * in the list of messages.
675 *
676 * Configures the bus for read/write function
677 * Sets chip address to talk to, message length to be sent.
678 * Enables appropriate interrupts and sends start xfer command.
679 */
680static void exynos5_i2c_message_start(struct exynos5_i2c *i2c, int stop)
681{
682 u32 i2c_ctl;
683 u32 int_en = 0;
684 u32 i2c_auto_conf = 0;
685 u32 i2c_addr = 0;
686 u32 fifo_ctl;
687 unsigned long flags;
688 unsigned short trig_lvl;
689
690 if (i2c->variant->hw == I2C_TYPE_EXYNOS5)
691 int_en |= HSI2C_INT_I2C;
692 else
693 int_en |= HSI2C_INT_I2C_TRANS;
694
695 i2c_ctl = readl(i2c->regs + HSI2C_CTL);
696 i2c_ctl &= ~(HSI2C_TXCHON | HSI2C_RXCHON);
697 fifo_ctl = HSI2C_RXFIFO_EN | HSI2C_TXFIFO_EN;
698
699 if (i2c->msg->flags & I2C_M_RD) {
700 i2c_ctl |= HSI2C_RXCHON;
701
702 i2c_auto_conf |= HSI2C_READ_WRITE;
703
704 trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ?
705 (i2c->variant->fifo_depth * 3 / 4) : i2c->msg->len;
706 fifo_ctl |= HSI2C_RXFIFO_TRIGGER_LEVEL(trig_lvl);
707
708 int_en |= (HSI2C_INT_RX_ALMOSTFULL_EN |
709 HSI2C_INT_TRAILING_EN);
710 } else {
711 i2c_ctl |= HSI2C_TXCHON;
712
713 trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ?
714 (i2c->variant->fifo_depth * 1 / 4) : i2c->msg->len;
715 fifo_ctl |= HSI2C_TXFIFO_TRIGGER_LEVEL(trig_lvl);
716
717 int_en |= HSI2C_INT_TX_ALMOSTEMPTY_EN;
718 }
719
720 i2c_addr = HSI2C_SLV_ADDR_MAS(i2c->msg->addr);
721
722 if (i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ)
723 i2c_addr |= HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr));
724
725 writel(i2c_addr, i2c->regs + HSI2C_ADDR);
726
727 writel(fifo_ctl, i2c->regs + HSI2C_FIFO_CTL);
728 writel(i2c_ctl, i2c->regs + HSI2C_CTL);
729
730 exynos5_i2c_bus_check(i2c);
731
732 /*
733 * Enable interrupts before starting the transfer so that we don't
734 * miss any INT_I2C interrupts.
735 */
736 spin_lock_irqsave(&i2c->lock, flags);
737 writel(int_en, i2c->regs + HSI2C_INT_ENABLE);
738
739 if (stop == 1)
740 i2c_auto_conf |= HSI2C_STOP_AFTER_TRANS;
741 i2c_auto_conf |= i2c->msg->len;
742 i2c_auto_conf |= HSI2C_MASTER_RUN;
743 writel(i2c_auto_conf, i2c->regs + HSI2C_AUTO_CONF);
744 spin_unlock_irqrestore(&i2c->lock, flags);
745}
746
747static bool exynos5_i2c_poll_irqs_timeout(struct exynos5_i2c *i2c,
748 unsigned long timeout)
749{
750 unsigned long time_left = jiffies + timeout;
751
752 while (time_before(jiffies, time_left) &&
753 !((i2c->trans_done && (i2c->msg->len == i2c->msg_ptr)) ||
754 (i2c->state < 0))) {
755 while (readl(i2c->regs + HSI2C_INT_ENABLE) &
756 readl(i2c->regs + HSI2C_INT_STATUS))
757 exynos5_i2c_irq(i2c->irq, i2c);
758 usleep_range(100, 200);
759 }
760 return time_before(jiffies, time_left);
761}
762
763static int exynos5_i2c_xfer_msg(struct exynos5_i2c *i2c,
764 struct i2c_msg *msgs, int stop)
765{
766 unsigned long timeout;
767 int ret;
768
769 i2c->msg = msgs;
770 i2c->msg_ptr = 0;
771 i2c->trans_done = 0;
772
773 reinit_completion(&i2c->msg_complete);
774
775 exynos5_i2c_message_start(i2c, stop);
776
777 if (!i2c->atomic)
778 timeout = wait_for_completion_timeout(&i2c->msg_complete,
779 EXYNOS5_I2C_TIMEOUT);
780 else
781 timeout = exynos5_i2c_poll_irqs_timeout(i2c,
782 EXYNOS5_I2C_TIMEOUT);
783
784 if (timeout == 0)
785 ret = -ETIMEDOUT;
786 else
787 ret = i2c->state;
788
789 /*
790 * If this is the last message to be transfered (stop == 1)
791 * Then check if the bus can be brought back to idle.
