Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// regmap based irq_chip
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 
 
 
 
   8
   9#include <linux/device.h>
  10#include <linux/export.h>
  11#include <linux/interrupt.h>
  12#include <linux/irq.h>
  13#include <linux/irqdomain.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/regmap.h>
  16#include <linux/slab.h>
  17
  18#include "internal.h"
  19
  20struct regmap_irq_chip_data {
  21	struct mutex lock;
  22	struct irq_chip irq_chip;
  23
  24	struct regmap *map;
  25	const struct regmap_irq_chip *chip;
  26
  27	int irq_base;
  28	struct irq_domain *domain;
  29
  30	int irq;
  31	int wake_count;
  32
  33	void *status_reg_buf;
  34	unsigned int *main_status_buf;
  35	unsigned int *status_buf;
  36	unsigned int *mask_buf;
  37	unsigned int *mask_buf_def;
  38	unsigned int *wake_buf;
  39	unsigned int *type_buf;
  40	unsigned int *type_buf_def;
  41	unsigned int **config_buf;
  42
  43	unsigned int irq_reg_stride;
  44
  45	unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
  46				    unsigned int base, int index);
  47
  48	unsigned int clear_status:1;
  49};
  50
  51static inline const
  52struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
  53				     int irq)
  54{
  55	return &data->chip->irqs[irq];
  56}
  57
  58static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
  59{
  60	struct regmap *map = data->map;
  61
  62	/*
  63	 * While possible that a user-defined ->get_irq_reg() callback might
  64	 * be linear enough to support bulk reads, most of the time it won't.
  65	 * Therefore only allow them if the default callback is being used.
  66	 */
  67	return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
  68	       data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
  69	       !map->use_single_read;
  70}
  71
  72static void regmap_irq_lock(struct irq_data *data)
  73{
  74	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  75
  76	mutex_lock(&d->lock);
  77}
  78
  79static void regmap_irq_sync_unlock(struct irq_data *data)
  80{
  81	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  82	struct regmap *map = d->map;
  83	int i, j, ret;
  84	u32 reg;
  85	u32 val;
  86
  87	if (d->chip->runtime_pm) {
  88		ret = pm_runtime_get_sync(map->dev);
  89		if (ret < 0)
  90			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
  91				ret);
  92	}
  93
  94	if (d->clear_status) {
  95		for (i = 0; i < d->chip->num_regs; i++) {
  96			reg = d->get_irq_reg(d, d->chip->status_base, i);
  97
  98			ret = regmap_read(map, reg, &val);
  99			if (ret)
 100				dev_err(d->map->dev,
 101					"Failed to clear the interrupt status bits\n");
 102		}
 103
 104		d->clear_status = false;
 105	}
 106
 107	/*
 108	 * If there's been a change in the mask write it back to the
 109	 * hardware.  We rely on the use of the regmap core cache to
 110	 * suppress pointless writes.
 111	 */
 112	for (i = 0; i < d->chip->num_regs; i++) {
 113		if (d->chip->handle_mask_sync)
 114			d->chip->handle_mask_sync(i, d->mask_buf_def[i],
 115						  d->mask_buf[i],
 116						  d->chip->irq_drv_data);
 117
 118		if (d->chip->mask_base && !d->chip->handle_mask_sync) {
 119			reg = d->get_irq_reg(d, d->chip->mask_base, i);
 120			ret = regmap_update_bits(d->map, reg,
 121						 d->mask_buf_def[i],
 122						 d->mask_buf[i]);
 123			if (ret)
 124				dev_err(d->map->dev, "Failed to sync masks in %x\n", reg);
 125		}
 126
 127		if (d->chip->unmask_base && !d->chip->handle_mask_sync) {
 128			reg = d->get_irq_reg(d, d->chip->unmask_base, i);
 129			ret = regmap_update_bits(d->map, reg,
 130					d->mask_buf_def[i], ~d->mask_buf[i]);
 131			if (ret)
 132				dev_err(d->map->dev, "Failed to sync masks in %x\n",
 
 133					reg);
 
 
 
 
 
 
 
 
 
 
 134		}
 
 
 
 135
 136		reg = d->get_irq_reg(d, d->chip->wake_base, i);
 
 137		if (d->wake_buf) {
 138			if (d->chip->wake_invert)
 139				ret = regmap_update_bits(d->map, reg,
 140							 d->mask_buf_def[i],
 141							 ~d->wake_buf[i]);
 142			else
 143				ret = regmap_update_bits(d->map, reg,
 144							 d->mask_buf_def[i],
 145							 d->wake_buf[i]);
 146			if (ret != 0)
 147				dev_err(d->map->dev,
 148					"Failed to sync wakes in %x: %d\n",
 149					reg, ret);
 150		}
 151
 152		if (!d->chip->init_ack_masked)
 153			continue;
 154		/*
 155		 * Ack all the masked interrupts unconditionally,
 156		 * OR if there is masked interrupt which hasn't been Acked,
 157		 * it'll be ignored in irq handler, then may introduce irq storm
 158		 */
 159		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
 160			reg = d->get_irq_reg(d, d->chip->ack_base, i);
 161
 162			/* some chips ack by write 0 */
 163			if (d->chip->ack_invert)
 164				ret = regmap_write(map, reg, ~d->mask_buf[i]);
 165			else
 166				ret = regmap_write(map, reg, d->mask_buf[i]);
 167			if (d->chip->clear_ack) {
 168				if (d->chip->ack_invert && !ret)
 169					ret = regmap_write(map, reg, UINT_MAX);
 170				else if (!ret)
 171					ret = regmap_write(map, reg, 0);
 172			}
 173			if (ret != 0)
 174				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
 175					reg, ret);
 176		}
 177	}
 178
 179	for (i = 0; i < d->chip->num_config_bases; i++) {
 180		for (j = 0; j < d->chip->num_config_regs; j++) {
 181			reg = d->get_irq_reg(d, d->chip->config_base[i], j);
 182			ret = regmap_write(map, reg, d->config_buf[i][j]);
 183			if (ret)
 184				dev_err(d->map->dev,
 185					"Failed to write config %x: %d\n",
 186					reg, ret);
 187		}
 
 
 
 
 
 188	}
 189
 190	if (d->chip->runtime_pm)
 191		pm_runtime_put(map->dev);
 192
 193	/* If we've changed our wakeup count propagate it to the parent */
 194	if (d->wake_count < 0)
 195		for (i = d->wake_count; i < 0; i++)
 196			irq_set_irq_wake(d->irq, 0);
 197	else if (d->wake_count > 0)
 198		for (i = 0; i < d->wake_count; i++)
 199			irq_set_irq_wake(d->irq, 1);
 200
 201	d->wake_count = 0;
 202
 203	mutex_unlock(&d->lock);
 204}
 205
 206static void regmap_irq_enable(struct irq_data *data)
 207{
 208	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 209	struct regmap *map = d->map;
 210	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 211	unsigned int reg = irq_data->reg_offset / map->reg_stride;
 212	unsigned int mask;
 213
 214	/*
 215	 * The type_in_mask flag means that the underlying hardware uses
 216	 * separate mask bits for each interrupt trigger type, but we want
 217	 * to have a single logical interrupt with a configurable type.
 218	 *
 219	 * If the interrupt we're enabling defines any supported types
 220	 * then instead of using the regular mask bits for this interrupt,
 221	 * use the value previously written to the type buffer at the
 222	 * corresponding offset in regmap_irq_set_type().
 223	 */
 224	if (d->chip->type_in_mask && irq_data->type.types_supported)
 225		mask = d->type_buf[reg] & irq_data->mask;
 226	else
 227		mask = irq_data->mask;
 228
 229	if (d->chip->clear_on_unmask)
 230		d->clear_status = true;
 231
 232	d->mask_buf[reg] &= ~mask;
 233}
 234
 235static void regmap_irq_disable(struct irq_data *data)
 236{
 237	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 238	struct regmap *map = d->map;
 239	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 240
 241	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
 242}
 243
 244static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
 245{
 246	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 247	struct regmap *map = d->map;
 248	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 249	int reg, ret;
 250	const struct regmap_irq_type *t = &irq_data->type;
 251
 252	if ((t->types_supported & type) != type)
 253		return 0;
 254
 255	reg = t->type_reg_offset / map->reg_stride;
 
