Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *    Time of day based timer functions.
  4 *
  5 *  S390 version
  6 *    Copyright IBM Corp. 1999, 2008
  7 *    Author(s): Hartmut Penner (hp@de.ibm.com),
  8 *               Martin Schwidefsky (schwidefsky@de.ibm.com),
  9 *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
 10 *
 11 *  Derived from "arch/i386/kernel/time.c"
 12 *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
 13 */
 14
 15#define KMSG_COMPONENT "time"
 16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
 17
 18#include <linux/kernel_stat.h>
 19#include <linux/errno.h>
 20#include <linux/export.h>
 21#include <linux/sched.h>
 22#include <linux/sched/clock.h>
 23#include <linux/kernel.h>
 24#include <linux/param.h>
 25#include <linux/string.h>
 26#include <linux/mm.h>
 27#include <linux/interrupt.h>
 28#include <linux/cpu.h>
 29#include <linux/stop_machine.h>
 30#include <linux/time.h>
 31#include <linux/device.h>
 32#include <linux/delay.h>
 33#include <linux/init.h>
 34#include <linux/smp.h>
 35#include <linux/types.h>
 36#include <linux/profile.h>
 37#include <linux/timex.h>
 38#include <linux/notifier.h>
 39#include <linux/timekeeper_internal.h>
 40#include <linux/clockchips.h>
 41#include <linux/gfp.h>
 42#include <linux/kprobes.h>
 43#include <linux/uaccess.h>
 44#include <vdso/vsyscall.h>
 45#include <vdso/clocksource.h>
 46#include <vdso/helpers.h>
 47#include <asm/facility.h>
 48#include <asm/delay.h>
 49#include <asm/div64.h>
 50#include <asm/vdso.h>
 51#include <asm/irq.h>
 52#include <asm/irq_regs.h>
 53#include <asm/vtimer.h>
 54#include <asm/stp.h>
 55#include <asm/cio.h>
 56#include "entry.h"
 57
 58union tod_clock tod_clock_base __section(".data");
 59EXPORT_SYMBOL_GPL(tod_clock_base);
 
 60
 61u64 clock_comparator_max = -1ULL;
 62EXPORT_SYMBOL_GPL(clock_comparator_max);
 63
 64static DEFINE_PER_CPU(struct clock_event_device, comparators);
 65
 66ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
 67EXPORT_SYMBOL(s390_epoch_delta_notifier);
 68
 69unsigned char ptff_function_mask[16];
 70
 71static unsigned long lpar_offset;
 72static unsigned long initial_leap_seconds;
 73static unsigned long tod_steering_end;
 74static long tod_steering_delta;
 75
 76/*
 77 * Get time offsets with PTFF
 78 */
 79void __init time_early_init(void)
 80{
 81	struct ptff_qto qto;
 82	struct ptff_qui qui;
 83	int cs;
 84
 85	/* Initialize TOD steering parameters */
 86	tod_steering_end = tod_clock_base.tod;
 87	for (cs = 0; cs < CS_BASES; cs++)
 88		vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
 89
 90	if (!test_facility(28))
 91		return;
 92
 93	ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
 94
 95	/* get LPAR offset */
 96	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
 97		lpar_offset = qto.tod_epoch_difference;
 98
 99	/* get initial leap seconds */
100	if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
101		initial_leap_seconds = (unsigned long)
102			((long) qui.old_leap * 4096000000L);
103}
104
105unsigned long long noinstr sched_clock_noinstr(void)
106{
107	return tod_to_ns(__get_tod_clock_monotonic());
108}
 
109
110/*
111 * Scheduler clock - returns current time in nanosec units.
112 */
113unsigned long long notrace sched_clock(void)
114{
115	return tod_to_ns(get_tod_clock_monotonic());
116}
117NOKPROBE_SYMBOL(sched_clock);
118
119static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt)
120{
121	unsigned long rem, sec, nsec;
122
123	sec = clk->us;
124	rem = do_div(sec, 1000000);
125	nsec = ((clk->sus + (rem << 12)) * 125) >> 9;
126	xt->tv_sec = sec;
127	xt->tv_nsec = nsec;
 
128}
 
129
130void clock_comparator_work(void)
131{
132	struct clock_event_device *cd;
133
134	S390_lowcore.clock_comparator = clock_comparator_max;
135	cd = this_cpu_ptr(&comparators);
136	cd->event_handler(cd);
137}
138
 
 
 
 
 
 
 
 
 
 
 
 
139static int s390_next_event(unsigned long delta,
140			   struct clock_event_device *evt)
141{
142	S390_lowcore.clock_comparator = get_tod_clock() + delta;
143	set_clock_comparator(S390_lowcore.clock_comparator);
144	return 0;
145}
146
147/*
148 * Set up lowcore and control register of the current cpu to
149 * enable TOD clock and clock comparator interrupts.
150 */
151void init_cpu_timer(void)
152{
153	struct clock_event_device *cd;
154	int cpu;
155
156	S390_lowcore.clock_comparator = clock_comparator_max;
157	set_clock_comparator(S390_lowcore.clock_comparator);
158
159	cpu = smp_processor_id();
160	cd = &per_cpu(comparators, cpu);
161	cd->name		= "comparator";
162	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
163	cd->mult		= 16777;
164	cd->shift		= 12;
165	cd->min_delta_ns	= 1;
166	cd->min_delta_ticks	= 1;
167	cd->max_delta_ns	= LONG_MAX;
168	cd->max_delta_ticks	= ULONG_MAX;
169	cd->rating		= 400;
170	cd->cpumask		= cpumask_of(cpu);
171	cd->set_next_event	= s390_next_event;
172
173	clockevents_register_device(cd);
174
175	/* Enable clock comparator timer interrupt. */
176	local_ctl_set_bit(0, CR0_CLOCK_COMPARATOR_SUBMASK_BIT);
177
178	/* Always allow the timing alert external interrupt. */
179	local_ctl_set_bit(0, CR0_ETR_SUBMASK_BIT);
180}
181
182static void clock_comparator_interrupt(struct ext_code ext_code,
183				       unsigned int param32,
184				       unsigned long param64)
185{
186	inc_irq_stat(IRQEXT_CLK);
187	if (S390_lowcore.clock_comparator == clock_comparator_max)
188		set_clock_comparator(S390_lowcore.clock_comparator);
189}
190
 
191static void stp_timing_alert(struct stp_irq_parm *);
192
193static void timing_alert_interrupt(struct ext_code ext_code,
194				   unsigned int param32, unsigned long param64)
195{
196	inc_irq_stat(IRQEXT_TLA);
 
 
197	if (param32 & 0x00038000)
198		stp_timing_alert((struct stp_irq_parm *) &param32);
199}
200
 
201static void stp_reset(void);
202
203void read_persistent_clock64(struct timespec64 *ts)
204{
205	union tod_clock clk;
206	u64 delta;
207
208	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
209	store_tod_clock_ext(&clk);
210	clk.eitod -= delta;
211	ext_to_timespec64(&clk, ts);
212}
213
214void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
215						 struct timespec64 *boot_offset)
216{
217	struct timespec64 boot_time;
218	union tod_clock clk;
219	u64 delta;
220
221	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
222	clk = tod_clock_base;
223	clk.eitod -= delta;
224	ext_to_timespec64(&clk, &boot_time);
225
226	read_persistent_clock64(wall_time);
227	*boot_offset = timespec64_sub(*wall_time, boot_time);
228}
229
230static u64 read_tod_clock(struct clocksource *cs)
231{
232	unsigned long now, adj;
233
234	preempt_disable(); /* protect from changes to steering parameters */
235	now = get_tod_clock();
236	adj = tod_steering_end - now;
237	if (unlikely((s64) adj > 0))
238		/*
239		 * manually steer by 1 cycle every 2^16 cycles. This
240		 * corresponds to shifting the tod delta by 15. 1s is
241		 * therefore steered in ~9h. The adjust will decrease
242		 * over time, until it finally reaches 0.
243		 */
244		now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
245	preempt_enable();
246	return now;
247}
248
249static struct clocksource clocksource_tod = {
250	.name		= "tod",
251	.rating		= 400,
252	.read		= read_tod_clock,
253	.mask		= CLOCKSOURCE_MASK(64),
254	.mult		= 1000,
255	.shift		= 12,
256	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
257	.vdso_clock_mode = VDSO_CLOCKMODE_TOD,
258};
259
260struct clocksource * __init clocksource_default_clock(void)
261{
262	return &clocksource_tod;
263}
264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265/*
266 * Initialize the TOD clock and the CPU timer of
267 * the boot cpu.
268 */
269void __init time_init(void)
270{
271	/* Reset time synchronization interfaces. */
 
272	stp_reset();
273
274	/* request the clock comparator external interrupt */
275	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
276		panic("Couldn't request external interrupt 0x1004");
277
278	/* request the timing alert external interrupt */
279	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
280		panic("Couldn't request external interrupt 0x1406");
281
282	if (__clocksource_register(&clocksource_tod) != 0)
283		panic("Could not register TOD clock source");
284
285	/* Enable TOD clock interrupts on the boot cpu. */
286	init_cpu_timer();
287
288	/* Enable cpu timer interrupts on the boot cpu. */
289	vtime_init();
290}
291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
292static DEFINE_PER_CPU(atomic_t, clock_sync_word);
293static DEFINE_MUTEX(stp_mutex);
294static unsigned long clock_sync_flags;
295
296#define CLOCK_SYNC_HAS_STP		0
297#define CLOCK_SYNC_STP			1
298#define CLOCK_SYNC_STPINFO_VALID	2
 
299
300/*
301 * The get_clock function for the physical clock. It will get the current
302 * TOD clock, subtract the LPAR offset and write the result to *clock.
303 * The function returns 0 if the clock is in sync with the external time
304 * source. If the clock mode is local it will return -EOPNOTSUPP and
305 * -EAGAIN if the clock is not in sync with the external reference.
306 */
307int get_phys_clock(unsigned long *clock)
308{
309	atomic_t *sw_ptr;
310	unsigned int sw0, sw1;
311
312	sw_ptr = &get_cpu_var(clock_sync_word);
313	sw0 = atomic_read(sw_ptr);
314	*clock = get_tod_clock() - lpar_offset;
315	sw1 = atomic_read(sw_ptr);
316	put_cpu_var(clock_sync_word);
317	if (sw0 == sw1 && (sw0 & 0x80000000U))
318		/* Success: time is in sync. */
319		return 0;
320	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
 
321		return -EOPNOTSUPP;
322	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
 
323		return -EACCES;
324	return -EAGAIN;
325}
326EXPORT_SYMBOL(get_phys_clock);
327
328/*
329 * Make get_phys_clock() return -EAGAIN.
330 */
331static void disable_sync_clock(void *dummy)
332{
333	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
334	/*
335	 * Clear the in-sync bit 2^31. All get_phys_clock calls will
336	 * fail until the sync bit is turned back on. In addition
337	 * increase the "sequence" counter to avoid the race of an
338	 * stp event and the complete recovery against get_phys_clock.
339	 */
340	atomic_andnot(0x80000000, sw_ptr);
341	atomic_inc(sw_ptr);
342}
343
344/*
345 * Make get_phys_clock() return 0 again.
346 * Needs to be called from a context disabled for preemption.
347 */
348static void enable_sync_clock(void)
349{
350	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
351	atomic_or(0x80000000, sw_ptr);
352}
353
354/*
355 * Function to check if the clock is in sync.
356 */
357static inline int check_sync_clock(void)
358{
359	atomic_t *sw_ptr;
360	int rc;
361
362	sw_ptr = &get_cpu_var(clock_sync_word);
363	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
364	put_cpu_var(clock_sync_word);
365	return rc;
366}
367
 