792 */
793 if (ret == 0 && stop)
794 ret = exynos5_i2c_wait_bus_idle(i2c);
795
796 if (ret < 0) {
797 exynos5_i2c_reset(i2c);
798 if (ret == -ETIMEDOUT)
799 dev_warn(i2c->dev, "%s timeout\n",
800 (msgs->flags & I2C_M_RD) ? "rx" : "tx");
801 }
802
803 /* Return the state as in interrupt routine */
804 return ret;
805}
806
807static int exynos5_i2c_xfer(struct i2c_adapter *adap,
808 struct i2c_msg *msgs, int num)
809{
810 struct exynos5_i2c *i2c = adap->algo_data;
811 int i, ret;
812
813 ret = clk_enable(i2c->pclk);
814 if (ret)
815 return ret;
816
817 ret = clk_enable(i2c->clk);
818 if (ret)
819 goto err_pclk;
820
821 for (i = 0; i < num; ++i) {
822 ret = exynos5_i2c_xfer_msg(i2c, msgs + i, i + 1 == num);
823 if (ret)
824 break;
825 }
826
827 clk_disable(i2c->clk);
828err_pclk:
829 clk_disable(i2c->pclk);
830
831 return ret ?: num;
832}
833
834static int exynos5_i2c_xfer_atomic(struct i2c_adapter *adap,
835 struct i2c_msg *msgs, int num)
836{
837 struct exynos5_i2c *i2c = adap->algo_data;
838 int ret;
839
840 disable_irq(i2c->irq);
841 i2c->atomic = true;
842 ret = exynos5_i2c_xfer(adap, msgs, num);
843 i2c->atomic = false;
844 enable_irq(i2c->irq);
845
846 return ret;
847}
848
849static u32 exynos5_i2c_func(struct i2c_adapter *adap)
850{
851 return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
852}
853
854static const struct i2c_algorithm exynos5_i2c_algorithm = {
855 .master_xfer = exynos5_i2c_xfer,
856 .master_xfer_atomic = exynos5_i2c_xfer_atomic,
857 .functionality = exynos5_i2c_func,
858};
859
860static int exynos5_i2c_probe(struct platform_device *pdev)
861{
862 struct device_node *np = pdev->dev.of_node;
863 struct exynos5_i2c *i2c;
864 int ret;
865
866 i2c = devm_kzalloc(&pdev->dev, sizeof(struct exynos5_i2c), GFP_KERNEL);
867 if (!i2c)
868 return -ENOMEM;
869
870 if (of_property_read_u32(np, "clock-frequency", &i2c->op_clock))
871 i2c->op_clock = I2C_MAX_STANDARD_MODE_FREQ;
872
873 strscpy(i2c->adap.name, "exynos5-i2c", sizeof(i2c->adap.name));
874 i2c->adap.owner = THIS_MODULE;
875 i2c->adap.algo = &exynos5_i2c_algorithm;
876 i2c->adap.retries = 3;
877
878 i2c->dev = &pdev->dev;
879 i2c->clk = devm_clk_get(&pdev->dev, "hsi2c");
880 if (IS_ERR(i2c->clk)) {
881 dev_err(&pdev->dev, "cannot get clock\n");
882 return -ENOENT;
883 }
884
885 i2c->pclk = devm_clk_get_optional(&pdev->dev, "hsi2c_pclk");
886 if (IS_ERR(i2c->pclk)) {
887 return dev_err_probe(&pdev->dev, PTR_ERR(i2c->pclk),
888 "cannot get pclk");
889 }
890
891 ret = clk_prepare_enable(i2c->pclk);
892 if (ret)
893 return ret;
894
895 ret = clk_prepare_enable(i2c->clk);
896 if (ret)
897 goto err_pclk;
898
899 i2c->regs = devm_platform_ioremap_resource(pdev, 0);
900 if (IS_ERR(i2c->regs)) {
901 ret = PTR_ERR(i2c->regs);
902 goto err_clk;
903 }
904
905 i2c->adap.dev.of_node = np;
906 i2c->adap.algo_data = i2c;
907 i2c->adap.dev.parent = &pdev->dev;
908
909 /* Clear pending interrupts from u-boot or misc causes */
910 exynos5_i2c_clr_pend_irq(i2c);
911
912 spin_lock_init(&i2c->lock);
913 init_completion(&i2c->msg_complete);
914
915 i2c->irq = ret = platform_get_irq(pdev, 0);
916 if (ret < 0)
917 goto err_clk;
918
919 ret = devm_request_irq(&pdev->dev, i2c->irq, exynos5_i2c_irq,
920 IRQF_NO_SUSPEND, dev_name(&pdev->dev), i2c);
921 if (ret != 0) {
922 dev_err(&pdev->dev, "cannot request HS-I2C IRQ %d\n", i2c->irq);
923 goto err_clk;
924 }
925
926 i2c->variant = of_device_get_match_data(&pdev->dev);
927
928 ret = exynos5_hsi2c_clock_setup(i2c);
929 if (ret)
930 goto err_clk;
931
932 exynos5_i2c_reset(i2c);
933
934 ret = i2c_add_adapter(&i2c->adap);
935 if (ret < 0)
936 goto err_clk;
937
938 platform_set_drvdata(pdev, i2c);
939
940 clk_disable(i2c->clk);
941 clk_disable(i2c->pclk);
942
943 return 0;
944
945 err_clk:
946 clk_disable_unprepare(i2c->clk);
947
948 err_pclk:
949 clk_disable_unprepare(i2c->pclk);
950 return ret;
951}
952
953static void exynos5_i2c_remove(struct platform_device *pdev)
954{
955 struct exynos5_i2c *i2c = platform_get_drvdata(pdev);
956
957 i2c_del_adapter(&i2c->adap);
958
959 clk_unprepare(i2c->clk);
960 clk_unprepare(i2c->pclk);
961}
962
963static int exynos5_i2c_suspend_noirq(struct device *dev)
964{
965 struct exynos5_i2c *i2c = dev_get_drvdata(dev);
966
967 i2c_mark_adapter_suspended(&i2c->adap);
968 clk_unprepare(i2c->clk);
969 clk_unprepare(i2c->pclk);
970
971 return 0;
972}
973
974static int exynos5_i2c_resume_noirq(struct device *dev)
975{
976 struct exynos5_i2c *i2c = dev_get_drvdata(dev);
