Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *    Time of day based timer functions.
  4 *
  5 *  S390 version
  6 *    Copyright IBM Corp. 1999, 2008
  7 *    Author(s): Hartmut Penner (hp@de.ibm.com),
  8 *               Martin Schwidefsky (schwidefsky@de.ibm.com),
  9 *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
 10 *
 11 *  Derived from "arch/i386/kernel/time.c"
 12 *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
 13 */
 14
 15#define KMSG_COMPONENT "time"
 16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
 17
 18#include <linux/kernel_stat.h>
 19#include <linux/errno.h>
 20#include <linux/export.h>
 21#include <linux/sched.h>
 22#include <linux/sched/clock.h>
 23#include <linux/kernel.h>
 24#include <linux/param.h>
 25#include <linux/string.h>
 26#include <linux/mm.h>
 27#include <linux/interrupt.h>
 28#include <linux/cpu.h>
 29#include <linux/stop_machine.h>
 30#include <linux/time.h>
 31#include <linux/device.h>
 32#include <linux/delay.h>
 33#include <linux/init.h>
 34#include <linux/smp.h>
 35#include <linux/types.h>
 36#include <linux/profile.h>
 37#include <linux/timex.h>
 38#include <linux/notifier.h>
 39#include <linux/timekeeper_internal.h>
 40#include <linux/clockchips.h>
 41#include <linux/gfp.h>
 42#include <linux/kprobes.h>
 43#include <linux/uaccess.h>
 44#include <vdso/vsyscall.h>
 45#include <vdso/clocksource.h>
 46#include <vdso/helpers.h>
 47#include <asm/facility.h>
 48#include <asm/delay.h>
 49#include <asm/div64.h>
 50#include <asm/vdso.h>
 51#include <asm/irq.h>
 52#include <asm/irq_regs.h>
 53#include <asm/vtimer.h>
 54#include <asm/stp.h>
 55#include <asm/cio.h>
 56#include "entry.h"
 57
 58union tod_clock tod_clock_base __section(".data");
 59EXPORT_SYMBOL_GPL(tod_clock_base);
 60
 61u64 clock_comparator_max = -1ULL;
 62EXPORT_SYMBOL_GPL(clock_comparator_max);
 63
 64static DEFINE_PER_CPU(struct clock_event_device, comparators);
 65
 66ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
 67EXPORT_SYMBOL(s390_epoch_delta_notifier);
 68
 69unsigned char ptff_function_mask[16];
 70
 71static unsigned long lpar_offset;
 72static unsigned long initial_leap_seconds;
 73static unsigned long tod_steering_end;
 74static long tod_steering_delta;
 75
 76/*
 77 * Get time offsets with PTFF
 78 */
 79void __init time_early_init(void)
 80{
 81	struct ptff_qto qto;
 82	struct ptff_qui qui;
 83	int cs;
 84
 85	/* Initialize TOD steering parameters */
 86	tod_steering_end = tod_clock_base.tod;
 87	for (cs = 0; cs < CS_BASES; cs++)
 88		vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
 89
 90	if (!test_facility(28))
 91		return;
 92
 93	ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
 94
 95	/* get LPAR offset */
 96	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
 97		lpar_offset = qto.tod_epoch_difference;
 98
 99	/* get initial leap seconds */
100	if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
101		initial_leap_seconds = (unsigned long)
102			((long) qui.old_leap * 4096000000L);
103}
104
105unsigned long long noinstr sched_clock_noinstr(void)
106{
107	return tod_to_ns(__get_tod_clock_monotonic());
108}
109
110/*
111 * Scheduler clock - returns current time in nanosec units.
112 */
113unsigned long long notrace sched_clock(void)
114{
115	return tod_to_ns(get_tod_clock_monotonic());
116}
117NOKPROBE_SYMBOL(sched_clock);
118
119static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt)
 
 
 
120{
121	unsigned long rem, sec, nsec;
 
 
122
123	sec = clk->us;
124	rem = do_div(sec, 1000000);
125	nsec = ((clk->sus + (rem << 12)) * 125) >> 9;
 
 
 
126	xt->tv_sec = sec;
127	xt->tv_nsec = nsec;
 