 
 
 
 
 256
 257	if (d->chip->type_in_mask) {
 258		ret = regmap_irq_set_type_config_simple(&d->type_buf, type,
 259							irq_data, reg, d->chip->irq_drv_data);
 260		if (ret)
 261			return ret;
 262	}
 263
 264	if (d->chip->set_type_config) {
 265		ret = d->chip->set_type_config(d->config_buf, type, irq_data,
 266					       reg, d->chip->irq_drv_data);
 267		if (ret)
 268			return ret;
 269	}
 270
 
 
 
 271	return 0;
 272}
 273
 274static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
 275{
 276	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 277	struct regmap *map = d->map;
 278	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 279
 280	if (on) {
 281		if (d->wake_buf)
 282			d->wake_buf[irq_data->reg_offset / map->reg_stride]
 283				&= ~irq_data->mask;
 284		d->wake_count++;
 285	} else {
 286		if (d->wake_buf)
 287			d->wake_buf[irq_data->reg_offset / map->reg_stride]
 288				|= irq_data->mask;
 289		d->wake_count--;
 290	}
 291
 292	return 0;
 293}
 294
 295static const struct irq_chip regmap_irq_chip = {
 296	.irq_bus_lock		= regmap_irq_lock,
 297	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
 298	.irq_disable		= regmap_irq_disable,
 299	.irq_enable		= regmap_irq_enable,
 300	.irq_set_type		= regmap_irq_set_type,
 301	.irq_set_wake		= regmap_irq_set_wake,
 302};
 303
 304static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
 305					   unsigned int b)
 306{
 307	const struct regmap_irq_chip *chip = data->chip;
 308	struct regmap *map = data->map;
 309	struct regmap_irq_sub_irq_map *subreg;
 310	unsigned int reg;
 311	int i, ret = 0;
 312
 313	if (!chip->sub_reg_offsets) {
 314		reg = data->get_irq_reg(data, chip->status_base, b);
 315		ret = regmap_read(map, reg, &data->status_buf[b]);
 316	} else {
 317		/*
 318		 * Note we can't use ->get_irq_reg() here because the offsets
 319		 * in 'subreg' are *not* interchangeable with indices.
 320		 */
 321		subreg = &chip->sub_reg_offsets[b];
 322		for (i = 0; i < subreg->num_regs; i++) {
 323			unsigned int offset = subreg->offset[i];
 324			unsigned int index = offset / map->reg_stride;
 325
 326			ret = regmap_read(map, chip->status_base + offset,
 327					  &data->status_buf[index]);
 328			if (ret)
 329				break;
 330		}
 331	}
 332	return ret;
 333}
 334
 335static irqreturn_t regmap_irq_thread(int irq, void *d)
 336{
 337	struct regmap_irq_chip_data *data = d;
 338	const struct regmap_irq_chip *chip = data->chip;
 339	struct regmap *map = data->map;
 340	int ret, i;
 341	bool handled = false;
 342	u32 reg;
 343
 344	if (chip->handle_pre_irq)
 345		chip->handle_pre_irq(chip->irq_drv_data);
 346
 347	if (chip->runtime_pm) {
 348		ret = pm_runtime_get_sync(map->dev);
 349		if (ret < 0) {
 350			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
 351				ret);
 
 352			goto exit;
 353		}
 354	}
 355
 356	/*
 357	 * Read only registers with active IRQs if the chip has 'main status
 358	 * register'. Else read in the statuses, using a single bulk read if
 359	 * possible in order to reduce the I/O overheads.
 360	 */
 361
 362	if (chip->no_status) {
 363		/* no status register so default to all active */
 364		memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
 365	} else if (chip->num_main_regs) {
 366		unsigned int max_main_bits;
 367		unsigned long size;
 368
 369		size = chip->num_regs * sizeof(unsigned int);
 370
 371		max_main_bits = (chip->num_main_status_bits) ?
 372				 chip->num_main_status_bits : chip->num_regs;
 373		/* Clear the status buf as we don't read all status regs */
 374		memset(data->status_buf, 0, size);
 375
 376		/* We could support bulk read for main status registers
 377		 * but I don't expect to see devices with really many main
 378		 * status registers so let's only support single reads for the
 379		 * sake of simplicity. and add bulk reads only if needed
 380		 */
 381		for (i = 0; i < chip->num_main_regs; i++) {
 382			reg = data->get_irq_reg(data, chip->main_status, i);
 383			ret = regmap_read(map, reg, &data->main_status_buf[i]);
 384			if (ret) {
 385				dev_err(map->dev,
 386					"Failed to read IRQ status %d\n",
 387					ret);
 388				goto exit;
 389			}
 390		}
 391
 392		/* Read sub registers with active IRQs */
 393		for (i = 0; i < chip->num_main_regs; i++) {
 394			unsigned int b;
 395			const unsigned long mreg = data->main_status_buf[i];
 396
 397			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
 398				if (i * map->format.val_bytes * 8 + b >
 399				    max_main_bits)
 400					break;
 401				ret = read_sub_irq_data(data, b);
 402
 403				if (ret != 0) {
 404					dev_err(map->dev,
 405						"Failed to read IRQ status %d\n",
 406						ret);
 407					goto exit;
 408				}
 409			}
 410
 411		}
 412	} else if (regmap_irq_can_bulk_read_status(data)) {
 413
 414		u8 *buf8 = data->status_reg_buf;
 415		u16 *buf16 = data->status_reg_buf;
 416		u32 *buf32 = data->status_reg_buf;
 417
 418		BUG_ON(!data->status_reg_buf);
 419
 420		ret = regmap_bulk_read(map, chip->status_base,
 421				       data->status_reg_buf,
 422				       chip->num_regs);
 423		if (ret != 0) {
 424			dev_err(map->dev, "Failed to read IRQ status: %d\n",
 425				ret);
 426			goto exit;
 427		}
 428
 429		for (i = 0; i < data->chip->num_regs; i++) {
 430			switch (map->format.val_bytes) {
 431			case 1:
 432				data->status_buf[i] = buf8[i];
 433				break;
 434			case 2:
 435				data->status_buf[i] = buf16[i];
 436				break;
 437			case 4:
 438				data->status_buf[i] = buf32[i];
 439				break;
 440			default:
 441				BUG();
 442				goto exit;
 443			}
 444		}
 445
 446	} else {
 447		for (i = 0; i < data->chip->num_regs; i++) {
 448			unsigned int reg = data->get_irq_reg(data,
 449					data->chip->status_base, i);
 450			ret = regmap_read(map, reg, &data->status_buf[i]);
 
 451
 452			if (ret != 0) {
 453				dev_err(map->dev,
 454					"Failed to read IRQ status: %d\n",
 455					ret);
 