977 int ret = 0;
978
979 ret = clk_prepare_enable(i2c->pclk);
980 if (ret)
981 return ret;
982
983 ret = clk_prepare_enable(i2c->clk);
984 if (ret)
985 goto err_pclk;
986
987 ret = exynos5_hsi2c_clock_setup(i2c);
988 if (ret)
989 goto err_clk;
990
991 exynos5_i2c_init(i2c);
992 clk_disable(i2c->clk);
993 clk_disable(i2c->pclk);
994 i2c_mark_adapter_resumed(&i2c->adap);
995
996 return 0;
997
998err_clk:
999 clk_disable_unprepare(i2c->clk);
1000err_pclk:
1001 clk_disable_unprepare(i2c->pclk);
1002 return ret;
1003}
1004
1005static const struct dev_pm_ops exynos5_i2c_dev_pm_ops = {
1006 NOIRQ_SYSTEM_SLEEP_PM_OPS(exynos5_i2c_suspend_noirq,
1007 exynos5_i2c_resume_noirq)
1008};
1009
1010static struct platform_driver exynos5_i2c_driver = {
1011 .probe = exynos5_i2c_probe,
1012 .remove_new = exynos5_i2c_remove,
1013 .driver = {
1014 .name = "exynos5-hsi2c",
1015 .pm = pm_sleep_ptr(&exynos5_i2c_dev_pm_ops),
1016 .of_match_table = exynos5_i2c_match,
1017 },
1018};
1019
1020module_platform_driver(exynos5_i2c_driver);
1021
1022MODULE_DESCRIPTION("Exynos5 HS-I2C Bus driver");
1023MODULE_AUTHOR("Naveen Krishna Chatradhi <ch.naveen@samsung.com>");
1024MODULE_AUTHOR("Taekgyun Ko <taeggyun.ko@samsung.com>");
1025MODULE_LICENSE("GPL v2");
1/**
2 * i2c-exynos5.c - Samsung Exynos5 I2C Controller Driver
3 *
4 * Copyright (C) 2013 Samsung Electronics Co., Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9*/
10
11#include <linux/kernel.h>
12#include <linux/module.h>
13
14#include <linux/i2c.h>
15#include <linux/time.h>
16#include <linux/interrupt.h>
17#include <linux/delay.h>
18#include <linux/errno.h>
19#include <linux/err.h>
20#include <linux/platform_device.h>
21#include <linux/clk.h>
22#include <linux/slab.h>
23#include <linux/io.h>
24#include <linux/of_address.h>
25#include <linux/of_irq.h>
26#include <linux/spinlock.h>
27
28/*
29 * HSI2C controller from Samsung supports 2 modes of operation
30 * 1. Auto mode: Where in master automatically controls the whole transaction
31 * 2. Manual mode: Software controls the transaction by issuing commands
32 * START, READ, WRITE, STOP, RESTART in I2C_MANUAL_CMD register.
33 *
34 * Operation mode can be selected by setting AUTO_MODE bit in I2C_CONF register
35 *
36 * Special bits are available for both modes of operation to set commands
37 * and for checking transfer status
38 */
39
40/* Register Map */
41#define HSI2C_CTL 0x00
42#define HSI2C_FIFO_CTL 0x04
43#define HSI2C_TRAILIG_CTL 0x08
44#define HSI2C_CLK_CTL 0x0C
45#define HSI2C_CLK_SLOT 0x10
46#define HSI2C_INT_ENABLE 0x20
47#define HSI2C_INT_STATUS 0x24
48#define HSI2C_ERR_STATUS 0x2C
49#define HSI2C_FIFO_STATUS 0x30
50#define HSI2C_TX_DATA 0x34
51#define HSI2C_RX_DATA 0x38
52#define HSI2C_CONF 0x40
53#define HSI2C_AUTO_CONF 0x44
54#define HSI2C_TIMEOUT 0x48
55#define HSI2C_MANUAL_CMD 0x4C
56#define HSI2C_TRANS_STATUS 0x50
57#define HSI2C_TIMING_HS1 0x54
58#define HSI2C_TIMING_HS2 0x58
59#define HSI2C_TIMING_HS3 0x5C
60#define HSI2C_TIMING_FS1 0x60
61#define HSI2C_TIMING_FS2 0x64
62#define HSI2C_TIMING_FS3 0x68
63#define HSI2C_TIMING_SLA 0x6C
64#define HSI2C_ADDR 0x70
65
66/* I2C_CTL Register bits */
67#define HSI2C_FUNC_MODE_I2C (1u << 0)
68#define HSI2C_MASTER (1u << 3)
69#define HSI2C_RXCHON (1u << 6)
70#define HSI2C_TXCHON (1u << 7)
71#define HSI2C_SW_RST (1u << 31)
72
73/* I2C_FIFO_CTL Register bits */
74#define HSI2C_RXFIFO_EN (1u << 0)
75#define HSI2C_TXFIFO_EN (1u << 1)
76#define HSI2C_RXFIFO_TRIGGER_LEVEL(x) ((x) << 4)
77#define HSI2C_TXFIFO_TRIGGER_LEVEL(x) ((x) << 16)
78
79/* I2C_TRAILING_CTL Register bits */
80#define HSI2C_TRAILING_COUNT (0xf)
81
82/* I2C_INT_EN Register bits */
83#define HSI2C_INT_TX_ALMOSTEMPTY_EN (1u << 0)
84#define HSI2C_INT_RX_ALMOSTFULL_EN (1u << 1)
85#define HSI2C_INT_TRAILING_EN (1u << 6)
86
87/* I2C_INT_STAT Register bits */
88#define HSI2C_INT_TX_ALMOSTEMPTY (1u << 0)
89#define HSI2C_INT_RX_ALMOSTFULL (1u << 1)
90#define HSI2C_INT_TX_UNDERRUN (1u << 2)
91#define HSI2C_INT_TX_OVERRUN (1u << 3)
92#define HSI2C_INT_RX_UNDERRUN (1u << 4)
93#define HSI2C_INT_RX_OVERRUN (1u << 5)
94#define HSI2C_INT_TRAILING (1u << 6)
95#define HSI2C_INT_I2C (1u << 9)
96
97#define HSI2C_INT_TRANS_DONE (1u << 7)
98#define HSI2C_INT_TRANS_ABORT (1u << 8)
99#define HSI2C_INT_NO_DEV_ACK (1u << 9)
100#define HSI2C_INT_NO_DEV (1u << 10)
101#define HSI2C_INT_TIMEOUT (1u << 11)
102#define HSI2C_INT_I2C_TRANS (HSI2C_INT_TRANS_DONE | \
103 HSI2C_INT_TRANS_ABORT | \
