Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Cryptographic API.
   4 *
   5 * Support for ATMEL AES HW acceleration.
   6 *
   7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
   8 * Author: Nicolas Royer <nicolas@eukrea.com>
   9 *
 
 
 
 
  10 * Some ideas are from omap-aes.c driver.
  11 */
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/err.h>
  18#include <linux/clk.h>
  19#include <linux/io.h>
  20#include <linux/hw_random.h>
  21#include <linux/platform_device.h>
  22
  23#include <linux/device.h>
  24#include <linux/dmaengine.h>
  25#include <linux/init.h>
  26#include <linux/errno.h>
  27#include <linux/interrupt.h>
  28#include <linux/irq.h>
  29#include <linux/scatterlist.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/mod_devicetable.h>
  32#include <linux/delay.h>
  33#include <linux/crypto.h>
  34#include <crypto/scatterwalk.h>
  35#include <crypto/algapi.h>
  36#include <crypto/aes.h>
  37#include <crypto/gcm.h>
  38#include <crypto/xts.h>
  39#include <crypto/internal/aead.h>
  40#include <crypto/internal/skcipher.h>
 
  41#include "atmel-aes-regs.h"
  42#include "atmel-authenc.h"
  43
  44#define ATMEL_AES_PRIORITY	300
  45
  46#define ATMEL_AES_BUFFER_ORDER	2
  47#define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
  48
 
 
 
 
 
  49#define SIZE_IN_WORDS(x)	((x) >> 2)
  50
  51/* AES flags */
  52/* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
  53#define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
  54#define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
  55#define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
  56#define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
  57#define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
 
 
 
 
 
 
  58#define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
  59#define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
  60#define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
  61
  62#define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
  63				 AES_FLAGS_ENCRYPT |		\
  64				 AES_FLAGS_GTAGEN)
  65
 
  66#define AES_FLAGS_BUSY		BIT(3)
  67#define AES_FLAGS_DUMP_REG	BIT(4)
  68#define AES_FLAGS_OWN_SHA	BIT(5)
  69
  70#define AES_FLAGS_PERSISTENT	AES_FLAGS_BUSY
  71
  72#define ATMEL_AES_QUEUE_LENGTH	50
  73
  74#define ATMEL_AES_DMA_THRESHOLD		256
  75
  76
  77struct atmel_aes_caps {
  78	bool			has_dualbuff;
 
 
  79	bool			has_gcm;
  80	bool			has_xts;
  81	bool			has_authenc;
  82	u32			max_burst_size;
  83};
  84
  85struct atmel_aes_dev;
  86
  87
  88typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
  89
  90
  91struct atmel_aes_base_ctx {
  92	struct atmel_aes_dev	*dd;
  93	atmel_aes_fn_t		start;
  94	int			keylen;
  95	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
  96	u16			block_size;
  97	bool			is_aead;
  98};
  99
 100struct atmel_aes_ctx {
 101	struct atmel_aes_base_ctx	base;
 102};
 103
 104struct atmel_aes_ctr_ctx {
 105	struct atmel_aes_base_ctx	base;
 106
 107	__be32			iv[AES_BLOCK_SIZE / sizeof(u32)];
 108	size_t			offset;
 109	struct scatterlist	src[2];
 110	struct scatterlist	dst[2];
 111	u32			blocks;
 112};
 113
 114struct atmel_aes_gcm_ctx {
 115	struct atmel_aes_base_ctx	base;
 116
 117	struct scatterlist	src[2];
 118	struct scatterlist	dst[2];
 119
 120	__be32			j0[AES_BLOCK_SIZE / sizeof(u32)];
 121	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
 122	__be32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
 123	size_t			textlen;
 124
 125	const __be32		*ghash_in;
 126	__be32			*ghash_out;
 127	atmel_aes_fn_t		ghash_resume;
 128};
 129
 130struct atmel_aes_xts_ctx {
 131	struct atmel_aes_base_ctx	base;
 132
 133	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
 134	struct crypto_skcipher *fallback_tfm;
 135};
 136
 137#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 138struct atmel_aes_authenc_ctx {
 139	struct atmel_aes_base_ctx	base;
 140	struct atmel_sha_authenc_ctx	*auth;
 141};
 142#endif
 143
 144struct atmel_aes_reqctx {
 145	unsigned long		mode;
 146	u8			lastc[AES_BLOCK_SIZE];
 147	struct skcipher_request fallback_req;
 148};
 149
 150#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 151struct atmel_aes_authenc_reqctx {
 152	struct atmel_aes_reqctx	base;
 153
 154	struct scatterlist	src[2];
 155	struct scatterlist	dst[2];
 156	size_t			textlen;
 157	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];
 158
 159	/* auth_req MUST be place last. */
 160	struct ahash_request	auth_req;
 161};
 162#endif
 163
 164struct atmel_aes_dma {
 165	struct dma_chan		*chan;
 166	struct scatterlist	*sg;
 167	int			nents;
 168	unsigned int		remainder;
 169	unsigned int		sg_len;
 170};
 171
 172struct atmel_aes_dev {
 173	struct list_head	list;
 174	unsigned long		phys_base;
 175	void __iomem		*io_base;
 176
 177	struct crypto_async_request	*areq;
 178	struct atmel_aes_base_ctx	*ctx;
 179
 180	bool			is_async;
 181	atmel_aes_fn_t		resume;
 182	atmel_aes_fn_t		cpu_transfer_complete;
 183
 184	struct device		*dev;
 185	struct clk		*iclk;
 186	int			irq;
 187
 188	unsigned long		flags;
 189
 190	spinlock_t		lock;
 191	struct crypto_queue	queue;
 192
 193	struct tasklet_struct	done_task;
 194	struct tasklet_struct	queue_task;
 195
 196	size_t			total;
 197	size_t			datalen;
 198	u32			*data;
 199
 200	struct atmel_aes_dma	src;
 201	struct atmel_aes_dma	dst;
 202
 203	size_t			buflen;
 204	void			*buf;
 205	struct scatterlist	aligned_sg;
 206	struct scatterlist	*real_dst;
 207
 208	struct atmel_aes_caps	caps;
 209
 210	u32			hw_version;
 211};
 212
 213struct atmel_aes_drv {
 214	struct list_head	dev_list;
 215	spinlock_t		lock;
 216};
 217
 218static struct atmel_aes_drv atmel_aes = {
 219	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
 220	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
 221};
 222
 223#ifdef VERBOSE_DEBUG
 224static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
 225{
 226	switch (offset) {
 227	case AES_CR:
 228		return "CR";
 229
 230	case AES_MR:
 231		return "MR";
 232
 233	case AES_ISR:
 234		return "ISR";
 235
 236	case AES_IMR:
 237		return "IMR";
 238
 239	case AES_IER:
 240		return "IER";
 241
 242	case AES_IDR:
 243		return "IDR";
 244
 245	case AES_KEYWR(0):
 246	case AES_KEYWR(1):
 247	case AES_KEYWR(2):
 248	case AES_KEYWR(3):
 249	case AES_KEYWR(4):
 250	case AES_KEYWR(5):
 251	case AES_KEYWR(6):
 252	case AES_KEYWR(7):
 253		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
 254		break;
 255
 256	case AES_IDATAR(0):
 257	case AES_IDATAR(1):
 258	case AES_IDATAR(2):
 259	case AES_IDATAR(3):
 260		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
 261		break;
 262
 263	case AES_ODATAR(0):
 264	case AES_ODATAR(1):
 265	case AES_ODATAR(2):
 266	case AES_ODATAR(3):
 267		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
 268		break;
 269
 270	case AES_IVR(0):
 271	case AES_IVR(1):
 272	case AES_IVR(2):
 273	case AES_IVR(3):
 274		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
 275		break;
 276
 277	case AES_AADLENR:
 278		return "AADLENR";
 279
 280	case AES_CLENR:
 281		return "CLENR";
 282
 283	case AES_GHASHR(0):
 284	case AES_GHASHR(1):
 285	case AES_GHASHR(2):
 286	case AES_GHASHR(3):
 287		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
 288		break;
 289
 290	case AES_TAGR(0):
 291	case AES_TAGR(1):
 292	case AES_TAGR(2):
 293	case AES_TAGR(3):
 294		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
 295		break;
 296
 297	case AES_CTRR:
 298		return "CTRR";
 299
 300	case AES_GCMHR(0):
 301	case AES_GCMHR(1):
 302	case AES_GCMHR(2):
 303	case AES_GCMHR(3):
 304		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
 305		break;
 306
 307	case AES_EMR:
 308		return "EMR";
 309
 310	case AES_TWR(0):
 311	case AES_TWR(1):
 312	case AES_TWR(2):
 313	case AES_TWR(3):
 314		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
 315		break;
 316
 317	case AES_ALPHAR(0):
 318	case AES_ALPHAR(1):
 319	case AES_ALPHAR(2):
 320	case AES_ALPHAR(3):
 321		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
 322		break;
 323
 324	default:
 325		snprintf(tmp, sz, "0x%02x", offset);
 326		break;
 327	}
 328
 329	return tmp;
 330}
 331#endif /* VERBOSE_DEBUG */
 332
 333/* Shared functions */
 334
 335static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
 336{
 337	u32 value = readl_relaxed(dd->io_base + offset);
 338
 339#ifdef VERBOSE_DEBUG
 340	if (dd->flags & AES_FLAGS_DUMP_REG) {
 341		char tmp[16];
 342
 343		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
 344			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 345	}
 346#endif /* VERBOSE_DEBUG */
 347
 348	return value;
 349}
 350
 351static inline void atmel_aes_write(struct atmel_aes_dev *dd,
 352					u32 offset, u32 value)
 353{
 354#ifdef VERBOSE_DEBUG
 355	if (dd->flags & AES_FLAGS_DUMP_REG) {
 356		char tmp[16];
 357
 358		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
 359			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 360	}
 361#endif /* VERBOSE_DEBUG */
 362
 363	writel_relaxed(value, dd->io_base + offset);
 364}
 365
 366static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
 367					u32 *value, int count)
 368{
 369	for (; count--; value++, offset += 4)
 370		*value = atmel_aes_read(dd, offset);
 371}
 372
 373static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
 374			      const u32 *value, int count)
 375{
 376	for (; count--; value++, offset += 4)
 377		atmel_aes_write(dd, offset, *value);
 378}
 379
 380static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
 381					void *value)
 382{
 383	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 384}
 385
 386static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
 387					 const void *value)
 388{
 389	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 390}
 391
 392static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
 393						atmel_aes_fn_t resume)
 394{
 395	u32 isr = atmel_aes_read(dd, AES_ISR);
 396
 397	if (unlikely(isr & AES_INT_DATARDY))
 398		return resume(dd);
 399
 400	dd->resume = resume;
 401	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 402	return -EINPROGRESS;
 403}
 404
 405static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
 406{
 407	len &= block_size - 1;
 408	return len ? block_size - len : 0;
 409}
 410
 411static struct atmel_aes_dev *atmel_aes_dev_alloc(struct atmel_aes_base_ctx *ctx)
 412{
 413	struct atmel_aes_dev *aes_dd;
 
 414
 415	spin_lock_bh(&atmel_aes.lock);
 416	/* One AES IP per SoC. */
 417	aes_dd = list_first_entry_or_null(&atmel_aes.dev_list,
 418					  struct atmel_aes_dev, list);
 
 
 
 
 
 
 
 419	spin_unlock_bh(&atmel_aes.lock);
 
 420	return aes_dd;
 421}
 422
 423static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
 424{
 425	int err;
 426
 427	err = clk_enable(dd->iclk);
 428	if (err)
 429		return err;
 430
 431	atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
 432	atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
 
 
 
 433
 434	return 0;
 435}
 436
 437static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
 438{
 439	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
 440}
 441
 442static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
 443{
 444	int err;
 445
 446	err = atmel_aes_hw_init(dd);
 447	if (err)
 448		return err;
 449
 450	dd->hw_version = atmel_aes_get_version(dd);
 451
 452	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
 453
 454	clk_disable(dd->iclk);
 455	return 0;
 456}
 457
 458static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
 459				      const struct atmel_aes_reqctx *rctx)
 460{
 461	/* Clear all but persistent flags and set request flags. */
 462	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
 463}
 464
 465static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
 466{
 467	return (dd->flags & AES_FLAGS_ENCRYPT);
 468}
 469
 470#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 471static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
 472#endif
 473
 474static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
 475{
 476	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 477	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 478	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 479	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
 480
 481	if (req->cryptlen < ivsize)
 482		return;
 483
 484	if (rctx->mode & AES_FLAGS_ENCRYPT)
 485		scatterwalk_map_and_copy(req->iv, req->dst,
 486					 req->cryptlen - ivsize, ivsize, 0);
 487	else
 488		memcpy(req->iv, rctx->lastc, ivsize);
 489}
 490
 491static inline struct atmel_aes_ctr_ctx *
 492atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
 493{
 494	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
 495}
 496
 497static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
 498{
 499	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
 500	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 501	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 502	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
 503	int i;
 504
 505	/*
 506	 * The CTR transfer works in fragments of data of maximum 1 MByte
 507	 * because of the 16 bit CTR counter embedded in the IP. When reaching
 508	 * here, ctx->blocks contains the number of blocks of the last fragment
 509	 * processed, there is no need to explicit cast it to u16.
 510	 */
 511	for (i = 0; i < ctx->blocks; i++)
 512		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
 513
 514	memcpy(req->iv, ctx->iv, ivsize);
 515}
 516
 517static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
 518{
 519	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 520	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 521
 522#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 523	if (dd->ctx->is_aead)
 524		atmel_aes_authenc_complete(dd, err);
 525#endif
 526
 527	clk_disable(dd->iclk);
 528	dd->flags &= ~AES_FLAGS_BUSY;
 529
 530	if (!err && !dd->ctx->is_aead &&
 531	    (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
 532		if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
 533			atmel_aes_set_iv_as_last_ciphertext_block(dd);
 534		else
 535			atmel_aes_ctr_update_req_iv(dd);
 536	}
 537
 538	if (dd->is_async)
 539		crypto_request_complete(dd->areq, err);
 540
 541	tasklet_schedule(&dd->queue_task);
 542
 543	return err;
 544}
 545
 546static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
 547				     const __be32 *iv, const u32 *key, int keylen)
 548{
 549	u32 valmr = 0;
 550
 551	/* MR register must be set before IV registers */
 552	if (keylen == AES_KEYSIZE_128)
 553		valmr |= AES_MR_KEYSIZE_128;
 554	else if (keylen == AES_KEYSIZE_192)
 555		valmr |= AES_MR_KEYSIZE_192;
 556	else
 557		valmr |= AES_MR_KEYSIZE_256;
 558
 559	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
 560
 561	if (use_dma) {
 562		valmr |= AES_MR_SMOD_IDATAR0;
 563		if (dd->caps.has_dualbuff)
 564			valmr |= AES_MR_DUALBUFF;
 565	} else {
 566		valmr |= AES_MR_SMOD_AUTO;
 567	}
 568
 569	atmel_aes_write(dd, AES_MR, valmr);
 570
 571	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
 572
 573	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
 574		atmel_aes_write_block(dd, AES_IVR(0), iv);
 575}
 576
 577static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
 578					const __be32 *iv)
 579
 580{
 581	atmel_aes_write_ctrl_key(dd, use_dma, iv,
 582				 dd->ctx->key, dd->ctx->keylen);
 583}
 584
 585/* CPU transfer */
 586
 587static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
 588{
 589	int err = 0;
 590	u32 isr;
 591
 592	for (;;) {
 593		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
 594		dd->data += 4;
 595		dd->datalen -= AES_BLOCK_SIZE;
 596
 597		if (dd->datalen < AES_BLOCK_SIZE)
 598			break;
 599
 600		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 601
 602		isr = atmel_aes_read(dd, AES_ISR);
 603		if (!(isr & AES_INT_DATARDY)) {
 604			dd->resume = atmel_aes_cpu_transfer;
 605			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 606			return -EINPROGRESS;
 607		}
 608	}
 609
 610	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 611				 dd->buf, dd->total))
 612		err = -EINVAL;
 613
 614	if (err)
 615		return atmel_aes_complete(dd, err);
 616
 617	return dd->cpu_transfer_complete(dd);
 618}
 619
 620static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
 621			       struct scatterlist *src,
 622			       struct scatterlist *dst,
 623			       size_t len,
 624			       atmel_aes_fn_t resume)
 625{
 626	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
 627
 628	if (unlikely(len == 0))
 629		return -EINVAL;
 630
 631	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 632
 633	dd->total = len;
 634	dd->real_dst = dst;
 635	dd->cpu_transfer_complete = resume;
 636	dd->datalen = len + padlen;
 637	dd->data = (u32 *)dd->buf;
 638	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 639	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
 640}
 641
 642
 643/* DMA transfer */
 644
 645static void atmel_aes_dma_callback(void *data);
 646
 647static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
 648				    struct scatterlist *sg,
 649				    size_t len,
 650				    struct atmel_aes_dma *dma)
 651{
 652	int nents;
 653
 654	if (!IS_ALIGNED(len, dd->ctx->block_size))
 655		return false;
 656
 657	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
 658		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 659			return false;
 660
 661		if (len <= sg->length) {
 662			if (!IS_ALIGNED(len, dd->ctx->block_size))
 663				return false;
 664
 665			dma->nents = nents+1;
 666			dma->remainder = sg->length - len;
 667			sg->length = len;
 668			return true;
 669		}
 670
 671		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
 672			return false;
 673
 674		len -= sg->length;
 675	}
 676
 677	return false;
 678}
 679
 680static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
 681{
 682	struct scatterlist *sg = dma->sg;
 683	int nents = dma->nents;
 684
 685	if (!dma->remainder)
 686		return;
 687
 688	while (--nents > 0 && sg)
 689		sg = sg_next(sg);
 690
 691	if (!sg)
 692		return;
 693
 694	sg->length += dma->remainder;
 695}
 696
 697static int atmel_aes_map(struct atmel_aes_dev *dd,
 698			 struct scatterlist *src,
 699			 struct scatterlist *dst,
 700			 size_t len)
 701{
 702	bool src_aligned, dst_aligned;
 703	size_t padlen;
 704
 705	dd->total = len;
 706	dd->src.sg = src;
 707	dd->dst.sg = dst;
 708	dd->real_dst = dst;
 709
 710	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
 711	if (src == dst)
 712		dst_aligned = src_aligned;
 713	else
 714		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
 715	if (!src_aligned || !dst_aligned) {
 716		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
 717
 718		if (dd->buflen < len + padlen)
 719			return -ENOMEM;
 720
 721		if (!src_aligned) {
 722			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 723			dd->src.sg = &dd->aligned_sg;
 724			dd->src.nents = 1;
 725			dd->src.remainder = 0;
 726		}
 727
 728		if (!dst_aligned) {
 729			dd->dst.sg = &dd->aligned_sg;
 730			dd->dst.nents = 1;
 731			dd->dst.remainder = 0;
 732		}
 733
 734		sg_init_table(&dd->aligned_sg, 1);
 735		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
 736	}
 737
 738	if (dd->src.sg == dd->dst.sg) {
 739		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 740					    DMA_BIDIRECTIONAL);
 741		dd->dst.sg_len = dd->src.sg_len;
 742		if (!dd->src.sg_len)
 743			return -EFAULT;
 744	} else {
 745		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 746					    DMA_TO_DEVICE);
 747		if (!dd->src.sg_len)
 748			return -EFAULT;
 749
 750		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 751					    DMA_FROM_DEVICE);
 752		if (!dd->dst.sg_len) {
 753			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 754				     DMA_TO_DEVICE);
 755			return -EFAULT;
 756		}
 757	}
 758
 759	return 0;
 760}
 761
 762static void atmel_aes_unmap(struct atmel_aes_dev *dd)
 763{
 764	if (dd->src.sg == dd->dst.sg) {
 765		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 766			     DMA_BIDIRECTIONAL);
 767
 768		if (dd->src.sg != &dd->aligned_sg)
 769			atmel_aes_restore_sg(&dd->src);
 770	} else {
 771		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 772			     DMA_FROM_DEVICE);
 773
 774		if (dd->dst.sg != &dd->aligned_sg)
 775			atmel_aes_restore_sg(&dd->dst);
 776
 777		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 778			     DMA_TO_DEVICE);
 779
 780		if (dd->src.sg != &dd->aligned_sg)
 781			atmel_aes_restore_sg(&dd->src);
 782	}
 783
 784	if (dd->dst.sg == &dd->aligned_sg)
 785		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 786				    dd->buf, dd->total);
 787}
 788
 789static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
 790					enum dma_slave_buswidth addr_width,
 791					enum dma_transfer_direction dir,
 792					u32 maxburst)
 793{
 794	struct dma_async_tx_descriptor *desc;
 795	struct dma_slave_config config;
 796	dma_async_tx_callback callback;
 797	struct atmel_aes_dma *dma;
 798	int err;
 799
 800	memset(&config, 0, sizeof(config));
 