 
 
 
 
 
 
 
 
 
368/*
369 * Apply clock delta to the global data structures.
370 * This is called once on the CPU that performed the clock sync.
371 */
372static void clock_sync_global(long delta)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373{
374	unsigned long now, adj;
375	struct ptff_qto qto;
376	int cs;
377
378	/* Fixup the monotonic sched clock. */
379	tod_clock_base.eitod += delta;
380	/* Adjust TOD steering parameters. */
381	now = get_tod_clock();
382	adj = tod_steering_end - now;
383	if (unlikely((s64) adj >= 0))
384		/* Calculate how much of the old adjustment is left. */
385		tod_steering_delta = (tod_steering_delta < 0) ?
386			-(adj >> 15) : (adj >> 15);
387	tod_steering_delta += delta;
388	if ((abs(tod_steering_delta) >> 48) != 0)
389		panic("TOD clock sync offset %li is too large to drift\n",
390		      tod_steering_delta);
391	tod_steering_end = now + (abs(tod_steering_delta) << 15);
392	for (cs = 0; cs < CS_BASES; cs++) {
393		vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
394		vdso_data[cs].arch_data.tod_steering_delta = tod_steering_delta;
395	}
396
397	/* Update LPAR offset. */
398	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
399		lpar_offset = qto.tod_epoch_difference;
400	/* Call the TOD clock change notifier. */
401	atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
 
 
 
 
 
 
 
402}
403
 
 
404/*
405 * Apply clock delta to the per-CPU data structures of this CPU.
406 * This is called for each online CPU after the call to clock_sync_global.
407 */
408static void clock_sync_local(long delta)
409{
410	/* Add the delta to the clock comparator. */
411	if (S390_lowcore.clock_comparator != clock_comparator_max) {
412		S390_lowcore.clock_comparator += delta;
413		set_clock_comparator(S390_lowcore.clock_comparator);
 
 
 
 
 
 
 
 
 
 
 
 
414	}
415	/* Adjust the last_update_clock time-stamp. */
416	S390_lowcore.last_update_clock += delta;
417}
418
419/* Single threaded workqueue used for stp sync events */
420static struct workqueue_struct *time_sync_wq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
421
422static void __init time_init_wq(void)
423{
424	if (time_sync_wq)
425		return;
426	time_sync_wq = create_singlethread_workqueue("timesync");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
427}
428
429struct clock_sync_data {
430	atomic_t cpus;
431	int in_sync;
432	long clock_delta;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
433};
434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
435/*
436 * Server Time Protocol (STP) code.
437 */
438static bool stp_online;
439static struct stp_sstpi stp_info;
440static void *stp_page;
441
442static void stp_work_fn(struct work_struct *work);
 
443static DECLARE_WORK(stp_work, stp_work_fn);
444static struct timer_list stp_timer;
445
446static int __init early_parse_stp(char *p)
447{
448	return kstrtobool(p, &stp_online);
449}
450early_param("stp", early_parse_stp);
451
452/*
453 * Reset STP attachment.
454 */
455static void __init stp_reset(void)
456{
457	int rc;
458
459	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
460	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
461	if (rc == 0)
462		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
463	else if (stp_online) {
464		pr_warn("The real or virtual hardware system does not provide an STP interface\n");
465		free_page((unsigned long) stp_page);
466		stp_page = NULL;
467		stp_online = false;
468	}
469}
470
471static void stp_timeout(struct timer_list *unused)
472{
473	queue_work(time_sync_wq, &stp_work);
474}
475
476static int __init stp_init(void)
477{
478	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
479		return 0;
480	timer_setup(&stp_timer, stp_timeout, 0);
481	time_init_wq();
482	if (!stp_online)
483		return 0;
484	queue_work(time_sync_wq, &stp_work);
485	return 0;
486}
487
488arch_initcall(stp_init);
489
490/*
491 * STP timing alert. There are three causes:
492 * 1) timing status change
493 * 2) link availability change
494 * 3) time control parameter change
495 * In all three cases we are only interested in the clock source state.
496 * If a STP clock source is now available use it.
497 */
498static void stp_timing_alert(struct stp_irq_parm *intparm)
499{
500	if (intparm->tsc || intparm->lac || intparm->tcpc)
501		queue_work(time_sync_wq, &stp_work);
502}
503
504/*
505 * STP sync check machine check. This is called when the timing state
506 * changes from the synchronized state to the unsynchronized state.
507 * After a STP sync check the clock is not in sync. The machine check
508 * is broadcasted to all cpus at the same time.
509 */
510int stp_sync_check(void)
511{
512	disable_sync_clock(NULL);
513	return 1;
514}
515
516/*
517 * STP island condition machine check. This is called when an attached
518 * server  attempts to communicate over an STP link and the servers
519 * have matching CTN ids and have a valid stratum-1 configuration
520 * but the configurations do not match.
521 */
522int stp_island_check(void)
523{
524	disable_sync_clock(NULL);
525	return 1;
526}
527
528void stp_queue_work(void)
529{
530	queue_work(time_sync_wq, &stp_work);
531}
532
533static int __store_stpinfo(void)
534{
535	int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
536
537	if (rc)
538		clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
539	else
540		set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
541	return rc;
542}
543
544static int stpinfo_valid(void)
545{
546	return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
547}
548
549static int stp_sync_clock(void *data)
550{
551	struct clock_sync_data *sync = data;
552	long clock_delta, flags;
553	static int first;
 
 
554	int rc;
555
556	enable_sync_clock();
557	if (xchg(&first, 1) == 0) {
558		/* Wait until all other cpus entered the sync function. */
559		while (atomic_read(&sync->cpus) != 0)
560			cpu_relax();
561		rc = 0;
562		if (stp_info.todoff || stp_info.tmd != 2) {
563			flags = vdso_update_begin();
564			rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
565					&clock_delta);
566			if (rc == 0) {
567				sync->clock_delta = clock_delta;
568				clock_sync_global(clock_delta);
569				rc = __store_stpinfo();
570				if (rc == 0 && stp_info.tmd != 2)
571					rc = -EAGAIN;
572			}
573			vdso_update_end(flags);
574		}
575		sync->in_sync = rc ? -EAGAIN : 1;
576		xchg(&first, 0);
577	} else {
578		/* Slave */
579		atomic_dec(&sync->cpus);
580		/* Wait for in_sync to be set. */
581		while (READ_ONCE(sync->in_sync) == 0)
582			__udelay(1);
583	}
584	if (sync->in_sync != 1)
585		/* Didn't work. Clear per-cpu in sync bit again. */
586		disable_sync_clock(NULL);
587	/* Apply clock delta to per-CPU fields of this CPU. */
588	clock_sync_local(sync->clock_delta);
589
590	return 0;
591}
592
593static int stp_clear_leap(void)
594{
595	struct __kernel_timex txc;
596	int ret;
597
598	memset(&txc, 0, sizeof(txc));
599
600	ret = do_adjtimex(&txc);
601	if (ret < 0)
602		return ret;
603
604	txc.modes = ADJ_STATUS;
605	txc.status &= ~(STA_INS|STA_DEL);
606	return do_adjtimex(&txc);
607}
608
609static void stp_check_leap(void)
610{
611	struct stp_stzi stzi;
612	struct stp_lsoib *lsoib = &stzi.lsoib;
613	struct __kernel_timex txc;
614	int64_t timediff;
615	int leapdiff, ret;
616
617	if (!stp_info.lu || !check_sync_clock()) {
618		/*
619		 * Either a scheduled leap second was removed by the operator,
620		 * or STP is out of sync. In both cases, clear the leap second
621		 * kernel flags.
622		 */
623		if (stp_clear_leap() < 0)
624			pr_err("failed to clear leap second flags\n");
625		return;
626	}
627
628	if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) {
629		pr_err("stzi failed\n");
630		return;
631	}
632
633	timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC;
634	leapdiff = lsoib->nlso - lsoib->also;
 
635
636	if (leapdiff != 1 && leapdiff != -1) {
637		pr_err("Cannot schedule %d leap seconds\n", leapdiff);
638		return;
639	}
640
641	if (timediff < 0) {
642		if (stp_clear_leap() < 0)
643			pr_err("failed to clear leap second flags\n");
644	} else if (timediff < 7200) {
645		memset(&txc, 0, sizeof(txc));
646		ret = do_adjtimex(&txc);
647		if (ret < 0)
648			return;
649
650		txc.modes = ADJ_STATUS;
651		if (leapdiff > 0)
652			txc.status |= STA_INS;
653		else
654			txc.status |= STA_DEL;
655		ret = do_adjtimex(&txc);
656		if (ret < 0)
657			pr_err("failed to set leap second flags\n");
658		/* arm Timer to clear leap second flags */
659		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC));
660	} else {
661		/* The day the leap second is scheduled for hasn't been reached. Retry
662		 * in one hour.
663		 */
664		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC));
665	}
 
 
 
 
 
 
 
666}
667
668/*
669 * STP work. Check for the STP state and take over the clock
670 * synchronization if the STP clock source is usable.
671 */
672static void stp_work_fn(struct work_struct *work)
673{
674	struct clock_sync_data stp_sync;
675	int rc;
676
677	/* prevent multiple execution. */
678	mutex_lock(&stp_mutex);
679
680	if (!stp_online) {
681		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
682		del_timer_sync(&stp_timer);
683		goto out_unlock;
684	}
685
686	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL);
687	if (rc)
688		goto out_unlock;
689
690	rc = __store_stpinfo();
691	if (rc || stp_info.c == 0)
692		goto out_unlock;
693
694	/* Skip synchronization if the clock is already in sync. */
695	if (!check_sync_clock()) {
696		memset(&stp_sync, 0, sizeof(stp_sync));
697		cpus_read_lock();
698		atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
699		stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
700		cpus_read_unlock();
701	}
 