104 HSI2C_INT_NO_DEV_ACK | \
105 HSI2C_INT_NO_DEV | \
106 HSI2C_INT_TIMEOUT)
107
108/* I2C_FIFO_STAT Register bits */
109#define HSI2C_RX_FIFO_EMPTY (1u << 24)
110#define HSI2C_RX_FIFO_FULL (1u << 23)
111#define HSI2C_RX_FIFO_LVL(x) ((x >> 16) & 0x7f)
112#define HSI2C_TX_FIFO_EMPTY (1u << 8)
113#define HSI2C_TX_FIFO_FULL (1u << 7)
114#define HSI2C_TX_FIFO_LVL(x) ((x >> 0) & 0x7f)
115
116/* I2C_CONF Register bits */
117#define HSI2C_AUTO_MODE (1u << 31)
118#define HSI2C_10BIT_ADDR_MODE (1u << 30)
119#define HSI2C_HS_MODE (1u << 29)
120
121/* I2C_AUTO_CONF Register bits */
122#define HSI2C_READ_WRITE (1u << 16)
123#define HSI2C_STOP_AFTER_TRANS (1u << 17)
124#define HSI2C_MASTER_RUN (1u << 31)
125
126/* I2C_TIMEOUT Register bits */
127#define HSI2C_TIMEOUT_EN (1u << 31)
128#define HSI2C_TIMEOUT_MASK 0xff
129
130/* I2C_TRANS_STATUS register bits */
131#define HSI2C_MASTER_BUSY (1u << 17)
132#define HSI2C_SLAVE_BUSY (1u << 16)
133#define HSI2C_TIMEOUT_AUTO (1u << 4)
134#define HSI2C_NO_DEV (1u << 3)
135#define HSI2C_NO_DEV_ACK (1u << 2)
136#define HSI2C_TRANS_ABORT (1u << 1)
137#define HSI2C_TRANS_DONE (1u << 0)
138
139/* I2C_ADDR register bits */
140#define HSI2C_SLV_ADDR_SLV(x) ((x & 0x3ff) << 0)
141#define HSI2C_SLV_ADDR_MAS(x) ((x & 0x3ff) << 10)
142#define HSI2C_MASTER_ID(x) ((x & 0xff) << 24)
143#define MASTER_ID(x) ((x & 0x7) + 0x08)
144
145/*
146 * Controller operating frequency, timing values for operation
147 * are calculated against this frequency
148 */
149#define HSI2C_HS_TX_CLOCK 1000000
150#define HSI2C_FS_TX_CLOCK 100000
151#define HSI2C_HIGH_SPD 1
152#define HSI2C_FAST_SPD 0
153
154#define EXYNOS5_I2C_TIMEOUT (msecs_to_jiffies(1000))
155
156#define HSI2C_EXYNOS7 BIT(0)
157
158struct exynos5_i2c {
159 struct i2c_adapter adap;
160 unsigned int suspended:1;
161
162 struct i2c_msg *msg;
163 struct completion msg_complete;
164 unsigned int msg_ptr;
165
166 unsigned int irq;
167
168 void __iomem *regs;
169 struct clk *clk;
170 struct device *dev;
171 int state;
172
173 spinlock_t lock; /* IRQ synchronization */
174
175 /*
176 * Since the TRANS_DONE bit is cleared on read, and we may read it
177 * either during an IRQ or after a transaction, keep track of its
178 * state here.
179 */
180 int trans_done;
181
182 /* Controller operating frequency */
183 unsigned int fs_clock;
184 unsigned int hs_clock;
185
186 /*
187 * HSI2C Controller can operate in
188 * 1. High speed upto 3.4Mbps
189 * 2. Fast speed upto 1Mbps
190 */
191 int speed_mode;
192
193 /* Version of HS-I2C Hardware */
194 struct exynos_hsi2c_variant *variant;
195};
196
197/**
198 * struct exynos_hsi2c_variant - platform specific HSI2C driver data
199 * @fifo_depth: the fifo depth supported by the HSI2C module
200 *
201 * Specifies platform specific configuration of HSI2C module.
202 * Note: A structure for driver specific platform data is used for future
203 * expansion of its usage.
204 */
205struct exynos_hsi2c_variant {
206 unsigned int fifo_depth;
207 unsigned int hw;
208};
209
210static const struct exynos_hsi2c_variant exynos5250_hsi2c_data = {
211 .fifo_depth = 64,
212};
213
214static const struct exynos_hsi2c_variant exynos5260_hsi2c_data = {
215 .fifo_depth = 16,
216};
217
218static const struct exynos_hsi2c_variant exynos7_hsi2c_data = {
219 .fifo_depth = 16,
220 .hw = HSI2C_EXYNOS7,
221};
222
223static const struct of_device_id exynos5_i2c_match[] = {
224 {
225 .compatible = "samsung,exynos5-hsi2c",
226 .data = &exynos5250_hsi2c_data
227 }, {
228 .compatible = "samsung,exynos5250-hsi2c",
229 .data = &exynos5250_hsi2c_data
230 }, {
231 .compatible = "samsung,exynos5260-hsi2c",
232 .data = &exynos5260_hsi2c_data
233 }, {
234 .compatible = "samsung,exynos7-hsi2c",
235 .data = &exynos7_hsi2c_data
236 }, {},
237};
238MODULE_DEVICE_TABLE(of, exynos5_i2c_match);
239
240static inline struct exynos_hsi2c_variant *exynos5_i2c_get_variant
241 (struct platform_device *pdev)
242{
243 const struct of_device_id *match;
244
245 match = of_match_node(exynos5_i2c_match, pdev->dev.of_node);
246 return (struct exynos_hsi2c_variant *)match->data;
247}
248
249static void exynos5_i2c_clr_pend_irq(struct exynos5_i2c *i2c)
250{
251 writel(readl(i2c->regs + HSI2C_INT_STATUS),
252 i2c->regs + HSI2C_INT_STATUS);
253}
254
255/*
256 * exynos5_i2c_set_timing: updates the registers with appropriate
257 * timing values calculated
258 *
259 * Returns 0 on success, -EINVAL if the cycle length cannot
260 * be calculated.
