Linux Audio

Check our new training course

Loading...
v6.8
   1/* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
   2/*
   3	Written 1996-1999 by Donald Becker.
   4
   5	This software may be used and distributed according to the terms
   6	of the GNU General Public License, incorporated herein by reference.
   7
   8	This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
   9	Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
  10	and the EtherLink XL 3c900 and 3c905 cards.
  11
  12	Problem reports and questions should be directed to
  13	vortex@scyld.com
  14
  15	The author may be reached as becker@scyld.com, or C/O
  16	Scyld Computing Corporation
  17	410 Severn Ave., Suite 210
  18	Annapolis MD 21403
  19
  20*/
  21
  22/*
  23 * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
  24 * as well as other drivers
  25 *
  26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
  27 * due to dead code elimination.  There will be some performance benefits from this due to
  28 * elimination of all the tests and reduced cache footprint.
  29 */
  30
  31
  32#define DRV_NAME	"3c59x"
  33
  34
  35
  36/* A few values that may be tweaked. */
  37/* Keep the ring sizes a power of two for efficiency. */
  38#define TX_RING_SIZE	16
  39#define RX_RING_SIZE	32
  40#define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
  41
  42/* "Knobs" that adjust features and parameters. */
  43/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  44   Setting to > 1512 effectively disables this feature. */
  45#ifndef __arm__
  46static int rx_copybreak = 200;
  47#else
  48/* ARM systems perform better by disregarding the bus-master
  49   transfer capability of these cards. -- rmk */
  50static int rx_copybreak = 1513;
  51#endif
  52/* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
  53static const int mtu = 1500;
  54/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
  55static int max_interrupt_work = 32;
  56/* Tx timeout interval (millisecs) */
  57static int watchdog = 5000;
  58
  59/* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
  60 * of possible Tx stalls if the system is blocking interrupts
  61 * somewhere else.  Undefine this to disable.
  62 */
  63#define tx_interrupt_mitigation 1
  64
  65/* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
  66#define vortex_debug debug
  67#ifdef VORTEX_DEBUG
  68static int vortex_debug = VORTEX_DEBUG;
  69#else
  70static int vortex_debug = 1;
  71#endif
  72
  73#include <linux/module.h>
  74#include <linux/kernel.h>
  75#include <linux/string.h>
  76#include <linux/timer.h>
  77#include <linux/errno.h>
  78#include <linux/in.h>
  79#include <linux/ioport.h>
  80#include <linux/interrupt.h>
  81#include <linux/pci.h>
  82#include <linux/mii.h>
  83#include <linux/init.h>
  84#include <linux/netdevice.h>
  85#include <linux/etherdevice.h>
  86#include <linux/skbuff.h>
  87#include <linux/ethtool.h>
  88#include <linux/highmem.h>
  89#include <linux/eisa.h>
  90#include <linux/bitops.h>
  91#include <linux/jiffies.h>
  92#include <linux/gfp.h>
  93#include <asm/irq.h>			/* For nr_irqs only. */
  94#include <asm/io.h>
  95#include <linux/uaccess.h>
  96
  97/* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
  98   This is only in the support-all-kernels source code. */
  99
 100#define RUN_AT(x) (jiffies + (x))
 101
 102#include <linux/delay.h>
 103
 104
 105static const char version[] =
 106	DRV_NAME ": Donald Becker and others.\n";
 107
 108MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 109MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
 110MODULE_LICENSE("GPL");
 111
 112
 113/* Operational parameter that usually are not changed. */
 114
 115/* The Vortex size is twice that of the original EtherLinkIII series: the
 116   runtime register window, window 1, is now always mapped in.
 117   The Boomerang size is twice as large as the Vortex -- it has additional
 118   bus master control registers. */
 119#define VORTEX_TOTAL_SIZE 0x20
 120#define BOOMERANG_TOTAL_SIZE 0x40
 121
 122/* Set iff a MII transceiver on any interface requires mdio preamble.
 123   This only set with the original DP83840 on older 3c905 boards, so the extra
 124   code size of a per-interface flag is not worthwhile. */
 125static char mii_preamble_required;
 126
 127#define PFX DRV_NAME ": "
 128
 129
 130
 131/*
 132				Theory of Operation
 133
 134I. Board Compatibility
 135
 136This device driver is designed for the 3Com FastEtherLink and FastEtherLink
 137XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
 138versions of the FastEtherLink cards.  The supported product IDs are
 139  3c590, 3c592, 3c595, 3c597, 3c900, 3c905
 140
 141The related ISA 3c515 is supported with a separate driver, 3c515.c, included
 142with the kernel source or available from
 143    cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
 144
 145II. Board-specific settings
 146
 147PCI bus devices are configured by the system at boot time, so no jumpers
 148need to be set on the board.  The system BIOS should be set to assign the
 149PCI INTA signal to an otherwise unused system IRQ line.
 150
 151The EEPROM settings for media type and forced-full-duplex are observed.
 152The EEPROM media type should be left at the default "autoselect" unless using
 15310base2 or AUI connections which cannot be reliably detected.
 154
 155III. Driver operation
 156
 157The 3c59x series use an interface that's very similar to the previous 3c5x9
 158series.  The primary interface is two programmed-I/O FIFOs, with an
 159alternate single-contiguous-region bus-master transfer (see next).
 160
 161The 3c900 "Boomerang" series uses a full-bus-master interface with separate
 162lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
 163DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
 164programmed-I/O interface that has been removed in 'B' and subsequent board
 165revisions.
 166
 167One extension that is advertised in a very large font is that the adapters
 168are capable of being bus masters.  On the Vortex chip this capability was
 169only for a single contiguous region making it far less useful than the full
 170bus master capability.  There is a significant performance impact of taking
 171an extra interrupt or polling for the completion of each transfer, as well
 172as difficulty sharing the single transfer engine between the transmit and
 173receive threads.  Using DMA transfers is a win only with large blocks or
 174with the flawed versions of the Intel Orion motherboard PCI controller.
 175
 176The Boomerang chip's full-bus-master interface is useful, and has the
 177currently-unused advantages over other similar chips that queued transmit
 178packets may be reordered and receive buffer groups are associated with a
 179single frame.
 180
 181With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
 182Rather than a fixed intermediate receive buffer, this scheme allocates
 183full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
 184the copying breakpoint: it is chosen to trade-off the memory wasted by
 185passing the full-sized skbuff to the queue layer for all frames vs. the
 186copying cost of copying a frame to a correctly-sized skbuff.
 187
 188IIIC. Synchronization
 189The driver runs as two independent, single-threaded flows of control.  One
 190is the send-packet routine, which enforces single-threaded use by the
 191dev->tbusy flag.  The other thread is the interrupt handler, which is single
 192threaded by the hardware and other software.
 193
 194IV. Notes
 195
 196Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
 1973c590, 3c595, and 3c900 boards.
 198The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
 199the EISA version is called "Demon".  According to Terry these names come
 200from rides at the local amusement park.
 201
 202The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
 203This driver only supports ethernet packets because of the skbuff allocation
 204limit of 4K.
 205*/
 206
 207/* This table drives the PCI probe routines.  It's mostly boilerplate in all
 208   of the drivers, and will likely be provided by some future kernel.
 209*/
 210enum pci_flags_bit {
 211	PCI_USES_MASTER=4,
 212};
 213
 214enum {	IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
 215	EEPROM_8BIT=0x10,	/* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
 216	HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
 217	INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
 218	EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
 219	EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
 220
 221enum vortex_chips {
 222	CH_3C590 = 0,
 223	CH_3C592,
 224	CH_3C597,
 225	CH_3C595_1,
 226	CH_3C595_2,
 227
 228	CH_3C595_3,
 229	CH_3C900_1,
 230	CH_3C900_2,
 231	CH_3C900_3,
 232	CH_3C900_4,
 233
 234	CH_3C900_5,
 235	CH_3C900B_FL,
 236	CH_3C905_1,
 237	CH_3C905_2,
 238	CH_3C905B_TX,
 239	CH_3C905B_1,
 240
 241	CH_3C905B_2,
 242	CH_3C905B_FX,
 243	CH_3C905C,
 244	CH_3C9202,
 245	CH_3C980,
 246	CH_3C9805,
 247
 248	CH_3CSOHO100_TX,
 249	CH_3C555,
 250	CH_3C556,
 251	CH_3C556B,
 252	CH_3C575,
 253
 254	CH_3C575_1,
 255	CH_3CCFE575,
 256	CH_3CCFE575CT,
 257	CH_3CCFE656,
 258	CH_3CCFEM656,
 259
 260	CH_3CCFEM656_1,
 261	CH_3C450,
 262	CH_3C920,
 263	CH_3C982A,
 264	CH_3C982B,
 265
 266	CH_905BT4,
 267	CH_920B_EMB_WNM,
 268};
 269
 270
 271/* note: this array directly indexed by above enums, and MUST
 272 * be kept in sync with both the enums above, and the PCI device
 273 * table below
 274 */
 275static struct vortex_chip_info {
 276	const char *name;
 277	int flags;
 278	int drv_flags;
 279	int io_size;
 280} vortex_info_tbl[] = {
 281	{"3c590 Vortex 10Mbps",
 282	 PCI_USES_MASTER, IS_VORTEX, 32, },
 283	{"3c592 EISA 10Mbps Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
 284	 PCI_USES_MASTER, IS_VORTEX, 32, },
 285	{"3c597 EISA Fast Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
 286	 PCI_USES_MASTER, IS_VORTEX, 32, },
 287	{"3c595 Vortex 100baseTx",
 288	 PCI_USES_MASTER, IS_VORTEX, 32, },
 289	{"3c595 Vortex 100baseT4",
 290	 PCI_USES_MASTER, IS_VORTEX, 32, },
 291
 292	{"3c595 Vortex 100base-MII",
 293	 PCI_USES_MASTER, IS_VORTEX, 32, },
 294	{"3c900 Boomerang 10baseT",
 295	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 296	{"3c900 Boomerang 10Mbps Combo",
 297	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 298	{"3c900 Cyclone 10Mbps TPO",						/* AKPM: from Don's 0.99M */
 299	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 300	{"3c900 Cyclone 10Mbps Combo",
 301	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 302
 303	{"3c900 Cyclone 10Mbps TPC",						/* AKPM: from Don's 0.99M */
 304	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 305	{"3c900B-FL Cyclone 10base-FL",
 306	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 307	{"3c905 Boomerang 100baseTx",
 308	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 309	{"3c905 Boomerang 100baseT4",
 310	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 311	{"3C905B-TX Fast Etherlink XL PCI",
 312	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 313	{"3c905B Cyclone 100baseTx",
 314	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 315
 316	{"3c905B Cyclone 10/100/BNC",
 317	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 318	{"3c905B-FX Cyclone 100baseFx",
 319	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 320	{"3c905C Tornado",
 321	PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 322	{"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
 323	 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
 324	{"3c980 Cyclone",
 325	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 326
 327	{"3c980C Python-T",
 328	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 329	{"3cSOHO100-TX Hurricane",
 330	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 331	{"3c555 Laptop Hurricane",
 332	 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
 333	{"3c556 Laptop Tornado",
 334	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
 335									HAS_HWCKSM, 128, },
 336	{"3c556B Laptop Hurricane",
 337	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
 338	                                WNO_XCVR_PWR|HAS_HWCKSM, 128, },
 339
 340	{"3c575 [Megahertz] 10/100 LAN 	CardBus",
 341	PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 342	{"3c575 Boomerang CardBus",
 343	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 344	{"3CCFE575BT Cyclone CardBus",
 345	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
 346									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 347	{"3CCFE575CT Tornado CardBus",
 348	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 349									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 350	{"3CCFE656 Cyclone CardBus",
 351	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 352									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 353
 354	{"3CCFEM656B Cyclone+Winmodem CardBus",
 355	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 356									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 357	{"3CXFEM656C Tornado+Winmodem CardBus",			/* From pcmcia-cs-3.1.5 */
 358	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 359									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 360	{"3c450 HomePNA Tornado",						/* AKPM: from Don's 0.99Q */
 361	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 362	{"3c920 Tornado",
 363	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 364	{"3c982 Hydra Dual Port A",
 365	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 366
 367	{"3c982 Hydra Dual Port B",
 368	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 369	{"3c905B-T4",
 370	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 371	{"3c920B-EMB-WNM Tornado",
 372	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 373
 374	{NULL,}, /* NULL terminated list. */
 375};
 376
 377
 378static const struct pci_device_id vortex_pci_tbl[] = {
 379	{ 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
 380	{ 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
 381	{ 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
 382	{ 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
 383	{ 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
 384
 385	{ 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
 386	{ 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
 387	{ 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
 388	{ 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
 389	{ 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
 390
 391	{ 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
 392	{ 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
 393	{ 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
 394	{ 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
 395	{ 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
 396	{ 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
 397
 398	{ 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
 399	{ 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
 400	{ 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
 401	{ 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
 402	{ 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
 403	{ 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
 404
 405	{ 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
 406	{ 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
 407	{ 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
 408	{ 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
 409	{ 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
 410
 411	{ 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
 412	{ 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
 413	{ 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
 414	{ 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
 415	{ 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
 416
 417	{ 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
 418	{ 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
 419	{ 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
 420	{ 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
 421	{ 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
 422
 423	{ 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
 424	{ 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
 425
 426	{0,}						/* 0 terminated list. */
 427};
 428MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
 429
 430
 431/* Operational definitions.
 432   These are not used by other compilation units and thus are not
 433   exported in a ".h" file.
 434
 435   First the windows.  There are eight register windows, with the command
 436   and status registers available in each.
 437   */
 438#define EL3_CMD 0x0e
 439#define EL3_STATUS 0x0e
 440
 441/* The top five bits written to EL3_CMD are a command, the lower
 442   11 bits are the parameter, if applicable.
 443   Note that 11 parameters bits was fine for ethernet, but the new chip
 444   can handle FDDI length frames (~4500 octets) and now parameters count
 445   32-bit 'Dwords' rather than octets. */
 446
 447enum vortex_cmd {
 448	TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
 449	RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
 450	UpStall = 6<<11, UpUnstall = (6<<11)+1,
 451	DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
 452	RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
 453	FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
 454	SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
 455	SetTxThreshold = 18<<11, SetTxStart = 19<<11,
 456	StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
 457	StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
 458
 459/* The SetRxFilter command accepts the following classes: */
 460enum RxFilter {
 461	RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
 462
 463/* Bits in the general status register. */
 464enum vortex_status {
 465	IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
 466	TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
 467	IntReq = 0x0040, StatsFull = 0x0080,
 468	DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
 469	DMAInProgress = 1<<11,			/* DMA controller is still busy.*/
 470	CmdInProgress = 1<<12,			/* EL3_CMD is still busy.*/
 471};
 472
 473/* Register window 1 offsets, the window used in normal operation.
 474   On the Vortex this window is always mapped at offsets 0x10-0x1f. */
 475enum Window1 {
 476	TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
 477	RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
 478	TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
 479};
 480enum Window0 {
 481	Wn0EepromCmd = 10,		/* Window 0: EEPROM command register. */
 482	Wn0EepromData = 12,		/* Window 0: EEPROM results register. */
 483	IntrStatus=0x0E,		/* Valid in all windows. */
 484};
 485enum Win0_EEPROM_bits {
 486	EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
 487	EEPROM_EWENB = 0x30,		/* Enable erasing/writing for 10 msec. */
 488	EEPROM_EWDIS = 0x00,		/* Disable EWENB before 10 msec timeout. */
 489};
 490/* EEPROM locations. */
 491enum eeprom_offset {
 492	PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
 493	EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
 494	NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
 495	DriverTune=13, Checksum=15};
 496
 497enum Window2 {			/* Window 2. */
 498	Wn2_ResetOptions=12,
 499};
 500enum Window3 {			/* Window 3: MAC/config bits. */
 501	Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
 502};
 503
 504#define BFEXT(value, offset, bitcount)  \
 505    ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
 506
 507#define BFINS(lhs, rhs, offset, bitcount)					\
 508	(((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |	\
 509	(((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
 510
 511#define RAM_SIZE(v)		BFEXT(v, 0, 3)
 512#define RAM_WIDTH(v)	BFEXT(v, 3, 1)
 513#define RAM_SPEED(v)	BFEXT(v, 4, 2)
 514#define ROM_SIZE(v)		BFEXT(v, 6, 2)
 515#define RAM_SPLIT(v)	BFEXT(v, 16, 2)
 516#define XCVR(v)			BFEXT(v, 20, 4)
 517#define AUTOSELECT(v)	BFEXT(v, 24, 1)
 518
 519enum Window4 {		/* Window 4: Xcvr/media bits. */
 520	Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
 521};
 522enum Win4_Media_bits {
 523	Media_SQE = 0x0008,		/* Enable SQE error counting for AUI. */
 524	Media_10TP = 0x00C0,	/* Enable link beat and jabber for 10baseT. */
 525	Media_Lnk = 0x0080,		/* Enable just link beat for 100TX/100FX. */
 526	Media_LnkBeat = 0x0800,
 527};
 528enum Window7 {					/* Window 7: Bus Master control. */
 529	Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
 530	Wn7_MasterStatus = 12,
 531};
 532/* Boomerang bus master control registers. */
 533enum MasterCtrl {
 534	PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
 535	TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
 536};
 537
 538/* The Rx and Tx descriptor lists.
 539   Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
 540   alignment contraint on tx_ring[] and rx_ring[]. */
 541#define LAST_FRAG 	0x80000000			/* Last Addr/Len pair in descriptor. */
 542#define DN_COMPLETE	0x00010000			/* This packet has been downloaded */
 543struct boom_rx_desc {
 544	__le32 next;					/* Last entry points to 0.   */
 545	__le32 status;
 546	__le32 addr;					/* Up to 63 addr/len pairs possible. */
 547	__le32 length;					/* Set LAST_FRAG to indicate last pair. */
 548};
 549/* Values for the Rx status entry. */
 550enum rx_desc_status {
 551	RxDComplete=0x00008000, RxDError=0x4000,
 552	/* See boomerang_rx() for actual error bits */
 553	IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
 554	IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
 555};
 556
 557#ifdef MAX_SKB_FRAGS
 558#define DO_ZEROCOPY 1
 559#else
 560#define DO_ZEROCOPY 0
 561#endif
 562
 563struct boom_tx_desc {
 564	__le32 next;					/* Last entry points to 0.   */
 565	__le32 status;					/* bits 0:12 length, others see below.  */
 566#if DO_ZEROCOPY
 567	struct {
 568		__le32 addr;
 569		__le32 length;
 570	} frag[1+MAX_SKB_FRAGS];
 571#else
 572		__le32 addr;
 573		__le32 length;
 574#endif
 575};
 576
 577/* Values for the Tx status entry. */
 578enum tx_desc_status {
 579	CRCDisable=0x2000, TxDComplete=0x8000,
 580	AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
 581	TxIntrUploaded=0x80000000,		/* IRQ when in FIFO, but maybe not sent. */
 582};
 583
 584/* Chip features we care about in vp->capabilities, read from the EEPROM. */
 585enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
 586
 587struct vortex_extra_stats {
 588	unsigned long tx_deferred;
 589	unsigned long tx_max_collisions;
 590	unsigned long tx_multiple_collisions;
 591	unsigned long tx_single_collisions;
 592	unsigned long rx_bad_ssd;
 593};
 594
 595struct vortex_private {
 596	/* The Rx and Tx rings should be quad-word-aligned. */
 597	struct boom_rx_desc* rx_ring;
 598	struct boom_tx_desc* tx_ring;
 599	dma_addr_t rx_ring_dma;
 600	dma_addr_t tx_ring_dma;
 601	/* The addresses of transmit- and receive-in-place skbuffs. */
 602	struct sk_buff* rx_skbuff[RX_RING_SIZE];
 603	struct sk_buff* tx_skbuff[TX_RING_SIZE];
 604	unsigned int cur_rx, cur_tx;		/* The next free ring entry */
 605	unsigned int dirty_tx;	/* The ring entries to be free()ed. */
 606	struct vortex_extra_stats xstats;	/* NIC-specific extra stats */
 607	struct sk_buff *tx_skb;				/* Packet being eaten by bus master ctrl.  */
 608	dma_addr_t tx_skb_dma;				/* Allocated DMA address for bus master ctrl DMA.   */
 609
 610	/* PCI configuration space information. */
 611	struct device *gendev;
 612	void __iomem *ioaddr;			/* IO address space */
 613	void __iomem *cb_fn_base;		/* CardBus function status addr space. */
 614
 615	/* Some values here only for performance evaluation and path-coverage */
 616	int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
 617	int card_idx;
 618
 619	/* The remainder are related to chip state, mostly media selection. */
 620	struct timer_list timer;			/* Media selection timer. */
 
 621	int options;						/* User-settable misc. driver options. */
 622	unsigned int media_override:4, 		/* Passed-in media type. */
 623		default_media:4,				/* Read from the EEPROM/Wn3_Config. */
 624		full_duplex:1, autoselect:1,
 625		bus_master:1,					/* Vortex can only do a fragment bus-m. */
 626		full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
 627		flow_ctrl:1,					/* Use 802.3x flow control (PAUSE only) */
 628		partner_flow_ctrl:1,			/* Partner supports flow control */
 629		has_nway:1,
 630		enable_wol:1,					/* Wake-on-LAN is enabled */
 631		pm_state_valid:1,				/* pci_dev->saved_config_space has sane contents */
 632		open:1,
 633		medialock:1,
 634		large_frames:1,			/* accept large frames */
 635		handling_irq:1;			/* private in_irq indicator */
 636	/* {get|set}_wol operations are already serialized by rtnl.
 637	 * no additional locking is required for the enable_wol and acpi_set_WOL()
 638	 */
 639	int drv_flags;
 640	u16 status_enable;
 641	u16 intr_enable;
 642	u16 available_media;				/* From Wn3_Options. */
 643	u16 capabilities, info1, info2;		/* Various, from EEPROM. */
 644	u16 advertising;					/* NWay media advertisement */
 645	unsigned char phys[2];				/* MII device addresses. */
 646	u16 deferred;						/* Resend these interrupts when we
 647										 * bale from the ISR */
 648	u16 io_size;						/* Size of PCI region (for release_region) */
 649
 650	/* Serialises access to hardware other than MII and variables below.
 651	 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
 652	spinlock_t lock;
 653
 654	spinlock_t mii_lock;		/* Serialises access to MII */
 655	struct mii_if_info mii;		/* MII lib hooks/info */
 656	spinlock_t window_lock;		/* Serialises access to windowed regs */
 657	int window;			/* Register window */
 658};
 659
 660static void window_set(struct vortex_private *vp, int window)
 661{
 662	if (window != vp->window) {
 663		iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
 664		vp->window = window;
 665	}
 666}
 667
 668#define DEFINE_WINDOW_IO(size)						\
 669static u ## size							\
 670window_read ## size(struct vortex_private *vp, int window, int addr)	\
 671{									\
 672	unsigned long flags;						\
 673	u ## size ret;							\
 674	spin_lock_irqsave(&vp->window_lock, flags);			\
 675	window_set(vp, window);						\
 676	ret = ioread ## size(vp->ioaddr + addr);			\
 677	spin_unlock_irqrestore(&vp->window_lock, flags);		\
 678	return ret;							\
 679}									\
 680static void								\
 681window_write ## size(struct vortex_private *vp, u ## size value,	\
 682		     int window, int addr)				\
 683{									\
 684	unsigned long flags;						\
 685	spin_lock_irqsave(&vp->window_lock, flags);			\
 686	window_set(vp, window);						\
 687	iowrite ## size(value, vp->ioaddr + addr);			\
 688	spin_unlock_irqrestore(&vp->window_lock, flags);		\
 689}
 690DEFINE_WINDOW_IO(8)
 691DEFINE_WINDOW_IO(16)
 692DEFINE_WINDOW_IO(32)
 693
 694#ifdef CONFIG_PCI
 695#define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL)
 696#else
 697#define DEVICE_PCI(dev) NULL
 698#endif
 699
 700#define VORTEX_PCI(vp)							\
 701	((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
 702
 703#ifdef CONFIG_EISA
 704#define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
 705#else
 706#define DEVICE_EISA(dev) NULL
 707#endif
 708
 709#define VORTEX_EISA(vp)							\
 710	((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
 711
 712/* The action to take with a media selection timer tick.
 713   Note that we deviate from the 3Com order by checking 10base2 before AUI.
 714 */
 715enum xcvr_types {
 716	XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
 717	XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
 718};
 719
 720static const struct media_table {
 721	char *name;
 722	unsigned int media_bits:16,		/* Bits to set in Wn4_Media register. */
 723		mask:8,						/* The transceiver-present bit in Wn3_Config.*/
 724		next:8;						/* The media type to try next. */
 725	int wait;						/* Time before we check media status. */
 726} media_tbl[] = {
 727  {	"10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
 728  { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
 729  { "undefined", 0,			0x80, XCVR_10baseT, 10000},
 730  { "10base2",   0,			0x10, XCVR_AUI,		(1*HZ)/10},
 731  { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
 732  { "100baseFX", Media_Lnk, 0x04, XCVR_MII,		(14*HZ)/10},
 733  { "MII",		 0,			0x41, XCVR_10baseT, 3*HZ },
 734  { "undefined", 0,			0x01, XCVR_10baseT, 10000},
 735  { "Autonegotiate", 0,		0x41, XCVR_10baseT, 3*HZ},
 736  { "MII-External",	 0,		0x41, XCVR_10baseT, 3*HZ },
 737  { "Default",	 0,			0xFF, XCVR_10baseT, 10000},
 738};
 739
 740static struct {
 741	const char str[ETH_GSTRING_LEN];
 742} ethtool_stats_keys[] = {
 743	{ "tx_deferred" },
 744	{ "tx_max_collisions" },
 745	{ "tx_multiple_collisions" },
 746	{ "tx_single_collisions" },
 747	{ "rx_bad_ssd" },
 748};
 749
 750/* number of ETHTOOL_GSTATS u64's */
 751#define VORTEX_NUM_STATS    5
 752
 753static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
 754				   int chip_idx, int card_idx);
 755static int vortex_up(struct net_device *dev);
 756static void vortex_down(struct net_device *dev, int final);
 757static int vortex_open(struct net_device *dev);
 758static void mdio_sync(struct vortex_private *vp, int bits);
 759static int mdio_read(struct net_device *dev, int phy_id, int location);
 760static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
 761static void vortex_timer(struct timer_list *t);
 
 762static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
 763				     struct net_device *dev);
 764static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
 765					struct net_device *dev);
 766static int vortex_rx(struct net_device *dev);
 767static int boomerang_rx(struct net_device *dev);
 768static irqreturn_t vortex_boomerang_interrupt(int irq, void *dev_id);
 769static irqreturn_t _vortex_interrupt(int irq, struct net_device *dev);
 770static irqreturn_t _boomerang_interrupt(int irq, struct net_device *dev);
 771static int vortex_close(struct net_device *dev);
 772static void dump_tx_ring(struct net_device *dev);
 773static void update_stats(void __iomem *ioaddr, struct net_device *dev);
 774static struct net_device_stats *vortex_get_stats(struct net_device *dev);
 775static void set_rx_mode(struct net_device *dev);
 776#ifdef CONFIG_PCI
 777static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 778#endif
 779static void vortex_tx_timeout(struct net_device *dev, unsigned int txqueue);
 780static void acpi_set_WOL(struct net_device *dev);
 781static const struct ethtool_ops vortex_ethtool_ops;
 782static void set_8021q_mode(struct net_device *dev, int enable);
 783
 784/* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
 785/* Option count limit only -- unlimited interfaces are supported. */
 786#define MAX_UNITS 8
 787static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
 788static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 789static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 790static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 791static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 792static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 793static int global_options = -1;
 794static int global_full_duplex = -1;
 795static int global_enable_wol = -1;
 796static int global_use_mmio = -1;
 797
 798/* Variables to work-around the Compaq PCI BIOS32 problem. */
 799static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
 800static struct net_device *compaq_net_device;
 801
 802static int vortex_cards_found;
 803
 804module_param(debug, int, 0);
 805module_param(global_options, int, 0);
 806module_param_array(options, int, NULL, 0);
 807module_param(global_full_duplex, int, 0);
 808module_param_array(full_duplex, int, NULL, 0);
 809module_param_array(hw_checksums, int, NULL, 0);
 810module_param_array(flow_ctrl, int, NULL, 0);
 811module_param(global_enable_wol, int, 0);
 812module_param_array(enable_wol, int, NULL, 0);
 813module_param(rx_copybreak, int, 0);
 814module_param(max_interrupt_work, int, 0);
 815module_param_hw(compaq_ioaddr, int, ioport, 0);
 816module_param_hw(compaq_irq, int, irq, 0);
 817module_param(compaq_device_id, int, 0);
 818module_param(watchdog, int, 0);
 819module_param(global_use_mmio, int, 0);
 820module_param_array(use_mmio, int, NULL, 0);
 821MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
 822MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
 823MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
 824MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
 825MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
 826MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
 827MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
 828MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
 829MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
 830MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
 831MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
 832MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
 833MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
 834MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
 835MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
 836MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
 837MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
 838
 839#ifdef CONFIG_NET_POLL_CONTROLLER
 840static void poll_vortex(struct net_device *dev)
 841{
 842	vortex_boomerang_interrupt(dev->irq, dev);
 