 801	config.src_addr_width = addr_width;
 802	config.dst_addr_width = addr_width;
 803	config.src_maxburst = maxburst;
 804	config.dst_maxburst = maxburst;
 805
 806	switch (dir) {
 807	case DMA_MEM_TO_DEV:
 808		dma = &dd->src;
 809		callback = NULL;
 810		config.dst_addr = dd->phys_base + AES_IDATAR(0);
 811		break;
 812
 813	case DMA_DEV_TO_MEM:
 814		dma = &dd->dst;
 815		callback = atmel_aes_dma_callback;
 816		config.src_addr = dd->phys_base + AES_ODATAR(0);
 817		break;
 818
 819	default:
 820		return -EINVAL;
 821	}
 822
 823	err = dmaengine_slave_config(dma->chan, &config);
 824	if (err)
 825		return err;
 826
 827	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
 828				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 829	if (!desc)
 830		return -ENOMEM;
 831
 832	desc->callback = callback;
 833	desc->callback_param = dd;
 834	dmaengine_submit(desc);
 835	dma_async_issue_pending(dma->chan);
 836
 837	return 0;
 838}
 839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 840static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
 841			       struct scatterlist *src,
 842			       struct scatterlist *dst,
 843			       size_t len,
 844			       atmel_aes_fn_t resume)
 845{
 846	enum dma_slave_buswidth addr_width;
 847	u32 maxburst;
 848	int err;
 849
 850	switch (dd->ctx->block_size) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 851	case AES_BLOCK_SIZE:
 852		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 853		maxburst = dd->caps.max_burst_size;
 854		break;
 855
 856	default:
 857		err = -EINVAL;
 858		goto exit;
 859	}
 860
 861	err = atmel_aes_map(dd, src, dst, len);
 862	if (err)
 863		goto exit;
 864
 865	dd->resume = resume;
 866
 867	/* Set output DMA transfer first */
 868	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
 869					   maxburst);
 870	if (err)
 871		goto unmap;
 872
 873	/* Then set input DMA transfer */
 874	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
 875					   maxburst);
 876	if (err)
 877		goto output_transfer_stop;
 878
 879	return -EINPROGRESS;
 880
 881output_transfer_stop:
 882	dmaengine_terminate_sync(dd->dst.chan);
 883unmap:
 884	atmel_aes_unmap(dd);
 885exit:
 886	return atmel_aes_complete(dd, err);
 887}
 888
 
 
 
 
 
 
 
 889static void atmel_aes_dma_callback(void *data)
 890{
 891	struct atmel_aes_dev *dd = data;
 892
 893	atmel_aes_unmap(dd);
 894	dd->is_async = true;
 895	(void)dd->resume(dd);
 896}
 897
 898static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
 899				  struct crypto_async_request *new_areq)
 900{
 901	struct crypto_async_request *areq, *backlog;
 902	struct atmel_aes_base_ctx *ctx;
 903	unsigned long flags;
 904	bool start_async;
 905	int err, ret = 0;
 906
 907	spin_lock_irqsave(&dd->lock, flags);
 908	if (new_areq)
 909		ret = crypto_enqueue_request(&dd->queue, new_areq);
 910	if (dd->flags & AES_FLAGS_BUSY) {
 911		spin_unlock_irqrestore(&dd->lock, flags);
 912		return ret;
 913	}
 914	backlog = crypto_get_backlog(&dd->queue);
 915	areq = crypto_dequeue_request(&dd->queue);
 916	if (areq)
 917		dd->flags |= AES_FLAGS_BUSY;
 918	spin_unlock_irqrestore(&dd->lock, flags);
 919
 920	if (!areq)
 921		return ret;
 922
 923	if (backlog)
 924		crypto_request_complete(backlog, -EINPROGRESS);
 925
 926	ctx = crypto_tfm_ctx(areq->tfm);
 927
 928	dd->areq = areq;
 929	dd->ctx = ctx;
 930	start_async = (areq != new_areq);
 931	dd->is_async = start_async;
 932
 933	/* WARNING: ctx->start() MAY change dd->is_async. */
 934	err = ctx->start(dd);
 935	return (start_async) ? ret : err;
 936}
 937
 938
 939/* AES async block ciphers */
 940
 941static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
 942{
 943	return atmel_aes_complete(dd, 0);
 944}
 945
 946static int atmel_aes_start(struct atmel_aes_dev *dd)
 947{
 948	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 949	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 950	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
 951			dd->ctx->block_size != AES_BLOCK_SIZE);
 952	int err;
 953
 954	atmel_aes_set_mode(dd, rctx);
 955
 956	err = atmel_aes_hw_init(dd);
 957	if (err)
 958		return atmel_aes_complete(dd, err);
 959
 960	atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
 961	if (use_dma)
 962		return atmel_aes_dma_start(dd, req->src, req->dst,
 963					   req->cryptlen,
 964					   atmel_aes_transfer_complete);
 965
 966	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
 967				   atmel_aes_transfer_complete);
 968}
 969
 
 
 
 
 
 
 970static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
 971{
 972	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
 973	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 974	struct scatterlist *src, *dst;
 
 975	size_t datalen;
 976	u32 ctr;
 977	u16 start, end;
 978	bool use_dma, fragmented = false;
 979
 980	/* Check for transfer completion. */
 981	ctx->offset += dd->total;
 982	if (ctx->offset >= req->cryptlen)
 983		return atmel_aes_transfer_complete(dd);
 984
 985	/* Compute data length. */
 986	datalen = req->cryptlen - ctx->offset;
 987	ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
 988	ctr = be32_to_cpu(ctx->iv[3]);
 989
 990	/* Check 16bit counter overflow. */
 991	start = ctr & 0xffff;
 992	end = start + ctx->blocks - 1;
 993
 994	if (ctx->blocks >> 16 || end < start) {
 995		ctr |= 0xffff;
 996		datalen = AES_BLOCK_SIZE * (0x10000 - start);
 997		fragmented = true;
 
 
 
 
 
 
 
 
 
 
 
 998	}
 999
1000	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1001
1002	/* Jump to offset. */
1003	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1004	dst = ((req->src == req->dst) ? src :
1005	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1006
1007	/* Configure hardware. */
1008	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1009	if (unlikely(fragmented)) {
1010		/*
1011		 * Increment the counter manually to cope with the hardware
1012		 * counter overflow.
1013		 */
1014		ctx->iv[3] = cpu_to_be32(ctr);
1015		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1016	}
1017
1018	if (use_dma)
1019		return atmel_aes_dma_start(dd, src, dst, datalen,
1020					   atmel_aes_ctr_transfer);
1021
1022	return atmel_aes_cpu_start(dd, src, dst, datalen,
1023				   atmel_aes_ctr_transfer);
1024}
1025
1026static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1027{
1028	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1029	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1030	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1031	int err;
1032
1033	atmel_aes_set_mode(dd, rctx);
1034
1035	err = atmel_aes_hw_init(dd);
1036	if (err)
1037		return atmel_aes_complete(dd, err);
1038
1039	memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1040	ctx->offset = 0;
1041	dd->total = 0;
1042	return atmel_aes_ctr_transfer(dd);
1043}
1044
1045static int atmel_aes_xts_fallback(struct skcipher_request *req, bool enc)
1046{
1047	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1048	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(
1049			crypto_skcipher_reqtfm(req));
1050
1051	skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
1052	skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
1053				      req->base.complete, req->base.data);
1054	skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
1055				   req->cryptlen, req->iv);
1056
1057	return enc ? crypto_skcipher_encrypt(&rctx->fallback_req) :
1058		     crypto_skcipher_decrypt(&rctx->fallback_req);
1059}
1060
1061static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1062{
1063	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1064	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1065	struct atmel_aes_reqctx *rctx;
1066	u32 opmode = mode & AES_FLAGS_OPMODE_MASK;
1067
1068	if (opmode == AES_FLAGS_XTS) {
1069		if (req->cryptlen < XTS_BLOCK_SIZE)
1070			return -EINVAL;
1071
1072		if (!IS_ALIGNED(req->cryptlen, XTS_BLOCK_SIZE))
1073			return atmel_aes_xts_fallback(req,
1074						      mode & AES_FLAGS_ENCRYPT);
1075	}
1076
1077	/*
1078	 * ECB, CBC or CTR mode require the plaintext and ciphertext
1079	 * to have a positve integer length.
1080	 */
1081	if (!req->cryptlen && opmode != AES_FLAGS_XTS)
1082		return 0;
1083
1084	if ((opmode == AES_FLAGS_ECB || opmode == AES_FLAGS_CBC) &&
1085	    !IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(skcipher)))
1086		return -EINVAL;
1087
1088	ctx->block_size = AES_BLOCK_SIZE;
1089	ctx->is_aead = false;
 
1090
1091	rctx = skcipher_request_ctx(req);
1092	rctx->mode = mode;
 
 
1093
1094	if (opmode != AES_FLAGS_ECB &&
1095	    !(mode & AES_FLAGS_ENCRYPT)) {
1096		unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1097
1098		if (req->cryptlen >= ivsize)
1099			scatterwalk_map_and_copy(rctx->lastc, req->src,
1100						 req->cryptlen - ivsize,
1101						 ivsize, 0);
1102	}
1103
1104	return atmel_aes_handle_queue(ctx->dd, &req->base);
1105}
1106
1107static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1108			   unsigned int keylen)
1109{
1110	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1111
1112	if (keylen != AES_KEYSIZE_128 &&
1113	    keylen != AES_KEYSIZE_192 &&
1114	    keylen != AES_KEYSIZE_256)
 
1115		return -EINVAL;
 
1116
1117	memcpy(ctx->key, key, keylen);
1118	ctx->keylen = keylen;
1119
1120	return 0;
1121}
1122
1123static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1124{
1125	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1126}
1127
1128static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1129{
1130	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1131}
1132
1133static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1134{
1135	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1136}
1137
1138static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1139{
1140	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1141}
1142
1143static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1144{
1145	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1146}
1147
1148static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1149{
1150	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1151}
1152
1153static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1154{
1155	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1156	struct atmel_aes_dev *dd;
1157
1158	dd = atmel_aes_dev_alloc(&ctx->base);
1159	if (!dd)
1160		return -ENODEV;
1161
1162	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1163	ctx->base.dd = dd;
1164	ctx->base.start = atmel_aes_start;
1165
1166	return 0;
1167}
1168
1169static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1170{
1171	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1172	struct atmel_aes_dev *dd;
1173
1174	dd = atmel_aes_dev_alloc(&ctx->base);
1175	if (!dd)
1176		return -ENODEV;
1177
1178	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1179	ctx->base.dd = dd;
1180	ctx->base.start = atmel_aes_ctr_start;
1181
1182	return 0;
1183}
1184
1185static struct skcipher_alg aes_algs[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1186{
1187	.base.cra_name		= "ecb(aes)",
1188	.base.cra_driver_name	= "atmel-ecb-aes",
1189	.base.cra_blocksize	= AES_BLOCK_SIZE,
1190	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1191
1192	.init			= atmel_aes_init_tfm,
1193	.min_keysize		= AES_MIN_KEY_SIZE,
1194	.max_keysize		= AES_MAX_KEY_SIZE,
1195	.setkey			= atmel_aes_setkey,
1196	.encrypt		= atmel_aes_ecb_encrypt,
1197	.decrypt		= atmel_aes_ecb_decrypt,
 
 
 
 
 
 
 
 
1198},
1199{
1200	.base.cra_name		= "cbc(aes)",
1201	.base.cra_driver_name	= "atmel-cbc-aes",
1202	.base.cra_blocksize	= AES_BLOCK_SIZE,
1203	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1204
1205	.init			= atmel_aes_init_tfm,
1206	.min_keysize		= AES_MIN_KEY_SIZE,
1207	.max_keysize		= AES_MAX_KEY_SIZE,
1208	.setkey			= atmel_aes_setkey,
1209	.encrypt		= atmel_aes_cbc_encrypt,
1210	.decrypt		= atmel_aes_cbc_decrypt,
1211	.ivsize			= AES_BLOCK_SIZE,
 
 
 
 
 
 
 
1212},
1213{
1214	.base.cra_name		= "ctr(aes)",
1215	.base.cra_driver_name	= "atmel-ctr-aes",
1216	.base.cra_blocksize	= 1,
1217	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctr_ctx),
1218
1219	.init			= atmel_aes_ctr_init_tfm,
1220	.min_keysize		= AES_MIN_KEY_SIZE,
1221	.max_keysize		= AES_MAX_KEY_SIZE,
1222	.setkey			= atmel_aes_setkey,
1223	.encrypt		= atmel_aes_ctr_encrypt,
1224	.decrypt		= atmel_aes_ctr_decrypt,
1225	.ivsize			= AES_BLOCK_SIZE,
 
 
 
 
 
 
 