261 */
262static int exynos5_i2c_set_timing(struct exynos5_i2c *i2c, int mode)
263{
264 u32 i2c_timing_s1;
265 u32 i2c_timing_s2;
266 u32 i2c_timing_s3;
267 u32 i2c_timing_sla;
268 unsigned int t_start_su, t_start_hd;
269 unsigned int t_stop_su;
270 unsigned int t_data_su, t_data_hd;
271 unsigned int t_scl_l, t_scl_h;
272 unsigned int t_sr_release;
273 unsigned int t_ftl_cycle;
274 unsigned int clkin = clk_get_rate(i2c->clk);
275 unsigned int div, utemp0 = 0, utemp1 = 0, clk_cycle;
276 unsigned int op_clk = (mode == HSI2C_HIGH_SPD) ?
277 i2c->hs_clock : i2c->fs_clock;
278
279 /*
280 * In case of HSI2C controller in Exynos5 series
281 * FPCLK / FI2C =
282 * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + 2 * FLT_CYCLE
283 *
284 * In case of HSI2C controllers in Exynos7 series
285 * FPCLK / FI2C =
286 * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + FLT_CYCLE
287 *
288 * utemp0 = (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2)
289 * utemp1 = (TSCLK_L + TSCLK_H + 2)
290 */
291 t_ftl_cycle = (readl(i2c->regs + HSI2C_CONF) >> 16) & 0x7;
292 utemp0 = (clkin / op_clk) - 8;
293
294 if (i2c->variant->hw == HSI2C_EXYNOS7)
295 utemp0 -= t_ftl_cycle;
296 else
297 utemp0 -= 2 * t_ftl_cycle;
298
299 /* CLK_DIV max is 256 */
300 for (div = 0; div < 256; div++) {
301 utemp1 = utemp0 / (div + 1);
302
303 /*
304 * SCL_L and SCL_H each has max value of 255
305 * Hence, For the clk_cycle to the have right value
306 * utemp1 has to be less then 512 and more than 4.
307 */
308 if ((utemp1 < 512) && (utemp1 > 4)) {
309 clk_cycle = utemp1 - 2;
310 break;
311 } else if (div == 255) {
312 dev_warn(i2c->dev, "Failed to calculate divisor");
313 return -EINVAL;
314 }
315 }
316
317 t_scl_l = clk_cycle / 2;
318 t_scl_h = clk_cycle / 2;
319 t_start_su = t_scl_l;
320 t_start_hd = t_scl_l;
321 t_stop_su = t_scl_l;
322 t_data_su = t_scl_l / 2;
323 t_data_hd = t_scl_l / 2;
324 t_sr_release = clk_cycle;
325
326 i2c_timing_s1 = t_start_su << 24 | t_start_hd << 16 | t_stop_su << 8;
327 i2c_timing_s2 = t_data_su << 24 | t_scl_l << 8 | t_scl_h << 0;
328 i2c_timing_s3 = div << 16 | t_sr_release << 0;
329 i2c_timing_sla = t_data_hd << 0;
330
331 dev_dbg(i2c->dev, "tSTART_SU: %X, tSTART_HD: %X, tSTOP_SU: %X\n",
332 t_start_su, t_start_hd, t_stop_su);
333 dev_dbg(i2c->dev, "tDATA_SU: %X, tSCL_L: %X, tSCL_H: %X\n",
334 t_data_su, t_scl_l, t_scl_h);
335 dev_dbg(i2c->dev, "nClkDiv: %X, tSR_RELEASE: %X\n",
336 div, t_sr_release);
337 dev_dbg(i2c->dev, "tDATA_HD: %X\n", t_data_hd);
338
339 if (mode == HSI2C_HIGH_SPD) {
340 writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_HS1);
341 writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_HS2);
342 writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_HS3);
343 } else {
344 writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_FS1);
345 writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_FS2);
346 writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_FS3);
347 }
348 writel(i2c_timing_sla, i2c->regs + HSI2C_TIMING_SLA);
349
350 return 0;
351}
352
353static int exynos5_hsi2c_clock_setup(struct exynos5_i2c *i2c)
354{
355 /*
356 * Configure the Fast speed timing values
357 * Even the High Speed mode initially starts with Fast mode
358 */
359 if (exynos5_i2c_set_timing(i2c, HSI2C_FAST_SPD)) {
360 dev_err(i2c->dev, "HSI2C FS Clock set up failed\n");
361 return -EINVAL;
362 }
363
364 /* configure the High speed timing values */
365 if (i2c->speed_mode == HSI2C_HIGH_SPD) {
366 if (exynos5_i2c_set_timing(i2c, HSI2C_HIGH_SPD)) {
367 dev_err(i2c->dev, "HSI2C HS Clock set up failed\n");
368 return -EINVAL;
369 }
370 }
371
372 return 0;
373}
374
375/*
376 * exynos5_i2c_init: configures the controller for I2C functionality
377 * Programs I2C controller for Master mode operation
378 */
379static void exynos5_i2c_init(struct exynos5_i2c *i2c)
380{
381 u32 i2c_conf = readl(i2c->regs + HSI2C_CONF);
382 u32 i2c_timeout = readl(i2c->regs + HSI2C_TIMEOUT);
383
384 /* Clear to disable Timeout */
385 i2c_timeout &= ~HSI2C_TIMEOUT_EN;
386 writel(i2c_timeout, i2c->regs + HSI2C_TIMEOUT);
387
388 writel((HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
389 i2c->regs + HSI2C_CTL);
390 writel(HSI2C_TRAILING_COUNT, i2c->regs + HSI2C_TRAILIG_CTL);
391
392 if (i2c->speed_mode == HSI2C_HIGH_SPD) {
393 writel(HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr)),
394 i2c->regs + HSI2C_ADDR);
395 i2c_conf |= HSI2C_HS_MODE;
396 }
397
398 writel(i2c_conf | HSI2C_AUTO_MODE, i2c->regs + HSI2C_CONF);
399}
400
401static void exynos5_i2c_reset(struct exynos5_i2c *i2c)
402{
403 u32 i2c_ctl;
404
405 /* Set and clear the bit for reset */
406 i2c_ctl = readl(i2c->regs + HSI2C_CTL);
407 i2c_ctl |= HSI2C_SW_RST;
408 writel(i2c_ctl, i2c->regs + HSI2C_CTL);
409
410 i2c_ctl = readl(i2c->regs + HSI2C_CTL);
411 i2c_ctl &= ~HSI2C_SW_RST;
412 writel(i2c_ctl, i2c->regs + HSI2C_CTL);
413
414 /* We don't expect calculations to fail during the run */
415 exynos5_hsi2c_clock_setup(i2c);
416 /* Initialize the configure registers */
417 exynos5_i2c_init(i2c);
418}
419
420/*
421 * exynos5_i2c_irq: top level IRQ servicing routine
422 *
423 * INT_STATUS registers gives the interrupt details. Further,
424 * FIFO_STATUS or TRANS_STATUS registers are to be check for detailed
425 * state of the bus.