702
703	if (!check_sync_clock())
704		/*
705		 * There is a usable clock but the synchronization failed.
706		 * Retry after a second.
707		 */
708		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC));
709	else if (stp_info.lu)
710		stp_check_leap();
711
712out_unlock:
713	mutex_unlock(&stp_mutex);
714}
715
716/*
717 * STP subsys sysfs interface functions
718 */
719static struct bus_type stp_subsys = {
720	.name		= "stp",
721	.dev_name	= "stp",
722};
723
724static ssize_t ctn_id_show(struct device *dev,
725				struct device_attribute *attr,
726				char *buf)
727{
728	ssize_t ret = -ENODATA;
729
730	mutex_lock(&stp_mutex);
731	if (stpinfo_valid())
732		ret = sprintf(buf, "%016lx\n",
733			      *(unsigned long *) stp_info.ctnid);
734	mutex_unlock(&stp_mutex);
735	return ret;
736}
737
738static DEVICE_ATTR_RO(ctn_id);
739
740static ssize_t ctn_type_show(struct device *dev,
741				struct device_attribute *attr,
742				char *buf)
743{
744	ssize_t ret = -ENODATA;
745
746	mutex_lock(&stp_mutex);
747	if (stpinfo_valid())
748		ret = sprintf(buf, "%i\n", stp_info.ctn);
749	mutex_unlock(&stp_mutex);
750	return ret;
751}
752
753static DEVICE_ATTR_RO(ctn_type);
754
755static ssize_t dst_offset_show(struct device *dev,
756				   struct device_attribute *attr,
757				   char *buf)
758{
759	ssize_t ret = -ENODATA;
760
761	mutex_lock(&stp_mutex);
762	if (stpinfo_valid() && (stp_info.vbits & 0x2000))
763		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
764	mutex_unlock(&stp_mutex);
765	return ret;
766}
767
768static DEVICE_ATTR_RO(dst_offset);
769
770static ssize_t leap_seconds_show(struct device *dev,
771					struct device_attribute *attr,
772					char *buf)
773{
774	ssize_t ret = -ENODATA;
775
776	mutex_lock(&stp_mutex);
777	if (stpinfo_valid() && (stp_info.vbits & 0x8000))
778		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
779	mutex_unlock(&stp_mutex);
780	return ret;
781}
782
783static DEVICE_ATTR_RO(leap_seconds);
784
785static ssize_t leap_seconds_scheduled_show(struct device *dev,
786						struct device_attribute *attr,
787						char *buf)
788{
789	struct stp_stzi stzi;
790	ssize_t ret;
791
792	mutex_lock(&stp_mutex);
793	if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) {
794		mutex_unlock(&stp_mutex);
795		return -ENODATA;
796	}
797
798	ret = chsc_stzi(stp_page, &stzi, sizeof(stzi));
799	mutex_unlock(&stp_mutex);
800	if (ret < 0)
801		return ret;
802
803	if (!stzi.lsoib.p)
804		return sprintf(buf, "0,0\n");
805
806	return sprintf(buf, "%lu,%d\n",
807		       tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC,
808		       stzi.lsoib.nlso - stzi.lsoib.also);
809}
810
811static DEVICE_ATTR_RO(leap_seconds_scheduled);
812
813static ssize_t stratum_show(struct device *dev,
814				struct device_attribute *attr,
815				char *buf)
816{
817	ssize_t ret = -ENODATA;
818
819	mutex_lock(&stp_mutex);
820	if (stpinfo_valid())
821		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
822	mutex_unlock(&stp_mutex);
823	return ret;
824}
825
826static DEVICE_ATTR_RO(stratum);
827
828static ssize_t time_offset_show(struct device *dev,
829				struct device_attribute *attr,
830				char *buf)
831{
832	ssize_t ret = -ENODATA;
833
834	mutex_lock(&stp_mutex);
835	if (stpinfo_valid() && (stp_info.vbits & 0x0800))
836		ret = sprintf(buf, "%i\n", (int) stp_info.tto);
837	mutex_unlock(&stp_mutex);
838	return ret;
839}
840
841static DEVICE_ATTR_RO(time_offset);
842
843static ssize_t time_zone_offset_show(struct device *dev,
844				struct device_attribute *attr,
845				char *buf)
846{
847	ssize_t ret = -ENODATA;
848
849	mutex_lock(&stp_mutex);
850	if (stpinfo_valid() && (stp_info.vbits & 0x4000))
851		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
852	mutex_unlock(&stp_mutex);
853	return ret;
854}
855
856static DEVICE_ATTR_RO(time_zone_offset);
 
857
858static ssize_t timing_mode_show(struct device *dev,
859				struct device_attribute *attr,
860				char *buf)
861{
862	ssize_t ret = -ENODATA;
863
864	mutex_lock(&stp_mutex);
865	if (stpinfo_valid())
866		ret = sprintf(buf, "%i\n", stp_info.tmd);
867	mutex_unlock(&stp_mutex);
868	return ret;
869}
870
871static DEVICE_ATTR_RO(timing_mode);
872
873static ssize_t timing_state_show(struct device *dev,
874				struct device_attribute *attr,
875				char *buf)
876{
877	ssize_t ret = -ENODATA;
878
879	mutex_lock(&stp_mutex);
880	if (stpinfo_valid())
881		ret = sprintf(buf, "%i\n", stp_info.tst);
882	mutex_unlock(&stp_mutex);
883	return ret;
884}
885
886static DEVICE_ATTR_RO(timing_state);
887
888static ssize_t online_show(struct device *dev,
889				struct device_attribute *attr,
890				char *buf)
891{
892	return sprintf(buf, "%i\n", stp_online);
893}
894
895static ssize_t online_store(struct device *dev,
896				struct device_attribute *attr,
897				const char *buf, size_t count)
898{
899	unsigned int value;
900
901	value = simple_strtoul(buf, NULL, 0);
902	if (value != 0 && value != 1)
903		return -EINVAL;
904	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
905		return -EOPNOTSUPP;
906	mutex_lock(&stp_mutex);
907	stp_online = value;
908	if (stp_online)
909		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
910	else
911		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
912	queue_work(time_sync_wq, &stp_work);
913	mutex_unlock(&stp_mutex);
914	return count;
915}
916
917/*
918 * Can't use DEVICE_ATTR because the attribute should be named
919 * stp/online but dev_attr_online already exists in this file ..
920 */
921static DEVICE_ATTR_RW(online);
 
 
 
 
922
923static struct attribute *stp_dev_attrs[] = {
924	&dev_attr_ctn_id.attr,
925	&dev_attr_ctn_type.attr,
926	&dev_attr_dst_offset.attr,
927	&dev_attr_leap_seconds.attr,
928	&dev_attr_online.attr,
929	&dev_attr_leap_seconds_scheduled.attr,
930	&dev_attr_stratum.attr,
931	&dev_attr_time_offset.attr,
932	&dev_attr_time_zone_offset.attr,
933	&dev_attr_timing_mode.attr,
934	&dev_attr_timing_state.attr,
935	NULL
936};
937ATTRIBUTE_GROUPS(stp_dev);
938
939static int __init stp_init_sysfs(void)
940{
941	return subsys_system_register(&stp_subsys, stp_dev_groups);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
942}
943
944device_initcall(stp_init_sysfs);
v4.6
 
   1/*
   2 *    Time of day based timer functions.
   3 *
   4 *  S390 version
   5 *    Copyright IBM Corp. 1999, 2008
   6 *    Author(s): Hartmut Penner (hp@de.ibm.com),
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com),
   8 *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
   9 *
  10 *  Derived from "arch/i386/kernel/time.c"
  11 *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
  12 */
  13
  14#define KMSG_COMPONENT "time"
  15#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  16
  17#include <linux/kernel_stat.h>
  18#include <linux/errno.h>
  19#include <linux/module.h>
  20#include <linux/sched.h>
 
  21#include <linux/kernel.h>
  22#include <linux/param.h>
  23#include <linux/string.h>
  24#include <linux/mm.h>
  25#include <linux/interrupt.h>
  26#include <linux/cpu.h>
  27#include <linux/stop_machine.h>
  28#include <linux/time.h>
  29#include <linux/device.h>
  30#include <linux/delay.h>
  31#include <linux/init.h>
  32#include <linux/smp.h>
  33#include <linux/types.h>
  34#include <linux/profile.h>
  35#include <linux/timex.h>
  36#include <linux/notifier.h>
  37#include <linux/timekeeper_internal.h>
  38#include <linux/clockchips.h>
  39#include <linux/gfp.h>
  40#include <linux/kprobes.h>
  41#include <asm/uaccess.h>
 
 
 
 
  42#include <asm/delay.h>
  43#include <asm/div64.h>
  44#include <asm/vdso.h>
  45#include <asm/irq.h>
  46#include <asm/irq_regs.h>
  47#include <asm/vtimer.h>
  48#include <asm/etr.h>
  49#include <asm/cio.h>
  50#include "entry.h"
  51
  52/* change this if you have some constant time drift */
  53#define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
  54#define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
  55
  56u64 sched_clock_base_cc = -1;	/* Force to data section. */
  57EXPORT_SYMBOL_GPL(sched_clock_base_cc);
  58
  59static DEFINE_PER_CPU(struct clock_event_device, comparators);
  60
  61ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
  62EXPORT_SYMBOL(s390_epoch_delta_notifier);
  63
 
 
 
 
 
 
 
  64/*
  65 * Scheduler clock - returns current time in nanosec units.
  66 */
  67unsigned long long notrace sched_clock(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68{
  69	return tod_to_ns(get_tod_clock_monotonic());
  70}
  71NOKPROBE_SYMBOL(sched_clock);
  72
  73/*
  74 * Monotonic_clock - returns # of nanoseconds passed since time_init()
  75 */
  76unsigned long long monotonic_clock(void)
  77{
  78	return sched_clock();
  79}
  80EXPORT_SYMBOL(monotonic_clock);
  81
  82void tod_to_timeval(__u64 todval, struct timespec64 *xt)
  83{
  84	unsigned long long sec;
  85
  86	sec = todval >> 12;
  87	do_div(sec, 1000000);
 
  88	xt->tv_sec = sec;
  89	todval -= (sec * 1000000) << 12;
  90	xt->tv_nsec = ((todval * 1000) >> 12);
  91}
  92EXPORT_SYMBOL(tod_to_timeval);
  93
  94void clock_comparator_work(void)
  95{
  96	struct clock_event_device *cd;
  97
  98	S390_lowcore.clock_comparator = -1ULL;
  99	cd = this_cpu_ptr(&comparators);
 100	cd->event_handler(cd);
 101}
 102
 103/*
 104 * Fixup the clock comparator.
 105 */
 106static void fixup_clock_comparator(unsigned long long delta)
 107{
 108	/* If nobody is waiting there's nothing to fix. */
 109	if (S390_lowcore.clock_comparator == -1ULL)
 110		return;
 111	S390_lowcore.clock_comparator += delta;
 112	set_clock_comparator(S390_lowcore.clock_comparator);
 113}
 114
 115static int s390_next_event(unsigned long delta,
 116			   struct clock_event_device *evt)
 117{
 118	S390_lowcore.clock_comparator = get_tod_clock() + delta;
 119	set_clock_comparator(S390_lowcore.clock_comparator);
 120	return 0;
 121}
 122
 123/*
 124 * Set up lowcore and control register of the current cpu to
 125 * enable TOD clock and clock comparator interrupts.
 126 */
 127void init_cpu_timer(void)
 128{
 129	struct clock_event_device *cd;
 130	int cpu;
 131
 132	S390_lowcore.clock_comparator = -1ULL;
 133	set_clock_comparator(S390_lowcore.clock_comparator);
 134
 135	cpu = smp_processor_id();
 136	cd = &per_cpu(comparators, cpu);
 137	cd->name		= "comparator";
 138	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
 139	cd->mult		= 16777;
 140	cd->shift		= 12;
 141	cd->min_delta_ns	= 1;
 