 
 
 
 843}
 844#endif
 845
 846#ifdef CONFIG_PM
 847
 848static int vortex_suspend(struct device *dev)
 849{
 850	struct net_device *ndev = dev_get_drvdata(dev);
 
 851
 852	if (!ndev || !netif_running(ndev))
 853		return 0;
 854
 855	netif_device_detach(ndev);
 856	vortex_down(ndev, 1);
 857
 858	return 0;
 859}
 860
 861static int vortex_resume(struct device *dev)
 862{
 863	struct net_device *ndev = dev_get_drvdata(dev);
 
 864	int err;
 865
 866	if (!ndev || !netif_running(ndev))
 867		return 0;
 868
 869	err = vortex_up(ndev);
 870	if (err)
 871		return err;
 872
 873	netif_device_attach(ndev);
 874
 875	return 0;
 876}
 877
 878static const struct dev_pm_ops vortex_pm_ops = {
 879	.suspend = vortex_suspend,
 880	.resume = vortex_resume,
 881	.freeze = vortex_suspend,
 882	.thaw = vortex_resume,
 883	.poweroff = vortex_suspend,
 884	.restore = vortex_resume,
 885};
 886
 887#define VORTEX_PM_OPS (&vortex_pm_ops)
 888
 889#else /* !CONFIG_PM */
 890
 891#define VORTEX_PM_OPS NULL
 892
 893#endif /* !CONFIG_PM */
 894
 895#ifdef CONFIG_EISA
 896static const struct eisa_device_id vortex_eisa_ids[] = {
 897	{ "TCM5920", CH_3C592 },
 898	{ "TCM5970", CH_3C597 },
 899	{ "" }
 900};
 901MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
 902
 903static int vortex_eisa_probe(struct device *device)
 904{
 905	void __iomem *ioaddr;
 906	struct eisa_device *edev;
 907
 908	edev = to_eisa_device(device);
 909
 910	if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
 911		return -EBUSY;
 912
 913	ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
 914
 915	if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
 916					  edev->id.driver_data, vortex_cards_found)) {
 917		release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 918		return -ENODEV;
 919	}
 920
 921	vortex_cards_found++;
 922
 923	return 0;
 924}
 925
 926static int vortex_eisa_remove(struct device *device)
 927{
 928	struct eisa_device *edev;
 929	struct net_device *dev;
 930	struct vortex_private *vp;
 931	void __iomem *ioaddr;
 932
 933	edev = to_eisa_device(device);
 934	dev = eisa_get_drvdata(edev);
 935
 936	if (!dev) {
 937		pr_err("vortex_eisa_remove called for Compaq device!\n");
 938		BUG();
 939	}
 940
 941	vp = netdev_priv(dev);
 942	ioaddr = vp->ioaddr;
 943
 944	unregister_netdev(dev);
 945	iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
 946	release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 947
 948	free_netdev(dev);
 949	return 0;
 950}
 951
 952static struct eisa_driver vortex_eisa_driver = {
 953	.id_table = vortex_eisa_ids,
 954	.driver   = {
 955		.name    = "3c59x",
 956		.probe   = vortex_eisa_probe,
 957		.remove  = vortex_eisa_remove
 958	}
 959};
 960
 961#endif /* CONFIG_EISA */
 962
 963/* returns count found (>= 0), or negative on error */
 964static int __init vortex_eisa_init(void)
 965{
 966	int eisa_found = 0;
 967	int orig_cards_found = vortex_cards_found;
 968
 969#ifdef CONFIG_EISA
 970	int err;
 971
 972	err = eisa_driver_register (&vortex_eisa_driver);
 973	if (!err) {
 974		/*
 975		 * Because of the way EISA bus is probed, we cannot assume
 976		 * any device have been found when we exit from
 977		 * eisa_driver_register (the bus root driver may not be
 978		 * initialized yet). So we blindly assume something was
 979		 * found, and let the sysfs magic happened...
 980		 */
 981		eisa_found = 1;
 982	}
 983#endif
 984
 985	/* Special code to work-around the Compaq PCI BIOS32 problem. */
 986	if (compaq_ioaddr) {
 987		vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
 988			      compaq_irq, compaq_device_id, vortex_cards_found++);
 989	}
 990
 991	return vortex_cards_found - orig_cards_found + eisa_found;
 992}
 993
 994/* returns count (>= 0), or negative on error */
 995static int vortex_init_one(struct pci_dev *pdev,
 996			   const struct pci_device_id *ent)
 997{
 998	int rc, unit, pci_bar;
 999	struct vortex_chip_info *vci;
1000	void __iomem *ioaddr;
1001
1002	/* wake up and enable device */
1003	rc = pci_enable_device(pdev);
1004	if (rc < 0)
1005		goto out;
1006
1007	rc = pci_request_regions(pdev, DRV_NAME);
1008	if (rc < 0)
1009		goto out_disable;
1010
1011	unit = vortex_cards_found;
1012
1013	if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1014		/* Determine the default if the user didn't override us */
1015		vci = &vortex_info_tbl[ent->driver_data];
1016		pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1017	} else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1018		pci_bar = use_mmio[unit] ? 1 : 0;
1019	else
1020		pci_bar = global_use_mmio ? 1 : 0;
1021
1022	ioaddr = pci_iomap(pdev, pci_bar, 0);
1023	if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1024		ioaddr = pci_iomap(pdev, 0, 0);
1025	if (!ioaddr) {
1026		rc = -ENOMEM;
1027		goto out_release;
1028	}
1029
1030	rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1031			   ent->driver_data, unit);
1032	if (rc < 0)
1033		goto out_iounmap;
1034
1035	vortex_cards_found++;
1036	goto out;
1037
1038out_iounmap:
1039	pci_iounmap(pdev, ioaddr);
1040out_release:
1041	pci_release_regions(pdev);
1042out_disable:
1043	pci_disable_device(pdev);
1044out:
1045	return rc;
1046}
1047
1048static const struct net_device_ops boomrang_netdev_ops = {
1049	.ndo_open		= vortex_open,
1050	.ndo_stop		= vortex_close,
1051	.ndo_start_xmit		= boomerang_start_xmit,
1052	.ndo_tx_timeout		= vortex_tx_timeout,
1053	.ndo_get_stats		= vortex_get_stats,
1054#ifdef CONFIG_PCI
1055	.ndo_eth_ioctl		= vortex_ioctl,
1056#endif
1057	.ndo_set_rx_mode	= set_rx_mode,
1058	.ndo_set_mac_address 	= eth_mac_addr,
1059	.ndo_validate_addr	= eth_validate_addr,
1060#ifdef CONFIG_NET_POLL_CONTROLLER
1061	.ndo_poll_controller	= poll_vortex,
1062#endif
1063};
1064
1065static const struct net_device_ops vortex_netdev_ops = {
1066	.ndo_open		= vortex_open,
1067	.ndo_stop		= vortex_close,
1068	.ndo_start_xmit		= vortex_start_xmit,
1069	.ndo_tx_timeout		= vortex_tx_timeout,
1070	.ndo_get_stats		= vortex_get_stats,
1071#ifdef CONFIG_PCI
1072	.ndo_eth_ioctl		= vortex_ioctl,
1073#endif
1074	.ndo_set_rx_mode	= set_rx_mode,
1075	.ndo_set_mac_address 	= eth_mac_addr,
1076	.ndo_validate_addr	= eth_validate_addr,
1077#ifdef CONFIG_NET_POLL_CONTROLLER
1078	.ndo_poll_controller	= poll_vortex,
1079#endif
1080};
1081
1082/*
1083 * Start up the PCI/EISA device which is described by *gendev.
1084 * Return 0 on success.
1085 *
1086 * NOTE: pdev can be NULL, for the case of a Compaq device
1087 */
1088static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1089			 int chip_idx, int card_idx)
1090{
1091	struct vortex_private *vp;
1092	int option;
1093	unsigned int eeprom[0x40], checksum = 0;		/* EEPROM contents */
1094	__be16 addr[ETH_ALEN / 2];
1095	int i, step;
1096	struct net_device *dev;
1097	static int printed_version;
1098	int retval, print_info;
1099	struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1100	const char *print_name = "3c59x";
1101	struct pci_dev *pdev = NULL;
1102	struct eisa_device *edev = NULL;
1103
1104	if (!printed_version) {
1105		pr_info("%s", version);
1106		printed_version = 1;
1107	}
1108
1109	if (gendev) {
1110		if ((pdev = DEVICE_PCI(gendev))) {
1111			print_name = pci_name(pdev);
1112		}
1113
1114		if ((edev = DEVICE_EISA(gendev))) {
1115			print_name = dev_name(&edev->dev);
1116		}
1117	}
1118
1119	dev = alloc_etherdev(sizeof(*vp));
1120	retval = -ENOMEM;
1121	if (!dev)
1122		goto out;
1123
1124	SET_NETDEV_DEV(dev, gendev);
1125	vp = netdev_priv(dev);
1126
1127	option = global_options;
1128
1129	/* The lower four bits are the media type. */
1130	if (dev->mem_start) {
1131		/*
1132		 * The 'options' param is passed in as the third arg to the
1133		 * LILO 'ether=' argument for non-modular use
1134		 */
1135		option = dev->mem_start;
1136	}
1137	else if (card_idx < MAX_UNITS) {
1138		if (options[card_idx] >= 0)
1139			option = options[card_idx];
1140	}
1141
1142	if (option > 0) {
1143		if (option & 0x8000)
1144			vortex_debug = 7;
1145		if (option & 0x4000)
1146			vortex_debug = 2;
1147		if (option & 0x0400)
1148			vp->enable_wol = 1;
1149	}
1150
1151	print_info = (vortex_debug > 1);
1152	if (print_info)
1153		pr_info("See Documentation/networking/device_drivers/ethernet/3com/vortex.rst\n");
1154
1155	pr_info("%s: 3Com %s %s at %p.\n",
1156	       print_name,
1157	       pdev ? "PCI" : "EISA",
1158	       vci->name,
1159	       ioaddr);
1160
1161	dev->base_addr = (unsigned long)ioaddr;
1162	dev->irq = irq;
1163	dev->mtu = mtu;
1164	vp->ioaddr = ioaddr;
1165	vp->large_frames = mtu > 1500;
1166	vp->drv_flags = vci->drv_flags;
1167	vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1168	vp->io_size = vci->io_size;
1169	vp->card_idx = card_idx;
1170	vp->window = -1;
1171
1172	/* module list only for Compaq device */
1173	if (gendev == NULL) {
1174		compaq_net_device = dev;
1175	}
1176
1177	/* PCI-only startup logic */
1178	if (pdev) {
1179		/* enable bus-mastering if necessary */
1180		if (vci->flags & PCI_USES_MASTER)
1181			pci_set_master(pdev);
1182
1183		if (vci->drv_flags & IS_VORTEX) {
1184			u8 pci_latency;
1185			u8 new_latency = 248;
1186
1187			/* Check the PCI latency value.  On the 3c590 series the latency timer
1188			   must be set to the maximum value to avoid data corruption that occurs
1189			   when the timer expires during a transfer.  This bug exists the Vortex
1190			   chip only. */
1191			pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1192			if (pci_latency < new_latency) {
1193				pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1194					print_name, pci_latency, new_latency);
1195				pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1196			}
1197		}
1198	}
1199
1200	spin_lock_init(&vp->lock);
1201	spin_lock_init(&vp->mii_lock);
1202	spin_lock_init(&vp->window_lock);
1203	vp->gendev = gendev;
1204	vp->mii.dev = dev;
1205	vp->mii.mdio_read = mdio_read;
1206	vp->mii.mdio_write = mdio_write;
1207	vp->mii.phy_id_mask = 0x1f;
1208	vp->mii.reg_num_mask = 0x1f;
1209
1210	/* Makes sure rings are at least 16 byte aligned. */
1211	vp->rx_ring = dma_alloc_coherent(gendev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1212					   + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1213					   &vp->rx_ring_dma, GFP_KERNEL);
1214	retval = -ENOMEM;
1215	if (!vp->rx_ring)
1216		goto free_device;
1217
1218	vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1219	vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1220
1221	/* if we are a PCI driver, we store info in pdev->driver_data
1222	 * instead of a module list */
1223	if (pdev)
1224		pci_set_drvdata(pdev, dev);
1225	if (edev)
1226		eisa_set_drvdata(edev, dev);
1227
1228	vp->media_override = 7;
1229	if (option >= 0) {
1230		vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1231		if (vp->media_override != 7)
1232			vp->medialock = 1;
1233		vp->full_duplex = (option & 0x200) ? 1 : 0;
1234		vp->bus_master = (option & 16) ? 1 : 0;
1235	}
1236
1237	if (global_full_duplex > 0)
1238		vp->full_duplex = 1;
1239	if (global_enable_wol > 0)
1240		vp->enable_wol = 1;
1241
1242	if (card_idx < MAX_UNITS) {
1243		if (full_duplex[card_idx] > 0)
1244			vp->full_duplex = 1;
1245		if (flow_ctrl[card_idx] > 0)
1246			vp->flow_ctrl = 1;
1247		if (enable_wol[card_idx] > 0)
1248			vp->enable_wol = 1;
1249	}
1250
1251	vp->mii.force_media = vp->full_duplex;
1252	vp->options = option;
1253	/* Read the station address from the EEPROM. */
1254	{
1255		int base;
1256
1257		if (vci->drv_flags & EEPROM_8BIT)
1258			base = 0x230;
1259		else if (vci->drv_flags & EEPROM_OFFSET)
1260			base = EEPROM_Read + 0x30;
1261		else
1262			base = EEPROM_Read;
1263
1264		for (i = 0; i < 0x40; i++) {
1265			int timer;
1266			window_write16(vp, base + i, 0, Wn0EepromCmd);
1267			/* Pause for at least 162 us. for the read to take place. */
1268			for (timer = 10; timer >= 0; timer--) {
1269				udelay(162);
1270				if ((window_read16(vp, 0, Wn0EepromCmd) &
1271				     0x8000) == 0)
1272					break;
1273			}
1274			eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1275		}
1276	}
1277	for (i = 0; i < 0x18; i++)
1278		checksum ^= eeprom[i];
1279	checksum = (checksum ^ (checksum >> 8)) & 0xff;
1280	if (checksum != 0x00) {		/* Grrr, needless incompatible change 3Com. */
1281		while (i < 0x21)
1282			checksum ^= eeprom[i++];
1283		checksum = (checksum ^ (checksum >> 8)) & 0xff;
1284	}
1285	if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1286		pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1287	for (i = 0; i < 3; i++)
1288		addr[i] = htons(eeprom[i + 10]);
1289	eth_hw_addr_set(dev, (u8 *)addr);
1290	if (print_info)
1291		pr_cont(" %pM", dev->dev_addr);
1292	/* Unfortunately an all zero eeprom passes the checksum and this
1293	   gets found in the wild in failure cases. Crypto is hard 8) */
1294	if (!is_valid_ether_addr(dev->dev_addr)) {
1295		retval = -EINVAL;
1296		pr_err("*** EEPROM MAC address is invalid.\n");
1297		goto free_ring;	/* With every pack */
1298	}
1299	for (i = 0; i < 6; i++)
1300		window_write8(vp, dev->dev_addr[i], 2, i);
1301
1302	if (print_info)
1303		pr_cont(", IRQ %d\n", dev->irq);
1304	/* Tell them about an invalid IRQ. */
1305	if (dev->irq <= 0 || dev->irq >= nr_irqs)
1306		pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n",
1307			dev->irq);
1308
1309	step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1310	if (print_info) {
1311		pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1312			eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1313			step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1314	}
1315
1316
1317	if (pdev && vci->drv_flags & HAS_CB_FNS) {
1318		unsigned short n;
1319
1320		vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1321		if (!vp->cb_fn_base) {
1322			retval = -ENOMEM;
1323			goto free_ring;
1324		}
1325
1326		if (print_info) {
1327			pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1328				print_name,
1329				(unsigned long long)pci_resource_start(pdev, 2),
1330				vp->cb_fn_base);
1331		}
1332
1333		n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1334		if (vp->drv_flags & INVERT_LED_PWR)
1335			n |= 0x10;
1336		if (vp->drv_flags & INVERT_MII_PWR)
1337			n |= 0x4000;
1338		window_write16(vp, n, 2, Wn2_ResetOptions);
1339		if (vp->drv_flags & WNO_XCVR_PWR) {
1340			window_write16(vp, 0x0800, 0, 0);
1341		}
1342	}
1343
1344	/* Extract our information from the EEPROM data. */
1345	vp->info1 = eeprom[13];
1346	vp->info2 = eeprom[15];
1347	vp->capabilities = eeprom[16];
1348
1349	if (vp->info1 & 0x8000) {
1350		vp->full_duplex = 1;
1351		if (print_info)
1352			pr_info("Full duplex capable\n");
1353	}
1354
1355	{
1356		static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1357		unsigned int config;
1358		vp->available_media = window_read16(vp, 3, Wn3_Options);
1359		if ((vp->available_media & 0xff) == 0)		/* Broken 3c916 */
1360			vp->available_media = 0x40;
1361		config = window_read32(vp, 3, Wn3_Config);
1362		if (print_info) {
1363			pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1364				config, window_read16(vp, 3, Wn3_Options));
1365			pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1366				   8 << RAM_SIZE(config),
1367				   RAM_WIDTH(config) ? "word" : "byte",
1368				   ram_split[RAM_SPLIT(config)],
1369				   AUTOSELECT(config) ? "autoselect/" : "",
1370				   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1371				   media_tbl[XCVR(config)].name);
1372		}
1373		vp->default_media = XCVR(config);
1374		if (vp->default_media == XCVR_NWAY)
1375			vp->has_nway = 1;
1376		vp->autoselect = AUTOSELECT(config);
1377	}
1378
1379	if (vp->media_override != 7) {
1380		pr_info("%s:  Media override to transceiver type %d (%s).\n",
1381				print_name, vp->media_override,
1382				media_tbl[vp->media_override].name);
1383		dev->if_port = vp->media_override;
1384	} else
1385		dev->if_port = vp->default_media;
1386
1387	if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1388		dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1389		int phy, phy_idx = 0;
1390		mii_preamble_required++;
1391		if (vp->drv_flags & EXTRA_PREAMBLE)
1392			mii_preamble_required++;
1393		mdio_sync(vp, 32);
1394		mdio_read(dev, 24, MII_BMSR);
1395		for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1396			int mii_status, phyx;
1397
1398			/*
1399			 * For the 3c905CX we look at index 24 first, because it bogusly
1400			 * reports an external PHY at all indices
1401			 */
1402			if (phy == 0)
1403				phyx = 24;
1404			else if (phy <= 24)
1405				phyx = phy - 1;
1406			else
1407				phyx = phy;
1408			mii_status = mdio_read(dev, phyx, MII_BMSR);
1409			if (mii_status  &&  mii_status != 0xffff) {
1410				vp->phys[phy_idx++] = phyx;
1411				if (print_info) {
1412					pr_info("  MII transceiver found at address %d, status %4x.\n",
1413						phyx, mii_status);
1414				}
1415				if ((mii_status & 0x0040) == 0)
1416					mii_preamble_required++;
1417			}
1418		}
1419		mii_preamble_required--;
1420		if (phy_idx == 0) {
1421			pr_warn("  ***WARNING*** No MII transceivers found!\n");
1422			vp->phys[0] = 24;
1423		} else {
1424			vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1425			if (vp->full_duplex) {
1426				/* Only advertise the FD media types. */
1427				vp->advertising &= ~0x02A0;
1428				mdio_write(dev, vp->phys[0], 4, vp->advertising);
1429			}
1430		}
1431		vp->mii.phy_id = vp->phys[0];
1432	}
1433
1434	if (vp->capabilities & CapBusMaster) {
1435		vp->full_bus_master_tx = 1;
1436		if (print_info) {
1437			pr_info("  Enabling bus-master transmits and %s receives.\n",
1438			(vp->info2 & 1) ? "early" : "whole-frame" );
1439		}
1440		vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1441		vp->bus_master = 0;		/* AKPM: vortex only */
1442	}
1443
1444	/* The 3c59x-specific entries in the device structure. */
1445	if (vp->full_bus_master_tx) {
1446		dev->netdev_ops = &boomrang_netdev_ops;
1447		/* Actually, it still should work with iommu. */
1448		if (card_idx < MAX_UNITS &&
1449		    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1450				hw_checksums[card_idx] == 1)) {
1451			dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1452		}
1453	} else
1454		dev->netdev_ops =  &vortex_netdev_ops;
1455
1456	if (print_info) {
1457		pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1458				print_name,
1459				(dev->features & NETIF_F_SG) ? "en":"dis",
1460				(dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1461	}
1462
1463	dev->ethtool_ops = &vortex_ethtool_ops;
1464	dev->watchdog_timeo = (watchdog * HZ) / 1000;
1465
1466	if (pdev) {
1467		vp->pm_state_valid = 1;
1468		pci_save_state(pdev);
1469		acpi_set_WOL(dev);
1470	}
1471	retval = register_netdev(dev);
1472	if (retval == 0)
1473		return 0;
1474
1475free_ring:
1476	dma_free_coherent(&pdev->dev,
1477		sizeof(struct boom_rx_desc) * RX_RING_SIZE +
1478		sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1479		vp->rx_ring, vp->rx_ring_dma);
 
1480free_device:
1481	free_netdev(dev);
1482	pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1483out:
1484	return retval;
1485}
1486
1487static void
1488issue_and_wait(struct net_device *dev, int cmd)
1489{
1490	struct vortex_private *vp = netdev_priv(dev);
1491	void __iomem *ioaddr = vp->ioaddr;
1492	int i;
1493
1494	iowrite16(cmd, ioaddr + EL3_CMD);
1495	for (i = 0; i < 2000; i++) {
1496		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1497			return;
1498	}
1499
1500	/* OK, that didn't work.  Do it the slow way.  One second */
1501	for (i = 0; i < 100000; i++) {
1502		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1503			if (vortex_debug > 1)
1504				pr_info("%s: command 0x%04x took %d usecs\n",
1505					   dev->name, cmd, i * 10);
1506			return;
1507		}
1508		udelay(10);
1509	}
1510	pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1511			   dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1512}
1513
1514static void
1515vortex_set_duplex(struct net_device *dev)
1516{
1517	struct vortex_private *vp = netdev_priv(dev);
1518
1519	pr_info("%s:  setting %s-duplex.\n",
1520		dev->name, (vp->full_duplex) ? "full" : "half");
1521
1522	/* Set the full-duplex bit. */
1523	window_write16(vp,
1524		       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1525		       (vp->large_frames ? 0x40 : 0) |
1526		       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1527			0x100 : 0),
1528		       3, Wn3_MAC_Ctrl);
1529}
1530
1531static void vortex_check_media(struct net_device *dev, unsigned int init)
1532{
1533	struct vortex_private *vp = netdev_priv(dev);
1534	unsigned int ok_to_print = 0;
1535
1536	if (vortex_debug > 3)
1537		ok_to_print = 1;
1538
1539	if (mii_check_media(&vp->mii, ok_to_print, init)) {
1540		vp->full_duplex = vp->mii.full_duplex;
1541		vortex_set_duplex(dev);
1542	} else if (init) {
1543		vortex_set_duplex(dev);
1544	}
1545}
1546
1547static int
1548vortex_up(struct net_device *dev)
1549{
1550	struct vortex_private *vp = netdev_priv(dev);
1551	void __iomem *ioaddr = vp->ioaddr;
1552	unsigned int config;
1553	int i, mii_reg5, err = 0;
1554
1555	if (VORTEX_PCI(vp)) {
1556		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
1557		if (vp->pm_state_valid)
1558			pci_restore_state(VORTEX_PCI(vp));
1559		err = pci_enable_device(VORTEX_PCI(vp));
1560		if (err) {
1561			pr_warn("%s: Could not enable device\n", dev->name);
1562			goto err_out;
1563		}
1564	}
1565
1566	/* Before initializing select the active media port. */
1567	config = window_read32(vp, 3, Wn3_Config);
1568
1569	if (vp->media_override != 7) {
1570		pr_info("%s: Media override to transceiver %d (%s).\n",
1571			   dev->name, vp->media_override,
1572			   media_tbl[vp->media_override].name);
1573		dev->if_port = vp->media_override;
1574	} else if (vp->autoselect) {
1575		if (vp->has_nway) {
1576			if (vortex_debug > 1)
1577				pr_info("%s: using NWAY device table, not %d\n",
1578								dev->name, dev->if_port);
1579			dev->if_port = XCVR_NWAY;
1580		} else {
1581			/* Find first available media type, starting with 100baseTx. */
1582			dev->if_port = XCVR_100baseTx;
1583			while (! (vp->available_media & media_tbl[dev->if_port].mask))
1584				dev->if_port = media_tbl[dev->if_port].next;
1585			if (vortex_debug > 1)
1586				pr_info("%s: first available media type: %s\n",
1587					dev->name, media_tbl[dev->if_port].name);
1588		}
1589	} else {
1590		dev->if_port = vp->default_media;
1591		if (vortex_debug > 1)
1592			pr_info("%s: using default media %s\n",
1593				dev->name, media_tbl[dev->if_port].name);
1594	}
1595
1596	timer_setup(&vp->timer, vortex_timer, 0);
1597	mod_timer(&vp->timer, RUN_AT(media_tbl[dev->if_port].wait));
 