426 */
427static irqreturn_t exynos5_i2c_irq(int irqno, void *dev_id)
428{
429 struct exynos5_i2c *i2c = dev_id;
430 u32 fifo_level, int_status, fifo_status, trans_status;
431 unsigned char byte;
432 int len = 0;
433
434 i2c->state = -EINVAL;
435
436 spin_lock(&i2c->lock);
437
438 int_status = readl(i2c->regs + HSI2C_INT_STATUS);
439 writel(int_status, i2c->regs + HSI2C_INT_STATUS);
440
441 /* handle interrupt related to the transfer status */
442 if (i2c->variant->hw == HSI2C_EXYNOS7) {
443 if (int_status & HSI2C_INT_TRANS_DONE) {
444 i2c->trans_done = 1;
445 i2c->state = 0;
446 } else if (int_status & HSI2C_INT_TRANS_ABORT) {
447 dev_dbg(i2c->dev, "Deal with arbitration lose\n");
448 i2c->state = -EAGAIN;
449 goto stop;
450 } else if (int_status & HSI2C_INT_NO_DEV_ACK) {
451 dev_dbg(i2c->dev, "No ACK from device\n");
452 i2c->state = -ENXIO;
453 goto stop;
454 } else if (int_status & HSI2C_INT_NO_DEV) {
455 dev_dbg(i2c->dev, "No device\n");
456 i2c->state = -ENXIO;
457 goto stop;
458 } else if (int_status & HSI2C_INT_TIMEOUT) {
459 dev_dbg(i2c->dev, "Accessing device timed out\n");
460 i2c->state = -ETIMEDOUT;
461 goto stop;
462 }
463 } else if (int_status & HSI2C_INT_I2C) {
464 trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
465 if (trans_status & HSI2C_NO_DEV_ACK) {
466 dev_dbg(i2c->dev, "No ACK from device\n");
467 i2c->state = -ENXIO;
468 goto stop;
469 } else if (trans_status & HSI2C_NO_DEV) {
470 dev_dbg(i2c->dev, "No device\n");
471 i2c->state = -ENXIO;
472 goto stop;
473 } else if (trans_status & HSI2C_TRANS_ABORT) {
474 dev_dbg(i2c->dev, "Deal with arbitration lose\n");
475 i2c->state = -EAGAIN;
476 goto stop;
477 } else if (trans_status & HSI2C_TIMEOUT_AUTO) {
478 dev_dbg(i2c->dev, "Accessing device timed out\n");
479 i2c->state = -ETIMEDOUT;
480 goto stop;
481 } else if (trans_status & HSI2C_TRANS_DONE) {
482 i2c->trans_done = 1;
483 i2c->state = 0;
484 }
485 }
486
487 if ((i2c->msg->flags & I2C_M_RD) && (int_status &
488 (HSI2C_INT_TRAILING | HSI2C_INT_RX_ALMOSTFULL))) {
489 fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
490 fifo_level = HSI2C_RX_FIFO_LVL(fifo_status);
491 len = min(fifo_level, i2c->msg->len - i2c->msg_ptr);
492
493 while (len > 0) {
494 byte = (unsigned char)
495 readl(i2c->regs + HSI2C_RX_DATA);
496 i2c->msg->buf[i2c->msg_ptr++] = byte;
497 len--;
498 }
499 i2c->state = 0;
500 } else if (int_status & HSI2C_INT_TX_ALMOSTEMPTY) {
501 fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
502 fifo_level = HSI2C_TX_FIFO_LVL(fifo_status);
503
504 len = i2c->variant->fifo_depth - fifo_level;
505 if (len > (i2c->msg->len - i2c->msg_ptr))
506 len = i2c->msg->len - i2c->msg_ptr;
507
508 while (len > 0) {
509 byte = i2c->msg->buf[i2c->msg_ptr++];
510 writel(byte, i2c->regs + HSI2C_TX_DATA);
511 len--;
512 }
513 i2c->state = 0;
514 }
515
516 stop:
517 if ((i2c->trans_done && (i2c->msg->len == i2c->msg_ptr)) ||
518 (i2c->state < 0)) {
519 writel(0, i2c->regs + HSI2C_INT_ENABLE);
520 exynos5_i2c_clr_pend_irq(i2c);
521 complete(&i2c->msg_complete);
522 }
523
524 spin_unlock(&i2c->lock);
525
526 return IRQ_HANDLED;
527}
528
529/*
530 * exynos5_i2c_wait_bus_idle
531 *
532 * Wait for the bus to go idle, indicated by the MASTER_BUSY bit being
533 * cleared.