 142	cd->max_delta_ns	= LONG_MAX;
 
 143	cd->rating		= 400;
 144	cd->cpumask		= cpumask_of(cpu);
 145	cd->set_next_event	= s390_next_event;
 146
 147	clockevents_register_device(cd);
 148
 149	/* Enable clock comparator timer interrupt. */
 150	__ctl_set_bit(0,11);
 151
 152	/* Always allow the timing alert external interrupt. */
 153	__ctl_set_bit(0, 4);
 154}
 155
 156static void clock_comparator_interrupt(struct ext_code ext_code,
 157				       unsigned int param32,
 158				       unsigned long param64)
 159{
 160	inc_irq_stat(IRQEXT_CLK);
 161	if (S390_lowcore.clock_comparator == -1ULL)
 162		set_clock_comparator(S390_lowcore.clock_comparator);
 163}
 164
 165static void etr_timing_alert(struct etr_irq_parm *);
 166static void stp_timing_alert(struct stp_irq_parm *);
 167
 168static void timing_alert_interrupt(struct ext_code ext_code,
 169				   unsigned int param32, unsigned long param64)
 170{
 171	inc_irq_stat(IRQEXT_TLA);
 172	if (param32 & 0x00c40000)
 173		etr_timing_alert((struct etr_irq_parm *) &param32);
 174	if (param32 & 0x00038000)
 175		stp_timing_alert((struct stp_irq_parm *) &param32);
 176}
 177
 178static void etr_reset(void);
 179static void stp_reset(void);
 180
 181void read_persistent_clock64(struct timespec64 *ts)
 182{
 183	tod_to_timeval(get_tod_clock() - TOD_UNIX_EPOCH, ts);
 
 
 
 
 
 
 184}
 185
 186void read_boot_clock64(struct timespec64 *ts)
 
 187{
 188	tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
 
 
 
 
 
 
 
 
 
 
 189}
 190
 191static cycle_t read_tod_clock(struct clocksource *cs)
 192{
 193	return get_tod_clock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 194}
 195
 196static struct clocksource clocksource_tod = {
 197	.name		= "tod",
 198	.rating		= 400,
 199	.read		= read_tod_clock,
 200	.mask		= -1ULL,
 201	.mult		= 1000,
 202	.shift		= 12,
 203	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 
 204};
 205
 206struct clocksource * __init clocksource_default_clock(void)
 207{
 208	return &clocksource_tod;
 209}
 210
 211void update_vsyscall(struct timekeeper *tk)
 212{
 213	u64 nsecps;
 214
 215	if (tk->tkr_mono.clock != &clocksource_tod)
 216		return;
 217
 218	/* Make userspace gettimeofday spin until we're done. */
 219	++vdso_data->tb_update_count;
 220	smp_wmb();
 221	vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
 222	vdso_data->xtime_clock_sec = tk->xtime_sec;
 223	vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
 224	vdso_data->wtom_clock_sec =
 225		tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
 226	vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
 227		+ ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
 228	nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
 229	while (vdso_data->wtom_clock_nsec >= nsecps) {
 230		vdso_data->wtom_clock_nsec -= nsecps;
 231		vdso_data->wtom_clock_sec++;
 232	}
 233
 234	vdso_data->xtime_coarse_sec = tk->xtime_sec;
 235	vdso_data->xtime_coarse_nsec =
 236		(long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 237	vdso_data->wtom_coarse_sec =
 238		vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
 239	vdso_data->wtom_coarse_nsec =
 240		vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
 241	while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
 242		vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
 243		vdso_data->wtom_coarse_sec++;
 244	}
 245
 246	vdso_data->tk_mult = tk->tkr_mono.mult;
 247	vdso_data->tk_shift = tk->tkr_mono.shift;
 248	smp_wmb();
 249	++vdso_data->tb_update_count;
 250}
 251
 252extern struct timezone sys_tz;
 253
 254void update_vsyscall_tz(void)
 255{
 256	/* Make userspace gettimeofday spin until we're done. */
 257	++vdso_data->tb_update_count;
 258	smp_wmb();
 259	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 260	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 261	smp_wmb();
 262	++vdso_data->tb_update_count;
 263}
 264
 265/*
 266 * Initialize the TOD clock and the CPU timer of
 267 * the boot cpu.
 268 */
 269void __init time_init(void)
 270{
 271	/* Reset time synchronization interfaces. */
 272	etr_reset();
 273	stp_reset();
 274
 275	/* request the clock comparator external interrupt */
 276	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
 277		panic("Couldn't request external interrupt 0x1004");
 278
 279	/* request the timing alert external interrupt */
 280	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
 281		panic("Couldn't request external interrupt 0x1406");
 282
 283	if (__clocksource_register(&clocksource_tod) != 0)
 284		panic("Could not register TOD clock source");
 285
 286	/* Enable TOD clock interrupts on the boot cpu. */
 287	init_cpu_timer();
 288
 289	/* Enable cpu timer interrupts on the boot cpu. */
 290	vtime_init();
 291}
 292
 293/*
 294 * The time is "clock". old is what we think the time is.
 295 * Adjust the value by a multiple of jiffies and add the delta to ntp.
 296 * "delay" is an approximation how long the synchronization took. If
 297 * the time correction is positive, then "delay" is subtracted from
 298 * the time difference and only the remaining part is passed to ntp.
 299 */
 300static unsigned long long adjust_time(unsigned long long old,
 301				      unsigned long long clock,
 302				      unsigned long long delay)
 303{
 304	unsigned long long delta, ticks;
 305	struct timex adjust;
 306
 307	if (clock > old) {
 308		/* It is later than we thought. */
 309		delta = ticks = clock - old;
 310		delta = ticks = (delta < delay) ? 0 : delta - delay;
 311		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
 312		adjust.offset = ticks * (1000000 / HZ);
 313	} else {
 314		/* It is earlier than we thought. */
 315		delta = ticks = old - clock;
 316		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
 317		delta = -delta;
 318		adjust.offset = -ticks * (1000000 / HZ);
 319	}
 320	sched_clock_base_cc += delta;
 321	if (adjust.offset != 0) {
 322		pr_notice("The ETR interface has adjusted the clock "
 323			  "by %li microseconds\n", adjust.offset);
 324		adjust.modes = ADJ_OFFSET_SINGLESHOT;
 325		do_adjtimex(&adjust);
 326	}
 327	return delta;
 328}
 329
 330static DEFINE_PER_CPU(atomic_t, clock_sync_word);
 331static DEFINE_MUTEX(clock_sync_mutex);
 332static unsigned long clock_sync_flags;
 333
 334#define CLOCK_SYNC_HAS_ETR	0
 335#define CLOCK_SYNC_HAS_STP	1
 336#define CLOCK_SYNC_ETR		2
 337#define CLOCK_SYNC_STP		3
 338
 339/*
 340 * The synchronous get_clock function. It will write the current clock
 341 * value to the clock pointer and return 0 if the clock is in sync with
 342 * the external time source. If the clock mode is local it will return
 343 * -EOPNOTSUPP and -EAGAIN if the clock is not in sync with the external
 344 * reference.
 345 */
 346int get_sync_clock(unsigned long long *clock)
 347{
 348	atomic_t *sw_ptr;
 349	unsigned int sw0, sw1;
 350
 351	sw_ptr = &get_cpu_var(clock_sync_word);
 352	sw0 = atomic_read(sw_ptr);
 353	*clock = get_tod_clock();
 354	sw1 = atomic_read(sw_ptr);
 355	put_cpu_var(clock_sync_word);
 356	if (sw0 == sw1 && (sw0 & 0x80000000U))
 357		/* Success: time is in sync. */
 358		return 0;
 359	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
 360	    !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
 361		return -EOPNOTSUPP;
 362	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
 363	    !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
 364		return -EACCES;
 365	return -EAGAIN;
 366}
 367EXPORT_SYMBOL(get_sync_clock);
 368
 369/*
 370 * Make get_sync_clock return -EAGAIN.
 371 */
 372static void disable_sync_clock(void *dummy)
 373{
 374	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
 375	/*
 376	 * Clear the in-sync bit 2^31. All get_sync_clock calls will
 377	 * fail until the sync bit is turned back on. In addition
 378	 * increase the "sequence" counter to avoid the race of an
 379	 * etr event and the complete recovery against get_sync_clock.
 380	 */
 381	atomic_andnot(0x80000000, sw_ptr);
 382	atomic_inc(sw_ptr);
 383}
 384
 385/*
 386 * Make get_sync_clock return 0 again.
 387 * Needs to be called from a context disabled for preemption.
 388 */
 389static void enable_sync_clock(void)
 390{
 391	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
 392	atomic_or(0x80000000, sw_ptr);
 393}
 394
 395/*
 396 * Function to check if the clock is in sync.
 397 */
 398static inline int check_sync_clock(void)
 399{
 400	atomic_t *sw_ptr;
 401	int rc;
 402
 403	sw_ptr = &get_cpu_var(clock_sync_word);
 404	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
 405	put_cpu_var(clock_sync_word);
 406	return rc;
 407}
 408
 409/* Single threaded workqueue used for etr and stp sync events */
 410static struct workqueue_struct *time_sync_wq;
 411
 412static void __init time_init_wq(void)
 413{
 414	if (time_sync_wq)
 415		return;
 416	time_sync_wq = create_singlethread_workqueue("timesync");
 417}
 418
 419/*
 420 * External Time Reference (ETR) code.
 