128}
 
129
130void clock_comparator_work(void)
131{
132	struct clock_event_device *cd;
133
134	S390_lowcore.clock_comparator = clock_comparator_max;
135	cd = this_cpu_ptr(&comparators);
136	cd->event_handler(cd);
137}
138
139static int s390_next_event(unsigned long delta,
140			   struct clock_event_device *evt)
141{
142	S390_lowcore.clock_comparator = get_tod_clock() + delta;
143	set_clock_comparator(S390_lowcore.clock_comparator);
144	return 0;
145}
146
147/*
148 * Set up lowcore and control register of the current cpu to
149 * enable TOD clock and clock comparator interrupts.
150 */
151void init_cpu_timer(void)
152{
153	struct clock_event_device *cd;
154	int cpu;
155
156	S390_lowcore.clock_comparator = clock_comparator_max;
157	set_clock_comparator(S390_lowcore.clock_comparator);
158
159	cpu = smp_processor_id();
160	cd = &per_cpu(comparators, cpu);
161	cd->name		= "comparator";
162	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
163	cd->mult		= 16777;
164	cd->shift		= 12;
165	cd->min_delta_ns	= 1;
166	cd->min_delta_ticks	= 1;
167	cd->max_delta_ns	= LONG_MAX;
168	cd->max_delta_ticks	= ULONG_MAX;
169	cd->rating		= 400;
170	cd->cpumask		= cpumask_of(cpu);
171	cd->set_next_event	= s390_next_event;
172
173	clockevents_register_device(cd);
174
175	/* Enable clock comparator timer interrupt. */
176	local_ctl_set_bit(0, CR0_CLOCK_COMPARATOR_SUBMASK_BIT);
177
178	/* Always allow the timing alert external interrupt. */
179	local_ctl_set_bit(0, CR0_ETR_SUBMASK_BIT);
180}
181
182static void clock_comparator_interrupt(struct ext_code ext_code,
183				       unsigned int param32,
184				       unsigned long param64)
185{
186	inc_irq_stat(IRQEXT_CLK);
187	if (S390_lowcore.clock_comparator == clock_comparator_max)
188		set_clock_comparator(S390_lowcore.clock_comparator);
189}
190
191static void stp_timing_alert(struct stp_irq_parm *);
192
193static void timing_alert_interrupt(struct ext_code ext_code,
194				   unsigned int param32, unsigned long param64)
195{
196	inc_irq_stat(IRQEXT_TLA);
197	if (param32 & 0x00038000)
198		stp_timing_alert((struct stp_irq_parm *) &param32);
199}
200
201static void stp_reset(void);
202
203void read_persistent_clock64(struct timespec64 *ts)
204{
205	union tod_clock clk;
206	u64 delta;
207
208	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
209	store_tod_clock_ext(&clk);
210	clk.eitod -= delta;
211	ext_to_timespec64(&clk, ts);
212}
213
214void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
215						 struct timespec64 *boot_offset)
216{
217	struct timespec64 boot_time;
218	union tod_clock clk;
219	u64 delta;
220
221	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
222	clk = tod_clock_base;
223	clk.eitod -= delta;
224	ext_to_timespec64(&clk, &boot_time);
225
226	read_persistent_clock64(wall_time);
227	*boot_offset = timespec64_sub(*wall_time, boot_time);
228}
229
230static u64 read_tod_clock(struct clocksource *cs)
231{
232	unsigned long now, adj;
233
234	preempt_disable(); /* protect from changes to steering parameters */
235	now = get_tod_clock();
236	adj = tod_steering_end - now;
237	if (unlikely((s64) adj > 0))
238		/*
239		 * manually steer by 1 cycle every 2^16 cycles. This
240		 * corresponds to shifting the tod delta by 15. 1s is
241		 * therefore steered in ~9h. The adjust will decrease
242		 * over time, until it finally reaches 0.
243		 */
244		now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
245	preempt_enable();
246	return now;
247}
248
249static struct clocksource clocksource_tod = {
250	.name		= "tod",
251	.rating		= 400,
252	.read		= read_tod_clock,
253	.mask		= CLOCKSOURCE_MASK(64),
254	.mult		= 1000,
255	.shift		= 12,
256	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
257	.vdso_clock_mode = VDSO_CLOCKMODE_TOD,
258};
259
260struct clocksource * __init clocksource_default_clock(void)
261{
262	return &clocksource_tod;
263}
264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265/*
266 * Initialize the TOD clock and the CPU timer of
267 * the boot cpu.
268 */
269void __init time_init(void)
270{
271	/* Reset time synchronization interfaces. */
272	stp_reset();
273
274	/* request the clock comparator external interrupt */
275	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
276		panic("Couldn't request external interrupt 0x1004");
277
278	/* request the timing alert external interrupt */
279	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
280		panic("Couldn't request external interrupt 0x1406");
281
282	if (__clocksource_register(&clocksource_tod) != 0)
283		panic("Could not register TOD clock source");
284
285	/* Enable TOD clock interrupts on the boot cpu. */
286	init_cpu_timer();
287
288	/* Enable cpu timer interrupts on the boot cpu. */
289	vtime_init();
290}
291
292static DEFINE_PER_CPU(atomic_t, clock_sync_word);
293static DEFINE_MUTEX(stp_mutex);
294static unsigned long clock_sync_flags;
295
296#define CLOCK_SYNC_HAS_STP		0
297#define CLOCK_SYNC_STP			1
298#define CLOCK_SYNC_STPINFO_VALID	2
299
300/*
301 * The get_clock function for the physical clock. It will get the current
302 * TOD clock, subtract the LPAR offset and write the result to *clock.
303 * The function returns 0 if the clock is in sync with the external time
304 * source. If the clock mode is local it will return -EOPNOTSUPP and
305 * -EAGAIN if the clock is not in sync with the external reference.
306 */
307int get_phys_clock(unsigned long *clock)
308{
309	atomic_t *sw_ptr;
310	unsigned int sw0, sw1;
311
312	sw_ptr = &get_cpu_var(clock_sync_word);
313	sw0 = atomic_read(sw_ptr);
314	*clock = get_tod_clock() - lpar_offset;
315	sw1 = atomic_read(sw_ptr);
316	put_cpu_var(clock_sync_word);
317	if (sw0 == sw1 && (sw0 & 0x80000000U))
318		/* Success: time is in sync. */
319		return 0;
320	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
321		return -EOPNOTSUPP;
322	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
323		return -EACCES;
324	return -EAGAIN;
325}
326EXPORT_SYMBOL(get_phys_clock);
327
328/*
329 * Make get_phys_clock() return -EAGAIN.
330 */
331static void disable_sync_clock(void *dummy)
332{
333	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
334	/*
335	 * Clear the in-sync bit 2^31. All get_phys_clock calls will
336	 * fail until the sync bit is turned back on. In addition
337	 * increase the "sequence" counter to avoid the race of an
338	 * stp event and the complete recovery against get_phys_clock.
339	 */
340	atomic_andnot(0x80000000, sw_ptr);
341	atomic_inc(sw_ptr);
342}
343
344/*
345 * Make get_phys_clock() return 0 again.
346 * Needs to be called from a context disabled for preemption.
347 */
348static void enable_sync_clock(void)
349{
350	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
351	atomic_or(0x80000000, sw_ptr);
352}
353
354/*
355 * Function to check if the clock is in sync.
356 */
357static inline int check_sync_clock(void)
358{
359	atomic_t *sw_ptr;
360	int rc;
361
362	sw_ptr = &get_cpu_var(clock_sync_word);
363	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
364	put_cpu_var(clock_sync_word);
365	return rc;
366}
367
368/*
369 * Apply clock delta to the global data structures.
370 * This is called once on the CPU that performed the clock sync.
371 */
372static void clock_sync_global(long delta)
373{
374	unsigned long now, adj;
375	struct ptff_qto qto;
376	int cs;
377
378	/* Fixup the monotonic sched clock. */
379	tod_clock_base.eitod += delta;
380	/* Adjust TOD steering parameters. */
 
381	now = get_tod_clock();
382	adj = tod_steering_end - now;
383	if (unlikely((s64) adj >= 0))
384		/* Calculate how much of the old adjustment is left. */
385		tod_steering_delta = (tod_steering_delta < 0) ?
386			-(adj >> 15) : (adj >> 15);
387	tod_steering_delta += delta;
388	if ((abs(tod_steering_delta) >> 48) != 0)
389		panic("TOD clock sync offset %li is too large to drift\n",
390		      tod_steering_delta);
391	tod_steering_end = now + (abs(tod_steering_delta) << 15);
392	for (cs = 0; cs < CS_BASES; cs++) {
393		vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
394		vdso_data[cs].arch_data.tod_steering_delta = tod_steering_delta;
395	}
396
397	/* Update LPAR offset. */
398	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
399		lpar_offset = qto.tod_epoch_difference;
400	/* Call the TOD clock change notifier. */
401	atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
402}
403
404/*
405 * Apply clock delta to the per-CPU data structures of this CPU.
406 * This is called for each online CPU after the call to clock_sync_global.
407 */
408static void clock_sync_local(long delta)
409{
410	/* Add the delta to the clock comparator. */
411	if (S390_lowcore.clock_comparator != clock_comparator_max) {
412		S390_lowcore.clock_comparator += delta;
413		set_clock_comparator(S390_lowcore.clock_comparator);
414	}
415	/* Adjust the last_update_clock time-stamp. */
416	S390_lowcore.last_update_clock += delta;
417}
418
419/* Single threaded workqueue used for stp sync events */
420static struct workqueue_struct *time_sync_wq;
421
422static void __init time_init_wq(void)
423{
424	if (time_sync_wq)
425		return;
426	time_sync_wq = create_singlethread_workqueue("timesync");
427}
428
429struct clock_sync_data {
430	atomic_t cpus;
431	int in_sync;
432	long clock_delta;
433};
434
435/*
436 * Server Time Protocol (STP) code.
437 */
438static bool stp_online;
439static struct stp_sstpi stp_info;
440static void *stp_page;
441
442static void stp_work_fn(struct work_struct *work);
 
