Loading...
1/* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2/*
3 Written 1996-1999 by Donald Becker.
4
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
7
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
11
12 Problem reports and questions should be directed to
13 vortex@scyld.com
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20*/
21
22/*
23 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
24 * as well as other drivers
25 *
26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27 * due to dead code elimination. There will be some performance benefits from this due to
28 * elimination of all the tests and reduced cache footprint.
29 */
30
31
32#define DRV_NAME "3c59x"
33
34
35
36/* A few values that may be tweaked. */
37/* Keep the ring sizes a power of two for efficiency. */
38#define TX_RING_SIZE 16
39#define RX_RING_SIZE 32
40#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
41
42/* "Knobs" that adjust features and parameters. */
43/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1512 effectively disables this feature. */
45#ifndef __arm__
46static int rx_copybreak = 200;
47#else
48/* ARM systems perform better by disregarding the bus-master
49 transfer capability of these cards. -- rmk */
50static int rx_copybreak = 1513;
51#endif
52/* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53static const int mtu = 1500;
54/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55static int max_interrupt_work = 32;
56/* Tx timeout interval (millisecs) */
57static int watchdog = 5000;
58
59/* Allow aggregation of Tx interrupts. Saves CPU load at the cost
60 * of possible Tx stalls if the system is blocking interrupts
61 * somewhere else. Undefine this to disable.
62 */
63#define tx_interrupt_mitigation 1
64
65/* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66#define vortex_debug debug
67#ifdef VORTEX_DEBUG
68static int vortex_debug = VORTEX_DEBUG;
69#else
70static int vortex_debug = 1;
71#endif
72
73#include <linux/module.h>
74#include <linux/kernel.h>
75#include <linux/string.h>
76#include <linux/timer.h>
77#include <linux/errno.h>
78#include <linux/in.h>
79#include <linux/ioport.h>
80#include <linux/interrupt.h>
81#include <linux/pci.h>
82#include <linux/mii.h>
83#include <linux/init.h>
84#include <linux/netdevice.h>
85#include <linux/etherdevice.h>
86#include <linux/skbuff.h>
87#include <linux/ethtool.h>
88#include <linux/highmem.h>
89#include <linux/eisa.h>
90#include <linux/bitops.h>
91#include <linux/jiffies.h>
92#include <linux/gfp.h>
93#include <asm/irq.h> /* For nr_irqs only. */
94#include <asm/io.h>
95#include <linux/uaccess.h>
96
97/* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98 This is only in the support-all-kernels source code. */
99
100#define RUN_AT(x) (jiffies + (x))
101
102#include <linux/delay.h>
103
104
105static const char version[] =
106 DRV_NAME ": Donald Becker and others.\n";
107
108MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110MODULE_LICENSE("GPL");
111
112
113/* Operational parameter that usually are not changed. */
114
115/* The Vortex size is twice that of the original EtherLinkIII series: the
116 runtime register window, window 1, is now always mapped in.
117 The Boomerang size is twice as large as the Vortex -- it has additional
118 bus master control registers. */
119#define VORTEX_TOTAL_SIZE 0x20
120#define BOOMERANG_TOTAL_SIZE 0x40
121
122/* Set iff a MII transceiver on any interface requires mdio preamble.
123 This only set with the original DP83840 on older 3c905 boards, so the extra
124 code size of a per-interface flag is not worthwhile. */
125static char mii_preamble_required;
126
127#define PFX DRV_NAME ": "
128
129
130
131/*
132 Theory of Operation
133
134I. Board Compatibility
135
136This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
138versions of the FastEtherLink cards. The supported product IDs are
139 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
140
141The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142with the kernel source or available from
143 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
144
145II. Board-specific settings
146
147PCI bus devices are configured by the system at boot time, so no jumpers
148need to be set on the board. The system BIOS should be set to assign the
149PCI INTA signal to an otherwise unused system IRQ line.
150
151The EEPROM settings for media type and forced-full-duplex are observed.
152The EEPROM media type should be left at the default "autoselect" unless using
15310base2 or AUI connections which cannot be reliably detected.
154
155III. Driver operation
156
157The 3c59x series use an interface that's very similar to the previous 3c5x9
158series. The primary interface is two programmed-I/O FIFOs, with an
159alternate single-contiguous-region bus-master transfer (see next).
160
161The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163DEC Tulip and Intel Speedo3. The first chip version retains a compatible
164programmed-I/O interface that has been removed in 'B' and subsequent board
165revisions.
166
167One extension that is advertised in a very large font is that the adapters
168are capable of being bus masters. On the Vortex chip this capability was
169only for a single contiguous region making it far less useful than the full
170bus master capability. There is a significant performance impact of taking
171an extra interrupt or polling for the completion of each transfer, as well
172as difficulty sharing the single transfer engine between the transmit and
173receive threads. Using DMA transfers is a win only with large blocks or
174with the flawed versions of the Intel Orion motherboard PCI controller.
175
176The Boomerang chip's full-bus-master interface is useful, and has the
177currently-unused advantages over other similar chips that queued transmit
178packets may be reordered and receive buffer groups are associated with a
179single frame.
180
181With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182Rather than a fixed intermediate receive buffer, this scheme allocates
183full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
184the copying breakpoint: it is chosen to trade-off the memory wasted by
185passing the full-sized skbuff to the queue layer for all frames vs. the
186copying cost of copying a frame to a correctly-sized skbuff.
187
188IIIC. Synchronization
189The driver runs as two independent, single-threaded flows of control. One
190is the send-packet routine, which enforces single-threaded use by the
191dev->tbusy flag. The other thread is the interrupt handler, which is single
192threaded by the hardware and other software.
193
194IV. Notes
195
196Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
1973c590, 3c595, and 3c900 boards.
198The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199the EISA version is called "Demon". According to Terry these names come
200from rides at the local amusement park.
201
202The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203This driver only supports ethernet packets because of the skbuff allocation
204limit of 4K.
205*/
206
207/* This table drives the PCI probe routines. It's mostly boilerplate in all
208 of the drivers, and will likely be provided by some future kernel.
209*/
210enum pci_flags_bit {
211 PCI_USES_MASTER=4,
212};
213
214enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
220
221enum vortex_chips {
222 CH_3C590 = 0,
223 CH_3C592,
224 CH_3C597,
225 CH_3C595_1,
226 CH_3C595_2,
227
228 CH_3C595_3,
229 CH_3C900_1,
230 CH_3C900_2,
231 CH_3C900_3,
232 CH_3C900_4,
233
234 CH_3C900_5,
235 CH_3C900B_FL,
236 CH_3C905_1,
237 CH_3C905_2,
238 CH_3C905B_TX,
239 CH_3C905B_1,
240
241 CH_3C905B_2,
242 CH_3C905B_FX,
243 CH_3C905C,
244 CH_3C9202,
245 CH_3C980,
246 CH_3C9805,
247
248 CH_3CSOHO100_TX,
249 CH_3C555,
250 CH_3C556,
251 CH_3C556B,
252 CH_3C575,
253
254 CH_3C575_1,
255 CH_3CCFE575,
256 CH_3CCFE575CT,
257 CH_3CCFE656,
258 CH_3CCFEM656,
259
260 CH_3CCFEM656_1,
261 CH_3C450,
262 CH_3C920,
263 CH_3C982A,
264 CH_3C982B,
265
266 CH_905BT4,
267 CH_920B_EMB_WNM,
268};
269
270
271/* note: this array directly indexed by above enums, and MUST
272 * be kept in sync with both the enums above, and the PCI device
273 * table below
274 */
275static struct vortex_chip_info {
276 const char *name;
277 int flags;
278 int drv_flags;
279 int io_size;
280} vortex_info_tbl[] = {
281 {"3c590 Vortex 10Mbps",
282 PCI_USES_MASTER, IS_VORTEX, 32, },
283 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
284 PCI_USES_MASTER, IS_VORTEX, 32, },
285 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
286 PCI_USES_MASTER, IS_VORTEX, 32, },
287 {"3c595 Vortex 100baseTx",
288 PCI_USES_MASTER, IS_VORTEX, 32, },
289 {"3c595 Vortex 100baseT4",
290 PCI_USES_MASTER, IS_VORTEX, 32, },
291
292 {"3c595 Vortex 100base-MII",
293 PCI_USES_MASTER, IS_VORTEX, 32, },
294 {"3c900 Boomerang 10baseT",
295 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
296 {"3c900 Boomerang 10Mbps Combo",
297 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
298 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
299 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
300 {"3c900 Cyclone 10Mbps Combo",
301 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
302
303 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
304 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
305 {"3c900B-FL Cyclone 10base-FL",
306 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
307 {"3c905 Boomerang 100baseTx",
308 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
309 {"3c905 Boomerang 100baseT4",
310 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
311 {"3C905B-TX Fast Etherlink XL PCI",
312 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313 {"3c905B Cyclone 100baseTx",
314 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
315
316 {"3c905B Cyclone 10/100/BNC",
317 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
318 {"3c905B-FX Cyclone 100baseFx",
319 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
320 {"3c905C Tornado",
321 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
322 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
323 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
324 {"3c980 Cyclone",
325 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
326
327 {"3c980C Python-T",
328 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
329 {"3cSOHO100-TX Hurricane",
330 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
331 {"3c555 Laptop Hurricane",
332 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
333 {"3c556 Laptop Tornado",
334 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
335 HAS_HWCKSM, 128, },
336 {"3c556B Laptop Hurricane",
337 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
338 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
339
340 {"3c575 [Megahertz] 10/100 LAN CardBus",
341 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
342 {"3c575 Boomerang CardBus",
343 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
344 {"3CCFE575BT Cyclone CardBus",
345 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
346 INVERT_LED_PWR|HAS_HWCKSM, 128, },
347 {"3CCFE575CT Tornado CardBus",
348 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
350 {"3CCFE656 Cyclone CardBus",
351 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
352 INVERT_LED_PWR|HAS_HWCKSM, 128, },
353
354 {"3CCFEM656B Cyclone+Winmodem CardBus",
355 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 INVERT_LED_PWR|HAS_HWCKSM, 128, },
357 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
358 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
359 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
360 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
361 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
362 {"3c920 Tornado",
363 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
364 {"3c982 Hydra Dual Port A",
365 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
366
367 {"3c982 Hydra Dual Port B",
368 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
369 {"3c905B-T4",
370 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
371 {"3c920B-EMB-WNM Tornado",
372 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
373
374 {NULL,}, /* NULL terminated list. */
375};
376
377
378static const struct pci_device_id vortex_pci_tbl[] = {
379 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
380 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
381 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
382 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
383 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
384
385 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
386 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
387 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
388 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
389 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
390
391 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
392 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
393 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
394 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
395 { 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
396 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
397
398 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
399 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
400 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
401 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
402 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
403 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
404
405 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
406 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
407 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
408 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
409 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
410
411 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
412 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
413 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
414 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
415 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
416
417 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
418 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
419 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
420 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
421 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
422
423 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
424 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
425
426 {0,} /* 0 terminated list. */
427};
428MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
429
430
431/* Operational definitions.
432 These are not used by other compilation units and thus are not
433 exported in a ".h" file.
434
435 First the windows. There are eight register windows, with the command
436 and status registers available in each.
437 */
438#define EL3_CMD 0x0e
439#define EL3_STATUS 0x0e
440
441/* The top five bits written to EL3_CMD are a command, the lower
442 11 bits are the parameter, if applicable.
443 Note that 11 parameters bits was fine for ethernet, but the new chip
444 can handle FDDI length frames (~4500 octets) and now parameters count
445 32-bit 'Dwords' rather than octets. */
446
447enum vortex_cmd {
448 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
449 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
450 UpStall = 6<<11, UpUnstall = (6<<11)+1,
451 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
452 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
453 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
454 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
455 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
456 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
457 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
458
459/* The SetRxFilter command accepts the following classes: */
460enum RxFilter {
461 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
462
463/* Bits in the general status register. */
464enum vortex_status {
465 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
466 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
467 IntReq = 0x0040, StatsFull = 0x0080,
468 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
469 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
470 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
471};
472
473/* Register window 1 offsets, the window used in normal operation.
474 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
475enum Window1 {
476 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
477 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
478 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
479};
480enum Window0 {
481 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
482 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
483 IntrStatus=0x0E, /* Valid in all windows. */
484};
485enum Win0_EEPROM_bits {
486 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
487 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
488 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
489};
490/* EEPROM locations. */
491enum eeprom_offset {
492 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
493 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
494 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
495 DriverTune=13, Checksum=15};
496
497enum Window2 { /* Window 2. */
498 Wn2_ResetOptions=12,
499};
500enum Window3 { /* Window 3: MAC/config bits. */
501 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
502};
503
504#define BFEXT(value, offset, bitcount) \
505 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
506
507#define BFINS(lhs, rhs, offset, bitcount) \
508 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
509 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
510
511#define RAM_SIZE(v) BFEXT(v, 0, 3)
512#define RAM_WIDTH(v) BFEXT(v, 3, 1)
513#define RAM_SPEED(v) BFEXT(v, 4, 2)
514#define ROM_SIZE(v) BFEXT(v, 6, 2)
515#define RAM_SPLIT(v) BFEXT(v, 16, 2)
516#define XCVR(v) BFEXT(v, 20, 4)
517#define AUTOSELECT(v) BFEXT(v, 24, 1)
518
519enum Window4 { /* Window 4: Xcvr/media bits. */
520 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
521};
522enum Win4_Media_bits {
523 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
524 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
525 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
526 Media_LnkBeat = 0x0800,
527};
528enum Window7 { /* Window 7: Bus Master control. */
529 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
530 Wn7_MasterStatus = 12,
531};
532/* Boomerang bus master control registers. */
533enum MasterCtrl {
534 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
535 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
536};
537
538/* The Rx and Tx descriptor lists.
539 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
540 alignment contraint on tx_ring[] and rx_ring[]. */
541#define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
542#define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
543struct boom_rx_desc {
544 __le32 next; /* Last entry points to 0. */
545 __le32 status;
546 __le32 addr; /* Up to 63 addr/len pairs possible. */
547 __le32 length; /* Set LAST_FRAG to indicate last pair. */
548};
549/* Values for the Rx status entry. */
550enum rx_desc_status {
551 RxDComplete=0x00008000, RxDError=0x4000,
552 /* See boomerang_rx() for actual error bits */
553 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
554 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
555};
556
557#ifdef MAX_SKB_FRAGS
558#define DO_ZEROCOPY 1
559#else
560#define DO_ZEROCOPY 0
561#endif
562
563struct boom_tx_desc {
564 __le32 next; /* Last entry points to 0. */
565 __le32 status; /* bits 0:12 length, others see below. */
566#if DO_ZEROCOPY
567 struct {
568 __le32 addr;
569 __le32 length;
570 } frag[1+MAX_SKB_FRAGS];
571#else
572 __le32 addr;
573 __le32 length;
574#endif
575};
576
577/* Values for the Tx status entry. */
578enum tx_desc_status {
579 CRCDisable=0x2000, TxDComplete=0x8000,
580 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
581 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
582};
583
584/* Chip features we care about in vp->capabilities, read from the EEPROM. */
585enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
586
587struct vortex_extra_stats {
588 unsigned long tx_deferred;
589 unsigned long tx_max_collisions;
590 unsigned long tx_multiple_collisions;
591 unsigned long tx_single_collisions;
592 unsigned long rx_bad_ssd;
593};
594
595struct vortex_private {
596 /* The Rx and Tx rings should be quad-word-aligned. */
597 struct boom_rx_desc* rx_ring;
598 struct boom_tx_desc* tx_ring;
599 dma_addr_t rx_ring_dma;
600 dma_addr_t tx_ring_dma;
601 /* The addresses of transmit- and receive-in-place skbuffs. */
602 struct sk_buff* rx_skbuff[RX_RING_SIZE];
603 struct sk_buff* tx_skbuff[TX_RING_SIZE];
604 unsigned int cur_rx, cur_tx; /* The next free ring entry */
605 unsigned int dirty_tx; /* The ring entries to be free()ed. */
606 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
607 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
608 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
609
610 /* PCI configuration space information. */
611 struct device *gendev;
612 void __iomem *ioaddr; /* IO address space */
613 void __iomem *cb_fn_base; /* CardBus function status addr space. */
614
615 /* Some values here only for performance evaluation and path-coverage */
616 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
617 int card_idx;
618
619 /* The remainder are related to chip state, mostly media selection. */
620 struct timer_list timer; /* Media selection timer. */
621 int options; /* User-settable misc. driver options. */
622 unsigned int media_override:4, /* Passed-in media type. */
623 default_media:4, /* Read from the EEPROM/Wn3_Config. */
624 full_duplex:1, autoselect:1,
625 bus_master:1, /* Vortex can only do a fragment bus-m. */
626 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
627 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
628 partner_flow_ctrl:1, /* Partner supports flow control */
629 has_nway:1,
630 enable_wol:1, /* Wake-on-LAN is enabled */
631 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
632 open:1,
633 medialock:1,
634 large_frames:1, /* accept large frames */
635 handling_irq:1; /* private in_irq indicator */
636 /* {get|set}_wol operations are already serialized by rtnl.
637 * no additional locking is required for the enable_wol and acpi_set_WOL()
638 */
639 int drv_flags;
640 u16 status_enable;
641 u16 intr_enable;
642 u16 available_media; /* From Wn3_Options. */
643 u16 capabilities, info1, info2; /* Various, from EEPROM. */
644 u16 advertising; /* NWay media advertisement */
645 unsigned char phys[2]; /* MII device addresses. */
646 u16 deferred; /* Resend these interrupts when we
647 * bale from the ISR */
648 u16 io_size; /* Size of PCI region (for release_region) */
649
650 /* Serialises access to hardware other than MII and variables below.
651 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
652 spinlock_t lock;
653
654 spinlock_t mii_lock; /* Serialises access to MII */
655 struct mii_if_info mii; /* MII lib hooks/info */
656 spinlock_t window_lock; /* Serialises access to windowed regs */
657 int window; /* Register window */
658};
659
660static void window_set(struct vortex_private *vp, int window)
661{
662 if (window != vp->window) {
663 iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
664 vp->window = window;
665 }
666}
667
668#define DEFINE_WINDOW_IO(size) \
669static u ## size \
670window_read ## size(struct vortex_private *vp, int window, int addr) \
671{ \
672 unsigned long flags; \
673 u ## size ret; \
674 spin_lock_irqsave(&vp->window_lock, flags); \
675 window_set(vp, window); \
676 ret = ioread ## size(vp->ioaddr + addr); \
677 spin_unlock_irqrestore(&vp->window_lock, flags); \
678 return ret; \
679} \
680static void \
681window_write ## size(struct vortex_private *vp, u ## size value, \
682 int window, int addr) \
683{ \
684 unsigned long flags; \
685 spin_lock_irqsave(&vp->window_lock, flags); \
686 window_set(vp, window); \
687 iowrite ## size(value, vp->ioaddr + addr); \
688 spin_unlock_irqrestore(&vp->window_lock, flags); \
689}
690DEFINE_WINDOW_IO(8)
691DEFINE_WINDOW_IO(16)
692DEFINE_WINDOW_IO(32)
693
694#ifdef CONFIG_PCI
695#define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL)
696#else
697#define DEVICE_PCI(dev) NULL
698#endif
699
700#define VORTEX_PCI(vp) \
701 ((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
702
703#ifdef CONFIG_EISA
704#define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
705#else
706#define DEVICE_EISA(dev) NULL
707#endif
708
709#define VORTEX_EISA(vp) \
710 ((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
711
712/* The action to take with a media selection timer tick.