 421 */
 422static int etr_port0_online;
 423static int etr_port1_online;
 424static int etr_steai_available;
 425
 426static int __init early_parse_etr(char *p)
 427{
 428	if (strncmp(p, "off", 3) == 0)
 429		etr_port0_online = etr_port1_online = 0;
 430	else if (strncmp(p, "port0", 5) == 0)
 431		etr_port0_online = 1;
 432	else if (strncmp(p, "port1", 5) == 0)
 433		etr_port1_online = 1;
 434	else if (strncmp(p, "on", 2) == 0)
 435		etr_port0_online = etr_port1_online = 1;
 436	return 0;
 437}
 438early_param("etr", early_parse_etr);
 439
 440enum etr_event {
 441	ETR_EVENT_PORT0_CHANGE,
 442	ETR_EVENT_PORT1_CHANGE,
 443	ETR_EVENT_PORT_ALERT,
 444	ETR_EVENT_SYNC_CHECK,
 445	ETR_EVENT_SWITCH_LOCAL,
 446	ETR_EVENT_UPDATE,
 447};
 448
 449/*
 450 * Valid bit combinations of the eacr register are (x = don't care):
 451 * e0 e1 dp p0 p1 ea es sl
 452 *  0  0  x  0	0  0  0  0  initial, disabled state
 453 *  0  0  x  0	1  1  0  0  port 1 online
 454 *  0  0  x  1	0  1  0  0  port 0 online
 455 *  0  0  x  1	1  1  0  0  both ports online
 456 *  0  1  x  0	1  1  0  0  port 1 online and usable, ETR or PPS mode
 457 *  0  1  x  0	1  1  0  1  port 1 online, usable and ETR mode
 458 *  0  1  x  0	1  1  1  0  port 1 online, usable, PPS mode, in-sync
 459 *  0  1  x  0	1  1  1  1  port 1 online, usable, ETR mode, in-sync
 460 *  0  1  x  1	1  1  0  0  both ports online, port 1 usable
 461 *  0  1  x  1	1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
 462 *  0  1  x  1	1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
 463 *  1  0  x  1	0  1  0  0  port 0 online and usable, ETR or PPS mode
 464 *  1  0  x  1	0  1  0  1  port 0 online, usable and ETR mode
 465 *  1  0  x  1	0  1  1  0  port 0 online, usable, PPS mode, in-sync
 466 *  1  0  x  1	0  1  1  1  port 0 online, usable, ETR mode, in-sync
 467 *  1  0  x  1	1  1  0  0  both ports online, port 0 usable
 468 *  1  0  x  1	1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
 469 *  1  0  x  1	1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
 470 *  1  1  x  1	1  1  1  0  both ports online & usable, ETR, in-sync
 471 *  1  1  x  1	1  1  1  1  both ports online & usable, ETR, in-sync
 472 */
 473static struct etr_eacr etr_eacr;
 474static u64 etr_tolec;			/* time of last eacr update */
 475static struct etr_aib etr_port0;
 476static int etr_port0_uptodate;
 477static struct etr_aib etr_port1;
 478static int etr_port1_uptodate;
 479static unsigned long etr_events;
 480static struct timer_list etr_timer;
 481
 482static void etr_timeout(unsigned long dummy);
 483static void etr_work_fn(struct work_struct *work);
 484static DEFINE_MUTEX(etr_work_mutex);
 485static DECLARE_WORK(etr_work, etr_work_fn);
 486
 487/*
 488 * Reset ETR attachment.
 489 */
 490static void etr_reset(void)
 491{
 492	etr_eacr =  (struct etr_eacr) {
 493		.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
 494		.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
 495		.es = 0, .sl = 0 };
 496	if (etr_setr(&etr_eacr) == 0) {
 497		etr_tolec = get_tod_clock();
 498		set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
 499		if (etr_port0_online && etr_port1_online)
 500			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
 501	} else if (etr_port0_online || etr_port1_online) {
 502		pr_warn("The real or virtual hardware system does not provide an ETR interface\n");
 503		etr_port0_online = etr_port1_online = 0;
 504	}
 505}
 506
 507static int __init etr_init(void)
 508{
 509	struct etr_aib aib;
 510
 511	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
 512		return 0;
 513	time_init_wq();
 514	/* Check if this machine has the steai instruction. */
 515	if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
 516		etr_steai_available = 1;
 517	setup_timer(&etr_timer, etr_timeout, 0UL);
 518	if (etr_port0_online) {
 519		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
 520		queue_work(time_sync_wq, &etr_work);
 521	}
 522	if (etr_port1_online) {
 523		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
 524		queue_work(time_sync_wq, &etr_work);
 525	}
 526	return 0;
 527}
 528
 529arch_initcall(etr_init);
 530
 531/*
 532 * Two sorts of ETR machine checks. The architecture reads:
 533 * "When a machine-check niterruption occurs and if a switch-to-local or
 534 *  ETR-sync-check interrupt request is pending but disabled, this pending
 535 *  disabled interruption request is indicated and is cleared".
 536 * Which means that we can get etr_switch_to_local events from the machine
 537 * check handler although the interruption condition is disabled. Lovely..
 538 */
 539
 540/*
 541 * Switch to local machine check. This is called when the last usable
 542 * ETR port goes inactive. After switch to local the clock is not in sync.
 543 */
 544int etr_switch_to_local(void)
 545{
 546	if (!etr_eacr.sl)
 547		return 0;
 548	disable_sync_clock(NULL);
 549	if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
 550		etr_eacr.es = etr_eacr.sl = 0;
 551		etr_setr(&etr_eacr);
 552		return 1;
 553	}
 554	return 0;
 