443static DECLARE_WORK(stp_work, stp_work_fn);
444static struct timer_list stp_timer;
445
446static int __init early_parse_stp(char *p)
447{
448	return kstrtobool(p, &stp_online);
449}
450early_param("stp", early_parse_stp);
451
452/*
453 * Reset STP attachment.
454 */
455static void __init stp_reset(void)
456{
457	int rc;
458
459	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
460	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
461	if (rc == 0)
462		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
463	else if (stp_online) {
464		pr_warn("The real or virtual hardware system does not provide an STP interface\n");
465		free_page((unsigned long) stp_page);
466		stp_page = NULL;
467		stp_online = false;
468	}
469}
470
471static void stp_timeout(struct timer_list *unused)
472{
473	queue_work(time_sync_wq, &stp_work);
474}
475
476static int __init stp_init(void)
477{
478	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
479		return 0;
480	timer_setup(&stp_timer, stp_timeout, 0);
481	time_init_wq();
482	if (!stp_online)
483		return 0;
484	queue_work(time_sync_wq, &stp_work);
485	return 0;
486}
487
488arch_initcall(stp_init);
489
490/*
491 * STP timing alert. There are three causes:
492 * 1) timing status change
493 * 2) link availability change
494 * 3) time control parameter change
495 * In all three cases we are only interested in the clock source state.
496 * If a STP clock source is now available use it.
497 */
498static void stp_timing_alert(struct stp_irq_parm *intparm)
499{
500	if (intparm->tsc || intparm->lac || intparm->tcpc)
501		queue_work(time_sync_wq, &stp_work);
502}
503
504/*
505 * STP sync check machine check. This is called when the timing state
506 * changes from the synchronized state to the unsynchronized state.
507 * After a STP sync check the clock is not in sync. The machine check
508 * is broadcasted to all cpus at the same time.
509 */
510int stp_sync_check(void)
511{
512	disable_sync_clock(NULL);
513	return 1;
514}
515
516/*
517 * STP island condition machine check. This is called when an attached
518 * server  attempts to communicate over an STP link and the servers
519 * have matching CTN ids and have a valid stratum-1 configuration
520 * but the configurations do not match.
521 */
522int stp_island_check(void)
523{
524	disable_sync_clock(NULL);
525	return 1;
526}
527
528void stp_queue_work(void)
529{
530	queue_work(time_sync_wq, &stp_work);
531}
532
533static int __store_stpinfo(void)
534{
535	int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
536
537	if (rc)
538		clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
539	else
540		set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
541	return rc;
542}
543
544static int stpinfo_valid(void)
545{
546	return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
547}
548
549static int stp_sync_clock(void *data)
550{
551	struct clock_sync_data *sync = data;
552	long clock_delta, flags;
553	static int first;
554	int rc;
555
556	enable_sync_clock();
557	if (xchg(&first, 1) == 0) {
558		/* Wait until all other cpus entered the sync function. */
559		while (atomic_read(&sync->cpus) != 0)
560			cpu_relax();
561		rc = 0;
562		if (stp_info.todoff || stp_info.tmd != 2) {
563			flags = vdso_update_begin();
 
564			rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
565					&clock_delta);
566			if (rc == 0) {
567				sync->clock_delta = clock_delta;
568				clock_sync_global(clock_delta);
569				rc = __store_stpinfo();
 
570				if (rc == 0 && stp_info.tmd != 2)
571					rc = -EAGAIN;
572			}
573			vdso_update_end(flags);
574		}
575		sync->in_sync = rc ? -EAGAIN : 1;
576		xchg(&first, 0);
577	} else {
578		/* Slave */
579		atomic_dec(&sync->cpus);
580		/* Wait for in_sync to be set. */
581		while (READ_ONCE(sync->in_sync) == 0)
582			__udelay(1);
583	}
584	if (sync->in_sync != 1)
585		/* Didn't work. Clear per-cpu in sync bit again. */
586		disable_sync_clock(NULL);
587	/* Apply clock delta to per-CPU fields of this CPU. */
588	clock_sync_local(sync->clock_delta);
589
590	return 0;
591}
592
593static int stp_clear_leap(void)
594{
595	struct __kernel_timex txc;
596	int ret;
597
598	memset(&txc, 0, sizeof(txc));
599
600	ret = do_adjtimex(&txc);
601	if (ret < 0)
602		return ret;
603
604	txc.modes = ADJ_STATUS;
605	txc.status &= ~(STA_INS|STA_DEL);
606	return do_adjtimex(&txc);
607}
608
609static void stp_check_leap(void)
610{
611	struct stp_stzi stzi;
612	struct stp_lsoib *lsoib = &stzi.lsoib;
613	struct __kernel_timex txc;
614	int64_t timediff;
615	int leapdiff, ret;
616
617	if (!stp_info.lu || !check_sync_clock()) {
618		/*
619		 * Either a scheduled leap second was removed by the operator,
620		 * or STP is out of sync. In both cases, clear the leap second
621		 * kernel flags.
622		 */
623		if (stp_clear_leap() < 0)
624			pr_err("failed to clear leap second flags\n");
625		return;
626	}
627
628	if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) {
629		pr_err("stzi failed\n");
630		return;
631	}
632
633	timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC;
634	leapdiff = lsoib->nlso - lsoib->also;
635
636	if (leapdiff != 1 && leapdiff != -1) {
637		pr_err("Cannot schedule %d leap seconds\n", leapdiff);
638		return;
639	}
640
641	if (timediff < 0) {
642		if (stp_clear_leap() < 0)
643			pr_err("failed to clear leap second flags\n");
644	} else if (timediff < 7200) {
645		memset(&txc, 0, sizeof(txc));
646		ret = do_adjtimex(&txc);
647		if (ret < 0)
648			return;
649
650		txc.modes = ADJ_STATUS;
651		if (leapdiff > 0)
652			txc.status |= STA_INS;
653		else
654			txc.status |= STA_DEL;
655		ret = do_adjtimex(&txc);
656		if (ret < 0)
657			pr_err("failed to set leap second flags\n");
658		/* arm Timer to clear leap second flags */
659		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC));
660	} else {
661		/* The day the leap second is scheduled for hasn't been reached. Retry
662		 * in one hour.
663		 */
664		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC));
665	}
666}
667
668/*
669 * STP work. Check for the STP state and take over the clock
670 * synchronization if the STP clock source is usable.
671 */
672static void stp_work_fn(struct work_struct *work)
673{
674	struct clock_sync_data stp_sync;
675	int rc;
676
677	/* prevent multiple execution. */
678	mutex_lock(&stp_mutex);
679
680	if (!stp_online) {
681		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
682		del_timer_sync(&stp_timer);
683		goto out_unlock;
684	}
685
686	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL);
687	if (rc)
688		goto out_unlock;
689
690	rc = __store_stpinfo();
691	if (rc || stp_info.c == 0)
692		goto out_unlock;
693
694	/* Skip synchronization if the clock is already in sync. */
695	if (!check_sync_clock()) {
696		memset(&stp_sync, 0, sizeof(stp_sync));
697		cpus_read_lock();
698		atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
699		stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
700		cpus_read_unlock();
701	}
 