 
 456				goto exit;
 457			}
 458		}
 459	}
 460
 461	if (chip->status_invert)
 462		for (i = 0; i < data->chip->num_regs; i++)
 463			data->status_buf[i] = ~data->status_buf[i];
 464
 465	/*
 466	 * Ignore masked IRQs and ack if we need to; we ack early so
 467	 * there is no race between handling and acknowledging the
 468	 * interrupt.  We assume that typically few of the interrupts
 469	 * will fire simultaneously so don't worry about overhead from
 470	 * doing a write per register.
 471	 */
 472	for (i = 0; i < data->chip->num_regs; i++) {
 473		data->status_buf[i] &= ~data->mask_buf[i];
 474
 475		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 476			reg = data->get_irq_reg(data, data->chip->ack_base, i);
 477
 478			if (chip->ack_invert)
 479				ret = regmap_write(map, reg,
 480						~data->status_buf[i]);
 481			else
 482				ret = regmap_write(map, reg,
 483						data->status_buf[i]);
 484			if (chip->clear_ack) {
 485				if (chip->ack_invert && !ret)
 486					ret = regmap_write(map, reg, UINT_MAX);
 487				else if (!ret)
 488					ret = regmap_write(map, reg, 0);
 489			}
 490			if (ret != 0)
 491				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 492					reg, ret);
 493		}
 494	}
 495
 496	for (i = 0; i < chip->num_irqs; i++) {
 497		if (data->status_buf[chip->irqs[i].reg_offset /
 498				     map->reg_stride] & chip->irqs[i].mask) {
 499			handle_nested_irq(irq_find_mapping(data->domain, i));
 500			handled = true;
 501		}
 502	}
 503
 
 
 
 504exit:
 505	if (chip->handle_post_irq)
 506		chip->handle_post_irq(chip->irq_drv_data);
 507
 508	if (chip->runtime_pm)
 509		pm_runtime_put(map->dev);
 510
 511	if (handled)
 512		return IRQ_HANDLED;
 513	else
 514		return IRQ_NONE;
 515}
 516
 517static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
 518			  irq_hw_number_t hw)
 519{
 520	struct regmap_irq_chip_data *data = h->host_data;
 521
 522	irq_set_chip_data(virq, data);
 523	irq_set_chip(virq, &data->irq_chip);
 524	irq_set_nested_thread(virq, 1);
 525	irq_set_parent(virq, data->irq);
 526	irq_set_noprobe(virq);
 527
 528	return 0;
 529}
 530
 531static const struct irq_domain_ops regmap_domain_ops = {
 532	.map	= regmap_irq_map,
 533	.xlate	= irq_domain_xlate_onetwocell,
 534};
 535
 536/**
 537 * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
 538 * @data: Data for the &struct regmap_irq_chip
 539 * @base: Base register
 540 * @index: Register index
 541 *
 542 * Returns the register address corresponding to the given @base and @index
 543 * by the formula ``base + index * regmap_stride * irq_reg_stride``.
 544 */
 545unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
 546					   unsigned int base, int index)
 547{
 548	struct regmap *map = data->map;
 549
 550	return base + index * map->reg_stride * data->irq_reg_stride;
 551}
 552EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
 553
 554/**
 555 * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
 556 * @buf: Buffer containing configuration register values, this is a 2D array of
 557 *       `num_config_bases` rows, each of `num_config_regs` elements.
 558 * @type: The requested IRQ type.
 559 * @irq_data: The IRQ being configured.
 560 * @idx: Index of the irq's config registers within each array `buf[i]`
 561 * @irq_drv_data: Driver specific IRQ data
 562 *
 563 * This is a &struct regmap_irq_chip->set_type_config callback suitable for
 564 * chips with one config register. Register values are updated according to
 565 * the &struct regmap_irq_type data associated with an IRQ.
 566 */
 567int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
 568				      const struct regmap_irq *irq_data,
 569				      int idx, void *irq_drv_data)
 570{
 571	const struct regmap_irq_type *t = &irq_data->type;
 572
 573	if (t->type_reg_mask)
 574		buf[0][idx] &= ~t->type_reg_mask;
 575	else
 576		buf[0][idx] &= ~(t->type_falling_val |
 577				 t->type_rising_val |
 578				 t->type_level_low_val |
 579				 t->type_level_high_val);
 580
 581	switch (type) {
 582	case IRQ_TYPE_EDGE_FALLING:
 583		buf[0][idx] |= t->type_falling_val;
 584		break;
 585
 586	case IRQ_TYPE_EDGE_RISING:
 587		buf[0][idx] |= t->type_rising_val;
 588		break;
 589
 590	case IRQ_TYPE_EDGE_BOTH:
 591		buf[0][idx] |= (t->type_falling_val |
 592				t->type_rising_val);
 593		break;
 594
 595	case IRQ_TYPE_LEVEL_HIGH:
 596		buf[0][idx] |= t->type_level_high_val;
 597		break;
 598
 599	case IRQ_TYPE_LEVEL_LOW:
 600		buf[0][idx] |= t->type_level_low_val;
 601		break;
 602
 603	default:
 604		return -EINVAL;
 605	}
 606
 607	return 0;
 608}
 609EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
 610
 611/**
 612 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
 613 *
 614 * @fwnode: The firmware node where the IRQ domain should be added to.
 615 * @map: The regmap for the device.
 616 * @irq: The IRQ the device uses to signal interrupts.
 617 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 618 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 619 * @chip: Configuration for the interrupt controller.
 620 * @data: Runtime data structure for the controller, allocated on success.
 621 *
 622 * Returns 0 on success or an errno on failure.
 623 *
 624 * In order for this to be efficient the chip really should use a
 625 * register cache.  The chip driver is responsible for restoring the
 626 * register values used by the IRQ controller over suspend and resume.
 627 */
 628int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
 629			       struct regmap *map, int irq,
 630			       int irq_flags, int irq_base,
 631			       const struct regmap_irq_chip *chip,
 632			       struct regmap_irq_chip_data **data)
 633{
 634	struct regmap_irq_chip_data *d;
 635	int i;
 636	int ret = -ENOMEM;
 637	u32 reg;
 
 638
 639	if (chip->num_regs <= 0)
 640		return -EINVAL;
 641
 642	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
 643		return -EINVAL;
 644
 645	if (chip->mask_base && chip->unmask_base && !chip->mask_unmask_non_inverted)
 646		return -EINVAL;
 647
 648	for (i = 0; i < chip->num_irqs; i++) {
 649		if (chip->irqs[i].reg_offset % map->reg_stride)
 650			return -EINVAL;
 651		if (chip->irqs[i].reg_offset / map->reg_stride >=
 652		    chip->num_regs)
 653			return -EINVAL;
 654	}
 655
 656	if (irq_base) {
 657		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
 658		if (irq_base < 0) {
 659			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
 660				 irq_base);
 661			return irq_base;
 662		}
 663	}
 664
 665	d = kzalloc(sizeof(*d), GFP_KERNEL);
 666	if (!d)
 667		return -ENOMEM;
 668
 669	if (chip->num_main_regs) {
 670		d->main_status_buf = kcalloc(chip->num_main_regs,
 671					     sizeof(*d->main_status_buf),
 672					     GFP_KERNEL);
 673
 674		if (!d->main_status_buf)
 675			goto err_alloc;
 676	}
 677
 678	d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
 679				GFP_KERNEL);
 680	if (!d->status_buf)
 681		goto err_alloc;
 682
 683	d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
 684			      GFP_KERNEL);
 685	if (!d->mask_buf)
 686		goto err_alloc;
 687
 688	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
 689				  GFP_KERNEL);
 690	if (!d->mask_buf_def)
 691		goto err_alloc;
 692
 693	if (chip->wake_base) {
 694		d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
 695				      GFP_KERNEL);
 696		if (!d->wake_buf)
 697			goto err_alloc;
 698	}
 699
 700	if (chip->type_in_mask) {
 701		d->type_buf_def = kcalloc(chip->num_regs,
 702					  sizeof(*d->type_buf_def), GFP_KERNEL);
 703		if (!d->type_buf_def)
 704			goto err_alloc;
 705
 706		d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL);
 