 555}
 556
 557/*
 558 * ETR sync check machine check. This is called when the ETR OTE and the
 559 * local clock OTE are farther apart than the ETR sync check tolerance.
 560 * After a ETR sync check the clock is not in sync. The machine check
 561 * is broadcasted to all cpus at the same time.
 562 */
 563int etr_sync_check(void)
 564{
 565	if (!etr_eacr.es)
 566		return 0;
 567	disable_sync_clock(NULL);
 568	if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
 569		etr_eacr.es = 0;
 570		etr_setr(&etr_eacr);
 571		return 1;
 572	}
 573	return 0;
 574}
 575
 576void etr_queue_work(void)
 577{
 578	queue_work(time_sync_wq, &etr_work);
 579}
 580
 581/*
 582 * ETR timing alert. There are two causes:
 583 * 1) port state change, check the usability of the port
 584 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
 585 *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
 586 *    or ETR-data word 4 (edf4) has changed.
 587 */
 588static void etr_timing_alert(struct etr_irq_parm *intparm)
 589{
 590	if (intparm->pc0)
 591		/* ETR port 0 state change. */
 592		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
 593	if (intparm->pc1)
 594		/* ETR port 1 state change. */
 595		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
 596	if (intparm->eai)
 597		/*
 598		 * ETR port alert on either port 0, 1 or both.
 599		 * Both ports are not up-to-date now.
 600		 */
 601		set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
 602	queue_work(time_sync_wq, &etr_work);
 603}
 604
 605static void etr_timeout(unsigned long dummy)
 606{
 607	set_bit(ETR_EVENT_UPDATE, &etr_events);
 608	queue_work(time_sync_wq, &etr_work);
 609}
 610
 611/*
 612 * Check if the etr mode is pss.
 613 */
 614static inline int etr_mode_is_pps(struct etr_eacr eacr)
 615{
 616	return eacr.es && !eacr.sl;
 617}
 618
 619/*
 620 * Check if the etr mode is etr.
 621 */
 622static inline int etr_mode_is_etr(struct etr_eacr eacr)
 623{
 624	return eacr.es && eacr.sl;
 625}
 626
 627/*
 628 * Check if the port can be used for TOD synchronization.
 629 * For PPS mode the port has to receive OTEs. For ETR mode
 630 * the port has to receive OTEs, the ETR stepping bit has to
 631 * be zero and the validity bits for data frame 1, 2, and 3
 632 * have to be 1.
 633 */
 634static int etr_port_valid(struct etr_aib *aib, int port)
 635{
 636	unsigned int psc;
 637
 638	/* Check that this port is receiving OTEs. */
 639	if (aib->tsp == 0)
 640		return 0;
 641
 642	psc = port ? aib->esw.psc1 : aib->esw.psc0;
 643	if (psc == etr_lpsc_pps_mode)
 644		return 1;
 645	if (psc == etr_lpsc_operational_step)
 646		return !aib->esw.y && aib->slsw.v1 &&
 647			aib->slsw.v2 && aib->slsw.v3;
 648	return 0;
 649}
 650
 651/*
 652 * Check if two ports are on the same network.
 653 */
 654static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
 655{
 656	// FIXME: any other fields we have to compare?
 657	return aib1->edf1.net_id == aib2->edf1.net_id;
 658}
 659
 660/*
 661 * Wrapper for etr_stei that converts physical port states
 662 * to logical port states to be consistent with the output
 663 * of stetr (see etr_psc vs. etr_lpsc).
 664 */
 665static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
 666{
 667	BUG_ON(etr_steai(aib, func) != 0);
 668	/* Convert port state to logical port state. */
 669	if (aib->esw.psc0 == 1)
 670		aib->esw.psc0 = 2;
 671	else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
 672		aib->esw.psc0 = 1;
 673	if (aib->esw.psc1 == 1)
 674		aib->esw.psc1 = 2;
 675	else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
 676		aib->esw.psc1 = 1;
 677}
 678
 679/*
 680 * Check if the aib a2 is still connected to the same attachment as
 681 * aib a1, the etv values differ by one and a2 is valid.
 682 */
 683static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
 684{
 685	int state_a1, state_a2;
 686
 687	/* Paranoia check: e0/e1 should better be the same. */
 688	if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
 689	    a1->esw.eacr.e1 != a2->esw.eacr.e1)
 690		return 0;
 691
 692	/* Still connected to the same etr ? */
 693	state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
 694	state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
 695	if (state_a1 == etr_lpsc_operational_step) {
 696		if (state_a2 != etr_lpsc_operational_step ||
 697		    a1->edf1.net_id != a2->edf1.net_id ||
 698		    a1->edf1.etr_id != a2->edf1.etr_id ||
 699		    a1->edf1.etr_pn != a2->edf1.etr_pn)
 700			return 0;
 701	} else if (state_a2 != etr_lpsc_pps_mode)
 702		return 0;
 703
 704	/* The ETV value of a2 needs to be ETV of a1 + 1. */
 705	if (a1->edf2.etv + 1 != a2->edf2.etv)
 706		return 0;
 707
 708	if (!etr_port_valid(a2, p))
 709		return 0;
 710
 711	return 1;
 712}
 713
 714struct clock_sync_data {
 715	atomic_t cpus;
 716	int in_sync;
 717	unsigned long long fixup_cc;
 718	int etr_port;
 719	struct etr_aib *etr_aib;
 720};
 721
 722static void clock_sync_cpu(struct clock_sync_data *sync)
 723{
 724	atomic_dec(&sync->cpus);
 725	enable_sync_clock();
 726	/*
 727	 * This looks like a busy wait loop but it isn't. etr_sync_cpus
 728	 * is called on all other cpus while the TOD clocks is stopped.
 729	 * __udelay will stop the cpu on an enabled wait psw until the
 730	 * TOD is running again.
 731	 */
 732	while (sync->in_sync == 0) {
 733		__udelay(1);
 734		/*
 735		 * A different cpu changes *in_sync. Therefore use
 736		 * barrier() to force memory access.
 737		 */
 738		barrier();
 739	}
 740	if (sync->in_sync != 1)
 741		/* Didn't work. Clear per-cpu in sync bit again. */
 742		disable_sync_clock(NULL);
 743	/*
 744	 * This round of TOD syncing is done. Set the clock comparator
 745	 * to the next tick and let the processor continue.
 746	 */
 747	fixup_clock_comparator(sync->fixup_cc);
 748}
 749
 750/*
 751 * Sync the TOD clock using the port referred to by aibp. This port
 752 * has to be enabled and the other port has to be disabled. The
 753 * last eacr update has to be more than 1.6 seconds in the past.
 754 */
 755static int etr_sync_clock(void *data)
 756{
 757	static int first;
 758	unsigned long long clock, old_clock, clock_delta, delay, delta;
 759	struct clock_sync_data *etr_sync;
 760	struct etr_aib *sync_port, *aib;
 761	int port;
 762	int rc;
 763
 764	etr_sync = data;
 765
 766	if (xchg(&first, 1) == 1) {
 767		/* Slave */
 768		clock_sync_cpu(etr_sync);
 769		return 0;
 770	}
 771
 772	/* Wait until all other cpus entered the sync function. */
 773	while (atomic_read(&etr_sync->cpus) != 0)
 774		cpu_relax();
 775
 776	port = etr_sync->etr_port;
 777	aib = etr_sync->etr_aib;
 778	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
 779	enable_sync_clock();
 780
 781	/* Set clock to next OTE. */
 782	__ctl_set_bit(14, 21);
 783	__ctl_set_bit(0, 29);
 784	clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
 785	old_clock = get_tod_clock();
 786	if (set_tod_clock(clock) == 0) {
 787		__udelay(1);	/* Wait for the clock to start. */
 788		__ctl_clear_bit(0, 29);
 789		__ctl_clear_bit(14, 21);
 790		etr_stetr(aib);
 791		/* Adjust Linux timing variables. */
 792		delay = (unsigned long long)
 793			(aib->edf2.etv - sync_port->edf2.etv) << 32;
 794		delta = adjust_time(old_clock, clock, delay);
 795		clock_delta = clock - old_clock;
 796		atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0,
 797					   &clock_delta);
 798		etr_sync->fixup_cc = delta;
 799		fixup_clock_comparator(delta);
 800		/* Verify that the clock is properly set. */
 801		if (!etr_aib_follows(sync_port, aib, port)) {
 802			/* Didn't work. */
 803			disable_sync_clock(NULL);
 804			etr_sync->in_sync = -EAGAIN;
 805			rc = -EAGAIN;
 806		} else {
 807			etr_sync->in_sync = 1;
 808			rc = 0;
 809		}
 810	} else {
 811		/* Could not set the clock ?!? */
 812		__ctl_clear_bit(0, 29);
 813		__ctl_clear_bit(14, 21);
 814		disable_sync_clock(NULL);
 815		etr_sync->in_sync = -EAGAIN;
 816		rc = -EAGAIN;
 817	}
 818	xchg(&first, 0);
 819	return rc;
 820}
 821
 822static int etr_sync_clock_stop(struct etr_aib *aib, int port)
 823{
 824	struct clock_sync_data etr_sync;
 825	struct etr_aib *sync_port;
 826	int follows;
 827	int rc;
 828
 829	/* Check if the current aib is adjacent to the sync port aib. */
 830	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
 831	follows = etr_aib_follows(sync_port, aib, port);
 832	memcpy(sync_port, aib, sizeof(*aib));
 833	if (!follows)
 834		return -EAGAIN;
 835	memset(&etr_sync, 0, sizeof(etr_sync));
 836	etr_sync.etr_aib = aib;
 837	etr_sync.etr_port = port;
 838	get_online_cpus();
 839	atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
 840	rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
 841	put_online_cpus();
 842	return rc;
 843}
 844
 845/*
 846 * Handle the immediate effects of the different events.
 847 * The port change event is used for online/offline changes.
 848 */
 849static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
 850{
 851	if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
 852		eacr.es = 0;
 853	if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
 854		eacr.es = eacr.sl = 0;
 855	if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
 856		etr_port0_uptodate = etr_port1_uptodate = 0;
 857
 858	if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
 859		if (eacr.e0)
 860			/*
 861			 * Port change of an enabled port. We have to
 862			 * assume that this can have caused an stepping
 863			 * port switch.
 864			 */
 865			etr_tolec = get_tod_clock();
 866		eacr.p0 = etr_port0_online;
 867		if (!eacr.p0)
 868			eacr.e0 = 0;
 869		etr_port0_uptodate = 0;
 870	}
 871	if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
 872		if (eacr.e1)
 873			/*
 874			 * Port change of an enabled port. We have to
 875			 * assume that this can have caused an stepping
 876			 * port switch.
 877			 */
 878			etr_tolec = get_tod_clock();
 879		eacr.p1 = etr_port1_online;
 880		if (!eacr.p1)
 881			eacr.e1 = 0;
 882		etr_port1_uptodate = 0;
 883	}
 884	clear_bit(ETR_EVENT_UPDATE, &etr_events);
 885	return eacr;
 886}
 887
 888/*
 889 * Set up a timer that expires after the etr_tolec + 1.6 seconds if
 890 * one of the ports needs an update.
 891 */
 892static void etr_set_tolec_timeout(unsigned long long now)
 893{
 894	unsigned long micros;
 895
 896	if ((!etr_eacr.p0 || etr_port0_uptodate) &&
 897	    (!etr_eacr.p1 || etr_port1_uptodate))
 898		return;
 899	micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
 900	micros = (micros > 1600000) ? 0 : 1600000 - micros;
 901	mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
 902}
 903
 904/*
 905 * Set up a time that expires after 1/2 second.
 906 */
 907static void etr_set_sync_timeout(void)
 908{
 909	mod_timer(&etr_timer, jiffies + HZ/2);
 910}
 911
 912/*
 913 * Update the aib information for one or both ports.
 914 */
 915static struct etr_eacr etr_handle_update(struct etr_aib *aib,
 916					 struct etr_eacr eacr)
 917{
 918	/* With both ports disabled the aib information is useless. */
 919	if (!eacr.e0 && !eacr.e1)
 920		return eacr;
 921
 922	/* Update port0 or port1 with aib stored in etr_work_fn. */
 923	if (aib->esw.q == 0) {
 924		/* Information for port 0 stored. */
 925		if (eacr.p0 && !etr_port0_uptodate) {
 926			etr_port0 = *aib;
 927			if (etr_port0_online)
 928				etr_port0_uptodate = 1;
 929		}
 930	} else {
 931		/* Information for port 1 stored. */
 932		if (eacr.p1 && !etr_port1_uptodate) {
 933			etr_port1 = *aib;
 934			if (etr_port0_online)
 935				etr_port1_uptodate = 1;
 936		}
 937	}
 938
 939	/*
 940	 * Do not try to get the alternate port aib if the clock
 941	 * is not in sync yet.
 942	 */
 943	if (!eacr.es || !check_sync_clock())
 944		return eacr;
 945
 946	/*
 947	 * If steai is available we can get the information about
 948	 * the other port immediately. If only stetr is available the
 949	 * data-port bit toggle has to be used.
 950	 */
 951	if (etr_steai_available) {
 952		if (eacr.p0 && !etr_port0_uptodate) {
 953			etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
 954			etr_port0_uptodate = 1;
 955		}
 956		if (eacr.p1 && !etr_port1_uptodate) {
 957			etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
 958			etr_port1_uptodate = 1;
 959		}
 960	} else {
 961		/*
 962		 * One port was updated above, if the other
 963		 * port is not uptodate toggle dp bit.
 964		 */
 965		if ((eacr.p0 && !etr_port0_uptodate) ||
 966		    (eacr.p1 && !etr_port1_uptodate))
 967			eacr.dp ^= 1;
 968		else
 969			eacr.dp = 0;
 970	}
 971	return eacr;
 972}
 973
 974/*
 975 * Write new etr control register if it differs from the current one.
 976 * Return 1 if etr_tolec has been updated as well.
 977 */
 978static void etr_update_eacr(struct etr_eacr eacr)
 979{
 980	int dp_changed;
 981
 982	if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
 983		/* No change, return. */
 984		return;
 985	/*
 986	 * The disable of an active port of the change of the data port
 987	 * bit can/will cause a change in the data port.
 988	 */
 989	dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
 990		(etr_eacr.dp ^ eacr.dp) != 0;
 991	etr_eacr = eacr;
 992	etr_setr(&etr_eacr);
 993	if (dp_changed)
 994		etr_tolec = get_tod_clock();
 995}
 996
 997/*
 998 * ETR work. In this function you'll find the main logic. In
 999 * particular this is the only function that calls etr_update_eacr(),
1000 * it "controls" the etr control register.
1001 */
1002static void etr_work_fn(struct work_struct *work)
1003{
1004	unsigned long long now;
1005	struct etr_eacr eacr;
1006	struct etr_aib aib;
1007	int sync_port;
1008
1009	/* prevent multiple execution. */
1010	mutex_lock(&etr_work_mutex);
1011
1012	/* Create working copy of etr_eacr. */
1013	eacr = etr_eacr;
1014
1015	/* Check for the different events and their immediate effects. */
1016	eacr = etr_handle_events(eacr);
1017
1018	/* Check if ETR is supposed to be active. */
1019	eacr.ea = eacr.p0 || eacr.p1;
1020	if (!eacr.ea) {
1021		/* Both ports offline. Reset everything. */
1022		eacr.dp = eacr.es = eacr.sl = 0;
1023		on_each_cpu(disable_sync_clock, NULL, 1);
1024		del_timer_sync(&etr_timer);
1025		etr_update_eacr(eacr);
1026		goto out_unlock;
1027	}
1028
1029	/* Store aib to get the current ETR status word. */
1030	BUG_ON(etr_stetr(&aib) != 0);
1031	etr_port0.esw = etr_port1.esw = aib.esw;	/* Copy status word. */
1032	now = get_tod_clock();
1033
1034	/*
1035	 * Update the port information if the last stepping port change
1036	 * or data port change is older than 1.6 seconds.
1037	 */
1038	if (now >= etr_tolec + (1600000 << 12))
1039		eacr = etr_handle_update(&aib, eacr);