713 Note that we deviate from the 3Com order by checking 10base2 before AUI.
714 */
715enum xcvr_types {
716 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
717 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
718};
719
720static const struct media_table {
721 char *name;
722 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
723 mask:8, /* The transceiver-present bit in Wn3_Config.*/
724 next:8; /* The media type to try next. */
725 int wait; /* Time before we check media status. */
726} media_tbl[] = {
727 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
728 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
729 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
730 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
731 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
732 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
733 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
734 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
735 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
736 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
737 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
738};
739
740static struct {
741 const char str[ETH_GSTRING_LEN];
742} ethtool_stats_keys[] = {
743 { "tx_deferred" },
744 { "tx_max_collisions" },
745 { "tx_multiple_collisions" },
746 { "tx_single_collisions" },
747 { "rx_bad_ssd" },
748};
749
750/* number of ETHTOOL_GSTATS u64's */
751#define VORTEX_NUM_STATS 5
752
753static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
754 int chip_idx, int card_idx);
755static int vortex_up(struct net_device *dev);
756static void vortex_down(struct net_device *dev, int final);
757static int vortex_open(struct net_device *dev);
758static void mdio_sync(struct vortex_private *vp, int bits);
759static int mdio_read(struct net_device *dev, int phy_id, int location);
760static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
761static void vortex_timer(struct timer_list *t);
762static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
763 struct net_device *dev);
764static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
765 struct net_device *dev);
766static int vortex_rx(struct net_device *dev);
767static int boomerang_rx(struct net_device *dev);
768static irqreturn_t vortex_boomerang_interrupt(int irq, void *dev_id);
769static irqreturn_t _vortex_interrupt(int irq, struct net_device *dev);
770static irqreturn_t _boomerang_interrupt(int irq, struct net_device *dev);
771static int vortex_close(struct net_device *dev);
772static void dump_tx_ring(struct net_device *dev);
773static void update_stats(void __iomem *ioaddr, struct net_device *dev);
774static struct net_device_stats *vortex_get_stats(struct net_device *dev);
775static void set_rx_mode(struct net_device *dev);
776#ifdef CONFIG_PCI
777static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
778#endif
779static void vortex_tx_timeout(struct net_device *dev, unsigned int txqueue);
780static void acpi_set_WOL(struct net_device *dev);
781static const struct ethtool_ops vortex_ethtool_ops;
782static void set_8021q_mode(struct net_device *dev, int enable);
783
784/* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
785/* Option count limit only -- unlimited interfaces are supported. */
786#define MAX_UNITS 8
787static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
788static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
789static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
790static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
791static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
792static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
793static int global_options = -1;
794static int global_full_duplex = -1;
795static int global_enable_wol = -1;
796static int global_use_mmio = -1;
797
798/* Variables to work-around the Compaq PCI BIOS32 problem. */
799static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
800static struct net_device *compaq_net_device;
801
802static int vortex_cards_found;
803
804module_param(debug, int, 0);
805module_param(global_options, int, 0);
806module_param_array(options, int, NULL, 0);
807module_param(global_full_duplex, int, 0);
808module_param_array(full_duplex, int, NULL, 0);
809module_param_array(hw_checksums, int, NULL, 0);
810module_param_array(flow_ctrl, int, NULL, 0);
811module_param(global_enable_wol, int, 0);
812module_param_array(enable_wol, int, NULL, 0);
813module_param(rx_copybreak, int, 0);
814module_param(max_interrupt_work, int, 0);
815module_param_hw(compaq_ioaddr, int, ioport, 0);
816module_param_hw(compaq_irq, int, irq, 0);
817module_param(compaq_device_id, int, 0);
818module_param(watchdog, int, 0);
819module_param(global_use_mmio, int, 0);
820module_param_array(use_mmio, int, NULL, 0);
821MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
822MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
823MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
824MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
825MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
826MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
827MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
828MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
829MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
830MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
831MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
832MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
833MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
834MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
835MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
836MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
837MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
838
839#ifdef CONFIG_NET_POLL_CONTROLLER
840static void poll_vortex(struct net_device *dev)
841{
842 vortex_boomerang_interrupt(dev->irq, dev);
843}
844#endif
845
846#ifdef CONFIG_PM
847
848static int vortex_suspend(struct device *dev)
849{
850 struct net_device *ndev = dev_get_drvdata(dev);
851
852 if (!ndev || !netif_running(ndev))
853 return 0;
854
855 netif_device_detach(ndev);
856 vortex_down(ndev, 1);
857
858 return 0;
859}
860
861static int vortex_resume(struct device *dev)
862{
863 struct net_device *ndev = dev_get_drvdata(dev);
864 int err;
865
866 if (!ndev || !netif_running(ndev))
867 return 0;
868
869 err = vortex_up(ndev);
870 if (err)
871 return err;
872
873 netif_device_attach(ndev);
874
875 return 0;
876}
877
878static const struct dev_pm_ops vortex_pm_ops = {
879 .suspend = vortex_suspend,
880 .resume = vortex_resume,
881 .freeze = vortex_suspend,
882 .thaw = vortex_resume,
883 .poweroff = vortex_suspend,
884 .restore = vortex_resume,
885};
886
887#define VORTEX_PM_OPS (&vortex_pm_ops)
888
889#else /* !CONFIG_PM */
890
891#define VORTEX_PM_OPS NULL
892
893#endif /* !CONFIG_PM */
894
895#ifdef CONFIG_EISA
896static const struct eisa_device_id vortex_eisa_ids[] = {
897 { "TCM5920", CH_3C592 },
898 { "TCM5970", CH_3C597 },
899 { "" }
900};
901MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
902
903static int vortex_eisa_probe(struct device *device)
904{
905 void __iomem *ioaddr;
906 struct eisa_device *edev;
907
908 edev = to_eisa_device(device);
909
910 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
911 return -EBUSY;
912
913 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
914
915 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
916 edev->id.driver_data, vortex_cards_found)) {
917 release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
918 return -ENODEV;
919 }
920
921 vortex_cards_found++;
922
923 return 0;
924}
925
926static int vortex_eisa_remove(struct device *device)
927{
928 struct eisa_device *edev;
929 struct net_device *dev;
930 struct vortex_private *vp;
931 void __iomem *ioaddr;
932
933 edev = to_eisa_device(device);
934 dev = eisa_get_drvdata(edev);
935
936 if (!dev) {
937 pr_err("vortex_eisa_remove called for Compaq device!\n");
938 BUG();
939 }
940
941 vp = netdev_priv(dev);
942 ioaddr = vp->ioaddr;
943
944 unregister_netdev(dev);
945 iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
946 release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
947
948 free_netdev(dev);
949 return 0;
950}
951
952static struct eisa_driver vortex_eisa_driver = {
953 .id_table = vortex_eisa_ids,
954 .driver = {
955 .name = "3c59x",
956 .probe = vortex_eisa_probe,
957 .remove = vortex_eisa_remove
958 }
959};
960
961#endif /* CONFIG_EISA */
962
963/* returns count found (>= 0), or negative on error */
964static int __init vortex_eisa_init(void)
965{
966 int eisa_found = 0;
967 int orig_cards_found = vortex_cards_found;
968
969#ifdef CONFIG_EISA
970 int err;
971
972 err = eisa_driver_register (&vortex_eisa_driver);
973 if (!err) {
974 /*
975 * Because of the way EISA bus is probed, we cannot assume
976 * any device have been found when we exit from
977 * eisa_driver_register (the bus root driver may not be
978 * initialized yet). So we blindly assume something was
979 * found, and let the sysfs magic happened...
980 */
981 eisa_found = 1;
982 }
983#endif
984
985 /* Special code to work-around the Compaq PCI BIOS32 problem. */
986 if (compaq_ioaddr) {
987 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
988 compaq_irq, compaq_device_id, vortex_cards_found++);
989 }
990
991 return vortex_cards_found - orig_cards_found + eisa_found;
992}
993
994/* returns count (>= 0), or negative on error */
995static int vortex_init_one(struct pci_dev *pdev,
996 const struct pci_device_id *ent)
997{
998 int rc, unit, pci_bar;
999 struct vortex_chip_info *vci;
1000 void __iomem *ioaddr;
1001
1002 /* wake up and enable device */
1003 rc = pci_enable_device(pdev);
1004 if (rc < 0)
1005 goto out;
1006
1007 rc = pci_request_regions(pdev, DRV_NAME);
1008 if (rc < 0)
1009 goto out_disable;
1010
1011 unit = vortex_cards_found;
1012
1013 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1014 /* Determine the default if the user didn't override us */
1015 vci = &vortex_info_tbl[ent->driver_data];
1016 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1017 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1018 pci_bar = use_mmio[unit] ? 1 : 0;
1019 else
1020 pci_bar = global_use_mmio ? 1 : 0;
1021
1022 ioaddr = pci_iomap(pdev, pci_bar, 0);
1023 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1024 ioaddr = pci_iomap(pdev, 0, 0);
1025 if (!ioaddr) {
1026 rc = -ENOMEM;
1027 goto out_release;
1028 }
1029
1030 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1031 ent->driver_data, unit);
1032 if (rc < 0)
1033 goto out_iounmap;
1034
1035 vortex_cards_found++;
1036 goto out;
1037
1038out_iounmap:
1039 pci_iounmap(pdev, ioaddr);
1040out_release:
1041 pci_release_regions(pdev);
1042out_disable:
1043 pci_disable_device(pdev);
1044out:
1045 return rc;
1046}
1047
1048static const struct net_device_ops boomrang_netdev_ops = {
1049 .ndo_open = vortex_open,
1050 .ndo_stop = vortex_close,
1051 .ndo_start_xmit = boomerang_start_xmit,
1052 .ndo_tx_timeout = vortex_tx_timeout,
1053 .ndo_get_stats = vortex_get_stats,
1054#ifdef CONFIG_PCI
1055 .ndo_eth_ioctl = vortex_ioctl,
1056#endif
1057 .ndo_set_rx_mode = set_rx_mode,
1058 .ndo_set_mac_address = eth_mac_addr,
1059 .ndo_validate_addr = eth_validate_addr,
1060#ifdef CONFIG_NET_POLL_CONTROLLER
1061 .ndo_poll_controller = poll_vortex,
1062#endif
1063};
1064
1065static const struct net_device_ops vortex_netdev_ops = {
1066 .ndo_open = vortex_open,
1067 .ndo_stop = vortex_close,
1068 .ndo_start_xmit = vortex_start_xmit,
1069 .ndo_tx_timeout = vortex_tx_timeout,
1070 .ndo_get_stats = vortex_get_stats,
1071#ifdef CONFIG_PCI
1072 .ndo_eth_ioctl = vortex_ioctl,
1073#endif
1074 .ndo_set_rx_mode = set_rx_mode,
1075 .ndo_set_mac_address = eth_mac_addr,
1076 .ndo_validate_addr = eth_validate_addr,
1077#ifdef CONFIG_NET_POLL_CONTROLLER
1078 .ndo_poll_controller = poll_vortex,
1079#endif
1080};
1081
1082/*
1083 * Start up the PCI/EISA device which is described by *gendev.
1084 * Return 0 on success.
1085 *
1086 * NOTE: pdev can be NULL, for the case of a Compaq device
1087 */
1088static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1089 int chip_idx, int card_idx)
1090{
1091 struct vortex_private *vp;
1092 int option;
1093 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1094 __be16 addr[ETH_ALEN / 2];
1095 int i, step;
1096 struct net_device *dev;
1097 static int printed_version;
1098 int retval, print_info;
1099 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1100 const char *print_name = "3c59x";
1101 struct pci_dev *pdev = NULL;
1102 struct eisa_device *edev = NULL;
1103
1104 if (!printed_version) {
1105 pr_info("%s", version);
1106 printed_version = 1;
1107 }
1108
1109 if (gendev) {
1110 if ((pdev = DEVICE_PCI(gendev))) {
1111 print_name = pci_name(pdev);
1112 }
1113
1114 if ((edev = DEVICE_EISA(gendev))) {
1115 print_name = dev_name(&edev->dev);
1116 }
1117 }
1118
1119 dev = alloc_etherdev(sizeof(*vp));
1120 retval = -ENOMEM;
1121 if (!dev)
1122 goto out;
1123
1124 SET_NETDEV_DEV(dev, gendev);
1125 vp = netdev_priv(dev);
1126
1127 option = global_options;
1128
1129 /* The lower four bits are the media type. */
1130 if (dev->mem_start) {
1131 /*
1132 * The 'options' param is passed in as the third arg to the
1133 * LILO 'ether=' argument for non-modular use
1134 */
1135 option = dev->mem_start;
1136 }
1137 else if (card_idx < MAX_UNITS) {
1138 if (options[card_idx] >= 0)
1139 option = options[card_idx];
1140 }
1141
1142 if (option > 0) {
1143 if (option & 0x8000)
1144 vortex_debug = 7;
1145 if (option & 0x4000)
1146 vortex_debug = 2;
1147 if (option & 0x0400)
1148 vp->enable_wol = 1;
1149 }
1150
1151 print_info = (vortex_debug > 1);
1152 if (print_info)
1153 pr_info("See Documentation/networking/device_drivers/ethernet/3com/vortex.rst\n");
1154
1155 pr_info("%s: 3Com %s %s at %p.\n",
1156 print_name,
1157 pdev ? "PCI" : "EISA",
1158 vci->name,
1159 ioaddr);
1160
1161 dev->base_addr = (unsigned long)ioaddr;
1162 dev->irq = irq;
1163 dev->mtu = mtu;
1164 vp->ioaddr = ioaddr;
1165 vp->large_frames = mtu > 1500;
1166 vp->drv_flags = vci->drv_flags;
1167 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1168 vp->io_size = vci->io_size;
1169 vp->card_idx = card_idx;
1170 vp->window = -1;
1171
1172 /* module list only for Compaq device */
1173 if (gendev == NULL) {
1174 compaq_net_device = dev;
1175 }
1176
1177 /* PCI-only startup logic */
1178 if (pdev) {
1179 /* enable bus-mastering if necessary */
1180 if (vci->flags & PCI_USES_MASTER)
1181 pci_set_master(pdev);
1182
1183 if (vci->drv_flags & IS_VORTEX) {
1184 u8 pci_latency;
1185 u8 new_latency = 248;
1186
1187 /* Check the PCI latency value. On the 3c590 series the latency timer
1188 must be set to the maximum value to avoid data corruption that occurs
1189 when the timer expires during a transfer. This bug exists the Vortex
1190 chip only. */
1191 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1192 if (pci_latency < new_latency) {
1193 pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1194 print_name, pci_latency, new_latency);
1195 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1196 }
1197 }
1198 }
1199
1200 spin_lock_init(&vp->lock);
1201 spin_lock_init(&vp->mii_lock);
1202 spin_lock_init(&vp->window_lock);
1203 vp->gendev = gendev;
1204 vp->mii.dev = dev;
1205 vp->mii.mdio_read = mdio_read;
1206 vp->mii.mdio_write = mdio_write;
1207 vp->mii.phy_id_mask = 0x1f;
1208 vp->mii.reg_num_mask = 0x1f;
1209
1210 /* Makes sure rings are at least 16 byte aligned. */
1211 vp->rx_ring = dma_alloc_coherent(gendev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1212 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1213 &vp->rx_ring_dma, GFP_KERNEL);
1214 retval = -ENOMEM;
1215 if (!vp->rx_ring)
1216 goto free_device;
1217
1218 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1219 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1220
1221 /* if we are a PCI driver, we store info in pdev->driver_data
1222 * instead of a module list */
1223 if (pdev)
1224 pci_set_drvdata(pdev, dev);
1225 if (edev)
1226 eisa_set_drvdata(edev, dev);
1227
1228 vp->media_override = 7;
1229 if (option >= 0) {
1230 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1231 if (vp->media_override != 7)
1232 vp->medialock = 1;
1233 vp->full_duplex = (option & 0x200) ? 1 : 0;
1234 vp->bus_master = (option & 16) ? 1 : 0;
1235 }
1236
1237 if (global_full_duplex > 0)
1238 vp->full_duplex = 1;
1239 if (global_enable_wol > 0)
1240 vp->enable_wol = 1;
1241
1242 if (card_idx < MAX_UNITS) {
1243 if (full_duplex[card_idx] > 0)
1244 vp->full_duplex = 1;
1245 if (flow_ctrl[card_idx] > 0)
1246 vp->flow_ctrl = 1;
1247 if (enable_wol[card_idx] > 0)
1248 vp->enable_wol = 1;
1249 }
1250
1251 vp->mii.force_media = vp->full_duplex;
1252 vp->options = option;
1253 /* Read the station address from the EEPROM. */
1254 {
1255 int base;
1256
1257 if (vci->drv_flags & EEPROM_8BIT)
1258 base = 0x230;
1259 else if (vci->drv_flags & EEPROM_OFFSET)
1260 base = EEPROM_Read + 0x30;
1261 else
1262 base = EEPROM_Read;
1263
1264 for (i = 0; i < 0x40; i++) {
1265 int timer;
1266 window_write16(vp, base + i, 0, Wn0EepromCmd);
1267 /* Pause for at least 162 us. for the read to take place. */
1268 for (timer = 10; timer >= 0; timer--) {
1269 udelay(162);
1270 if ((window_read16(vp, 0, Wn0EepromCmd) &
1271 0x8000) == 0)
1272 break;
1273 }
1274 eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1275 }
1276 }
1277 for (i = 0; i < 0x18; i++)
1278 checksum ^= eeprom[i];
1279 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1280 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1281 while (i < 0x21)
1282 checksum ^= eeprom[i++];
1283 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1284 }
1285 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1286 pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1287 for (i = 0; i < 3; i++)
1288 addr[i] = htons(eeprom[i + 10]);
1289 eth_hw_addr_set(dev, (u8 *)addr);
1290 if (print_info)
1291 pr_cont(" %pM", dev->dev_addr);
1292 /* Unfortunately an all zero eeprom passes the checksum and this
1293 gets found in the wild in failure cases. Crypto is hard 8) */
1294 if (!is_valid_ether_addr(dev->dev_addr)) {
1295 retval = -EINVAL;
1296 pr_err("*** EEPROM MAC address is invalid.\n");
1297 goto free_ring; /* With every pack */
1298 }
1299 for (i = 0; i < 6; i++)
1300 window_write8(vp, dev->dev_addr[i], 2, i);
1301
1302 if (print_info)
1303 pr_cont(", IRQ %d\n", dev->irq);
1304 /* Tell them about an invalid IRQ. */
1305 if (dev->irq <= 0 || dev->irq >= nr_irqs)
1306 pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n",
1307 dev->irq);
1308
1309 step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1310 if (print_info) {
1311 pr_info(" product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1312 eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1313 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1314 }
1315
1316
1317 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1318 unsigned short n;
1319
1320 vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1321 if (!vp->cb_fn_base) {
1322 retval = -ENOMEM;
1323 goto free_ring;
1324 }
1325
1326 if (print_info) {
1327 pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1328 print_name,
1329 (unsigned long long)pci_resource_start(pdev, 2),
1330 vp->cb_fn_base);
1331 }
1332
1333 n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1334 if (vp->drv_flags & INVERT_LED_PWR)
1335 n |= 0x10;