1226},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1227};
1228
1229
1230/* gcm aead functions */
1231
1232static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1233			       const u32 *data, size_t datalen,
1234			       const __be32 *ghash_in, __be32 *ghash_out,
1235			       atmel_aes_fn_t resume);
1236static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1237static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1238
1239static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1240static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1241static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1242static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1243static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1244static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1245static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1246
1247static inline struct atmel_aes_gcm_ctx *
1248atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1249{
1250	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1251}
1252
1253static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1254			       const u32 *data, size_t datalen,
1255			       const __be32 *ghash_in, __be32 *ghash_out,
1256			       atmel_aes_fn_t resume)
1257{
1258	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1259
1260	dd->data = (u32 *)data;
1261	dd->datalen = datalen;
1262	ctx->ghash_in = ghash_in;
1263	ctx->ghash_out = ghash_out;
1264	ctx->ghash_resume = resume;
1265
1266	atmel_aes_write_ctrl(dd, false, NULL);
1267	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1268}
1269
1270static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1271{
1272	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1273
1274	/* Set the data length. */
1275	atmel_aes_write(dd, AES_AADLENR, dd->total);
1276	atmel_aes_write(dd, AES_CLENR, 0);
1277
1278	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1279	if (ctx->ghash_in)
1280		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1281
1282	return atmel_aes_gcm_ghash_finalize(dd);
1283}
1284
1285static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1286{
1287	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1288	u32 isr;
1289
1290	/* Write data into the Input Data Registers. */
1291	while (dd->datalen > 0) {
1292		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1293		dd->data += 4;
1294		dd->datalen -= AES_BLOCK_SIZE;
1295
1296		isr = atmel_aes_read(dd, AES_ISR);
1297		if (!(isr & AES_INT_DATARDY)) {
1298			dd->resume = atmel_aes_gcm_ghash_finalize;
1299			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1300			return -EINPROGRESS;
1301		}
1302	}
1303
1304	/* Read the computed hash from GHASHRx. */
1305	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1306
1307	return ctx->ghash_resume(dd);
1308}
1309
1310
1311static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1312{
1313	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1314	struct aead_request *req = aead_request_cast(dd->areq);
1315	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1316	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1317	size_t ivsize = crypto_aead_ivsize(tfm);
1318	size_t datalen, padlen;
1319	const void *iv = req->iv;
1320	u8 *data = dd->buf;
1321	int err;
1322
1323	atmel_aes_set_mode(dd, rctx);
1324
1325	err = atmel_aes_hw_init(dd);
1326	if (err)
1327		return atmel_aes_complete(dd, err);
1328
1329	if (likely(ivsize == GCM_AES_IV_SIZE)) {
1330		memcpy(ctx->j0, iv, ivsize);
1331		ctx->j0[3] = cpu_to_be32(1);
1332		return atmel_aes_gcm_process(dd);
1333	}
1334
1335	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1336	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1337	if (datalen > dd->buflen)
1338		return atmel_aes_complete(dd, -EINVAL);
1339
1340	memcpy(data, iv, ivsize);
1341	memset(data + ivsize, 0, padlen + sizeof(u64));
1342	((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1343
1344	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1345				   NULL, ctx->j0, atmel_aes_gcm_process);
1346}
1347
1348static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1349{
1350	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1351	struct aead_request *req = aead_request_cast(dd->areq);
1352	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1353	bool enc = atmel_aes_is_encrypt(dd);
1354	u32 authsize;
1355
1356	/* Compute text length. */
1357	authsize = crypto_aead_authsize(tfm);
1358	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1359
1360	/*
1361	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1362	 * fails when both the message and its associated data are empty.
1363	 */
1364	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1365		dd->flags |= AES_FLAGS_GTAGEN;
1366
1367	atmel_aes_write_ctrl(dd, false, NULL);
1368	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1369}
1370
1371static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1372{
1373	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1374	struct aead_request *req = aead_request_cast(dd->areq);
1375	__be32 j0_lsw, *j0 = ctx->j0;
1376	size_t padlen;
1377
1378	/* Write incr32(J0) into IV. */
1379	j0_lsw = j0[3];
1380	be32_add_cpu(&j0[3], 1);
1381	atmel_aes_write_block(dd, AES_IVR(0), j0);
1382	j0[3] = j0_lsw;
1383
1384	/* Set aad and text lengths. */
1385	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1386	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1387
1388	/* Check whether AAD are present. */
1389	if (unlikely(req->assoclen == 0)) {
1390		dd->datalen = 0;
1391		return atmel_aes_gcm_data(dd);
1392	}
1393
1394	/* Copy assoc data and add padding. */
1395	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1396	if (unlikely(req->assoclen + padlen > dd->buflen))
1397		return atmel_aes_complete(dd, -EINVAL);
1398	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1399
1400	/* Write assoc data into the Input Data register. */
1401	dd->data = (u32 *)dd->buf;
1402	dd->datalen = req->assoclen + padlen;
1403	return atmel_aes_gcm_data(dd);
1404}
1405
1406static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1407{
1408	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1409	struct aead_request *req = aead_request_cast(dd->areq);
1410	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1411	struct scatterlist *src, *dst;
1412	u32 isr, mr;
1413
1414	/* Write AAD first. */
1415	while (dd->datalen > 0) {
1416		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1417		dd->data += 4;
1418		dd->datalen -= AES_BLOCK_SIZE;
1419
1420		isr = atmel_aes_read(dd, AES_ISR);
1421		if (!(isr & AES_INT_DATARDY)) {
1422			dd->resume = atmel_aes_gcm_data;
1423			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1424			return -EINPROGRESS;
1425		}
1426	}
1427
1428	/* GMAC only. */
1429	if (unlikely(ctx->textlen == 0))
1430		return atmel_aes_gcm_tag_init(dd);
1431
1432	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1433	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1434	dst = ((req->src == req->dst) ? src :
1435	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1436
1437	if (use_dma) {
1438		/* Update the Mode Register for DMA transfers. */
1439		mr = atmel_aes_read(dd, AES_MR);
1440		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1441		mr |= AES_MR_SMOD_IDATAR0;
1442		if (dd->caps.has_dualbuff)
1443			mr |= AES_MR_DUALBUFF;
1444		atmel_aes_write(dd, AES_MR, mr);
1445
1446		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1447					   atmel_aes_gcm_tag_init);
1448	}
1449
1450	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1451				   atmel_aes_gcm_tag_init);
1452}
1453
1454static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1455{
1456	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1457	struct aead_request *req = aead_request_cast(dd->areq);
1458	__be64 *data = dd->buf;
1459
1460	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1461		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1462			dd->resume = atmel_aes_gcm_tag_init;
1463			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1464			return -EINPROGRESS;
1465		}
1466
1467		return atmel_aes_gcm_finalize(dd);
1468	}
1469
1470	/* Read the GCM Intermediate Hash Word Registers. */
1471	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1472
1473	data[0] = cpu_to_be64(req->assoclen * 8);
1474	data[1] = cpu_to_be64(ctx->textlen * 8);
1475
1476	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1477				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1478}
1479
1480static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1481{
1482	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1483	unsigned long flags;
1484
1485	/*
1486	 * Change mode to CTR to complete the tag generation.
1487	 * Use J0 as Initialization Vector.
1488	 */
1489	flags = dd->flags;
1490	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1491	dd->flags |= AES_FLAGS_CTR;
1492	atmel_aes_write_ctrl(dd, false, ctx->j0);
1493	dd->flags = flags;
1494
1495	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1496	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1497}
1498
1499static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1500{
1501	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1502	struct aead_request *req = aead_request_cast(dd->areq);
1503	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1504	bool enc = atmel_aes_is_encrypt(dd);
1505	u32 offset, authsize, itag[4], *otag = ctx->tag;
1506	int err;
1507
1508	/* Read the computed tag. */
1509	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1510		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1511	else
1512		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1513
1514	offset = req->assoclen + ctx->textlen;
1515	authsize = crypto_aead_authsize(tfm);
1516	if (enc) {
1517		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1518		err = 0;
1519	} else {
1520		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1521		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1522	}
1523
1524	return atmel_aes_complete(dd, err);
1525}
1526
1527static int atmel_aes_gcm_crypt(struct aead_request *req,
1528			       unsigned long mode)
1529{
1530	struct atmel_aes_base_ctx *ctx;
1531	struct atmel_aes_reqctx *rctx;
 
1532
1533	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1534	ctx->block_size = AES_BLOCK_SIZE;
1535	ctx->is_aead = true;
 
 
 
1536
1537	rctx = aead_request_ctx(req);
1538	rctx->mode = AES_FLAGS_GCM | mode;
1539
1540	return atmel_aes_handle_queue(ctx->dd, &req->base);
1541}
1542
1543static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1544				unsigned int keylen)
1545{
1546	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1547
1548	if (keylen != AES_KEYSIZE_256 &&
1549	    keylen != AES_KEYSIZE_192 &&
1550	    keylen != AES_KEYSIZE_128)
 
1551		return -EINVAL;
 
1552
1553	memcpy(ctx->key, key, keylen);
1554	ctx->keylen = keylen;
1555
1556	return 0;
1557}
1558
1559static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1560				     unsigned int authsize)
1561{
1562	return crypto_gcm_check_authsize(authsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1563}
1564
1565static int atmel_aes_gcm_encrypt(struct aead_request *req)
1566{
1567	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1568}
1569
1570static int atmel_aes_gcm_decrypt(struct aead_request *req)
1571{
1572	return atmel_aes_gcm_crypt(req, 0);
1573}
1574
1575static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1576{
1577	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1578	struct atmel_aes_dev *dd;
1579
1580	dd = atmel_aes_dev_alloc(&ctx->base);
1581	if (!dd)
1582		return -ENODEV;
1583
1584	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1585	ctx->base.dd = dd;
1586	ctx->base.start = atmel_aes_gcm_start;
1587
1588	return 0;
1589}
1590
 
 
 
 
 
1591static struct aead_alg aes_gcm_alg = {
1592	.setkey		= atmel_aes_gcm_setkey,
1593	.setauthsize	= atmel_aes_gcm_setauthsize,
1594	.encrypt	= atmel_aes_gcm_encrypt,
1595	.decrypt	= atmel_aes_gcm_decrypt,
1596	.init		= atmel_aes_gcm_init,
1597	.ivsize		= GCM_AES_IV_SIZE,
 
1598	.maxauthsize	= AES_BLOCK_SIZE,
1599
1600	.base = {
1601		.cra_name		= "gcm(aes)",
1602		.cra_driver_name	= "atmel-gcm-aes",
 
 
1603		.cra_blocksize		= 1,
1604		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
 
 
1605	},
1606};
1607
1608
1609/* xts functions */
1610
1611static inline struct atmel_aes_xts_ctx *
1612atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1613{
1614	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1615}
1616
1617static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1618
1619static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1620{
1621	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1622	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1623	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1624	unsigned long flags;
1625	int err;
1626
1627	atmel_aes_set_mode(dd, rctx);
1628
1629	err = atmel_aes_hw_init(dd);
1630	if (err)
1631		return atmel_aes_complete(dd, err);
1632
1633	/* Compute the tweak value from req->iv with ecb(aes). */
1634	flags = dd->flags;
1635	dd->flags &= ~AES_FLAGS_MODE_MASK;
1636	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1637	atmel_aes_write_ctrl_key(dd, false, NULL,
1638				 ctx->key2, ctx->base.keylen);
1639	dd->flags = flags;
1640
1641	atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1642	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1643}
1644
1645static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1646{
1647	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1648	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1649	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1650	static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1651	u8 *tweak_bytes = (u8 *)tweak;
1652	int i;
1653
1654	/* Read the computed ciphered tweak value. */
1655	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1656	/*
1657	 * Hardware quirk:
1658	 * the order of the ciphered tweak bytes need to be reversed before
1659	 * writing them into the ODATARx registers.
1660	 */
1661	for (i = 0; i < AES_BLOCK_SIZE/2; ++i)
1662		swap(tweak_bytes[i], tweak_bytes[AES_BLOCK_SIZE - 1 - i]);
 
 
 