1040
1041	/*
1042	 * Select ports to enable. The preferred synchronization mode is PPS.
1043	 * If a port can be enabled depends on a number of things:
1044	 * 1) The port needs to be online and uptodate. A port is not
1045	 *    disabled just because it is not uptodate, but it is only
1046	 *    enabled if it is uptodate.
1047	 * 2) The port needs to have the same mode (pps / etr).
1048	 * 3) The port needs to be usable -> etr_port_valid() == 1
1049	 * 4) To enable the second port the clock needs to be in sync.
1050	 * 5) If both ports are useable and are ETR ports, the network id
1051	 *    has to be the same.
1052	 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1053	 */
1054	if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1055		eacr.sl = 0;
1056		eacr.e0 = 1;
1057		if (!etr_mode_is_pps(etr_eacr))
1058			eacr.es = 0;
1059		if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1060			eacr.e1 = 0;
1061		// FIXME: uptodate checks ?
1062		else if (etr_port0_uptodate && etr_port1_uptodate)
1063			eacr.e1 = 1;
1064		sync_port = (etr_port0_uptodate &&
1065			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1066	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1067		eacr.sl = 0;
1068		eacr.e0 = 0;
1069		eacr.e1 = 1;
1070		if (!etr_mode_is_pps(etr_eacr))
1071			eacr.es = 0;
1072		sync_port = (etr_port1_uptodate &&
1073			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1074	} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1075		eacr.sl = 1;
1076		eacr.e0 = 1;
1077		if (!etr_mode_is_etr(etr_eacr))
1078			eacr.es = 0;
1079		if (!eacr.es || !eacr.p1 ||
1080		    aib.esw.psc1 != etr_lpsc_operational_alt)
1081			eacr.e1 = 0;
1082		else if (etr_port0_uptodate && etr_port1_uptodate &&
1083			 etr_compare_network(&etr_port0, &etr_port1))
1084			eacr.e1 = 1;
1085		sync_port = (etr_port0_uptodate &&
1086			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1087	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1088		eacr.sl = 1;
1089		eacr.e0 = 0;
1090		eacr.e1 = 1;
1091		if (!etr_mode_is_etr(etr_eacr))
1092			eacr.es = 0;
1093		sync_port = (etr_port1_uptodate &&
1094			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1095	} else {
1096		/* Both ports not usable. */
1097		eacr.es = eacr.sl = 0;
1098		sync_port = -1;
1099	}
1100
1101	/*
1102	 * If the clock is in sync just update the eacr and return.
1103	 * If there is no valid sync port wait for a port update.
1104	 */
1105	if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1106		etr_update_eacr(eacr);
1107		etr_set_tolec_timeout(now);
1108		goto out_unlock;
1109	}
1110
1111	/*
1112	 * Prepare control register for clock syncing
1113	 * (reset data port bit, set sync check control.
1114	 */
1115	eacr.dp = 0;
1116	eacr.es = 1;
1117
1118	/*
1119	 * Update eacr and try to synchronize the clock. If the update
1120	 * of eacr caused a stepping port switch (or if we have to
1121	 * assume that a stepping port switch has occurred) or the
1122	 * clock syncing failed, reset the sync check control bit
1123	 * and set up a timer to try again after 0.5 seconds
1124	 */
1125	etr_update_eacr(eacr);
1126	if (now < etr_tolec + (1600000 << 12) ||
1127	    etr_sync_clock_stop(&aib, sync_port) != 0) {
1128		/* Sync failed. Try again in 1/2 second. */
1129		eacr.es = 0;
1130		etr_update_eacr(eacr);
1131		etr_set_sync_timeout();
1132	} else
1133		etr_set_tolec_timeout(now);
1134out_unlock:
1135	mutex_unlock(&etr_work_mutex);
1136}
1137
1138/*
1139 * Sysfs interface functions
1140 */
1141static struct bus_type etr_subsys = {
1142	.name		= "etr",
1143	.dev_name	= "etr",
1144};
1145
1146static struct device etr_port0_dev = {
1147	.id	= 0,
1148	.bus	= &etr_subsys,
1149};
1150
1151static struct device etr_port1_dev = {
1152	.id	= 1,
1153	.bus	= &etr_subsys,
1154};
1155
1156/*
1157 * ETR subsys attributes
1158 */
1159static ssize_t etr_stepping_port_show(struct device *dev,
1160					struct device_attribute *attr,
1161					char *buf)
1162{
1163	return sprintf(buf, "%i\n", etr_port0.esw.p);
1164}
1165
1166static DEVICE_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1167
1168static ssize_t etr_stepping_mode_show(struct device *dev,
1169					struct device_attribute *attr,
1170					char *buf)
1171{
1172	char *mode_str;
1173
1174	if (etr_mode_is_pps(etr_eacr))
1175		mode_str = "pps";
1176	else if (etr_mode_is_etr(etr_eacr))
1177		mode_str = "etr";
1178	else
1179		mode_str = "local";
1180	return sprintf(buf, "%s\n", mode_str);
1181}
1182
1183static DEVICE_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1184
1185/*
1186 * ETR port attributes
1187 */
1188static inline struct etr_aib *etr_aib_from_dev(struct device *dev)
1189{
1190	if (dev == &etr_port0_dev)
1191		return etr_port0_online ? &etr_port0 : NULL;
1192	else
1193		return etr_port1_online ? &etr_port1 : NULL;
1194}
1195
1196static ssize_t etr_online_show(struct device *dev,
1197				struct device_attribute *attr,
1198				char *buf)
1199{
1200	unsigned int online;
1201
1202	online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1203	return sprintf(buf, "%i\n", online);
1204}
1205
1206static ssize_t etr_online_store(struct device *dev,
1207				struct device_attribute *attr,
1208				const char *buf, size_t count)
1209{
1210	unsigned int value;
1211
1212	value = simple_strtoul(buf, NULL, 0);
1213	if (value != 0 && value != 1)
1214		return -EINVAL;
1215	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1216		return -EOPNOTSUPP;
1217	mutex_lock(&clock_sync_mutex);
1218	if (dev == &etr_port0_dev) {
1219		if (etr_port0_online == value)
1220			goto out;	/* Nothing to do. */
1221		etr_port0_online = value;
1222		if (etr_port0_online && etr_port1_online)
1223			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1224		else
1225			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1226		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1227		queue_work(time_sync_wq, &etr_work);
1228	} else {
1229		if (etr_port1_online == value)
1230			goto out;	/* Nothing to do. */
1231		etr_port1_online = value;
1232		if (etr_port0_online && etr_port1_online)
1233			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1234		else
1235			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1236		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1237		queue_work(time_sync_wq, &etr_work);
1238	}
1239out:
1240	mutex_unlock(&clock_sync_mutex);
1241	return count;
1242}
1243
1244static DEVICE_ATTR(online, 0600, etr_online_show, etr_online_store);
1245
1246static ssize_t etr_stepping_control_show(struct device *dev,
1247					struct device_attribute *attr,
1248					char *buf)
1249{
1250	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1251		       etr_eacr.e0 : etr_eacr.e1);
1252}
1253
1254static DEVICE_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1255
1256static ssize_t etr_mode_code_show(struct device *dev,
1257				struct device_attribute *attr, char *buf)
1258{
1259	if (!etr_port0_online && !etr_port1_online)
1260		/* Status word is not uptodate if both ports are offline. */
1261		return -ENODATA;
1262	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1263		       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1264}
1265
1266static DEVICE_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1267
1268static ssize_t etr_untuned_show(struct device *dev,
1269				struct device_attribute *attr, char *buf)
1270{
1271	struct etr_aib *aib = etr_aib_from_dev(dev);
1272
1273	if (!aib || !aib->slsw.v1)
1274		return -ENODATA;
1275	return sprintf(buf, "%i\n", aib->edf1.u);
1276}
1277
1278static DEVICE_ATTR(untuned, 0400, etr_untuned_show, NULL);
1279
1280static ssize_t etr_network_id_show(struct device *dev,
1281				struct device_attribute *attr, char *buf)
1282{
1283	struct etr_aib *aib = etr_aib_from_dev(dev);
1284
1285	if (!aib || !aib->slsw.v1)
1286		return -ENODATA;
1287	return sprintf(buf, "%i\n", aib->edf1.net_id);
1288}
1289
1290static DEVICE_ATTR(network, 0400, etr_network_id_show, NULL);
1291
1292static ssize_t etr_id_show(struct device *dev,
1293			struct device_attribute *attr, char *buf)
1294{
1295	struct etr_aib *aib = etr_aib_from_dev(dev);
1296
1297	if (!aib || !aib->slsw.v1)
1298		return -ENODATA;
1299	return sprintf(buf, "%i\n", aib->edf1.etr_id);
1300}
1301
1302static DEVICE_ATTR(id, 0400, etr_id_show, NULL);
1303
1304static ssize_t etr_port_number_show(struct device *dev,
1305			struct device_attribute *attr, char *buf)
1306{
1307	struct etr_aib *aib = etr_aib_from_dev(dev);
1308
1309	if (!aib || !aib->slsw.v1)
1310		return -ENODATA;
1311	return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1312}
1313
1314static DEVICE_ATTR(port, 0400, etr_port_number_show, NULL);
1315
1316static ssize_t etr_coupled_show(struct device *dev,
1317			struct device_attribute *attr, char *buf)
1318{
1319	struct etr_aib *aib = etr_aib_from_dev(dev);
1320
1321	if (!aib || !aib->slsw.v3)
1322		return -ENODATA;
1323	return sprintf(buf, "%i\n", aib->edf3.c);
1324}
1325
1326static DEVICE_ATTR(coupled, 0400, etr_coupled_show, NULL);
1327
1328static ssize_t etr_local_time_show(struct device *dev,
1329			struct device_attribute *attr, char *buf)
1330{
1331	struct etr_aib *aib = etr_aib_from_dev(dev);
1332
1333	if (!aib || !aib->slsw.v3)
1334		return -ENODATA;
1335	return sprintf(buf, "%i\n", aib->edf3.blto);
1336}
1337
1338static DEVICE_ATTR(local_time, 0400, etr_local_time_show, NULL);
1339
1340static ssize_t etr_utc_offset_show(struct device *dev,
1341			struct device_attribute *attr, char *buf)
1342{
1343	struct etr_aib *aib = etr_aib_from_dev(dev);
1344
1345	if (!aib || !aib->slsw.v3)
1346		return -ENODATA;
1347	return sprintf(buf, "%i\n", aib->edf3.buo);
1348}
1349
1350static DEVICE_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1351
1352static struct device_attribute *etr_port_attributes[] = {
1353	&dev_attr_online,
1354	&dev_attr_stepping_control,
1355	&dev_attr_state_code,
1356	&dev_attr_untuned,
1357	&dev_attr_network,
1358	&dev_attr_id,
1359	&dev_attr_port,
1360	&dev_attr_coupled,
1361	&dev_attr_local_time,
1362	&dev_attr_utc_offset,
1363	NULL
1364};
1365
1366static int __init etr_register_port(struct device *dev)
1367{
1368	struct device_attribute **attr;
1369	int rc;
1370
1371	rc = device_register(dev);
1372	if (rc)
1373		goto out;
1374	for (attr = etr_port_attributes; *attr; attr++) {
1375		rc = device_create_file(dev, *attr);
1376		if (rc)
1377			goto out_unreg;
1378	}
1379	return 0;
1380out_unreg:
1381	for (; attr >= etr_port_attributes; attr--)
1382		device_remove_file(dev, *attr);
1383	device_unregister(dev);
1384out:
1385	return rc;
1386}
1387
1388static void __init etr_unregister_port(struct device *dev)
1389{
1390	struct device_attribute **attr;
1391
1392	for (attr = etr_port_attributes; *attr; attr++)
1393		device_remove_file(dev, *attr);
1394	device_unregister(dev);
1395}
1396
1397static int __init etr_init_sysfs(void)
1398{
1399	int rc;
1400
1401	rc = subsys_system_register(&etr_subsys, NULL);
1402	if (rc)
1403		goto out;
1404	rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1405	if (rc)
1406		goto out_unreg_subsys;
1407	rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1408	if (rc)
1409		goto out_remove_stepping_port;
1410	rc = etr_register_port(&etr_port0_dev);
1411	if (rc)
1412		goto out_remove_stepping_mode;
1413	rc = etr_register_port(&etr_port1_dev);
1414	if (rc)
1415		goto out_remove_port0;
1416	return 0;
1417
1418out_remove_port0:
1419	etr_unregister_port(&etr_port0_dev);
1420out_remove_stepping_mode:
1421	device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1422out_remove_stepping_port:
1423	device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1424out_unreg_subsys:
1425	bus_unregister(&etr_subsys);
1426out:
1427	return rc;
1428}
1429
1430device_initcall(etr_init_sysfs);
1431
1432/*
1433 * Server Time Protocol (STP) code.
1434 */
1435static bool stp_online;
1436static struct stp_sstpi stp_info;
1437static void *stp_page;
1438
1439static void stp_work_fn(struct work_struct *work);
1440static DEFINE_MUTEX(stp_work_mutex);
1441static DECLARE_WORK(stp_work, stp_work_fn);
1442static struct timer_list stp_timer;
1443
1444static int __init early_parse_stp(char *p)
1445{
1446	return kstrtobool(p, &stp_online);
1447}
1448early_param("stp", early_parse_stp);
1449
1450/*
1451 * Reset STP attachment.
1452 */
1453static void __init stp_reset(void)
1454{
1455	int rc;
1456
1457	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1458	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1459	if (rc == 0)
1460		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1461	else if (stp_online) {
1462		pr_warn("The real or virtual hardware system does not provide an STP interface\n");
1463		free_page((unsigned long) stp_page);
1464		stp_page = NULL;
1465		stp_online = 0;
1466	}
1467}
1468
1469static void stp_timeout(unsigned long dummy)
1470{
1471	queue_work(time_sync_wq, &stp_work);
1472}
1473
1474static int __init stp_init(void)
1475{
1476	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1477		return 0;
1478	setup_timer(&stp_timer, stp_timeout, 0UL);
1479	time_init_wq();
1480	if (!stp_online)
1481		return 0;
1482	queue_work(time_sync_wq, &stp_work);
1483	return 0;
1484}
1485
1486arch_initcall(stp_init);
1487
1488/*
1489 * STP timing alert. There are three causes:
1490 * 1) timing status change
1491 * 2) link availability change
1492 * 3) time control parameter change
1493 * In all three cases we are only interested in the clock source state.
1494 * If a STP clock source is now available use it.
1495 */
1496static void stp_timing_alert(struct stp_irq_parm *intparm)
1497{
1498	if (intparm->tsc || intparm->lac || intparm->tcpc)
1499		queue_work(time_sync_wq, &stp_work);
1500}
1501
1502/*
1503 * STP sync check machine check. This is called when the timing state
1504 * changes from the synchronized state to the unsynchronized state.
1505 * After a STP sync check the clock is not in sync. The machine check
1506 * is broadcasted to all cpus at the same time.
1507 */
1508int stp_sync_check(void)
1509{
1510	disable_sync_clock(NULL);
1511	return 1;
1512}
1513
1514/*
1515 * STP island condition machine check. This is called when an attached
1516 * server  attempts to communicate over an STP link and the servers
1517 * have matching CTN ids and have a valid stratum-1 configuration
1518 * but the configurations do not match.
1519 */
1520int stp_island_check(void)
1521{
1522	disable_sync_clock(NULL);
1523	return 1;
1524}
1525
1526void stp_queue_work(void)
1527{
1528	queue_work(time_sync_wq, &stp_work);
1529}
1530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1531static int stp_sync_clock(void *data)
1532{
 