1336 if (vp->drv_flags & INVERT_MII_PWR)
1337 n |= 0x4000;
1338 window_write16(vp, n, 2, Wn2_ResetOptions);
1339 if (vp->drv_flags & WNO_XCVR_PWR) {
1340 window_write16(vp, 0x0800, 0, 0);
1341 }
1342 }
1343
1344 /* Extract our information from the EEPROM data. */
1345 vp->info1 = eeprom[13];
1346 vp->info2 = eeprom[15];
1347 vp->capabilities = eeprom[16];
1348
1349 if (vp->info1 & 0x8000) {
1350 vp->full_duplex = 1;
1351 if (print_info)
1352 pr_info("Full duplex capable\n");
1353 }
1354
1355 {
1356 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1357 unsigned int config;
1358 vp->available_media = window_read16(vp, 3, Wn3_Options);
1359 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1360 vp->available_media = 0x40;
1361 config = window_read32(vp, 3, Wn3_Config);
1362 if (print_info) {
1363 pr_debug(" Internal config register is %4.4x, transceivers %#x.\n",
1364 config, window_read16(vp, 3, Wn3_Options));
1365 pr_info(" %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1366 8 << RAM_SIZE(config),
1367 RAM_WIDTH(config) ? "word" : "byte",
1368 ram_split[RAM_SPLIT(config)],
1369 AUTOSELECT(config) ? "autoselect/" : "",
1370 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1371 media_tbl[XCVR(config)].name);
1372 }
1373 vp->default_media = XCVR(config);
1374 if (vp->default_media == XCVR_NWAY)
1375 vp->has_nway = 1;
1376 vp->autoselect = AUTOSELECT(config);
1377 }
1378
1379 if (vp->media_override != 7) {
1380 pr_info("%s: Media override to transceiver type %d (%s).\n",
1381 print_name, vp->media_override,
1382 media_tbl[vp->media_override].name);
1383 dev->if_port = vp->media_override;
1384 } else
1385 dev->if_port = vp->default_media;
1386
1387 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1388 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1389 int phy, phy_idx = 0;
1390 mii_preamble_required++;
1391 if (vp->drv_flags & EXTRA_PREAMBLE)
1392 mii_preamble_required++;
1393 mdio_sync(vp, 32);
1394 mdio_read(dev, 24, MII_BMSR);
1395 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1396 int mii_status, phyx;
1397
1398 /*
1399 * For the 3c905CX we look at index 24 first, because it bogusly
1400 * reports an external PHY at all indices
1401 */
1402 if (phy == 0)
1403 phyx = 24;
1404 else if (phy <= 24)
1405 phyx = phy - 1;
1406 else
1407 phyx = phy;
1408 mii_status = mdio_read(dev, phyx, MII_BMSR);
1409 if (mii_status && mii_status != 0xffff) {
1410 vp->phys[phy_idx++] = phyx;
1411 if (print_info) {
1412 pr_info(" MII transceiver found at address %d, status %4x.\n",
1413 phyx, mii_status);
1414 }
1415 if ((mii_status & 0x0040) == 0)
1416 mii_preamble_required++;
1417 }
1418 }
1419 mii_preamble_required--;
1420 if (phy_idx == 0) {
1421 pr_warn(" ***WARNING*** No MII transceivers found!\n");
1422 vp->phys[0] = 24;
1423 } else {
1424 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1425 if (vp->full_duplex) {
1426 /* Only advertise the FD media types. */
1427 vp->advertising &= ~0x02A0;
1428 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1429 }
1430 }
1431 vp->mii.phy_id = vp->phys[0];
1432 }
1433
1434 if (vp->capabilities & CapBusMaster) {
1435 vp->full_bus_master_tx = 1;
1436 if (print_info) {
1437 pr_info(" Enabling bus-master transmits and %s receives.\n",
1438 (vp->info2 & 1) ? "early" : "whole-frame" );
1439 }
1440 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1441 vp->bus_master = 0; /* AKPM: vortex only */
1442 }
1443
1444 /* The 3c59x-specific entries in the device structure. */
1445 if (vp->full_bus_master_tx) {
1446 dev->netdev_ops = &boomrang_netdev_ops;
1447 /* Actually, it still should work with iommu. */
1448 if (card_idx < MAX_UNITS &&
1449 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1450 hw_checksums[card_idx] == 1)) {
1451 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1452 }
1453 } else
1454 dev->netdev_ops = &vortex_netdev_ops;
1455
1456 if (print_info) {
1457 pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1458 print_name,
1459 (dev->features & NETIF_F_SG) ? "en":"dis",
1460 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1461 }
1462
1463 dev->ethtool_ops = &vortex_ethtool_ops;
1464 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1465
1466 if (pdev) {
1467 vp->pm_state_valid = 1;
1468 pci_save_state(pdev);
1469 acpi_set_WOL(dev);
1470 }
1471 retval = register_netdev(dev);
1472 if (retval == 0)
1473 return 0;
1474
1475free_ring:
1476 dma_free_coherent(&pdev->dev,
1477 sizeof(struct boom_rx_desc) * RX_RING_SIZE +
1478 sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1479 vp->rx_ring, vp->rx_ring_dma);
1480free_device:
1481 free_netdev(dev);
1482 pr_err(PFX "vortex_probe1 fails. Returns %d\n", retval);
1483out:
1484 return retval;
1485}
1486
1487static void
1488issue_and_wait(struct net_device *dev, int cmd)
1489{
1490 struct vortex_private *vp = netdev_priv(dev);
1491 void __iomem *ioaddr = vp->ioaddr;
1492 int i;
1493
1494 iowrite16(cmd, ioaddr + EL3_CMD);
1495 for (i = 0; i < 2000; i++) {
1496 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1497 return;
1498 }
1499
1500 /* OK, that didn't work. Do it the slow way. One second */
1501 for (i = 0; i < 100000; i++) {
1502 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1503 if (vortex_debug > 1)
1504 pr_info("%s: command 0x%04x took %d usecs\n",
1505 dev->name, cmd, i * 10);
1506 return;
1507 }
1508 udelay(10);
1509 }
1510 pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1511 dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1512}
1513
1514static void
1515vortex_set_duplex(struct net_device *dev)
1516{
1517 struct vortex_private *vp = netdev_priv(dev);
1518
1519 pr_info("%s: setting %s-duplex.\n",
1520 dev->name, (vp->full_duplex) ? "full" : "half");
1521
1522 /* Set the full-duplex bit. */
1523 window_write16(vp,
1524 ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1525 (vp->large_frames ? 0x40 : 0) |
1526 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1527 0x100 : 0),
1528 3, Wn3_MAC_Ctrl);
1529}
1530
1531static void vortex_check_media(struct net_device *dev, unsigned int init)
1532{
1533 struct vortex_private *vp = netdev_priv(dev);
1534 unsigned int ok_to_print = 0;
1535
1536 if (vortex_debug > 3)
1537 ok_to_print = 1;
1538
1539 if (mii_check_media(&vp->mii, ok_to_print, init)) {
1540 vp->full_duplex = vp->mii.full_duplex;
1541 vortex_set_duplex(dev);
1542 } else if (init) {
1543 vortex_set_duplex(dev);
1544 }
1545}
1546
1547static int
1548vortex_up(struct net_device *dev)
1549{
1550 struct vortex_private *vp = netdev_priv(dev);
1551 void __iomem *ioaddr = vp->ioaddr;
1552 unsigned int config;
1553 int i, mii_reg5, err = 0;
1554
1555 if (VORTEX_PCI(vp)) {
1556 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1557 if (vp->pm_state_valid)
1558 pci_restore_state(VORTEX_PCI(vp));
1559 err = pci_enable_device(VORTEX_PCI(vp));
1560 if (err) {
1561 pr_warn("%s: Could not enable device\n", dev->name);
1562 goto err_out;
1563 }
1564 }
1565
1566 /* Before initializing select the active media port. */
1567 config = window_read32(vp, 3, Wn3_Config);
1568
1569 if (vp->media_override != 7) {
1570 pr_info("%s: Media override to transceiver %d (%s).\n",
1571 dev->name, vp->media_override,
1572 media_tbl[vp->media_override].name);
1573 dev->if_port = vp->media_override;
1574 } else if (vp->autoselect) {
1575 if (vp->has_nway) {
1576 if (vortex_debug > 1)
1577 pr_info("%s: using NWAY device table, not %d\n",
1578 dev->name, dev->if_port);
1579 dev->if_port = XCVR_NWAY;
1580 } else {
1581 /* Find first available media type, starting with 100baseTx. */
1582 dev->if_port = XCVR_100baseTx;
1583 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1584 dev->if_port = media_tbl[dev->if_port].next;
1585 if (vortex_debug > 1)
1586 pr_info("%s: first available media type: %s\n",
1587 dev->name, media_tbl[dev->if_port].name);
1588 }
1589 } else {
1590 dev->if_port = vp->default_media;
1591 if (vortex_debug > 1)
1592 pr_info("%s: using default media %s\n",
1593 dev->name, media_tbl[dev->if_port].name);
1594 }
1595
1596 timer_setup(&vp->timer, vortex_timer, 0);
1597 mod_timer(&vp->timer, RUN_AT(media_tbl[dev->if_port].wait));
1598
1599 if (vortex_debug > 1)
1600 pr_debug("%s: Initial media type %s.\n",
1601 dev->name, media_tbl[dev->if_port].name);
1602
1603 vp->full_duplex = vp->mii.force_media;
1604 config = BFINS(config, dev->if_port, 20, 4);
1605 if (vortex_debug > 6)
1606 pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1607 window_write32(vp, config, 3, Wn3_Config);
1608
1609 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1610 mdio_read(dev, vp->phys[0], MII_BMSR);
1611 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1612 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1613 vp->mii.full_duplex = vp->full_duplex;
1614
1615 vortex_check_media(dev, 1);
1616 }
1617 else
1618 vortex_set_duplex(dev);
1619
1620 issue_and_wait(dev, TxReset);
1621 /*
1622 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1623 */
1624 issue_and_wait(dev, RxReset|0x04);
1625
1626
1627 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1628
1629 if (vortex_debug > 1) {
1630 pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1631 dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1632 }
1633
1634 /* Set the station address and mask in window 2 each time opened. */
1635 for (i = 0; i < 6; i++)
1636 window_write8(vp, dev->dev_addr[i], 2, i);
1637 for (; i < 12; i+=2)
1638 window_write16(vp, 0, 2, i);
1639
1640 if (vp->cb_fn_base) {
1641 unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1642 if (vp->drv_flags & INVERT_LED_PWR)
1643 n |= 0x10;
1644 if (vp->drv_flags & INVERT_MII_PWR)
1645 n |= 0x4000;
1646 window_write16(vp, n, 2, Wn2_ResetOptions);
1647 }
1648
1649 if (dev->if_port == XCVR_10base2)
1650 /* Start the thinnet transceiver. We should really wait 50ms...*/
1651 iowrite16(StartCoax, ioaddr + EL3_CMD);
1652 if (dev->if_port != XCVR_NWAY) {
1653 window_write16(vp,
1654 (window_read16(vp, 4, Wn4_Media) &
1655 ~(Media_10TP|Media_SQE)) |
1656 media_tbl[dev->if_port].media_bits,
1657 4, Wn4_Media);
1658 }
1659
1660 /* Switch to the stats window, and clear all stats by reading. */
1661 iowrite16(StatsDisable, ioaddr + EL3_CMD);
1662 for (i = 0; i < 10; i++)
1663 window_read8(vp, 6, i);
1664 window_read16(vp, 6, 10);
1665 window_read16(vp, 6, 12);
1666 /* New: On the Vortex we must also clear the BadSSD counter. */
1667 window_read8(vp, 4, 12);
1668 /* ..and on the Boomerang we enable the extra statistics bits. */
1669 window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1670
1671 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1672 vp->cur_rx = 0;
1673 /* Initialize the RxEarly register as recommended. */
1674 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1675 iowrite32(0x0020, ioaddr + PktStatus);
1676 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1677 }
1678 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1679 vp->cur_tx = vp->dirty_tx = 0;
1680 if (vp->drv_flags & IS_BOOMERANG)
1681 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1682 /* Clear the Rx, Tx rings. */
1683 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1684 vp->rx_ring[i].status = 0;
1685 for (i = 0; i < TX_RING_SIZE; i++)
1686 vp->tx_skbuff[i] = NULL;
1687 iowrite32(0, ioaddr + DownListPtr);
1688 }
1689 /* Set receiver mode: presumably accept b-case and phys addr only. */
1690 set_rx_mode(dev);
1691 /* enable 802.1q tagged frames */
1692 set_8021q_mode(dev, 1);
1693 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1694
1695 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1696 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1697 /* Allow status bits to be seen. */
1698 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1699 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1700 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1701 (vp->bus_master ? DMADone : 0);
1702 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1703 (vp->full_bus_master_rx ? 0 : RxComplete) |
1704 StatsFull | HostError | TxComplete | IntReq
1705 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1706 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1707 /* Ack all pending events, and set active indicator mask. */
1708 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1709 ioaddr + EL3_CMD);
1710 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1711 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1712 iowrite32(0x8000, vp->cb_fn_base + 4);
1713 netif_start_queue (dev);
1714 netdev_reset_queue(dev);
1715err_out:
1716 return err;
1717}
1718
1719static int
1720vortex_open(struct net_device *dev)
1721{
1722 struct vortex_private *vp = netdev_priv(dev);
1723 int i;
1724 int retval;
1725 dma_addr_t dma;
1726
1727 /* Use the now-standard shared IRQ implementation. */
1728 if ((retval = request_irq(dev->irq, vortex_boomerang_interrupt, IRQF_SHARED, dev->name, dev))) {
1729 pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1730 goto err;
1731 }
1732
1733 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1734 if (vortex_debug > 2)
1735 pr_debug("%s: Filling in the Rx ring.\n", dev->name);
1736 for (i = 0; i < RX_RING_SIZE; i++) {
1737 struct sk_buff *skb;
1738 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1739 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1740 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1741
1742 skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1743 GFP_KERNEL);
1744 vp->rx_skbuff[i] = skb;
1745 if (skb == NULL)
1746 break; /* Bad news! */
1747
1748 skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */
1749 dma = dma_map_single(vp->gendev, skb->data,
1750 PKT_BUF_SZ, DMA_FROM_DEVICE);
1751 if (dma_mapping_error(vp->gendev, dma))
1752 break;
1753 vp->rx_ring[i].addr = cpu_to_le32(dma);
1754 }
1755 if (i != RX_RING_SIZE) {
1756 pr_emerg("%s: no memory for rx ring\n", dev->name);
1757 retval = -ENOMEM;
1758 goto err_free_skb;
1759 }
1760 /* Wrap the ring. */
1761 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1762 }
1763
1764 retval = vortex_up(dev);
1765 if (!retval)
1766 goto out;
1767
1768err_free_skb:
1769 for (i = 0; i < RX_RING_SIZE; i++) {
1770 if (vp->rx_skbuff[i]) {
1771 dev_kfree_skb(vp->rx_skbuff[i]);
1772 vp->rx_skbuff[i] = NULL;
1773 }
1774 }
1775 free_irq(dev->irq, dev);
1776err:
1777 if (vortex_debug > 1)
1778 pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1779out:
1780 return retval;
1781}
1782
1783static void
1784vortex_timer(struct timer_list *t)
1785{
1786 struct vortex_private *vp = from_timer(vp, t, timer);
1787 struct net_device *dev = vp->mii.dev;
1788 void __iomem *ioaddr = vp->ioaddr;
1789 int next_tick = 60*HZ;
1790 int ok = 0;
1791 int media_status;
1792
1793 if (vortex_debug > 2) {
1794 pr_debug("%s: Media selection timer tick happened, %s.\n",
1795 dev->name, media_tbl[dev->if_port].name);
1796 pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1797 }
1798
1799 media_status = window_read16(vp, 4, Wn4_Media);
1800 switch (dev->if_port) {
1801 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1802 if (media_status & Media_LnkBeat) {
1803 netif_carrier_on(dev);
1804 ok = 1;
1805 if (vortex_debug > 1)
1806 pr_debug("%s: Media %s has link beat, %x.\n",
1807 dev->name, media_tbl[dev->if_port].name, media_status);
1808 } else {
1809 netif_carrier_off(dev);
1810 if (vortex_debug > 1) {
1811 pr_debug("%s: Media %s has no link beat, %x.\n",
1812 dev->name, media_tbl[dev->if_port].name, media_status);
1813 }
1814 }
1815 break;
1816 case XCVR_MII: case XCVR_NWAY:
1817 {
1818 ok = 1;
1819 vortex_check_media(dev, 0);
1820 }
1821 break;
1822 default: /* Other media types handled by Tx timeouts. */
1823 if (vortex_debug > 1)
1824 pr_debug("%s: Media %s has no indication, %x.\n",
1825 dev->name, media_tbl[dev->if_port].name, media_status);
1826 ok = 1;
1827 }
1828
1829 if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1830 next_tick = 5*HZ;
1831
1832 if (vp->medialock)
1833 goto leave_media_alone;
1834
1835 if (!ok) {
1836 unsigned int config;
1837
1838 spin_lock_irq(&vp->lock);
1839
1840 do {
1841 dev->if_port = media_tbl[dev->if_port].next;
1842 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1843 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1844 dev->if_port = vp->default_media;
1845 if (vortex_debug > 1)
1846 pr_debug("%s: Media selection failing, using default %s port.\n",
1847 dev->name, media_tbl[dev->if_port].name);
1848 } else {
1849 if (vortex_debug > 1)
1850 pr_debug("%s: Media selection failed, now trying %s port.\n",
1851 dev->name, media_tbl[dev->if_port].name);
1852 next_tick = media_tbl[dev->if_port].wait;
1853 }
1854 window_write16(vp,
1855 (media_status & ~(Media_10TP|Media_SQE)) |
1856 media_tbl[dev->if_port].media_bits,
1857 4, Wn4_Media);
1858
1859 config = window_read32(vp, 3, Wn3_Config);
1860 config = BFINS(config, dev->if_port, 20, 4);
1861 window_write32(vp, config, 3, Wn3_Config);
1862
1863 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1864 ioaddr + EL3_CMD);
1865 if (vortex_debug > 1)
1866 pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1867 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
1868
1869 spin_unlock_irq(&vp->lock);
1870 }
1871
1872leave_media_alone:
1873 if (vortex_debug > 2)
1874 pr_debug("%s: Media selection timer finished, %s.\n",
1875 dev->name, media_tbl[dev->if_port].name);
1876
1877 mod_timer(&vp->timer, RUN_AT(next_tick));
1878 if (vp->deferred)
1879 iowrite16(FakeIntr, ioaddr + EL3_CMD);
1880}
1881
1882static void vortex_tx_timeout(struct net_device *dev, unsigned int txqueue)
1883{
1884 struct vortex_private *vp = netdev_priv(dev);
1885 void __iomem *ioaddr = vp->ioaddr;
1886
1887 pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1888 dev->name, ioread8(ioaddr + TxStatus),
1889 ioread16(ioaddr + EL3_STATUS));
1890 pr_err(" diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1891 window_read16(vp, 4, Wn4_NetDiag),
1892 window_read16(vp, 4, Wn4_Media),
1893 ioread32(ioaddr + PktStatus),
1894 window_read16(vp, 4, Wn4_FIFODiag));
1895 /* Slight code bloat to be user friendly. */
1896 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1897 pr_err("%s: Transmitter encountered 16 collisions --"
1898 " network cable problem?\n", dev->name);
1899 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1900 pr_err("%s: Interrupt posted but not delivered --"
1901 " IRQ blocked by another device?\n", dev->name);
1902 /* Bad idea here.. but we might as well handle a few events. */
1903 vortex_boomerang_interrupt(dev->irq, dev);
1904 }
1905
1906 if (vortex_debug > 0)
1907 dump_tx_ring(dev);
1908
1909 issue_and_wait(dev, TxReset);
1910
1911 dev->stats.tx_errors++;
1912 if (vp->full_bus_master_tx) {
1913 pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1914 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0)
1915 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1916 ioaddr + DownListPtr);
1917 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) {
1918 netif_wake_queue (dev);
1919 netdev_reset_queue (dev);
1920 }
1921 if (vp->drv_flags & IS_BOOMERANG)
1922 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1923 iowrite16(DownUnstall, ioaddr + EL3_CMD);
1924 } else {
1925 dev->stats.tx_dropped++;
1926 netif_wake_queue(dev);
1927 netdev_reset_queue(dev);
1928 }
1929 /* Issue Tx Enable */
1930 iowrite16(TxEnable, ioaddr + EL3_CMD);
1931 netif_trans_update(dev); /* prevent tx timeout */
1932}
1933
1934/*
1935 * Handle uncommon interrupt sources. This is a separate routine to minimize
1936 * the cache impact.