1598
1599	if (vortex_debug > 1)
1600		pr_debug("%s: Initial media type %s.\n",
1601			   dev->name, media_tbl[dev->if_port].name);
1602
1603	vp->full_duplex = vp->mii.force_media;
1604	config = BFINS(config, dev->if_port, 20, 4);
1605	if (vortex_debug > 6)
1606		pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1607	window_write32(vp, config, 3, Wn3_Config);
1608
1609	if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1610		mdio_read(dev, vp->phys[0], MII_BMSR);
1611		mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1612		vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1613		vp->mii.full_duplex = vp->full_duplex;
1614
1615		vortex_check_media(dev, 1);
1616	}
1617	else
1618		vortex_set_duplex(dev);
1619
1620	issue_and_wait(dev, TxReset);
1621	/*
1622	 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1623	 */
1624	issue_and_wait(dev, RxReset|0x04);
1625
1626
1627	iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1628
1629	if (vortex_debug > 1) {
1630		pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1631			   dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1632	}
1633
1634	/* Set the station address and mask in window 2 each time opened. */
1635	for (i = 0; i < 6; i++)
1636		window_write8(vp, dev->dev_addr[i], 2, i);
1637	for (; i < 12; i+=2)
1638		window_write16(vp, 0, 2, i);
1639
1640	if (vp->cb_fn_base) {
1641		unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1642		if (vp->drv_flags & INVERT_LED_PWR)
1643			n |= 0x10;
1644		if (vp->drv_flags & INVERT_MII_PWR)
1645			n |= 0x4000;
1646		window_write16(vp, n, 2, Wn2_ResetOptions);
1647	}
1648
1649	if (dev->if_port == XCVR_10base2)
1650		/* Start the thinnet transceiver. We should really wait 50ms...*/
1651		iowrite16(StartCoax, ioaddr + EL3_CMD);
1652	if (dev->if_port != XCVR_NWAY) {
1653		window_write16(vp,
1654			       (window_read16(vp, 4, Wn4_Media) &
1655				~(Media_10TP|Media_SQE)) |
1656			       media_tbl[dev->if_port].media_bits,
1657			       4, Wn4_Media);
1658	}
1659
1660	/* Switch to the stats window, and clear all stats by reading. */
1661	iowrite16(StatsDisable, ioaddr + EL3_CMD);
1662	for (i = 0; i < 10; i++)
1663		window_read8(vp, 6, i);
1664	window_read16(vp, 6, 10);
1665	window_read16(vp, 6, 12);
1666	/* New: On the Vortex we must also clear the BadSSD counter. */
1667	window_read8(vp, 4, 12);
1668	/* ..and on the Boomerang we enable the extra statistics bits. */
1669	window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1670
1671	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1672		vp->cur_rx = 0;
1673		/* Initialize the RxEarly register as recommended. */
1674		iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1675		iowrite32(0x0020, ioaddr + PktStatus);
1676		iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1677	}
1678	if (vp->full_bus_master_tx) { 		/* Boomerang bus master Tx. */
1679		vp->cur_tx = vp->dirty_tx = 0;
1680		if (vp->drv_flags & IS_BOOMERANG)
1681			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1682		/* Clear the Rx, Tx rings. */
1683		for (i = 0; i < RX_RING_SIZE; i++)	/* AKPM: this is done in vortex_open, too */
1684			vp->rx_ring[i].status = 0;
1685		for (i = 0; i < TX_RING_SIZE; i++)
1686			vp->tx_skbuff[i] = NULL;
1687		iowrite32(0, ioaddr + DownListPtr);
1688	}
1689	/* Set receiver mode: presumably accept b-case and phys addr only. */
1690	set_rx_mode(dev);
1691	/* enable 802.1q tagged frames */
1692	set_8021q_mode(dev, 1);
1693	iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1694
1695	iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1696	iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1697	/* Allow status bits to be seen. */
1698	vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1699		(vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1700		(vp->full_bus_master_rx ? UpComplete : RxComplete) |
1701		(vp->bus_master ? DMADone : 0);
1702	vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1703		(vp->full_bus_master_rx ? 0 : RxComplete) |
1704		StatsFull | HostError | TxComplete | IntReq
1705		| (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1706	iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1707	/* Ack all pending events, and set active indicator mask. */
1708	iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1709		 ioaddr + EL3_CMD);
1710	iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1711	if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
1712		iowrite32(0x8000, vp->cb_fn_base + 4);
1713	netif_start_queue (dev);
1714	netdev_reset_queue(dev);
1715err_out:
1716	return err;
1717}
1718
1719static int
1720vortex_open(struct net_device *dev)
1721{
1722	struct vortex_private *vp = netdev_priv(dev);
1723	int i;
1724	int retval;
1725	dma_addr_t dma;
1726
1727	/* Use the now-standard shared IRQ implementation. */
1728	if ((retval = request_irq(dev->irq, vortex_boomerang_interrupt, IRQF_SHARED, dev->name, dev))) {
 
1729		pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1730		goto err;
1731	}
1732
1733	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1734		if (vortex_debug > 2)
1735			pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1736		for (i = 0; i < RX_RING_SIZE; i++) {
1737			struct sk_buff *skb;
1738			vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1739			vp->rx_ring[i].status = 0;	/* Clear complete bit. */
1740			vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1741
1742			skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1743						 GFP_KERNEL);
1744			vp->rx_skbuff[i] = skb;
1745			if (skb == NULL)
1746				break;			/* Bad news!  */
1747
1748			skb_reserve(skb, NET_IP_ALIGN);	/* Align IP on 16 byte boundaries */
1749			dma = dma_map_single(vp->gendev, skb->data,
1750					     PKT_BUF_SZ, DMA_FROM_DEVICE);
1751			if (dma_mapping_error(vp->gendev, dma))
1752				break;
1753			vp->rx_ring[i].addr = cpu_to_le32(dma);
1754		}
1755		if (i != RX_RING_SIZE) {
1756			pr_emerg("%s: no memory for rx ring\n", dev->name);
1757			retval = -ENOMEM;
1758			goto err_free_skb;
1759		}
1760		/* Wrap the ring. */
1761		vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1762	}
1763
1764	retval = vortex_up(dev);
1765	if (!retval)
1766		goto out;
1767
1768err_free_skb:
1769	for (i = 0; i < RX_RING_SIZE; i++) {
1770		if (vp->rx_skbuff[i]) {
1771			dev_kfree_skb(vp->rx_skbuff[i]);
1772			vp->rx_skbuff[i] = NULL;
1773		}
1774	}
1775	free_irq(dev->irq, dev);
1776err:
1777	if (vortex_debug > 1)
1778		pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1779out:
1780	return retval;
1781}
1782
1783static void
1784vortex_timer(struct timer_list *t)
1785{
1786	struct vortex_private *vp = from_timer(vp, t, timer);
1787	struct net_device *dev = vp->mii.dev;
1788	void __iomem *ioaddr = vp->ioaddr;
1789	int next_tick = 60*HZ;
1790	int ok = 0;
1791	int media_status;
1792
1793	if (vortex_debug > 2) {
1794		pr_debug("%s: Media selection timer tick happened, %s.\n",
1795			   dev->name, media_tbl[dev->if_port].name);
1796		pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1797	}
1798
1799	media_status = window_read16(vp, 4, Wn4_Media);
1800	switch (dev->if_port) {
1801	case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1802		if (media_status & Media_LnkBeat) {
1803			netif_carrier_on(dev);
1804			ok = 1;
1805			if (vortex_debug > 1)
1806				pr_debug("%s: Media %s has link beat, %x.\n",
1807					   dev->name, media_tbl[dev->if_port].name, media_status);
1808		} else {
1809			netif_carrier_off(dev);
1810			if (vortex_debug > 1) {
1811				pr_debug("%s: Media %s has no link beat, %x.\n",
1812					   dev->name, media_tbl[dev->if_port].name, media_status);
1813			}
1814		}
1815		break;
1816	case XCVR_MII: case XCVR_NWAY:
1817		{
1818			ok = 1;
1819			vortex_check_media(dev, 0);
1820		}
1821		break;
1822	  default:					/* Other media types handled by Tx timeouts. */
1823		if (vortex_debug > 1)
1824		  pr_debug("%s: Media %s has no indication, %x.\n",
1825				 dev->name, media_tbl[dev->if_port].name, media_status);
1826		ok = 1;
1827	}
1828
1829	if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1830		next_tick = 5*HZ;
1831
1832	if (vp->medialock)
1833		goto leave_media_alone;
1834
1835	if (!ok) {
1836		unsigned int config;
1837
1838		spin_lock_irq(&vp->lock);
1839
1840		do {
1841			dev->if_port = media_tbl[dev->if_port].next;
1842		} while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1843		if (dev->if_port == XCVR_Default) { /* Go back to default. */
1844		  dev->if_port = vp->default_media;
1845		  if (vortex_debug > 1)
1846			pr_debug("%s: Media selection failing, using default %s port.\n",
1847				   dev->name, media_tbl[dev->if_port].name);
1848		} else {
1849			if (vortex_debug > 1)
1850				pr_debug("%s: Media selection failed, now trying %s port.\n",
1851					   dev->name, media_tbl[dev->if_port].name);
1852			next_tick = media_tbl[dev->if_port].wait;
1853		}
1854		window_write16(vp,
1855			       (media_status & ~(Media_10TP|Media_SQE)) |
1856			       media_tbl[dev->if_port].media_bits,
1857			       4, Wn4_Media);
1858
1859		config = window_read32(vp, 3, Wn3_Config);
1860		config = BFINS(config, dev->if_port, 20, 4);
1861		window_write32(vp, config, 3, Wn3_Config);
1862
1863		iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1864			 ioaddr + EL3_CMD);
1865		if (vortex_debug > 1)
1866			pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1867		/* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1868
1869		spin_unlock_irq(&vp->lock);
1870	}
1871
1872leave_media_alone:
1873	if (vortex_debug > 2)
1874	  pr_debug("%s: Media selection timer finished, %s.\n",
1875			 dev->name, media_tbl[dev->if_port].name);
1876
1877	mod_timer(&vp->timer, RUN_AT(next_tick));
1878	if (vp->deferred)
1879		iowrite16(FakeIntr, ioaddr + EL3_CMD);
1880}
1881
1882static void vortex_tx_timeout(struct net_device *dev, unsigned int txqueue)
1883{
1884	struct vortex_private *vp = netdev_priv(dev);
1885	void __iomem *ioaddr = vp->ioaddr;
1886
1887	pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1888		   dev->name, ioread8(ioaddr + TxStatus),
1889		   ioread16(ioaddr + EL3_STATUS));
1890	pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1891			window_read16(vp, 4, Wn4_NetDiag),
1892			window_read16(vp, 4, Wn4_Media),
1893			ioread32(ioaddr + PktStatus),
1894			window_read16(vp, 4, Wn4_FIFODiag));
1895	/* Slight code bloat to be user friendly. */
1896	if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1897		pr_err("%s: Transmitter encountered 16 collisions --"
1898			   " network cable problem?\n", dev->name);
1899	if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1900		pr_err("%s: Interrupt posted but not delivered --"
1901			   " IRQ blocked by another device?\n", dev->name);
1902		/* Bad idea here.. but we might as well handle a few events. */
1903		vortex_boomerang_interrupt(dev->irq, dev);
 
 
 
 
 
 
 
 
 
 
 
1904	}
1905
1906	if (vortex_debug > 0)
1907		dump_tx_ring(dev);
1908
1909	issue_and_wait(dev, TxReset);
1910
1911	dev->stats.tx_errors++;
1912	if (vp->full_bus_master_tx) {
1913		pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1914		if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1915			iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1916				 ioaddr + DownListPtr);
1917		if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) {
1918			netif_wake_queue (dev);
1919			netdev_reset_queue (dev);
1920		}
1921		if (vp->drv_flags & IS_BOOMERANG)
1922			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1923		iowrite16(DownUnstall, ioaddr + EL3_CMD);
1924	} else {
1925		dev->stats.tx_dropped++;
1926		netif_wake_queue(dev);
1927		netdev_reset_queue(dev);
1928	}
1929	/* Issue Tx Enable */
1930	iowrite16(TxEnable, ioaddr + EL3_CMD);
1931	netif_trans_update(dev); /* prevent tx timeout */
1932}
1933
1934/*
1935 * Handle uncommon interrupt sources.  This is a separate routine to minimize
1936 * the cache impact.
1937 */
1938static void
1939vortex_error(struct net_device *dev, int status)
1940{
1941	struct vortex_private *vp = netdev_priv(dev);
1942	void __iomem *ioaddr = vp->ioaddr;
1943	int do_tx_reset = 0, reset_mask = 0;
1944	unsigned char tx_status = 0;
1945
1946	if (vortex_debug > 2) {
1947		pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1948	}
1949
1950	if (status & TxComplete) {			/* Really "TxError" for us. */
1951		tx_status = ioread8(ioaddr + TxStatus);
1952		/* Presumably a tx-timeout. We must merely re-enable. */
1953		if (vortex_debug > 2 ||
1954		    (tx_status != 0x88 && vortex_debug > 0)) {
1955			pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1956				   dev->name, tx_status);
1957			if (tx_status == 0x82) {
1958				pr_err("Probably a duplex mismatch.  See "
1959						"Documentation/networking/device_drivers/ethernet/3com/vortex.rst\n");
1960			}
1961			dump_tx_ring(dev);
1962		}
1963		if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1964		if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1965		if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1966		iowrite8(0, ioaddr + TxStatus);
1967		if (tx_status & 0x30) {			/* txJabber or txUnderrun */
1968			do_tx_reset = 1;
1969		} else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {	/* maxCollisions */
1970			do_tx_reset = 1;
1971			reset_mask = 0x0108;		/* Reset interface logic, but not download logic */
1972		} else {				/* Merely re-enable the transmitter. */
1973			iowrite16(TxEnable, ioaddr + EL3_CMD);
1974		}
1975	}
1976
1977	if (status & RxEarly)				/* Rx early is unused. */
1978		iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1979
1980	if (status & StatsFull) {			/* Empty statistics. */
1981		static int DoneDidThat;
1982		if (vortex_debug > 4)
1983			pr_debug("%s: Updating stats.\n", dev->name);
1984		update_stats(ioaddr, dev);
1985		/* HACK: Disable statistics as an interrupt source. */
1986		/* This occurs when we have the wrong media type! */
1987		if (DoneDidThat == 0  &&
1988			ioread16(ioaddr + EL3_STATUS) & StatsFull) {
1989			pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n",
1990				dev->name);
1991			iowrite16(SetIntrEnb |
1992				  (window_read16(vp, 5, 10) & ~StatsFull),
1993				  ioaddr + EL3_CMD);
1994			vp->intr_enable &= ~StatsFull;
1995			DoneDidThat++;
1996		}
1997	}
1998	if (status & IntReq) {		/* Restore all interrupt sources.  */
1999		iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2000		iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2001	}
2002	if (status & HostError) {
2003		u16 fifo_diag;
2004		fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2005		pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2006			   dev->name, fifo_diag);
2007		/* Adapter failure requires Tx/Rx reset and reinit. */
2008		if (vp->full_bus_master_tx) {
2009			int bus_status = ioread32(ioaddr + PktStatus);
2010			/* 0x80000000 PCI master abort. */
2011			/* 0x40000000 PCI target abort. */
2012			if (vortex_debug)
2013				pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2014
2015			/* In this case, blow the card away */
2016			/* Must not enter D3 or we can't legally issue the reset! */
2017			vortex_down(dev, 0);
2018			issue_and_wait(dev, TotalReset | 0xff);
2019			vortex_up(dev);		/* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2020		} else if (fifo_diag & 0x0400)
2021			do_tx_reset = 1;
2022		if (fifo_diag & 0x3000) {
2023			/* Reset Rx fifo and upload logic */
2024			issue_and_wait(dev, RxReset|0x07);
2025			/* Set the Rx filter to the current state. */
2026			set_rx_mode(dev);
2027			/* enable 802.1q VLAN tagged frames */
2028			set_8021q_mode(dev, 1);
2029			iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2030			iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2031		}
2032	}
2033
2034	if (do_tx_reset) {
2035		issue_and_wait(dev, TxReset|reset_mask);
2036		iowrite16(TxEnable, ioaddr + EL3_CMD);
2037		if (!vp->full_bus_master_tx)
2038			netif_wake_queue(dev);
2039	}
2040}
2041
2042static netdev_tx_t
2043vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2044{
2045	struct vortex_private *vp = netdev_priv(dev);
2046	void __iomem *ioaddr = vp->ioaddr;
2047	int skblen = skb->len;
2048
2049	/* Put out the doubleword header... */
2050	iowrite32(skb->len, ioaddr + TX_FIFO);
2051	if (vp->bus_master) {
2052		/* Set the bus-master controller to transfer the packet. */
2053		int len = (skb->len + 3) & ~3;
2054		vp->tx_skb_dma = dma_map_single(vp->gendev, skb->data, len,
2055						DMA_TO_DEVICE);
2056		if (dma_mapping_error(vp->gendev, vp->tx_skb_dma)) {
2057			dev_kfree_skb_any(skb);
2058			dev->stats.tx_dropped++;
2059			return NETDEV_TX_OK;
2060		}
2061
2062		spin_lock_irq(&vp->window_lock);
2063		window_set(vp, 7);
2064		iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2065		iowrite16(len, ioaddr + Wn7_MasterLen);
2066		spin_unlock_irq(&vp->window_lock);
2067		vp->tx_skb = skb;
2068		skb_tx_timestamp(skb);
2069		iowrite16(StartDMADown, ioaddr + EL3_CMD);
2070		/* netif_wake_queue() will be called at the DMADone interrupt. */
2071	} else {
2072		/* ... and the packet rounded to a doubleword. */
2073		skb_tx_timestamp(skb);
2074		iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2075		dev_consume_skb_any (skb);
2076		if (ioread16(ioaddr + TxFree) > 1536) {
2077			netif_start_queue (dev);	/* AKPM: redundant? */
2078		} else {
2079			/* Interrupt us when the FIFO has room for max-sized packet. */
2080			netif_stop_queue(dev);
2081			iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2082		}
2083	}
2084
2085	netdev_sent_queue(dev, skblen);
2086
2087	/* Clear the Tx status stack. */
2088	{
2089		int tx_status;
2090		int i = 32;
2091
2092		while (--i > 0	&&	(tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2093			if (tx_status & 0x3C) {		/* A Tx-disabling error occurred.  */
2094				if (vortex_debug > 2)
2095				  pr_debug("%s: Tx error, status %2.2x.\n",
2096						 dev->name, tx_status);
2097				if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2098				if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2099				if (tx_status & 0x30) {
2100					issue_and_wait(dev, TxReset);
2101				}
2102				iowrite16(TxEnable, ioaddr + EL3_CMD);
2103			}
2104			iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2105		}
2106	}
2107	return NETDEV_TX_OK;
2108}
2109
2110static netdev_tx_t
2111boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2112{
2113	struct vortex_private *vp = netdev_priv(dev);
2114	void __iomem *ioaddr = vp->ioaddr;
2115	/* Calculate the next Tx descriptor entry. */
2116	int entry = vp->cur_tx % TX_RING_SIZE;
2117	int skblen = skb->len;
2118	struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2119	unsigned long flags;
2120	dma_addr_t dma_addr;
2121
2122	if (vortex_debug > 6) {
2123		pr_debug("boomerang_start_xmit()\n");
2124		pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2125			   dev->name, vp->cur_tx);
2126	}
2127
2128	/*
2129	 * We can't allow a recursion from our interrupt handler back into the
2130	 * tx routine, as they take the same spin lock, and that causes
2131	 * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2132	 * a bit
2133	 */
2134	if (vp->handling_irq)
2135		return NETDEV_TX_BUSY;
2136
2137	if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2138		if (vortex_debug > 0)
2139			pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n",
2140				dev->name);
2141		netif_stop_queue(dev);
2142		return NETDEV_TX_BUSY;
2143	}
2144
2145	vp->tx_skbuff[entry] = skb;
2146
2147	vp->tx_ring[entry].next = 0;
2148#if DO_ZEROCOPY
2149	if (skb->ip_summed != CHECKSUM_PARTIAL)
2150			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2151	else
2152			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2153
2154	if (!skb_shinfo(skb)->nr_frags) {
2155		dma_addr = dma_map_single(vp->gendev, skb->data, skb->len,
2156					  DMA_TO_DEVICE);
2157		if (dma_mapping_error(vp->gendev, dma_addr))
2158			goto out_dma_err;
2159
2160		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2161		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2162	} else {
2163		int i;
2164
2165		dma_addr = dma_map_single(vp->gendev, skb->data,
2166					  skb_headlen(skb), DMA_TO_DEVICE);
2167		if (dma_mapping_error(vp->gendev, dma_addr))
2168			goto out_dma_err;
2169
2170		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2171		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2172
2173		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2174			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2175
2176			dma_addr = skb_frag_dma_map(vp->gendev, frag,
2177						    0,
2178						    skb_frag_size(frag),
2179						    DMA_TO_DEVICE);
2180			if (dma_mapping_error(vp->gendev, dma_addr)) {
2181				for(i = i-1; i >= 0; i--)
2182					dma_unmap_page(vp->gendev,
2183						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr),
2184						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].length),
2185						       DMA_TO_DEVICE);
2186
2187				dma_unmap_single(vp->gendev,
2188						 le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2189						 le32_to_cpu(vp->tx_ring[entry].frag[0].length),
2190						 DMA_TO_DEVICE);
2191
2192				goto out_dma_err;
2193			}
2194
2195			vp->tx_ring[entry].frag[i+1].addr =
2196						cpu_to_le32(dma_addr);
2197
2198			if (i == skb_shinfo(skb)->nr_frags-1)
2199					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2200			else
2201					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2202		}
2203	}
2204#else
2205	dma_addr = dma_map_single(vp->gendev, skb->data, skb->len, DMA_TO_DEVICE);
2206	if (dma_mapping_error(vp->gendev, dma_addr))
2207		goto out_dma_err;
2208	vp->tx_ring[entry].addr = cpu_to_le32(dma_addr);
2209	vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2210	vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2211#endif
2212
2213	spin_lock_irqsave(&vp->lock, flags);
2214	/* Wait for the stall to complete. */
2215	issue_and_wait(dev, DownStall);
2216	prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2217	if (ioread32(ioaddr + DownListPtr) == 0) {
2218		iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2219		vp->queued_packet++;
2220	}
2221
2222	vp->cur_tx++;
2223	netdev_sent_queue(dev, skblen);
2224
2225	if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2226		netif_stop_queue (dev);
2227	} else {					/* Clear previous interrupt enable. */
2228#if defined(tx_interrupt_mitigation)
2229		/* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2230		 * were selected, this would corrupt DN_COMPLETE. No?
2231		 */
2232		prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2233#endif
2234	}
2235	skb_tx_timestamp(skb);
2236	iowrite16(DownUnstall, ioaddr + EL3_CMD);
2237	spin_unlock_irqrestore(&vp->lock, flags);
2238out:
2239	return NETDEV_TX_OK;
2240out_dma_err:
2241	dev_err(vp->gendev, "Error mapping dma buffer\n");
2242	goto out;
2243}
2244
2245/* The interrupt handler does all of the Rx thread work and cleans up
2246   after the Tx thread. */
2247
2248/*
2249 * This is the ISR for the vortex series chips.
2250 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2251 */
2252
2253static irqreturn_t
2254_vortex_interrupt(int irq, struct net_device *dev)
2255{
 
2256	struct vortex_private *vp = netdev_priv(dev);
2257	void __iomem *ioaddr;
2258	int status;
2259	int work_done = max_interrupt_work;
2260	int handled = 0;
2261	unsigned int bytes_compl = 0, pkts_compl = 0;
2262
2263	ioaddr = vp->ioaddr;
 
2264
2265	status = ioread16(ioaddr + EL3_STATUS);
2266
2267	if (vortex_debug > 6)
2268		pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2269
2270	if ((status & IntLatch) == 0)
2271		goto handler_exit;		/* No interrupt: shared IRQs cause this */
2272	handled = 1;
2273
2274	if (status & IntReq) {
2275		status |= vp->deferred;
2276		vp->deferred = 0;
2277	}
2278
2279	if (status == 0xffff)		/* h/w no longer present (hotplug)? */
2280		goto handler_exit;
2281
2282	if (vortex_debug > 4)
2283		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2284			   dev->name, status, ioread8(ioaddr + Timer));
2285
2286	spin_lock(&vp->window_lock);
2287	window_set(vp, 7);
2288
2289	do {
2290		if (vortex_debug > 5)
2291				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2292					   dev->name, status);
2293		if (status & RxComplete)
2294			vortex_rx(dev);
2295
2296		if (status & TxAvailable) {
2297			if (vortex_debug > 5)
2298				pr_debug("	TX room bit was handled.\n");
2299			/* There's room in the FIFO for a full-sized packet. */
2300			iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2301			netif_wake_queue (dev);
2302		}
2303
2304		if (status & DMADone) {
2305			if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2306				iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2307				dma_unmap_single(vp->gendev, vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, DMA_TO_DEVICE);
2308				pkts_compl++;
2309				bytes_compl += vp->tx_skb->len;
2310				dev_consume_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2311				if (ioread16(ioaddr + TxFree) > 1536) {
2312					/*
2313					 * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2314					 * insufficient FIFO room, the TxAvailable test will succeed and call
2315					 * netif_wake_queue()
2316					 */
2317					netif_wake_queue(dev);
2318				} else { /* Interrupt when FIFO has room for max-sized packet. */
2319					iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2320					netif_stop_queue(dev);
2321				}
2322			}
2323		}
2324		/* Check for all uncommon interrupts at once. */
2325		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2326			if (status == 0xffff)
2327				break;
2328			if (status & RxEarly)
2329				vortex_rx(dev);
2330			spin_unlock(&vp->window_lock);
2331			vortex_error(dev, status);
2332			spin_lock(&vp->window_lock);
2333			window_set(vp, 7);
2334		}
2335
2336		if (--work_done < 0) {
2337			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2338				dev->name, status);
2339			/* Disable all pending interrupts. */
2340			do {
2341				vp->deferred |= status;
2342				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2343					 ioaddr + EL3_CMD);
2344				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2345			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2346			/* The timer will reenable interrupts. */
2347			mod_timer(&vp->timer, jiffies + 1*HZ);
2348			break;
2349		}
2350		/* Acknowledge the IRQ. */
2351		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2352	} while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2353
2354	netdev_completed_queue(dev, pkts_compl, bytes_compl);
2355	spin_unlock(&vp->window_lock);
2356
2357	if (vortex_debug > 4)
2358		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2359			   dev->name, status);
2360handler_exit:
 
2361	return IRQ_RETVAL(handled);
2362}
2363
2364/*
2365 * This is the ISR for the boomerang series chips.
2366 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2367 */
2368
2369static irqreturn_t
2370_boomerang_interrupt(int irq, struct net_device *dev)
2371{
 
2372	struct vortex_private *vp = netdev_priv(dev);
2373	void __iomem *ioaddr;
2374	int status;
2375	int work_done = max_interrupt_work;
2376	int handled = 0;
2377	unsigned int bytes_compl = 0, pkts_compl = 0;
2378
2379	ioaddr = vp->ioaddr;
2380
 
 
 
 
 
 
2381	vp->handling_irq = 1;
2382
2383	status = ioread16(ioaddr + EL3_STATUS);
2384
2385	if (vortex_debug > 6)
2386		pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2387
2388	if ((status & IntLatch) == 0)
2389		goto handler_exit;		/* No interrupt: shared IRQs can cause this */
2390	handled = 1;
2391
2392	if (status == 0xffff) {		/* h/w no longer present (hotplug)? */
2393		if (vortex_debug > 1)
2394			pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2395		goto handler_exit;
2396	}
2397
2398	if (status & IntReq) {
2399		status |= vp->deferred;
2400		vp->deferred = 0;
2401	}
2402
2403	if (vortex_debug > 4)
2404		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2405			   dev->name, status, ioread8(ioaddr + Timer));
2406	do {
2407		if (vortex_debug > 5)
2408				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2409					   dev->name, status);
2410		if (status & UpComplete) {
2411			iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2412			if (vortex_debug > 5)
2413				pr_debug("boomerang_interrupt->boomerang_rx\n");
2414			boomerang_rx(dev);
2415		}
2416
2417		if (status & DownComplete) {
2418			unsigned int dirty_tx = vp->dirty_tx;
2419
2420			iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2421			while (vp->cur_tx - dirty_tx > 0) {
2422				int entry = dirty_tx % TX_RING_SIZE;
2423#if 1	/* AKPM: the latter is faster, but cyclone-only */
2424				if (ioread32(ioaddr + DownListPtr) ==
2425					vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2426					break;			/* It still hasn't been processed. */
2427#else
2428				if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2429					break;			/* It still hasn't been processed. */
2430#endif
2431
2432				if (vp->tx_skbuff[entry]) {
2433					struct sk_buff *skb = vp->tx_skbuff[entry];
2434#if DO_ZEROCOPY
2435					int i;
2436					dma_unmap_single(vp->gendev,
2437							le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2438							le32_to_cpu(vp->tx_ring[entry].frag[0].length)&0xFFF,
2439							DMA_TO_DEVICE);
2440
2441					for (i=1; i<=skb_shinfo(skb)->nr_frags; i++)
2442							dma_unmap_page(vp->gendev,
2443											 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2444											 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2445											 DMA_TO_DEVICE);
2446#else
2447					dma_unmap_single(vp->gendev,
2448						le32_to_cpu(vp->tx_ring[entry].addr), skb->len, DMA_TO_DEVICE);
2449#endif
2450					pkts_compl++;
2451					bytes_compl += skb->len;
2452					dev_consume_skb_irq(skb);
2453					vp->tx_skbuff[entry] = NULL;
2454				} else {
2455					pr_debug("boomerang_interrupt: no skb!\n");
2456				}
2457				/* dev->stats.tx_packets++;  Counted below. */
2458				dirty_tx++;
2459			}
2460			vp->dirty_tx = dirty_tx;
2461			if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2462				if (vortex_debug > 6)
2463					pr_debug("boomerang_interrupt: wake queue\n");
2464				netif_wake_queue (dev);
2465			}
2466		}
2467
2468		/* Check for all uncommon interrupts at once. */
2469		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2470			vortex_error(dev, status);
2471
2472		if (--work_done < 0) {
2473			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2474				dev->name, status);
2475			/* Disable all pending interrupts. */
2476			do {
2477				vp->deferred |= status;
2478				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2479					 ioaddr + EL3_CMD);
2480				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2481			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2482			/* The timer will reenable interrupts. */
2483			mod_timer(&vp->timer, jiffies + 1*HZ);
2484			break;
2485		}
2486		/* Acknowledge the IRQ. */
2487		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2488		if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
2489			iowrite32(0x8000, vp->cb_fn_base + 4);
2490
2491	} while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2492	netdev_completed_queue(dev, pkts_compl, bytes_compl);
2493
2494	if (vortex_debug > 4)
2495		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2496			   dev->name, status);
2497handler_exit:
2498	vp->handling_irq = 0;
 