702
703	if (!check_sync_clock())
704		/*
705		 * There is a usable clock but the synchronization failed.
706		 * Retry after a second.
707		 */
708		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC));
709	else if (stp_info.lu)
710		stp_check_leap();
711
712out_unlock:
713	mutex_unlock(&stp_mutex);
714}
715
716/*
717 * STP subsys sysfs interface functions
718 */
719static struct bus_type stp_subsys = {
720	.name		= "stp",
721	.dev_name	= "stp",
722};
723
724static ssize_t ctn_id_show(struct device *dev,
725				struct device_attribute *attr,
726				char *buf)
727{
728	ssize_t ret = -ENODATA;
729
730	mutex_lock(&stp_mutex);
731	if (stpinfo_valid())
732		ret = sprintf(buf, "%016lx\n",
733			      *(unsigned long *) stp_info.ctnid);
734	mutex_unlock(&stp_mutex);
735	return ret;
736}
737
738static DEVICE_ATTR_RO(ctn_id);
739
740static ssize_t ctn_type_show(struct device *dev,
741				struct device_attribute *attr,
742				char *buf)
743{
744	ssize_t ret = -ENODATA;
745
746	mutex_lock(&stp_mutex);
747	if (stpinfo_valid())
748		ret = sprintf(buf, "%i\n", stp_info.ctn);
749	mutex_unlock(&stp_mutex);
750	return ret;
751}
752
753static DEVICE_ATTR_RO(ctn_type);
754
755static ssize_t dst_offset_show(struct device *dev,
756				   struct device_attribute *attr,
757				   char *buf)
758{
759	ssize_t ret = -ENODATA;
760
761	mutex_lock(&stp_mutex);
762	if (stpinfo_valid() && (stp_info.vbits & 0x2000))
763		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
764	mutex_unlock(&stp_mutex);
765	return ret;
766}
767
768static DEVICE_ATTR_RO(dst_offset);
769
770static ssize_t leap_seconds_show(struct device *dev,
771					struct device_attribute *attr,
772					char *buf)
773{
774	ssize_t ret = -ENODATA;
775
776	mutex_lock(&stp_mutex);
777	if (stpinfo_valid() && (stp_info.vbits & 0x8000))
778		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
779	mutex_unlock(&stp_mutex);
780	return ret;
781}
782
783static DEVICE_ATTR_RO(leap_seconds);
784
785static ssize_t leap_seconds_scheduled_show(struct device *dev,
786						struct device_attribute *attr,
787						char *buf)
788{
789	struct stp_stzi stzi;
790	ssize_t ret;
791
792	mutex_lock(&stp_mutex);
793	if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) {
794		mutex_unlock(&stp_mutex);
795		return -ENODATA;
796	}
797
798	ret = chsc_stzi(stp_page, &stzi, sizeof(stzi));
799	mutex_unlock(&stp_mutex);
800	if (ret < 0)
801		return ret;
802
803	if (!stzi.lsoib.p)
804		return sprintf(buf, "0,0\n");
805
806	return sprintf(buf, "%lu,%d\n",
807		       tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC,
808		       stzi.lsoib.nlso - stzi.lsoib.also);
809}
810
811static DEVICE_ATTR_RO(leap_seconds_scheduled);
812
813static ssize_t stratum_show(struct device *dev,
814				struct device_attribute *attr,
815				char *buf)
816{
817	ssize_t ret = -ENODATA;
818
819	mutex_lock(&stp_mutex);
820	if (stpinfo_valid())
821		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
822	mutex_unlock(&stp_mutex);
823	return ret;
824}
825
826static DEVICE_ATTR_RO(stratum);
827
828static ssize_t time_offset_show(struct device *dev,
829				struct device_attribute *attr,
830				char *buf)
831{
832	ssize_t ret = -ENODATA;
833
834	mutex_lock(&stp_mutex);
835	if (stpinfo_valid() && (stp_info.vbits & 0x0800))
836		ret = sprintf(buf, "%i\n", (int) stp_info.tto);
837	mutex_unlock(&stp_mutex);
838	return ret;
839}
840
841static DEVICE_ATTR_RO(time_offset);
842
843static ssize_t time_zone_offset_show(struct device *dev,
844				struct device_attribute *attr,
845				char *buf)
846{
847	ssize_t ret = -ENODATA;
848
849	mutex_lock(&stp_mutex);
850	if (stpinfo_valid() && (stp_info.vbits & 0x4000))
851		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
852	mutex_unlock(&stp_mutex);
853	return ret;
854}
855
856static DEVICE_ATTR_RO(time_zone_offset);
 
857
858static ssize_t timing_mode_show(struct device *dev,
859				struct device_attribute *attr,
860				char *buf)
861{
862	ssize_t ret = -ENODATA;
863
864	mutex_lock(&stp_mutex);
865	if (stpinfo_valid())
866		ret = sprintf(buf, "%i\n", stp_info.tmd);
867	mutex_unlock(&stp_mutex);
868	return ret;
869}
870
871static DEVICE_ATTR_RO(timing_mode);
872
873static ssize_t timing_state_show(struct device *dev,
874				struct device_attribute *attr,
875				char *buf)
876{
877	ssize_t ret = -ENODATA;
878
879	mutex_lock(&stp_mutex);
880	if (stpinfo_valid())
881		ret = sprintf(buf, "%i\n", stp_info.tst);
882	mutex_unlock(&stp_mutex);
883	return ret;
884}
885
886static DEVICE_ATTR_RO(timing_state);
887
888static ssize_t online_show(struct device *dev,
889				struct device_attribute *attr,
890				char *buf)
891{
892	return sprintf(buf, "%i\n", stp_online);
893}
894
895static ssize_t online_store(struct device *dev,
896				struct device_attribute *attr,
897				const char *buf, size_t count)
898{
899	unsigned int value;
900
901	value = simple_strtoul(buf, NULL, 0);
902	if (value != 0 && value != 1)
903		return -EINVAL;
904	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
905		return -EOPNOTSUPP;
906	mutex_lock(&stp_mutex);
907	stp_online = value;
908	if (stp_online)
909		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
910	else
911		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
912	queue_work(time_sync_wq, &stp_work);
913	mutex_unlock(&stp_mutex);
914	return count;
915}
916
917/*
918 * Can't use DEVICE_ATTR because the attribute should be named
919 * stp/online but dev_attr_online already exists in this file ..
920 */
921static DEVICE_ATTR_RW(online);
 