1937 */
1938static void
1939vortex_error(struct net_device *dev, int status)
1940{
1941 struct vortex_private *vp = netdev_priv(dev);
1942 void __iomem *ioaddr = vp->ioaddr;
1943 int do_tx_reset = 0, reset_mask = 0;
1944 unsigned char tx_status = 0;
1945
1946 if (vortex_debug > 2) {
1947 pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1948 }
1949
1950 if (status & TxComplete) { /* Really "TxError" for us. */
1951 tx_status = ioread8(ioaddr + TxStatus);
1952 /* Presumably a tx-timeout. We must merely re-enable. */
1953 if (vortex_debug > 2 ||
1954 (tx_status != 0x88 && vortex_debug > 0)) {
1955 pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1956 dev->name, tx_status);
1957 if (tx_status == 0x82) {
1958 pr_err("Probably a duplex mismatch. See "
1959 "Documentation/networking/device_drivers/ethernet/3com/vortex.rst\n");
1960 }
1961 dump_tx_ring(dev);
1962 }
1963 if (tx_status & 0x14) dev->stats.tx_fifo_errors++;
1964 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
1965 if (tx_status & 0x08) vp->xstats.tx_max_collisions++;
1966 iowrite8(0, ioaddr + TxStatus);
1967 if (tx_status & 0x30) { /* txJabber or txUnderrun */
1968 do_tx_reset = 1;
1969 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */
1970 do_tx_reset = 1;
1971 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
1972 } else { /* Merely re-enable the transmitter. */
1973 iowrite16(TxEnable, ioaddr + EL3_CMD);
1974 }
1975 }
1976
1977 if (status & RxEarly) /* Rx early is unused. */
1978 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1979
1980 if (status & StatsFull) { /* Empty statistics. */
1981 static int DoneDidThat;
1982 if (vortex_debug > 4)
1983 pr_debug("%s: Updating stats.\n", dev->name);
1984 update_stats(ioaddr, dev);
1985 /* HACK: Disable statistics as an interrupt source. */
1986 /* This occurs when we have the wrong media type! */
1987 if (DoneDidThat == 0 &&
1988 ioread16(ioaddr + EL3_STATUS) & StatsFull) {
1989 pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n",
1990 dev->name);
1991 iowrite16(SetIntrEnb |
1992 (window_read16(vp, 5, 10) & ~StatsFull),
1993 ioaddr + EL3_CMD);
1994 vp->intr_enable &= ~StatsFull;
1995 DoneDidThat++;
1996 }
1997 }
1998 if (status & IntReq) { /* Restore all interrupt sources. */
1999 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2000 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2001 }
2002 if (status & HostError) {
2003 u16 fifo_diag;
2004 fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2005 pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2006 dev->name, fifo_diag);
2007 /* Adapter failure requires Tx/Rx reset and reinit. */
2008 if (vp->full_bus_master_tx) {
2009 int bus_status = ioread32(ioaddr + PktStatus);
2010 /* 0x80000000 PCI master abort. */
2011 /* 0x40000000 PCI target abort. */
2012 if (vortex_debug)
2013 pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2014
2015 /* In this case, blow the card away */
2016 /* Must not enter D3 or we can't legally issue the reset! */
2017 vortex_down(dev, 0);
2018 issue_and_wait(dev, TotalReset | 0xff);
2019 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
2020 } else if (fifo_diag & 0x0400)
2021 do_tx_reset = 1;
2022 if (fifo_diag & 0x3000) {
2023 /* Reset Rx fifo and upload logic */
2024 issue_and_wait(dev, RxReset|0x07);
2025 /* Set the Rx filter to the current state. */
2026 set_rx_mode(dev);
2027 /* enable 802.1q VLAN tagged frames */
2028 set_8021q_mode(dev, 1);
2029 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2030 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2031 }
2032 }
2033
2034 if (do_tx_reset) {
2035 issue_and_wait(dev, TxReset|reset_mask);
2036 iowrite16(TxEnable, ioaddr + EL3_CMD);
2037 if (!vp->full_bus_master_tx)
2038 netif_wake_queue(dev);
2039 }
2040}
2041
2042static netdev_tx_t
2043vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2044{
2045 struct vortex_private *vp = netdev_priv(dev);
2046 void __iomem *ioaddr = vp->ioaddr;
2047 int skblen = skb->len;
2048
2049 /* Put out the doubleword header... */
2050 iowrite32(skb->len, ioaddr + TX_FIFO);
2051 if (vp->bus_master) {
2052 /* Set the bus-master controller to transfer the packet. */
2053 int len = (skb->len + 3) & ~3;
2054 vp->tx_skb_dma = dma_map_single(vp->gendev, skb->data, len,
2055 DMA_TO_DEVICE);
2056 if (dma_mapping_error(vp->gendev, vp->tx_skb_dma)) {
2057 dev_kfree_skb_any(skb);
2058 dev->stats.tx_dropped++;
2059 return NETDEV_TX_OK;
2060 }
2061
2062 spin_lock_irq(&vp->window_lock);
2063 window_set(vp, 7);
2064 iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2065 iowrite16(len, ioaddr + Wn7_MasterLen);
2066 spin_unlock_irq(&vp->window_lock);
2067 vp->tx_skb = skb;
2068 skb_tx_timestamp(skb);
2069 iowrite16(StartDMADown, ioaddr + EL3_CMD);
2070 /* netif_wake_queue() will be called at the DMADone interrupt. */
2071 } else {
2072 /* ... and the packet rounded to a doubleword. */
2073 skb_tx_timestamp(skb);
2074 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2075 dev_consume_skb_any (skb);
2076 if (ioread16(ioaddr + TxFree) > 1536) {
2077 netif_start_queue (dev); /* AKPM: redundant? */
2078 } else {
2079 /* Interrupt us when the FIFO has room for max-sized packet. */
2080 netif_stop_queue(dev);
2081 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2082 }
2083 }
2084
2085 netdev_sent_queue(dev, skblen);
2086
2087 /* Clear the Tx status stack. */
2088 {
2089 int tx_status;
2090 int i = 32;
2091
2092 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2093 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2094 if (vortex_debug > 2)
2095 pr_debug("%s: Tx error, status %2.2x.\n",
2096 dev->name, tx_status);
2097 if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2098 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2099 if (tx_status & 0x30) {
2100 issue_and_wait(dev, TxReset);
2101 }
2102 iowrite16(TxEnable, ioaddr + EL3_CMD);
2103 }
2104 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2105 }
2106 }
2107 return NETDEV_TX_OK;
2108}
2109
2110static netdev_tx_t
2111boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2112{
2113 struct vortex_private *vp = netdev_priv(dev);
2114 void __iomem *ioaddr = vp->ioaddr;
2115 /* Calculate the next Tx descriptor entry. */
2116 int entry = vp->cur_tx % TX_RING_SIZE;
2117 int skblen = skb->len;
2118 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2119 unsigned long flags;
2120 dma_addr_t dma_addr;
2121
2122 if (vortex_debug > 6) {
2123 pr_debug("boomerang_start_xmit()\n");
2124 pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2125 dev->name, vp->cur_tx);
2126 }
2127
2128 /*
2129 * We can't allow a recursion from our interrupt handler back into the
2130 * tx routine, as they take the same spin lock, and that causes
2131 * deadlock. Just return NETDEV_TX_BUSY and let the stack try again in
2132 * a bit
2133 */
2134 if (vp->handling_irq)
2135 return NETDEV_TX_BUSY;
2136
2137 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2138 if (vortex_debug > 0)
2139 pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n",
2140 dev->name);
2141 netif_stop_queue(dev);
2142 return NETDEV_TX_BUSY;
2143 }
2144
2145 vp->tx_skbuff[entry] = skb;
2146
2147 vp->tx_ring[entry].next = 0;
2148#if DO_ZEROCOPY
2149 if (skb->ip_summed != CHECKSUM_PARTIAL)
2150 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2151 else
2152 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2153
2154 if (!skb_shinfo(skb)->nr_frags) {
2155 dma_addr = dma_map_single(vp->gendev, skb->data, skb->len,
2156 DMA_TO_DEVICE);
2157 if (dma_mapping_error(vp->gendev, dma_addr))
2158 goto out_dma_err;
2159
2160 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2161 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2162 } else {
2163 int i;
2164
2165 dma_addr = dma_map_single(vp->gendev, skb->data,
2166 skb_headlen(skb), DMA_TO_DEVICE);
2167 if (dma_mapping_error(vp->gendev, dma_addr))
2168 goto out_dma_err;
2169
2170 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2171 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2172
2173 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2174 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2175
2176 dma_addr = skb_frag_dma_map(vp->gendev, frag,
2177 0,
2178 skb_frag_size(frag),
2179 DMA_TO_DEVICE);
2180 if (dma_mapping_error(vp->gendev, dma_addr)) {
2181 for(i = i-1; i >= 0; i--)
2182 dma_unmap_page(vp->gendev,
2183 le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr),
2184 le32_to_cpu(vp->tx_ring[entry].frag[i+1].length),
2185 DMA_TO_DEVICE);
2186
2187 dma_unmap_single(vp->gendev,
2188 le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2189 le32_to_cpu(vp->tx_ring[entry].frag[0].length),
2190 DMA_TO_DEVICE);
2191
2192 goto out_dma_err;
2193 }
2194
2195 vp->tx_ring[entry].frag[i+1].addr =
2196 cpu_to_le32(dma_addr);
2197
2198 if (i == skb_shinfo(skb)->nr_frags-1)
2199 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2200 else
2201 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2202 }
2203 }
2204#else
2205 dma_addr = dma_map_single(vp->gendev, skb->data, skb->len, DMA_TO_DEVICE);
2206 if (dma_mapping_error(vp->gendev, dma_addr))
2207 goto out_dma_err;
2208 vp->tx_ring[entry].addr = cpu_to_le32(dma_addr);
2209 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2210 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2211#endif
2212
2213 spin_lock_irqsave(&vp->lock, flags);
2214 /* Wait for the stall to complete. */
2215 issue_and_wait(dev, DownStall);
2216 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2217 if (ioread32(ioaddr + DownListPtr) == 0) {
2218 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2219 vp->queued_packet++;
2220 }
2221
2222 vp->cur_tx++;
2223 netdev_sent_queue(dev, skblen);
2224
2225 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2226 netif_stop_queue (dev);
2227 } else { /* Clear previous interrupt enable. */
2228#if defined(tx_interrupt_mitigation)
2229 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2230 * were selected, this would corrupt DN_COMPLETE. No?
2231 */
2232 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2233#endif
2234 }
2235 skb_tx_timestamp(skb);
2236 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2237 spin_unlock_irqrestore(&vp->lock, flags);
2238out:
2239 return NETDEV_TX_OK;
2240out_dma_err:
2241 dev_err(vp->gendev, "Error mapping dma buffer\n");
2242 goto out;
2243}
2244
2245/* The interrupt handler does all of the Rx thread work and cleans up
2246 after the Tx thread. */
2247
2248/*
2249 * This is the ISR for the vortex series chips.
2250 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2251 */
2252
2253static irqreturn_t
2254_vortex_interrupt(int irq, struct net_device *dev)
2255{
2256 struct vortex_private *vp = netdev_priv(dev);
2257 void __iomem *ioaddr;
2258 int status;
2259 int work_done = max_interrupt_work;
2260 int handled = 0;
2261 unsigned int bytes_compl = 0, pkts_compl = 0;
2262
2263 ioaddr = vp->ioaddr;
2264
2265 status = ioread16(ioaddr + EL3_STATUS);
2266
2267 if (vortex_debug > 6)
2268 pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2269
2270 if ((status & IntLatch) == 0)
2271 goto handler_exit; /* No interrupt: shared IRQs cause this */
2272 handled = 1;
2273
2274 if (status & IntReq) {
2275 status |= vp->deferred;
2276 vp->deferred = 0;
2277 }
2278
2279 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2280 goto handler_exit;
2281
2282 if (vortex_debug > 4)
2283 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2284 dev->name, status, ioread8(ioaddr + Timer));
2285
2286 spin_lock(&vp->window_lock);
2287 window_set(vp, 7);
2288
2289 do {
2290 if (vortex_debug > 5)
2291 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2292 dev->name, status);
2293 if (status & RxComplete)
2294 vortex_rx(dev);
2295
2296 if (status & TxAvailable) {
2297 if (vortex_debug > 5)
2298 pr_debug(" TX room bit was handled.\n");
2299 /* There's room in the FIFO for a full-sized packet. */
2300 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2301 netif_wake_queue (dev);
2302 }
2303
2304 if (status & DMADone) {
2305 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2306 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2307 dma_unmap_single(vp->gendev, vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, DMA_TO_DEVICE);
2308 pkts_compl++;
2309 bytes_compl += vp->tx_skb->len;
2310 dev_consume_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2311 if (ioread16(ioaddr + TxFree) > 1536) {
2312 /*
2313 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2314 * insufficient FIFO room, the TxAvailable test will succeed and call
2315 * netif_wake_queue()
2316 */
2317 netif_wake_queue(dev);
2318 } else { /* Interrupt when FIFO has room for max-sized packet. */
2319 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2320 netif_stop_queue(dev);
2321 }
2322 }
2323 }
2324 /* Check for all uncommon interrupts at once. */
2325 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2326 if (status == 0xffff)
2327 break;
2328 if (status & RxEarly)
2329 vortex_rx(dev);
2330 spin_unlock(&vp->window_lock);
2331 vortex_error(dev, status);
2332 spin_lock(&vp->window_lock);
2333 window_set(vp, 7);
2334 }
2335
2336 if (--work_done < 0) {
2337 pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2338 dev->name, status);
2339 /* Disable all pending interrupts. */
2340 do {
2341 vp->deferred |= status;
2342 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2343 ioaddr + EL3_CMD);
2344 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2345 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2346 /* The timer will reenable interrupts. */
2347 mod_timer(&vp->timer, jiffies + 1*HZ);
2348 break;
2349 }
2350 /* Acknowledge the IRQ. */
2351 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2352 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2353
2354 netdev_completed_queue(dev, pkts_compl, bytes_compl);
2355 spin_unlock(&vp->window_lock);
2356
2357 if (vortex_debug > 4)
2358 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2359 dev->name, status);
2360handler_exit:
2361 return IRQ_RETVAL(handled);
2362}
2363
2364/*
2365 * This is the ISR for the boomerang series chips.
2366 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2367 */
2368
2369static irqreturn_t
2370_boomerang_interrupt(int irq, struct net_device *dev)
2371{
2372 struct vortex_private *vp = netdev_priv(dev);
2373 void __iomem *ioaddr;
2374 int status;
2375 int work_done = max_interrupt_work;
2376 int handled = 0;
2377 unsigned int bytes_compl = 0, pkts_compl = 0;
2378
2379 ioaddr = vp->ioaddr;
2380
2381 vp->handling_irq = 1;
2382
2383 status = ioread16(ioaddr + EL3_STATUS);
2384
2385 if (vortex_debug > 6)
2386 pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2387
2388 if ((status & IntLatch) == 0)
2389 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2390 handled = 1;
2391
2392 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2393 if (vortex_debug > 1)
2394 pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2395 goto handler_exit;
2396 }
2397
2398 if (status & IntReq) {
2399 status |= vp->deferred;
2400 vp->deferred = 0;
2401 }
2402
2403 if (vortex_debug > 4)
2404 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2405 dev->name, status, ioread8(ioaddr + Timer));
2406 do {
2407 if (vortex_debug > 5)
2408 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2409 dev->name, status);
2410 if (status & UpComplete) {
2411 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2412 if (vortex_debug > 5)
2413 pr_debug("boomerang_interrupt->boomerang_rx\n");
2414 boomerang_rx(dev);
2415 }
2416
2417 if (status & DownComplete) {
2418 unsigned int dirty_tx = vp->dirty_tx;
2419
2420 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2421 while (vp->cur_tx - dirty_tx > 0) {
2422 int entry = dirty_tx % TX_RING_SIZE;
2423#if 1 /* AKPM: the latter is faster, but cyclone-only */
2424 if (ioread32(ioaddr + DownListPtr) ==
2425 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2426 break; /* It still hasn't been processed. */
2427#else
2428 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2429 break; /* It still hasn't been processed. */
2430#endif
2431
2432 if (vp->tx_skbuff[entry]) {
2433 struct sk_buff *skb = vp->tx_skbuff[entry];
2434#if DO_ZEROCOPY
2435 int i;
2436 dma_unmap_single(vp->gendev,
2437 le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2438 le32_to_cpu(vp->tx_ring[entry].frag[0].length)&0xFFF,
2439 DMA_TO_DEVICE);
2440
2441 for (i=1; i<=skb_shinfo(skb)->nr_frags; i++)
2442 dma_unmap_page(vp->gendev,
2443 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2444 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2445 DMA_TO_DEVICE);
2446#else
2447 dma_unmap_single(vp->gendev,
2448 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, DMA_TO_DEVICE);
2449#endif
2450 pkts_compl++;
2451 bytes_compl += skb->len;
2452 dev_consume_skb_irq(skb);
2453 vp->tx_skbuff[entry] = NULL;
2454 } else {
2455 pr_debug("boomerang_interrupt: no skb!\n");
2456 }
2457 /* dev->stats.tx_packets++; Counted below. */
2458 dirty_tx++;
2459 }
2460 vp->dirty_tx = dirty_tx;
2461 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2462 if (vortex_debug > 6)
2463 pr_debug("boomerang_interrupt: wake queue\n");
2464 netif_wake_queue (dev);
2465 }
2466 }
2467
2468 /* Check for all uncommon interrupts at once. */
2469 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2470 vortex_error(dev, status);
2471
2472 if (--work_done < 0) {
2473 pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2474 dev->name, status);
2475 /* Disable all pending interrupts. */
2476 do {
2477 vp->deferred |= status;
2478 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2479 ioaddr + EL3_CMD);
2480 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2481 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2482 /* The timer will reenable interrupts. */
2483 mod_timer(&vp->timer, jiffies + 1*HZ);
2484 break;
2485 }
2486 /* Acknowledge the IRQ. */
2487 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2488 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2489 iowrite32(0x8000, vp->cb_fn_base + 4);
2490
2491 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2492 netdev_completed_queue(dev, pkts_compl, bytes_compl);
2493
2494 if (vortex_debug > 4)
2495 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2496 dev->name, status);
2497handler_exit:
2498 vp->handling_irq = 0;
2499 return IRQ_RETVAL(handled);
2500}
2501
2502static irqreturn_t
2503vortex_boomerang_interrupt(int irq, void *dev_id)
2504{
2505 struct net_device *dev = dev_id;
2506 struct vortex_private *vp = netdev_priv(dev);
2507 unsigned long flags;
2508 irqreturn_t ret;
2509
2510 spin_lock_irqsave(&vp->lock, flags);
2511
2512 if (vp->full_bus_master_rx)
2513 ret = _boomerang_interrupt(dev->irq, dev);
2514 else
2515 ret = _vortex_interrupt(dev->irq, dev);
2516
2517 spin_unlock_irqrestore(&vp->lock, flags);
2518
2519 return ret;
2520}
2521
2522static int vortex_rx(struct net_device *dev)
2523{
2524 struct vortex_private *vp = netdev_priv(dev);