 
1663
1664	/* Process the data. */
1665	atmel_aes_write_ctrl(dd, use_dma, NULL);
1666	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1667	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1668	if (use_dma)
1669		return atmel_aes_dma_start(dd, req->src, req->dst,
1670					   req->cryptlen,
1671					   atmel_aes_transfer_complete);
1672
1673	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1674				   atmel_aes_transfer_complete);
1675}
1676
1677static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1678				unsigned int keylen)
1679{
1680	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1681	int err;
1682
1683	err = xts_verify_key(tfm, key, keylen);
1684	if (err)
1685		return err;
1686
1687	crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
1688	crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags &
1689				  CRYPTO_TFM_REQ_MASK);
1690	err = crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
1691	if (err)
1692		return err;
1693
1694	memcpy(ctx->base.key, key, keylen/2);
1695	memcpy(ctx->key2, key + keylen/2, keylen/2);
1696	ctx->base.keylen = keylen/2;
1697
1698	return 0;
1699}
1700
1701static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1702{
1703	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1704}
1705
1706static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1707{
1708	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1709}
1710
1711static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1712{
1713	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1714	struct atmel_aes_dev *dd;
1715	const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
1716
1717	dd = atmel_aes_dev_alloc(&ctx->base);
1718	if (!dd)
1719		return -ENODEV;
1720
1721	ctx->fallback_tfm = crypto_alloc_skcipher(tfm_name, 0,
1722						  CRYPTO_ALG_NEED_FALLBACK);
1723	if (IS_ERR(ctx->fallback_tfm))
1724		return PTR_ERR(ctx->fallback_tfm);
1725
1726	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx) +
1727				    crypto_skcipher_reqsize(ctx->fallback_tfm));
1728	ctx->base.dd = dd;
1729	ctx->base.start = atmel_aes_xts_start;
1730
1731	return 0;
1732}
1733
1734static void atmel_aes_xts_exit_tfm(struct crypto_skcipher *tfm)
1735{
1736	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1737
1738	crypto_free_skcipher(ctx->fallback_tfm);
1739}
1740
1741static struct skcipher_alg aes_xts_alg = {
1742	.base.cra_name		= "xts(aes)",
1743	.base.cra_driver_name	= "atmel-xts-aes",
1744	.base.cra_blocksize	= AES_BLOCK_SIZE,
1745	.base.cra_ctxsize	= sizeof(struct atmel_aes_xts_ctx),
1746	.base.cra_flags		= CRYPTO_ALG_NEED_FALLBACK,
1747
1748	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
1749	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
1750	.ivsize			= AES_BLOCK_SIZE,
1751	.setkey			= atmel_aes_xts_setkey,
1752	.encrypt		= atmel_aes_xts_encrypt,
1753	.decrypt		= atmel_aes_xts_decrypt,
1754	.init			= atmel_aes_xts_init_tfm,
1755	.exit			= atmel_aes_xts_exit_tfm,
1756};
1757
1758#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1759/* authenc aead functions */
1760
1761static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1762static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1763				  bool is_async);
1764static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1765				      bool is_async);
1766static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1767static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1768				   bool is_async);
1769
1770static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1771{
1772	struct aead_request *req = aead_request_cast(dd->areq);
1773	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1774
1775	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1776		atmel_sha_authenc_abort(&rctx->auth_req);
1777	dd->flags &= ~AES_FLAGS_OWN_SHA;
1778}
1779
1780static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1781{
1782	struct aead_request *req = aead_request_cast(dd->areq);
1783	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1784	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1785	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1786	int err;
1787
1788	atmel_aes_set_mode(dd, &rctx->base);
1789
1790	err = atmel_aes_hw_init(dd);
1791	if (err)
1792		return atmel_aes_complete(dd, err);
1793
1794	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1795					  atmel_aes_authenc_init, dd);
1796}
1797
1798static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1799				  bool is_async)
1800{
1801	struct aead_request *req = aead_request_cast(dd->areq);
1802	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1803
1804	if (is_async)
1805		dd->is_async = true;
1806	if (err)
1807		return atmel_aes_complete(dd, err);
1808
1809	/* If here, we've got the ownership of the SHA device. */
1810	dd->flags |= AES_FLAGS_OWN_SHA;
1811
1812	/* Configure the SHA device. */
1813	return atmel_sha_authenc_init(&rctx->auth_req,
1814				      req->src, req->assoclen,
1815				      rctx->textlen,
1816				      atmel_aes_authenc_transfer, dd);
1817}
1818
1819static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1820				      bool is_async)
1821{
1822	struct aead_request *req = aead_request_cast(dd->areq);
1823	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1824	bool enc = atmel_aes_is_encrypt(dd);
1825	struct scatterlist *src, *dst;
1826	__be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
1827	u32 emr;
1828
1829	if (is_async)
1830		dd->is_async = true;
1831	if (err)
1832		return atmel_aes_complete(dd, err);
1833
1834	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
1835	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
1836	dst = src;
1837
1838	if (req->src != req->dst)
1839		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
1840
1841	/* Configure the AES device. */
1842	memcpy(iv, req->iv, sizeof(iv));
1843
1844	/*
1845	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
1846	 * 'true' even if the data transfer is actually performed by the CPU (so
1847	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
1848	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
1849	 * must be set to *_MR_SMOD_IDATAR0.
1850	 */
1851	atmel_aes_write_ctrl(dd, true, iv);
1852	emr = AES_EMR_PLIPEN;
1853	if (!enc)
1854		emr |= AES_EMR_PLIPD;
1855	atmel_aes_write(dd, AES_EMR, emr);
1856
1857	/* Transfer data. */
1858	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
1859				   atmel_aes_authenc_digest);
1860}
1861
1862static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
1863{
1864	struct aead_request *req = aead_request_cast(dd->areq);
1865	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1866
1867	/* atmel_sha_authenc_final() releases the SHA device. */
1868	dd->flags &= ~AES_FLAGS_OWN_SHA;
1869	return atmel_sha_authenc_final(&rctx->auth_req,
1870				       rctx->digest, sizeof(rctx->digest),
1871				       atmel_aes_authenc_final, dd);
1872}
1873
1874static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1875				   bool is_async)
1876{
1877	struct aead_request *req = aead_request_cast(dd->areq);
1878	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1879	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1880	bool enc = atmel_aes_is_encrypt(dd);
1881	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
1882	u32 offs, authsize;
1883
1884	if (is_async)
1885		dd->is_async = true;
1886	if (err)
1887		goto complete;
1888
1889	offs = req->assoclen + rctx->textlen;
1890	authsize = crypto_aead_authsize(tfm);
1891	if (enc) {
1892		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
1893	} else {
1894		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
1895		if (crypto_memneq(idigest, odigest, authsize))
1896			err = -EBADMSG;
1897	}
1898
1899complete:
1900	return atmel_aes_complete(dd, err);
1901}
1902
1903static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
1904				    unsigned int keylen)
1905{
1906	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1907	struct crypto_authenc_keys keys;
1908	int err;
1909
1910	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1911		goto badkey;
1912
1913	if (keys.enckeylen > sizeof(ctx->base.key))
1914		goto badkey;
1915
1916	/* Save auth key. */
1917	err = atmel_sha_authenc_setkey(ctx->auth,
1918				       keys.authkey, keys.authkeylen,
1919				       crypto_aead_get_flags(tfm));
1920	if (err) {
1921		memzero_explicit(&keys, sizeof(keys));
1922		return err;
1923	}
1924
1925	/* Save enc key. */
1926	ctx->base.keylen = keys.enckeylen;
1927	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
1928
1929	memzero_explicit(&keys, sizeof(keys));
1930	return 0;
1931
1932badkey:
1933	memzero_explicit(&keys, sizeof(keys));
1934	return -EINVAL;
1935}
1936
1937static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
1938				      unsigned long auth_mode)
1939{
1940	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1941	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
1942	struct atmel_aes_dev *dd;
1943
1944	dd = atmel_aes_dev_alloc(&ctx->base);
1945	if (!dd)
1946		return -ENODEV;
1947
1948	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
1949	if (IS_ERR(ctx->auth))
1950		return PTR_ERR(ctx->auth);
1951
1952	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
1953				      auth_reqsize));
1954	ctx->base.dd = dd;
1955	ctx->base.start = atmel_aes_authenc_start;
1956
1957	return 0;
1958}
1959
1960static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
1961{
1962	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
1963}
1964
1965static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
1966{
1967	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
1968}
1969
1970static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
1971{
1972	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
1973}
1974
1975static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
1976{
1977	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
1978}
1979
1980static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
1981{
1982	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
1983}
1984
1985static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
1986{
1987	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1988
1989	atmel_sha_authenc_free(ctx->auth);
1990}
1991
1992static int atmel_aes_authenc_crypt(struct aead_request *req,
1993				   unsigned long mode)
1994{
1995	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1996	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1997	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1998	u32 authsize = crypto_aead_authsize(tfm);
1999	bool enc = (mode & AES_FLAGS_ENCRYPT);
2000
2001	/* Compute text length. */
2002	if (!enc && req->cryptlen < authsize)
2003		return -EINVAL;
2004	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2005
2006	/*
2007	 * Currently, empty messages are not supported yet:
2008	 * the SHA auto-padding can be used only on non-empty messages.
2009	 * Hence a special case needs to be implemented for empty message.
2010	 */
2011	if (!rctx->textlen && !req->assoclen)
2012		return -EINVAL;
2013
2014	rctx->base.mode = mode;
2015	ctx->block_size = AES_BLOCK_SIZE;
2016	ctx->is_aead = true;
2017
2018	return atmel_aes_handle_queue(ctx->dd, &req->base);
2019}
2020
2021static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2022{
2023	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2024}
2025
2026static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2027{
2028	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2029}
2030
2031static struct aead_alg aes_authenc_algs[] = {
2032{
2033	.setkey		= atmel_aes_authenc_setkey,
2034	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2035	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2036	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
2037	.exit		= atmel_aes_authenc_exit_tfm,
2038	.ivsize		= AES_BLOCK_SIZE,
2039	.maxauthsize	= SHA1_DIGEST_SIZE,
2040
2041	.base = {
2042		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
2043		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
2044		.cra_blocksize		= AES_BLOCK_SIZE,
2045		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2046	},
2047},
2048{
2049	.setkey		= atmel_aes_authenc_setkey,
2050	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2051	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2052	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
2053	.exit		= atmel_aes_authenc_exit_tfm,
2054	.ivsize		= AES_BLOCK_SIZE,
2055	.maxauthsize	= SHA224_DIGEST_SIZE,
2056
2057	.base = {
2058		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
2059		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
2060		.cra_blocksize		= AES_BLOCK_SIZE,
2061		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2062	},
2063},
2064{
2065	.setkey		= atmel_aes_authenc_setkey,
2066	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2067	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2068	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
2069	.exit		= atmel_aes_authenc_exit_tfm,
2070	.ivsize		= AES_BLOCK_SIZE,
2071	.maxauthsize	= SHA256_DIGEST_SIZE,
2072
2073	.base = {
2074		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
2075		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
2076		.cra_blocksize		= AES_BLOCK_SIZE,
2077		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2078	},
2079},
2080{
2081	.setkey		= atmel_aes_authenc_setkey,
2082	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2083	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2084	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
2085	.exit		= atmel_aes_authenc_exit_tfm,
2086	.ivsize		= AES_BLOCK_SIZE,
2087	.maxauthsize	= SHA384_DIGEST_SIZE,
2088
2089	.base = {
2090		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
2091		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
2092		.cra_blocksize		= AES_BLOCK_SIZE,
2093		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2094	},
2095},
2096{
2097	.setkey		= atmel_aes_authenc_setkey,
2098	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2099	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2100	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
2101	.exit		= atmel_aes_authenc_exit_tfm,
2102	.ivsize		= AES_BLOCK_SIZE,
2103	.maxauthsize	= SHA512_DIGEST_SIZE,
2104
2105	.base = {
2106		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
2107		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
2108		.cra_blocksize		= AES_BLOCK_SIZE,
2109		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2110	},
2111},
2112};
2113#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2114
2115/* Probe functions */
2116
2117static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2118{
2119	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2120	dd->buflen = ATMEL_AES_BUFFER_SIZE;
2121	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2122
2123	if (!dd->buf) {
2124		dev_err(dd->dev, "unable to alloc pages.\n");
2125		return -ENOMEM;
2126	}
2127
2128	return 0;
2129}
2130
2131static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2132{
2133	free_page((unsigned long)dd->buf);
2134}
2135
2136static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
2137{
2138	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2139
2140	/* Try to grab 2 DMA channels */
2141	dd->src.chan = dma_request_chan(dd->dev, "tx");
2142	if (IS_ERR(dd->src.chan)) {
2143		ret = PTR_ERR(dd->src.chan);
 
2144		goto err_dma_in;
2145	}
2146
2147	dd->dst.chan = dma_request_chan(dd->dev, "rx");
2148	if (IS_ERR(dd->dst.chan)) {
2149		ret = PTR_ERR(dd->dst.chan);
 
2150		goto err_dma_out;
2151	}
2152
2153	return 0;
2154
2155err_dma_out:
2156	dma_release_channel(dd->src.chan);
2157err_dma_in:
2158	dev_err(dd->dev, "no DMA channel available\n");
2159	return ret;
2160}
2161
2162static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2163{
2164	dma_release_channel(dd->dst.chan);
2165	dma_release_channel(dd->src.chan);
2166}
2167
2168static void atmel_aes_queue_task(unsigned long data)
2169{
2170	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2171
2172	atmel_aes_handle_queue(dd, NULL);
2173}
2174
2175static void atmel_aes_done_task(unsigned long data)
2176{
2177	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2178
2179	dd->is_async = true;
2180	(void)dd->resume(dd);
2181}
2182
2183static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2184{
2185	struct atmel_aes_dev *aes_dd = dev_id;
2186	u32 reg;
2187
2188	reg = atmel_aes_read(aes_dd, AES_ISR);
2189	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2190		atmel_aes_write(aes_dd, AES_IDR, reg);
2191		if (AES_FLAGS_BUSY & aes_dd->flags)
2192			tasklet_schedule(&aes_dd->done_task);
2193		else
2194			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2195		return IRQ_HANDLED;
2196	}
2197
2198	return IRQ_NONE;
2199}
2200
2201static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2202{
2203	int i;
2204
2205#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2206	if (dd->caps.has_authenc)
2207		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2208			crypto_unregister_aead(&aes_authenc_algs[i]);
2209#endif
2210
2211	if (dd->caps.has_xts)
2212		crypto_unregister_skcipher(&aes_xts_alg);
2213
2214	if (dd->caps.has_gcm)
2215		crypto_unregister_aead(&aes_gcm_alg);
2216
2217	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2218		crypto_unregister_skcipher(&aes_algs[i]);
2219}
2220
2221static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2222{
2223	alg->cra_flags |= CRYPTO_ALG_ASYNC;
2224	alg->cra_alignmask = 0xf;
2225	alg->cra_priority = ATMEL_AES_PRIORITY;
2226	alg->cra_module = THIS_MODULE;
2227}
2228
2229static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2230{
2231	int err, i, j;
2232
2233	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2234		atmel_aes_crypto_alg_init(&aes_algs[i].base);
2235
2236		err = crypto_register_skcipher(&aes_algs[i]);
2237		if (err)
2238			goto err_aes_algs;
2239	}
2240
2241	if (dd->caps.has_gcm) {
2242		atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
 
 
 
2243
 
2244		err = crypto_register_aead(&aes_gcm_alg);
2245		if (err)
2246			goto err_aes_gcm_alg;
2247	}
2248
2249	if (dd->caps.has_xts) {
2250		atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2251
2252		err = crypto_register_skcipher(&aes_xts_alg);
2253		if (err)
2254			goto err_aes_xts_alg;
2255	}
2256
2257#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2258	if (dd->caps.has_authenc) {
2259		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2260			atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2261
2262			err = crypto_register_aead(&aes_authenc_algs[i]);
2263			if (err)
2264				goto err_aes_authenc_alg;
2265		}
2266	}
2267#endif
2268
2269	return 0;
2270
2271#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2272	/* i = ARRAY_SIZE(aes_authenc_algs); */
2273err_aes_authenc_alg:
2274	for (j = 0; j < i; j++)
2275		crypto_unregister_aead(&aes_authenc_algs[j]);
2276	crypto_unregister_skcipher(&aes_xts_alg);
2277#endif
2278err_aes_xts_alg:
2279	crypto_unregister_aead(&aes_gcm_alg);
2280err_aes_gcm_alg:
 
 
2281	i = ARRAY_SIZE(aes_algs);
2282err_aes_algs:
2283	for (j = 0; j < i; j++)
2284		crypto_unregister_skcipher(&aes_algs[j]);
2285
2286	return err;
2287}
2288
2289static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2290{
2291	dd->caps.has_dualbuff = 0;
 
 
2292	dd->caps.has_gcm = 0;
2293	dd->caps.has_xts = 0;
2294	dd->caps.has_authenc = 0;
2295	dd->caps.max_burst_size = 1;
2296
2297	/* keep only major version number */
2298	switch (dd->hw_version & 0xff0) {
2299	case 0x700:
2300	case 0x600:
2301	case 0x500:
2302		dd->caps.has_dualbuff = 1;
 
 
2303		dd->caps.has_gcm = 1;
2304		dd->caps.has_xts = 1;
2305		dd->caps.has_authenc = 1;
2306		dd->caps.max_burst_size = 4;
2307		break;
2308	case 0x200:
2309		dd->caps.has_dualbuff = 1;
 
 
2310		dd->caps.has_gcm = 1;
2311		dd->caps.max_burst_size = 4;
2312		break;
2313	case 0x130:
2314		dd->caps.has_dualbuff = 1;
 
2315		dd->caps.max_burst_size = 4;
2316		break;
2317	case 0x120:
2318		break;
2319	default:
2320		dev_warn(dd->dev,
2321				"Unmanaged aes version, set minimum capabilities\n");
2322		break;
2323	}
2324}
2325
 
2326static const struct of_device_id atmel_aes_dt_ids[] = {
2327	{ .compatible = "atmel,at91sam9g46-aes" },
2328	{ /* sentinel */ }
2329};
2330MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2332static int atmel_aes_probe(struct platform_device *pdev)
2333{
2334	struct atmel_aes_dev *aes_dd;
 
2335	struct device *dev = &pdev->dev;
2336	struct resource *aes_res;
2337	int err;
2338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2339	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2340	if (!aes_dd)
2341		return -ENOMEM;
 
 
 
2342
2343	aes_dd->dev = dev;
2344
2345	platform_set_drvdata(pdev, aes_dd);
2346
2347	INIT_LIST_HEAD(&aes_dd->list);
2348	spin_lock_init(&aes_dd->lock);
2349
2350	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2351					(unsigned long)aes_dd);
2352	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2353					(unsigned long)aes_dd);
2354
2355	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2356
2357	aes_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &aes_res);
2358	if (IS_ERR(aes_dd->io_base)) {
2359		err = PTR_ERR(aes_dd->io_base);
2360		goto err_tasklet_kill;
 
 
 
 
2361	}
2362	aes_dd->phys_base = aes_res->start;
2363
2364	/* Get the IRQ */
2365	aes_dd->irq = platform_get_irq(pdev,  0);
2366	if (aes_dd->irq < 0) {
 
2367		err = aes_dd->irq;
2368		goto err_tasklet_kill;
2369	}
2370
2371	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2372			       IRQF_SHARED, "atmel-aes", aes_dd);
2373	if (err) {
2374		dev_err(dev, "unable to request aes irq.\n");
2375		goto err_tasklet_kill;
2376	}
2377
2378	/* Initializing the clock */
2379	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2380	if (IS_ERR(aes_dd->iclk)) {
2381		dev_err(dev, "clock initialization failed.\n");
2382		err = PTR_ERR(aes_dd->iclk);
2383		goto err_tasklet_kill;
 
 
 
 
 
 
 
2384	}
2385
2386	err = clk_prepare(aes_dd->iclk);
2387	if (err)
2388		goto err_tasklet_kill;
2389
2390	err = atmel_aes_hw_version_init(aes_dd);
2391	if (err)
2392		goto err_iclk_unprepare;
2393
2394	atmel_aes_get_cap(aes_dd);
2395
2396#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2397	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2398		err = -EPROBE_DEFER;
2399		goto err_iclk_unprepare;
2400	}
2401#endif
2402
2403	err = atmel_aes_buff_init(aes_dd);
2404	if (err)
2405		goto err_iclk_unprepare;
2406
2407	err = atmel_aes_dma_init(aes_dd);
2408	if (err)
2409		goto err_buff_cleanup;
2410
2411	spin_lock(&atmel_aes.lock);
2412	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2413	spin_unlock(&atmel_aes.lock);
2414
2415	err = atmel_aes_register_algs(aes_dd);
2416	if (err)
2417		goto err_algs;
2418
2419	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2420			dma_chan_name(aes_dd->src.chan),
2421			dma_chan_name(aes_dd->dst.chan));
2422
2423	return 0;
2424
2425err_algs:
2426	spin_lock(&atmel_aes.lock);
2427	list_del(&aes_dd->list);
2428	spin_unlock(&atmel_aes.lock);
2429	atmel_aes_dma_cleanup(aes_dd);
2430err_buff_cleanup:
2431	atmel_aes_buff_cleanup(aes_dd);
2432err_iclk_unprepare:
 
2433	clk_unprepare(aes_dd->iclk);
2434err_tasklet_kill:
2435	tasklet_kill(&aes_dd->done_task);
2436	tasklet_kill(&aes_dd->queue_task);
 
 
2437
2438	return err;
2439}
2440
2441static void atmel_aes_remove(struct platform_device *pdev)
2442{
2443	struct atmel_aes_dev *aes_dd;
2444
2445	aes_dd = platform_get_drvdata(pdev);
2446
 
2447	spin_lock(&atmel_aes.lock);
2448	list_del(&aes_dd->list);
2449	spin_unlock(&atmel_aes.lock);
2450
2451	atmel_aes_unregister_algs(aes_dd);
2452
2453	tasklet_kill(&aes_dd->done_task);
2454	tasklet_kill(&aes_dd->queue_task);
2455
2456	atmel_aes_dma_cleanup(aes_dd);
2457	atmel_aes_buff_cleanup(aes_dd);
2458
2459	clk_unprepare(aes_dd->iclk);
 