 707		if (!d->type_buf)
 708			goto err_alloc;
 709	}
 710
 711	if (chip->num_config_bases && chip->num_config_regs) {
 712		/*
 713		 * Create config_buf[num_config_bases][num_config_regs]
 714		 */
 715		d->config_buf = kcalloc(chip->num_config_bases,
 716					sizeof(*d->config_buf), GFP_KERNEL);
 717		if (!d->config_buf)
 718			goto err_alloc;
 719
 720		for (i = 0; i < chip->num_config_bases; i++) {
 721			d->config_buf[i] = kcalloc(chip->num_config_regs,
 722						   sizeof(**d->config_buf),
 723						   GFP_KERNEL);
 724			if (!d->config_buf[i])
 725				goto err_alloc;
 726		}
 727	}
 728
 729	d->irq_chip = regmap_irq_chip;
 730	d->irq_chip.name = chip->name;
 731	d->irq = irq;
 732	d->map = map;
 733	d->chip = chip;
 734	d->irq_base = irq_base;
 735
 736	if (chip->irq_reg_stride)
 737		d->irq_reg_stride = chip->irq_reg_stride;
 738	else
 739		d->irq_reg_stride = 1;
 740
 741	if (chip->get_irq_reg)
 742		d->get_irq_reg = chip->get_irq_reg;
 743	else
 744		d->get_irq_reg = regmap_irq_get_irq_reg_linear;
 745
 746	if (regmap_irq_can_bulk_read_status(d)) {
 
 747		d->status_reg_buf = kmalloc_array(chip->num_regs,
 748						  map->format.val_bytes,
 749						  GFP_KERNEL);
 750		if (!d->status_reg_buf)
 751			goto err_alloc;
 752	}
 753
 754	mutex_init(&d->lock);
 755
 756	for (i = 0; i < chip->num_irqs; i++)
 757		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
 758			|= chip->irqs[i].mask;
 759
 760	/* Mask all the interrupts by default */
 761	for (i = 0; i < chip->num_regs; i++) {
 762		d->mask_buf[i] = d->mask_buf_def[i];
 763
 764		if (chip->handle_mask_sync) {
 765			ret = chip->handle_mask_sync(i, d->mask_buf_def[i],
 766						     d->mask_buf[i],
 767						     chip->irq_drv_data);
 768			if (ret)
 769				goto err_alloc;
 770		}
 771
 772		if (chip->mask_base && !chip->handle_mask_sync) {
 773			reg = d->get_irq_reg(d, chip->mask_base, i);
 774			ret = regmap_update_bits(d->map, reg,
 775						 d->mask_buf_def[i],
 776						 d->mask_buf[i]);
 777			if (ret) {
 778				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 779					reg, ret);
 780				goto err_alloc;
 781			}
 782		}
 783
 784		if (chip->unmask_base && !chip->handle_mask_sync) {
 785			reg = d->get_irq_reg(d, chip->unmask_base, i);
 786			ret = regmap_update_bits(d->map, reg,
 787					d->mask_buf_def[i], ~d->mask_buf[i]);
 788			if (ret) {
 789				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 790					reg, ret);
 791				goto err_alloc;
 792			}
 793		}
 794
 795		if (!chip->init_ack_masked)
 796			continue;
 797
 798		/* Ack masked but set interrupts */
 799		if (d->chip->no_status) {
 800			/* no status register so default to all active */
 801			d->status_buf[i] = GENMASK(31, 0);
 802		} else {
 803			reg = d->get_irq_reg(d, d->chip->status_base, i);
 804			ret = regmap_read(map, reg, &d->status_buf[i]);
 805			if (ret != 0) {
 806				dev_err(map->dev, "Failed to read IRQ status: %d\n",
 807					ret);
 808				goto err_alloc;
 809			}
 810		}
 811
 812		if (chip->status_invert)
 813			d->status_buf[i] = ~d->status_buf[i];
 814
 815		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 816			reg = d->get_irq_reg(d, d->chip->ack_base, i);
 
 817			if (chip->ack_invert)
 818				ret = regmap_write(map, reg,
 819					~(d->status_buf[i] & d->mask_buf[i]));
 820			else
 821				ret = regmap_write(map, reg,
 822					d->status_buf[i] & d->mask_buf[i]);
 823			if (chip->clear_ack) {
 824				if (chip->ack_invert && !ret)
 825					ret = regmap_write(map, reg, UINT_MAX);
 826				else if (!ret)
 827					ret = regmap_write(map, reg, 0);
 828			}
 829			if (ret != 0) {
 830				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 831					reg, ret);
 832				goto err_alloc;
 833			}
 834		}
 835	}
 836
 837	/* Wake is disabled by default */
 838	if (d->wake_buf) {
 839		for (i = 0; i < chip->num_regs; i++) {
 840			d->wake_buf[i] = d->mask_buf_def[i];
 841			reg = d->get_irq_reg(d, d->chip->wake_base, i);
 
 842
 843			if (chip->wake_invert)
 844				ret = regmap_update_bits(d->map, reg,
 845							 d->mask_buf_def[i],
 846							 0);
 847			else
 848				ret = regmap_update_bits(d->map, reg,
 849							 d->mask_buf_def[i],
 850							 d->wake_buf[i]);
 851			if (ret != 0) {
 852				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 853					reg, ret);
 854				goto err_alloc;
 855			}
 856		}
 857	}
 858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 859	if (irq_base)
 860		d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
 861						     irq_base, 0,
 862						     &regmap_domain_ops, d);
 863	else
 864		d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
 865						     &regmap_domain_ops, d);
 