2525 void __iomem *ioaddr = vp->ioaddr;
2526 int i;
2527 short rx_status;
2528
2529 if (vortex_debug > 5)
2530 pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2531 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2532 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2533 if (rx_status & 0x4000) { /* Error, update stats. */
2534 unsigned char rx_error = ioread8(ioaddr + RxErrors);
2535 if (vortex_debug > 2)
2536 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2537 dev->stats.rx_errors++;
2538 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2539 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2540 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2541 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2542 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2543 } else {
2544 /* The packet length: up to 4.5K!. */
2545 int pkt_len = rx_status & 0x1fff;
2546 struct sk_buff *skb;
2547
2548 skb = netdev_alloc_skb(dev, pkt_len + 5);
2549 if (vortex_debug > 4)
2550 pr_debug("Receiving packet size %d status %4.4x.\n",
2551 pkt_len, rx_status);
2552 if (skb != NULL) {
2553 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2554 /* 'skb_put()' points to the start of sk_buff data area. */
2555 if (vp->bus_master &&
2556 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2557 dma_addr_t dma = dma_map_single(vp->gendev, skb_put(skb, pkt_len),
2558 pkt_len, DMA_FROM_DEVICE);
2559 iowrite32(dma, ioaddr + Wn7_MasterAddr);
2560 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2561 iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2562 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2563 ;
2564 dma_unmap_single(vp->gendev, dma, pkt_len, DMA_FROM_DEVICE);
2565 } else {
2566 ioread32_rep(ioaddr + RX_FIFO,
2567 skb_put(skb, pkt_len),
2568 (pkt_len + 3) >> 2);
2569 }
2570 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2571 skb->protocol = eth_type_trans(skb, dev);
2572 netif_rx(skb);
2573 dev->stats.rx_packets++;
2574 /* Wait a limited time to go to next packet. */
2575 for (i = 200; i >= 0; i--)
2576 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2577 break;
2578 continue;
2579 } else if (vortex_debug > 0)
2580 pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2581 dev->name, pkt_len);
2582 dev->stats.rx_dropped++;
2583 }
2584 issue_and_wait(dev, RxDiscard);
2585 }
2586
2587 return 0;
2588}
2589
2590static int
2591boomerang_rx(struct net_device *dev)
2592{
2593 struct vortex_private *vp = netdev_priv(dev);
2594 int entry = vp->cur_rx % RX_RING_SIZE;
2595 void __iomem *ioaddr = vp->ioaddr;
2596 int rx_status;
2597 int rx_work_limit = RX_RING_SIZE;
2598
2599 if (vortex_debug > 5)
2600 pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2601
2602 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2603 if (--rx_work_limit < 0)
2604 break;
2605 if (rx_status & RxDError) { /* Error, update stats. */
2606 unsigned char rx_error = rx_status >> 16;
2607 if (vortex_debug > 2)
2608 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2609 dev->stats.rx_errors++;
2610 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2611 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2612 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2613 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2614 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2615 } else {
2616 /* The packet length: up to 4.5K!. */
2617 int pkt_len = rx_status & 0x1fff;
2618 struct sk_buff *skb, *newskb;
2619 dma_addr_t newdma;
2620 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2621
2622 if (vortex_debug > 4)
2623 pr_debug("Receiving packet size %d status %4.4x.\n",
2624 pkt_len, rx_status);
2625
2626 /* Check if the packet is long enough to just accept without
2627 copying to a properly sized skbuff. */
2628 if (pkt_len < rx_copybreak &&
2629 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2630 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2631 dma_sync_single_for_cpu(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2632 /* 'skb_put()' points to the start of sk_buff data area. */
2633 skb_put_data(skb, vp->rx_skbuff[entry]->data,
2634 pkt_len);
2635 dma_sync_single_for_device(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2636 vp->rx_copy++;
2637 } else {
2638 /* Pre-allocate the replacement skb. If it or its
2639 * mapping fails then recycle the buffer thats already
2640 * in place
2641 */
2642 newskb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2643 if (!newskb) {
2644 dev->stats.rx_dropped++;
2645 goto clear_complete;
2646 }
2647 newdma = dma_map_single(vp->gendev, newskb->data,
2648 PKT_BUF_SZ, DMA_FROM_DEVICE);
2649 if (dma_mapping_error(vp->gendev, newdma)) {
2650 dev->stats.rx_dropped++;
2651 consume_skb(newskb);
2652 goto clear_complete;
2653 }
2654
2655 /* Pass up the skbuff already on the Rx ring. */
2656 skb = vp->rx_skbuff[entry];
2657 vp->rx_skbuff[entry] = newskb;
2658 vp->rx_ring[entry].addr = cpu_to_le32(newdma);
2659 skb_put(skb, pkt_len);
2660 dma_unmap_single(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2661 vp->rx_nocopy++;
2662 }
2663 skb->protocol = eth_type_trans(skb, dev);
2664 { /* Use hardware checksum info. */
2665 int csum_bits = rx_status & 0xee000000;
2666 if (csum_bits &&
2667 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2668 csum_bits == (IPChksumValid | UDPChksumValid))) {
2669 skb->ip_summed = CHECKSUM_UNNECESSARY;
2670 vp->rx_csumhits++;
2671 }
2672 }
2673 netif_rx(skb);
2674 dev->stats.rx_packets++;
2675 }
2676
2677clear_complete:
2678 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2679 iowrite16(UpUnstall, ioaddr + EL3_CMD);
2680 entry = (++vp->cur_rx) % RX_RING_SIZE;
2681 }
2682 return 0;
2683}
2684
2685static void
2686vortex_down(struct net_device *dev, int final_down)
2687{
2688 struct vortex_private *vp = netdev_priv(dev);
2689 void __iomem *ioaddr = vp->ioaddr;
2690
2691 netdev_reset_queue(dev);
2692 netif_stop_queue(dev);
2693
2694 del_timer_sync(&vp->timer);
2695
2696 /* Turn off statistics ASAP. We update dev->stats below. */
2697 iowrite16(StatsDisable, ioaddr + EL3_CMD);
2698
2699 /* Disable the receiver and transmitter. */
2700 iowrite16(RxDisable, ioaddr + EL3_CMD);
2701 iowrite16(TxDisable, ioaddr + EL3_CMD);
2702
2703 /* Disable receiving 802.1q tagged frames */
2704 set_8021q_mode(dev, 0);
2705
2706 if (dev->if_port == XCVR_10base2)
2707 /* Turn off thinnet power. Green! */
2708 iowrite16(StopCoax, ioaddr + EL3_CMD);
2709
2710 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2711
2712 update_stats(ioaddr, dev);
2713 if (vp->full_bus_master_rx)
2714 iowrite32(0, ioaddr + UpListPtr);
2715 if (vp->full_bus_master_tx)
2716 iowrite32(0, ioaddr + DownListPtr);
2717
2718 if (final_down && VORTEX_PCI(vp)) {
2719 vp->pm_state_valid = 1;
2720 pci_save_state(VORTEX_PCI(vp));
2721 acpi_set_WOL(dev);
2722 }
2723}
2724
2725static int
2726vortex_close(struct net_device *dev)
2727{
2728 struct vortex_private *vp = netdev_priv(dev);
2729 void __iomem *ioaddr = vp->ioaddr;
2730 int i;
2731
2732 if (netif_device_present(dev))
2733 vortex_down(dev, 1);
2734
2735 if (vortex_debug > 1) {
2736 pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2737 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2738 pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2739 " tx_queued %d Rx pre-checksummed %d.\n",
2740 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2741 }
2742
2743#if DO_ZEROCOPY
2744 if (vp->rx_csumhits &&
2745 (vp->drv_flags & HAS_HWCKSM) == 0 &&
2746 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2747 pr_warn("%s supports hardware checksums, and we're not using them!\n",
2748 dev->name);
2749 }
2750#endif
2751
2752 free_irq(dev->irq, dev);
2753
2754 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2755 for (i = 0; i < RX_RING_SIZE; i++)
2756 if (vp->rx_skbuff[i]) {
2757 dma_unmap_single(vp->gendev, le32_to_cpu(vp->rx_ring[i].addr),
2758 PKT_BUF_SZ, DMA_FROM_DEVICE);
2759 dev_kfree_skb(vp->rx_skbuff[i]);
2760 vp->rx_skbuff[i] = NULL;
2761 }
2762 }
2763 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2764 for (i = 0; i < TX_RING_SIZE; i++) {
2765 if (vp->tx_skbuff[i]) {
2766 struct sk_buff *skb = vp->tx_skbuff[i];
2767#if DO_ZEROCOPY
2768 int k;
2769
2770 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2771 dma_unmap_single(vp->gendev,
2772 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2773 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2774 DMA_TO_DEVICE);
2775#else
2776 dma_unmap_single(vp->gendev, le32_to_cpu(vp->tx_ring[i].addr), skb->len, DMA_TO_DEVICE);
2777#endif
2778 dev_kfree_skb(skb);
2779 vp->tx_skbuff[i] = NULL;
2780 }
2781 }
2782 }
2783
2784 return 0;
2785}
2786
2787static void
2788dump_tx_ring(struct net_device *dev)
2789{
2790 if (vortex_debug > 0) {
2791 struct vortex_private *vp = netdev_priv(dev);
2792 void __iomem *ioaddr = vp->ioaddr;
2793
2794 if (vp->full_bus_master_tx) {
2795 int i;
2796 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2797
2798 pr_err(" Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2799 vp->full_bus_master_tx,
2800 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2801 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2802 pr_err(" Transmit list %8.8x vs. %p.\n",
2803 ioread32(ioaddr + DownListPtr),
2804 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2805 issue_and_wait(dev, DownStall);
2806 for (i = 0; i < TX_RING_SIZE; i++) {
2807 unsigned int length;
2808
2809#if DO_ZEROCOPY
2810 length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2811#else
2812 length = le32_to_cpu(vp->tx_ring[i].length);
2813#endif
2814 pr_err(" %d: @%p length %8.8x status %8.8x\n",
2815 i, &vp->tx_ring[i], length,
2816 le32_to_cpu(vp->tx_ring[i].status));
2817 }
2818 if (!stalled)
2819 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2820 }
2821 }
2822}
2823
2824static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2825{
2826 struct vortex_private *vp = netdev_priv(dev);
2827 void __iomem *ioaddr = vp->ioaddr;
2828 unsigned long flags;
2829
2830 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2831 spin_lock_irqsave (&vp->lock, flags);
2832 update_stats(ioaddr, dev);
2833 spin_unlock_irqrestore (&vp->lock, flags);
2834 }
2835 return &dev->stats;
2836}
2837
2838/* Update statistics.
2839 Unlike with the EL3 we need not worry about interrupts changing
2840 the window setting from underneath us, but we must still guard
2841 against a race condition with a StatsUpdate interrupt updating the
2842 table. This is done by checking that the ASM (!) code generated uses
2843 atomic updates with '+='.
2844 */
2845static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2846{
2847 struct vortex_private *vp = netdev_priv(dev);
2848
2849 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2850 /* Switch to the stats window, and read everything. */
2851 dev->stats.tx_carrier_errors += window_read8(vp, 6, 0);
2852 dev->stats.tx_heartbeat_errors += window_read8(vp, 6, 1);
2853 dev->stats.tx_window_errors += window_read8(vp, 6, 4);
2854 dev->stats.rx_fifo_errors += window_read8(vp, 6, 5);
2855 dev->stats.tx_packets += window_read8(vp, 6, 6);
2856 dev->stats.tx_packets += (window_read8(vp, 6, 9) &
2857 0x30) << 4;
2858 /* Rx packets */ window_read8(vp, 6, 7); /* Must read to clear */
2859 /* Don't bother with register 9, an extension of registers 6&7.
2860 If we do use the 6&7 values the atomic update assumption above
2861 is invalid. */
2862 dev->stats.rx_bytes += window_read16(vp, 6, 10);
2863 dev->stats.tx_bytes += window_read16(vp, 6, 12);
2864 /* Extra stats for get_ethtool_stats() */
2865 vp->xstats.tx_multiple_collisions += window_read8(vp, 6, 2);
2866 vp->xstats.tx_single_collisions += window_read8(vp, 6, 3);
2867 vp->xstats.tx_deferred += window_read8(vp, 6, 8);
2868 vp->xstats.rx_bad_ssd += window_read8(vp, 4, 12);
2869
2870 dev->stats.collisions = vp->xstats.tx_multiple_collisions
2871 + vp->xstats.tx_single_collisions
2872 + vp->xstats.tx_max_collisions;
2873
2874 {
2875 u8 up = window_read8(vp, 4, 13);
2876 dev->stats.rx_bytes += (up & 0x0f) << 16;
2877 dev->stats.tx_bytes += (up & 0xf0) << 12;
2878 }
2879}
2880
2881static int vortex_nway_reset(struct net_device *dev)
2882{
2883 struct vortex_private *vp = netdev_priv(dev);
2884
2885 return mii_nway_restart(&vp->mii);
2886}
2887
2888static int vortex_get_link_ksettings(struct net_device *dev,
2889 struct ethtool_link_ksettings *cmd)
2890{
2891 struct vortex_private *vp = netdev_priv(dev);
2892
2893 mii_ethtool_get_link_ksettings(&vp->mii, cmd);
2894
2895 return 0;
2896}
2897
2898static int vortex_set_link_ksettings(struct net_device *dev,
2899 const struct ethtool_link_ksettings *cmd)
2900{
2901 struct vortex_private *vp = netdev_priv(dev);
2902
2903 return mii_ethtool_set_link_ksettings(&vp->mii, cmd);
2904}
2905
2906static u32 vortex_get_msglevel(struct net_device *dev)
2907{
2908 return vortex_debug;
2909}
2910
2911static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2912{
2913 vortex_debug = dbg;
2914}
2915
2916static int vortex_get_sset_count(struct net_device *dev, int sset)
2917{
2918 switch (sset) {
2919 case ETH_SS_STATS:
2920 return VORTEX_NUM_STATS;
2921 default:
2922 return -EOPNOTSUPP;
2923 }
2924}
2925
2926static void vortex_get_ethtool_stats(struct net_device *dev,
2927 struct ethtool_stats *stats, u64 *data)
2928{
2929 struct vortex_private *vp = netdev_priv(dev);
2930 void __iomem *ioaddr = vp->ioaddr;
2931 unsigned long flags;
2932
2933 spin_lock_irqsave(&vp->lock, flags);
2934 update_stats(ioaddr, dev);
2935 spin_unlock_irqrestore(&vp->lock, flags);
2936
2937 data[0] = vp->xstats.tx_deferred;
2938 data[1] = vp->xstats.tx_max_collisions;
2939 data[2] = vp->xstats.tx_multiple_collisions;
2940 data[3] = vp->xstats.tx_single_collisions;
2941 data[4] = vp->xstats.rx_bad_ssd;
2942}
2943
2944
2945static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2946{
2947 switch (stringset) {
2948 case ETH_SS_STATS:
2949 memcpy(data, ðtool_stats_keys, sizeof(ethtool_stats_keys));
2950 break;
2951 default:
2952 WARN_ON(1);
2953 break;
2954 }
2955}
2956
2957static void vortex_get_drvinfo(struct net_device *dev,
2958 struct ethtool_drvinfo *info)
2959{
2960 struct vortex_private *vp = netdev_priv(dev);
2961
2962 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2963 if (VORTEX_PCI(vp)) {
2964 strscpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2965 sizeof(info->bus_info));
2966 } else {
2967 if (VORTEX_EISA(vp))
2968 strscpy(info->bus_info, dev_name(vp->gendev),
2969 sizeof(info->bus_info));
2970 else
2971 snprintf(info->bus_info, sizeof(info->bus_info),
2972 "EISA 0x%lx %d", dev->base_addr, dev->irq);
2973 }
2974}
2975
2976static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2977{
2978 struct vortex_private *vp = netdev_priv(dev);
2979
2980 if (!VORTEX_PCI(vp))
2981 return;
2982
2983 wol->supported = WAKE_MAGIC;
2984
2985 wol->wolopts = 0;
2986 if (vp->enable_wol)
2987 wol->wolopts |= WAKE_MAGIC;
2988}
2989
2990static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2991{
2992 struct vortex_private *vp = netdev_priv(dev);
2993
2994 if (!VORTEX_PCI(vp))
2995 return -EOPNOTSUPP;
2996
2997 if (wol->wolopts & ~WAKE_MAGIC)
2998 return -EINVAL;
2999
3000 if (wol->wolopts & WAKE_MAGIC)
3001 vp->enable_wol = 1;
3002 else
3003 vp->enable_wol = 0;
3004 acpi_set_WOL(dev);
3005
3006 return 0;
3007}
3008
3009static const struct ethtool_ops vortex_ethtool_ops = {
3010 .get_drvinfo = vortex_get_drvinfo,
3011 .get_strings = vortex_get_strings,
3012 .get_msglevel = vortex_get_msglevel,
3013 .set_msglevel = vortex_set_msglevel,
3014 .get_ethtool_stats = vortex_get_ethtool_stats,
3015 .get_sset_count = vortex_get_sset_count,
3016 .get_link = ethtool_op_get_link,
3017 .nway_reset = vortex_nway_reset,
3018 .get_wol = vortex_get_wol,
3019 .set_wol = vortex_set_wol,
3020 .get_ts_info = ethtool_op_get_ts_info,
3021 .get_link_ksettings = vortex_get_link_ksettings,
3022 .set_link_ksettings = vortex_set_link_ksettings,
3023};
3024
3025#ifdef CONFIG_PCI
3026/*
3027 * Must power the device up to do MDIO operations
3028 */
3029static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3030{
3031 int err;
3032 struct vortex_private *vp = netdev_priv(dev);
3033 pci_power_t state = 0;
3034
3035 if(VORTEX_PCI(vp))
3036 state = VORTEX_PCI(vp)->current_state;
3037
3038 /* The kernel core really should have pci_get_power_state() */
3039
3040 if(state != 0)
3041 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3042 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3043 if(state != 0)
3044 pci_set_power_state(VORTEX_PCI(vp), state);
3045
3046 return err;
3047}
3048#endif
3049
3050
3051/* Pre-Cyclone chips have no documented multicast filter, so the only
3052 multicast setting is to receive all multicast frames. At least
3053 the chip has a very clean way to set the mode, unlike many others. */
3054static void set_rx_mode(struct net_device *dev)
3055{
3056 struct vortex_private *vp = netdev_priv(dev);
3057 void __iomem *ioaddr = vp->ioaddr;
3058 int new_mode;
3059
3060 if (dev->flags & IFF_PROMISC) {
3061 if (vortex_debug > 3)
3062 pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3063 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3064 } else if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3065 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3066 } else
3067 new_mode = SetRxFilter | RxStation | RxBroadcast;
3068
3069 iowrite16(new_mode, ioaddr + EL3_CMD);
3070}
3071
3072#if IS_ENABLED(CONFIG_VLAN_8021Q)
3073/* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3074 Note that this must be done after each RxReset due to some backwards
3075 compatibility logic in the Cyclone and Tornado ASICs */
3076
3077/* The Ethernet Type used for 802.1q tagged frames */
3078#define VLAN_ETHER_TYPE 0x8100
3079
3080static void set_8021q_mode(struct net_device *dev, int enable)
3081{
3082 struct vortex_private *vp = netdev_priv(dev);
3083 int mac_ctrl;
3084
3085 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3086 /* cyclone and tornado chipsets can recognize 802.1q
3087 * tagged frames and treat them correctly */
3088
3089 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3090 if (enable)
3091 max_pkt_size += 4; /* 802.1Q VLAN tag */
3092
3093 window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3094
3095 /* set VlanEtherType to let the hardware checksumming
3096 treat tagged frames correctly */
3097 window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3098 } else {
3099 /* on older cards we have to enable large frames */
3100
3101 vp->large_frames = dev->mtu > 1500 || enable;
3102
3103 mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3104 if (vp->large_frames)
3105 mac_ctrl |= 0x40;
3106 else
3107 mac_ctrl &= ~0x40;
3108 window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3109 }
3110}
3111#else
3112
3113static void set_8021q_mode(struct net_device *dev, int enable)
3114{
3115}
3116
3117
3118#endif
3119
3120/* MII transceiver control section.