 
2460}
2461
2462static struct platform_driver atmel_aes_driver = {
2463	.probe		= atmel_aes_probe,
2464	.remove_new	= atmel_aes_remove,
2465	.driver		= {
2466		.name	= "atmel_aes",
2467		.of_match_table = atmel_aes_dt_ids,
2468	},
2469};
2470
2471module_platform_driver(atmel_aes_driver);
2472
2473MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2474MODULE_LICENSE("GPL v2");
2475MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
v4.10.11
 
   1/*
   2 * Cryptographic API.
   3 *
   4 * Support for ATMEL AES HW acceleration.
   5 *
   6 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
   7 * Author: Nicolas Royer <nicolas@eukrea.com>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as published
  11 * by the Free Software Foundation.
  12 *
  13 * Some ideas are from omap-aes.c driver.
  14 */
  15
  16
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/slab.h>
  20#include <linux/err.h>
  21#include <linux/clk.h>
  22#include <linux/io.h>
  23#include <linux/hw_random.h>
  24#include <linux/platform_device.h>
  25
  26#include <linux/device.h>
 
  27#include <linux/init.h>
  28#include <linux/errno.h>
  29#include <linux/interrupt.h>
  30#include <linux/irq.h>
  31#include <linux/scatterlist.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/of_device.h>
  34#include <linux/delay.h>
  35#include <linux/crypto.h>
  36#include <crypto/scatterwalk.h>
  37#include <crypto/algapi.h>
  38#include <crypto/aes.h>
 
  39#include <crypto/xts.h>
  40#include <crypto/internal/aead.h>
  41#include <linux/platform_data/crypto-atmel.h>
  42#include <dt-bindings/dma/at91.h>
  43#include "atmel-aes-regs.h"
 
  44
  45#define ATMEL_AES_PRIORITY	300
  46
  47#define ATMEL_AES_BUFFER_ORDER	2
  48#define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
  49
  50#define CFB8_BLOCK_SIZE		1
  51#define CFB16_BLOCK_SIZE	2
  52#define CFB32_BLOCK_SIZE	4
  53#define CFB64_BLOCK_SIZE	8
  54
  55#define SIZE_IN_WORDS(x)	((x) >> 2)
  56
  57/* AES flags */
  58/* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
  59#define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
  60#define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
  61#define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
  62#define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
  63#define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
  64#define AES_FLAGS_OFB		AES_MR_OPMOD_OFB
  65#define AES_FLAGS_CFB128	(AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
  66#define AES_FLAGS_CFB64		(AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
  67#define AES_FLAGS_CFB32		(AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
  68#define AES_FLAGS_CFB16		(AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
  69#define AES_FLAGS_CFB8		(AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
  70#define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
  71#define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
  72#define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
  73
  74#define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
  75				 AES_FLAGS_ENCRYPT |		\
  76				 AES_FLAGS_GTAGEN)
  77
  78#define AES_FLAGS_INIT		BIT(2)
  79#define AES_FLAGS_BUSY		BIT(3)
  80#define AES_FLAGS_DUMP_REG	BIT(4)
 
  81
  82#define AES_FLAGS_PERSISTENT	(AES_FLAGS_INIT | AES_FLAGS_BUSY)
  83
  84#define ATMEL_AES_QUEUE_LENGTH	50
  85
  86#define ATMEL_AES_DMA_THRESHOLD		256
  87
  88
  89struct atmel_aes_caps {
  90	bool			has_dualbuff;
  91	bool			has_cfb64;
  92	bool			has_ctr32;
  93	bool			has_gcm;
  94	bool			has_xts;
 
  95	u32			max_burst_size;
  96};
  97
  98struct atmel_aes_dev;
  99
 100
 101typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
 102
 103
 104struct atmel_aes_base_ctx {
 105	struct atmel_aes_dev	*dd;
 106	atmel_aes_fn_t		start;
 107	int			keylen;
 108	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
 109	u16			block_size;
 
 110};
 111
 112struct atmel_aes_ctx {
 113	struct atmel_aes_base_ctx	base;
 114};
 115
 116struct atmel_aes_ctr_ctx {
 117	struct atmel_aes_base_ctx	base;
 118
 119	u32			iv[AES_BLOCK_SIZE / sizeof(u32)];
 120	size_t			offset;
 121	struct scatterlist	src[2];
 122	struct scatterlist	dst[2];
 
 123};
 124
 125struct atmel_aes_gcm_ctx {
 126	struct atmel_aes_base_ctx	base;
 127
 128	struct scatterlist	src[2];
 129	struct scatterlist	dst[2];
 130
 131	u32			j0[AES_BLOCK_SIZE / sizeof(u32)];
 132	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
 133	u32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
 134	size_t			textlen;
 135
 136	const u32		*ghash_in;
 137	u32			*ghash_out;
 138	atmel_aes_fn_t		ghash_resume;
 139};
 140
 141struct atmel_aes_xts_ctx {
 142	struct atmel_aes_base_ctx	base;
 143
 144	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
 
 145};
 146
 
 
 
 
 
 
 
 147struct atmel_aes_reqctx {
 148	unsigned long		mode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 149};
 
 150
 151struct atmel_aes_dma {
 152	struct dma_chan		*chan;
 153	struct scatterlist	*sg;
 154	int			nents;
 155	unsigned int		remainder;
 156	unsigned int		sg_len;
 157};
 158
 159struct atmel_aes_dev {
 160	struct list_head	list;
 161	unsigned long		phys_base;
 162	void __iomem		*io_base;
 163
 164	struct crypto_async_request	*areq;
 165	struct atmel_aes_base_ctx	*ctx;
 166
 167	bool			is_async;
 168	atmel_aes_fn_t		resume;
 169	atmel_aes_fn_t		cpu_transfer_complete;
 170
 171	struct device		*dev;
 172	struct clk		*iclk;
 173	int			irq;
 174
 175	unsigned long		flags;
 176
 177	spinlock_t		lock;
 178	struct crypto_queue	queue;
 179
 180	struct tasklet_struct	done_task;
 181	struct tasklet_struct	queue_task;
 182
 183	size_t			total;
 184	size_t			datalen;
 185	u32			*data;
 186
 187	struct atmel_aes_dma	src;
 188	struct atmel_aes_dma	dst;
 189
 190	size_t			buflen;
 191	void			*buf;
 192	struct scatterlist	aligned_sg;
 193	struct scatterlist	*real_dst;
 194
 195	struct atmel_aes_caps	caps;
 196
 197	u32			hw_version;
 198};
 199
 200struct atmel_aes_drv {
 201	struct list_head	dev_list;
 202	spinlock_t		lock;
 203};
 204
 205static struct atmel_aes_drv atmel_aes = {
 206	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
 207	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
 208};
 209
 210#ifdef VERBOSE_DEBUG
 211static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
 212{
 213	switch (offset) {
 214	case AES_CR:
 215		return "CR";
 216
 217	case AES_MR:
 218		return "MR";
 219
 220	case AES_ISR:
 221		return "ISR";
 222
 223	case AES_IMR:
 224		return "IMR";
 225
 226	case AES_IER:
 227		return "IER";
 228
 229	case AES_IDR:
 230		return "IDR";
 231
 232	case AES_KEYWR(0):
 233	case AES_KEYWR(1):
 234	case AES_KEYWR(2):
 235	case AES_KEYWR(3):
 236	case AES_KEYWR(4):
 237	case AES_KEYWR(5):
 238	case AES_KEYWR(6):
 239	case AES_KEYWR(7):
 240		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
 241		break;
 242
 243	case AES_IDATAR(0):
 244	case AES_IDATAR(1):
 245	case AES_IDATAR(2):
 246	case AES_IDATAR(3):
 247		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
 248		break;
 249
 250	case AES_ODATAR(0):
 251	case AES_ODATAR(1):
 252	case AES_ODATAR(2):
 253	case AES_ODATAR(3):
 254		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
 255		break;
 256
 257	case AES_IVR(0):
 258	case AES_IVR(1):
 259	case AES_IVR(2):
 260	case AES_IVR(3):
 261		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
 262		break;
 263
 264	case AES_AADLENR:
 265		return "AADLENR";
 266
 267	case AES_CLENR:
 268		return "CLENR";
 269
 270	case AES_GHASHR(0):
 271	case AES_GHASHR(1):
 272	case AES_GHASHR(2):
 273	case AES_GHASHR(3):
 274		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
 275		break;
 276
 277	case AES_TAGR(0):
 278	case AES_TAGR(1):
 279	case AES_TAGR(2):
 280	case AES_TAGR(3):
 281		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
 282		break;
 283
 284	case AES_CTRR:
 285		return "CTRR";
 286
 287	case AES_GCMHR(0):
 288	case AES_GCMHR(1):
 289	case AES_GCMHR(2):
 290	case AES_GCMHR(3):
 291		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
 292		break;
 293
 
 
 
 294	case AES_TWR(0):
 295	case AES_TWR(1):
 296	case AES_TWR(2):
 297	case AES_TWR(3):
 298		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
 299		break;
 300
 301	case AES_ALPHAR(0):
 302	case AES_ALPHAR(1):
 303	case AES_ALPHAR(2):
 304	case AES_ALPHAR(3):
 305		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
 306		break;
 307
 308	default:
 309		snprintf(tmp, sz, "0x%02x", offset);
 310		break;
 311	}
 312
 313	return tmp;
 314}
 315#endif /* VERBOSE_DEBUG */
 316
 317/* Shared functions */
 318
 319static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
 320{
 321	u32 value = readl_relaxed(dd->io_base + offset);
 322
 323#ifdef VERBOSE_DEBUG
 324	if (dd->flags & AES_FLAGS_DUMP_REG) {
 325		char tmp[16];
 326
 327		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
 328			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 329	}
 330#endif /* VERBOSE_DEBUG */
 331
 332	return value;
 333}
 334
 335static inline void atmel_aes_write(struct atmel_aes_dev *dd,
 336					u32 offset, u32 value)
 337{
 338#ifdef VERBOSE_DEBUG
 339	if (dd->flags & AES_FLAGS_DUMP_REG) {
 340		char tmp[16];
 341
 342		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
 343			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 344	}
 345#endif /* VERBOSE_DEBUG */
 346
 347	writel_relaxed(value, dd->io_base + offset);
 348}
 349
 350static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
 351					u32 *value, int count)
 352{
 353	for (; count--; value++, offset += 4)
 354		*value = atmel_aes_read(dd, offset);
 355}
 356
 357static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
 358			      const u32 *value, int count)
 359{
 360	for (; count--; value++, offset += 4)
 361		atmel_aes_write(dd, offset, *value);
 362}
 363
 364static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
 365					u32 *value)
 366{
 367	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 368}
 369
 370static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
 371					 const u32 *value)
 372{
 373	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 374}
 375
 376static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
 377						atmel_aes_fn_t resume)
 378{
 379	u32 isr = atmel_aes_read(dd, AES_ISR);
 380
 381	if (unlikely(isr & AES_INT_DATARDY))
 382		return resume(dd);
 383
 384	dd->resume = resume;
 385	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 386	return -EINPROGRESS;
 387}
 388
 389static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
 390{
 391	len &= block_size - 1;
 392	return len ? block_size - len : 0;
 393}
 394
 395static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
 396{
 397	struct atmel_aes_dev *aes_dd = NULL;
 398	struct atmel_aes_dev *tmp;
 399
 400	spin_lock_bh(&atmel_aes.lock);
 401	if (!ctx->dd) {
 402		list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
 403			aes_dd = tmp;
 404			break;
 405		}
 406		ctx->dd = aes_dd;
 407	} else {
 408		aes_dd = ctx->dd;
 409	}
 410
 411	spin_unlock_bh(&atmel_aes.lock);
 412
 413	return aes_dd;
 414}
 415
 416static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
 417{
 418	int err;
 419
 420	err = clk_enable(dd->iclk);
 421	if (err)
 422		return err;
 423
 424	if (!(dd->flags & AES_FLAGS_INIT)) {
 425		atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
 426		atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
 427		dd->flags |= AES_FLAGS_INIT;
 428	}
 429
 430	return 0;
 431}
 432
 433static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
 434{
 435	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
 436}
 437
 438static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
 439{
 440	int err;
 441
 442	err = atmel_aes_hw_init(dd);
 443	if (err)
 444		return err;
 445
 446	dd->hw_version = atmel_aes_get_version(dd);
 447
 448	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
 449
 450	clk_disable(dd->iclk);
 451	return 0;
 452}
 453
 454static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
 455				      const struct atmel_aes_reqctx *rctx)
 456{
 457	/* Clear all but persistent flags and set request flags. */
 458	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
 459}
 460
 461static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
 462{
 463	return (dd->flags & AES_FLAGS_ENCRYPT);
 464}
 465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
 467{
 
 
 
 
 
 
 
 
 468	clk_disable(dd->iclk);
 469	dd->flags &= ~AES_FLAGS_BUSY;
 470
 
 
 
 
 
 
 