534 *
535 * Returns -EBUSY if the bus cannot be bought to idle
536 */
537static int exynos5_i2c_wait_bus_idle(struct exynos5_i2c *i2c)
538{
539 unsigned long stop_time;
540 u32 trans_status;
541
542 /* wait for 100 milli seconds for the bus to be idle */
543 stop_time = jiffies + msecs_to_jiffies(100) + 1;
544 do {
545 trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
546 if (!(trans_status & HSI2C_MASTER_BUSY))
547 return 0;
548
549 usleep_range(50, 200);
550 } while (time_before(jiffies, stop_time));
551
552 return -EBUSY;
553}
554
555/*
556 * exynos5_i2c_message_start: Configures the bus and starts the xfer
557 * i2c: struct exynos5_i2c pointer for the current bus
558 * stop: Enables stop after transfer if set. Set for last transfer of
559 * in the list of messages.
560 *
561 * Configures the bus for read/write function
562 * Sets chip address to talk to, message length to be sent.
563 * Enables appropriate interrupts and sends start xfer command.
564 */
565static void exynos5_i2c_message_start(struct exynos5_i2c *i2c, int stop)
566{
567 u32 i2c_ctl;
568 u32 int_en = 0;
569 u32 i2c_auto_conf = 0;
570 u32 fifo_ctl;
571 unsigned long flags;
572 unsigned short trig_lvl;
573
574 if (i2c->variant->hw == HSI2C_EXYNOS7)
575 int_en |= HSI2C_INT_I2C_TRANS;
576 else
577 int_en |= HSI2C_INT_I2C;
578
579 i2c_ctl = readl(i2c->regs + HSI2C_CTL);
580 i2c_ctl &= ~(HSI2C_TXCHON | HSI2C_RXCHON);
581 fifo_ctl = HSI2C_RXFIFO_EN | HSI2C_TXFIFO_EN;
582
583 if (i2c->msg->flags & I2C_M_RD) {
584 i2c_ctl |= HSI2C_RXCHON;
585
586 i2c_auto_conf |= HSI2C_READ_WRITE;
587
588 trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ?
589 (i2c->variant->fifo_depth * 3 / 4) : i2c->msg->len;
590 fifo_ctl |= HSI2C_RXFIFO_TRIGGER_LEVEL(trig_lvl);
591
592 int_en |= (HSI2C_INT_RX_ALMOSTFULL_EN |
593 HSI2C_INT_TRAILING_EN);
594 } else {
595 i2c_ctl |= HSI2C_TXCHON;
596
597 trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ?
598 (i2c->variant->fifo_depth * 1 / 4) : i2c->msg->len;
599 fifo_ctl |= HSI2C_TXFIFO_TRIGGER_LEVEL(trig_lvl);
600
601 int_en |= HSI2C_INT_TX_ALMOSTEMPTY_EN;
602 }
603
604 writel(HSI2C_SLV_ADDR_MAS(i2c->msg->addr), i2c->regs + HSI2C_ADDR);
605
606 writel(fifo_ctl, i2c->regs + HSI2C_FIFO_CTL);
607 writel(i2c_ctl, i2c->regs + HSI2C_CTL);
608
609 /*
610 * Enable interrupts before starting the transfer so that we don't
611 * miss any INT_I2C interrupts.
612 */
613 spin_lock_irqsave(&i2c->lock, flags);
614 writel(int_en, i2c->regs + HSI2C_INT_ENABLE);
615
616 if (stop == 1)
617 i2c_auto_conf |= HSI2C_STOP_AFTER_TRANS;
618 i2c_auto_conf |= i2c->msg->len;
619 i2c_auto_conf |= HSI2C_MASTER_RUN;
620 writel(i2c_auto_conf, i2c->regs + HSI2C_AUTO_CONF);
621 spin_unlock_irqrestore(&i2c->lock, flags);
622}
623
624static int exynos5_i2c_xfer_msg(struct exynos5_i2c *i2c,
625 struct i2c_msg *msgs, int stop)
626{
627 unsigned long timeout;
628 int ret;
629
630 i2c->msg = msgs;
631 i2c->msg_ptr = 0;
632 i2c->trans_done = 0;
633
634 reinit_completion(&i2c->msg_complete);
635
636 exynos5_i2c_message_start(i2c, stop);
637
638 timeout = wait_for_completion_timeout(&i2c->msg_complete,
639 EXYNOS5_I2C_TIMEOUT);
640 if (timeout == 0)
641 ret = -ETIMEDOUT;
642 else
643 ret = i2c->state;
644
645 /*
646 * If this is the last message to be transfered (stop == 1)
647 * Then check if the bus can be brought back to idle.
648 */
649 if (ret == 0 && stop)
650 ret = exynos5_i2c_wait_bus_idle(i2c);
651
652 if (ret < 0) {
653 exynos5_i2c_reset(i2c);
654 if (ret == -ETIMEDOUT)
655 dev_warn(i2c->dev, "%s timeout\n",
656 (msgs->flags & I2C_M_RD) ? "rx" : "tx");
657 }
658
659 /* Return the state as in interrupt routine */
660 return ret;
661}
662
663static int exynos5_i2c_xfer(struct i2c_adapter *adap,
664 struct i2c_msg *msgs, int num)
665{
666 struct exynos5_i2c *i2c = adap->algo_data;
667 int i = 0, ret = 0, stop = 0;
668
669 if (i2c->suspended) {
670 dev_err(i2c->dev, "HS-I2C is not initialized.\n");
671 return -EIO;
672 }
673
674 ret = clk_enable(i2c->clk);
675 if (ret)
676 return ret;
677
678 for (i = 0; i < num; i++, msgs++) {
679 stop = (i == num - 1);
680
681 ret = exynos5_i2c_xfer_msg(i2c, msgs, stop);
682
683 if (ret < 0)
684 goto out;
685 }
686
687 if (i == num) {
688 ret = num;
689 } else {
690 /* Only one message, cannot access the device */
691 if (i == 1)
692 ret = -EREMOTEIO;
693 else
694 ret = i;
695
696 dev_warn(i2c->dev, "xfer message failed\n");
697 }
698
699 out:
700 clk_disable(i2c->clk);
701 return ret;
702}
703
704static u32 exynos5_i2c_func(struct i2c_adapter *adap)