 
 
 
922
923static struct attribute *stp_dev_attrs[] = {
924	&dev_attr_ctn_id.attr,
925	&dev_attr_ctn_type.attr,
926	&dev_attr_dst_offset.attr,
927	&dev_attr_leap_seconds.attr,
928	&dev_attr_online.attr,
929	&dev_attr_leap_seconds_scheduled.attr,
930	&dev_attr_stratum.attr,
931	&dev_attr_time_offset.attr,
932	&dev_attr_time_zone_offset.attr,
933	&dev_attr_timing_mode.attr,
934	&dev_attr_timing_state.attr,
935	NULL
936};
937ATTRIBUTE_GROUPS(stp_dev);
938
939static int __init stp_init_sysfs(void)
940{
941	return subsys_system_register(&stp_subsys, stp_dev_groups);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
942}
943
944device_initcall(stp_init_sysfs);
v4.10.11
 
  1/*
  2 *    Time of day based timer functions.
  3 *
  4 *  S390 version
  5 *    Copyright IBM Corp. 1999, 2008
  6 *    Author(s): Hartmut Penner (hp@de.ibm.com),
  7 *               Martin Schwidefsky (schwidefsky@de.ibm.com),
  8 *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
  9 *
 10 *  Derived from "arch/i386/kernel/time.c"
 11 *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
 12 */
 13
 14#define KMSG_COMPONENT "time"
 15#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
 16
 17#include <linux/kernel_stat.h>
 18#include <linux/errno.h>
 19#include <linux/module.h>
 20#include <linux/sched.h>
 
 21#include <linux/kernel.h>
 22#include <linux/param.h>
 23#include <linux/string.h>
 24#include <linux/mm.h>
 25#include <linux/interrupt.h>
 26#include <linux/cpu.h>
 27#include <linux/stop_machine.h>
 28#include <linux/time.h>
 29#include <linux/device.h>
 30#include <linux/delay.h>
 31#include <linux/init.h>
 32#include <linux/smp.h>
 33#include <linux/types.h>
 34#include <linux/profile.h>
 35#include <linux/timex.h>
 36#include <linux/notifier.h>
 37#include <linux/timekeeper_internal.h>
 38#include <linux/clockchips.h>
 39#include <linux/gfp.h>
 40#include <linux/kprobes.h>
 41#include <linux/uaccess.h>
 
 
 
 42#include <asm/facility.h>
 43#include <asm/delay.h>
 44#include <asm/div64.h>
 45#include <asm/vdso.h>
 46#include <asm/irq.h>
 47#include <asm/irq_regs.h>
 48#include <asm/vtimer.h>
 49#include <asm/stp.h>
 50#include <asm/cio.h>
 51#include "entry.h"
 52
 53u64 sched_clock_base_cc = -1;	/* Force to data section. */
 54EXPORT_SYMBOL_GPL(sched_clock_base_cc);
 
 
 
 55
 56static DEFINE_PER_CPU(struct clock_event_device, comparators);
 57
 58ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
 59EXPORT_SYMBOL(s390_epoch_delta_notifier);
 60
 61unsigned char ptff_function_mask[16];
 62
 63static unsigned long long lpar_offset;
 64static unsigned long long initial_leap_seconds;
 65static unsigned long long tod_steering_end;
 66static long long tod_steering_delta;
 67
 68/*
 69 * Get time offsets with PTFF
 70 */
 71void __init time_early_init(void)
 72{
 73	struct ptff_qto qto;
 74	struct ptff_qui qui;
 
 75
 76	/* Initialize TOD steering parameters */
 77	tod_steering_end = sched_clock_base_cc;
 78	vdso_data->ts_end = tod_steering_end;
 
 79
 80	if (!test_facility(28))
 81		return;
 82
 83	ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
 84
 85	/* get LPAR offset */
 86	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
 87		lpar_offset = qto.tod_epoch_difference;
 88
 89	/* get initial leap seconds */
 90	if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
 91		initial_leap_seconds = (unsigned long long)
 92			((long) qui.old_leap * 4096000000L);
 93}
 94
 
 
 
 
 
 95/*
 96 * Scheduler clock - returns current time in nanosec units.
 97 */
 98unsigned long long notrace sched_clock(void)
 99{
100	return tod_to_ns(get_tod_clock_monotonic());
101}
102NOKPROBE_SYMBOL(sched_clock);
103
104/*
105 * Monotonic_clock - returns # of nanoseconds passed since time_init()
106 */
107unsigned long long monotonic_clock(void)
108{
109	return sched_clock();
110}
111EXPORT_SYMBOL(monotonic_clock);
112
113void tod_to_timeval(__u64 todval, struct timespec64 *xt)
114{
115	unsigned long long sec;
116
117	sec = todval >> 12;
118	do_div(sec, 1000000);
119	xt->tv_sec = sec;
120	todval -= (sec * 1000000) << 12;
121	xt->tv_nsec = ((todval * 1000) >> 12);
122}
123EXPORT_SYMBOL(tod_to_timeval);
124
125void clock_comparator_work(void)
126{
127	struct clock_event_device *cd;
128
129	S390_lowcore.clock_comparator = -1ULL;
130	cd = this_cpu_ptr(&comparators);
131	cd->event_handler(cd);
132}
133
134static int s390_next_event(unsigned long delta,
135			   struct clock_event_device *evt)
136{
137	S390_lowcore.clock_comparator = get_tod_clock() + delta;
138	set_clock_comparator(S390_lowcore.clock_comparator);
139	return 0;
140}
141
142/*
143 * Set up lowcore and control register of the current cpu to
144 * enable TOD clock and clock comparator interrupts.
145 */
146void init_cpu_timer(void)
147{
148	struct clock_event_device *cd;
149	int cpu;
150
151	S390_lowcore.clock_comparator = -1ULL;
152	set_clock_comparator(S390_lowcore.clock_comparator);
153
154	cpu = smp_processor_id();
155	cd = &per_cpu(comparators, cpu);
156	cd->name		= "comparator";
157	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
158	cd->mult		= 16777;
159	cd->shift		= 12;
160	cd->min_delta_ns	= 1;
 
161	cd->max_delta_ns	= LONG_MAX;
 