 
 471	if (dd->is_async)
 472		dd->areq->complete(dd->areq, err);
 473
 474	tasklet_schedule(&dd->queue_task);
 475
 476	return err;
 477}
 478
 479static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
 480				     const u32 *iv, const u32 *key, int keylen)
 481{
 482	u32 valmr = 0;
 483
 484	/* MR register must be set before IV registers */
 485	if (keylen == AES_KEYSIZE_128)
 486		valmr |= AES_MR_KEYSIZE_128;
 487	else if (keylen == AES_KEYSIZE_192)
 488		valmr |= AES_MR_KEYSIZE_192;
 489	else
 490		valmr |= AES_MR_KEYSIZE_256;
 491
 492	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
 493
 494	if (use_dma) {
 495		valmr |= AES_MR_SMOD_IDATAR0;
 496		if (dd->caps.has_dualbuff)
 497			valmr |= AES_MR_DUALBUFF;
 498	} else {
 499		valmr |= AES_MR_SMOD_AUTO;
 500	}
 501
 502	atmel_aes_write(dd, AES_MR, valmr);
 503
 504	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
 505
 506	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
 507		atmel_aes_write_block(dd, AES_IVR(0), iv);
 508}
 509
 510static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
 511					const u32 *iv)
 512
 513{
 514	atmel_aes_write_ctrl_key(dd, use_dma, iv,
 515				 dd->ctx->key, dd->ctx->keylen);
 516}
 517
 518/* CPU transfer */
 519
 520static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
 521{
 522	int err = 0;
 523	u32 isr;
 524
 525	for (;;) {
 526		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
 527		dd->data += 4;
 528		dd->datalen -= AES_BLOCK_SIZE;
 529
 530		if (dd->datalen < AES_BLOCK_SIZE)
 531			break;
 532
 533		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 534
 535		isr = atmel_aes_read(dd, AES_ISR);
 536		if (!(isr & AES_INT_DATARDY)) {
 537			dd->resume = atmel_aes_cpu_transfer;
 538			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 539			return -EINPROGRESS;
 540		}
 541	}
 542
 543	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 544				 dd->buf, dd->total))
 545		err = -EINVAL;
 546
 547	if (err)
 548		return atmel_aes_complete(dd, err);
 549
 550	return dd->cpu_transfer_complete(dd);
 551}
 552
 553static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
 554			       struct scatterlist *src,
 555			       struct scatterlist *dst,
 556			       size_t len,
 557			       atmel_aes_fn_t resume)
 558{
 559	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
 560
 561	if (unlikely(len == 0))
 562		return -EINVAL;
 563
 564	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 565
 566	dd->total = len;
 567	dd->real_dst = dst;
 568	dd->cpu_transfer_complete = resume;
 569	dd->datalen = len + padlen;
 570	dd->data = (u32 *)dd->buf;
 571	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 572	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
 573}
 574
 575
 576/* DMA transfer */
 577
 578static void atmel_aes_dma_callback(void *data);
 579
 580static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
 581				    struct scatterlist *sg,
 582				    size_t len,
 583				    struct atmel_aes_dma *dma)
 584{
 585	int nents;
 586
 587	if (!IS_ALIGNED(len, dd->ctx->block_size))
 588		return false;
 589
 590	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
 591		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 592			return false;
 593
 594		if (len <= sg->length) {
 595			if (!IS_ALIGNED(len, dd->ctx->block_size))
 596				return false;
 597
 598			dma->nents = nents+1;
 599			dma->remainder = sg->length - len;
 600			sg->length = len;
 601			return true;
 602		}
 603
 604		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
 605			return false;
 606
 607		len -= sg->length;
 608	}
 609
 610	return false;
 611}
 612
 613static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
 614{
 615	struct scatterlist *sg = dma->sg;
 616	int nents = dma->nents;
 617
 618	if (!dma->remainder)
 619		return;
 620
 621	while (--nents > 0 && sg)
 622		sg = sg_next(sg);
 623
 624	if (!sg)
 625		return;
 626
 627	sg->length += dma->remainder;
 628}
 629
 630static int atmel_aes_map(struct atmel_aes_dev *dd,
 631			 struct scatterlist *src,
 632			 struct scatterlist *dst,
 633			 size_t len)
 634{
 635	bool src_aligned, dst_aligned;
 636	size_t padlen;
 637
 638	dd->total = len;
 639	dd->src.sg = src;
 640	dd->dst.sg = dst;
 641	dd->real_dst = dst;
 642
 643	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
 644	if (src == dst)
 645		dst_aligned = src_aligned;
 646	else
 647		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
 648	if (!src_aligned || !dst_aligned) {
 649		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
 650
 651		if (dd->buflen < len + padlen)
 652			return -ENOMEM;
 653
 654		if (!src_aligned) {
 655			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 656			dd->src.sg = &dd->aligned_sg;
 657			dd->src.nents = 1;
 658			dd->src.remainder = 0;
 659		}
 660
 661		if (!dst_aligned) {
 662			dd->dst.sg = &dd->aligned_sg;
 663			dd->dst.nents = 1;
 664			dd->dst.remainder = 0;
 665		}
 666
 667		sg_init_table(&dd->aligned_sg, 1);
 668		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
 669	}
 670
 671	if (dd->src.sg == dd->dst.sg) {
 672		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 673					    DMA_BIDIRECTIONAL);
 674		dd->dst.sg_len = dd->src.sg_len;
 675		if (!dd->src.sg_len)
 676			return -EFAULT;
 677	} else {
 678		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 679					    DMA_TO_DEVICE);
 680		if (!dd->src.sg_len)
 681			return -EFAULT;
 682
 683		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 684					    DMA_FROM_DEVICE);
 685		if (!dd->dst.sg_len) {
 686			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 687				     DMA_TO_DEVICE);
 688			return -EFAULT;
 689		}
 690	}
 691
 692	return 0;
 693}
 694
 695static void atmel_aes_unmap(struct atmel_aes_dev *dd)
 696{
 697	if (dd->src.sg == dd->dst.sg) {
 698		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 699			     DMA_BIDIRECTIONAL);
 700
 701		if (dd->src.sg != &dd->aligned_sg)
 702			atmel_aes_restore_sg(&dd->src);
 703	} else {
 704		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 705			     DMA_FROM_DEVICE);
 706
 707		if (dd->dst.sg != &dd->aligned_sg)
 708			atmel_aes_restore_sg(&dd->dst);
 709
 710		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 711			     DMA_TO_DEVICE);
 712
 713		if (dd->src.sg != &dd->aligned_sg)
 714			atmel_aes_restore_sg(&dd->src);
 715	}
 716
 717	if (dd->dst.sg == &dd->aligned_sg)
 718		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 719				    dd->buf, dd->total);
 720}
 721
 722static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
 723					enum dma_slave_buswidth addr_width,
 724					enum dma_transfer_direction dir,
 725					u32 maxburst)
 726{
 727	struct dma_async_tx_descriptor *desc;
 728	struct dma_slave_config config;
 729	dma_async_tx_callback callback;
 730	struct atmel_aes_dma *dma;
 731	int err;
 732
 733	memset(&config, 0, sizeof(config));
 734	config.direction = dir;
 735	config.src_addr_width = addr_width;
 736	config.dst_addr_width = addr_width;
 737	config.src_maxburst = maxburst;
 738	config.dst_maxburst = maxburst;
 739
 740	switch (dir) {
 741	case DMA_MEM_TO_DEV:
 742		dma = &dd->src;
 743		callback = NULL;
 744		config.dst_addr = dd->phys_base + AES_IDATAR(0);
 745		break;
 746
 747	case DMA_DEV_TO_MEM:
 748		dma = &dd->dst;
 749		callback = atmel_aes_dma_callback;
 750		config.src_addr = dd->phys_base + AES_ODATAR(0);
 751		break;
 752
 753	default:
 754		return -EINVAL;
 755	}
 756
 757	err = dmaengine_slave_config(dma->chan, &config);
 758	if (err)
 759		return err;
 760
 761	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
 762				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 763	if (!desc)
 764		return -ENOMEM;
 765
 766	desc->callback = callback;
 767	desc->callback_param = dd;
 768	dmaengine_submit(desc);
 769	dma_async_issue_pending(dma->chan);
 770
 771	return 0;
 772}
 773
 774static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
 775					enum dma_transfer_direction dir)
 776{
 777	struct atmel_aes_dma *dma;
 778
 779	switch (dir) {
 780	case DMA_MEM_TO_DEV:
 781		dma = &dd->src;
 782		break;
 783
 784	case DMA_DEV_TO_MEM:
 785		dma = &dd->dst;
 786		break;
 787
 788	default:
 789		return;
 790	}
 791
 792	dmaengine_terminate_all(dma->chan);
 793}
 794
 795static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
 796			       struct scatterlist *src,
 797			       struct scatterlist *dst,
 798			       size_t len,
 799			       atmel_aes_fn_t resume)
 800{
 801	enum dma_slave_buswidth addr_width;
 802	u32 maxburst;
 803	int err;
 804
 805	switch (dd->ctx->block_size) {
 806	case CFB8_BLOCK_SIZE:
 807		addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 808		maxburst = 1;
 809		break;
 810
 811	case CFB16_BLOCK_SIZE:
 812		addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 813		maxburst = 1;
 814		break;
 815
 816	case CFB32_BLOCK_SIZE:
 817	case CFB64_BLOCK_SIZE:
 818		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 819		maxburst = 1;
 820		break;
 821
 822	case AES_BLOCK_SIZE:
 823		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 824		maxburst = dd->caps.max_burst_size;
 825		break;
 826
 827	default:
 828		err = -EINVAL;
 829		goto exit;
 830	}
 831
 832	err = atmel_aes_map(dd, src, dst, len);
 833	if (err)
 834		goto exit;
 835
 836	dd->resume = resume;
 837
 838	/* Set output DMA transfer first */
 839	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
 840					   maxburst);
 841	if (err)
 842		goto unmap;
 843
 844	/* Then set input DMA transfer */
 845	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
 846					   maxburst);
 847	if (err)
 848		goto output_transfer_stop;
 849
 850	return -EINPROGRESS;
 851
 852output_transfer_stop:
 853	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
 854unmap:
 855	atmel_aes_unmap(dd);
 856exit:
 857	return atmel_aes_complete(dd, err);
 858}
 859
 860static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
 861{
 862	atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
 863	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
 864	atmel_aes_unmap(dd);
 865}
 866
 867static void atmel_aes_dma_callback(void *data)
 868{
 869	struct atmel_aes_dev *dd = data;
 870
 871	atmel_aes_dma_stop(dd);
 872	dd->is_async = true;
 873	(void)dd->resume(dd);
 874}
 875
 876static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
 877				  struct crypto_async_request *new_areq)
 878{
 879	struct crypto_async_request *areq, *backlog;
 880	struct atmel_aes_base_ctx *ctx;
 881	unsigned long flags;
 
 882	int err, ret = 0;
 883
 884	spin_lock_irqsave(&dd->lock, flags);
 885	if (new_areq)
 886		ret = crypto_enqueue_request(&dd->queue, new_areq);
 887	if (dd->flags & AES_FLAGS_BUSY) {
 888		spin_unlock_irqrestore(&dd->lock, flags);
 889		return ret;
 890	}
 891	backlog = crypto_get_backlog(&dd->queue);
 892	areq = crypto_dequeue_request(&dd->queue);
 893	if (areq)
 894		dd->flags |= AES_FLAGS_BUSY;
 895	spin_unlock_irqrestore(&dd->lock, flags);
 896
 897	if (!areq)
 898		return ret;
 899
 900	if (backlog)
 901		backlog->complete(backlog, -EINPROGRESS);
 902
 903	ctx = crypto_tfm_ctx(areq->tfm);
 904
 905	dd->areq = areq;
 906	dd->ctx = ctx;
 907	dd->is_async = (areq != new_areq);
 
 908
 
 909	err = ctx->start(dd);
 910	return (dd->is_async) ? ret : err;
 911}
 912
 913
 914/* AES async block ciphers */
 915
 916static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
 917{
 918	return atmel_aes_complete(dd, 0);
 919}
 920
 921static int atmel_aes_start(struct atmel_aes_dev *dd)
 922{
 923	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
 924	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
 925	bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
 926			dd->ctx->block_size != AES_BLOCK_SIZE);
 927	int err;
 928
 929	atmel_aes_set_mode(dd, rctx);
 930
 931	err = atmel_aes_hw_init(dd);
 932	if (err)
 933		return atmel_aes_complete(dd, err);
 934
 935	atmel_aes_write_ctrl(dd, use_dma, req->info);
 936	if (use_dma)
 937		return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
 
 938					   atmel_aes_transfer_complete);
 939
 940	return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
 941				   atmel_aes_transfer_complete);
 942}
 943
 944static inline struct atmel_aes_ctr_ctx *
 945atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
 946{
 947	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
 948}
 949
 950static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
 951{
 952	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
 953	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
 954	struct scatterlist *src, *dst;
 955	u32 ctr, blocks;
 956	size_t datalen;
 
 
 957	bool use_dma, fragmented = false;
 958
 959	/* Check for transfer completion. */
 960	ctx->offset += dd->total;
 961	if (ctx->offset >= req->nbytes)
 962		return atmel_aes_transfer_complete(dd);
 963
 964	/* Compute data length. */
 965	datalen = req->nbytes - ctx->offset;
 966	blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
 967	ctr = be32_to_cpu(ctx->iv[3]);
 968	if (dd->caps.has_ctr32) {
 969		/* Check 32bit counter overflow. */
 970		u32 start = ctr;
 971		u32 end = start + blocks - 1;
 972
 973		if (end < start) {
 974			ctr |= 0xffffffff;
 975			datalen = AES_BLOCK_SIZE * -start;
 976			fragmented = true;
 977		}
 978	} else {
 979		/* Check 16bit counter overflow. */
 980		u16 start = ctr & 0xffff;
 981		u16 end = start + (u16)blocks - 1;
 982
 983		if (blocks >> 16 || end < start) {
 984			ctr |= 0xffff;
 985			datalen = AES_BLOCK_SIZE * (0x10000-start);
 986			fragmented = true;
 987		}
 988	}
 
 989	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
 990
 991	/* Jump to offset. */
 992	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
 993	dst = ((req->src == req->dst) ? src :
 994	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
 995
 996	/* Configure hardware. */
 997	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
 998	if (unlikely(fragmented)) {
 999		/*
1000		 * Increment the counter manually to cope with the hardware
1001		 * counter overflow.
1002		 */
1003		ctx->iv[3] = cpu_to_be32(ctr);
1004		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1005	}
1006
1007	if (use_dma)
1008		return atmel_aes_dma_start(dd, src, dst, datalen,
1009					   atmel_aes_ctr_transfer);
1010
1011	return atmel_aes_cpu_start(dd, src, dst, datalen,
1012				   atmel_aes_ctr_transfer);
1013}
1014
1015static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1016{
1017	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1018	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1019	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1020	int err;
1021
1022	atmel_aes_set_mode(dd, rctx);
1023
1024	err = atmel_aes_hw_init(dd);
1025	if (err)
1026		return atmel_aes_complete(dd, err);
1027
1028	memcpy(ctx->iv, req->info, AES_BLOCK_SIZE);
1029	ctx->offset = 0;
1030	dd->total = 0;
1031	return atmel_aes_ctr_transfer(dd);
1032}
1033
1034static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
1035{
1036	struct atmel_aes_base_ctx *ctx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1037	struct atmel_aes_reqctx *rctx;
1038	struct atmel_aes_dev *dd;
1039
1040	ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
1041	switch (mode & AES_FLAGS_OPMODE_MASK) {
1042	case AES_FLAGS_CFB8:
1043		ctx->block_size = CFB8_BLOCK_SIZE;
1044		break;
 
 
 
1045
1046	case AES_FLAGS_CFB16:
1047		ctx->block_size = CFB16_BLOCK_SIZE;
1048		break;
 
 
 
1049
1050	case AES_FLAGS_CFB32:
1051		ctx->block_size = CFB32_BLOCK_SIZE;
1052		break;
1053
1054	case AES_FLAGS_CFB64:
1055		ctx->block_size = CFB64_BLOCK_SIZE;
1056		break;
1057
1058	default:
1059		ctx->block_size = AES_BLOCK_SIZE;
1060		break;
1061	}
1062
1063	dd = atmel_aes_find_dev(ctx);
1064	if (!dd)
1065		return -ENODEV;
1066
1067	rctx = ablkcipher_request_ctx(req);
1068	rctx->mode = mode;
 
 
 
1069
1070	return atmel_aes_handle_queue(dd, &req->base);
1071}
1072
1073static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1074			   unsigned int keylen)
1075{
1076	struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1077
1078	if (keylen != AES_KEYSIZE_128 &&
1079	    keylen != AES_KEYSIZE_192 &&
1080	    keylen != AES_KEYSIZE_256) {
1081		crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1082		return -EINVAL;
1083	}
1084
1085	memcpy(ctx->key, key, keylen);
1086	ctx->keylen = keylen;
1087
1088	return 0;
1089}
1090
1091static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
1092{
1093	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1094}
1095
1096static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
1097{
1098	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1099}
1100
1101static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
1102{
1103	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1104}
1105
1106static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
1107{
1108	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1109}
1110
1111static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
1112{
1113	return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1114}
1115
1116static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
1117{
1118	return atmel_aes_crypt(req, AES_FLAGS_OFB);
1119}
1120
1121static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
1122{
1123	return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1124}
1125
1126static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
1127{
1128	return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1129}
1130
1131static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
1132{
1133	return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1134}
1135
1136static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
1137{
1138	return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1139}
1140
1141static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
1142{
1143	return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1144}
1145
1146static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
1147{
1148	return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1149}
1150
1151static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
1152{
1153	return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1154}
1155
1156static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
1157{
1158	return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1159}
1160
1161static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
1162{
1163	return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1164}
1165
1166static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
1167{
1168	return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1169}
1170
1171static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
1172{
1173	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1174}
1175
1176static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
1177{
1178	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1179}
1180
1181static int atmel_aes_cra_init(struct crypto_tfm *tfm)
1182{
1183	struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
 
1184
1185	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
 
 
 
 
 
1186	ctx->base.start = atmel_aes_start;
1187
1188	return 0;
1189}
1190
1191static int atmel_aes_ctr_cra_init(struct crypto_tfm *tfm)
1192{
1193	struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
 
 
 
 
 