 866	if (!d->domain) {
 867		dev_err(map->dev, "Failed to create IRQ domain\n");
 868		ret = -ENOMEM;
 869		goto err_alloc;
 870	}
 871
 872	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
 873				   irq_flags | IRQF_ONESHOT,
 874				   chip->name, d);
 875	if (ret != 0) {
 876		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
 877			irq, chip->name, ret);
 878		goto err_domain;
 879	}
 880
 881	*data = d;
 882
 883	return 0;
 884
 885err_domain:
 886	/* Should really dispose of the domain but... */
 887err_alloc:
 888	kfree(d->type_buf);
 889	kfree(d->type_buf_def);
 890	kfree(d->wake_buf);
 891	kfree(d->mask_buf_def);
 892	kfree(d->mask_buf);
 893	kfree(d->status_buf);
 894	kfree(d->status_reg_buf);
 895	if (d->config_buf) {
 896		for (i = 0; i < chip->num_config_bases; i++)
 897			kfree(d->config_buf[i]);
 898		kfree(d->config_buf);
 899	}
 900	kfree(d);
 901	return ret;
 902}
 903EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
 904
 905/**
 906 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
 907 *
 908 * @map: The regmap for the device.
 909 * @irq: The IRQ the device uses to signal interrupts.
 910 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 911 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 912 * @chip: Configuration for the interrupt controller.
 913 * @data: Runtime data structure for the controller, allocated on success.
 914 *
 915 * Returns 0 on success or an errno on failure.
 916 *
 917 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
 918 * node of the regmap is used.
 919 */
 920int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
 921			int irq_base, const struct regmap_irq_chip *chip,
 922			struct regmap_irq_chip_data **data)
 923{
 924	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
 925					  irq_flags, irq_base, chip, data);
 926}
 927EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
 928
 929/**
 930 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
 931 *
 932 * @irq: Primary IRQ for the device
 933 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
 934 *
 935 * This function also disposes of all mapped IRQs on the chip.
 936 */
 937void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
 938{
 939	unsigned int virq;
 940	int i, hwirq;
 941
 942	if (!d)
 943		return;
 944
 945	free_irq(irq, d);
 946
 947	/* Dispose all virtual irq from irq domain before removing it */
 948	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
 949		/* Ignore hwirq if holes in the IRQ list */
 950		if (!d->chip->irqs[hwirq].mask)
 951			continue;
 952
 953		/*
 954		 * Find the virtual irq of hwirq on chip and if it is
 955		 * there then dispose it
 956		 */
 957		virq = irq_find_mapping(d->domain, hwirq);
 958		if (virq)
 959			irq_dispose_mapping(virq);
 960	}
 961
 962	irq_domain_remove(d->domain);
 963	kfree(d->type_buf);
 964	kfree(d->type_buf_def);
 965	kfree(d->wake_buf);
 966	kfree(d->mask_buf_def);
 967	kfree(d->mask_buf);
 968	kfree(d->status_reg_buf);
 969	kfree(d->status_buf);
 970	if (d->config_buf) {
 971		for (i = 0; i < d->chip->num_config_bases; i++)
 972			kfree(d->config_buf[i]);
 973		kfree(d->config_buf);
 974	}
 975	kfree(d);
 976}
 977EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
 978
 979static void devm_regmap_irq_chip_release(struct device *dev, void *res)
 980{
 981	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
 982
 983	regmap_del_irq_chip(d->irq, d);
 984}
 985
 986static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
 987
 988{
 989	struct regmap_irq_chip_data **r = res;
 990
 991	if (!r || !*r) {
 992		WARN_ON(!r || !*r);
 993		return 0;
 994	}
 995	return *r == data;
 996}
 997
 998/**
 999 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1000 *
1001 * @dev: The device pointer on which irq_chip belongs to.
1002 * @fwnode: The firmware node where the IRQ domain should be added to.
1003 * @map: The regmap for the device.
1004 * @irq: The IRQ the device uses to signal interrupts
1005 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1006 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1007 * @chip: Configuration for the interrupt controller.
1008 * @data: Runtime data structure for the controller, allocated on success
1009 *
1010 * Returns 0 on success or an errno on failure.
1011 *
1012 * The &regmap_irq_chip_data will be automatically released when the device is
1013 * unbound.
1014 */
1015int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1016				    struct fwnode_handle *fwnode,
1017				    struct regmap *map, int irq,
1018				    int irq_flags, int irq_base,
1019				    const struct regmap_irq_chip *chip,
1020				    struct regmap_irq_chip_data **data)
1021{
1022	struct regmap_irq_chip_data **ptr, *d;
1023	int ret;
1024
1025	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1026			   GFP_KERNEL);
1027	if (!ptr)
1028		return -ENOMEM;
1029
1030	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1031					 chip, &d);
1032	if (ret < 0) {
1033		devres_free(ptr);
1034		return ret;
1035	}
1036
1037	*ptr = d;
1038	devres_add(dev, ptr);
1039	*data = d;
1040	return 0;
1041}
1042EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1043
1044/**
1045 * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1046 *
1047 * @dev: The device pointer on which irq_chip belongs to.
1048 * @map: The regmap for the device.
1049 * @irq: The IRQ the device uses to signal interrupts
1050 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1051 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1052 * @chip: Configuration for the interrupt controller.
1053 * @data: Runtime data structure for the controller, allocated on success
1054 *
1055 * Returns 0 on success or an errno on failure.
1056 *
1057 * The &regmap_irq_chip_data will be automatically released when the device is
1058 * unbound.
1059 */
1060int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1061			     int irq_flags, int irq_base,
1062			     const struct regmap_irq_chip *chip,
1063			     struct regmap_irq_chip_data **data)
1064{
1065	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1066					       irq, irq_flags, irq_base, chip,
1067					       data);
1068}
1069EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1070
1071/**
1072 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1073 *
1074 * @dev: Device for which the resource was allocated.
1075 * @irq: Primary IRQ for the device.
1076 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1077 *
1078 * A resource managed version of regmap_del_irq_chip().
1079 */
1080void devm_regmap_del_irq_chip(struct device *dev, int irq,
1081			      struct regmap_irq_chip_data *data)
1082{
1083	int rc;
1084
1085	WARN_ON(irq != data->irq);
1086	rc = devres_release(dev, devm_regmap_irq_chip_release,
1087			    devm_regmap_irq_chip_match, data);
1088
1089	if (rc != 0)
1090		WARN_ON(rc);
1091}
1092EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1093
1094/**
1095 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1096 *
1097 * @data: regmap irq controller to operate on.
1098 *
1099 * Useful for drivers to request their own IRQs.
 
 
1100 */
1101int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1102{
1103	WARN_ON(!data->irq_base);
1104	return data->irq_base;
1105}
1106EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1107
1108/**
1109 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1110 *
1111 * @data: regmap irq controller to operate on.
1112 * @irq: index of the interrupt requested in the chip IRQs.
1113 *
1114 * Useful for drivers to request their own IRQs.
 
 
 
1115 */
1116int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1117{
1118	/* Handle holes in the IRQ list */
1119	if (!data->chip->irqs[irq].mask)
1120		return -EINVAL;
1121
1122	return irq_create_mapping(data->domain, irq);
1123}
1124EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1125
1126/**
1127 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1128 *
1129 * @data: regmap_irq controller to operate on.
1130 *
1131 * Useful for drivers to request their own IRQs and for integration
1132 * with subsystems.  For ease of integration NULL is accepted as a
1133 * domain, allowing devices to just call this even if no domain is
1134 * allocated.
 
 
1135 */
1136struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1137{
1138	if (data)
1139		return data->domain;
1140	else
1141		return NULL;
1142}
1143EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
v4.10.11
  1/*
  2 * regmap based irq_chip
  3 *
  4 * Copyright 2011 Wolfson Microelectronics plc
  5 *
  6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 13#include <linux/device.h>
 14#include <linux/export.h>
 15#include <linux/interrupt.h>
 16#include <linux/irq.h>
 17#include <linux/irqdomain.h>
 18#include <linux/pm_runtime.h>
 19#include <linux/regmap.h>
 20#include <linux/slab.h>
 21
 22#include "internal.h"
 23
 24struct regmap_irq_chip_data {
 25	struct mutex lock;
 26	struct irq_chip irq_chip;
 27
 28	struct regmap *map;
 29	const struct regmap_irq_chip *chip;
 30
 31	int irq_base;
 32	struct irq_domain *domain;
 33
 34	int irq;
 35	int wake_count;
 36
 37	void *status_reg_buf;
 
 38	unsigned int *status_buf;
 39	unsigned int *mask_buf;
 40	unsigned int *mask_buf_def;
 41	unsigned int *wake_buf;
 42	unsigned int *type_buf;
 43	unsigned int *type_buf_def;
 
 44
 45	unsigned int irq_reg_stride;
 46	unsigned int type_reg_stride;
 
 
 
 
 47};
 48
 49static inline const
 50struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
 51				     int irq)
 52{
 53	return &data->chip->irqs[irq];
 54}
 55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 56static void regmap_irq_lock(struct irq_data *data)
 57{
 58	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 59
 60	mutex_lock(&d->lock);
 61}
 62
 63static void regmap_irq_sync_unlock(struct irq_data *data)
 64{
 65	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 66	struct regmap *map = d->map;
 67	int i, ret;
 68	u32 reg;
 69	u32 unmask_offset;
 70
 71	if (d->chip->runtime_pm) {
 72		ret = pm_runtime_get_sync(map->dev);
 73		if (ret < 0)
 74			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
 75				ret);
 76	}
 77
 
 
 
 
 
 
 
 
 
 
 
 
 
 78	/*
 79	 * If there's been a change in the mask write it back to the
 80	 * hardware.  We rely on the use of the regmap core cache to
 81	 * suppress pointless writes.
 82	 */
 83	for (i = 0; i < d->chip->num_regs; i++) {
 84		reg = d->chip->mask_base +
 85			(i * map->reg_stride * d->irq_reg_stride);
 86		if (d->chip->mask_invert) {
 