162	cd->rating		= 400;
163	cd->cpumask		= cpumask_of(cpu);
164	cd->set_next_event	= s390_next_event;
165
166	clockevents_register_device(cd);
167
168	/* Enable clock comparator timer interrupt. */
169	__ctl_set_bit(0,11);
170
171	/* Always allow the timing alert external interrupt. */
172	__ctl_set_bit(0, 4);
173}
174
175static void clock_comparator_interrupt(struct ext_code ext_code,
176				       unsigned int param32,
177				       unsigned long param64)
178{
179	inc_irq_stat(IRQEXT_CLK);
180	if (S390_lowcore.clock_comparator == -1ULL)
181		set_clock_comparator(S390_lowcore.clock_comparator);
182}
183
184static void stp_timing_alert(struct stp_irq_parm *);
185
186static void timing_alert_interrupt(struct ext_code ext_code,
187				   unsigned int param32, unsigned long param64)
188{
189	inc_irq_stat(IRQEXT_TLA);
190	if (param32 & 0x00038000)
191		stp_timing_alert((struct stp_irq_parm *) &param32);
192}
193
194static void stp_reset(void);
195
196void read_persistent_clock64(struct timespec64 *ts)
197{
198	__u64 clock;
 
199
200	clock = get_tod_clock() - initial_leap_seconds;
201	tod_to_timeval(clock - TOD_UNIX_EPOCH, ts);
 
 
202}
203
204void read_boot_clock64(struct timespec64 *ts)
 
205{
206	__u64 clock;
 
 
 
 
 
 
 
207
208	clock = sched_clock_base_cc - initial_leap_seconds;
209	tod_to_timeval(clock - TOD_UNIX_EPOCH, ts);
210}
211
212static u64 read_tod_clock(struct clocksource *cs)
213{
214	unsigned long long now, adj;
215
216	preempt_disable(); /* protect from changes to steering parameters */
217	now = get_tod_clock();
218	adj = tod_steering_end - now;
219	if (unlikely((s64) adj >= 0))
220		/*
221		 * manually steer by 1 cycle every 2^16 cycles. This
222		 * corresponds to shifting the tod delta by 15. 1s is
223		 * therefore steered in ~9h. The adjust will decrease
224		 * over time, until it finally reaches 0.
225		 */
226		now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
227	preempt_enable();
228	return now;
229}
230
231static struct clocksource clocksource_tod = {
232	.name		= "tod",
233	.rating		= 400,
234	.read		= read_tod_clock,
235	.mask		= -1ULL,
236	.mult		= 1000,
237	.shift		= 12,
238	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 
239};
240
241struct clocksource * __init clocksource_default_clock(void)
242{
243	return &clocksource_tod;
244}
245
246void update_vsyscall(struct timekeeper *tk)
247{
248	u64 nsecps;
249
250	if (tk->tkr_mono.clock != &clocksource_tod)
251		return;
252
253	/* Make userspace gettimeofday spin until we're done. */
254	++vdso_data->tb_update_count;
255	smp_wmb();
256	vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
257	vdso_data->xtime_clock_sec = tk->xtime_sec;
258	vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
259	vdso_data->wtom_clock_sec =
260		tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
261	vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
262		+ ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
263	nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
264	while (vdso_data->wtom_clock_nsec >= nsecps) {
265		vdso_data->wtom_clock_nsec -= nsecps;
266		vdso_data->wtom_clock_sec++;
267	}
268
269	vdso_data->xtime_coarse_sec = tk->xtime_sec;
270	vdso_data->xtime_coarse_nsec =
271		(long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
272	vdso_data->wtom_coarse_sec =
273		vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
274	vdso_data->wtom_coarse_nsec =
275		vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
276	while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
277		vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
278		vdso_data->wtom_coarse_sec++;
279	}
280
281	vdso_data->tk_mult = tk->tkr_mono.mult;
282	vdso_data->tk_shift = tk->tkr_mono.shift;
283	smp_wmb();
284	++vdso_data->tb_update_count;
285}
286
287extern struct timezone sys_tz;
288
289void update_vsyscall_tz(void)
290{
291	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
292	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
293}
294
295/*
296 * Initialize the TOD clock and the CPU timer of
297 * the boot cpu.
298 */
299void __init time_init(void)
300{
301	/* Reset time synchronization interfaces. */
302	stp_reset();
303
304	/* request the clock comparator external interrupt */
305	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
306		panic("Couldn't request external interrupt 0x1004");
307
308	/* request the timing alert external interrupt */
309	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
310		panic("Couldn't request external interrupt 0x1406");
311
312	if (__clocksource_register(&clocksource_tod) != 0)
313		panic("Could not register TOD clock source");
314
315	/* Enable TOD clock interrupts on the boot cpu. */
316	init_cpu_timer();
317
318	/* Enable cpu timer interrupts on the boot cpu. */
319	vtime_init();
320}
321
322static DEFINE_PER_CPU(atomic_t, clock_sync_word);
323static DEFINE_MUTEX(clock_sync_mutex);
324static unsigned long clock_sync_flags;
325
326#define CLOCK_SYNC_HAS_STP	0
327#define CLOCK_SYNC_STP		1
 
328
329/*
330 * The get_clock function for the physical clock. It will get the current
331 * TOD clock, subtract the LPAR offset and write the result to *clock.
332 * The function returns 0 if the clock is in sync with the external time
333 * source. If the clock mode is local it will return -EOPNOTSUPP and
334 * -EAGAIN if the clock is not in sync with the external reference.
335 */
336int get_phys_clock(unsigned long long *clock)
337{
338	atomic_t *sw_ptr;
339	unsigned int sw0, sw1;
340
341	sw_ptr = &get_cpu_var(clock_sync_word);
342	sw0 = atomic_read(sw_ptr);
343	*clock = get_tod_clock() - lpar_offset;
344	sw1 = atomic_read(sw_ptr);
345	put_cpu_var(clock_sync_word);
346	if (sw0 == sw1 && (sw0 & 0x80000000U))
347		/* Success: time is in sync. */
348		return 0;
349	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
350		return -EOPNOTSUPP;
351	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
352		return -EACCES;
353	return -EAGAIN;
354}
355EXPORT_SYMBOL(get_phys_clock);
356
357/*
358 * Make get_phys_clock() return -EAGAIN.
359 */
360static void disable_sync_clock(void *dummy)
361{
362	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
363	/*
364	 * Clear the in-sync bit 2^31. All get_phys_clock calls will
365	 * fail until the sync bit is turned back on. In addition
366	 * increase the "sequence" counter to avoid the race of an
367	 * stp event and the complete recovery against get_phys_clock.
368	 */
369	atomic_andnot(0x80000000, sw_ptr);
370	atomic_inc(sw_ptr);
371}
372
373/*
374 * Make get_phys_clock() return 0 again.
375 * Needs to be called from a context disabled for preemption.
376 */
377static void enable_sync_clock(void)
378{
379	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
380	atomic_or(0x80000000, sw_ptr);
381}
382
383/*
384 * Function to check if the clock is in sync.
385 */
386static inline int check_sync_clock(void)
387{
388	atomic_t *sw_ptr;
389	int rc;
390
391	sw_ptr = &get_cpu_var(clock_sync_word);
392	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
393	put_cpu_var(clock_sync_word);
394	return rc;
395}
396
397/*
398 * Apply clock delta to the global data structures.
399 * This is called once on the CPU that performed the clock sync.
400 */
401static void clock_sync_global(unsigned long long delta)
402{
403	unsigned long now, adj;
404	struct ptff_qto qto;
 