705{
706 return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
707}
708
709static const struct i2c_algorithm exynos5_i2c_algorithm = {
710 .master_xfer = exynos5_i2c_xfer,
711 .functionality = exynos5_i2c_func,
712};
713
714static int exynos5_i2c_probe(struct platform_device *pdev)
715{
716 struct device_node *np = pdev->dev.of_node;
717 struct exynos5_i2c *i2c;
718 struct resource *mem;
719 unsigned int op_clock;
720 int ret;
721
722 i2c = devm_kzalloc(&pdev->dev, sizeof(struct exynos5_i2c), GFP_KERNEL);
723 if (!i2c)
724 return -ENOMEM;
725
726 if (of_property_read_u32(np, "clock-frequency", &op_clock)) {
727 i2c->speed_mode = HSI2C_FAST_SPD;
728 i2c->fs_clock = HSI2C_FS_TX_CLOCK;
729 } else {
730 if (op_clock >= HSI2C_HS_TX_CLOCK) {
731 i2c->speed_mode = HSI2C_HIGH_SPD;
732 i2c->fs_clock = HSI2C_FS_TX_CLOCK;
733 i2c->hs_clock = op_clock;
734 } else {
735 i2c->speed_mode = HSI2C_FAST_SPD;
736 i2c->fs_clock = op_clock;
737 }
738 }
739
740 strlcpy(i2c->adap.name, "exynos5-i2c", sizeof(i2c->adap.name));
741 i2c->adap.owner = THIS_MODULE;
742 i2c->adap.algo = &exynos5_i2c_algorithm;
743 i2c->adap.retries = 3;
744
745 i2c->dev = &pdev->dev;
746 i2c->clk = devm_clk_get(&pdev->dev, "hsi2c");
747 if (IS_ERR(i2c->clk)) {
748 dev_err(&pdev->dev, "cannot get clock\n");
749 return -ENOENT;
750 }
751
752 ret = clk_prepare_enable(i2c->clk);
753 if (ret)
754 return ret;
755
756 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
757 i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
758 if (IS_ERR(i2c->regs)) {
759 ret = PTR_ERR(i2c->regs);
760 goto err_clk;
761 }
762
763 i2c->adap.dev.of_node = np;
764 i2c->adap.algo_data = i2c;
765 i2c->adap.dev.parent = &pdev->dev;
766
767 /* Clear pending interrupts from u-boot or misc causes */
768 exynos5_i2c_clr_pend_irq(i2c);
769
770 spin_lock_init(&i2c->lock);
771 init_completion(&i2c->msg_complete);
772
773 i2c->irq = ret = platform_get_irq(pdev, 0);
774 if (ret <= 0) {
775 dev_err(&pdev->dev, "cannot find HS-I2C IRQ\n");
776 ret = -EINVAL;
777 goto err_clk;
778 }
779
780 ret = devm_request_irq(&pdev->dev, i2c->irq, exynos5_i2c_irq,
781 IRQF_NO_SUSPEND | IRQF_ONESHOT,
782 dev_name(&pdev->dev), i2c);
783
784 if (ret != 0) {
785 dev_err(&pdev->dev, "cannot request HS-I2C IRQ %d\n", i2c->irq);
786 goto err_clk;
787 }
788
789 /* Need to check the variant before setting up. */
790 i2c->variant = exynos5_i2c_get_variant(pdev);
791
792 ret = exynos5_hsi2c_clock_setup(i2c);
793 if (ret)
794 goto err_clk;
795
796 exynos5_i2c_reset(i2c);
797
798 ret = i2c_add_adapter(&i2c->adap);
799 if (ret < 0)
800 goto err_clk;
801
802 platform_set_drvdata(pdev, i2c);
803
804 clk_disable(i2c->clk);
805
806 return 0;
807
808 err_clk:
809 clk_disable_unprepare(i2c->clk);
810 return ret;
811}
812
813static int exynos5_i2c_remove(struct platform_device *pdev)
814{
815 struct exynos5_i2c *i2c = platform_get_drvdata(pdev);
816
817 i2c_del_adapter(&i2c->adap);
818
819 clk_unprepare(i2c->clk);
820
821 return 0;
822}
823
824#ifdef CONFIG_PM_SLEEP
825static int exynos5_i2c_suspend_noirq(struct device *dev)
826{
827 struct platform_device *pdev = to_platform_device(dev);
828 struct exynos5_i2c *i2c = platform_get_drvdata(pdev);
829
830 i2c->suspended = 1;
831
832 clk_unprepare(i2c->clk);
833
834 return 0;
835}
836
837static int exynos5_i2c_resume_noirq(struct device *dev)
838{
839 struct platform_device *pdev = to_platform_device(dev);
840 struct exynos5_i2c *i2c = platform_get_drvdata(pdev);
841 int ret = 0;
842
843 ret = clk_prepare_enable(i2c->clk);
844 if (ret)
845 return ret;
846
847 ret = exynos5_hsi2c_clock_setup(i2c);
848 if (ret) {
849 clk_disable_unprepare(i2c->clk);
850 return ret;
851 }
852
853 exynos5_i2c_init(i2c);
854 clk_disable(i2c->clk);
855 i2c->suspended = 0;
856
857 return 0;
858}
859#endif
860
861static const struct dev_pm_ops exynos5_i2c_dev_pm_ops = {
862 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(exynos5_i2c_suspend_noirq,
863 exynos5_i2c_resume_noirq)
864};
865
866static struct platform_driver exynos5_i2c_driver = {
867 .probe = exynos5_i2c_probe,
868 .remove = exynos5_i2c_remove,
869 .driver = {
870 .name = "exynos5-hsi2c",
871 .pm = &exynos5_i2c_dev_pm_ops,
872 .of_match_table = exynos5_i2c_match,
873 },
874};
875
876module_platform_driver(exynos5_i2c_driver);
877
878MODULE_DESCRIPTION("Exynos5 HS-I2C Bus driver");
879MODULE_AUTHOR("Naveen Krishna Chatradhi, <ch.naveen@samsung.com>");
880MODULE_AUTHOR("Taekgyun Ko, <taeggyun.ko@samsung.com>");
881MODULE_LICENSE("GPL v2");