 
1533	static int first;
1534	unsigned long long old_clock, delta, new_clock, clock_delta;
1535	struct clock_sync_data *stp_sync;
1536	int rc;
1537
1538	stp_sync = data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1539
1540	if (xchg(&first, 1) == 1) {
1541		/* Slave */
1542		clock_sync_cpu(stp_sync);
1543		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544	}
1545
1546	/* Wait until all other cpus entered the sync function. */
1547	while (atomic_read(&stp_sync->cpus) != 0)
1548		cpu_relax();
1549
1550	enable_sync_clock();
 
 
 
1551
1552	rc = 0;
1553	if (stp_info.todoff[0] || stp_info.todoff[1] ||
1554	    stp_info.todoff[2] || stp_info.todoff[3] ||
1555	    stp_info.tmd != 2) {
1556		old_clock = get_tod_clock();
1557		rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1558		if (rc == 0) {
1559			new_clock = get_tod_clock();
1560			delta = adjust_time(old_clock, new_clock, 0);
1561			clock_delta = new_clock - old_clock;
1562			atomic_notifier_call_chain(&s390_epoch_delta_notifier,
1563						   0, &clock_delta);
1564			fixup_clock_comparator(delta);
1565			rc = chsc_sstpi(stp_page, &stp_info,
1566					sizeof(struct stp_sstpi));
1567			if (rc == 0 && stp_info.tmd != 2)
1568				rc = -EAGAIN;
1569		}
 
 
 
 
 
 
1570	}
1571	if (rc) {
1572		disable_sync_clock(NULL);
1573		stp_sync->in_sync = -EAGAIN;
1574	} else
1575		stp_sync->in_sync = 1;
1576	xchg(&first, 0);
1577	return 0;
1578}
1579
1580/*
1581 * STP work. Check for the STP state and take over the clock
1582 * synchronization if the STP clock source is usable.
1583 */
1584static void stp_work_fn(struct work_struct *work)
1585{
1586	struct clock_sync_data stp_sync;
1587	int rc;
1588
1589	/* prevent multiple execution. */
1590	mutex_lock(&stp_work_mutex);
1591
1592	if (!stp_online) {
1593		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1594		del_timer_sync(&stp_timer);
1595		goto out_unlock;
1596	}
1597
1598	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1599	if (rc)
1600		goto out_unlock;
1601
1602	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1603	if (rc || stp_info.c == 0)
1604		goto out_unlock;
1605
1606	/* Skip synchronization if the clock is already in sync. */
1607	if (check_sync_clock())
1608		goto out_unlock;
1609
1610	memset(&stp_sync, 0, sizeof(stp_sync));
1611	get_online_cpus();
1612	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1613	stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
1614	put_online_cpus();
1615
1616	if (!check_sync_clock())
1617		/*
1618		 * There is a usable clock but the synchonization failed.
1619		 * Retry after a second.
1620		 */
1621		mod_timer(&stp_timer, jiffies + HZ);
 
 
1622
1623out_unlock:
1624	mutex_unlock(&stp_work_mutex);
1625}
1626
1627/*
1628 * STP subsys sysfs interface functions
1629 */
1630static struct bus_type stp_subsys = {
1631	.name		= "stp",
1632	.dev_name	= "stp",
1633};
1634
1635static ssize_t stp_ctn_id_show(struct device *dev,
1636				struct device_attribute *attr,
1637				char *buf)
1638{
1639	if (!stp_online)
1640		return -ENODATA;
1641	return sprintf(buf, "%016llx\n",
1642		       *(unsigned long long *) stp_info.ctnid);
 
 
 
 
1643}
1644
1645static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1646
1647static ssize_t stp_ctn_type_show(struct device *dev,
1648				struct device_attribute *attr,
1649				char *buf)
1650{
1651	if (!stp_online)
1652		return -ENODATA;
1653	return sprintf(buf, "%i\n", stp_info.ctn);
 
 
 
 
1654}
1655
1656static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1657
1658static ssize_t stp_dst_offset_show(struct device *dev,
1659				   struct device_attribute *attr,
1660				   char *buf)
1661{
1662	if (!stp_online || !(stp_info.vbits & 0x2000))
1663		return -ENODATA;
1664	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
 
 
 
 
1665}
1666
1667static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1668
1669static ssize_t stp_leap_seconds_show(struct device *dev,
1670					struct device_attribute *attr,
1671					char *buf)
1672{
1673	if (!stp_online || !(stp_info.vbits & 0x8000))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1674		return -ENODATA;
1675	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
 
 
 
 
 
 
 
 
 
 
 
 
1676}
1677
1678static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1679
1680static ssize_t stp_stratum_show(struct device *dev,
1681				struct device_attribute *attr,
1682				char *buf)
1683{
1684	if (!stp_online)
1685		return -ENODATA;
1686	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
 
 
 
 
1687}
1688
1689static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
1690
1691static ssize_t stp_time_offset_show(struct device *dev,
1692				struct device_attribute *attr,
1693				char *buf)
1694{
1695	if (!stp_online || !(stp_info.vbits & 0x0800))
1696		return -ENODATA;
1697	return sprintf(buf, "%i\n", (int) stp_info.tto);
 
 
 
 
1698}
1699
1700static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1701
1702static ssize_t stp_time_zone_offset_show(struct device *dev,
1703				struct device_attribute *attr,
1704				char *buf)
1705{
1706	if (!stp_online || !(stp_info.vbits & 0x4000))
1707		return -ENODATA;
1708	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
 
 
 
 
1709}
1710
1711static DEVICE_ATTR(time_zone_offset, 0400,
1712			 stp_time_zone_offset_show, NULL);
1713
1714static ssize_t stp_timing_mode_show(struct device *dev,
1715				struct device_attribute *attr,
1716				char *buf)
1717{
1718	if (!stp_online)
1719		return -ENODATA;
1720	return sprintf(buf, "%i\n", stp_info.tmd);
 
 
 
 
1721}
1722
1723static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1724
1725static ssize_t stp_timing_state_show(struct device *dev,
1726				struct device_attribute *attr,
1727				char *buf)
1728{
1729	if (!stp_online)
1730		return -ENODATA;
1731	return sprintf(buf, "%i\n", stp_info.tst);
 
 
 
 
1732}
1733
1734static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1735
1736static ssize_t stp_online_show(struct device *dev,
1737				struct device_attribute *attr,
1738				char *buf)
1739{
1740	return sprintf(buf, "%i\n", stp_online);
1741}
1742
1743static ssize_t stp_online_store(struct device *dev,
1744				struct device_attribute *attr,
1745				const char *buf, size_t count)
1746{
1747	unsigned int value;
1748
1749	value = simple_strtoul(buf, NULL, 0);
1750	if (value != 0 && value != 1)
1751		return -EINVAL;
1752	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1753		return -EOPNOTSUPP;
1754	mutex_lock(&clock_sync_mutex);
1755	stp_online = value;
1756	if (stp_online)
1757		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1758	else
1759		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1760	queue_work(time_sync_wq, &stp_work);
1761	mutex_unlock(&clock_sync_mutex);
1762	return count;
1763}
1764
1765/*
1766 * Can't use DEVICE_ATTR because the attribute should be named
1767 * stp/online but dev_attr_online already exists in this file ..
1768 */
1769static struct device_attribute dev_attr_stp_online = {
1770	.attr = { .name = "online", .mode = 0600 },
1771	.show	= stp_online_show,
1772	.store	= stp_online_store,
1773};
1774
1775static struct device_attribute *stp_attributes[] = {
1776	&dev_attr_ctn_id,
1777	&dev_attr_ctn_type,
1778	&dev_attr_dst_offset,
1779	&dev_attr_leap_seconds,
1780	&dev_attr_stp_online,
1781	&dev_attr_stratum,
1782	&dev_attr_time_offset,
1783	&dev_attr_time_zone_offset,
1784	&dev_attr_timing_mode,
1785	&dev_attr_timing_state,
 
1786	NULL
1787};
 
1788
1789static int __init stp_init_sysfs(void)
1790{
1791	struct device_attribute **attr;
1792	int rc;
1793
1794	rc = subsys_system_register(&stp_subsys, NULL);
1795	if (rc)
1796		goto out;
1797	for (attr = stp_attributes; *attr; attr++) {
1798		rc = device_create_file(stp_subsys.dev_root, *attr);
1799		if (rc)
1800			goto out_unreg;
1801	}
1802	return 0;
1803out_unreg:
1804	for (; attr >= stp_attributes; attr--)
1805		device_remove_file(stp_subsys.dev_root, *attr);
1806	bus_unregister(&stp_subsys);
1807out:
1808	return rc;
1809}
1810
1811device_initcall(stp_init_sysfs);