3121 Read and write the MII registers using software-generated serial
3122 MDIO protocol. See the MII specifications or DP83840A data sheet
3123 for details. */
3124
3125/* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3126 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3127 "overclocking" issues. */
3128static void mdio_delay(struct vortex_private *vp)
3129{
3130 window_read32(vp, 4, Wn4_PhysicalMgmt);
3131}
3132
3133#define MDIO_SHIFT_CLK 0x01
3134#define MDIO_DIR_WRITE 0x04
3135#define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3136#define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3137#define MDIO_DATA_READ 0x02
3138#define MDIO_ENB_IN 0x00
3139
3140/* Generate the preamble required for initial synchronization and
3141 a few older transceivers. */
3142static void mdio_sync(struct vortex_private *vp, int bits)
3143{
3144 /* Establish sync by sending at least 32 logic ones. */
3145 while (-- bits >= 0) {
3146 window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3147 mdio_delay(vp);
3148 window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3149 4, Wn4_PhysicalMgmt);
3150 mdio_delay(vp);
3151 }
3152}
3153
3154static int mdio_read(struct net_device *dev, int phy_id, int location)
3155{
3156 int i;
3157 struct vortex_private *vp = netdev_priv(dev);
3158 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3159 unsigned int retval = 0;
3160
3161 spin_lock_bh(&vp->mii_lock);
3162
3163 if (mii_preamble_required)
3164 mdio_sync(vp, 32);
3165
3166 /* Shift the read command bits out. */
3167 for (i = 14; i >= 0; i--) {
3168 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3169 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3170 mdio_delay(vp);
3171 window_write16(vp, dataval | MDIO_SHIFT_CLK,
3172 4, Wn4_PhysicalMgmt);
3173 mdio_delay(vp);
3174 }
3175 /* Read the two transition, 16 data, and wire-idle bits. */
3176 for (i = 19; i > 0; i--) {
3177 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3178 mdio_delay(vp);
3179 retval = (retval << 1) |
3180 ((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3181 MDIO_DATA_READ) ? 1 : 0);
3182 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3183 4, Wn4_PhysicalMgmt);
3184 mdio_delay(vp);
3185 }
3186
3187 spin_unlock_bh(&vp->mii_lock);
3188
3189 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3190}
3191
3192static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3193{
3194 struct vortex_private *vp = netdev_priv(dev);
3195 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3196 int i;
3197
3198 spin_lock_bh(&vp->mii_lock);
3199
3200 if (mii_preamble_required)
3201 mdio_sync(vp, 32);
3202
3203 /* Shift the command bits out. */
3204 for (i = 31; i >= 0; i--) {
3205 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3206 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3207 mdio_delay(vp);
3208 window_write16(vp, dataval | MDIO_SHIFT_CLK,
3209 4, Wn4_PhysicalMgmt);
3210 mdio_delay(vp);
3211 }
3212 /* Leave the interface idle. */
3213 for (i = 1; i >= 0; i--) {
3214 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3215 mdio_delay(vp);
3216 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3217 4, Wn4_PhysicalMgmt);
3218 mdio_delay(vp);
3219 }
3220
3221 spin_unlock_bh(&vp->mii_lock);
3222}
3223
3224/* ACPI: Advanced Configuration and Power Interface. */
3225/* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3226static void acpi_set_WOL(struct net_device *dev)
3227{
3228 struct vortex_private *vp = netdev_priv(dev);
3229 void __iomem *ioaddr = vp->ioaddr;
3230
3231 device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3232
3233 if (vp->enable_wol) {
3234 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3235 window_write16(vp, 2, 7, 0x0c);
3236 /* The RxFilter must accept the WOL frames. */
3237 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3238 iowrite16(RxEnable, ioaddr + EL3_CMD);
3239
3240 if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3241 pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3242
3243 vp->enable_wol = 0;
3244 return;
3245 }
3246
3247 if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3248 return;
3249
3250 /* Change the power state to D3; RxEnable doesn't take effect. */
3251 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3252 }
3253}
3254
3255
3256static void vortex_remove_one(struct pci_dev *pdev)
3257{
3258 struct net_device *dev = pci_get_drvdata(pdev);
3259 struct vortex_private *vp;
3260
3261 if (!dev) {
3262 pr_err("vortex_remove_one called for Compaq device!\n");
3263 BUG();
3264 }
3265
3266 vp = netdev_priv(dev);
3267
3268 if (vp->cb_fn_base)
3269 pci_iounmap(pdev, vp->cb_fn_base);
3270
3271 unregister_netdev(dev);
3272
3273 pci_set_power_state(pdev, PCI_D0); /* Go active */
3274 if (vp->pm_state_valid)
3275 pci_restore_state(pdev);
3276 pci_disable_device(pdev);
3277
3278 /* Should really use issue_and_wait() here */
3279 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3280 vp->ioaddr + EL3_CMD);
3281
3282 pci_iounmap(pdev, vp->ioaddr);
3283
3284 dma_free_coherent(&pdev->dev,
3285 sizeof(struct boom_rx_desc) * RX_RING_SIZE +
3286 sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3287 vp->rx_ring, vp->rx_ring_dma);
3288
3289 pci_release_regions(pdev);
3290
3291 free_netdev(dev);
3292}
3293
3294
3295static struct pci_driver vortex_driver = {
3296 .name = "3c59x",
3297 .probe = vortex_init_one,
3298 .remove = vortex_remove_one,
3299 .id_table = vortex_pci_tbl,
3300 .driver.pm = VORTEX_PM_OPS,
3301};
3302
3303
3304static int vortex_have_pci;
3305static int vortex_have_eisa;
3306
3307
3308static int __init vortex_init(void)
3309{
3310 int pci_rc, eisa_rc;
3311
3312 pci_rc = pci_register_driver(&vortex_driver);
3313 eisa_rc = vortex_eisa_init();
3314
3315 if (pci_rc == 0)
3316 vortex_have_pci = 1;
3317 if (eisa_rc > 0)
3318 vortex_have_eisa = 1;
3319
3320 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3321}
3322
3323
3324static void __exit vortex_eisa_cleanup(void)
3325{
3326 void __iomem *ioaddr;
3327
3328#ifdef CONFIG_EISA
3329 /* Take care of the EISA devices */
3330 eisa_driver_unregister(&vortex_eisa_driver);
3331#endif
3332
3333 if (compaq_net_device) {
3334 ioaddr = ioport_map(compaq_net_device->base_addr,
3335 VORTEX_TOTAL_SIZE);
3336
3337 unregister_netdev(compaq_net_device);
3338 iowrite16(TotalReset, ioaddr + EL3_CMD);
3339 release_region(compaq_net_device->base_addr,
3340 VORTEX_TOTAL_SIZE);
3341
3342 free_netdev(compaq_net_device);
3343 }
3344}
3345
3346
3347static void __exit vortex_cleanup(void)
3348{
3349 if (vortex_have_pci)
3350 pci_unregister_driver(&vortex_driver);
3351 if (vortex_have_eisa)
3352 vortex_eisa_cleanup();
3353}
3354
3355
3356module_init(vortex_init);
3357module_exit(vortex_cleanup);
1/* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2/*
3 Written 1996-1999 by Donald Becker.
4
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
7
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
11
12 Problem reports and questions should be directed to
13 vortex@scyld.com
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20*/
21
22/*
23 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
24 * as well as other drivers
25 *
26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27 * due to dead code elimination. There will be some performance benefits from this due to
28 * elimination of all the tests and reduced cache footprint.
29 */
30
31
32#define DRV_NAME "3c59x"
33
34
35
36/* A few values that may be tweaked. */
37/* Keep the ring sizes a power of two for efficiency. */
38#define TX_RING_SIZE 16
39#define RX_RING_SIZE 32
40#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
41
42/* "Knobs" that adjust features and parameters. */
43/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1512 effectively disables this feature. */
45#ifndef __arm__
46static int rx_copybreak = 200;
47#else
48/* ARM systems perform better by disregarding the bus-master
49 transfer capability of these cards. -- rmk */
50static int rx_copybreak = 1513;
51#endif
52/* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53static const int mtu = 1500;
54/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55static int max_interrupt_work = 32;
56/* Tx timeout interval (millisecs) */
57static int watchdog = 5000;
58
59/* Allow aggregation of Tx interrupts. Saves CPU load at the cost
60 * of possible Tx stalls if the system is blocking interrupts
61 * somewhere else. Undefine this to disable.
62 */
63#define tx_interrupt_mitigation 1
64
65/* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66#define vortex_debug debug
67#ifdef VORTEX_DEBUG
68static int vortex_debug = VORTEX_DEBUG;
69#else
70static int vortex_debug = 1;
71#endif
72
73#include <linux/module.h>
74#include <linux/kernel.h>
75#include <linux/string.h>
76#include <linux/timer.h>
77#include <linux/errno.h>
78#include <linux/in.h>
79#include <linux/ioport.h>
80#include <linux/interrupt.h>
81#include <linux/pci.h>
82#include <linux/mii.h>
83#include <linux/init.h>
84#include <linux/netdevice.h>
85#include <linux/etherdevice.h>
86#include <linux/skbuff.h>
87#include <linux/ethtool.h>
88#include <linux/highmem.h>
89#include <linux/eisa.h>
90#include <linux/bitops.h>
91#include <linux/jiffies.h>
92#include <linux/gfp.h>
93#include <asm/irq.h> /* For nr_irqs only. */
94#include <asm/io.h>
95#include <asm/uaccess.h>
96
97/* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98 This is only in the support-all-kernels source code. */
99
100#define RUN_AT(x) (jiffies + (x))
101
102#include <linux/delay.h>
103
104
105static const char version[] __devinitconst =
106 DRV_NAME ": Donald Becker and others.\n";
107
108MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110MODULE_LICENSE("GPL");
111
112
113/* Operational parameter that usually are not changed. */
114
115/* The Vortex size is twice that of the original EtherLinkIII series: the
116 runtime register window, window 1, is now always mapped in.
117 The Boomerang size is twice as large as the Vortex -- it has additional
118 bus master control registers. */
119#define VORTEX_TOTAL_SIZE 0x20
120#define BOOMERANG_TOTAL_SIZE 0x40
121
122/* Set iff a MII transceiver on any interface requires mdio preamble.
123 This only set with the original DP83840 on older 3c905 boards, so the extra
124 code size of a per-interface flag is not worthwhile. */
125static char mii_preamble_required;
126
127#define PFX DRV_NAME ": "
128
129
130
131/*
132 Theory of Operation
133
134I. Board Compatibility
135
136This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
138versions of the FastEtherLink cards. The supported product IDs are
139 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
140
141The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142with the kernel source or available from
143 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
144
145II. Board-specific settings
146
147PCI bus devices are configured by the system at boot time, so no jumpers
148need to be set on the board. The system BIOS should be set to assign the
149PCI INTA signal to an otherwise unused system IRQ line.
150
151The EEPROM settings for media type and forced-full-duplex are observed.
152The EEPROM media type should be left at the default "autoselect" unless using
15310base2 or AUI connections which cannot be reliably detected.
154
155III. Driver operation
156
157The 3c59x series use an interface that's very similar to the previous 3c5x9
158series. The primary interface is two programmed-I/O FIFOs, with an
159alternate single-contiguous-region bus-master transfer (see next).
160
161The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163DEC Tulip and Intel Speedo3. The first chip version retains a compatible
164programmed-I/O interface that has been removed in 'B' and subsequent board
165revisions.
166
167One extension that is advertised in a very large font is that the adapters
168are capable of being bus masters. On the Vortex chip this capability was
169only for a single contiguous region making it far less useful than the full
170bus master capability. There is a significant performance impact of taking
171an extra interrupt or polling for the completion of each transfer, as well
172as difficulty sharing the single transfer engine between the transmit and
173receive threads. Using DMA transfers is a win only with large blocks or
174with the flawed versions of the Intel Orion motherboard PCI controller.
175
176The Boomerang chip's full-bus-master interface is useful, and has the
177currently-unused advantages over other similar chips that queued transmit
178packets may be reordered and receive buffer groups are associated with a
179single frame.
180
181With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182Rather than a fixed intermediate receive buffer, this scheme allocates
183full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
184the copying breakpoint: it is chosen to trade-off the memory wasted by
185passing the full-sized skbuff to the queue layer for all frames vs. the
186copying cost of copying a frame to a correctly-sized skbuff.
187
188IIIC. Synchronization
189The driver runs as two independent, single-threaded flows of control. One
190is the send-packet routine, which enforces single-threaded use by the
191dev->tbusy flag. The other thread is the interrupt handler, which is single
192threaded by the hardware and other software.
193
194IV. Notes
195
196Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
1973c590, 3c595, and 3c900 boards.
198The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199the EISA version is called "Demon". According to Terry these names come
200from rides at the local amusement park.
201
202The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203This driver only supports ethernet packets because of the skbuff allocation
204limit of 4K.
205*/
206
207/* This table drives the PCI probe routines. It's mostly boilerplate in all
208 of the drivers, and will likely be provided by some future kernel.
209*/
210enum pci_flags_bit {
211 PCI_USES_MASTER=4,
212};
213
214enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
220
221enum vortex_chips {
222 CH_3C590 = 0,
223 CH_3C592,
224 CH_3C597,
225 CH_3C595_1,
226 CH_3C595_2,
227
228 CH_3C595_3,
229 CH_3C900_1,
230 CH_3C900_2,
231 CH_3C900_3,
232 CH_3C900_4,
233
234 CH_3C900_5,
235 CH_3C900B_FL,
236 CH_3C905_1,
237 CH_3C905_2,
238 CH_3C905B_TX,
239 CH_3C905B_1,
240
241 CH_3C905B_2,
242 CH_3C905B_FX,
243 CH_3C905C,
244 CH_3C9202,
245 CH_3C980,
246 CH_3C9805,
247
248 CH_3CSOHO100_TX,
249 CH_3C555,
250 CH_3C556,
251 CH_3C556B,
252 CH_3C575,
253
254 CH_3C575_1,
255 CH_3CCFE575,
256 CH_3CCFE575CT,
257 CH_3CCFE656,
258 CH_3CCFEM656,
259
260 CH_3CCFEM656_1,
261 CH_3C450,
262 CH_3C920,
263 CH_3C982A,
264 CH_3C982B,
265
266 CH_905BT4,
267 CH_920B_EMB_WNM,
268};
269
270
271/* note: this array directly indexed by above enums, and MUST
272 * be kept in sync with both the enums above, and the PCI device
273 * table below
274 */
275static struct vortex_chip_info {
276 const char *name;
277 int flags;
278 int drv_flags;
279 int io_size;
280} vortex_info_tbl[] __devinitdata = {
281 {"3c590 Vortex 10Mbps",
282 PCI_USES_MASTER, IS_VORTEX, 32, },
283 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
284 PCI_USES_MASTER, IS_VORTEX, 32, },
285 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
286 PCI_USES_MASTER, IS_VORTEX, 32, },
287 {"3c595 Vortex 100baseTx",
288 PCI_USES_MASTER, IS_VORTEX, 32, },
289 {"3c595 Vortex 100baseT4",
290 PCI_USES_MASTER, IS_VORTEX, 32, },
291
292 {"3c595 Vortex 100base-MII",
293 PCI_USES_MASTER, IS_VORTEX, 32, },
294 {"3c900 Boomerang 10baseT",
295 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
296 {"3c900 Boomerang 10Mbps Combo",
297 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
298 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
299 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
300 {"3c900 Cyclone 10Mbps Combo",
301 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
302
303 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
304 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
305 {"3c900B-FL Cyclone 10base-FL",
306 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
307 {"3c905 Boomerang 100baseTx",
308 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
309 {"3c905 Boomerang 100baseT4",
310 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
311 {"3C905B-TX Fast Etherlink XL PCI",
312 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313 {"3c905B Cyclone 100baseTx",
314 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
315
316 {"3c905B Cyclone 10/100/BNC",
317 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
318 {"3c905B-FX Cyclone 100baseFx",
319 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
320 {"3c905C Tornado",
321 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
322 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
323 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
324 {"3c980 Cyclone",
325 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
326
327 {"3c980C Python-T",
328 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
329 {"3cSOHO100-TX Hurricane",
330 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
331 {"3c555 Laptop Hurricane",
332 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
333 {"3c556 Laptop Tornado",
334 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
335 HAS_HWCKSM, 128, },
336 {"3c556B Laptop Hurricane",
337 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
338 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
339
340 {"3c575 [Megahertz] 10/100 LAN CardBus",
341 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
342 {"3c575 Boomerang CardBus",
343 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
344 {"3CCFE575BT Cyclone CardBus",
345 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
346 INVERT_LED_PWR|HAS_HWCKSM, 128, },
347 {"3CCFE575CT Tornado CardBus",
348 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
350 {"3CCFE656 Cyclone CardBus",
351 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
352 INVERT_LED_PWR|HAS_HWCKSM, 128, },
353
354 {"3CCFEM656B Cyclone+Winmodem CardBus",
355 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 INVERT_LED_PWR|HAS_HWCKSM, 128, },
357 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
358 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
359 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
360 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
361 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
362 {"3c920 Tornado",
363 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
364 {"3c982 Hydra Dual Port A",
365 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
366
367 {"3c982 Hydra Dual Port B",
368 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
369 {"3c905B-T4",
370 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
371 {"3c920B-EMB-WNM Tornado",
372 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
373
374 {NULL,}, /* NULL terminated list. */
375};
376
377
378static DEFINE_PCI_DEVICE_TABLE(vortex_pci_tbl) = {
379 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
380 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
381 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
382 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
383 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
384
385 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
386 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
387 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
388 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
389 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
390
391 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
392 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
393 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
394 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
395 { 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
396 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
397
398 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
399 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
400 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
401 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
402 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
403 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
404
405 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
406 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
407 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
408 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
409 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
410
411 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
412 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
413 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
414 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
415 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
416
417 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
418 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
419 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
420 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
421 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
422
423 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
424 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
425
426 {0,} /* 0 terminated list. */
427};
428MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
429
430
431/* Operational definitions.
432 These are not used by other compilation units and thus are not
433 exported in a ".h" file.
434
435 First the windows. There are eight register windows, with the command
436 and status registers available in each.
437 */
438#define EL3_CMD 0x0e
439#define EL3_STATUS 0x0e
440
441/* The top five bits written to EL3_CMD are a command, the lower
442 11 bits are the parameter, if applicable.
443 Note that 11 parameters bits was fine for ethernet, but the new chip
444 can handle FDDI length frames (~4500 octets) and now parameters count
445 32-bit 'Dwords' rather than octets. */
446
447enum vortex_cmd {
448 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
449 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
450 UpStall = 6<<11, UpUnstall = (6<<11)+1,
451 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
452 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
453 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
454 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
455 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
456 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
457 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
458
459/* The SetRxFilter command accepts the following classes: */
460enum RxFilter {
461 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
462
463/* Bits in the general status register. */
464enum vortex_status {
465 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
466 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
467 IntReq = 0x0040, StatsFull = 0x0080,
468 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
469 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
470 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
471};
472
473/* Register window 1 offsets, the window used in normal operation.
474 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
475enum Window1 {
476 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
477 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
478 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
479};
480enum Window0 {
481 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
482 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
483 IntrStatus=0x0E, /* Valid in all windows. */
484};
485enum Win0_EEPROM_bits {
486 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
487 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
488 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
489};
490/* EEPROM locations. */
491enum eeprom_offset {
492 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
493 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
494 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
495 DriverTune=13, Checksum=15};
496
497enum Window2 { /* Window 2. */
498 Wn2_ResetOptions=12,
499};
500enum Window3 { /* Window 3: MAC/config bits. */
501 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
502};
503
504#define BFEXT(value, offset, bitcount) \
505 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
506
507#define BFINS(lhs, rhs, offset, bitcount) \
508 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
509 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
510
511#define RAM_SIZE(v) BFEXT(v, 0, 3)
512#define RAM_WIDTH(v) BFEXT(v, 3, 1)
513#define RAM_SPEED(v) BFEXT(v, 4, 2)
514#define ROM_SIZE(v) BFEXT(v, 6, 2)
515#define RAM_SPLIT(v) BFEXT(v, 16, 2)
516#define XCVR(v) BFEXT(v, 20, 4)
517#define AUTOSELECT(v) BFEXT(v, 24, 1)
518
519enum Window4 { /* Window 4: Xcvr/media bits. */
520 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
521};
522enum Win4_Media_bits {
523 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
524 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
525 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
526 Media_LnkBeat = 0x0800,
527};
528enum Window7 { /* Window 7: Bus Master control. */
529 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
530 Wn7_MasterStatus = 12,
531};
532/* Boomerang bus master control registers. */
533enum MasterCtrl {
534 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
535 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
536};
537
538/* The Rx and Tx descriptor lists.