2499	return IRQ_RETVAL(handled);
2500}
2501
2502static irqreturn_t
2503vortex_boomerang_interrupt(int irq, void *dev_id)
2504{
2505	struct net_device *dev = dev_id;
2506	struct vortex_private *vp = netdev_priv(dev);
2507	unsigned long flags;
2508	irqreturn_t ret;
2509
2510	spin_lock_irqsave(&vp->lock, flags);
2511
2512	if (vp->full_bus_master_rx)
2513		ret = _boomerang_interrupt(dev->irq, dev);
2514	else
2515		ret = _vortex_interrupt(dev->irq, dev);
2516
2517	spin_unlock_irqrestore(&vp->lock, flags);
2518
2519	return ret;
2520}
2521
2522static int vortex_rx(struct net_device *dev)
2523{
2524	struct vortex_private *vp = netdev_priv(dev);
2525	void __iomem *ioaddr = vp->ioaddr;
2526	int i;
2527	short rx_status;
2528
2529	if (vortex_debug > 5)
2530		pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2531			   ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2532	while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2533		if (rx_status & 0x4000) { /* Error, update stats. */
2534			unsigned char rx_error = ioread8(ioaddr + RxErrors);
2535			if (vortex_debug > 2)
2536				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2537			dev->stats.rx_errors++;
2538			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2539			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2540			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2541			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2542			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2543		} else {
2544			/* The packet length: up to 4.5K!. */
2545			int pkt_len = rx_status & 0x1fff;
2546			struct sk_buff *skb;
2547
2548			skb = netdev_alloc_skb(dev, pkt_len + 5);
2549			if (vortex_debug > 4)
2550				pr_debug("Receiving packet size %d status %4.4x.\n",
2551					   pkt_len, rx_status);
2552			if (skb != NULL) {
2553				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2554				/* 'skb_put()' points to the start of sk_buff data area. */
2555				if (vp->bus_master &&
2556					! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2557					dma_addr_t dma = dma_map_single(vp->gendev, skb_put(skb, pkt_len),
2558									   pkt_len, DMA_FROM_DEVICE);
2559					iowrite32(dma, ioaddr + Wn7_MasterAddr);
2560					iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2561					iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2562					while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2563						;
2564					dma_unmap_single(vp->gendev, dma, pkt_len, DMA_FROM_DEVICE);
2565				} else {
2566					ioread32_rep(ioaddr + RX_FIFO,
2567					             skb_put(skb, pkt_len),
2568						     (pkt_len + 3) >> 2);
2569				}
2570				iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2571				skb->protocol = eth_type_trans(skb, dev);
2572				netif_rx(skb);
2573				dev->stats.rx_packets++;
2574				/* Wait a limited time to go to next packet. */
2575				for (i = 200; i >= 0; i--)
2576					if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2577						break;
2578				continue;
2579			} else if (vortex_debug > 0)
2580				pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2581					dev->name, pkt_len);
2582			dev->stats.rx_dropped++;
2583		}
2584		issue_and_wait(dev, RxDiscard);
2585	}
2586
2587	return 0;
2588}
2589
2590static int
2591boomerang_rx(struct net_device *dev)
2592{
2593	struct vortex_private *vp = netdev_priv(dev);
2594	int entry = vp->cur_rx % RX_RING_SIZE;
2595	void __iomem *ioaddr = vp->ioaddr;
2596	int rx_status;
2597	int rx_work_limit = RX_RING_SIZE;
2598
2599	if (vortex_debug > 5)
2600		pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2601
2602	while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2603		if (--rx_work_limit < 0)
2604			break;
2605		if (rx_status & RxDError) { /* Error, update stats. */
2606			unsigned char rx_error = rx_status >> 16;
2607			if (vortex_debug > 2)
2608				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2609			dev->stats.rx_errors++;
2610			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2611			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2612			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2613			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2614			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2615		} else {
2616			/* The packet length: up to 4.5K!. */
2617			int pkt_len = rx_status & 0x1fff;
2618			struct sk_buff *skb, *newskb;
2619			dma_addr_t newdma;
2620			dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2621
2622			if (vortex_debug > 4)
2623				pr_debug("Receiving packet size %d status %4.4x.\n",
2624					   pkt_len, rx_status);
2625
2626			/* Check if the packet is long enough to just accept without
2627			   copying to a properly sized skbuff. */
2628			if (pkt_len < rx_copybreak &&
2629			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2630				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2631				dma_sync_single_for_cpu(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2632				/* 'skb_put()' points to the start of sk_buff data area. */
2633				skb_put_data(skb, vp->rx_skbuff[entry]->data,
2634					     pkt_len);
2635				dma_sync_single_for_device(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
 
2636				vp->rx_copy++;
2637			} else {
2638				/* Pre-allocate the replacement skb.  If it or its
2639				 * mapping fails then recycle the buffer thats already
2640				 * in place
2641				 */
2642				newskb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2643				if (!newskb) {
2644					dev->stats.rx_dropped++;
2645					goto clear_complete;
2646				}
2647				newdma = dma_map_single(vp->gendev, newskb->data,
2648							PKT_BUF_SZ, DMA_FROM_DEVICE);
2649				if (dma_mapping_error(vp->gendev, newdma)) {
2650					dev->stats.rx_dropped++;
2651					consume_skb(newskb);
2652					goto clear_complete;
2653				}
2654
2655				/* Pass up the skbuff already on the Rx ring. */
2656				skb = vp->rx_skbuff[entry];
2657				vp->rx_skbuff[entry] = newskb;
2658				vp->rx_ring[entry].addr = cpu_to_le32(newdma);
2659				skb_put(skb, pkt_len);
2660				dma_unmap_single(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2661				vp->rx_nocopy++;
2662			}
2663			skb->protocol = eth_type_trans(skb, dev);
2664			{					/* Use hardware checksum info. */
2665				int csum_bits = rx_status & 0xee000000;
2666				if (csum_bits &&
2667					(csum_bits == (IPChksumValid | TCPChksumValid) ||
2668					 csum_bits == (IPChksumValid | UDPChksumValid))) {
2669					skb->ip_summed = CHECKSUM_UNNECESSARY;
2670					vp->rx_csumhits++;
2671				}
2672			}
2673			netif_rx(skb);
2674			dev->stats.rx_packets++;
2675		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2676
2677clear_complete:
 
 
2678		vp->rx_ring[entry].status = 0;	/* Clear complete bit. */
2679		iowrite16(UpUnstall, ioaddr + EL3_CMD);
2680		entry = (++vp->cur_rx) % RX_RING_SIZE;
2681	}
2682	return 0;
2683}
2684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2685static void
2686vortex_down(struct net_device *dev, int final_down)
2687{
2688	struct vortex_private *vp = netdev_priv(dev);
2689	void __iomem *ioaddr = vp->ioaddr;
2690
2691	netdev_reset_queue(dev);
2692	netif_stop_queue(dev);
2693
 
2694	del_timer_sync(&vp->timer);
2695
2696	/* Turn off statistics ASAP.  We update dev->stats below. */
2697	iowrite16(StatsDisable, ioaddr + EL3_CMD);
2698
2699	/* Disable the receiver and transmitter. */
2700	iowrite16(RxDisable, ioaddr + EL3_CMD);
2701	iowrite16(TxDisable, ioaddr + EL3_CMD);
2702
2703	/* Disable receiving 802.1q tagged frames */
2704	set_8021q_mode(dev, 0);
2705
2706	if (dev->if_port == XCVR_10base2)
2707		/* Turn off thinnet power.  Green! */
2708		iowrite16(StopCoax, ioaddr + EL3_CMD);
2709
2710	iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2711
2712	update_stats(ioaddr, dev);
2713	if (vp->full_bus_master_rx)
2714		iowrite32(0, ioaddr + UpListPtr);
2715	if (vp->full_bus_master_tx)
2716		iowrite32(0, ioaddr + DownListPtr);
2717
2718	if (final_down && VORTEX_PCI(vp)) {
2719		vp->pm_state_valid = 1;
2720		pci_save_state(VORTEX_PCI(vp));
2721		acpi_set_WOL(dev);
2722	}
2723}
2724
2725static int
2726vortex_close(struct net_device *dev)
2727{
2728	struct vortex_private *vp = netdev_priv(dev);
2729	void __iomem *ioaddr = vp->ioaddr;
2730	int i;
2731
2732	if (netif_device_present(dev))
2733		vortex_down(dev, 1);
2734
2735	if (vortex_debug > 1) {
2736		pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2737			   dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2738		pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2739			   " tx_queued %d Rx pre-checksummed %d.\n",
2740			   dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2741	}
2742
2743#if DO_ZEROCOPY
2744	if (vp->rx_csumhits &&
2745	    (vp->drv_flags & HAS_HWCKSM) == 0 &&
2746	    (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2747		pr_warn("%s supports hardware checksums, and we're not using them!\n",
2748			dev->name);
2749	}
2750#endif
2751
2752	free_irq(dev->irq, dev);
2753
2754	if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2755		for (i = 0; i < RX_RING_SIZE; i++)
2756			if (vp->rx_skbuff[i]) {
2757				dma_unmap_single(vp->gendev, le32_to_cpu(vp->rx_ring[i].addr),
2758									PKT_BUF_SZ, DMA_FROM_DEVICE);
2759				dev_kfree_skb(vp->rx_skbuff[i]);
2760				vp->rx_skbuff[i] = NULL;
2761			}
2762	}
2763	if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2764		for (i = 0; i < TX_RING_SIZE; i++) {
2765			if (vp->tx_skbuff[i]) {
2766				struct sk_buff *skb = vp->tx_skbuff[i];
2767#if DO_ZEROCOPY
2768				int k;
2769
2770				for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2771						dma_unmap_single(vp->gendev,
2772										 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2773										 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2774										 DMA_TO_DEVICE);
2775#else
2776				dma_unmap_single(vp->gendev, le32_to_cpu(vp->tx_ring[i].addr), skb->len, DMA_TO_DEVICE);
2777#endif
2778				dev_kfree_skb(skb);
2779				vp->tx_skbuff[i] = NULL;
2780			}
2781		}
2782	}
2783
2784	return 0;
2785}
2786
2787static void
2788dump_tx_ring(struct net_device *dev)
2789{
2790	if (vortex_debug > 0) {
2791		struct vortex_private *vp = netdev_priv(dev);
2792		void __iomem *ioaddr = vp->ioaddr;
2793
2794		if (vp->full_bus_master_tx) {
2795			int i;
2796			int stalled = ioread32(ioaddr + PktStatus) & 0x04;	/* Possible racy. But it's only debug stuff */
2797
2798			pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2799					vp->full_bus_master_tx,
2800					vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2801					vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2802			pr_err("  Transmit list %8.8x vs. %p.\n",
2803				   ioread32(ioaddr + DownListPtr),
2804				   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2805			issue_and_wait(dev, DownStall);
2806			for (i = 0; i < TX_RING_SIZE; i++) {
2807				unsigned int length;
2808
2809#if DO_ZEROCOPY
2810				length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2811#else
2812				length = le32_to_cpu(vp->tx_ring[i].length);
2813#endif
2814				pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2815					   i, &vp->tx_ring[i], length,
2816					   le32_to_cpu(vp->tx_ring[i].status));
2817			}
2818			if (!stalled)
2819				iowrite16(DownUnstall, ioaddr + EL3_CMD);
2820		}
2821	}
2822}
2823
2824static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2825{
2826	struct vortex_private *vp = netdev_priv(dev);
2827	void __iomem *ioaddr = vp->ioaddr;
2828	unsigned long flags;
2829
2830	if (netif_device_present(dev)) {	/* AKPM: Used to be netif_running */
2831		spin_lock_irqsave (&vp->lock, flags);
2832		update_stats(ioaddr, dev);
2833		spin_unlock_irqrestore (&vp->lock, flags);
2834	}
2835	return &dev->stats;
2836}
2837
2838/*  Update statistics.
2839	Unlike with the EL3 we need not worry about interrupts changing
2840	the window setting from underneath us, but we must still guard
2841	against a race condition with a StatsUpdate interrupt updating the
2842	table.  This is done by checking that the ASM (!) code generated uses
2843	atomic updates with '+='.
2844	*/
2845static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2846{
2847	struct vortex_private *vp = netdev_priv(dev);
2848
2849	/* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2850	/* Switch to the stats window, and read everything. */
2851	dev->stats.tx_carrier_errors		+= window_read8(vp, 6, 0);
2852	dev->stats.tx_heartbeat_errors		+= window_read8(vp, 6, 1);
2853	dev->stats.tx_window_errors		+= window_read8(vp, 6, 4);
2854	dev->stats.rx_fifo_errors		+= window_read8(vp, 6, 5);
2855	dev->stats.tx_packets			+= window_read8(vp, 6, 6);
2856	dev->stats.tx_packets			+= (window_read8(vp, 6, 9) &
2857						    0x30) << 4;
2858	/* Rx packets	*/			window_read8(vp, 6, 7);   /* Must read to clear */
2859	/* Don't bother with register 9, an extension of registers 6&7.
2860	   If we do use the 6&7 values the atomic update assumption above
2861	   is invalid. */
2862	dev->stats.rx_bytes 			+= window_read16(vp, 6, 10);
2863	dev->stats.tx_bytes 			+= window_read16(vp, 6, 12);
2864	/* Extra stats for get_ethtool_stats() */
2865	vp->xstats.tx_multiple_collisions	+= window_read8(vp, 6, 2);
2866	vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2867	vp->xstats.tx_deferred			+= window_read8(vp, 6, 8);
2868	vp->xstats.rx_bad_ssd			+= window_read8(vp, 4, 12);
2869
2870	dev->stats.collisions = vp->xstats.tx_multiple_collisions
2871		+ vp->xstats.tx_single_collisions
2872		+ vp->xstats.tx_max_collisions;
2873
2874	{
2875		u8 up = window_read8(vp, 4, 13);
2876		dev->stats.rx_bytes += (up & 0x0f) << 16;
2877		dev->stats.tx_bytes += (up & 0xf0) << 12;
2878	}
2879}
2880
2881static int vortex_nway_reset(struct net_device *dev)
2882{
2883	struct vortex_private *vp = netdev_priv(dev);
2884
2885	return mii_nway_restart(&vp->mii);
2886}
2887
2888static int vortex_get_link_ksettings(struct net_device *dev,
2889				     struct ethtool_link_ksettings *cmd)
2890{
2891	struct vortex_private *vp = netdev_priv(dev);
2892
2893	mii_ethtool_get_link_ksettings(&vp->mii, cmd);
2894
2895	return 0;
2896}
2897
2898static int vortex_set_link_ksettings(struct net_device *dev,
2899				     const struct ethtool_link_ksettings *cmd)
2900{
2901	struct vortex_private *vp = netdev_priv(dev);
2902
2903	return mii_ethtool_set_link_ksettings(&vp->mii, cmd);
2904}
2905
2906static u32 vortex_get_msglevel(struct net_device *dev)
2907{
2908	return vortex_debug;
2909}
2910
2911static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2912{
2913	vortex_debug = dbg;
2914}
2915
2916static int vortex_get_sset_count(struct net_device *dev, int sset)
2917{
2918	switch (sset) {
2919	case ETH_SS_STATS:
2920		return VORTEX_NUM_STATS;
2921	default:
2922		return -EOPNOTSUPP;
2923	}
2924}
2925
2926static void vortex_get_ethtool_stats(struct net_device *dev,
2927	struct ethtool_stats *stats, u64 *data)
2928{
2929	struct vortex_private *vp = netdev_priv(dev);
2930	void __iomem *ioaddr = vp->ioaddr;
2931	unsigned long flags;
2932
2933	spin_lock_irqsave(&vp->lock, flags);
2934	update_stats(ioaddr, dev);
2935	spin_unlock_irqrestore(&vp->lock, flags);
2936
2937	data[0] = vp->xstats.tx_deferred;
2938	data[1] = vp->xstats.tx_max_collisions;
2939	data[2] = vp->xstats.tx_multiple_collisions;
2940	data[3] = vp->xstats.tx_single_collisions;
2941	data[4] = vp->xstats.rx_bad_ssd;
2942}
2943
2944
2945static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2946{
2947	switch (stringset) {
2948	case ETH_SS_STATS:
2949		memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2950		break;
2951	default:
2952		WARN_ON(1);
2953		break;
2954	}
2955}
2956
2957static void vortex_get_drvinfo(struct net_device *dev,
2958					struct ethtool_drvinfo *info)
2959{
2960	struct vortex_private *vp = netdev_priv(dev);
2961
2962	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2963	if (VORTEX_PCI(vp)) {
2964		strscpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2965			sizeof(info->bus_info));
2966	} else {
2967		if (VORTEX_EISA(vp))
2968			strscpy(info->bus_info, dev_name(vp->gendev),
2969				sizeof(info->bus_info));
2970		else
2971			snprintf(info->bus_info, sizeof(info->bus_info),
2972				"EISA 0x%lx %d", dev->base_addr, dev->irq);
2973	}
2974}
2975
2976static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2977{
2978	struct vortex_private *vp = netdev_priv(dev);
2979
2980	if (!VORTEX_PCI(vp))
2981		return;
2982
2983	wol->supported = WAKE_MAGIC;
2984
2985	wol->wolopts = 0;
2986	if (vp->enable_wol)
2987		wol->wolopts |= WAKE_MAGIC;
2988}
2989
2990static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2991{
2992	struct vortex_private *vp = netdev_priv(dev);
2993
2994	if (!VORTEX_PCI(vp))
2995		return -EOPNOTSUPP;
2996
2997	if (wol->wolopts & ~WAKE_MAGIC)
2998		return -EINVAL;
2999
3000	if (wol->wolopts & WAKE_MAGIC)
3001		vp->enable_wol = 1;
3002	else
3003		vp->enable_wol = 0;
3004	acpi_set_WOL(dev);
3005
3006	return 0;
3007}
3008
3009static const struct ethtool_ops vortex_ethtool_ops = {
3010	.get_drvinfo		= vortex_get_drvinfo,
3011	.get_strings            = vortex_get_strings,
3012	.get_msglevel           = vortex_get_msglevel,
3013	.set_msglevel           = vortex_set_msglevel,
3014	.get_ethtool_stats      = vortex_get_ethtool_stats,
3015	.get_sset_count		= vortex_get_sset_count,
3016	.get_link               = ethtool_op_get_link,
3017	.nway_reset             = vortex_nway_reset,
3018	.get_wol                = vortex_get_wol,
3019	.set_wol                = vortex_set_wol,
3020	.get_ts_info		= ethtool_op_get_ts_info,
3021	.get_link_ksettings     = vortex_get_link_ksettings,
3022	.set_link_ksettings     = vortex_set_link_ksettings,
3023};
3024
3025#ifdef CONFIG_PCI
3026/*
3027 *	Must power the device up to do MDIO operations
3028 */
3029static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3030{
3031	int err;
3032	struct vortex_private *vp = netdev_priv(dev);
3033	pci_power_t state = 0;
3034
3035	if(VORTEX_PCI(vp))
3036		state = VORTEX_PCI(vp)->current_state;
3037
3038	/* The kernel core really should have pci_get_power_state() */
3039
3040	if(state != 0)
3041		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3042	err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3043	if(state != 0)
3044		pci_set_power_state(VORTEX_PCI(vp), state);
3045
3046	return err;
3047}
3048#endif
3049
3050
3051/* Pre-Cyclone chips have no documented multicast filter, so the only
3052   multicast setting is to receive all multicast frames.  At least
3053   the chip has a very clean way to set the mode, unlike many others. */
3054static void set_rx_mode(struct net_device *dev)
3055{
3056	struct vortex_private *vp = netdev_priv(dev);
3057	void __iomem *ioaddr = vp->ioaddr;
3058	int new_mode;
3059
3060	if (dev->flags & IFF_PROMISC) {
3061		if (vortex_debug > 3)
3062			pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3063		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3064	} else	if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3065		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3066	} else
3067		new_mode = SetRxFilter | RxStation | RxBroadcast;
3068
3069	iowrite16(new_mode, ioaddr + EL3_CMD);
3070}
3071
3072#if IS_ENABLED(CONFIG_VLAN_8021Q)
3073/* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3074   Note that this must be done after each RxReset due to some backwards
3075   compatibility logic in the Cyclone and Tornado ASICs */
3076
3077/* The Ethernet Type used for 802.1q tagged frames */
3078#define VLAN_ETHER_TYPE 0x8100
3079
3080static void set_8021q_mode(struct net_device *dev, int enable)
3081{
3082	struct vortex_private *vp = netdev_priv(dev);
3083	int mac_ctrl;
3084
3085	if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3086		/* cyclone and tornado chipsets can recognize 802.1q
3087		 * tagged frames and treat them correctly */
3088
3089		int max_pkt_size = dev->mtu+14;	/* MTU+Ethernet header */
3090		if (enable)
3091			max_pkt_size += 4;	/* 802.1Q VLAN tag */
3092
3093		window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3094
3095		/* set VlanEtherType to let the hardware checksumming
3096		   treat tagged frames correctly */
3097		window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3098	} else {
3099		/* on older cards we have to enable large frames */
3100
3101		vp->large_frames = dev->mtu > 1500 || enable;
3102
3103		mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3104		if (vp->large_frames)
3105			mac_ctrl |= 0x40;
3106		else
3107			mac_ctrl &= ~0x40;
3108		window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3109	}
3110}
3111#else
3112
3113static void set_8021q_mode(struct net_device *dev, int enable)
3114{
3115}
3116
3117
3118#endif
3119
3120/* MII transceiver control section.
3121   Read and write the MII registers using software-generated serial
3122   MDIO protocol.  See the MII specifications or DP83840A data sheet
3123   for details. */
3124
3125/* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3126   met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3127   "overclocking" issues. */
3128static void mdio_delay(struct vortex_private *vp)
3129{
3130	window_read32(vp, 4, Wn4_PhysicalMgmt);
3131}
3132
3133#define MDIO_SHIFT_CLK	0x01
3134#define MDIO_DIR_WRITE	0x04
3135#define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3136#define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3137#define MDIO_DATA_READ	0x02
3138#define MDIO_ENB_IN		0x00
3139
3140/* Generate the preamble required for initial synchronization and
3141   a few older transceivers. */
3142static void mdio_sync(struct vortex_private *vp, int bits)
3143{
3144	/* Establish sync by sending at least 32 logic ones. */
3145	while (-- bits >= 0) {
3146		window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3147		mdio_delay(vp);
3148		window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3149			       4, Wn4_PhysicalMgmt);
3150		mdio_delay(vp);
3151	}
3152}
3153
3154static int mdio_read(struct net_device *dev, int phy_id, int location)
3155{
3156	int i;
3157	struct vortex_private *vp = netdev_priv(dev);
3158	int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3159	unsigned int retval = 0;
3160
3161	spin_lock_bh(&vp->mii_lock);
3162
3163	if (mii_preamble_required)
3164		mdio_sync(vp, 32);
3165
3166	/* Shift the read command bits out. */
3167	for (i = 14; i >= 0; i--) {
3168		int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3169		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3170		mdio_delay(vp);
3171		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3172			       4, Wn4_PhysicalMgmt);
3173		mdio_delay(vp);
3174	}
3175	/* Read the two transition, 16 data, and wire-idle bits. */
3176	for (i = 19; i > 0; i--) {
3177		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3178		mdio_delay(vp);
3179		retval = (retval << 1) |
3180			((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3181			  MDIO_DATA_READ) ? 1 : 0);
3182		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3183			       4, Wn4_PhysicalMgmt);
3184		mdio_delay(vp);
3185	}
3186
3187	spin_unlock_bh(&vp->mii_lock);
3188
3189	return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3190}
3191
3192static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3193{
3194	struct vortex_private *vp = netdev_priv(dev);
3195	int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3196	int i;
3197
3198	spin_lock_bh(&vp->mii_lock);
3199
3200	if (mii_preamble_required)
3201		mdio_sync(vp, 32);
3202
3203	/* Shift the command bits out. */
3204	for (i = 31; i >= 0; i--) {
3205		int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3206		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3207		mdio_delay(vp);
3208		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3209			       4, Wn4_PhysicalMgmt);
3210		mdio_delay(vp);
3211	}
3212	/* Leave the interface idle. */
3213	for (i = 1; i >= 0; i--) {
3214		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3215		mdio_delay(vp);
3216		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3217			       4, Wn4_PhysicalMgmt);
3218		mdio_delay(vp);
3219	}
3220
3221	spin_unlock_bh(&vp->mii_lock);
3222}
3223
3224/* ACPI: Advanced Configuration and Power Interface. */
3225/* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3226static void acpi_set_WOL(struct net_device *dev)
3227{
3228	struct vortex_private *vp = netdev_priv(dev);
3229	void __iomem *ioaddr = vp->ioaddr;
3230
3231	device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3232
3233	if (vp->enable_wol) {
3234		/* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3235		window_write16(vp, 2, 7, 0x0c);
3236		/* The RxFilter must accept the WOL frames. */
3237		iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3238		iowrite16(RxEnable, ioaddr + EL3_CMD);
3239
3240		if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3241			pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3242
3243			vp->enable_wol = 0;
3244			return;
3245		}
3246
3247		if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3248			return;
3249
3250		/* Change the power state to D3; RxEnable doesn't take effect. */
3251		pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3252	}
3253}
3254
3255
3256static void vortex_remove_one(struct pci_dev *pdev)
3257{
3258	struct net_device *dev = pci_get_drvdata(pdev);
3259	struct vortex_private *vp;
3260
3261	if (!dev) {
3262		pr_err("vortex_remove_one called for Compaq device!\n");
3263		BUG();
3264	}
3265
3266	vp = netdev_priv(dev);
3267
3268	if (vp->cb_fn_base)
3269		pci_iounmap(pdev, vp->cb_fn_base);
3270
3271	unregister_netdev(dev);
3272
3273	pci_set_power_state(pdev, PCI_D0);	/* Go active */
3274	if (vp->pm_state_valid)
3275		pci_restore_state(pdev);
3276	pci_disable_device(pdev);
3277
3278	/* Should really use issue_and_wait() here */
3279	iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3280	     vp->ioaddr + EL3_CMD);
3281
3282	pci_iounmap(pdev, vp->ioaddr);
3283
3284	dma_free_coherent(&pdev->dev,
3285			sizeof(struct boom_rx_desc) * RX_RING_SIZE +
3286			sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3287			vp->rx_ring, vp->rx_ring_dma);
 