 
 
 
 87			ret = regmap_update_bits(d->map, reg,
 88					 d->mask_buf_def[i], ~d->mask_buf[i]);
 89		} else if (d->chip->unmask_base) {
 90			/* set mask with mask_base register */
 
 
 
 
 
 91			ret = regmap_update_bits(d->map, reg,
 92					d->mask_buf_def[i], ~d->mask_buf[i]);
 93			if (ret < 0)
 94				dev_err(d->map->dev,
 95					"Failed to sync unmasks in %x\n",
 96					reg);
 97			unmask_offset = d->chip->unmask_base -
 98							d->chip->mask_base;
 99			/* clear mask with unmask_base register */
100			ret = regmap_update_bits(d->map,
101					reg + unmask_offset,
102					d->mask_buf_def[i],
103					d->mask_buf[i]);
104		} else {
105			ret = regmap_update_bits(d->map, reg,
106					 d->mask_buf_def[i], d->mask_buf[i]);
107		}
108		if (ret != 0)
109			dev_err(d->map->dev, "Failed to sync masks in %x\n",
110				reg);
111
112		reg = d->chip->wake_base +
113			(i * map->reg_stride * d->irq_reg_stride);
114		if (d->wake_buf) {
115			if (d->chip->wake_invert)
116				ret = regmap_update_bits(d->map, reg,
117							 d->mask_buf_def[i],
118							 ~d->wake_buf[i]);
119			else
120				ret = regmap_update_bits(d->map, reg,
121							 d->mask_buf_def[i],
122							 d->wake_buf[i]);
123			if (ret != 0)
124				dev_err(d->map->dev,
125					"Failed to sync wakes in %x: %d\n",
126					reg, ret);
127		}
128
129		if (!d->chip->init_ack_masked)
130			continue;
131		/*
132		 * Ack all the masked interrupts unconditionally,
133		 * OR if there is masked interrupt which hasn't been Acked,
134		 * it'll be ignored in irq handler, then may introduce irq storm
135		 */
136		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
137			reg = d->chip->ack_base +
138				(i * map->reg_stride * d->irq_reg_stride);
139			/* some chips ack by write 0 */
140			if (d->chip->ack_invert)
141				ret = regmap_write(map, reg, ~d->mask_buf[i]);
142			else
143				ret = regmap_write(map, reg, d->mask_buf[i]);
 
 
 
 
 
 
144			if (ret != 0)
145				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
146					reg, ret);
147		}
148	}
149
150	for (i = 0; i < d->chip->num_type_reg; i++) {
151		if (!d->type_buf_def[i])
152			continue;
153		reg = d->chip->type_base +
154			(i * map->reg_stride * d->type_reg_stride);
155		if (d->chip->type_invert)
156			ret = regmap_update_bits(d->map, reg,
157				d->type_buf_def[i], ~d->type_buf[i]);
158		else
159			ret = regmap_update_bits(d->map, reg,
160				d->type_buf_def[i], d->type_buf[i]);
161		if (ret != 0)
162			dev_err(d->map->dev, "Failed to sync type in %x\n",
163				reg);
164	}
165
166	if (d->chip->runtime_pm)
167		pm_runtime_put(map->dev);
168
169	/* If we've changed our wakeup count propagate it to the parent */
170	if (d->wake_count < 0)
171		for (i = d->wake_count; i < 0; i++)
172			irq_set_irq_wake(d->irq, 0);
173	else if (d->wake_count > 0)
174		for (i = 0; i < d->wake_count; i++)
175			irq_set_irq_wake(d->irq, 1);
176
177	d->wake_count = 0;
178
179	mutex_unlock(&d->lock);
180}
181
182static void regmap_irq_enable(struct irq_data *data)
183{
184	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
185	struct regmap *map = d->map;
186	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187
188	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
 
 
 
189}
190
191static void regmap_irq_disable(struct irq_data *data)
192{
193	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
194	struct regmap *map = d->map;
195	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
196
197	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
198}
199
200static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
201{
202	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
203	struct regmap *map = d->map;
204	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
205	int reg = irq_data->type_reg_offset / map->reg_stride;
 
206
207	if (!(irq_data->type_rising_mask | irq_data->type_falling_mask))
208		return 0;
209
210	d->type_buf[reg] &= ~(irq_data->type_falling_mask |
211					irq_data->type_rising_mask);
212	switch (type) {
213	case IRQ_TYPE_EDGE_FALLING:
214		d->type_buf[reg] |= irq_data->type_falling_mask;
215		break;
216
217	case IRQ_TYPE_EDGE_RISING:
218		d->type_buf[reg] |= irq_data->type_rising_mask;
219		break;
 
 
 
220
221	case IRQ_TYPE_EDGE_BOTH:
222		d->type_buf[reg] |= (irq_data->type_falling_mask |
223					irq_data->type_rising_mask);
224		break;
 
 
225
226	default:
227		return -EINVAL;
228	}
229	return 0;
230}
231
232static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
233{
234	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
235	struct regmap *map = d->map;
236	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
237
238	if (on) {
239		if (d->wake_buf)
240			d->wake_buf[irq_data->reg_offset / map->reg_stride]
241				&= ~irq_data->mask;
242		d->wake_count++;
243	} else {
244		if (d->wake_buf)
245			d->wake_buf[irq_data->reg_offset / map->reg_stride]
246				|= irq_data->mask;
247		d->wake_count--;
248	}
249
250	return 0;
251}
252
253static const struct irq_chip regmap_irq_chip = {
254	.irq_bus_lock		= regmap_irq_lock,
255	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
256	.irq_disable		= regmap_irq_disable,
257	.irq_enable		= regmap_irq_enable,
258	.irq_set_type		= regmap_irq_set_type,
259	.irq_set_wake		= regmap_irq_set_wake,
260};
261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262static irqreturn_t regmap_irq_thread(int irq, void *d)
263{
264	struct regmap_irq_chip_data *data = d;
265	const struct regmap_irq_chip *chip = data->chip;
266	struct regmap *map = data->map;
267	int ret, i;
268	bool handled = false;
269	u32 reg;
270
271	if (chip->handle_pre_irq)
272		chip->handle_pre_irq(chip->irq_drv_data);
273
274	if (chip->runtime_pm) {
275		ret = pm_runtime_get_sync(map->dev);
276		if (ret < 0) {
277			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
278				ret);
279			pm_runtime_put(map->dev);
280			goto exit;
281		}
282	}
283
284	/*
285	 * Read in the statuses, using a single bulk read if possible
286	 * in order to reduce the I/O overheads.
 
287	 */
288	if (!map->use_single_read && map->reg_stride == 1 &&
289	    data->irq_reg_stride == 1) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
290		u8 *buf8 = data->status_reg_buf;
291		u16 *buf16 = data->status_reg_buf;
292		u32 *buf32 = data->status_reg_buf;
293
294		BUG_ON(!data->status_reg_buf);
295
296		ret = regmap_bulk_read(map, chip->status_base,
297				       data->status_reg_buf,
298				       chip->num_regs);
299		if (ret != 0) {
300			dev_err(map->dev, "Failed to read IRQ status: %d\n",
301				ret);
302			goto exit;
303		}
304
305		for (i = 0; i < data->chip->num_regs; i++) {
306			switch (map->format.val_bytes) {
307			case 1:
308				data->status_buf[i] = buf8[i];
309				break;
310			case 2:
311				data->status_buf[i] = buf16[i];
312				break;
313			case 4:
314				data->status_buf[i] = buf32[i];
315				break;
316			default:
317				BUG();
318				goto exit;
319			}
320		}
321
322	} else {
323		for (i = 0; i < data->chip->num_regs; i++) {
324			ret = regmap_read(map, chip->status_base +
325					  (i * map->reg_stride
326					   * data->irq_reg_stride),
327					  &data->status_buf[i]);
328
329			if (ret != 0) {
330				dev_err(map->dev,
331					"Failed to read IRQ status: %d\n",
332					ret);
333				if (chip->runtime_pm)
334					pm_runtime_put(map->dev);
335				goto exit;
336			}
337		}
338	}
339
 