539 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
540 alignment contraint on tx_ring[] and rx_ring[]. */
541#define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
542#define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
543struct boom_rx_desc {
544 __le32 next; /* Last entry points to 0. */
545 __le32 status;
546 __le32 addr; /* Up to 63 addr/len pairs possible. */
547 __le32 length; /* Set LAST_FRAG to indicate last pair. */
548};
549/* Values for the Rx status entry. */
550enum rx_desc_status {
551 RxDComplete=0x00008000, RxDError=0x4000,
552 /* See boomerang_rx() for actual error bits */
553 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
554 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
555};
556
557#ifdef MAX_SKB_FRAGS
558#define DO_ZEROCOPY 1
559#else
560#define DO_ZEROCOPY 0
561#endif
562
563struct boom_tx_desc {
564 __le32 next; /* Last entry points to 0. */
565 __le32 status; /* bits 0:12 length, others see below. */
566#if DO_ZEROCOPY
567 struct {
568 __le32 addr;
569 __le32 length;
570 } frag[1+MAX_SKB_FRAGS];
571#else
572 __le32 addr;
573 __le32 length;
574#endif
575};
576
577/* Values for the Tx status entry. */
578enum tx_desc_status {
579 CRCDisable=0x2000, TxDComplete=0x8000,
580 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
581 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
582};
583
584/* Chip features we care about in vp->capabilities, read from the EEPROM. */
585enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
586
587struct vortex_extra_stats {
588 unsigned long tx_deferred;
589 unsigned long tx_max_collisions;
590 unsigned long tx_multiple_collisions;
591 unsigned long tx_single_collisions;
592 unsigned long rx_bad_ssd;
593};
594
595struct vortex_private {
596 /* The Rx and Tx rings should be quad-word-aligned. */
597 struct boom_rx_desc* rx_ring;
598 struct boom_tx_desc* tx_ring;
599 dma_addr_t rx_ring_dma;
600 dma_addr_t tx_ring_dma;
601 /* The addresses of transmit- and receive-in-place skbuffs. */
602 struct sk_buff* rx_skbuff[RX_RING_SIZE];
603 struct sk_buff* tx_skbuff[TX_RING_SIZE];
604 unsigned int cur_rx, cur_tx; /* The next free ring entry */
605 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
606 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
607 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
608 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
609
610 /* PCI configuration space information. */
611 struct device *gendev;
612 void __iomem *ioaddr; /* IO address space */
613 void __iomem *cb_fn_base; /* CardBus function status addr space. */
614
615 /* Some values here only for performance evaluation and path-coverage */
616 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
617 int card_idx;
618
619 /* The remainder are related to chip state, mostly media selection. */
620 struct timer_list timer; /* Media selection timer. */
621 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */
622 int options; /* User-settable misc. driver options. */
623 unsigned int media_override:4, /* Passed-in media type. */
624 default_media:4, /* Read from the EEPROM/Wn3_Config. */
625 full_duplex:1, autoselect:1,
626 bus_master:1, /* Vortex can only do a fragment bus-m. */
627 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
628 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
629 partner_flow_ctrl:1, /* Partner supports flow control */
630 has_nway:1,
631 enable_wol:1, /* Wake-on-LAN is enabled */
632 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
633 open:1,
634 medialock:1,
635 must_free_region:1, /* Flag: if zero, Cardbus owns the I/O region */
636 large_frames:1, /* accept large frames */
637 handling_irq:1; /* private in_irq indicator */
638 /* {get|set}_wol operations are already serialized by rtnl.
639 * no additional locking is required for the enable_wol and acpi_set_WOL()
640 */
641 int drv_flags;
642 u16 status_enable;
643 u16 intr_enable;
644 u16 available_media; /* From Wn3_Options. */
645 u16 capabilities, info1, info2; /* Various, from EEPROM. */
646 u16 advertising; /* NWay media advertisement */
647 unsigned char phys[2]; /* MII device addresses. */
648 u16 deferred; /* Resend these interrupts when we
649 * bale from the ISR */
650 u16 io_size; /* Size of PCI region (for release_region) */
651
652 /* Serialises access to hardware other than MII and variables below.
653 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
654 spinlock_t lock;
655
656 spinlock_t mii_lock; /* Serialises access to MII */
657 struct mii_if_info mii; /* MII lib hooks/info */
658 spinlock_t window_lock; /* Serialises access to windowed regs */
659 int window; /* Register window */
660};
661
662static void window_set(struct vortex_private *vp, int window)
663{
664 if (window != vp->window) {
665 iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
666 vp->window = window;
667 }
668}
669
670#define DEFINE_WINDOW_IO(size) \
671static u ## size \
672window_read ## size(struct vortex_private *vp, int window, int addr) \
673{ \
674 unsigned long flags; \
675 u ## size ret; \
676 spin_lock_irqsave(&vp->window_lock, flags); \
677 window_set(vp, window); \
678 ret = ioread ## size(vp->ioaddr + addr); \
679 spin_unlock_irqrestore(&vp->window_lock, flags); \
680 return ret; \
681} \
682static void \
683window_write ## size(struct vortex_private *vp, u ## size value, \
684 int window, int addr) \
685{ \
686 unsigned long flags; \
687 spin_lock_irqsave(&vp->window_lock, flags); \
688 window_set(vp, window); \
689 iowrite ## size(value, vp->ioaddr + addr); \
690 spin_unlock_irqrestore(&vp->window_lock, flags); \
691}
692DEFINE_WINDOW_IO(8)
693DEFINE_WINDOW_IO(16)
694DEFINE_WINDOW_IO(32)
695
696#ifdef CONFIG_PCI
697#define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
698#else
699#define DEVICE_PCI(dev) NULL
700#endif
701
702#define VORTEX_PCI(vp) \
703 ((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
704
705#ifdef CONFIG_EISA
706#define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
707#else
708#define DEVICE_EISA(dev) NULL
709#endif
710
711#define VORTEX_EISA(vp) \
712 ((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
713
714/* The action to take with a media selection timer tick.
715 Note that we deviate from the 3Com order by checking 10base2 before AUI.
716 */
717enum xcvr_types {
718 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
719 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
720};
721
722static const struct media_table {
723 char *name;
724 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
725 mask:8, /* The transceiver-present bit in Wn3_Config.*/
726 next:8; /* The media type to try next. */
727 int wait; /* Time before we check media status. */
728} media_tbl[] = {
729 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
730 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
731 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
732 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
733 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
734 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
735 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
736 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
737 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
738 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
739 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
740};
741
742static struct {
743 const char str[ETH_GSTRING_LEN];
744} ethtool_stats_keys[] = {
745 { "tx_deferred" },
746 { "tx_max_collisions" },
747 { "tx_multiple_collisions" },
748 { "tx_single_collisions" },
749 { "rx_bad_ssd" },
750};
751
752/* number of ETHTOOL_GSTATS u64's */
753#define VORTEX_NUM_STATS 5
754
755static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
756 int chip_idx, int card_idx);
757static int vortex_up(struct net_device *dev);
758static void vortex_down(struct net_device *dev, int final);
759static int vortex_open(struct net_device *dev);
760static void mdio_sync(struct vortex_private *vp, int bits);
761static int mdio_read(struct net_device *dev, int phy_id, int location);
762static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
763static void vortex_timer(unsigned long arg);
764static void rx_oom_timer(unsigned long arg);
765static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
766 struct net_device *dev);
767static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
768 struct net_device *dev);
769static int vortex_rx(struct net_device *dev);
770static int boomerang_rx(struct net_device *dev);
771static irqreturn_t vortex_interrupt(int irq, void *dev_id);
772static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
773static int vortex_close(struct net_device *dev);
774static void dump_tx_ring(struct net_device *dev);
775static void update_stats(void __iomem *ioaddr, struct net_device *dev);
776static struct net_device_stats *vortex_get_stats(struct net_device *dev);
777static void set_rx_mode(struct net_device *dev);
778#ifdef CONFIG_PCI
779static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
780#endif
781static void vortex_tx_timeout(struct net_device *dev);
782static void acpi_set_WOL(struct net_device *dev);
783static const struct ethtool_ops vortex_ethtool_ops;
784static void set_8021q_mode(struct net_device *dev, int enable);
785
786/* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
787/* Option count limit only -- unlimited interfaces are supported. */
788#define MAX_UNITS 8
789static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
790static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
791static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
792static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
793static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
794static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
795static int global_options = -1;
796static int global_full_duplex = -1;
797static int global_enable_wol = -1;
798static int global_use_mmio = -1;
799
800/* Variables to work-around the Compaq PCI BIOS32 problem. */
801static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
802static struct net_device *compaq_net_device;
803
804static int vortex_cards_found;
805
806module_param(debug, int, 0);
807module_param(global_options, int, 0);
808module_param_array(options, int, NULL, 0);
809module_param(global_full_duplex, int, 0);
810module_param_array(full_duplex, int, NULL, 0);
811module_param_array(hw_checksums, int, NULL, 0);
812module_param_array(flow_ctrl, int, NULL, 0);
813module_param(global_enable_wol, int, 0);
814module_param_array(enable_wol, int, NULL, 0);
815module_param(rx_copybreak, int, 0);
816module_param(max_interrupt_work, int, 0);
817module_param(compaq_ioaddr, int, 0);
818module_param(compaq_irq, int, 0);
819module_param(compaq_device_id, int, 0);
820module_param(watchdog, int, 0);
821module_param(global_use_mmio, int, 0);
822module_param_array(use_mmio, int, NULL, 0);
823MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
824MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
825MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
826MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
827MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
828MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
829MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
830MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
831MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
832MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
833MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
834MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
835MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
836MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
837MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
838MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
839MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
840
841#ifdef CONFIG_NET_POLL_CONTROLLER
842static void poll_vortex(struct net_device *dev)
843{
844 struct vortex_private *vp = netdev_priv(dev);
845 unsigned long flags;
846 local_irq_save(flags);
847 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
848 local_irq_restore(flags);
849}
850#endif
851
852#ifdef CONFIG_PM
853
854static int vortex_suspend(struct device *dev)
855{
856 struct pci_dev *pdev = to_pci_dev(dev);
857 struct net_device *ndev = pci_get_drvdata(pdev);
858
859 if (!ndev || !netif_running(ndev))
860 return 0;
861
862 netif_device_detach(ndev);
863 vortex_down(ndev, 1);
864
865 return 0;
866}
867
868static int vortex_resume(struct device *dev)
869{
870 struct pci_dev *pdev = to_pci_dev(dev);
871 struct net_device *ndev = pci_get_drvdata(pdev);
872 int err;
873
874 if (!ndev || !netif_running(ndev))
875 return 0;
876
877 err = vortex_up(ndev);
878 if (err)
879 return err;
880
881 netif_device_attach(ndev);
882
883 return 0;
884}
885
886static const struct dev_pm_ops vortex_pm_ops = {
887 .suspend = vortex_suspend,
888 .resume = vortex_resume,
889 .freeze = vortex_suspend,
890 .thaw = vortex_resume,
891 .poweroff = vortex_suspend,
892 .restore = vortex_resume,
893};
894
895#define VORTEX_PM_OPS (&vortex_pm_ops)
896
897#else /* !CONFIG_PM */
898
899#define VORTEX_PM_OPS NULL
900
901#endif /* !CONFIG_PM */
902
903#ifdef CONFIG_EISA
904static struct eisa_device_id vortex_eisa_ids[] = {
905 { "TCM5920", CH_3C592 },
906 { "TCM5970", CH_3C597 },
907 { "" }
908};
909MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
910
911static int __init vortex_eisa_probe(struct device *device)
912{
913 void __iomem *ioaddr;
914 struct eisa_device *edev;
915
916 edev = to_eisa_device(device);
917
918 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
919 return -EBUSY;
920
921 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
922
923 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
924 edev->id.driver_data, vortex_cards_found)) {
925 release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
926 return -ENODEV;
927 }
928
929 vortex_cards_found++;
930
931 return 0;
932}
933
934static int __devexit vortex_eisa_remove(struct device *device)
935{
936 struct eisa_device *edev;
937 struct net_device *dev;
938 struct vortex_private *vp;
939 void __iomem *ioaddr;
940
941 edev = to_eisa_device(device);
942 dev = eisa_get_drvdata(edev);
943
944 if (!dev) {
945 pr_err("vortex_eisa_remove called for Compaq device!\n");
946 BUG();
947 }
948
949 vp = netdev_priv(dev);
950 ioaddr = vp->ioaddr;
951
952 unregister_netdev(dev);
953 iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
954 release_region(dev->base_addr, VORTEX_TOTAL_SIZE);
955
956 free_netdev(dev);
957 return 0;
958}
959
960static struct eisa_driver vortex_eisa_driver = {
961 .id_table = vortex_eisa_ids,
962 .driver = {
963 .name = "3c59x",
964 .probe = vortex_eisa_probe,
965 .remove = __devexit_p(vortex_eisa_remove)
966 }
967};
968
969#endif /* CONFIG_EISA */
970
971/* returns count found (>= 0), or negative on error */
972static int __init vortex_eisa_init(void)
973{
974 int eisa_found = 0;
975 int orig_cards_found = vortex_cards_found;
976
977#ifdef CONFIG_EISA
978 int err;
979
980 err = eisa_driver_register (&vortex_eisa_driver);
981 if (!err) {
982 /*
983 * Because of the way EISA bus is probed, we cannot assume
984 * any device have been found when we exit from
985 * eisa_driver_register (the bus root driver may not be
986 * initialized yet). So we blindly assume something was
987 * found, and let the sysfs magic happened...
988 */
989 eisa_found = 1;
990 }
991#endif
992
993 /* Special code to work-around the Compaq PCI BIOS32 problem. */
994 if (compaq_ioaddr) {
995 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
996 compaq_irq, compaq_device_id, vortex_cards_found++);
997 }
998
999 return vortex_cards_found - orig_cards_found + eisa_found;
1000}
1001
1002/* returns count (>= 0), or negative on error */
1003static int __devinit vortex_init_one(struct pci_dev *pdev,
1004 const struct pci_device_id *ent)
1005{
1006 int rc, unit, pci_bar;
1007 struct vortex_chip_info *vci;
1008 void __iomem *ioaddr;
1009
1010 /* wake up and enable device */
1011 rc = pci_enable_device(pdev);
1012 if (rc < 0)
1013 goto out;
1014
1015 unit = vortex_cards_found;
1016
1017 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1018 /* Determine the default if the user didn't override us */
1019 vci = &vortex_info_tbl[ent->driver_data];
1020 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1021 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1022 pci_bar = use_mmio[unit] ? 1 : 0;
1023 else
1024 pci_bar = global_use_mmio ? 1 : 0;
1025
1026 ioaddr = pci_iomap(pdev, pci_bar, 0);
1027 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1028 ioaddr = pci_iomap(pdev, 0, 0);
1029 if (!ioaddr) {
1030 pci_disable_device(pdev);
1031 rc = -ENOMEM;
1032 goto out;
1033 }
1034
1035 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1036 ent->driver_data, unit);
1037 if (rc < 0) {
1038 pci_iounmap(pdev, ioaddr);
1039 pci_disable_device(pdev);
1040 goto out;
1041 }
1042
1043 vortex_cards_found++;
1044
1045out:
1046 return rc;
1047}
1048
1049static const struct net_device_ops boomrang_netdev_ops = {
1050 .ndo_open = vortex_open,
1051 .ndo_stop = vortex_close,
1052 .ndo_start_xmit = boomerang_start_xmit,
1053 .ndo_tx_timeout = vortex_tx_timeout,
1054 .ndo_get_stats = vortex_get_stats,
1055#ifdef CONFIG_PCI
1056 .ndo_do_ioctl = vortex_ioctl,
1057#endif
1058 .ndo_set_rx_mode = set_rx_mode,
1059 .ndo_change_mtu = eth_change_mtu,
1060 .ndo_set_mac_address = eth_mac_addr,
1061 .ndo_validate_addr = eth_validate_addr,
1062#ifdef CONFIG_NET_POLL_CONTROLLER
1063 .ndo_poll_controller = poll_vortex,
1064#endif
1065};
1066
1067static const struct net_device_ops vortex_netdev_ops = {
1068 .ndo_open = vortex_open,
1069 .ndo_stop = vortex_close,
1070 .ndo_start_xmit = vortex_start_xmit,
1071 .ndo_tx_timeout = vortex_tx_timeout,
1072 .ndo_get_stats = vortex_get_stats,
1073#ifdef CONFIG_PCI
1074 .ndo_do_ioctl = vortex_ioctl,
1075#endif
1076 .ndo_set_rx_mode = set_rx_mode,
1077 .ndo_change_mtu = eth_change_mtu,
1078 .ndo_set_mac_address = eth_mac_addr,
1079 .ndo_validate_addr = eth_validate_addr,
1080#ifdef CONFIG_NET_POLL_CONTROLLER
1081 .ndo_poll_controller = poll_vortex,
1082#endif
1083};
1084
1085/*
1086 * Start up the PCI/EISA device which is described by *gendev.
1087 * Return 0 on success.