3288
3289	pci_release_regions(pdev);
3290
3291	free_netdev(dev);
3292}
3293
3294
3295static struct pci_driver vortex_driver = {
3296	.name		= "3c59x",
3297	.probe		= vortex_init_one,
3298	.remove		= vortex_remove_one,
3299	.id_table	= vortex_pci_tbl,
3300	.driver.pm	= VORTEX_PM_OPS,
3301};
3302
3303
3304static int vortex_have_pci;
3305static int vortex_have_eisa;
3306
3307
3308static int __init vortex_init(void)
3309{
3310	int pci_rc, eisa_rc;
3311
3312	pci_rc = pci_register_driver(&vortex_driver);
3313	eisa_rc = vortex_eisa_init();
3314
3315	if (pci_rc == 0)
3316		vortex_have_pci = 1;
3317	if (eisa_rc > 0)
3318		vortex_have_eisa = 1;
3319
3320	return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3321}
3322
3323
3324static void __exit vortex_eisa_cleanup(void)
3325{
3326	void __iomem *ioaddr;
3327
3328#ifdef CONFIG_EISA
3329	/* Take care of the EISA devices */
3330	eisa_driver_unregister(&vortex_eisa_driver);
3331#endif
3332
3333	if (compaq_net_device) {
3334		ioaddr = ioport_map(compaq_net_device->base_addr,
3335		                    VORTEX_TOTAL_SIZE);
3336
3337		unregister_netdev(compaq_net_device);
3338		iowrite16(TotalReset, ioaddr + EL3_CMD);
3339		release_region(compaq_net_device->base_addr,
3340		               VORTEX_TOTAL_SIZE);
3341
3342		free_netdev(compaq_net_device);
3343	}
3344}
3345
3346
3347static void __exit vortex_cleanup(void)
3348{
3349	if (vortex_have_pci)
3350		pci_unregister_driver(&vortex_driver);
3351	if (vortex_have_eisa)
3352		vortex_eisa_cleanup();
3353}
3354
3355
3356module_init(vortex_init);
3357module_exit(vortex_cleanup);
v4.10.11
   1/* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
   2/*
   3	Written 1996-1999 by Donald Becker.
   4
   5	This software may be used and distributed according to the terms
   6	of the GNU General Public License, incorporated herein by reference.
   7
   8	This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
   9	Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
  10	and the EtherLink XL 3c900 and 3c905 cards.
  11
  12	Problem reports and questions should be directed to
  13	vortex@scyld.com
  14
  15	The author may be reached as becker@scyld.com, or C/O
  16	Scyld Computing Corporation
  17	410 Severn Ave., Suite 210
  18	Annapolis MD 21403
  19
  20*/
  21
  22/*
  23 * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
  24 * as well as other drivers
  25 *
  26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
  27 * due to dead code elimination.  There will be some performance benefits from this due to
  28 * elimination of all the tests and reduced cache footprint.
  29 */
  30
  31
  32#define DRV_NAME	"3c59x"
  33
  34
  35
  36/* A few values that may be tweaked. */
  37/* Keep the ring sizes a power of two for efficiency. */
  38#define TX_RING_SIZE	16
  39#define RX_RING_SIZE	32
  40#define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
  41
  42/* "Knobs" that adjust features and parameters. */
  43/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  44   Setting to > 1512 effectively disables this feature. */
  45#ifndef __arm__
  46static int rx_copybreak = 200;
  47#else
  48/* ARM systems perform better by disregarding the bus-master
  49   transfer capability of these cards. -- rmk */
  50static int rx_copybreak = 1513;
  51#endif
  52/* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
  53static const int mtu = 1500;
  54/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
  55static int max_interrupt_work = 32;
  56/* Tx timeout interval (millisecs) */
  57static int watchdog = 5000;
  58
  59/* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
  60 * of possible Tx stalls if the system is blocking interrupts
  61 * somewhere else.  Undefine this to disable.
  62 */
  63#define tx_interrupt_mitigation 1
  64
  65/* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
  66#define vortex_debug debug
  67#ifdef VORTEX_DEBUG
  68static int vortex_debug = VORTEX_DEBUG;
  69#else
  70static int vortex_debug = 1;
  71#endif
  72
  73#include <linux/module.h>
  74#include <linux/kernel.h>
  75#include <linux/string.h>
  76#include <linux/timer.h>
  77#include <linux/errno.h>
  78#include <linux/in.h>
  79#include <linux/ioport.h>
  80#include <linux/interrupt.h>
  81#include <linux/pci.h>
  82#include <linux/mii.h>
  83#include <linux/init.h>
  84#include <linux/netdevice.h>
  85#include <linux/etherdevice.h>
  86#include <linux/skbuff.h>
  87#include <linux/ethtool.h>
  88#include <linux/highmem.h>
  89#include <linux/eisa.h>
  90#include <linux/bitops.h>
  91#include <linux/jiffies.h>
  92#include <linux/gfp.h>
  93#include <asm/irq.h>			/* For nr_irqs only. */
  94#include <asm/io.h>
  95#include <linux/uaccess.h>
  96
  97/* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
  98   This is only in the support-all-kernels source code. */
  99
 100#define RUN_AT(x) (jiffies + (x))
 101
 102#include <linux/delay.h>
 103
 104
 105static const char version[] =
 106	DRV_NAME ": Donald Becker and others.\n";
 107
 108MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 109MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
 110MODULE_LICENSE("GPL");
 111
 112
 113/* Operational parameter that usually are not changed. */
 114
 115/* The Vortex size is twice that of the original EtherLinkIII series: the
 116   runtime register window, window 1, is now always mapped in.
 117   The Boomerang size is twice as large as the Vortex -- it has additional
 118   bus master control registers. */
 119#define VORTEX_TOTAL_SIZE 0x20
 120#define BOOMERANG_TOTAL_SIZE 0x40
 121
 122/* Set iff a MII transceiver on any interface requires mdio preamble.
 123   This only set with the original DP83840 on older 3c905 boards, so the extra
 124   code size of a per-interface flag is not worthwhile. */
 125static char mii_preamble_required;
 126
 127#define PFX DRV_NAME ": "
 128
 129
 130
 131/*
 132				Theory of Operation
 133
 134I. Board Compatibility
 135
 136This device driver is designed for the 3Com FastEtherLink and FastEtherLink
 137XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
 138versions of the FastEtherLink cards.  The supported product IDs are
 139  3c590, 3c592, 3c595, 3c597, 3c900, 3c905
 140
 141The related ISA 3c515 is supported with a separate driver, 3c515.c, included
 142with the kernel source or available from
 143    cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
 144
 145II. Board-specific settings
 146
 147PCI bus devices are configured by the system at boot time, so no jumpers
 148need to be set on the board.  The system BIOS should be set to assign the
 149PCI INTA signal to an otherwise unused system IRQ line.
 150
 151The EEPROM settings for media type and forced-full-duplex are observed.
 152The EEPROM media type should be left at the default "autoselect" unless using
 15310base2 or AUI connections which cannot be reliably detected.
 154
 155III. Driver operation
 156
 157The 3c59x series use an interface that's very similar to the previous 3c5x9
 158series.  The primary interface is two programmed-I/O FIFOs, with an
 159alternate single-contiguous-region bus-master transfer (see next).
 160
 161The 3c900 "Boomerang" series uses a full-bus-master interface with separate
 162lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
 163DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
 164programmed-I/O interface that has been removed in 'B' and subsequent board
 165revisions.
 166
 167One extension that is advertised in a very large font is that the adapters
 168are capable of being bus masters.  On the Vortex chip this capability was
 169only for a single contiguous region making it far less useful than the full
 170bus master capability.  There is a significant performance impact of taking
 171an extra interrupt or polling for the completion of each transfer, as well
 172as difficulty sharing the single transfer engine between the transmit and
 173receive threads.  Using DMA transfers is a win only with large blocks or
 174with the flawed versions of the Intel Orion motherboard PCI controller.
 175
 176The Boomerang chip's full-bus-master interface is useful, and has the
 177currently-unused advantages over other similar chips that queued transmit
 178packets may be reordered and receive buffer groups are associated with a
 179single frame.
 180
 181With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
 182Rather than a fixed intermediate receive buffer, this scheme allocates
 183full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
 184the copying breakpoint: it is chosen to trade-off the memory wasted by
 185passing the full-sized skbuff to the queue layer for all frames vs. the
 186copying cost of copying a frame to a correctly-sized skbuff.
 187
 188IIIC. Synchronization
 189The driver runs as two independent, single-threaded flows of control.  One
 190is the send-packet routine, which enforces single-threaded use by the
 191dev->tbusy flag.  The other thread is the interrupt handler, which is single
 192threaded by the hardware and other software.
 193
 194IV. Notes
 195
 196Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
 1973c590, 3c595, and 3c900 boards.
 198The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
 199the EISA version is called "Demon".  According to Terry these names come
 200from rides at the local amusement park.
 201
 202The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
 203This driver only supports ethernet packets because of the skbuff allocation
 204limit of 4K.
 205*/
 206
 207/* This table drives the PCI probe routines.  It's mostly boilerplate in all
 208   of the drivers, and will likely be provided by some future kernel.
 209*/
 210enum pci_flags_bit {
 211	PCI_USES_MASTER=4,
 212};
 213
 214enum {	IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
 215	EEPROM_8BIT=0x10,	/* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
 216	HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
 217	INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
 218	EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
 219	EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
 220
 221enum vortex_chips {
 222	CH_3C590 = 0,
 223	CH_3C592,
 224	CH_3C597,
 225	CH_3C595_1,
 226	CH_3C595_2,
 227
 228	CH_3C595_3,
 229	CH_3C900_1,
 230	CH_3C900_2,
 231	CH_3C900_3,
 232	CH_3C900_4,
 233
 234	CH_3C900_5,
 235	CH_3C900B_FL,
 236	CH_3C905_1,
 237	CH_3C905_2,
 238	CH_3C905B_TX,
 239	CH_3C905B_1,
 240
 241	CH_3C905B_2,
 242	CH_3C905B_FX,
 243	CH_3C905C,
 244	CH_3C9202,
 245	CH_3C980,
 246	CH_3C9805,
 247
 248	CH_3CSOHO100_TX,
 249	CH_3C555,
 250	CH_3C556,
 251	CH_3C556B,
 252	CH_3C575,
 253
 254	CH_3C575_1,
 255	CH_3CCFE575,
 256	CH_3CCFE575CT,
 257	CH_3CCFE656,
 258	CH_3CCFEM656,
 259
 260	CH_3CCFEM656_1,
 261	CH_3C450,
 262	CH_3C920,
 263	CH_3C982A,
 264	CH_3C982B,
 265
 266	CH_905BT4,
 267	CH_920B_EMB_WNM,
 268};
 269
 270
 271/* note: this array directly indexed by above enums, and MUST
 272 * be kept in sync with both the enums above, and the PCI device
 273 * table below
 274 */
 275static struct vortex_chip_info {
 276	const char *name;
 277	int flags;
 278	int drv_flags;
 279	int io_size;
 280} vortex_info_tbl[] = {
 281	{"3c590 Vortex 10Mbps",
 282	 PCI_USES_MASTER, IS_VORTEX, 32, },
 283	{"3c592 EISA 10Mbps Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
 284	 PCI_USES_MASTER, IS_VORTEX, 32, },
 285	{"3c597 EISA Fast Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
 286	 PCI_USES_MASTER, IS_VORTEX, 32, },
 287	{"3c595 Vortex 100baseTx",
 288	 PCI_USES_MASTER, IS_VORTEX, 32, },
 289	{"3c595 Vortex 100baseT4",
 290	 PCI_USES_MASTER, IS_VORTEX, 32, },
 291
 292	{"3c595 Vortex 100base-MII",
 293	 PCI_USES_MASTER, IS_VORTEX, 32, },
 294	{"3c900 Boomerang 10baseT",
 295	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 296	{"3c900 Boomerang 10Mbps Combo",
 297	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 298	{"3c900 Cyclone 10Mbps TPO",						/* AKPM: from Don's 0.99M */
 299	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 300	{"3c900 Cyclone 10Mbps Combo",
 301	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 302
 303	{"3c900 Cyclone 10Mbps TPC",						/* AKPM: from Don's 0.99M */
 304	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 305	{"3c900B-FL Cyclone 10base-FL",
 306	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 307	{"3c905 Boomerang 100baseTx",
 308	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 309	{"3c905 Boomerang 100baseT4",
 310	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 311	{"3C905B-TX Fast Etherlink XL PCI",
 312	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 313	{"3c905B Cyclone 100baseTx",
 314	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 315
 316	{"3c905B Cyclone 10/100/BNC",
 317	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 318	{"3c905B-FX Cyclone 100baseFx",
 319	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 320	{"3c905C Tornado",
 321	PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 322	{"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
 323	 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
 324	{"3c980 Cyclone",
 325	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 326
 327	{"3c980C Python-T",
 328	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 329	{"3cSOHO100-TX Hurricane",
 330	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 331	{"3c555 Laptop Hurricane",
 332	 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
 333	{"3c556 Laptop Tornado",
 334	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
 335									HAS_HWCKSM, 128, },
 336	{"3c556B Laptop Hurricane",
 337	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
 338	                                WNO_XCVR_PWR|HAS_HWCKSM, 128, },
 339
 340	{"3c575 [Megahertz] 10/100 LAN 	CardBus",
 341	PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 342	{"3c575 Boomerang CardBus",
 343	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 344	{"3CCFE575BT Cyclone CardBus",
 345	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
 346									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 347	{"3CCFE575CT Tornado CardBus",
 348	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 349									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 350	{"3CCFE656 Cyclone CardBus",
 351	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 352									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 353
 354	{"3CCFEM656B Cyclone+Winmodem CardBus",
 355	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 356									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 357	{"3CXFEM656C Tornado+Winmodem CardBus",			/* From pcmcia-cs-3.1.5 */
 358	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 359									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 360	{"3c450 HomePNA Tornado",						/* AKPM: from Don's 0.99Q */
 361	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 362	{"3c920 Tornado",
 363	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 364	{"3c982 Hydra Dual Port A",
 365	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 366
 367	{"3c982 Hydra Dual Port B",
 368	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 369	{"3c905B-T4",
 370	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 371	{"3c920B-EMB-WNM Tornado",
 372	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 373
 374	{NULL,}, /* NULL terminated list. */
 375};
 376
 377
 378static const struct pci_device_id vortex_pci_tbl[] = {
 379	{ 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
 380	{ 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
 381	{ 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
 382	{ 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
 383	{ 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
 384
 385	{ 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
 386	{ 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
 387	{ 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
 388	{ 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
 389	{ 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
 390
 391	{ 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
 392	{ 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
 393	{ 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
 394	{ 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
 395	{ 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
 396	{ 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
 397
 398	{ 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
 399	{ 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
 400	{ 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
 401	{ 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
 402	{ 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
 403	{ 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
 404
 405	{ 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
 406	{ 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
 407	{ 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
 408	{ 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
 409	{ 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
 410
 411	{ 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
 412	{ 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
 413	{ 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
 414	{ 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
 415	{ 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
 416
 417	{ 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
 418	{ 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
 419	{ 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
 420	{ 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
 421	{ 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
 422
 423	{ 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
 424	{ 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
 425
 426	{0,}						/* 0 terminated list. */
 427};
 428MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
 429
 430
 431/* Operational definitions.
 432   These are not used by other compilation units and thus are not
 433   exported in a ".h" file.
 434
 435   First the windows.  There are eight register windows, with the command
 436   and status registers available in each.
 437   */
 438#define EL3_CMD 0x0e
 439#define EL3_STATUS 0x0e
 440
 441/* The top five bits written to EL3_CMD are a command, the lower
 442   11 bits are the parameter, if applicable.
 443   Note that 11 parameters bits was fine for ethernet, but the new chip
 444   can handle FDDI length frames (~4500 octets) and now parameters count
 445   32-bit 'Dwords' rather than octets. */
 446
 447enum vortex_cmd {
 448	TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
 449	RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
 450	UpStall = 6<<11, UpUnstall = (6<<11)+1,
 451	DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
 452	RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
 453	FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
 454	SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
 455	SetTxThreshold = 18<<11, SetTxStart = 19<<11,
 456	StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
 457	StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
 458
 459/* The SetRxFilter command accepts the following classes: */
 460enum RxFilter {
 461	RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
 462
 463/* Bits in the general status register. */
 464enum vortex_status {
 465	IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
 466	TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
 467	IntReq = 0x0040, StatsFull = 0x0080,
 468	DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
 469	DMAInProgress = 1<<11,			/* DMA controller is still busy.*/
 470	CmdInProgress = 1<<12,			/* EL3_CMD is still busy.*/
 471};
 472
 473/* Register window 1 offsets, the window used in normal operation.
 474   On the Vortex this window is always mapped at offsets 0x10-0x1f. */
 475enum Window1 {
 476	TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
 477	RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
 478	TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
 479};
 480enum Window0 {
 481	Wn0EepromCmd = 10,		/* Window 0: EEPROM command register. */
 482	Wn0EepromData = 12,		/* Window 0: EEPROM results register. */
 483	IntrStatus=0x0E,		/* Valid in all windows. */
 484};
 485enum Win0_EEPROM_bits {
 486	EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
 487	EEPROM_EWENB = 0x30,		/* Enable erasing/writing for 10 msec. */
 488	EEPROM_EWDIS = 0x00,		/* Disable EWENB before 10 msec timeout. */
 489};
 490/* EEPROM locations. */
 491enum eeprom_offset {
 492	PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
 493	EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
 494	NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
 495	DriverTune=13, Checksum=15};
 496
 497enum Window2 {			/* Window 2. */
 498	Wn2_ResetOptions=12,
 499};
 500enum Window3 {			/* Window 3: MAC/config bits. */
 501	Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
 502};
 503
 504#define BFEXT(value, offset, bitcount)  \
 505    ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
 506
 507#define BFINS(lhs, rhs, offset, bitcount)					\
 508	(((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |	\
 509	(((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
 510
 511#define RAM_SIZE(v)		BFEXT(v, 0, 3)
 512#define RAM_WIDTH(v)	BFEXT(v, 3, 1)
 513#define RAM_SPEED(v)	BFEXT(v, 4, 2)
 514#define ROM_SIZE(v)		BFEXT(v, 6, 2)
 515#define RAM_SPLIT(v)	BFEXT(v, 16, 2)
 516#define XCVR(v)			BFEXT(v, 20, 4)
 517#define AUTOSELECT(v)	BFEXT(v, 24, 1)
 518
 519enum Window4 {		/* Window 4: Xcvr/media bits. */
 520	Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
 521};
 522enum Win4_Media_bits {
 523	Media_SQE = 0x0008,		/* Enable SQE error counting for AUI. */
 524	Media_10TP = 0x00C0,	/* Enable link beat and jabber for 10baseT. */
 525	Media_Lnk = 0x0080,		/* Enable just link beat for 100TX/100FX. */
 526	Media_LnkBeat = 0x0800,
 527};
 528enum Window7 {					/* Window 7: Bus Master control. */
 529	Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
 530	Wn7_MasterStatus = 12,
 531};
 532/* Boomerang bus master control registers. */
 533enum MasterCtrl {
 534	PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
 535	TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
 536};
 537
 538/* The Rx and Tx descriptor lists.
 539   Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
 540   alignment contraint on tx_ring[] and rx_ring[]. */
 541#define LAST_FRAG 	0x80000000			/* Last Addr/Len pair in descriptor. */
 542#define DN_COMPLETE	0x00010000			/* This packet has been downloaded */
 543struct boom_rx_desc {
 544	__le32 next;					/* Last entry points to 0.   */
 545	__le32 status;
 546	__le32 addr;					/* Up to 63 addr/len pairs possible. */
 547	__le32 length;					/* Set LAST_FRAG to indicate last pair. */
 548};
 549/* Values for the Rx status entry. */
 550enum rx_desc_status {
 551	RxDComplete=0x00008000, RxDError=0x4000,
 552	/* See boomerang_rx() for actual error bits */
 553	IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
 554	IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
 555};
 556
 557#ifdef MAX_SKB_FRAGS
 558#define DO_ZEROCOPY 1
 559#else
 560#define DO_ZEROCOPY 0
 561#endif
 562
 563struct boom_tx_desc {
 564	__le32 next;					/* Last entry points to 0.   */
 565	__le32 status;					/* bits 0:12 length, others see below.  */
 566#if DO_ZEROCOPY
 567	struct {
 568		__le32 addr;
 569		__le32 length;
 570	} frag[1+MAX_SKB_FRAGS];
 571#else
 572		__le32 addr;
 573		__le32 length;
 574#endif
 575};
 576
 577/* Values for the Tx status entry. */
 578enum tx_desc_status {
 579	CRCDisable=0x2000, TxDComplete=0x8000,
 580	AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
 581	TxIntrUploaded=0x80000000,		/* IRQ when in FIFO, but maybe not sent. */
 582};
 583
 584/* Chip features we care about in vp->capabilities, read from the EEPROM. */
 585enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
 586
 587struct vortex_extra_stats {
 588	unsigned long tx_deferred;
 589	unsigned long tx_max_collisions;
 590	unsigned long tx_multiple_collisions;
 591	unsigned long tx_single_collisions;
 592	unsigned long rx_bad_ssd;
 593};
 594
 595struct vortex_private {
 596	/* The Rx and Tx rings should be quad-word-aligned. */
 597	struct boom_rx_desc* rx_ring;
 598	struct boom_tx_desc* tx_ring;
 599	dma_addr_t rx_ring_dma;
 600	dma_addr_t tx_ring_dma;
 601	/* The addresses of transmit- and receive-in-place skbuffs. */
 602	struct sk_buff* rx_skbuff[RX_RING_SIZE];
 603	struct sk_buff* tx_skbuff[TX_RING_SIZE];
 604	unsigned int cur_rx, cur_tx;		/* The next free ring entry */
 605	unsigned int dirty_rx, dirty_tx;	/* The ring entries to be free()ed. */
 606	struct vortex_extra_stats xstats;	/* NIC-specific extra stats */
 607	struct sk_buff *tx_skb;				/* Packet being eaten by bus master ctrl.  */
 608	dma_addr_t tx_skb_dma;				/* Allocated DMA address for bus master ctrl DMA.   */
 609
 610	/* PCI configuration space information. */
 611	struct device *gendev;
 612	void __iomem *ioaddr;			/* IO address space */
 613	void __iomem *cb_fn_base;		/* CardBus function status addr space. */
 614
 615	/* Some values here only for performance evaluation and path-coverage */
 616	int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
 617	int card_idx;
 618
 619	/* The remainder are related to chip state, mostly media selection. */
 620	struct timer_list timer;			/* Media selection timer. */
 621	struct timer_list rx_oom_timer;		/* Rx skb allocation retry timer */
 622	int options;						/* User-settable misc. driver options. */
 623	unsigned int media_override:4, 		/* Passed-in media type. */
 624		default_media:4,				/* Read from the EEPROM/Wn3_Config. */
 625		full_duplex:1, autoselect:1,
 626		bus_master:1,					/* Vortex can only do a fragment bus-m. */
 627		full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
 628		flow_ctrl:1,					/* Use 802.3x flow control (PAUSE only) */
 629		partner_flow_ctrl:1,			/* Partner supports flow control */
 630		has_nway:1,
 631		enable_wol:1,					/* Wake-on-LAN is enabled */
 632		pm_state_valid:1,				/* pci_dev->saved_config_space has sane contents */
 633		open:1,
 634		medialock:1,
 635		large_frames:1,			/* accept large frames */
 636		handling_irq:1;			/* private in_irq indicator */
 637	/* {get|set}_wol operations are already serialized by rtnl.
 638	 * no additional locking is required for the enable_wol and acpi_set_WOL()
 639	 */
 640	int drv_flags;
 641	u16 status_enable;
 642	u16 intr_enable;
 643	u16 available_media;				/* From Wn3_Options. */
 644	u16 capabilities, info1, info2;		/* Various, from EEPROM. */
 645	u16 advertising;					/* NWay media advertisement */
 646	unsigned char phys[2];				/* MII device addresses. */
 647	u16 deferred;						/* Resend these interrupts when we
 648										 * bale from the ISR */
 649	u16 io_size;						/* Size of PCI region (for release_region) */
 650
 651	/* Serialises access to hardware other than MII and variables below.
 652	 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
 653	spinlock_t lock;
 654
 655	spinlock_t mii_lock;		/* Serialises access to MII */
 656	struct mii_if_info mii;		/* MII lib hooks/info */
 657	spinlock_t window_lock;		/* Serialises access to windowed regs */
 658	int window;			/* Register window */
 659};
 660
 661static void window_set(struct vortex_private *vp, int window)
 662{
 663	if (window != vp->window) {
 664		iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
 665		vp->window = window;
 666	}
 667}
 668
 669#define DEFINE_WINDOW_IO(size)						\
 670static u ## size							\
 671window_read ## size(struct vortex_private *vp, int window, int addr)	\
 672{									\
 673	unsigned long flags;						\
 674	u ## size ret;							\
 675	spin_lock_irqsave(&vp->window_lock, flags);			\
 676	window_set(vp, window);						\
 677	ret = ioread ## size(vp->ioaddr + addr);			\
 678	spin_unlock_irqrestore(&vp->window_lock, flags);		\
 679	return ret;							\
 680}									\
 681static void								\
 682window_write ## size(struct vortex_private *vp, u ## size value,	\
 683		     int window, int addr)				\
 684{									\
 685	unsigned long flags;						\
 686	spin_lock_irqsave(&vp->window_lock, flags);			\
 687	window_set(vp, window);						\
 688	iowrite ## size(value, vp->ioaddr + addr);			\
 689	spin_unlock_irqrestore(&vp->window_lock, flags);		\
 690}
 691DEFINE_WINDOW_IO(8)
 692DEFINE_WINDOW_IO(16)
 693DEFINE_WINDOW_IO(32)
 694
 695#ifdef CONFIG_PCI
 696#define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL)
 697#else
 698#define DEVICE_PCI(dev) NULL
 699#endif
 700
 701#define VORTEX_PCI(vp)							\
 702	((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
 703
 704#ifdef CONFIG_EISA
 705#define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
 706#else
 707#define DEVICE_EISA(dev) NULL
 708#endif
 709
 710#define VORTEX_EISA(vp)							\
 711	((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
 712
 713/* The action to take with a media selection timer tick.
 714   Note that we deviate from the 3Com order by checking 10base2 before AUI.
 715 */
 716enum xcvr_types {
 717	XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
 718	XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
 719};
 720
 721static const struct media_table {
 722	char *name;
 723	unsigned int media_bits:16,		/* Bits to set in Wn4_Media register. */
 724		mask:8,						/* The transceiver-present bit in Wn3_Config.*/
 725		next:8;						/* The media type to try next. */
 726	int wait;						/* Time before we check media status. */
 727} media_tbl[] = {
 728  {	"10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
 729  { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
 730  { "undefined", 0,			0x80, XCVR_10baseT, 10000},
 731  { "10base2",   0,			0x10, XCVR_AUI,		(1*HZ)/10},
 732  { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
 733  { "100baseFX", Media_Lnk, 0x04, XCVR_MII,		(14*HZ)/10},
 734  { "MII",		 0,			0x41, XCVR_10baseT, 3*HZ },
 735  { "undefined", 0,			0x01, XCVR_10baseT, 10000},
 736  { "Autonegotiate", 0,		0x41, XCVR_10baseT, 3*HZ},
 737  { "MII-External",	 0,		0x41, XCVR_10baseT, 3*HZ },
 738  { "Default",	 0,			0xFF, XCVR_10baseT, 10000},
 739};
 740
 741static struct {
 742	const char str[ETH_GSTRING_LEN];
 743} ethtool_stats_keys[] = {
 744	{ "tx_deferred" },
 745	{ "tx_max_collisions" },
 746	{ "tx_multiple_collisions" },
 747	{ "tx_single_collisions" },
 748	{ "rx_bad_ssd" },
 749};
 750
 751/* number of ETHTOOL_GSTATS u64's */
 752#define VORTEX_NUM_STATS    5
 753
 754static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
 755				   int chip_idx, int card_idx);
 756static int vortex_up(struct net_device *dev);
 757static void vortex_down(struct net_device *dev, int final);
 758static int vortex_open(struct net_device *dev);
 759static void mdio_sync(struct vortex_private *vp, int bits);
 760static int mdio_read(struct net_device *dev, int phy_id, int location);
 761static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
 762static void vortex_timer(unsigned long arg);
 763static void rx_oom_timer(unsigned long arg);
 764static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
 765				     struct net_device *dev);
 766static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
 767					struct net_device *dev);
 768static int vortex_rx(struct net_device *dev);
 769static int boomerang_rx(struct net_device *dev);
 770static irqreturn_t vortex_interrupt(int irq, void *dev_id);
 771static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
 