 
 
 
340	/*
341	 * Ignore masked IRQs and ack if we need to; we ack early so
342	 * there is no race between handling and acknowleding the
343	 * interrupt.  We assume that typically few of the interrupts
344	 * will fire simultaneously so don't worry about overhead from
345	 * doing a write per register.
346	 */
347	for (i = 0; i < data->chip->num_regs; i++) {
348		data->status_buf[i] &= ~data->mask_buf[i];
349
350		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
351			reg = chip->ack_base +
352				(i * map->reg_stride * data->irq_reg_stride);
353			ret = regmap_write(map, reg, data->status_buf[i]);
 
 
 
 
 
 
 
 
 
 
 
354			if (ret != 0)
355				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
356					reg, ret);
357		}
358	}
359
360	for (i = 0; i < chip->num_irqs; i++) {
361		if (data->status_buf[chip->irqs[i].reg_offset /
362				     map->reg_stride] & chip->irqs[i].mask) {
363			handle_nested_irq(irq_find_mapping(data->domain, i));
364			handled = true;
365		}
366	}
367
368	if (chip->runtime_pm)
369		pm_runtime_put(map->dev);
370
371exit:
372	if (chip->handle_post_irq)
373		chip->handle_post_irq(chip->irq_drv_data);
374
 
 
 
375	if (handled)
376		return IRQ_HANDLED;
377	else
378		return IRQ_NONE;
379}
380
381static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
382			  irq_hw_number_t hw)
383{
384	struct regmap_irq_chip_data *data = h->host_data;
385
386	irq_set_chip_data(virq, data);
387	irq_set_chip(virq, &data->irq_chip);
388	irq_set_nested_thread(virq, 1);
389	irq_set_parent(virq, data->irq);
390	irq_set_noprobe(virq);
391
392	return 0;
393}
394
395static const struct irq_domain_ops regmap_domain_ops = {
396	.map	= regmap_irq_map,
397	.xlate	= irq_domain_xlate_twocell,
398};
399
400/**
401 * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
 
 
 
402 *
403 * map:       The regmap for the device.
404 * irq:       The IRQ the device uses to signal interrupts
405 * irq_flags: The IRQF_ flags to use for the primary interrupt.
406 * chip:      Configuration for the interrupt controller.
407 * data:      Runtime data structure for the controller, allocated on success
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408 *
409 * Returns 0 on success or an errno on failure.
410 *
411 * In order for this to be efficient the chip really should use a
412 * register cache.  The chip driver is responsible for restoring the
413 * register values used by the IRQ controller over suspend and resume.
414 */
415int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
416			int irq_base, const struct regmap_irq_chip *chip,
417			struct regmap_irq_chip_data **data)
 
 
418{
419	struct regmap_irq_chip_data *d;
420	int i;
421	int ret = -ENOMEM;
422	u32 reg;
423	u32 unmask_offset;
424
425	if (chip->num_regs <= 0)
426		return -EINVAL;
427
 
 
 
 
 
 
428	for (i = 0; i < chip->num_irqs; i++) {
429		if (chip->irqs[i].reg_offset % map->reg_stride)
430			return -EINVAL;
431		if (chip->irqs[i].reg_offset / map->reg_stride >=
432		    chip->num_regs)
433			return -EINVAL;
434	}
435
436	if (irq_base) {
437		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
438		if (irq_base < 0) {
439			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
440				 irq_base);
441			return irq_base;
442		}
443	}
444
445	d = kzalloc(sizeof(*d), GFP_KERNEL);
446	if (!d)
447		return -ENOMEM;
448
449	d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
 
 
 
 
 
 
 
 
 
450				GFP_KERNEL);
451	if (!d->status_buf)
452		goto err_alloc;
453
454	d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
455			      GFP_KERNEL);
456	if (!d->mask_buf)
457		goto err_alloc;
458
459	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
460				  GFP_KERNEL);
461	if (!d->mask_buf_def)
462		goto err_alloc;
463
464	if (chip->wake_base) {
465		d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
466				      GFP_KERNEL);
467		if (!d->wake_buf)
468			goto err_alloc;
469	}
470
471	if (chip->num_type_reg) {
472		d->type_buf_def = kcalloc(chip->num_type_reg,
473					sizeof(unsigned int), GFP_KERNEL);
474		if (!d->type_buf_def)
475			goto err_alloc;
476
477		d->type_buf = kcalloc(chip->num_type_reg, sizeof(unsigned int),
478				      GFP_KERNEL);
479		if (!d->type_buf)
480			goto err_alloc;
481	}
482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
483	d->irq_chip = regmap_irq_chip;
484	d->irq_chip.name = chip->name;
485	d->irq = irq;
486	d->map = map;
487	d->chip = chip;
488	d->irq_base = irq_base;
489
490	if (chip->irq_reg_stride)
491		d->irq_reg_stride = chip->irq_reg_stride;
492	else
493		d->irq_reg_stride = 1;
494
495	if (chip->type_reg_stride)
496		d->type_reg_stride = chip->type_reg_stride;
497	else
498		d->type_reg_stride = 1;
499
500	if (!map->use_single_read && map->reg_stride == 1 &&
501	    d->irq_reg_stride == 1) {
502		d->status_reg_buf = kmalloc_array(chip->num_regs,
503						  map->format.val_bytes,
504						  GFP_KERNEL);
505		if (!d->status_reg_buf)
506			goto err_alloc;
507	}
508
509	mutex_init(&d->lock);
510
511	for (i = 0; i < chip->num_irqs; i++)
512		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
513			|= chip->irqs[i].mask;
514
515	/* Mask all the interrupts by default */
516	for (i = 0; i < chip->num_regs; i++) {
517		d->mask_buf[i] = d->mask_buf_def[i];
518		reg = chip->mask_base +
519			(i * map->reg_stride * d->irq_reg_stride);
520		if (chip->mask_invert)
521			ret = regmap_update_bits(map, reg,
522					 d->mask_buf[i], ~d->mask_buf[i]);
523		else if (d->chip->unmask_base) {
524			unmask_offset = d->chip->unmask_base -
525					d->chip->mask_base;
526			ret = regmap_update_bits(d->map,
527					reg + unmask_offset,
528					d->mask_buf[i],
529					d->mask_buf[i]);
530		} else
531			ret = regmap_update_bits(map, reg,
532					 d->mask_buf[i], d->mask_buf[i]);
533		if (ret != 0) {
534			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
535				reg, ret);
536			goto err_alloc;
 
 
 
 
 
 
 
 
 
 
 
537		}
538
539		if (!chip->init_ack_masked)
540			continue;
541
542		/* Ack masked but set interrupts */
543		reg = chip->status_base +
544			(i * map->reg_stride * d->irq_reg_stride);
545		ret = regmap_read(map, reg, &d->status_buf[i]);
546		if (ret != 0) {
547			dev_err(map->dev, "Failed to read IRQ status: %d\n",
548				ret);
549			goto err_alloc;
 
 
 
 
550		}
551
 
 
 
552		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
553			reg = chip->ack_base +
554				(i * map->reg_stride * d->irq_reg_stride);
555			if (chip->ack_invert)
556				ret = regmap_write(map, reg,
557					~(d->status_buf[i] & d->mask_buf[i]));
558			else
559				ret = regmap_write(map, reg,
560					d->status_buf[i] & d->mask_buf[i]);
 
 
 
 
 