405
406	/* Fixup the monotonic sched clock. */
407	sched_clock_base_cc += delta;
408	/* Adjust TOD steering parameters. */
409	vdso_data->tb_update_count++;
410	now = get_tod_clock();
411	adj = tod_steering_end - now;
412	if (unlikely((s64) adj >= 0))
413		/* Calculate how much of the old adjustment is left. */
414		tod_steering_delta = (tod_steering_delta < 0) ?
415			-(adj >> 15) : (adj >> 15);
416	tod_steering_delta += delta;
417	if ((abs(tod_steering_delta) >> 48) != 0)
418		panic("TOD clock sync offset %lli is too large to drift\n",
419		      tod_steering_delta);
420	tod_steering_end = now + (abs(tod_steering_delta) << 15);
421	vdso_data->ts_dir = (tod_steering_delta < 0) ? 0 : 1;
422	vdso_data->ts_end = tod_steering_end;
423	vdso_data->tb_update_count++;
 
 
424	/* Update LPAR offset. */
425	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
426		lpar_offset = qto.tod_epoch_difference;
427	/* Call the TOD clock change notifier. */
428	atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
429}
430
431/*
432 * Apply clock delta to the per-CPU data structures of this CPU.
433 * This is called for each online CPU after the call to clock_sync_global.
434 */
435static void clock_sync_local(unsigned long long delta)
436{
437	/* Add the delta to the clock comparator. */
438	if (S390_lowcore.clock_comparator != -1ULL) {
439		S390_lowcore.clock_comparator += delta;
440		set_clock_comparator(S390_lowcore.clock_comparator);
441	}
442	/* Adjust the last_update_clock time-stamp. */
443	S390_lowcore.last_update_clock += delta;
444}
445
446/* Single threaded workqueue used for stp sync events */
447static struct workqueue_struct *time_sync_wq;
448
449static void __init time_init_wq(void)
450{
451	if (time_sync_wq)
452		return;
453	time_sync_wq = create_singlethread_workqueue("timesync");
454}
455
456struct clock_sync_data {
457	atomic_t cpus;
458	int in_sync;
459	unsigned long long clock_delta;
460};
461
462/*
463 * Server Time Protocol (STP) code.
464 */
465static bool stp_online;
466static struct stp_sstpi stp_info;
467static void *stp_page;
468
469static void stp_work_fn(struct work_struct *work);
470static DEFINE_MUTEX(stp_work_mutex);
471static DECLARE_WORK(stp_work, stp_work_fn);
472static struct timer_list stp_timer;
473
474static int __init early_parse_stp(char *p)
475{
476	return kstrtobool(p, &stp_online);
477}
478early_param("stp", early_parse_stp);
479
480/*
481 * Reset STP attachment.
482 */
483static void __init stp_reset(void)
484{
485	int rc;
486
487	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
488	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
489	if (rc == 0)
490		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
491	else if (stp_online) {
492		pr_warn("The real or virtual hardware system does not provide an STP interface\n");
493		free_page((unsigned long) stp_page);
494		stp_page = NULL;
495		stp_online = 0;
496	}
497}
498
499static void stp_timeout(unsigned long dummy)
500{
501	queue_work(time_sync_wq, &stp_work);
502}
503
504static int __init stp_init(void)
505{
506	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
507		return 0;
508	setup_timer(&stp_timer, stp_timeout, 0UL);
509	time_init_wq();
510	if (!stp_online)
511		return 0;
512	queue_work(time_sync_wq, &stp_work);
513	return 0;
514}
515
516arch_initcall(stp_init);
517
518/*
519 * STP timing alert. There are three causes:
520 * 1) timing status change
521 * 2) link availability change
522 * 3) time control parameter change
523 * In all three cases we are only interested in the clock source state.
524 * If a STP clock source is now available use it.
525 */
526static void stp_timing_alert(struct stp_irq_parm *intparm)
527{
528	if (intparm->tsc || intparm->lac || intparm->tcpc)
529		queue_work(time_sync_wq, &stp_work);
530}
531
532/*
533 * STP sync check machine check. This is called when the timing state
534 * changes from the synchronized state to the unsynchronized state.
535 * After a STP sync check the clock is not in sync. The machine check
536 * is broadcasted to all cpus at the same time.
537 */
538int stp_sync_check(void)
539{
540	disable_sync_clock(NULL);
541	return 1;
542}
543
544/*
545 * STP island condition machine check. This is called when an attached
546 * server  attempts to communicate over an STP link and the servers
547 * have matching CTN ids and have a valid stratum-1 configuration
548 * but the configurations do not match.
549 */
550int stp_island_check(void)
551{
552	disable_sync_clock(NULL);
553	return 1;
554}
555
556void stp_queue_work(void)
557{
558	queue_work(time_sync_wq, &stp_work);
559}
560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
561static int stp_sync_clock(void *data)
562{
563	struct clock_sync_data *sync = data;
564	unsigned long long clock_delta;
565	static int first;
566	int rc;
567
568	enable_sync_clock();
569	if (xchg(&first, 1) == 0) {
570		/* Wait until all other cpus entered the sync function. */
571		while (atomic_read(&sync->cpus) != 0)
572			cpu_relax();
573		rc = 0;
574		if (stp_info.todoff[0] || stp_info.todoff[1] ||
575		    stp_info.todoff[2] || stp_info.todoff[3] ||
576		    stp_info.tmd != 2) {
577			rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
578					&clock_delta);
579			if (rc == 0) {
580				sync->clock_delta = clock_delta;
581				clock_sync_global(clock_delta);
582				rc = chsc_sstpi(stp_page, &stp_info,
583						sizeof(struct stp_sstpi));
584				if (rc == 0 && stp_info.tmd != 2)
585					rc = -EAGAIN;
586			}
 