 772static int vortex_close(struct net_device *dev);
 773static void dump_tx_ring(struct net_device *dev);
 774static void update_stats(void __iomem *ioaddr, struct net_device *dev);
 775static struct net_device_stats *vortex_get_stats(struct net_device *dev);
 776static void set_rx_mode(struct net_device *dev);
 777#ifdef CONFIG_PCI
 778static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 779#endif
 780static void vortex_tx_timeout(struct net_device *dev);
 781static void acpi_set_WOL(struct net_device *dev);
 782static const struct ethtool_ops vortex_ethtool_ops;
 783static void set_8021q_mode(struct net_device *dev, int enable);
 784
 785/* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
 786/* Option count limit only -- unlimited interfaces are supported. */
 787#define MAX_UNITS 8
 788static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
 789static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 790static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 791static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 792static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 793static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 794static int global_options = -1;
 795static int global_full_duplex = -1;
 796static int global_enable_wol = -1;
 797static int global_use_mmio = -1;
 798
 799/* Variables to work-around the Compaq PCI BIOS32 problem. */
 800static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
 801static struct net_device *compaq_net_device;
 802
 803static int vortex_cards_found;
 804
 805module_param(debug, int, 0);
 806module_param(global_options, int, 0);
 807module_param_array(options, int, NULL, 0);
 808module_param(global_full_duplex, int, 0);
 809module_param_array(full_duplex, int, NULL, 0);
 810module_param_array(hw_checksums, int, NULL, 0);
 811module_param_array(flow_ctrl, int, NULL, 0);
 812module_param(global_enable_wol, int, 0);
 813module_param_array(enable_wol, int, NULL, 0);
 814module_param(rx_copybreak, int, 0);
 815module_param(max_interrupt_work, int, 0);
 816module_param(compaq_ioaddr, int, 0);
 817module_param(compaq_irq, int, 0);
 818module_param(compaq_device_id, int, 0);
 819module_param(watchdog, int, 0);
 820module_param(global_use_mmio, int, 0);
 821module_param_array(use_mmio, int, NULL, 0);
 822MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
 823MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
 824MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
 825MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
 826MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
 827MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
 828MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
 829MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
 830MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
 831MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
 832MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
 833MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
 834MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
 835MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
 836MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
 837MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
 838MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
 839
 840#ifdef CONFIG_NET_POLL_CONTROLLER
 841static void poll_vortex(struct net_device *dev)
 842{
 843	struct vortex_private *vp = netdev_priv(dev);
 844	unsigned long flags;
 845	local_irq_save(flags);
 846	(vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
 847	local_irq_restore(flags);
 848}
 849#endif
 850
 851#ifdef CONFIG_PM
 852
 853static int vortex_suspend(struct device *dev)
 854{
 855	struct pci_dev *pdev = to_pci_dev(dev);
 856	struct net_device *ndev = pci_get_drvdata(pdev);
 857
 858	if (!ndev || !netif_running(ndev))
 859		return 0;
 860
 861	netif_device_detach(ndev);
 862	vortex_down(ndev, 1);
 863
 864	return 0;
 865}
 866
 867static int vortex_resume(struct device *dev)
 868{
 869	struct pci_dev *pdev = to_pci_dev(dev);
 870	struct net_device *ndev = pci_get_drvdata(pdev);
 871	int err;
 872
 873	if (!ndev || !netif_running(ndev))
 874		return 0;
 875
 876	err = vortex_up(ndev);
 877	if (err)
 878		return err;
 879
 880	netif_device_attach(ndev);
 881
 882	return 0;
 883}
 884
 885static const struct dev_pm_ops vortex_pm_ops = {
 886	.suspend = vortex_suspend,
 887	.resume = vortex_resume,
 888	.freeze = vortex_suspend,
 889	.thaw = vortex_resume,
 890	.poweroff = vortex_suspend,
 891	.restore = vortex_resume,
 892};
 893
 894#define VORTEX_PM_OPS (&vortex_pm_ops)
 895
 896#else /* !CONFIG_PM */
 897
 898#define VORTEX_PM_OPS NULL
 899
 900#endif /* !CONFIG_PM */
 901
 902#ifdef CONFIG_EISA
 903static struct eisa_device_id vortex_eisa_ids[] = {
 904	{ "TCM5920", CH_3C592 },
 905	{ "TCM5970", CH_3C597 },
 906	{ "" }
 907};
 908MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
 909
 910static int vortex_eisa_probe(struct device *device)
 911{
 912	void __iomem *ioaddr;
 913	struct eisa_device *edev;
 914
 915	edev = to_eisa_device(device);
 916
 917	if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
 918		return -EBUSY;
 919
 920	ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
 921
 922	if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
 923					  edev->id.driver_data, vortex_cards_found)) {
 924		release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 925		return -ENODEV;
 926	}
 927
 928	vortex_cards_found++;
 929
 930	return 0;
 931}
 932
 933static int vortex_eisa_remove(struct device *device)
 934{
 935	struct eisa_device *edev;
 936	struct net_device *dev;
 937	struct vortex_private *vp;
 938	void __iomem *ioaddr;
 939
 940	edev = to_eisa_device(device);
 941	dev = eisa_get_drvdata(edev);
 942
 943	if (!dev) {
 944		pr_err("vortex_eisa_remove called for Compaq device!\n");
 945		BUG();
 946	}
 947
 948	vp = netdev_priv(dev);
 949	ioaddr = vp->ioaddr;
 950
 951	unregister_netdev(dev);
 952	iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
 953	release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 954
 955	free_netdev(dev);
 956	return 0;
 957}
 958
 959static struct eisa_driver vortex_eisa_driver = {
 960	.id_table = vortex_eisa_ids,
 961	.driver   = {
 962		.name    = "3c59x",
 963		.probe   = vortex_eisa_probe,
 964		.remove  = vortex_eisa_remove
 965	}
 966};
 967
 968#endif /* CONFIG_EISA */
 969
 970/* returns count found (>= 0), or negative on error */
 971static int __init vortex_eisa_init(void)
 972{
 973	int eisa_found = 0;
 974	int orig_cards_found = vortex_cards_found;
 975
 976#ifdef CONFIG_EISA
 977	int err;
 978
 979	err = eisa_driver_register (&vortex_eisa_driver);
 980	if (!err) {
 981		/*
 982		 * Because of the way EISA bus is probed, we cannot assume
 983		 * any device have been found when we exit from
 984		 * eisa_driver_register (the bus root driver may not be
 985		 * initialized yet). So we blindly assume something was
 986		 * found, and let the sysfs magic happened...
 987		 */
 988		eisa_found = 1;
 989	}
 990#endif
 991
 992	/* Special code to work-around the Compaq PCI BIOS32 problem. */
 993	if (compaq_ioaddr) {
 994		vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
 995			      compaq_irq, compaq_device_id, vortex_cards_found++);
 996	}
 997
 998	return vortex_cards_found - orig_cards_found + eisa_found;
 999}
1000
1001/* returns count (>= 0), or negative on error */
1002static int vortex_init_one(struct pci_dev *pdev,
1003			   const struct pci_device_id *ent)
1004{
1005	int rc, unit, pci_bar;
1006	struct vortex_chip_info *vci;
1007	void __iomem *ioaddr;
1008
1009	/* wake up and enable device */
1010	rc = pci_enable_device(pdev);
1011	if (rc < 0)
1012		goto out;
1013
1014	rc = pci_request_regions(pdev, DRV_NAME);
1015	if (rc < 0)
1016		goto out_disable;
1017
1018	unit = vortex_cards_found;
1019
1020	if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1021		/* Determine the default if the user didn't override us */
1022		vci = &vortex_info_tbl[ent->driver_data];
1023		pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1024	} else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1025		pci_bar = use_mmio[unit] ? 1 : 0;
1026	else
1027		pci_bar = global_use_mmio ? 1 : 0;
1028
1029	ioaddr = pci_iomap(pdev, pci_bar, 0);
1030	if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1031		ioaddr = pci_iomap(pdev, 0, 0);
1032	if (!ioaddr) {
1033		rc = -ENOMEM;
1034		goto out_release;
1035	}
1036
1037	rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1038			   ent->driver_data, unit);
1039	if (rc < 0)
1040		goto out_iounmap;
1041
1042	vortex_cards_found++;
1043	goto out;
1044
1045out_iounmap:
1046	pci_iounmap(pdev, ioaddr);
1047out_release:
1048	pci_release_regions(pdev);
1049out_disable:
1050	pci_disable_device(pdev);
1051out:
1052	return rc;
1053}
1054
1055static const struct net_device_ops boomrang_netdev_ops = {
1056	.ndo_open		= vortex_open,
1057	.ndo_stop		= vortex_close,
1058	.ndo_start_xmit		= boomerang_start_xmit,
1059	.ndo_tx_timeout		= vortex_tx_timeout,
1060	.ndo_get_stats		= vortex_get_stats,
1061#ifdef CONFIG_PCI
1062	.ndo_do_ioctl 		= vortex_ioctl,
1063#endif
1064	.ndo_set_rx_mode	= set_rx_mode,
1065	.ndo_set_mac_address 	= eth_mac_addr,
1066	.ndo_validate_addr	= eth_validate_addr,
1067#ifdef CONFIG_NET_POLL_CONTROLLER
1068	.ndo_poll_controller	= poll_vortex,
1069#endif
1070};
1071
1072static const struct net_device_ops vortex_netdev_ops = {
1073	.ndo_open		= vortex_open,
1074	.ndo_stop		= vortex_close,
1075	.ndo_start_xmit		= vortex_start_xmit,
1076	.ndo_tx_timeout		= vortex_tx_timeout,
1077	.ndo_get_stats		= vortex_get_stats,
1078#ifdef CONFIG_PCI
1079	.ndo_do_ioctl 		= vortex_ioctl,
1080#endif
1081	.ndo_set_rx_mode	= set_rx_mode,
1082	.ndo_set_mac_address 	= eth_mac_addr,
1083	.ndo_validate_addr	= eth_validate_addr,
1084#ifdef CONFIG_NET_POLL_CONTROLLER
1085	.ndo_poll_controller	= poll_vortex,
1086#endif
1087};
1088
1089/*
1090 * Start up the PCI/EISA device which is described by *gendev.
1091 * Return 0 on success.
1092 *
1093 * NOTE: pdev can be NULL, for the case of a Compaq device
1094 */
1095static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1096			 int chip_idx, int card_idx)
1097{
1098	struct vortex_private *vp;
1099	int option;
1100	unsigned int eeprom[0x40], checksum = 0;		/* EEPROM contents */
 
1101	int i, step;
1102	struct net_device *dev;
1103	static int printed_version;
1104	int retval, print_info;
1105	struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1106	const char *print_name = "3c59x";
1107	struct pci_dev *pdev = NULL;
1108	struct eisa_device *edev = NULL;
1109
1110	if (!printed_version) {
1111		pr_info("%s", version);
1112		printed_version = 1;
1113	}
1114
1115	if (gendev) {
1116		if ((pdev = DEVICE_PCI(gendev))) {
1117			print_name = pci_name(pdev);
1118		}
1119
1120		if ((edev = DEVICE_EISA(gendev))) {
1121			print_name = dev_name(&edev->dev);
1122		}
1123	}
1124
1125	dev = alloc_etherdev(sizeof(*vp));
1126	retval = -ENOMEM;
1127	if (!dev)
1128		goto out;
1129
1130	SET_NETDEV_DEV(dev, gendev);
1131	vp = netdev_priv(dev);
1132
1133	option = global_options;
1134
1135	/* The lower four bits are the media type. */
1136	if (dev->mem_start) {
1137		/*
1138		 * The 'options' param is passed in as the third arg to the
1139		 * LILO 'ether=' argument for non-modular use
1140		 */
1141		option = dev->mem_start;
1142	}
1143	else if (card_idx < MAX_UNITS) {
1144		if (options[card_idx] >= 0)
1145			option = options[card_idx];
1146	}
1147
1148	if (option > 0) {
1149		if (option & 0x8000)
1150			vortex_debug = 7;
1151		if (option & 0x4000)
1152			vortex_debug = 2;
1153		if (option & 0x0400)
1154			vp->enable_wol = 1;
1155	}
1156
1157	print_info = (vortex_debug > 1);
1158	if (print_info)
1159		pr_info("See Documentation/networking/vortex.txt\n");
1160
1161	pr_info("%s: 3Com %s %s at %p.\n",
1162	       print_name,
1163	       pdev ? "PCI" : "EISA",
1164	       vci->name,
1165	       ioaddr);
1166
1167	dev->base_addr = (unsigned long)ioaddr;
1168	dev->irq = irq;
1169	dev->mtu = mtu;
1170	vp->ioaddr = ioaddr;
1171	vp->large_frames = mtu > 1500;
1172	vp->drv_flags = vci->drv_flags;
1173	vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1174	vp->io_size = vci->io_size;
1175	vp->card_idx = card_idx;
1176	vp->window = -1;
1177
1178	/* module list only for Compaq device */
1179	if (gendev == NULL) {
1180		compaq_net_device = dev;
1181	}
1182
1183	/* PCI-only startup logic */
1184	if (pdev) {
1185		/* enable bus-mastering if necessary */
1186		if (vci->flags & PCI_USES_MASTER)
1187			pci_set_master(pdev);
1188
1189		if (vci->drv_flags & IS_VORTEX) {
1190			u8 pci_latency;
1191			u8 new_latency = 248;
1192
1193			/* Check the PCI latency value.  On the 3c590 series the latency timer
1194			   must be set to the maximum value to avoid data corruption that occurs
1195			   when the timer expires during a transfer.  This bug exists the Vortex
1196			   chip only. */
1197			pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1198			if (pci_latency < new_latency) {
1199				pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1200					print_name, pci_latency, new_latency);
1201				pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1202			}
1203		}
1204	}
1205
1206	spin_lock_init(&vp->lock);
1207	spin_lock_init(&vp->mii_lock);
1208	spin_lock_init(&vp->window_lock);
1209	vp->gendev = gendev;
1210	vp->mii.dev = dev;
1211	vp->mii.mdio_read = mdio_read;
1212	vp->mii.mdio_write = mdio_write;
1213	vp->mii.phy_id_mask = 0x1f;
1214	vp->mii.reg_num_mask = 0x1f;
1215
1216	/* Makes sure rings are at least 16 byte aligned. */
1217	vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1218					   + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1219					   &vp->rx_ring_dma);
1220	retval = -ENOMEM;
1221	if (!vp->rx_ring)
1222		goto free_device;
1223
1224	vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1225	vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1226
1227	/* if we are a PCI driver, we store info in pdev->driver_data
1228	 * instead of a module list */
1229	if (pdev)
1230		pci_set_drvdata(pdev, dev);
1231	if (edev)
1232		eisa_set_drvdata(edev, dev);
1233
1234	vp->media_override = 7;
1235	if (option >= 0) {
1236		vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1237		if (vp->media_override != 7)
1238			vp->medialock = 1;
1239		vp->full_duplex = (option & 0x200) ? 1 : 0;
1240		vp->bus_master = (option & 16) ? 1 : 0;
1241	}
1242
1243	if (global_full_duplex > 0)
1244		vp->full_duplex = 1;
1245	if (global_enable_wol > 0)
1246		vp->enable_wol = 1;
1247
1248	if (card_idx < MAX_UNITS) {
1249		if (full_duplex[card_idx] > 0)
1250			vp->full_duplex = 1;
1251		if (flow_ctrl[card_idx] > 0)
1252			vp->flow_ctrl = 1;
1253		if (enable_wol[card_idx] > 0)
1254			vp->enable_wol = 1;
1255	}
1256
1257	vp->mii.force_media = vp->full_duplex;
1258	vp->options = option;
1259	/* Read the station address from the EEPROM. */
1260	{
1261		int base;
1262
1263		if (vci->drv_flags & EEPROM_8BIT)
1264			base = 0x230;
1265		else if (vci->drv_flags & EEPROM_OFFSET)
1266			base = EEPROM_Read + 0x30;
1267		else
1268			base = EEPROM_Read;
1269
1270		for (i = 0; i < 0x40; i++) {
1271			int timer;
1272			window_write16(vp, base + i, 0, Wn0EepromCmd);
1273			/* Pause for at least 162 us. for the read to take place. */
1274			for (timer = 10; timer >= 0; timer--) {
1275				udelay(162);
1276				if ((window_read16(vp, 0, Wn0EepromCmd) &
1277				     0x8000) == 0)
1278					break;
1279			}
1280			eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1281		}
1282	}
1283	for (i = 0; i < 0x18; i++)
1284		checksum ^= eeprom[i];
1285	checksum = (checksum ^ (checksum >> 8)) & 0xff;
1286	if (checksum != 0x00) {		/* Grrr, needless incompatible change 3Com. */
1287		while (i < 0x21)
1288			checksum ^= eeprom[i++];
1289		checksum = (checksum ^ (checksum >> 8)) & 0xff;
1290	}
1291	if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1292		pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1293	for (i = 0; i < 3; i++)
1294		((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
 
1295	if (print_info)
1296		pr_cont(" %pM", dev->dev_addr);
1297	/* Unfortunately an all zero eeprom passes the checksum and this
1298	   gets found in the wild in failure cases. Crypto is hard 8) */
1299	if (!is_valid_ether_addr(dev->dev_addr)) {
1300		retval = -EINVAL;
1301		pr_err("*** EEPROM MAC address is invalid.\n");
1302		goto free_ring;	/* With every pack */
1303	}
1304	for (i = 0; i < 6; i++)
1305		window_write8(vp, dev->dev_addr[i], 2, i);
1306
1307	if (print_info)
1308		pr_cont(", IRQ %d\n", dev->irq);
1309	/* Tell them about an invalid IRQ. */
1310	if (dev->irq <= 0 || dev->irq >= nr_irqs)
1311		pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n",
1312			dev->irq);
1313
1314	step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1315	if (print_info) {
1316		pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1317			eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1318			step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1319	}
1320
1321
1322	if (pdev && vci->drv_flags & HAS_CB_FNS) {
1323		unsigned short n;
1324
1325		vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1326		if (!vp->cb_fn_base) {
1327			retval = -ENOMEM;
1328			goto free_ring;
1329		}
1330
1331		if (print_info) {
1332			pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1333				print_name,
1334				(unsigned long long)pci_resource_start(pdev, 2),
1335				vp->cb_fn_base);
1336		}
1337
1338		n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1339		if (vp->drv_flags & INVERT_LED_PWR)
1340			n |= 0x10;
1341		if (vp->drv_flags & INVERT_MII_PWR)
1342			n |= 0x4000;
1343		window_write16(vp, n, 2, Wn2_ResetOptions);
1344		if (vp->drv_flags & WNO_XCVR_PWR) {
1345			window_write16(vp, 0x0800, 0, 0);
1346		}
1347	}
1348
1349	/* Extract our information from the EEPROM data. */
1350	vp->info1 = eeprom[13];
1351	vp->info2 = eeprom[15];
1352	vp->capabilities = eeprom[16];
1353
1354	if (vp->info1 & 0x8000) {
1355		vp->full_duplex = 1;
1356		if (print_info)
1357			pr_info("Full duplex capable\n");
1358	}
1359
1360	{
1361		static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1362		unsigned int config;
1363		vp->available_media = window_read16(vp, 3, Wn3_Options);
1364		if ((vp->available_media & 0xff) == 0)		/* Broken 3c916 */
1365			vp->available_media = 0x40;
1366		config = window_read32(vp, 3, Wn3_Config);
1367		if (print_info) {
1368			pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1369				config, window_read16(vp, 3, Wn3_Options));
1370			pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1371				   8 << RAM_SIZE(config),
1372				   RAM_WIDTH(config) ? "word" : "byte",
1373				   ram_split[RAM_SPLIT(config)],
1374				   AUTOSELECT(config) ? "autoselect/" : "",
1375				   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1376				   media_tbl[XCVR(config)].name);
1377		}
1378		vp->default_media = XCVR(config);
1379		if (vp->default_media == XCVR_NWAY)
1380			vp->has_nway = 1;
1381		vp->autoselect = AUTOSELECT(config);
1382	}
1383
1384	if (vp->media_override != 7) {
1385		pr_info("%s:  Media override to transceiver type %d (%s).\n",
1386				print_name, vp->media_override,
1387				media_tbl[vp->media_override].name);
1388		dev->if_port = vp->media_override;
1389	} else
1390		dev->if_port = vp->default_media;
1391
1392	if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1393		dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1394		int phy, phy_idx = 0;
1395		mii_preamble_required++;
1396		if (vp->drv_flags & EXTRA_PREAMBLE)
1397			mii_preamble_required++;
1398		mdio_sync(vp, 32);
1399		mdio_read(dev, 24, MII_BMSR);
1400		for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1401			int mii_status, phyx;
1402
1403			/*
1404			 * For the 3c905CX we look at index 24 first, because it bogusly
1405			 * reports an external PHY at all indices
1406			 */
1407			if (phy == 0)
1408				phyx = 24;
1409			else if (phy <= 24)
1410				phyx = phy - 1;
1411			else
1412				phyx = phy;
1413			mii_status = mdio_read(dev, phyx, MII_BMSR);
1414			if (mii_status  &&  mii_status != 0xffff) {
1415				vp->phys[phy_idx++] = phyx;
1416				if (print_info) {
1417					pr_info("  MII transceiver found at address %d, status %4x.\n",
1418						phyx, mii_status);
1419				}
1420				if ((mii_status & 0x0040) == 0)
1421					mii_preamble_required++;
1422			}
1423		}
1424		mii_preamble_required--;
1425		if (phy_idx == 0) {
1426			pr_warn("  ***WARNING*** No MII transceivers found!\n");
1427			vp->phys[0] = 24;
1428		} else {
1429			vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1430			if (vp->full_duplex) {
1431				/* Only advertise the FD media types. */
1432				vp->advertising &= ~0x02A0;
1433				mdio_write(dev, vp->phys[0], 4, vp->advertising);
1434			}
1435		}
1436		vp->mii.phy_id = vp->phys[0];
1437	}
1438
1439	if (vp->capabilities & CapBusMaster) {
1440		vp->full_bus_master_tx = 1;
1441		if (print_info) {
1442			pr_info("  Enabling bus-master transmits and %s receives.\n",
1443			(vp->info2 & 1) ? "early" : "whole-frame" );
1444		}
1445		vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1446		vp->bus_master = 0;		/* AKPM: vortex only */
1447	}
1448
1449	/* The 3c59x-specific entries in the device structure. */
1450	if (vp->full_bus_master_tx) {
1451		dev->netdev_ops = &boomrang_netdev_ops;
1452		/* Actually, it still should work with iommu. */
1453		if (card_idx < MAX_UNITS &&
1454		    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1455				hw_checksums[card_idx] == 1)) {
1456			dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1457		}
1458	} else
1459		dev->netdev_ops =  &vortex_netdev_ops;
1460
1461	if (print_info) {
1462		pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1463				print_name,
1464				(dev->features & NETIF_F_SG) ? "en":"dis",
1465				(dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1466	}
1467
1468	dev->ethtool_ops = &vortex_ethtool_ops;
1469	dev->watchdog_timeo = (watchdog * HZ) / 1000;
1470
1471	if (pdev) {
1472		vp->pm_state_valid = 1;
1473		pci_save_state(pdev);
1474 		acpi_set_WOL(dev);
1475	}
1476	retval = register_netdev(dev);
1477	if (retval == 0)
1478		return 0;
1479
1480free_ring:
1481	pci_free_consistent(pdev,
1482						sizeof(struct boom_rx_desc) * RX_RING_SIZE
1483							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1484						vp->rx_ring,
1485						vp->rx_ring_dma);
1486free_device:
1487	free_netdev(dev);
1488	pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1489out:
1490	return retval;
1491}
1492
1493static void
1494issue_and_wait(struct net_device *dev, int cmd)
1495{
1496	struct vortex_private *vp = netdev_priv(dev);
1497	void __iomem *ioaddr = vp->ioaddr;
1498	int i;
1499
1500	iowrite16(cmd, ioaddr + EL3_CMD);
1501	for (i = 0; i < 2000; i++) {
1502		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1503			return;
1504	}
1505
1506	/* OK, that didn't work.  Do it the slow way.  One second */
1507	for (i = 0; i < 100000; i++) {
1508		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1509			if (vortex_debug > 1)
1510				pr_info("%s: command 0x%04x took %d usecs\n",
1511					   dev->name, cmd, i * 10);
1512			return;
1513		}
1514		udelay(10);
1515	}
1516	pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1517			   dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1518}
1519
1520static void
1521vortex_set_duplex(struct net_device *dev)
1522{
1523	struct vortex_private *vp = netdev_priv(dev);
1524
1525	pr_info("%s:  setting %s-duplex.\n",
1526		dev->name, (vp->full_duplex) ? "full" : "half");
1527
1528	/* Set the full-duplex bit. */
1529	window_write16(vp,
1530		       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1531		       (vp->large_frames ? 0x40 : 0) |
1532		       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1533			0x100 : 0),
1534		       3, Wn3_MAC_Ctrl);
1535}
1536
1537static void vortex_check_media(struct net_device *dev, unsigned int init)
1538{
1539	struct vortex_private *vp = netdev_priv(dev);
1540	unsigned int ok_to_print = 0;
1541
1542	if (vortex_debug > 3)
1543		ok_to_print = 1;
1544
1545	if (mii_check_media(&vp->mii, ok_to_print, init)) {
1546		vp->full_duplex = vp->mii.full_duplex;
1547		vortex_set_duplex(dev);
1548	} else if (init) {
1549		vortex_set_duplex(dev);
1550	}
1551}
1552
1553static int
1554vortex_up(struct net_device *dev)
1555{
1556	struct vortex_private *vp = netdev_priv(dev);
1557	void __iomem *ioaddr = vp->ioaddr;
1558	unsigned int config;
1559	int i, mii_reg1, mii_reg5, err = 0;
1560
1561	if (VORTEX_PCI(vp)) {
1562		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
1563		if (vp->pm_state_valid)
1564			pci_restore_state(VORTEX_PCI(vp));
1565		err = pci_enable_device(VORTEX_PCI(vp));
1566		if (err) {
1567			pr_warn("%s: Could not enable device\n", dev->name);
1568			goto err_out;
1569		}
1570	}
1571
1572	/* Before initializing select the active media port. */
1573	config = window_read32(vp, 3, Wn3_Config);
1574
1575	if (vp->media_override != 7) {
1576		pr_info("%s: Media override to transceiver %d (%s).\n",
1577			   dev->name, vp->media_override,
1578			   media_tbl[vp->media_override].name);
1579		dev->if_port = vp->media_override;
1580	} else if (vp->autoselect) {
1581		if (vp->has_nway) {
1582			if (vortex_debug > 1)
1583				pr_info("%s: using NWAY device table, not %d\n",
1584								dev->name, dev->if_port);
1585			dev->if_port = XCVR_NWAY;
1586		} else {
1587			/* Find first available media type, starting with 100baseTx. */
1588			dev->if_port = XCVR_100baseTx;
1589			while (! (vp->available_media & media_tbl[dev->if_port].mask))
1590				dev->if_port = media_tbl[dev->if_port].next;
1591			if (vortex_debug > 1)
1592				pr_info("%s: first available media type: %s\n",
1593					dev->name, media_tbl[dev->if_port].name);
1594		}
1595	} else {
1596		dev->if_port = vp->default_media;
1597		if (vortex_debug > 1)
1598			pr_info("%s: using default media %s\n",
1599				dev->name, media_tbl[dev->if_port].name);
1600	}
1601
1602	setup_timer(&vp->timer, vortex_timer, (unsigned long)dev);
1603	mod_timer(&vp->timer, RUN_AT(media_tbl[dev->if_port].wait));
1604	setup_timer(&vp->rx_oom_timer, rx_oom_timer, (unsigned long)dev);
1605
1606	if (vortex_debug > 1)
1607		pr_debug("%s: Initial media type %s.\n",
1608			   dev->name, media_tbl[dev->if_port].name);
1609
1610	vp->full_duplex = vp->mii.force_media;
1611	config = BFINS(config, dev->if_port, 20, 4);
1612	if (vortex_debug > 6)
1613		pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1614	window_write32(vp, config, 3, Wn3_Config);
1615
1616	if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1617		mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1618		mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1619		vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1620		vp->mii.full_duplex = vp->full_duplex;
1621
1622		vortex_check_media(dev, 1);
1623	}
1624	else
1625		vortex_set_duplex(dev);
1626
1627	issue_and_wait(dev, TxReset);
1628	/*
1629	 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1630	 */
1631	issue_and_wait(dev, RxReset|0x04);
1632
1633
1634	iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1635
1636	if (vortex_debug > 1) {
1637		pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1638			   dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1639	}
1640
1641	/* Set the station address and mask in window 2 each time opened. */
1642	for (i = 0; i < 6; i++)
1643		window_write8(vp, dev->dev_addr[i], 2, i);
1644	for (; i < 12; i+=2)
1645		window_write16(vp, 0, 2, i);
1646
1647	if (vp->cb_fn_base) {
1648		unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1649		if (vp->drv_flags & INVERT_LED_PWR)
1650			n |= 0x10;
1651		if (vp->drv_flags & INVERT_MII_PWR)
1652			n |= 0x4000;
1653		window_write16(vp, n, 2, Wn2_ResetOptions);
1654	}
1655
1656	if (dev->if_port == XCVR_10base2)
1657		/* Start the thinnet transceiver. We should really wait 50ms...*/
1658		iowrite16(StartCoax, ioaddr + EL3_CMD);
1659	if (dev->if_port != XCVR_NWAY) {
1660		window_write16(vp,
1661			       (window_read16(vp, 4, Wn4_Media) &
1662				~(Media_10TP|Media_SQE)) |
1663			       media_tbl[dev->if_port].media_bits,
1664			       4, Wn4_Media);
1665	}
1666
1667	/* Switch to the stats window, and clear all stats by reading. */
1668	iowrite16(StatsDisable, ioaddr + EL3_CMD);
1669	for (i = 0; i < 10; i++)
1670		window_read8(vp, 6, i);
1671	window_read16(vp, 6, 10);
1672	window_read16(vp, 6, 12);
1673	/* New: On the Vortex we must also clear the BadSSD counter. */
1674	window_read8(vp, 4, 12);
1675	/* ..and on the Boomerang we enable the extra statistics bits. */
1676	window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1677
1678	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1679		vp->cur_rx = vp->dirty_rx = 0;
1680		/* Initialize the RxEarly register as recommended. */
1681		iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1682		iowrite32(0x0020, ioaddr + PktStatus);
1683		iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1684	}
1685	if (vp->full_bus_master_tx) { 		/* Boomerang bus master Tx. */
1686		vp->cur_tx = vp->dirty_tx = 0;
1687		if (vp->drv_flags & IS_BOOMERANG)
1688			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1689		/* Clear the Rx, Tx rings. */
1690		for (i = 0; i < RX_RING_SIZE; i++)	/* AKPM: this is done in vortex_open, too */
1691			vp->rx_ring[i].status = 0;
1692		for (i = 0; i < TX_RING_SIZE; i++)
1693			vp->tx_skbuff[i] = NULL;
1694		iowrite32(0, ioaddr + DownListPtr);
1695	}
1696	/* Set receiver mode: presumably accept b-case and phys addr only. */
1697	set_rx_mode(dev);
1698	/* enable 802.1q tagged frames */
1699	set_8021q_mode(dev, 1);
1700	iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1701
1702	iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1703	iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1704	/* Allow status bits to be seen. */
1705	vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1706		(vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1707		(vp->full_bus_master_rx ? UpComplete : RxComplete) |
1708		(vp->bus_master ? DMADone : 0);
1709	vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1710		(vp->full_bus_master_rx ? 0 : RxComplete) |
1711		StatsFull | HostError | TxComplete | IntReq
1712		| (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1713	iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1714	/* Ack all pending events, and set active indicator mask. */
1715	iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1716		 ioaddr + EL3_CMD);
1717	iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1718	if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
1719		iowrite32(0x8000, vp->cb_fn_base + 4);
1720	netif_start_queue (dev);
1721	netdev_reset_queue(dev);
1722err_out:
1723	return err;
1724}
1725
1726static int
1727vortex_open(struct net_device *dev)
1728{
1729	struct vortex_private *vp = netdev_priv(dev);
1730	int i;
1731	int retval;
 