 
561			if (ret != 0) {
562				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
563					reg, ret);
564				goto err_alloc;
565			}
566		}
567	}
568
569	/* Wake is disabled by default */
570	if (d->wake_buf) {
571		for (i = 0; i < chip->num_regs; i++) {
572			d->wake_buf[i] = d->mask_buf_def[i];
573			reg = chip->wake_base +
574				(i * map->reg_stride * d->irq_reg_stride);
575
576			if (chip->wake_invert)
577				ret = regmap_update_bits(map, reg,
578							 d->mask_buf_def[i],
579							 0);
580			else
581				ret = regmap_update_bits(map, reg,
582							 d->mask_buf_def[i],
583							 d->wake_buf[i]);
584			if (ret != 0) {
585				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
586					reg, ret);
587				goto err_alloc;
588			}
589		}
590	}
591
592	if (chip->num_type_reg) {
593		for (i = 0; i < chip->num_irqs; i++) {
594			reg = chip->irqs[i].type_reg_offset / map->reg_stride;
595			d->type_buf_def[reg] |= chip->irqs[i].type_rising_mask |
596					chip->irqs[i].type_falling_mask;
597		}
598		for (i = 0; i < chip->num_type_reg; ++i) {
599			if (!d->type_buf_def[i])
600				continue;
601
602			reg = chip->type_base +
603				(i * map->reg_stride * d->type_reg_stride);
604			if (chip->type_invert)
605				ret = regmap_update_bits(map, reg,
606					d->type_buf_def[i], 0xFF);
607			else
608				ret = regmap_update_bits(map, reg,
609					d->type_buf_def[i], 0x0);
610			if (ret != 0) {
611				dev_err(map->dev,
612					"Failed to set type in 0x%x: %x\n",
613					reg, ret);
614				goto err_alloc;
615			}
616		}
617	}
618
619	if (irq_base)
620		d->domain = irq_domain_add_legacy(map->dev->of_node,
621						  chip->num_irqs, irq_base, 0,
622						  &regmap_domain_ops, d);
623	else
624		d->domain = irq_domain_add_linear(map->dev->of_node,
625						  chip->num_irqs,
626						  &regmap_domain_ops, d);
627	if (!d->domain) {
628		dev_err(map->dev, "Failed to create IRQ domain\n");
629		ret = -ENOMEM;
630		goto err_alloc;
631	}
632
633	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
634				   irq_flags | IRQF_ONESHOT,
635				   chip->name, d);
636	if (ret != 0) {
637		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
638			irq, chip->name, ret);
639		goto err_domain;
640	}
641
642	*data = d;
643
644	return 0;
645
646err_domain:
647	/* Should really dispose of the domain but... */
648err_alloc:
649	kfree(d->type_buf);
650	kfree(d->type_buf_def);
651	kfree(d->wake_buf);
652	kfree(d->mask_buf_def);
653	kfree(d->mask_buf);
654	kfree(d->status_buf);
655	kfree(d->status_reg_buf);
 
 
 
 
 
656	kfree(d);
657	return ret;
658}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
659EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
660
661/**
662 * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
663 *
664 * @irq: Primary IRQ for the device
665 * @d:   regmap_irq_chip_data allocated by regmap_add_irq_chip()
666 *
667 * This function also dispose all mapped irq on chip.
668 */
669void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
670{
671	unsigned int virq;
672	int hwirq;
673
674	if (!d)
675		return;
676
677	free_irq(irq, d);
678
679	/* Dispose all virtual irq from irq domain before removing it */
680	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
681		/* Ignore hwirq if holes in the IRQ list */
682		if (!d->chip->irqs[hwirq].mask)
683			continue;
684
685		/*
686		 * Find the virtual irq of hwirq on chip and if it is
687		 * there then dispose it
688		 */
689		virq = irq_find_mapping(d->domain, hwirq);
690		if (virq)
691			irq_dispose_mapping(virq);
692	}
693
694	irq_domain_remove(d->domain);
695	kfree(d->type_buf);
696	kfree(d->type_buf_def);
697	kfree(d->wake_buf);
698	kfree(d->mask_buf_def);
699	kfree(d->mask_buf);
700	kfree(d->status_reg_buf);
701	kfree(d->status_buf);
 
 
 
 
 
702	kfree(d);
703}
704EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
705
706static void devm_regmap_irq_chip_release(struct device *dev, void *res)
707{
708	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
709
710	regmap_del_irq_chip(d->irq, d);
711}
712
713static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
714
715{
716	struct regmap_irq_chip_data **r = res;
717
718	if (!r || !*r) {
719		WARN_ON(!r || !*r);
720		return 0;
721	}
722	return *r == data;
723}
724
725/**
726 * devm_regmap_add_irq_chip(): Resource manager regmap_add_irq_chip()
727 *
728 * @dev:       The device pointer on which irq_chip belongs to.
729 * @map:       The regmap for the device.
730 * @irq:       The IRQ the device uses to signal interrupts
 
731 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
732 * @chip:      Configuration for the interrupt controller.
733 * @data:      Runtime data structure for the controller, allocated on success
 
734 *
735 * Returns 0 on success or an errno on failure.
736 *
737 * The regmap_irq_chip data automatically be released when the device is
738 * unbound.
739 */
740int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
741			     int irq_flags, int irq_base,
742			     const struct regmap_irq_chip *chip,
743			     struct regmap_irq_chip_data **data)
 
 
744{
745	struct regmap_irq_chip_data **ptr, *d;
746	int ret;
747
748	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
749			   GFP_KERNEL);
750	if (!ptr)
751		return -ENOMEM;
752
753	ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
754				  chip, &d);
755	if (ret < 0) {
756		devres_free(ptr);
757		return ret;
758	}
759
760	*ptr = d;
761	devres_add(dev, ptr);
762	*data = d;
763	return 0;
764}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
765EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
766
767/**
768 * devm_regmap_del_irq_chip(): Resource managed regmap_del_irq_chip()
769 *
770 * @dev: Device for which which resource was allocated.
771 * @irq: Primary IRQ for the device
772 * @d:   regmap_irq_chip_data allocated by regmap_add_irq_chip()
 
 
773 */
774void devm_regmap_del_irq_chip(struct device *dev, int irq,
775			      struct regmap_irq_chip_data *data)
776{
777	int rc;
778
779	WARN_ON(irq != data->irq);
780	rc = devres_release(dev, devm_regmap_irq_chip_release,
781			    devm_regmap_irq_chip_match, data);
782
783	if (rc != 0)
784		WARN_ON(rc);
785}
786EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
787
788/**
789 * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
 
 
790 *
791 * Useful for drivers to request their own IRQs.
792 *
793 * @data: regmap_irq controller to operate on.
794 */
795int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
796{
797	WARN_ON(!data->irq_base);
798	return data->irq_base;
799}
800EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
801
802/**
803 * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
 
 
 
804 *
805 * Useful for drivers to request their own IRQs.
806 *
807 * @data: regmap_irq controller to operate on.
808 * @irq: index of the interrupt requested in the chip IRQs
809 */
810int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
811{
812	/* Handle holes in the IRQ list */
813	if (!data->chip->irqs[irq].mask)
814		return -EINVAL;
815
816	return irq_create_mapping(data->domain, irq);
817}
818EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
819
820/**
821 * regmap_irq_get_domain(): Retrieve the irq_domain for the chip
 
 
822 *
823 * Useful for drivers to request their own IRQs and for integration
824 * with subsystems.  For ease of integration NULL is accepted as a
825 * domain, allowing devices to just call this even if no domain is
826 * allocated.
827 *
828 * @data: regmap_irq controller to operate on.
829 */
830struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
831{
832	if (data)
833		return data->domain;
834	else
835		return NULL;
836}
837EXPORT_SYMBOL_GPL(regmap_irq_get_domain);