1194
1195	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
 
1196	ctx->base.start = atmel_aes_ctr_start;
1197
1198	return 0;
1199}
1200
1201static void atmel_aes_cra_exit(struct crypto_tfm *tfm)
1202{
1203}
1204
1205static struct crypto_alg aes_algs[] = {
1206{
1207	.cra_name		= "ecb(aes)",
1208	.cra_driver_name	= "atmel-ecb-aes",
1209	.cra_priority		= ATMEL_AES_PRIORITY,
1210	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1211	.cra_blocksize		= AES_BLOCK_SIZE,
1212	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1213	.cra_alignmask		= 0xf,
1214	.cra_type		= &crypto_ablkcipher_type,
1215	.cra_module		= THIS_MODULE,
1216	.cra_init		= atmel_aes_cra_init,
1217	.cra_exit		= atmel_aes_cra_exit,
1218	.cra_u.ablkcipher = {
1219		.min_keysize	= AES_MIN_KEY_SIZE,
1220		.max_keysize	= AES_MAX_KEY_SIZE,
1221		.setkey		= atmel_aes_setkey,
1222		.encrypt	= atmel_aes_ecb_encrypt,
1223		.decrypt	= atmel_aes_ecb_decrypt,
1224	}
1225},
1226{
1227	.cra_name		= "cbc(aes)",
1228	.cra_driver_name	= "atmel-cbc-aes",
1229	.cra_priority		= ATMEL_AES_PRIORITY,
1230	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1231	.cra_blocksize		= AES_BLOCK_SIZE,
1232	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1233	.cra_alignmask		= 0xf,
1234	.cra_type		= &crypto_ablkcipher_type,
1235	.cra_module		= THIS_MODULE,
1236	.cra_init		= atmel_aes_cra_init,
1237	.cra_exit		= atmel_aes_cra_exit,
1238	.cra_u.ablkcipher = {
1239		.min_keysize	= AES_MIN_KEY_SIZE,
1240		.max_keysize	= AES_MAX_KEY_SIZE,
1241		.ivsize		= AES_BLOCK_SIZE,
1242		.setkey		= atmel_aes_setkey,
1243		.encrypt	= atmel_aes_cbc_encrypt,
1244		.decrypt	= atmel_aes_cbc_decrypt,
1245	}
1246},
1247{
1248	.cra_name		= "ofb(aes)",
1249	.cra_driver_name	= "atmel-ofb-aes",
1250	.cra_priority		= ATMEL_AES_PRIORITY,
1251	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1252	.cra_blocksize		= AES_BLOCK_SIZE,
1253	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1254	.cra_alignmask		= 0xf,
1255	.cra_type		= &crypto_ablkcipher_type,
1256	.cra_module		= THIS_MODULE,
1257	.cra_init		= atmel_aes_cra_init,
1258	.cra_exit		= atmel_aes_cra_exit,
1259	.cra_u.ablkcipher = {
1260		.min_keysize	= AES_MIN_KEY_SIZE,
1261		.max_keysize	= AES_MAX_KEY_SIZE,
1262		.ivsize		= AES_BLOCK_SIZE,
1263		.setkey		= atmel_aes_setkey,
1264		.encrypt	= atmel_aes_ofb_encrypt,
1265		.decrypt	= atmel_aes_ofb_decrypt,
1266	}
1267},
1268{
1269	.cra_name		= "cfb(aes)",
1270	.cra_driver_name	= "atmel-cfb-aes",
1271	.cra_priority		= ATMEL_AES_PRIORITY,
1272	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1273	.cra_blocksize		= AES_BLOCK_SIZE,
1274	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1275	.cra_alignmask		= 0xf,
1276	.cra_type		= &crypto_ablkcipher_type,
1277	.cra_module		= THIS_MODULE,
1278	.cra_init		= atmel_aes_cra_init,
1279	.cra_exit		= atmel_aes_cra_exit,
1280	.cra_u.ablkcipher = {
1281		.min_keysize	= AES_MIN_KEY_SIZE,
1282		.max_keysize	= AES_MAX_KEY_SIZE,
1283		.ivsize		= AES_BLOCK_SIZE,
1284		.setkey		= atmel_aes_setkey,
1285		.encrypt	= atmel_aes_cfb_encrypt,
1286		.decrypt	= atmel_aes_cfb_decrypt,
1287	}
1288},
1289{
1290	.cra_name		= "cfb32(aes)",
1291	.cra_driver_name	= "atmel-cfb32-aes",
1292	.cra_priority		= ATMEL_AES_PRIORITY,
1293	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1294	.cra_blocksize		= CFB32_BLOCK_SIZE,
1295	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1296	.cra_alignmask		= 0x3,
1297	.cra_type		= &crypto_ablkcipher_type,
1298	.cra_module		= THIS_MODULE,
1299	.cra_init		= atmel_aes_cra_init,
1300	.cra_exit		= atmel_aes_cra_exit,
1301	.cra_u.ablkcipher = {
1302		.min_keysize	= AES_MIN_KEY_SIZE,
1303		.max_keysize	= AES_MAX_KEY_SIZE,
1304		.ivsize		= AES_BLOCK_SIZE,
1305		.setkey		= atmel_aes_setkey,
1306		.encrypt	= atmel_aes_cfb32_encrypt,
1307		.decrypt	= atmel_aes_cfb32_decrypt,
1308	}
1309},
1310{
1311	.cra_name		= "cfb16(aes)",
1312	.cra_driver_name	= "atmel-cfb16-aes",
1313	.cra_priority		= ATMEL_AES_PRIORITY,
1314	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1315	.cra_blocksize		= CFB16_BLOCK_SIZE,
1316	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1317	.cra_alignmask		= 0x1,
1318	.cra_type		= &crypto_ablkcipher_type,
1319	.cra_module		= THIS_MODULE,
1320	.cra_init		= atmel_aes_cra_init,
1321	.cra_exit		= atmel_aes_cra_exit,
1322	.cra_u.ablkcipher = {
1323		.min_keysize	= AES_MIN_KEY_SIZE,
1324		.max_keysize	= AES_MAX_KEY_SIZE,
1325		.ivsize		= AES_BLOCK_SIZE,
1326		.setkey		= atmel_aes_setkey,
1327		.encrypt	= atmel_aes_cfb16_encrypt,
1328		.decrypt	= atmel_aes_cfb16_decrypt,
1329	}
1330},
1331{
1332	.cra_name		= "cfb8(aes)",
1333	.cra_driver_name	= "atmel-cfb8-aes",
1334	.cra_priority		= ATMEL_AES_PRIORITY,
1335	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1336	.cra_blocksize		= CFB8_BLOCK_SIZE,
1337	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1338	.cra_alignmask		= 0x0,
1339	.cra_type		= &crypto_ablkcipher_type,
1340	.cra_module		= THIS_MODULE,
1341	.cra_init		= atmel_aes_cra_init,
1342	.cra_exit		= atmel_aes_cra_exit,
1343	.cra_u.ablkcipher = {
1344		.min_keysize	= AES_MIN_KEY_SIZE,
1345		.max_keysize	= AES_MAX_KEY_SIZE,
1346		.ivsize		= AES_BLOCK_SIZE,
1347		.setkey		= atmel_aes_setkey,
1348		.encrypt	= atmel_aes_cfb8_encrypt,
1349		.decrypt	= atmel_aes_cfb8_decrypt,
1350	}
1351},
1352{
1353	.cra_name		= "ctr(aes)",
1354	.cra_driver_name	= "atmel-ctr-aes",
1355	.cra_priority		= ATMEL_AES_PRIORITY,
1356	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1357	.cra_blocksize		= 1,
1358	.cra_ctxsize		= sizeof(struct atmel_aes_ctr_ctx),
1359	.cra_alignmask		= 0xf,
1360	.cra_type		= &crypto_ablkcipher_type,
1361	.cra_module		= THIS_MODULE,
1362	.cra_init		= atmel_aes_ctr_cra_init,
1363	.cra_exit		= atmel_aes_cra_exit,
1364	.cra_u.ablkcipher = {
1365		.min_keysize	= AES_MIN_KEY_SIZE,
1366		.max_keysize	= AES_MAX_KEY_SIZE,
1367		.ivsize		= AES_BLOCK_SIZE,
1368		.setkey		= atmel_aes_setkey,
1369		.encrypt	= atmel_aes_ctr_encrypt,
1370		.decrypt	= atmel_aes_ctr_decrypt,
1371	}
1372},
1373};
1374
1375static struct crypto_alg aes_cfb64_alg = {
1376	.cra_name		= "cfb64(aes)",
1377	.cra_driver_name	= "atmel-cfb64-aes",
1378	.cra_priority		= ATMEL_AES_PRIORITY,
1379	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1380	.cra_blocksize		= CFB64_BLOCK_SIZE,
1381	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1382	.cra_alignmask		= 0x7,
1383	.cra_type		= &crypto_ablkcipher_type,
1384	.cra_module		= THIS_MODULE,
1385	.cra_init		= atmel_aes_cra_init,
1386	.cra_exit		= atmel_aes_cra_exit,
1387	.cra_u.ablkcipher = {
1388		.min_keysize	= AES_MIN_KEY_SIZE,
1389		.max_keysize	= AES_MAX_KEY_SIZE,
1390		.ivsize		= AES_BLOCK_SIZE,
1391		.setkey		= atmel_aes_setkey,
1392		.encrypt	= atmel_aes_cfb64_encrypt,
1393		.decrypt	= atmel_aes_cfb64_decrypt,
1394	}
1395};
1396
1397
1398/* gcm aead functions */
1399
1400static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1401			       const u32 *data, size_t datalen,
1402			       const u32 *ghash_in, u32 *ghash_out,
1403			       atmel_aes_fn_t resume);
1404static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1405static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1406
1407static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1408static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1409static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1410static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1411static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1412static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1413static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1414
1415static inline struct atmel_aes_gcm_ctx *
1416atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1417{
1418	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1419}
1420
1421static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1422			       const u32 *data, size_t datalen,
1423			       const u32 *ghash_in, u32 *ghash_out,
1424			       atmel_aes_fn_t resume)
1425{
1426	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1427
1428	dd->data = (u32 *)data;
1429	dd->datalen = datalen;
1430	ctx->ghash_in = ghash_in;
1431	ctx->ghash_out = ghash_out;
1432	ctx->ghash_resume = resume;
1433
1434	atmel_aes_write_ctrl(dd, false, NULL);
1435	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1436}
1437
1438static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1439{
1440	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1441
1442	/* Set the data length. */
1443	atmel_aes_write(dd, AES_AADLENR, dd->total);
1444	atmel_aes_write(dd, AES_CLENR, 0);
1445
1446	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1447	if (ctx->ghash_in)
1448		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1449
1450	return atmel_aes_gcm_ghash_finalize(dd);
1451}
1452
1453static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1454{
1455	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1456	u32 isr;
1457
1458	/* Write data into the Input Data Registers. */
1459	while (dd->datalen > 0) {
1460		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1461		dd->data += 4;
1462		dd->datalen -= AES_BLOCK_SIZE;
1463
1464		isr = atmel_aes_read(dd, AES_ISR);
1465		if (!(isr & AES_INT_DATARDY)) {
1466			dd->resume = atmel_aes_gcm_ghash_finalize;
1467			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1468			return -EINPROGRESS;
1469		}
1470	}
1471
1472	/* Read the computed hash from GHASHRx. */
1473	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1474
1475	return ctx->ghash_resume(dd);
1476}
1477
1478
1479static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1480{
1481	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1482	struct aead_request *req = aead_request_cast(dd->areq);
1483	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1484	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1485	size_t ivsize = crypto_aead_ivsize(tfm);
1486	size_t datalen, padlen;
1487	const void *iv = req->iv;
1488	u8 *data = dd->buf;
1489	int err;
1490
1491	atmel_aes_set_mode(dd, rctx);
1492
1493	err = atmel_aes_hw_init(dd);
1494	if (err)
1495		return atmel_aes_complete(dd, err);
1496
1497	if (likely(ivsize == 12)) {
1498		memcpy(ctx->j0, iv, ivsize);
1499		ctx->j0[3] = cpu_to_be32(1);
1500		return atmel_aes_gcm_process(dd);
1501	}
1502
1503	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1504	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1505	if (datalen > dd->buflen)
1506		return atmel_aes_complete(dd, -EINVAL);
1507
1508	memcpy(data, iv, ivsize);
1509	memset(data + ivsize, 0, padlen + sizeof(u64));
1510	((u64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1511
1512	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1513				   NULL, ctx->j0, atmel_aes_gcm_process);
1514}
1515
1516static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1517{
1518	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1519	struct aead_request *req = aead_request_cast(dd->areq);
1520	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1521	bool enc = atmel_aes_is_encrypt(dd);
1522	u32 authsize;
1523
1524	/* Compute text length. */
1525	authsize = crypto_aead_authsize(tfm);
1526	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1527
1528	/*
1529	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1530	 * fails when both the message and its associated data are empty.
1531	 */
1532	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1533		dd->flags |= AES_FLAGS_GTAGEN;
1534
1535	atmel_aes_write_ctrl(dd, false, NULL);
1536	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1537}
1538
1539static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1540{
1541	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1542	struct aead_request *req = aead_request_cast(dd->areq);
1543	u32 j0_lsw, *j0 = ctx->j0;
1544	size_t padlen;
1545
1546	/* Write incr32(J0) into IV. */
1547	j0_lsw = j0[3];
1548	j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1549	atmel_aes_write_block(dd, AES_IVR(0), j0);
1550	j0[3] = j0_lsw;
1551
1552	/* Set aad and text lengths. */
1553	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1554	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1555
1556	/* Check whether AAD are present. */
1557	if (unlikely(req->assoclen == 0)) {
1558		dd->datalen = 0;
1559		return atmel_aes_gcm_data(dd);
1560	}
1561
1562	/* Copy assoc data and add padding. */
1563	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1564	if (unlikely(req->assoclen + padlen > dd->buflen))
1565		return atmel_aes_complete(dd, -EINVAL);
1566	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1567
1568	/* Write assoc data into the Input Data register. */
1569	dd->data = (u32 *)dd->buf;
1570	dd->datalen = req->assoclen + padlen;
1571	return atmel_aes_gcm_data(dd);
1572}
1573
1574static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1575{
1576	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1577	struct aead_request *req = aead_request_cast(dd->areq);
1578	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1579	struct scatterlist *src, *dst;
1580	u32 isr, mr;
1581
1582	/* Write AAD first. */
1583	while (dd->datalen > 0) {
1584		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1585		dd->data += 4;
1586		dd->datalen -= AES_BLOCK_SIZE;
1587
1588		isr = atmel_aes_read(dd, AES_ISR);
1589		if (!(isr & AES_INT_DATARDY)) {
1590			dd->resume = atmel_aes_gcm_data;
1591			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1592			return -EINPROGRESS;
1593		}
1594	}
1595
1596	/* GMAC only. */
1597	if (unlikely(ctx->textlen == 0))
1598		return atmel_aes_gcm_tag_init(dd);
1599
1600	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1601	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1602	dst = ((req->src == req->dst) ? src :
1603	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1604
1605	if (use_dma) {
1606		/* Update the Mode Register for DMA transfers. */
1607		mr = atmel_aes_read(dd, AES_MR);
1608		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1609		mr |= AES_MR_SMOD_IDATAR0;
1610		if (dd->caps.has_dualbuff)
1611			mr |= AES_MR_DUALBUFF;
1612		atmel_aes_write(dd, AES_MR, mr);
1613
1614		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1615					   atmel_aes_gcm_tag_init);
1616	}
1617
1618	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1619				   atmel_aes_gcm_tag_init);
1620}
1621
1622static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1623{
1624	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1625	struct aead_request *req = aead_request_cast(dd->areq);
1626	u64 *data = dd->buf;
1627
1628	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1629		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1630			dd->resume = atmel_aes_gcm_tag_init;
1631			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1632			return -EINPROGRESS;
1633		}
1634
1635		return atmel_aes_gcm_finalize(dd);
1636	}
1637
1638	/* Read the GCM Intermediate Hash Word Registers. */
1639	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1640
1641	data[0] = cpu_to_be64(req->assoclen * 8);
1642	data[1] = cpu_to_be64(ctx->textlen * 8);
1643
1644	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1645				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1646}
1647
1648static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1649{
1650	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1651	unsigned long flags;
1652
1653	/*
1654	 * Change mode to CTR to complete the tag generation.
1655	 * Use J0 as Initialization Vector.
1656	 */
1657	flags = dd->flags;
1658	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1659	dd->flags |= AES_FLAGS_CTR;
1660	atmel_aes_write_ctrl(dd, false, ctx->j0);
1661	dd->flags = flags;
1662
1663	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1664	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1665}
1666
1667static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1668{
1669	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1670	struct aead_request *req = aead_request_cast(dd->areq);
1671	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1672	bool enc = atmel_aes_is_encrypt(dd);
1673	u32 offset, authsize, itag[4], *otag = ctx->tag;
1674	int err;
1675
1676	/* Read the computed tag. */
1677	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1678		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1679	else
1680		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1681
1682	offset = req->assoclen + ctx->textlen;
1683	authsize = crypto_aead_authsize(tfm);
1684	if (enc) {
1685		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1686		err = 0;
1687	} else {
1688		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1689		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1690	}
1691
1692	return atmel_aes_complete(dd, err);
1693}
1694
1695static int atmel_aes_gcm_crypt(struct aead_request *req,
1696			       unsigned long mode)
1697{
1698	struct atmel_aes_base_ctx *ctx;
1699	struct atmel_aes_reqctx *rctx;
1700	struct atmel_aes_dev *dd;
1701
1702	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1703	ctx->block_size = AES_BLOCK_SIZE;
1704
1705	dd = atmel_aes_find_dev(ctx);
1706	if (!dd)
1707		return -ENODEV;
1708
1709	rctx = aead_request_ctx(req);
1710	rctx->mode = AES_FLAGS_GCM | mode;
1711
1712	return atmel_aes_handle_queue(dd, &req->base);
1713}
1714
1715static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1716				unsigned int keylen)
1717{
1718	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1719
1720	if (keylen != AES_KEYSIZE_256 &&
1721	    keylen != AES_KEYSIZE_192 &&
1722	    keylen != AES_KEYSIZE_128) {
1723		crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1724		return -EINVAL;
1725	}
1726
1727	memcpy(ctx->key, key, keylen);
1728	ctx->keylen = keylen;
1729
1730	return 0;
1731}
1732
1733static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1734				     unsigned int authsize)
1735{
1736	/* Same as crypto_gcm_authsize() from crypto/gcm.c */
1737	switch (authsize) {
1738	case 4:
1739	case 8:
1740	case 12:
1741	case 13:
1742	case 14:
1743	case 15:
1744	case 16:
1745		break;
1746	default:
1747		return -EINVAL;
1748	}
1749
1750	return 0;
1751}
1752
1753static int atmel_aes_gcm_encrypt(struct aead_request *req)
1754{
1755	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1756}
1757
1758static int atmel_aes_gcm_decrypt(struct aead_request *req)
1759{
1760	return atmel_aes_gcm_crypt(req, 0);
1761}
1762
1763static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1764{
1765	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
 
 
 
 
 