587		}
588		sync->in_sync = rc ? -EAGAIN : 1;
589		xchg(&first, 0);
590	} else {
591		/* Slave */
592		atomic_dec(&sync->cpus);
593		/* Wait for in_sync to be set. */
594		while (READ_ONCE(sync->in_sync) == 0)
595			__udelay(1);
596	}
597	if (sync->in_sync != 1)
598		/* Didn't work. Clear per-cpu in sync bit again. */
599		disable_sync_clock(NULL);
600	/* Apply clock delta to per-CPU fields of this CPU. */
601	clock_sync_local(sync->clock_delta);
602
603	return 0;
604}
605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
606/*
607 * STP work. Check for the STP state and take over the clock
608 * synchronization if the STP clock source is usable.
609 */
610static void stp_work_fn(struct work_struct *work)
611{
612	struct clock_sync_data stp_sync;
613	int rc;
614
615	/* prevent multiple execution. */
616	mutex_lock(&stp_work_mutex);
617
618	if (!stp_online) {
619		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
620		del_timer_sync(&stp_timer);
621		goto out_unlock;
622	}
623
624	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL);
625	if (rc)
626		goto out_unlock;
627
628	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
629	if (rc || stp_info.c == 0)
630		goto out_unlock;
631
632	/* Skip synchronization if the clock is already in sync. */
633	if (check_sync_clock())
634		goto out_unlock;
635
636	memset(&stp_sync, 0, sizeof(stp_sync));
637	get_online_cpus();
638	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
639	stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
640	put_online_cpus();
641
642	if (!check_sync_clock())
643		/*
644		 * There is a usable clock but the synchonization failed.
645		 * Retry after a second.
646		 */
647		mod_timer(&stp_timer, jiffies + HZ);
 
 
648
649out_unlock:
650	mutex_unlock(&stp_work_mutex);
651}
652
653/*
654 * STP subsys sysfs interface functions
655 */
656static struct bus_type stp_subsys = {
657	.name		= "stp",
658	.dev_name	= "stp",
659};
660
661static ssize_t stp_ctn_id_show(struct device *dev,
662				struct device_attribute *attr,
663				char *buf)
664{
665	if (!stp_online)
666		return -ENODATA;
667	return sprintf(buf, "%016llx\n",
668		       *(unsigned long long *) stp_info.ctnid);
 
 
 
 
669}
670
671static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
672
673static ssize_t stp_ctn_type_show(struct device *dev,
674				struct device_attribute *attr,
675				char *buf)
676{
677	if (!stp_online)
678		return -ENODATA;
679	return sprintf(buf, "%i\n", stp_info.ctn);
 
 
 
 
680}
681
682static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
683
684static ssize_t stp_dst_offset_show(struct device *dev,
685				   struct device_attribute *attr,
686				   char *buf)
687{
688	if (!stp_online || !(stp_info.vbits & 0x2000))
689		return -ENODATA;
690	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
 
 
 
 
691}
692
693static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
694
695static ssize_t stp_leap_seconds_show(struct device *dev,
696					struct device_attribute *attr,
697					char *buf)
698{
699	if (!stp_online || !(stp_info.vbits & 0x8000))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
700		return -ENODATA;
701	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
 
 
 
 
 
 
 
 
 
 
 
 
702}
703
704static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
705
706static ssize_t stp_stratum_show(struct device *dev,
707				struct device_attribute *attr,
708				char *buf)
709{
710	if (!stp_online)
711		return -ENODATA;
712	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
 
 
 
 
713}
714
715static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
716
717static ssize_t stp_time_offset_show(struct device *dev,
718				struct device_attribute *attr,
719				char *buf)
720{
721	if (!stp_online || !(stp_info.vbits & 0x0800))
722		return -ENODATA;
723	return sprintf(buf, "%i\n", (int) stp_info.tto);
 
 
 
 
724}
725
726static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
727
728static ssize_t stp_time_zone_offset_show(struct device *dev,
729				struct device_attribute *attr,
730				char *buf)
731{
732	if (!stp_online || !(stp_info.vbits & 0x4000))
733		return -ENODATA;
734	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
 
 
 
 
735}
736
737static DEVICE_ATTR(time_zone_offset, 0400,
738			 stp_time_zone_offset_show, NULL);
739
740static ssize_t stp_timing_mode_show(struct device *dev,
741				struct device_attribute *attr,
742				char *buf)
743{
744	if (!stp_online)
745		return -ENODATA;
746	return sprintf(buf, "%i\n", stp_info.tmd);
 
 
 
 
747}
748
749static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
750
751static ssize_t stp_timing_state_show(struct device *dev,
752				struct device_attribute *attr,
753				char *buf)
754{
755	if (!stp_online)
756		return -ENODATA;
757	return sprintf(buf, "%i\n", stp_info.tst);
 
 
 
 
758}
759
760static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
761
762static ssize_t stp_online_show(struct device *dev,
763				struct device_attribute *attr,
764				char *buf)
765{
766	return sprintf(buf, "%i\n", stp_online);
767}
768
769static ssize_t stp_online_store(struct device *dev,
770				struct device_attribute *attr,
771				const char *buf, size_t count)
772{
773	unsigned int value;
774
775	value = simple_strtoul(buf, NULL, 0);
776	if (value != 0 && value != 1)
777		return -EINVAL;
778	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
779		return -EOPNOTSUPP;
780	mutex_lock(&clock_sync_mutex);
781	stp_online = value;
782	if (stp_online)
783		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
784	else
785		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
786	queue_work(time_sync_wq, &stp_work);
787	mutex_unlock(&clock_sync_mutex);
788	return count;
789}
790
791/*
792 * Can't use DEVICE_ATTR because the attribute should be named
793 * stp/online but dev_attr_online already exists in this file ..
794 */
795static struct device_attribute dev_attr_stp_online = {
796	.attr = { .name = "online", .mode = 0600 },
797	.show	= stp_online_show,
798	.store	= stp_online_store,
799};
800
801static struct device_attribute *stp_attributes[] = {
802	&dev_attr_ctn_id,
803	&dev_attr_ctn_type,
804	&dev_attr_dst_offset,
805	&dev_attr_leap_seconds,
806	&dev_attr_stp_online,
807	&dev_attr_stratum,
808	&dev_attr_time_offset,
809	&dev_attr_time_zone_offset,
810	&dev_attr_timing_mode,
811	&dev_attr_timing_state,
 
812	NULL
813};
 
814
815static int __init stp_init_sysfs(void)
816{
817	struct device_attribute **attr;
818	int rc;
819
820	rc = subsys_system_register(&stp_subsys, NULL);
821	if (rc)
822		goto out;
823	for (attr = stp_attributes; *attr; attr++) {
824		rc = device_create_file(stp_subsys.dev_root, *attr);
825		if (rc)
826			goto out_unreg;
827	}
828	return 0;
829out_unreg:
830	for (; attr >= stp_attributes; attr--)
831		device_remove_file(stp_subsys.dev_root, *attr);
832	bus_unregister(&stp_subsys);
833out:
834	return rc;
835}
836
837device_initcall(stp_init_sysfs);