1732
1733	/* Use the now-standard shared IRQ implementation. */
1734	if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1735				boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1736		pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1737		goto err;
1738	}
1739
1740	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1741		if (vortex_debug > 2)
1742			pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1743		for (i = 0; i < RX_RING_SIZE; i++) {
1744			struct sk_buff *skb;
1745			vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1746			vp->rx_ring[i].status = 0;	/* Clear complete bit. */
1747			vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1748
1749			skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1750						 GFP_KERNEL);
1751			vp->rx_skbuff[i] = skb;
1752			if (skb == NULL)
1753				break;			/* Bad news!  */
1754
1755			skb_reserve(skb, NET_IP_ALIGN);	/* Align IP on 16 byte boundaries */
1756			vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
 
 
 
 
1757		}
1758		if (i != RX_RING_SIZE) {
1759			pr_emerg("%s: no memory for rx ring\n", dev->name);
1760			retval = -ENOMEM;
1761			goto err_free_skb;
1762		}
1763		/* Wrap the ring. */
1764		vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1765	}
1766
1767	retval = vortex_up(dev);
1768	if (!retval)
1769		goto out;
1770
1771err_free_skb:
1772	for (i = 0; i < RX_RING_SIZE; i++) {
1773		if (vp->rx_skbuff[i]) {
1774			dev_kfree_skb(vp->rx_skbuff[i]);
1775			vp->rx_skbuff[i] = NULL;
1776		}
1777	}
1778	free_irq(dev->irq, dev);
1779err:
1780	if (vortex_debug > 1)
1781		pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1782out:
1783	return retval;
1784}
1785
1786static void
1787vortex_timer(unsigned long data)
1788{
1789	struct net_device *dev = (struct net_device *)data;
1790	struct vortex_private *vp = netdev_priv(dev);
1791	void __iomem *ioaddr = vp->ioaddr;
1792	int next_tick = 60*HZ;
1793	int ok = 0;
1794	int media_status;
1795
1796	if (vortex_debug > 2) {
1797		pr_debug("%s: Media selection timer tick happened, %s.\n",
1798			   dev->name, media_tbl[dev->if_port].name);
1799		pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1800	}
1801
1802	media_status = window_read16(vp, 4, Wn4_Media);
1803	switch (dev->if_port) {
1804	case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1805		if (media_status & Media_LnkBeat) {
1806			netif_carrier_on(dev);
1807			ok = 1;
1808			if (vortex_debug > 1)
1809				pr_debug("%s: Media %s has link beat, %x.\n",
1810					   dev->name, media_tbl[dev->if_port].name, media_status);
1811		} else {
1812			netif_carrier_off(dev);
1813			if (vortex_debug > 1) {
1814				pr_debug("%s: Media %s has no link beat, %x.\n",
1815					   dev->name, media_tbl[dev->if_port].name, media_status);
1816			}
1817		}
1818		break;
1819	case XCVR_MII: case XCVR_NWAY:
1820		{
1821			ok = 1;
1822			vortex_check_media(dev, 0);
1823		}
1824		break;
1825	  default:					/* Other media types handled by Tx timeouts. */
1826		if (vortex_debug > 1)
1827		  pr_debug("%s: Media %s has no indication, %x.\n",
1828				 dev->name, media_tbl[dev->if_port].name, media_status);
1829		ok = 1;
1830	}
1831
1832	if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1833		next_tick = 5*HZ;
1834
1835	if (vp->medialock)
1836		goto leave_media_alone;
1837
1838	if (!ok) {
1839		unsigned int config;
1840
1841		spin_lock_irq(&vp->lock);
1842
1843		do {
1844			dev->if_port = media_tbl[dev->if_port].next;
1845		} while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1846		if (dev->if_port == XCVR_Default) { /* Go back to default. */
1847		  dev->if_port = vp->default_media;
1848		  if (vortex_debug > 1)
1849			pr_debug("%s: Media selection failing, using default %s port.\n",
1850				   dev->name, media_tbl[dev->if_port].name);
1851		} else {
1852			if (vortex_debug > 1)
1853				pr_debug("%s: Media selection failed, now trying %s port.\n",
1854					   dev->name, media_tbl[dev->if_port].name);
1855			next_tick = media_tbl[dev->if_port].wait;
1856		}
1857		window_write16(vp,
1858			       (media_status & ~(Media_10TP|Media_SQE)) |
1859			       media_tbl[dev->if_port].media_bits,
1860			       4, Wn4_Media);
1861
1862		config = window_read32(vp, 3, Wn3_Config);
1863		config = BFINS(config, dev->if_port, 20, 4);
1864		window_write32(vp, config, 3, Wn3_Config);
1865
1866		iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1867			 ioaddr + EL3_CMD);
1868		if (vortex_debug > 1)
1869			pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1870		/* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1871
1872		spin_unlock_irq(&vp->lock);
1873	}
1874
1875leave_media_alone:
1876	if (vortex_debug > 2)
1877	  pr_debug("%s: Media selection timer finished, %s.\n",
1878			 dev->name, media_tbl[dev->if_port].name);
1879
1880	mod_timer(&vp->timer, RUN_AT(next_tick));
1881	if (vp->deferred)
1882		iowrite16(FakeIntr, ioaddr + EL3_CMD);
1883}
1884
1885static void vortex_tx_timeout(struct net_device *dev)
1886{
1887	struct vortex_private *vp = netdev_priv(dev);
1888	void __iomem *ioaddr = vp->ioaddr;
1889
1890	pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1891		   dev->name, ioread8(ioaddr + TxStatus),
1892		   ioread16(ioaddr + EL3_STATUS));
1893	pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1894			window_read16(vp, 4, Wn4_NetDiag),
1895			window_read16(vp, 4, Wn4_Media),
1896			ioread32(ioaddr + PktStatus),
1897			window_read16(vp, 4, Wn4_FIFODiag));
1898	/* Slight code bloat to be user friendly. */
1899	if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1900		pr_err("%s: Transmitter encountered 16 collisions --"
1901			   " network cable problem?\n", dev->name);
1902	if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1903		pr_err("%s: Interrupt posted but not delivered --"
1904			   " IRQ blocked by another device?\n", dev->name);
1905		/* Bad idea here.. but we might as well handle a few events. */
1906		{
1907			/*
1908			 * Block interrupts because vortex_interrupt does a bare spin_lock()
1909			 */
1910			unsigned long flags;
1911			local_irq_save(flags);
1912			if (vp->full_bus_master_tx)
1913				boomerang_interrupt(dev->irq, dev);
1914			else
1915				vortex_interrupt(dev->irq, dev);
1916			local_irq_restore(flags);
1917		}
1918	}
1919
1920	if (vortex_debug > 0)
1921		dump_tx_ring(dev);
1922
1923	issue_and_wait(dev, TxReset);
1924
1925	dev->stats.tx_errors++;
1926	if (vp->full_bus_master_tx) {
1927		pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1928		if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1929			iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1930				 ioaddr + DownListPtr);
1931		if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) {
1932			netif_wake_queue (dev);
1933			netdev_reset_queue (dev);
1934		}
1935		if (vp->drv_flags & IS_BOOMERANG)
1936			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1937		iowrite16(DownUnstall, ioaddr + EL3_CMD);
1938	} else {
1939		dev->stats.tx_dropped++;
1940		netif_wake_queue(dev);
1941		netdev_reset_queue(dev);
1942	}
1943	/* Issue Tx Enable */
1944	iowrite16(TxEnable, ioaddr + EL3_CMD);
1945	netif_trans_update(dev); /* prevent tx timeout */
1946}
1947
1948/*
1949 * Handle uncommon interrupt sources.  This is a separate routine to minimize
1950 * the cache impact.
1951 */
1952static void
1953vortex_error(struct net_device *dev, int status)
1954{
1955	struct vortex_private *vp = netdev_priv(dev);
1956	void __iomem *ioaddr = vp->ioaddr;
1957	int do_tx_reset = 0, reset_mask = 0;
1958	unsigned char tx_status = 0;
1959
1960	if (vortex_debug > 2) {
1961		pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1962	}
1963
1964	if (status & TxComplete) {			/* Really "TxError" for us. */
1965		tx_status = ioread8(ioaddr + TxStatus);
1966		/* Presumably a tx-timeout. We must merely re-enable. */
1967		if (vortex_debug > 2 ||
1968		    (tx_status != 0x88 && vortex_debug > 0)) {
1969			pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1970				   dev->name, tx_status);
1971			if (tx_status == 0x82) {
1972				pr_err("Probably a duplex mismatch.  See "
1973						"Documentation/networking/vortex.txt\n");
1974			}
1975			dump_tx_ring(dev);
1976		}
1977		if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1978		if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1979		if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1980		iowrite8(0, ioaddr + TxStatus);
1981		if (tx_status & 0x30) {			/* txJabber or txUnderrun */
1982			do_tx_reset = 1;
1983		} else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {	/* maxCollisions */
1984			do_tx_reset = 1;
1985			reset_mask = 0x0108;		/* Reset interface logic, but not download logic */
1986		} else {				/* Merely re-enable the transmitter. */
1987			iowrite16(TxEnable, ioaddr + EL3_CMD);
1988		}
1989	}
1990
1991	if (status & RxEarly)				/* Rx early is unused. */
1992		iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1993
1994	if (status & StatsFull) {			/* Empty statistics. */
1995		static int DoneDidThat;
1996		if (vortex_debug > 4)
1997			pr_debug("%s: Updating stats.\n", dev->name);
1998		update_stats(ioaddr, dev);
1999		/* HACK: Disable statistics as an interrupt source. */
2000		/* This occurs when we have the wrong media type! */
2001		if (DoneDidThat == 0  &&
2002			ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2003			pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n",
2004				dev->name);
2005			iowrite16(SetIntrEnb |
2006				  (window_read16(vp, 5, 10) & ~StatsFull),
2007				  ioaddr + EL3_CMD);
2008			vp->intr_enable &= ~StatsFull;
2009			DoneDidThat++;
2010		}
2011	}
2012	if (status & IntReq) {		/* Restore all interrupt sources.  */
2013		iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2014		iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2015	}
2016	if (status & HostError) {
2017		u16 fifo_diag;
2018		fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2019		pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2020			   dev->name, fifo_diag);
2021		/* Adapter failure requires Tx/Rx reset and reinit. */
2022		if (vp->full_bus_master_tx) {
2023			int bus_status = ioread32(ioaddr + PktStatus);
2024			/* 0x80000000 PCI master abort. */
2025			/* 0x40000000 PCI target abort. */
2026			if (vortex_debug)
2027				pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2028
2029			/* In this case, blow the card away */
2030			/* Must not enter D3 or we can't legally issue the reset! */
2031			vortex_down(dev, 0);
2032			issue_and_wait(dev, TotalReset | 0xff);
2033			vortex_up(dev);		/* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2034		} else if (fifo_diag & 0x0400)
2035			do_tx_reset = 1;
2036		if (fifo_diag & 0x3000) {
2037			/* Reset Rx fifo and upload logic */
2038			issue_and_wait(dev, RxReset|0x07);
2039			/* Set the Rx filter to the current state. */
2040			set_rx_mode(dev);
2041			/* enable 802.1q VLAN tagged frames */
2042			set_8021q_mode(dev, 1);
2043			iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2044			iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2045		}
2046	}
2047
2048	if (do_tx_reset) {
2049		issue_and_wait(dev, TxReset|reset_mask);
2050		iowrite16(TxEnable, ioaddr + EL3_CMD);
2051		if (!vp->full_bus_master_tx)
2052			netif_wake_queue(dev);
2053	}
2054}
2055
2056static netdev_tx_t
2057vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2058{
2059	struct vortex_private *vp = netdev_priv(dev);
2060	void __iomem *ioaddr = vp->ioaddr;
2061	int skblen = skb->len;
2062
2063	/* Put out the doubleword header... */
2064	iowrite32(skb->len, ioaddr + TX_FIFO);
2065	if (vp->bus_master) {
2066		/* Set the bus-master controller to transfer the packet. */
2067		int len = (skb->len + 3) & ~3;
2068		vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len,
2069						PCI_DMA_TODEVICE);
 
 
 
 
 
 
2070		spin_lock_irq(&vp->window_lock);
2071		window_set(vp, 7);
2072		iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2073		iowrite16(len, ioaddr + Wn7_MasterLen);
2074		spin_unlock_irq(&vp->window_lock);
2075		vp->tx_skb = skb;
2076		skb_tx_timestamp(skb);
2077		iowrite16(StartDMADown, ioaddr + EL3_CMD);
2078		/* netif_wake_queue() will be called at the DMADone interrupt. */
2079	} else {
2080		/* ... and the packet rounded to a doubleword. */
2081		skb_tx_timestamp(skb);
2082		iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2083		dev_consume_skb_any (skb);
2084		if (ioread16(ioaddr + TxFree) > 1536) {
2085			netif_start_queue (dev);	/* AKPM: redundant? */
2086		} else {
2087			/* Interrupt us when the FIFO has room for max-sized packet. */
2088			netif_stop_queue(dev);
2089			iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2090		}
2091	}
2092
2093	netdev_sent_queue(dev, skblen);
2094
2095	/* Clear the Tx status stack. */
2096	{
2097		int tx_status;
2098		int i = 32;
2099
2100		while (--i > 0	&&	(tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2101			if (tx_status & 0x3C) {		/* A Tx-disabling error occurred.  */
2102				if (vortex_debug > 2)
2103				  pr_debug("%s: Tx error, status %2.2x.\n",
2104						 dev->name, tx_status);
2105				if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2106				if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2107				if (tx_status & 0x30) {
2108					issue_and_wait(dev, TxReset);
2109				}
2110				iowrite16(TxEnable, ioaddr + EL3_CMD);
2111			}
2112			iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2113		}
2114	}
2115	return NETDEV_TX_OK;
2116}
2117
2118static netdev_tx_t
2119boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2120{
2121	struct vortex_private *vp = netdev_priv(dev);
2122	void __iomem *ioaddr = vp->ioaddr;
2123	/* Calculate the next Tx descriptor entry. */
2124	int entry = vp->cur_tx % TX_RING_SIZE;
2125	int skblen = skb->len;
2126	struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2127	unsigned long flags;
2128	dma_addr_t dma_addr;
2129
2130	if (vortex_debug > 6) {
2131		pr_debug("boomerang_start_xmit()\n");
2132		pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2133			   dev->name, vp->cur_tx);
2134	}
2135
2136	/*
2137	 * We can't allow a recursion from our interrupt handler back into the
2138	 * tx routine, as they take the same spin lock, and that causes
2139	 * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2140	 * a bit
2141	 */
2142	if (vp->handling_irq)
2143		return NETDEV_TX_BUSY;
2144
2145	if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2146		if (vortex_debug > 0)
2147			pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n",
2148				dev->name);
2149		netif_stop_queue(dev);
2150		return NETDEV_TX_BUSY;
2151	}
2152
2153	vp->tx_skbuff[entry] = skb;
2154
2155	vp->tx_ring[entry].next = 0;
2156#if DO_ZEROCOPY
2157	if (skb->ip_summed != CHECKSUM_PARTIAL)
2158			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2159	else
2160			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2161
2162	if (!skb_shinfo(skb)->nr_frags) {
2163		dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len,
2164					  PCI_DMA_TODEVICE);
2165		if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2166			goto out_dma_err;
2167
2168		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2169		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2170	} else {
2171		int i;
2172
2173		dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data,
2174					  skb_headlen(skb), PCI_DMA_TODEVICE);
2175		if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2176			goto out_dma_err;
2177
2178		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2179		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2180
2181		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2182			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2183
2184			dma_addr = skb_frag_dma_map(&VORTEX_PCI(vp)->dev, frag,
2185						    0,
2186						    frag->size,
2187						    DMA_TO_DEVICE);
2188			if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) {
2189				for(i = i-1; i >= 0; i--)
2190					dma_unmap_page(&VORTEX_PCI(vp)->dev,
2191						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr),
2192						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].length),
2193						       DMA_TO_DEVICE);
2194
2195				pci_unmap_single(VORTEX_PCI(vp),
2196						 le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2197						 le32_to_cpu(vp->tx_ring[entry].frag[0].length),
2198						 PCI_DMA_TODEVICE);
2199
2200				goto out_dma_err;
2201			}
2202
2203			vp->tx_ring[entry].frag[i+1].addr =
2204						cpu_to_le32(dma_addr);
2205
2206			if (i == skb_shinfo(skb)->nr_frags-1)
2207					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2208			else
2209					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2210		}
2211	}
2212#else
2213	dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE);
2214	if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2215		goto out_dma_err;
2216	vp->tx_ring[entry].addr = cpu_to_le32(dma_addr);
2217	vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2218	vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2219#endif
2220
2221	spin_lock_irqsave(&vp->lock, flags);
2222	/* Wait for the stall to complete. */
2223	issue_and_wait(dev, DownStall);
2224	prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2225	if (ioread32(ioaddr + DownListPtr) == 0) {
2226		iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2227		vp->queued_packet++;
2228	}
2229
2230	vp->cur_tx++;
2231	netdev_sent_queue(dev, skblen);
2232
2233	if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2234		netif_stop_queue (dev);
2235	} else {					/* Clear previous interrupt enable. */
2236#if defined(tx_interrupt_mitigation)
2237		/* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2238		 * were selected, this would corrupt DN_COMPLETE. No?
2239		 */
2240		prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2241#endif
2242	}
2243	skb_tx_timestamp(skb);
2244	iowrite16(DownUnstall, ioaddr + EL3_CMD);
2245	spin_unlock_irqrestore(&vp->lock, flags);
2246out:
2247	return NETDEV_TX_OK;
2248out_dma_err:
2249	dev_err(&VORTEX_PCI(vp)->dev, "Error mapping dma buffer\n");
2250	goto out;
2251}
2252
2253/* The interrupt handler does all of the Rx thread work and cleans up
2254   after the Tx thread. */
2255
2256/*
2257 * This is the ISR for the vortex series chips.
2258 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2259 */
2260
2261static irqreturn_t
2262vortex_interrupt(int irq, void *dev_id)
2263{
2264	struct net_device *dev = dev_id;
2265	struct vortex_private *vp = netdev_priv(dev);
2266	void __iomem *ioaddr;
2267	int status;
2268	int work_done = max_interrupt_work;
2269	int handled = 0;
2270	unsigned int bytes_compl = 0, pkts_compl = 0;
2271
2272	ioaddr = vp->ioaddr;
2273	spin_lock(&vp->lock);
2274
2275	status = ioread16(ioaddr + EL3_STATUS);
2276
2277	if (vortex_debug > 6)
2278		pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2279
2280	if ((status & IntLatch) == 0)
2281		goto handler_exit;		/* No interrupt: shared IRQs cause this */
2282	handled = 1;
2283
2284	if (status & IntReq) {
2285		status |= vp->deferred;
2286		vp->deferred = 0;
2287	}
2288
2289	if (status == 0xffff)		/* h/w no longer present (hotplug)? */
2290		goto handler_exit;
2291
2292	if (vortex_debug > 4)
2293		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2294			   dev->name, status, ioread8(ioaddr + Timer));
2295
2296	spin_lock(&vp->window_lock);
2297	window_set(vp, 7);
2298
2299	do {
2300		if (vortex_debug > 5)
2301				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2302					   dev->name, status);
2303		if (status & RxComplete)
2304			vortex_rx(dev);
2305
2306		if (status & TxAvailable) {
2307			if (vortex_debug > 5)
2308				pr_debug("	TX room bit was handled.\n");
2309			/* There's room in the FIFO for a full-sized packet. */
2310			iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2311			netif_wake_queue (dev);
2312		}
2313
2314		if (status & DMADone) {
2315			if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2316				iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2317				pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2318				pkts_compl++;
2319				bytes_compl += vp->tx_skb->len;
2320				dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2321				if (ioread16(ioaddr + TxFree) > 1536) {
2322					/*
2323					 * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2324					 * insufficient FIFO room, the TxAvailable test will succeed and call
2325					 * netif_wake_queue()
2326					 */
2327					netif_wake_queue(dev);
2328				} else { /* Interrupt when FIFO has room for max-sized packet. */
2329					iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2330					netif_stop_queue(dev);
2331				}
2332			}
2333		}
2334		/* Check for all uncommon interrupts at once. */
2335		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2336			if (status == 0xffff)
2337				break;
2338			if (status & RxEarly)
2339				vortex_rx(dev);
2340			spin_unlock(&vp->window_lock);
2341			vortex_error(dev, status);
2342			spin_lock(&vp->window_lock);
2343			window_set(vp, 7);
2344		}
2345
2346		if (--work_done < 0) {
2347			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2348				dev->name, status);
2349			/* Disable all pending interrupts. */
2350			do {
2351				vp->deferred |= status;
2352				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2353					 ioaddr + EL3_CMD);
2354				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2355			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2356			/* The timer will reenable interrupts. */
2357			mod_timer(&vp->timer, jiffies + 1*HZ);
2358			break;
2359		}
2360		/* Acknowledge the IRQ. */
2361		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2362	} while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2363
2364	netdev_completed_queue(dev, pkts_compl, bytes_compl);
2365	spin_unlock(&vp->window_lock);
2366
2367	if (vortex_debug > 4)
2368		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2369			   dev->name, status);
2370handler_exit:
2371	spin_unlock(&vp->lock);
2372	return IRQ_RETVAL(handled);
2373}
2374
2375/*
2376 * This is the ISR for the boomerang series chips.
2377 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2378 */
2379
2380static irqreturn_t
2381boomerang_interrupt(int irq, void *dev_id)
2382{
2383	struct net_device *dev = dev_id;
2384	struct vortex_private *vp = netdev_priv(dev);
2385	void __iomem *ioaddr;
2386	int status;
2387	int work_done = max_interrupt_work;
2388	int handled = 0;
2389	unsigned int bytes_compl = 0, pkts_compl = 0;
2390
2391	ioaddr = vp->ioaddr;
2392
2393
2394	/*
2395	 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2396	 * and boomerang_start_xmit
2397	 */
2398	spin_lock(&vp->lock);
2399	vp->handling_irq = 1;
2400
2401	status = ioread16(ioaddr + EL3_STATUS);
2402
2403	if (vortex_debug > 6)
2404		pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2405
2406	if ((status & IntLatch) == 0)
2407		goto handler_exit;		/* No interrupt: shared IRQs can cause this */
2408	handled = 1;
2409
2410	if (status == 0xffff) {		/* h/w no longer present (hotplug)? */
2411		if (vortex_debug > 1)
2412			pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2413		goto handler_exit;
2414	}
2415
2416	if (status & IntReq) {
2417		status |= vp->deferred;
2418		vp->deferred = 0;
2419	}
2420
2421	if (vortex_debug > 4)
2422		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2423			   dev->name, status, ioread8(ioaddr + Timer));
2424	do {
2425		if (vortex_debug > 5)
2426				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2427					   dev->name, status);
2428		if (status & UpComplete) {
2429			iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2430			if (vortex_debug > 5)
2431				pr_debug("boomerang_interrupt->boomerang_rx\n");
2432			boomerang_rx(dev);
2433		}
2434
2435		if (status & DownComplete) {
2436			unsigned int dirty_tx = vp->dirty_tx;
2437
2438			iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2439			while (vp->cur_tx - dirty_tx > 0) {
2440				int entry = dirty_tx % TX_RING_SIZE;
2441#if 1	/* AKPM: the latter is faster, but cyclone-only */
2442				if (ioread32(ioaddr + DownListPtr) ==
2443					vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2444					break;			/* It still hasn't been processed. */
2445#else
2446				if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2447					break;			/* It still hasn't been processed. */
2448#endif
2449
2450				if (vp->tx_skbuff[entry]) {
2451					struct sk_buff *skb = vp->tx_skbuff[entry];
2452#if DO_ZEROCOPY
2453					int i;
2454					pci_unmap_single(VORTEX_PCI(vp),
2455							le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2456							le32_to_cpu(vp->tx_ring[entry].frag[0].length)&0xFFF,
2457							PCI_DMA_TODEVICE);
2458
2459					for (i=1; i<=skb_shinfo(skb)->nr_frags; i++)
2460							pci_unmap_page(VORTEX_PCI(vp),
2461											 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2462											 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2463											 PCI_DMA_TODEVICE);
2464#else
2465					pci_unmap_single(VORTEX_PCI(vp),
2466						le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2467#endif
2468					pkts_compl++;
2469					bytes_compl += skb->len;
2470					dev_kfree_skb_irq(skb);
2471					vp->tx_skbuff[entry] = NULL;
2472				} else {
2473					pr_debug("boomerang_interrupt: no skb!\n");
2474				}
2475				/* dev->stats.tx_packets++;  Counted below. */
2476				dirty_tx++;
2477			}
2478			vp->dirty_tx = dirty_tx;
2479			if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2480				if (vortex_debug > 6)
2481					pr_debug("boomerang_interrupt: wake queue\n");
2482				netif_wake_queue (dev);
2483			}
2484		}
2485
2486		/* Check for all uncommon interrupts at once. */
2487		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2488			vortex_error(dev, status);
2489
2490		if (--work_done < 0) {
2491			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2492				dev->name, status);
2493			/* Disable all pending interrupts. */
2494			do {
2495				vp->deferred |= status;
2496				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2497					 ioaddr + EL3_CMD);
2498				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2499			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2500			/* The timer will reenable interrupts. */
2501			mod_timer(&vp->timer, jiffies + 1*HZ);
2502			break;
2503		}
2504		/* Acknowledge the IRQ. */
2505		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2506		if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
2507			iowrite32(0x8000, vp->cb_fn_base + 4);
2508
2509	} while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2510	netdev_completed_queue(dev, pkts_compl, bytes_compl);
2511
2512	if (vortex_debug > 4)
2513		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2514			   dev->name, status);
2515handler_exit:
2516	vp->handling_irq = 0;
2517	spin_unlock(&vp->lock);
2518	return IRQ_RETVAL(handled);
2519}
2520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2521static int vortex_rx(struct net_device *dev)
2522{
2523	struct vortex_private *vp = netdev_priv(dev);
2524	void __iomem *ioaddr = vp->ioaddr;
2525	int i;
2526	short rx_status;
2527
2528	if (vortex_debug > 5)
2529		pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2530			   ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2531	while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2532		if (rx_status & 0x4000) { /* Error, update stats. */
2533			unsigned char rx_error = ioread8(ioaddr + RxErrors);
2534			if (vortex_debug > 2)
2535				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2536			dev->stats.rx_errors++;
2537			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2538			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2539			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2540			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2541			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2542		} else {
2543			/* The packet length: up to 4.5K!. */
2544			int pkt_len = rx_status & 0x1fff;
2545			struct sk_buff *skb;
2546
2547			skb = netdev_alloc_skb(dev, pkt_len + 5);
2548			if (vortex_debug > 4)
2549				pr_debug("Receiving packet size %d status %4.4x.\n",
2550					   pkt_len, rx_status);
2551			if (skb != NULL) {
2552				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2553				/* 'skb_put()' points to the start of sk_buff data area. */
2554				if (vp->bus_master &&
2555					! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2556					dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2557									   pkt_len, PCI_DMA_FROMDEVICE);
2558					iowrite32(dma, ioaddr + Wn7_MasterAddr);
2559					iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2560					iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2561					while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2562						;
2563					pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2564				} else {
2565					ioread32_rep(ioaddr + RX_FIFO,
2566					             skb_put(skb, pkt_len),
2567						     (pkt_len + 3) >> 2);
2568				}
2569				iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2570				skb->protocol = eth_type_trans(skb, dev);
2571				netif_rx(skb);
2572				dev->stats.rx_packets++;
2573				/* Wait a limited time to go to next packet. */
2574				for (i = 200; i >= 0; i--)
2575					if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2576						break;
2577				continue;
2578			} else if (vortex_debug > 0)
2579				pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2580					dev->name, pkt_len);
2581			dev->stats.rx_dropped++;
2582		}
2583		issue_and_wait(dev, RxDiscard);
2584	}
2585
2586	return 0;
2587}
2588
2589static int
2590boomerang_rx(struct net_device *dev)
2591{
2592	struct vortex_private *vp = netdev_priv(dev);
2593	int entry = vp->cur_rx % RX_RING_SIZE;
2594	void __iomem *ioaddr = vp->ioaddr;
2595	int rx_status;
2596	int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2597
2598	if (vortex_debug > 5)
2599		pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2600
2601	while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2602		if (--rx_work_limit < 0)
2603			break;
2604		if (rx_status & RxDError) { /* Error, update stats. */
2605			unsigned char rx_error = rx_status >> 16;
2606			if (vortex_debug > 2)
2607				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2608			dev->stats.rx_errors++;
2609			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2610			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2611			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2612			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2613			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2614		} else {
2615			/* The packet length: up to 4.5K!. */
2616			int pkt_len = rx_status & 0x1fff;
2617			struct sk_buff *skb;
 