1766
1767	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
 
1768	ctx->base.start = atmel_aes_gcm_start;
1769
1770	return 0;
1771}
1772
1773static void atmel_aes_gcm_exit(struct crypto_aead *tfm)
1774{
1775
1776}
1777
1778static struct aead_alg aes_gcm_alg = {
1779	.setkey		= atmel_aes_gcm_setkey,
1780	.setauthsize	= atmel_aes_gcm_setauthsize,
1781	.encrypt	= atmel_aes_gcm_encrypt,
1782	.decrypt	= atmel_aes_gcm_decrypt,
1783	.init		= atmel_aes_gcm_init,
1784	.exit		= atmel_aes_gcm_exit,
1785	.ivsize		= 12,
1786	.maxauthsize	= AES_BLOCK_SIZE,
1787
1788	.base = {
1789		.cra_name		= "gcm(aes)",
1790		.cra_driver_name	= "atmel-gcm-aes",
1791		.cra_priority		= ATMEL_AES_PRIORITY,
1792		.cra_flags		= CRYPTO_ALG_ASYNC,
1793		.cra_blocksize		= 1,
1794		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
1795		.cra_alignmask		= 0xf,
1796		.cra_module		= THIS_MODULE,
1797	},
1798};
1799
1800
1801/* xts functions */
1802
1803static inline struct atmel_aes_xts_ctx *
1804atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1805{
1806	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1807}
1808
1809static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1810
1811static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1812{
1813	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1814	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1815	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1816	unsigned long flags;
1817	int err;
1818
1819	atmel_aes_set_mode(dd, rctx);
1820
1821	err = atmel_aes_hw_init(dd);
1822	if (err)
1823		return atmel_aes_complete(dd, err);
1824
1825	/* Compute the tweak value from req->info with ecb(aes). */
1826	flags = dd->flags;
1827	dd->flags &= ~AES_FLAGS_MODE_MASK;
1828	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1829	atmel_aes_write_ctrl_key(dd, false, NULL,
1830				 ctx->key2, ctx->base.keylen);
1831	dd->flags = flags;
1832
1833	atmel_aes_write_block(dd, AES_IDATAR(0), req->info);
1834	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1835}
1836
1837static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1838{
1839	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1840	bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD);
1841	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1842	static const u32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1843	u8 *tweak_bytes = (u8 *)tweak;
1844	int i;
1845
1846	/* Read the computed ciphered tweak value. */
1847	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1848	/*
1849	 * Hardware quirk:
1850	 * the order of the ciphered tweak bytes need to be reversed before
1851	 * writing them into the ODATARx registers.
1852	 */
1853	for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
1854		u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
1855
1856		tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
1857		tweak_bytes[i] = tmp;
1858	}
1859
1860	/* Process the data. */
1861	atmel_aes_write_ctrl(dd, use_dma, NULL);
1862	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1863	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1864	if (use_dma)
1865		return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
 
1866					   atmel_aes_transfer_complete);
1867
1868	return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
1869				   atmel_aes_transfer_complete);
1870}
1871
1872static int atmel_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1873				unsigned int keylen)
1874{
1875	struct atmel_aes_xts_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1876	int err;
1877
1878	err = xts_check_key(crypto_ablkcipher_tfm(tfm), key, keylen);
 
 
 
 
 
 
 
1879	if (err)
1880		return err;
1881
1882	memcpy(ctx->base.key, key, keylen/2);
1883	memcpy(ctx->key2, key + keylen/2, keylen/2);
1884	ctx->base.keylen = keylen/2;
1885
1886	return 0;
1887}
1888
1889static int atmel_aes_xts_encrypt(struct ablkcipher_request *req)
1890{
1891	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1892}
1893
1894static int atmel_aes_xts_decrypt(struct ablkcipher_request *req)
1895{
1896	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1897}
1898
1899static int atmel_aes_xts_cra_init(struct crypto_tfm *tfm)
1900{
1901	struct atmel_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm);
 
 
1902
1903	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
 
 
 
 
 
 
 
 
 
 
 
1904	ctx->base.start = atmel_aes_xts_start;
1905
1906	return 0;
1907}
1908
1909static struct crypto_alg aes_xts_alg = {
1910	.cra_name		= "xts(aes)",
1911	.cra_driver_name	= "atmel-xts-aes",
1912	.cra_priority		= ATMEL_AES_PRIORITY,
1913	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1914	.cra_blocksize		= AES_BLOCK_SIZE,
1915	.cra_ctxsize		= sizeof(struct atmel_aes_xts_ctx),
1916	.cra_alignmask		= 0xf,
1917	.cra_type		= &crypto_ablkcipher_type,
1918	.cra_module		= THIS_MODULE,
1919	.cra_init		= atmel_aes_xts_cra_init,
1920	.cra_exit		= atmel_aes_cra_exit,
1921	.cra_u.ablkcipher = {
1922		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1923		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1924		.ivsize		= AES_BLOCK_SIZE,
1925		.setkey		= atmel_aes_xts_setkey,
1926		.encrypt	= atmel_aes_xts_encrypt,
1927		.decrypt	= atmel_aes_xts_decrypt,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1928	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1929};
1930
1931
1932/* Probe functions */
1933
1934static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
1935{
1936	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
1937	dd->buflen = ATMEL_AES_BUFFER_SIZE;
1938	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
1939
1940	if (!dd->buf) {
1941		dev_err(dd->dev, "unable to alloc pages.\n");
1942		return -ENOMEM;
1943	}
1944
1945	return 0;
1946}
1947
1948static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
1949{
1950	free_page((unsigned long)dd->buf);
1951}
1952
1953static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
1954{
1955	struct at_dma_slave	*sl = slave;
1956
1957	if (sl && sl->dma_dev == chan->device->dev) {
1958		chan->private = sl;
1959		return true;
1960	} else {
1961		return false;
1962	}
1963}
1964
1965static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
1966			      struct crypto_platform_data *pdata)
1967{
1968	struct at_dma_slave *slave;
1969	int err = -ENOMEM;
1970	dma_cap_mask_t mask;
1971
1972	dma_cap_zero(mask);
1973	dma_cap_set(DMA_SLAVE, mask);
1974
1975	/* Try to grab 2 DMA channels */
1976	slave = &pdata->dma_slave->rxdata;
1977	dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
1978							slave, dd->dev, "tx");
1979	if (!dd->src.chan)
1980		goto err_dma_in;
 
1981
1982	slave = &pdata->dma_slave->txdata;
1983	dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
1984							slave, dd->dev, "rx");
1985	if (!dd->dst.chan)
1986		goto err_dma_out;
 
1987
1988	return 0;
1989
1990err_dma_out:
1991	dma_release_channel(dd->src.chan);
1992err_dma_in:
1993	dev_warn(dd->dev, "no DMA channel available\n");
1994	return err;
1995}
1996
1997static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
1998{
1999	dma_release_channel(dd->dst.chan);
2000	dma_release_channel(dd->src.chan);
2001}
2002
2003static void atmel_aes_queue_task(unsigned long data)
2004{
2005	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2006
2007	atmel_aes_handle_queue(dd, NULL);
2008}
2009
2010static void atmel_aes_done_task(unsigned long data)
2011{
2012	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2013
2014	dd->is_async = true;
2015	(void)dd->resume(dd);
2016}
2017
2018static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2019{
2020	struct atmel_aes_dev *aes_dd = dev_id;
2021	u32 reg;
2022
2023	reg = atmel_aes_read(aes_dd, AES_ISR);
2024	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2025		atmel_aes_write(aes_dd, AES_IDR, reg);
2026		if (AES_FLAGS_BUSY & aes_dd->flags)
2027			tasklet_schedule(&aes_dd->done_task);
2028		else
2029			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2030		return IRQ_HANDLED;
2031	}
2032
2033	return IRQ_NONE;
2034}
2035
2036static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2037{
2038	int i;
2039
 
 
 
 
 
 
2040	if (dd->caps.has_xts)
2041		crypto_unregister_alg(&aes_xts_alg);
2042
2043	if (dd->caps.has_gcm)
2044		crypto_unregister_aead(&aes_gcm_alg);
2045
2046	if (dd->caps.has_cfb64)
2047		crypto_unregister_alg(&aes_cfb64_alg);
 
2048
2049	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2050		crypto_unregister_alg(&aes_algs[i]);
 
 
 
 
2051}
2052
2053static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2054{
2055	int err, i, j;
2056
2057	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2058		err = crypto_register_alg(&aes_algs[i]);
 
 
2059		if (err)
2060			goto err_aes_algs;
2061	}
2062
2063	if (dd->caps.has_cfb64) {
2064		err = crypto_register_alg(&aes_cfb64_alg);
2065		if (err)
2066			goto err_aes_cfb64_alg;
2067	}
2068
2069	if (dd->caps.has_gcm) {
2070		err = crypto_register_aead(&aes_gcm_alg);
2071		if (err)
2072			goto err_aes_gcm_alg;
2073	}
2074
2075	if (dd->caps.has_xts) {
2076		err = crypto_register_alg(&aes_xts_alg);
 
 
2077		if (err)
2078			goto err_aes_xts_alg;
2079	}
2080
 
 
 
 
 
 
 
 
 
 
 
 
2081	return 0;
2082
 
 
 
 
 
 
 
2083err_aes_xts_alg:
2084	crypto_unregister_aead(&aes_gcm_alg);
2085err_aes_gcm_alg:
2086	crypto_unregister_alg(&aes_cfb64_alg);
2087err_aes_cfb64_alg:
2088	i = ARRAY_SIZE(aes_algs);
2089err_aes_algs:
2090	for (j = 0; j < i; j++)
2091		crypto_unregister_alg(&aes_algs[j]);
2092
2093	return err;
2094}
2095
2096static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2097{
2098	dd->caps.has_dualbuff = 0;
2099	dd->caps.has_cfb64 = 0;
2100	dd->caps.has_ctr32 = 0;
2101	dd->caps.has_gcm = 0;
2102	dd->caps.has_xts = 0;
 
2103	dd->caps.max_burst_size = 1;
2104
2105	/* keep only major version number */
2106	switch (dd->hw_version & 0xff0) {
 
 
2107	case 0x500:
2108		dd->caps.has_dualbuff = 1;
2109		dd->caps.has_cfb64 = 1;
2110		dd->caps.has_ctr32 = 1;
2111		dd->caps.has_gcm = 1;
2112		dd->caps.has_xts = 1;
 
2113		dd->caps.max_burst_size = 4;
2114		break;
2115	case 0x200:
2116		dd->caps.has_dualbuff = 1;
2117		dd->caps.has_cfb64 = 1;
2118		dd->caps.has_ctr32 = 1;
2119		dd->caps.has_gcm = 1;
2120		dd->caps.max_burst_size = 4;
2121		break;
2122	case 0x130:
2123		dd->caps.has_dualbuff = 1;
2124		dd->caps.has_cfb64 = 1;
2125		dd->caps.max_burst_size = 4;
2126		break;
2127	case 0x120:
2128		break;
2129	default:
2130		dev_warn(dd->dev,
2131				"Unmanaged aes version, set minimum capabilities\n");
2132		break;
2133	}
2134}
2135
2136#if defined(CONFIG_OF)
2137static const struct of_device_id atmel_aes_dt_ids[] = {
2138	{ .compatible = "atmel,at91sam9g46-aes" },
2139	{ /* sentinel */ }
2140};
2141MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2142
2143static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2144{
2145	struct device_node *np = pdev->dev.of_node;
2146	struct crypto_platform_data *pdata;
2147
2148	if (!np) {
2149		dev_err(&pdev->dev, "device node not found\n");
2150		return ERR_PTR(-EINVAL);
2151	}
2152
2153	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2154	if (!pdata) {
2155		dev_err(&pdev->dev, "could not allocate memory for pdata\n");
2156		return ERR_PTR(-ENOMEM);
2157	}
2158
2159	pdata->dma_slave = devm_kzalloc(&pdev->dev,
2160					sizeof(*(pdata->dma_slave)),
2161					GFP_KERNEL);
2162	if (!pdata->dma_slave) {
2163		dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
2164		devm_kfree(&pdev->dev, pdata);
2165		return ERR_PTR(-ENOMEM);
2166	}
2167
2168	return pdata;
2169}
2170#else
2171static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2172{
2173	return ERR_PTR(-EINVAL);
2174}
2175#endif
2176
2177static int atmel_aes_probe(struct platform_device *pdev)
2178{
2179	struct atmel_aes_dev *aes_dd;
2180	struct crypto_platform_data *pdata;
2181	struct device *dev = &pdev->dev;
2182	struct resource *aes_res;
2183	int err;
2184
2185	pdata = pdev->dev.platform_data;
2186	if (!pdata) {
2187		pdata = atmel_aes_of_init(pdev);
2188		if (IS_ERR(pdata)) {
2189			err = PTR_ERR(pdata);
2190			goto aes_dd_err;
2191		}
2192	}
2193
2194	if (!pdata->dma_slave) {
2195		err = -ENXIO;
2196		goto aes_dd_err;
2197	}
2198
2199	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2200	if (aes_dd == NULL) {
2201		dev_err(dev, "unable to alloc data struct.\n");
2202		err = -ENOMEM;
2203		goto aes_dd_err;
2204	}
2205
2206	aes_dd->dev = dev;
2207
2208	platform_set_drvdata(pdev, aes_dd);
2209
2210	INIT_LIST_HEAD(&aes_dd->list);
2211	spin_lock_init(&aes_dd->lock);
2212
2213	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2214					(unsigned long)aes_dd);
2215	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2216					(unsigned long)aes_dd);
2217
2218	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2219
2220	aes_dd->irq = -1;
2221
2222	/* Get the base address */
2223	aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2224	if (!aes_res) {
2225		dev_err(dev, "no MEM resource info\n");
2226		err = -ENODEV;
2227		goto res_err;
2228	}
2229	aes_dd->phys_base = aes_res->start;
2230
2231	/* Get the IRQ */
2232	aes_dd->irq = platform_get_irq(pdev,  0);
2233	if (aes_dd->irq < 0) {
2234		dev_err(dev, "no IRQ resource info\n");
2235		err = aes_dd->irq;
2236		goto res_err;
2237	}
2238
2239	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2240			       IRQF_SHARED, "atmel-aes", aes_dd);
2241	if (err) {
2242		dev_err(dev, "unable to request aes irq.\n");
2243		goto res_err;
2244	}
2245
2246	/* Initializing the clock */
2247	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2248	if (IS_ERR(aes_dd->iclk)) {
2249		dev_err(dev, "clock initialization failed.\n");
2250		err = PTR_ERR(aes_dd->iclk);
2251		goto res_err;
2252	}
2253
2254	aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2255	if (IS_ERR(aes_dd->io_base)) {
2256		dev_err(dev, "can't ioremap\n");
2257		err = PTR_ERR(aes_dd->io_base);
2258		goto res_err;
2259	}
2260
2261	err = clk_prepare(aes_dd->iclk);
2262	if (err)
2263		goto res_err;
2264
2265	err = atmel_aes_hw_version_init(aes_dd);
2266	if (err)
2267		goto iclk_unprepare;
2268
2269	atmel_aes_get_cap(aes_dd);
2270
 
 
 
 
 
 
 
2271	err = atmel_aes_buff_init(aes_dd);
2272	if (err)
2273		goto err_aes_buff;
2274
2275	err = atmel_aes_dma_init(aes_dd, pdata);
2276	if (err)
2277		goto err_aes_dma;
2278
2279	spin_lock(&atmel_aes.lock);
2280	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2281	spin_unlock(&atmel_aes.lock);
2282
2283	err = atmel_aes_register_algs(aes_dd);
2284	if (err)
2285		goto err_algs;
2286
2287	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2288			dma_chan_name(aes_dd->src.chan),
2289			dma_chan_name(aes_dd->dst.chan));
2290
2291	return 0;
2292
2293err_algs:
2294	spin_lock(&atmel_aes.lock);
2295	list_del(&aes_dd->list);
2296	spin_unlock(&atmel_aes.lock);
2297	atmel_aes_dma_cleanup(aes_dd);
2298err_aes_dma:
2299	atmel_aes_buff_cleanup(aes_dd);
2300err_aes_buff:
2301iclk_unprepare:
2302	clk_unprepare(aes_dd->iclk);
2303res_err:
2304	tasklet_kill(&aes_dd->done_task);
2305	tasklet_kill(&aes_dd->queue_task);
2306aes_dd_err:
2307	dev_err(dev, "initialization failed.\n");
2308
2309	return err;
2310}
2311
2312static int atmel_aes_remove(struct platform_device *pdev)
2313{
2314	struct atmel_aes_dev *aes_dd;
2315
2316	aes_dd = platform_get_drvdata(pdev);
2317	if (!aes_dd)
2318		return -ENODEV;
2319	spin_lock(&atmel_aes.lock);
2320	list_del(&aes_dd->list);
2321	spin_unlock(&atmel_aes.lock);
2322
2323	atmel_aes_unregister_algs(aes_dd);
2324
2325	tasklet_kill(&aes_dd->done_task);
2326	tasklet_kill(&aes_dd->queue_task);
2327
2328	atmel_aes_dma_cleanup(aes_dd);
2329	atmel_aes_buff_cleanup(aes_dd);
2330
2331	clk_unprepare(aes_dd->iclk);
2332
2333	return 0;
2334}
2335
2336static struct platform_driver atmel_aes_driver = {
2337	.probe		= atmel_aes_probe,
2338	.remove		= atmel_aes_remove,
2339	.driver		= {
2340		.name	= "atmel_aes",
2341		.of_match_table = of_match_ptr(atmel_aes_dt_ids),
2342	},
2343};
2344
2345module_platform_driver(atmel_aes_driver);
2346
2347MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2348MODULE_LICENSE("GPL v2");
2349MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");