2618			dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2619
2620			if (vortex_debug > 4)
2621				pr_debug("Receiving packet size %d status %4.4x.\n",
2622					   pkt_len, rx_status);
2623
2624			/* Check if the packet is long enough to just accept without
2625			   copying to a properly sized skbuff. */
2626			if (pkt_len < rx_copybreak &&
2627			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2628				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2629				pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2630				/* 'skb_put()' points to the start of sk_buff data area. */
2631				memcpy(skb_put(skb, pkt_len),
2632					   vp->rx_skbuff[entry]->data,
2633					   pkt_len);
2634				pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2635				vp->rx_copy++;
2636			} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2637				/* Pass up the skbuff already on the Rx ring. */
2638				skb = vp->rx_skbuff[entry];
2639				vp->rx_skbuff[entry] = NULL;
 
2640				skb_put(skb, pkt_len);
2641				pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2642				vp->rx_nocopy++;
2643			}
2644			skb->protocol = eth_type_trans(skb, dev);
2645			{					/* Use hardware checksum info. */
2646				int csum_bits = rx_status & 0xee000000;
2647				if (csum_bits &&
2648					(csum_bits == (IPChksumValid | TCPChksumValid) ||
2649					 csum_bits == (IPChksumValid | UDPChksumValid))) {
2650					skb->ip_summed = CHECKSUM_UNNECESSARY;
2651					vp->rx_csumhits++;
2652				}
2653			}
2654			netif_rx(skb);
2655			dev->stats.rx_packets++;
2656		}
2657		entry = (++vp->cur_rx) % RX_RING_SIZE;
2658	}
2659	/* Refill the Rx ring buffers. */
2660	for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2661		struct sk_buff *skb;
2662		entry = vp->dirty_rx % RX_RING_SIZE;
2663		if (vp->rx_skbuff[entry] == NULL) {
2664			skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2665			if (skb == NULL) {
2666				static unsigned long last_jif;
2667				if (time_after(jiffies, last_jif + 10 * HZ)) {
2668					pr_warn("%s: memory shortage\n",
2669						dev->name);
2670					last_jif = jiffies;
2671				}
2672				if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2673					mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2674				break;			/* Bad news!  */
2675			}
2676
2677			vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2678			vp->rx_skbuff[entry] = skb;
2679		}
2680		vp->rx_ring[entry].status = 0;	/* Clear complete bit. */
2681		iowrite16(UpUnstall, ioaddr + EL3_CMD);
 
2682	}
2683	return 0;
2684}
2685
2686/*
2687 * If we've hit a total OOM refilling the Rx ring we poll once a second
2688 * for some memory.  Otherwise there is no way to restart the rx process.
2689 */
2690static void
2691rx_oom_timer(unsigned long arg)
2692{
2693	struct net_device *dev = (struct net_device *)arg;
2694	struct vortex_private *vp = netdev_priv(dev);
2695
2696	spin_lock_irq(&vp->lock);
2697	if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)	/* This test is redundant, but makes me feel good */
2698		boomerang_rx(dev);
2699	if (vortex_debug > 1) {
2700		pr_debug("%s: rx_oom_timer %s\n", dev->name,
2701			((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2702	}
2703	spin_unlock_irq(&vp->lock);
2704}
2705
2706static void
2707vortex_down(struct net_device *dev, int final_down)
2708{
2709	struct vortex_private *vp = netdev_priv(dev);
2710	void __iomem *ioaddr = vp->ioaddr;
2711
2712	netdev_reset_queue(dev);
2713	netif_stop_queue(dev);
2714
2715	del_timer_sync(&vp->rx_oom_timer);
2716	del_timer_sync(&vp->timer);
2717
2718	/* Turn off statistics ASAP.  We update dev->stats below. */
2719	iowrite16(StatsDisable, ioaddr + EL3_CMD);
2720
2721	/* Disable the receiver and transmitter. */
2722	iowrite16(RxDisable, ioaddr + EL3_CMD);
2723	iowrite16(TxDisable, ioaddr + EL3_CMD);
2724
2725	/* Disable receiving 802.1q tagged frames */
2726	set_8021q_mode(dev, 0);
2727
2728	if (dev->if_port == XCVR_10base2)
2729		/* Turn off thinnet power.  Green! */
2730		iowrite16(StopCoax, ioaddr + EL3_CMD);
2731
2732	iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2733
2734	update_stats(ioaddr, dev);
2735	if (vp->full_bus_master_rx)
2736		iowrite32(0, ioaddr + UpListPtr);
2737	if (vp->full_bus_master_tx)
2738		iowrite32(0, ioaddr + DownListPtr);
2739
2740	if (final_down && VORTEX_PCI(vp)) {
2741		vp->pm_state_valid = 1;
2742		pci_save_state(VORTEX_PCI(vp));
2743		acpi_set_WOL(dev);
2744	}
2745}
2746
2747static int
2748vortex_close(struct net_device *dev)
2749{
2750	struct vortex_private *vp = netdev_priv(dev);
2751	void __iomem *ioaddr = vp->ioaddr;
2752	int i;
2753
2754	if (netif_device_present(dev))
2755		vortex_down(dev, 1);
2756
2757	if (vortex_debug > 1) {
2758		pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2759			   dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2760		pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2761			   " tx_queued %d Rx pre-checksummed %d.\n",
2762			   dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2763	}
2764
2765#if DO_ZEROCOPY
2766	if (vp->rx_csumhits &&
2767	    (vp->drv_flags & HAS_HWCKSM) == 0 &&
2768	    (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2769		pr_warn("%s supports hardware checksums, and we're not using them!\n",
2770			dev->name);
2771	}
2772#endif
2773
2774	free_irq(dev->irq, dev);
2775
2776	if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2777		for (i = 0; i < RX_RING_SIZE; i++)
2778			if (vp->rx_skbuff[i]) {
2779				pci_unmap_single(	VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2780									PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2781				dev_kfree_skb(vp->rx_skbuff[i]);
2782				vp->rx_skbuff[i] = NULL;
2783			}
2784	}
2785	if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2786		for (i = 0; i < TX_RING_SIZE; i++) {
2787			if (vp->tx_skbuff[i]) {
2788				struct sk_buff *skb = vp->tx_skbuff[i];
2789#if DO_ZEROCOPY
2790				int k;
2791
2792				for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2793						pci_unmap_single(VORTEX_PCI(vp),
2794										 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2795										 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2796										 PCI_DMA_TODEVICE);
2797#else
2798				pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2799#endif
2800				dev_kfree_skb(skb);
2801				vp->tx_skbuff[i] = NULL;
2802			}
2803		}
2804	}
2805
2806	return 0;
2807}
2808
2809static void
2810dump_tx_ring(struct net_device *dev)
2811{
2812	if (vortex_debug > 0) {
2813	struct vortex_private *vp = netdev_priv(dev);
2814		void __iomem *ioaddr = vp->ioaddr;
2815
2816		if (vp->full_bus_master_tx) {
2817			int i;
2818			int stalled = ioread32(ioaddr + PktStatus) & 0x04;	/* Possible racy. But it's only debug stuff */
2819
2820			pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2821					vp->full_bus_master_tx,
2822					vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2823					vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2824			pr_err("  Transmit list %8.8x vs. %p.\n",
2825				   ioread32(ioaddr + DownListPtr),
2826				   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2827			issue_and_wait(dev, DownStall);
2828			for (i = 0; i < TX_RING_SIZE; i++) {
2829				unsigned int length;
2830
2831#if DO_ZEROCOPY
2832				length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2833#else
2834				length = le32_to_cpu(vp->tx_ring[i].length);
2835#endif
2836				pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2837					   i, &vp->tx_ring[i], length,
2838					   le32_to_cpu(vp->tx_ring[i].status));
2839			}
2840			if (!stalled)
2841				iowrite16(DownUnstall, ioaddr + EL3_CMD);
2842		}
2843	}
2844}
2845
2846static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2847{
2848	struct vortex_private *vp = netdev_priv(dev);
2849	void __iomem *ioaddr = vp->ioaddr;
2850	unsigned long flags;
2851
2852	if (netif_device_present(dev)) {	/* AKPM: Used to be netif_running */
2853		spin_lock_irqsave (&vp->lock, flags);
2854		update_stats(ioaddr, dev);
2855		spin_unlock_irqrestore (&vp->lock, flags);
2856	}
2857	return &dev->stats;
2858}
2859
2860/*  Update statistics.
2861	Unlike with the EL3 we need not worry about interrupts changing
2862	the window setting from underneath us, but we must still guard
2863	against a race condition with a StatsUpdate interrupt updating the
2864	table.  This is done by checking that the ASM (!) code generated uses
2865	atomic updates with '+='.
2866	*/
2867static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2868{
2869	struct vortex_private *vp = netdev_priv(dev);
2870
2871	/* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2872	/* Switch to the stats window, and read everything. */
2873	dev->stats.tx_carrier_errors		+= window_read8(vp, 6, 0);
2874	dev->stats.tx_heartbeat_errors		+= window_read8(vp, 6, 1);
2875	dev->stats.tx_window_errors		+= window_read8(vp, 6, 4);
2876	dev->stats.rx_fifo_errors		+= window_read8(vp, 6, 5);
2877	dev->stats.tx_packets			+= window_read8(vp, 6, 6);
2878	dev->stats.tx_packets			+= (window_read8(vp, 6, 9) &
2879						    0x30) << 4;
2880	/* Rx packets	*/			window_read8(vp, 6, 7);   /* Must read to clear */
2881	/* Don't bother with register 9, an extension of registers 6&7.
2882	   If we do use the 6&7 values the atomic update assumption above
2883	   is invalid. */
2884	dev->stats.rx_bytes 			+= window_read16(vp, 6, 10);
2885	dev->stats.tx_bytes 			+= window_read16(vp, 6, 12);
2886	/* Extra stats for get_ethtool_stats() */
2887	vp->xstats.tx_multiple_collisions	+= window_read8(vp, 6, 2);
2888	vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2889	vp->xstats.tx_deferred			+= window_read8(vp, 6, 8);
2890	vp->xstats.rx_bad_ssd			+= window_read8(vp, 4, 12);
2891
2892	dev->stats.collisions = vp->xstats.tx_multiple_collisions
2893		+ vp->xstats.tx_single_collisions
2894		+ vp->xstats.tx_max_collisions;
2895
2896	{
2897		u8 up = window_read8(vp, 4, 13);
2898		dev->stats.rx_bytes += (up & 0x0f) << 16;
2899		dev->stats.tx_bytes += (up & 0xf0) << 12;
2900	}
2901}
2902
2903static int vortex_nway_reset(struct net_device *dev)
2904{
2905	struct vortex_private *vp = netdev_priv(dev);
2906
2907	return mii_nway_restart(&vp->mii);
2908}
2909
2910static int vortex_get_link_ksettings(struct net_device *dev,
2911				     struct ethtool_link_ksettings *cmd)
2912{
2913	struct vortex_private *vp = netdev_priv(dev);
2914
2915	return mii_ethtool_get_link_ksettings(&vp->mii, cmd);
 
 
2916}
2917
2918static int vortex_set_link_ksettings(struct net_device *dev,
2919				     const struct ethtool_link_ksettings *cmd)
2920{
2921	struct vortex_private *vp = netdev_priv(dev);
2922
2923	return mii_ethtool_set_link_ksettings(&vp->mii, cmd);
2924}
2925
2926static u32 vortex_get_msglevel(struct net_device *dev)
2927{
2928	return vortex_debug;
2929}
2930
2931static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2932{
2933	vortex_debug = dbg;
2934}
2935
2936static int vortex_get_sset_count(struct net_device *dev, int sset)
2937{
2938	switch (sset) {
2939	case ETH_SS_STATS:
2940		return VORTEX_NUM_STATS;
2941	default:
2942		return -EOPNOTSUPP;
2943	}
2944}
2945
2946static void vortex_get_ethtool_stats(struct net_device *dev,
2947	struct ethtool_stats *stats, u64 *data)
2948{
2949	struct vortex_private *vp = netdev_priv(dev);
2950	void __iomem *ioaddr = vp->ioaddr;
2951	unsigned long flags;
2952
2953	spin_lock_irqsave(&vp->lock, flags);
2954	update_stats(ioaddr, dev);
2955	spin_unlock_irqrestore(&vp->lock, flags);
2956
2957	data[0] = vp->xstats.tx_deferred;
2958	data[1] = vp->xstats.tx_max_collisions;
2959	data[2] = vp->xstats.tx_multiple_collisions;
2960	data[3] = vp->xstats.tx_single_collisions;
2961	data[4] = vp->xstats.rx_bad_ssd;
2962}
2963
2964
2965static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2966{
2967	switch (stringset) {
2968	case ETH_SS_STATS:
2969		memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2970		break;
2971	default:
2972		WARN_ON(1);
2973		break;
2974	}
2975}
2976
2977static void vortex_get_drvinfo(struct net_device *dev,
2978					struct ethtool_drvinfo *info)
2979{
2980	struct vortex_private *vp = netdev_priv(dev);
2981
2982	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2983	if (VORTEX_PCI(vp)) {
2984		strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2985			sizeof(info->bus_info));
2986	} else {
2987		if (VORTEX_EISA(vp))
2988			strlcpy(info->bus_info, dev_name(vp->gendev),
2989				sizeof(info->bus_info));
2990		else
2991			snprintf(info->bus_info, sizeof(info->bus_info),
2992				"EISA 0x%lx %d", dev->base_addr, dev->irq);
2993	}
2994}
2995
2996static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2997{
2998	struct vortex_private *vp = netdev_priv(dev);
2999
3000	if (!VORTEX_PCI(vp))
3001		return;
3002
3003	wol->supported = WAKE_MAGIC;
3004
3005	wol->wolopts = 0;
3006	if (vp->enable_wol)
3007		wol->wolopts |= WAKE_MAGIC;
3008}
3009
3010static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3011{
3012	struct vortex_private *vp = netdev_priv(dev);
3013
3014	if (!VORTEX_PCI(vp))
3015		return -EOPNOTSUPP;
3016
3017	if (wol->wolopts & ~WAKE_MAGIC)
3018		return -EINVAL;
3019
3020	if (wol->wolopts & WAKE_MAGIC)
3021		vp->enable_wol = 1;
3022	else
3023		vp->enable_wol = 0;
3024	acpi_set_WOL(dev);
3025
3026	return 0;
3027}
3028
3029static const struct ethtool_ops vortex_ethtool_ops = {
3030	.get_drvinfo		= vortex_get_drvinfo,
3031	.get_strings            = vortex_get_strings,
3032	.get_msglevel           = vortex_get_msglevel,
3033	.set_msglevel           = vortex_set_msglevel,
3034	.get_ethtool_stats      = vortex_get_ethtool_stats,
3035	.get_sset_count		= vortex_get_sset_count,
3036	.get_link               = ethtool_op_get_link,
3037	.nway_reset             = vortex_nway_reset,
3038	.get_wol                = vortex_get_wol,
3039	.set_wol                = vortex_set_wol,
3040	.get_ts_info		= ethtool_op_get_ts_info,
3041	.get_link_ksettings     = vortex_get_link_ksettings,
3042	.set_link_ksettings     = vortex_set_link_ksettings,
3043};
3044
3045#ifdef CONFIG_PCI
3046/*
3047 *	Must power the device up to do MDIO operations
3048 */
3049static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3050{
3051	int err;
3052	struct vortex_private *vp = netdev_priv(dev);
3053	pci_power_t state = 0;
3054
3055	if(VORTEX_PCI(vp))
3056		state = VORTEX_PCI(vp)->current_state;
3057
3058	/* The kernel core really should have pci_get_power_state() */
3059
3060	if(state != 0)
3061		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3062	err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3063	if(state != 0)
3064		pci_set_power_state(VORTEX_PCI(vp), state);
3065
3066	return err;
3067}
3068#endif
3069
3070
3071/* Pre-Cyclone chips have no documented multicast filter, so the only
3072   multicast setting is to receive all multicast frames.  At least
3073   the chip has a very clean way to set the mode, unlike many others. */
3074static void set_rx_mode(struct net_device *dev)
3075{
3076	struct vortex_private *vp = netdev_priv(dev);
3077	void __iomem *ioaddr = vp->ioaddr;
3078	int new_mode;
3079
3080	if (dev->flags & IFF_PROMISC) {
3081		if (vortex_debug > 3)
3082			pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3083		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3084	} else	if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3085		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3086	} else
3087		new_mode = SetRxFilter | RxStation | RxBroadcast;
3088
3089	iowrite16(new_mode, ioaddr + EL3_CMD);
3090}
3091
3092#if IS_ENABLED(CONFIG_VLAN_8021Q)
3093/* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3094   Note that this must be done after each RxReset due to some backwards
3095   compatibility logic in the Cyclone and Tornado ASICs */
3096
3097/* The Ethernet Type used for 802.1q tagged frames */
3098#define VLAN_ETHER_TYPE 0x8100
3099
3100static void set_8021q_mode(struct net_device *dev, int enable)
3101{
3102	struct vortex_private *vp = netdev_priv(dev);
3103	int mac_ctrl;
3104
3105	if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3106		/* cyclone and tornado chipsets can recognize 802.1q
3107		 * tagged frames and treat them correctly */
3108
3109		int max_pkt_size = dev->mtu+14;	/* MTU+Ethernet header */
3110		if (enable)
3111			max_pkt_size += 4;	/* 802.1Q VLAN tag */
3112
3113		window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3114
3115		/* set VlanEtherType to let the hardware checksumming
3116		   treat tagged frames correctly */
3117		window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3118	} else {
3119		/* on older cards we have to enable large frames */
3120
3121		vp->large_frames = dev->mtu > 1500 || enable;
3122
3123		mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3124		if (vp->large_frames)
3125			mac_ctrl |= 0x40;
3126		else
3127			mac_ctrl &= ~0x40;
3128		window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3129	}
3130}
3131#else
3132
3133static void set_8021q_mode(struct net_device *dev, int enable)
3134{
3135}
3136
3137
3138#endif
3139
3140/* MII transceiver control section.
3141   Read and write the MII registers using software-generated serial
3142   MDIO protocol.  See the MII specifications or DP83840A data sheet
3143   for details. */
3144
3145/* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3146   met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3147   "overclocking" issues. */
3148static void mdio_delay(struct vortex_private *vp)
3149{
3150	window_read32(vp, 4, Wn4_PhysicalMgmt);
3151}
3152
3153#define MDIO_SHIFT_CLK	0x01
3154#define MDIO_DIR_WRITE	0x04
3155#define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3156#define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3157#define MDIO_DATA_READ	0x02
3158#define MDIO_ENB_IN		0x00
3159
3160/* Generate the preamble required for initial synchronization and
3161   a few older transceivers. */
3162static void mdio_sync(struct vortex_private *vp, int bits)
3163{
3164	/* Establish sync by sending at least 32 logic ones. */
3165	while (-- bits >= 0) {
3166		window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3167		mdio_delay(vp);
3168		window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3169			       4, Wn4_PhysicalMgmt);
3170		mdio_delay(vp);
3171	}
3172}
3173
3174static int mdio_read(struct net_device *dev, int phy_id, int location)
3175{
3176	int i;
3177	struct vortex_private *vp = netdev_priv(dev);
3178	int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3179	unsigned int retval = 0;
3180
3181	spin_lock_bh(&vp->mii_lock);
3182
3183	if (mii_preamble_required)
3184		mdio_sync(vp, 32);
3185
3186	/* Shift the read command bits out. */
3187	for (i = 14; i >= 0; i--) {
3188		int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3189		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3190		mdio_delay(vp);
3191		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3192			       4, Wn4_PhysicalMgmt);
3193		mdio_delay(vp);
3194	}
3195	/* Read the two transition, 16 data, and wire-idle bits. */
3196	for (i = 19; i > 0; i--) {
3197		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3198		mdio_delay(vp);
3199		retval = (retval << 1) |
3200			((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3201			  MDIO_DATA_READ) ? 1 : 0);
3202		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3203			       4, Wn4_PhysicalMgmt);
3204		mdio_delay(vp);
3205	}
3206
3207	spin_unlock_bh(&vp->mii_lock);
3208
3209	return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3210}
3211
3212static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3213{
3214	struct vortex_private *vp = netdev_priv(dev);
3215	int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3216	int i;
3217
3218	spin_lock_bh(&vp->mii_lock);
3219
3220	if (mii_preamble_required)
3221		mdio_sync(vp, 32);
3222
3223	/* Shift the command bits out. */
3224	for (i = 31; i >= 0; i--) {
3225		int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3226		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3227		mdio_delay(vp);
3228		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3229			       4, Wn4_PhysicalMgmt);
3230		mdio_delay(vp);
3231	}
3232	/* Leave the interface idle. */
3233	for (i = 1; i >= 0; i--) {
3234		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3235		mdio_delay(vp);
3236		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3237			       4, Wn4_PhysicalMgmt);
3238		mdio_delay(vp);
3239	}
3240
3241	spin_unlock_bh(&vp->mii_lock);
3242}
3243
3244/* ACPI: Advanced Configuration and Power Interface. */
3245/* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3246static void acpi_set_WOL(struct net_device *dev)
3247{
3248	struct vortex_private *vp = netdev_priv(dev);
3249	void __iomem *ioaddr = vp->ioaddr;
3250
3251	device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3252
3253	if (vp->enable_wol) {
3254		/* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3255		window_write16(vp, 2, 7, 0x0c);
3256		/* The RxFilter must accept the WOL frames. */
3257		iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3258		iowrite16(RxEnable, ioaddr + EL3_CMD);
3259
3260		if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3261			pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3262
3263			vp->enable_wol = 0;
3264			return;
3265		}
3266
3267		if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3268			return;
3269
3270		/* Change the power state to D3; RxEnable doesn't take effect. */
3271		pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3272	}
3273}
3274
3275
3276static void vortex_remove_one(struct pci_dev *pdev)
3277{
3278	struct net_device *dev = pci_get_drvdata(pdev);
3279	struct vortex_private *vp;
3280
3281	if (!dev) {
3282		pr_err("vortex_remove_one called for Compaq device!\n");
3283		BUG();
3284	}
3285
3286	vp = netdev_priv(dev);
3287
3288	if (vp->cb_fn_base)
3289		pci_iounmap(pdev, vp->cb_fn_base);
3290
3291	unregister_netdev(dev);
3292
3293	pci_set_power_state(pdev, PCI_D0);	/* Go active */
3294	if (vp->pm_state_valid)
3295		pci_restore_state(pdev);
3296	pci_disable_device(pdev);
3297
3298	/* Should really use issue_and_wait() here */
3299	iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3300	     vp->ioaddr + EL3_CMD);
3301
3302	pci_iounmap(pdev, vp->ioaddr);
3303
3304	pci_free_consistent(pdev,
3305						sizeof(struct boom_rx_desc) * RX_RING_SIZE
3306							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3307						vp->rx_ring,
3308						vp->rx_ring_dma);
3309
3310	pci_release_regions(pdev);
3311
3312	free_netdev(dev);
3313}
3314
3315
3316static struct pci_driver vortex_driver = {
3317	.name		= "3c59x",
3318	.probe		= vortex_init_one,
3319	.remove		= vortex_remove_one,
3320	.id_table	= vortex_pci_tbl,
3321	.driver.pm	= VORTEX_PM_OPS,
3322};
3323
3324
3325static int vortex_have_pci;
3326static int vortex_have_eisa;
3327
3328
3329static int __init vortex_init(void)
3330{
3331	int pci_rc, eisa_rc;
3332
3333	pci_rc = pci_register_driver(&vortex_driver);
3334	eisa_rc = vortex_eisa_init();
3335
3336	if (pci_rc == 0)
3337		vortex_have_pci = 1;
3338	if (eisa_rc > 0)
3339		vortex_have_eisa = 1;
3340
3341	return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3342}
3343
3344
3345static void __exit vortex_eisa_cleanup(void)
3346{
3347	void __iomem *ioaddr;
3348
3349#ifdef CONFIG_EISA
3350	/* Take care of the EISA devices */
3351	eisa_driver_unregister(&vortex_eisa_driver);
3352#endif
3353
3354	if (compaq_net_device) {
3355		ioaddr = ioport_map(compaq_net_device->base_addr,
3356		                    VORTEX_TOTAL_SIZE);
3357
3358		unregister_netdev(compaq_net_device);
3359		iowrite16(TotalReset, ioaddr + EL3_CMD);
3360		release_region(compaq_net_device->base_addr,
3361		               VORTEX_TOTAL_SIZE);
3362
3363		free_netdev(compaq_net_device);
3364	}
3365}
3366
3367
3368static void __exit vortex_cleanup(void)
3369{
3370	if (vortex_have_pci)
3371		pci_unregister_driver(&vortex_driver);
3372	if (vortex_have_eisa)
3373		vortex_eisa_cleanup();
3374}
3375
3376
3377module_init(vortex_init);
3378module_exit(vortex_cleanup);