1088 *
1089 * NOTE: pdev can be NULL, for the case of a Compaq device
1090 */
1091static int __devinit vortex_probe1(struct device *gendev,
1092 void __iomem *ioaddr, int irq,
1093 int chip_idx, int card_idx)
1094{
1095 struct vortex_private *vp;
1096 int option;
1097 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1098 int i, step;
1099 struct net_device *dev;
1100 static int printed_version;
1101 int retval, print_info;
1102 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1103 const char *print_name = "3c59x";
1104 struct pci_dev *pdev = NULL;
1105 struct eisa_device *edev = NULL;
1106
1107 if (!printed_version) {
1108 pr_info("%s", version);
1109 printed_version = 1;
1110 }
1111
1112 if (gendev) {
1113 if ((pdev = DEVICE_PCI(gendev))) {
1114 print_name = pci_name(pdev);
1115 }
1116
1117 if ((edev = DEVICE_EISA(gendev))) {
1118 print_name = dev_name(&edev->dev);
1119 }
1120 }
1121
1122 dev = alloc_etherdev(sizeof(*vp));
1123 retval = -ENOMEM;
1124 if (!dev)
1125 goto out;
1126
1127 SET_NETDEV_DEV(dev, gendev);
1128 vp = netdev_priv(dev);
1129
1130 option = global_options;
1131
1132 /* The lower four bits are the media type. */
1133 if (dev->mem_start) {
1134 /*
1135 * The 'options' param is passed in as the third arg to the
1136 * LILO 'ether=' argument for non-modular use
1137 */
1138 option = dev->mem_start;
1139 }
1140 else if (card_idx < MAX_UNITS) {
1141 if (options[card_idx] >= 0)
1142 option = options[card_idx];
1143 }
1144
1145 if (option > 0) {
1146 if (option & 0x8000)
1147 vortex_debug = 7;
1148 if (option & 0x4000)
1149 vortex_debug = 2;
1150 if (option & 0x0400)
1151 vp->enable_wol = 1;
1152 }
1153
1154 print_info = (vortex_debug > 1);
1155 if (print_info)
1156 pr_info("See Documentation/networking/vortex.txt\n");
1157
1158 pr_info("%s: 3Com %s %s at %p.\n",
1159 print_name,
1160 pdev ? "PCI" : "EISA",
1161 vci->name,
1162 ioaddr);
1163
1164 dev->base_addr = (unsigned long)ioaddr;
1165 dev->irq = irq;
1166 dev->mtu = mtu;
1167 vp->ioaddr = ioaddr;
1168 vp->large_frames = mtu > 1500;
1169 vp->drv_flags = vci->drv_flags;
1170 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1171 vp->io_size = vci->io_size;
1172 vp->card_idx = card_idx;
1173 vp->window = -1;
1174
1175 /* module list only for Compaq device */
1176 if (gendev == NULL) {
1177 compaq_net_device = dev;
1178 }
1179
1180 /* PCI-only startup logic */
1181 if (pdev) {
1182 /* EISA resources already marked, so only PCI needs to do this here */
1183 /* Ignore return value, because Cardbus drivers already allocate for us */
1184 if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1185 vp->must_free_region = 1;
1186
1187 /* enable bus-mastering if necessary */
1188 if (vci->flags & PCI_USES_MASTER)
1189 pci_set_master(pdev);
1190
1191 if (vci->drv_flags & IS_VORTEX) {
1192 u8 pci_latency;
1193 u8 new_latency = 248;
1194
1195 /* Check the PCI latency value. On the 3c590 series the latency timer
1196 must be set to the maximum value to avoid data corruption that occurs
1197 when the timer expires during a transfer. This bug exists the Vortex
1198 chip only. */
1199 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1200 if (pci_latency < new_latency) {
1201 pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1202 print_name, pci_latency, new_latency);
1203 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1204 }
1205 }
1206 }
1207
1208 spin_lock_init(&vp->lock);
1209 spin_lock_init(&vp->mii_lock);
1210 spin_lock_init(&vp->window_lock);
1211 vp->gendev = gendev;
1212 vp->mii.dev = dev;
1213 vp->mii.mdio_read = mdio_read;
1214 vp->mii.mdio_write = mdio_write;
1215 vp->mii.phy_id_mask = 0x1f;
1216 vp->mii.reg_num_mask = 0x1f;
1217
1218 /* Makes sure rings are at least 16 byte aligned. */
1219 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1220 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1221 &vp->rx_ring_dma);
1222 retval = -ENOMEM;
1223 if (!vp->rx_ring)
1224 goto free_region;
1225
1226 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1227 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1228
1229 /* if we are a PCI driver, we store info in pdev->driver_data
1230 * instead of a module list */
1231 if (pdev)
1232 pci_set_drvdata(pdev, dev);
1233 if (edev)
1234 eisa_set_drvdata(edev, dev);
1235
1236 vp->media_override = 7;
1237 if (option >= 0) {
1238 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1239 if (vp->media_override != 7)
1240 vp->medialock = 1;
1241 vp->full_duplex = (option & 0x200) ? 1 : 0;
1242 vp->bus_master = (option & 16) ? 1 : 0;
1243 }
1244
1245 if (global_full_duplex > 0)
1246 vp->full_duplex = 1;
1247 if (global_enable_wol > 0)
1248 vp->enable_wol = 1;
1249
1250 if (card_idx < MAX_UNITS) {
1251 if (full_duplex[card_idx] > 0)
1252 vp->full_duplex = 1;
1253 if (flow_ctrl[card_idx] > 0)
1254 vp->flow_ctrl = 1;
1255 if (enable_wol[card_idx] > 0)
1256 vp->enable_wol = 1;
1257 }
1258
1259 vp->mii.force_media = vp->full_duplex;
1260 vp->options = option;
1261 /* Read the station address from the EEPROM. */
1262 {
1263 int base;
1264
1265 if (vci->drv_flags & EEPROM_8BIT)
1266 base = 0x230;
1267 else if (vci->drv_flags & EEPROM_OFFSET)
1268 base = EEPROM_Read + 0x30;
1269 else
1270 base = EEPROM_Read;
1271
1272 for (i = 0; i < 0x40; i++) {
1273 int timer;
1274 window_write16(vp, base + i, 0, Wn0EepromCmd);
1275 /* Pause for at least 162 us. for the read to take place. */
1276 for (timer = 10; timer >= 0; timer--) {
1277 udelay(162);
1278 if ((window_read16(vp, 0, Wn0EepromCmd) &
1279 0x8000) == 0)
1280 break;
1281 }
1282 eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1283 }
1284 }
1285 for (i = 0; i < 0x18; i++)
1286 checksum ^= eeprom[i];
1287 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1288 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1289 while (i < 0x21)
1290 checksum ^= eeprom[i++];
1291 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1292 }
1293 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1294 pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1295 for (i = 0; i < 3; i++)
1296 ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1297 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1298 if (print_info)
1299 pr_cont(" %pM", dev->dev_addr);
1300 /* Unfortunately an all zero eeprom passes the checksum and this
1301 gets found in the wild in failure cases. Crypto is hard 8) */
1302 if (!is_valid_ether_addr(dev->dev_addr)) {
1303 retval = -EINVAL;
1304 pr_err("*** EEPROM MAC address is invalid.\n");
1305 goto free_ring; /* With every pack */
1306 }
1307 for (i = 0; i < 6; i++)
1308 window_write8(vp, dev->dev_addr[i], 2, i);
1309
1310 if (print_info)
1311 pr_cont(", IRQ %d\n", dev->irq);
1312 /* Tell them about an invalid IRQ. */
1313 if (dev->irq <= 0 || dev->irq >= nr_irqs)
1314 pr_warning(" *** Warning: IRQ %d is unlikely to work! ***\n",
1315 dev->irq);
1316
1317 step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1318 if (print_info) {
1319 pr_info(" product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1320 eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1321 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1322 }
1323
1324
1325 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1326 unsigned short n;
1327
1328 vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1329 if (!vp->cb_fn_base) {
1330 retval = -ENOMEM;
1331 goto free_ring;
1332 }
1333
1334 if (print_info) {
1335 pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1336 print_name,
1337 (unsigned long long)pci_resource_start(pdev, 2),
1338 vp->cb_fn_base);
1339 }
1340
1341 n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1342 if (vp->drv_flags & INVERT_LED_PWR)
1343 n |= 0x10;
1344 if (vp->drv_flags & INVERT_MII_PWR)
1345 n |= 0x4000;
1346 window_write16(vp, n, 2, Wn2_ResetOptions);
1347 if (vp->drv_flags & WNO_XCVR_PWR) {
1348 window_write16(vp, 0x0800, 0, 0);
1349 }
1350 }
1351
1352 /* Extract our information from the EEPROM data. */
1353 vp->info1 = eeprom[13];
1354 vp->info2 = eeprom[15];
1355 vp->capabilities = eeprom[16];
1356
1357 if (vp->info1 & 0x8000) {
1358 vp->full_duplex = 1;
1359 if (print_info)
1360 pr_info("Full duplex capable\n");
1361 }
1362
1363 {
1364 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1365 unsigned int config;
1366 vp->available_media = window_read16(vp, 3, Wn3_Options);
1367 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1368 vp->available_media = 0x40;
1369 config = window_read32(vp, 3, Wn3_Config);
1370 if (print_info) {
1371 pr_debug(" Internal config register is %4.4x, transceivers %#x.\n",
1372 config, window_read16(vp, 3, Wn3_Options));
1373 pr_info(" %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1374 8 << RAM_SIZE(config),
1375 RAM_WIDTH(config) ? "word" : "byte",
1376 ram_split[RAM_SPLIT(config)],
1377 AUTOSELECT(config) ? "autoselect/" : "",
1378 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1379 media_tbl[XCVR(config)].name);
1380 }
1381 vp->default_media = XCVR(config);
1382 if (vp->default_media == XCVR_NWAY)
1383 vp->has_nway = 1;
1384 vp->autoselect = AUTOSELECT(config);
1385 }
1386
1387 if (vp->media_override != 7) {
1388 pr_info("%s: Media override to transceiver type %d (%s).\n",
1389 print_name, vp->media_override,
1390 media_tbl[vp->media_override].name);
1391 dev->if_port = vp->media_override;
1392 } else
1393 dev->if_port = vp->default_media;
1394
1395 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1396 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1397 int phy, phy_idx = 0;
1398 mii_preamble_required++;
1399 if (vp->drv_flags & EXTRA_PREAMBLE)
1400 mii_preamble_required++;
1401 mdio_sync(vp, 32);
1402 mdio_read(dev, 24, MII_BMSR);
1403 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1404 int mii_status, phyx;
1405
1406 /*
1407 * For the 3c905CX we look at index 24 first, because it bogusly
1408 * reports an external PHY at all indices
1409 */
1410 if (phy == 0)
1411 phyx = 24;
1412 else if (phy <= 24)
1413 phyx = phy - 1;
1414 else
1415 phyx = phy;
1416 mii_status = mdio_read(dev, phyx, MII_BMSR);
1417 if (mii_status && mii_status != 0xffff) {
1418 vp->phys[phy_idx++] = phyx;
1419 if (print_info) {
1420 pr_info(" MII transceiver found at address %d, status %4x.\n",
1421 phyx, mii_status);
1422 }
1423 if ((mii_status & 0x0040) == 0)
1424 mii_preamble_required++;
1425 }
1426 }
1427 mii_preamble_required--;
1428 if (phy_idx == 0) {
1429 pr_warning(" ***WARNING*** No MII transceivers found!\n");
1430 vp->phys[0] = 24;
1431 } else {
1432 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1433 if (vp->full_duplex) {
1434 /* Only advertise the FD media types. */
1435 vp->advertising &= ~0x02A0;
1436 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1437 }
1438 }
1439 vp->mii.phy_id = vp->phys[0];
1440 }
1441
1442 if (vp->capabilities & CapBusMaster) {
1443 vp->full_bus_master_tx = 1;
1444 if (print_info) {
1445 pr_info(" Enabling bus-master transmits and %s receives.\n",
1446 (vp->info2 & 1) ? "early" : "whole-frame" );
1447 }
1448 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1449 vp->bus_master = 0; /* AKPM: vortex only */
1450 }
1451
1452 /* The 3c59x-specific entries in the device structure. */
1453 if (vp->full_bus_master_tx) {
1454 dev->netdev_ops = &boomrang_netdev_ops;
1455 /* Actually, it still should work with iommu. */
1456 if (card_idx < MAX_UNITS &&
1457 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1458 hw_checksums[card_idx] == 1)) {
1459 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1460 }
1461 } else
1462 dev->netdev_ops = &vortex_netdev_ops;
1463
1464 if (print_info) {
1465 pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1466 print_name,
1467 (dev->features & NETIF_F_SG) ? "en":"dis",
1468 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1469 }
1470
1471 dev->ethtool_ops = &vortex_ethtool_ops;
1472 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1473
1474 if (pdev) {
1475 vp->pm_state_valid = 1;
1476 pci_save_state(VORTEX_PCI(vp));
1477 acpi_set_WOL(dev);
1478 }
1479 retval = register_netdev(dev);
1480 if (retval == 0)
1481 return 0;
1482
1483free_ring:
1484 pci_free_consistent(pdev,
1485 sizeof(struct boom_rx_desc) * RX_RING_SIZE
1486 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1487 vp->rx_ring,
1488 vp->rx_ring_dma);
1489free_region:
1490 if (vp->must_free_region)
1491 release_region(dev->base_addr, vci->io_size);
1492 free_netdev(dev);
1493 pr_err(PFX "vortex_probe1 fails. Returns %d\n", retval);
1494out:
1495 return retval;
1496}
1497
1498static void
1499issue_and_wait(struct net_device *dev, int cmd)
1500{
1501 struct vortex_private *vp = netdev_priv(dev);
1502 void __iomem *ioaddr = vp->ioaddr;
1503 int i;
1504
1505 iowrite16(cmd, ioaddr + EL3_CMD);
1506 for (i = 0; i < 2000; i++) {
1507 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1508 return;
1509 }
1510
1511 /* OK, that didn't work. Do it the slow way. One second */
1512 for (i = 0; i < 100000; i++) {
1513 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1514 if (vortex_debug > 1)
1515 pr_info("%s: command 0x%04x took %d usecs\n",
1516 dev->name, cmd, i * 10);
1517 return;
1518 }
1519 udelay(10);
1520 }
1521 pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1522 dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1523}
1524
1525static void
1526vortex_set_duplex(struct net_device *dev)
1527{
1528 struct vortex_private *vp = netdev_priv(dev);
1529
1530 pr_info("%s: setting %s-duplex.\n",
1531 dev->name, (vp->full_duplex) ? "full" : "half");
1532
1533 /* Set the full-duplex bit. */
1534 window_write16(vp,
1535 ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1536 (vp->large_frames ? 0x40 : 0) |
1537 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1538 0x100 : 0),
1539 3, Wn3_MAC_Ctrl);
1540}
1541
1542static void vortex_check_media(struct net_device *dev, unsigned int init)
1543{
1544 struct vortex_private *vp = netdev_priv(dev);
1545 unsigned int ok_to_print = 0;
1546
1547 if (vortex_debug > 3)
1548 ok_to_print = 1;
1549
1550 if (mii_check_media(&vp->mii, ok_to_print, init)) {
1551 vp->full_duplex = vp->mii.full_duplex;
1552 vortex_set_duplex(dev);
1553 } else if (init) {
1554 vortex_set_duplex(dev);
1555 }
1556}
1557
1558static int
1559vortex_up(struct net_device *dev)
1560{
1561 struct vortex_private *vp = netdev_priv(dev);
1562 void __iomem *ioaddr = vp->ioaddr;
1563 unsigned int config;
1564 int i, mii_reg1, mii_reg5, err = 0;
1565
1566 if (VORTEX_PCI(vp)) {
1567 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1568 if (vp->pm_state_valid)
1569 pci_restore_state(VORTEX_PCI(vp));
1570 err = pci_enable_device(VORTEX_PCI(vp));
1571 if (err) {
1572 pr_warning("%s: Could not enable device\n",
1573 dev->name);
1574 goto err_out;
1575 }
1576 }
1577
1578 /* Before initializing select the active media port. */
1579 config = window_read32(vp, 3, Wn3_Config);
1580
1581 if (vp->media_override != 7) {
1582 pr_info("%s: Media override to transceiver %d (%s).\n",
1583 dev->name, vp->media_override,
1584 media_tbl[vp->media_override].name);
1585 dev->if_port = vp->media_override;
1586 } else if (vp->autoselect) {
1587 if (vp->has_nway) {
1588 if (vortex_debug > 1)
1589 pr_info("%s: using NWAY device table, not %d\n",
1590 dev->name, dev->if_port);
1591 dev->if_port = XCVR_NWAY;
1592 } else {
1593 /* Find first available media type, starting with 100baseTx. */
1594 dev->if_port = XCVR_100baseTx;
1595 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1596 dev->if_port = media_tbl[dev->if_port].next;
1597 if (vortex_debug > 1)
1598 pr_info("%s: first available media type: %s\n",
1599 dev->name, media_tbl[dev->if_port].name);
1600 }
1601 } else {
1602 dev->if_port = vp->default_media;
1603 if (vortex_debug > 1)
1604 pr_info("%s: using default media %s\n",
1605 dev->name, media_tbl[dev->if_port].name);
1606 }
1607
1608 init_timer(&vp->timer);
1609 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1610 vp->timer.data = (unsigned long)dev;
1611 vp->timer.function = vortex_timer; /* timer handler */
1612 add_timer(&vp->timer);
1613
1614 init_timer(&vp->rx_oom_timer);
1615 vp->rx_oom_timer.data = (unsigned long)dev;
1616 vp->rx_oom_timer.function = rx_oom_timer;
1617
1618 if (vortex_debug > 1)
1619 pr_debug("%s: Initial media type %s.\n",
1620 dev->name, media_tbl[dev->if_port].name);
1621
1622 vp->full_duplex = vp->mii.force_media;
1623 config = BFINS(config, dev->if_port, 20, 4);
1624 if (vortex_debug > 6)
1625 pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1626 window_write32(vp, config, 3, Wn3_Config);
1627
1628 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1629 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1630 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1631 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1632 vp->mii.full_duplex = vp->full_duplex;
1633
1634 vortex_check_media(dev, 1);
1635 }
1636 else
1637 vortex_set_duplex(dev);
1638
1639 issue_and_wait(dev, TxReset);
1640 /*
1641 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1642 */
1643 issue_and_wait(dev, RxReset|0x04);
1644
1645
1646 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1647
1648 if (vortex_debug > 1) {
1649 pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1650 dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1651 }
1652
1653 /* Set the station address and mask in window 2 each time opened. */
1654 for (i = 0; i < 6; i++)
1655 window_write8(vp, dev->dev_addr[i], 2, i);
1656 for (; i < 12; i+=2)
1657 window_write16(vp, 0, 2, i);
1658
1659 if (vp->cb_fn_base) {
1660 unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1661 if (vp->drv_flags & INVERT_LED_PWR)
1662 n |= 0x10;
1663 if (vp->drv_flags & INVERT_MII_PWR)
1664 n |= 0x4000;
1665 window_write16(vp, n, 2, Wn2_ResetOptions);
1666 }
1667
1668 if (dev->if_port == XCVR_10base2)
1669 /* Start the thinnet transceiver. We should really wait 50ms...*/
1670 iowrite16(StartCoax, ioaddr + EL3_CMD);
1671 if (dev->if_port != XCVR_NWAY) {
1672 window_write16(vp,
1673 (window_read16(vp, 4, Wn4_Media) &
1674 ~(Media_10TP|Media_SQE)) |
1675 media_tbl[dev->if_port].media_bits,
1676 4, Wn4_Media);
1677 }
1678
1679 /* Switch to the stats window, and clear all stats by reading. */
1680 iowrite16(StatsDisable, ioaddr + EL3_CMD);
1681 for (i = 0; i < 10; i++)
1682 window_read8(vp, 6, i);
1683 window_read16(vp, 6, 10);
1684 window_read16(vp, 6, 12);
1685 /* New: On the Vortex we must also clear the BadSSD counter. */
1686 window_read8(vp, 4, 12);
1687 /* ..and on the Boomerang we enable the extra statistics bits. */
1688 window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1689
1690 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1691 vp->cur_rx = vp->dirty_rx = 0;
1692 /* Initialize the RxEarly register as recommended. */
1693 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1694 iowrite32(0x0020, ioaddr + PktStatus);
1695 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1696 }
1697 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1698 vp->cur_tx = vp->dirty_tx = 0;
1699 if (vp->drv_flags & IS_BOOMERANG)
1700 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1701 /* Clear the Rx, Tx rings. */
1702 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1703 vp->rx_ring[i].status = 0;
1704 for (i = 0; i < TX_RING_SIZE; i++)
1705 vp->tx_skbuff[i] = NULL;
1706 iowrite32(0, ioaddr + DownListPtr);
1707 }
1708 /* Set receiver mode: presumably accept b-case and phys addr only. */
1709 set_rx_mode(dev);
1710 /* enable 802.1q tagged frames */
1711 set_8021q_mode(dev, 1);
1712 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1713
1714 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1715 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1716 /* Allow status bits to be seen. */
1717 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1718 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1719 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1720 (vp->bus_master ? DMADone : 0);
1721 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1722 (vp->full_bus_master_rx ? 0 : RxComplete) |
1723 StatsFull | HostError | TxComplete | IntReq
1724 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1725 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1726 /* Ack all pending events, and set active indicator mask. */
1727 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1728 ioaddr + EL3_CMD);
1729 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1730 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1731 iowrite32(0x8000, vp->cb_fn_base + 4);
1732 netif_start_queue (dev);
1733err_out:
1734 return err;
1735}
1736
1737static int
1738vortex_open(struct net_device *dev)
1739{
1740 struct vortex_private *vp = netdev_priv(dev);
1741 int i;
1742 int retval;
1743
1744 /* Use the now-standard shared IRQ implementation. */
1745 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1746 boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1747 pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1748 goto err;
1749 }
1750
1751 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1752 if (vortex_debug > 2)
1753 pr_debug("%s: Filling in the Rx ring.\n", dev->name);
1754 for (i = 0; i < RX_RING_SIZE; i++) {
1755 struct sk_buff *skb;
1756 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1757 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1758 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1759
1760 skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1761 GFP_KERNEL);
1762 vp->rx_skbuff[i] = skb;
1763 if (skb == NULL)
1764 break; /* Bad news! */
1765
1766 skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */
1767 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1768 }
1769 if (i != RX_RING_SIZE) {
1770 int j;
1771 pr_emerg("%s: no memory for rx ring\n", dev->name);
1772 for (j = 0; j < i; j++) {
1773 if (vp->rx_skbuff[j]) {
1774 dev_kfree_skb(vp->rx_skbuff[j]);
1775 vp->rx_skbuff[j] = NULL;
1776 }
1777 }
1778 retval = -ENOMEM;
1779 goto err_free_irq;
1780 }
1781 /* Wrap the ring. */
1782 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1783 }
1784
1785 retval = vortex_up(dev);
1786 if (!retval)
1787 goto out;
1788
1789err_free_irq:
1790 free_irq(dev->irq, dev);
1791err:
1792 if (vortex_debug > 1)
1793 pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1794out:
1795 return retval;
1796}
1797
1798static void
1799vortex_timer(unsigned long data)
1800{
1801 struct net_device *dev = (struct net_device *)data;
1802 struct vortex_private *vp = netdev_priv(dev);
1803 void __iomem *ioaddr = vp->ioaddr;
1804 int next_tick = 60*HZ;
1805 int ok = 0;
1806 int media_status;
1807
1808 if (vortex_debug > 2) {
1809 pr_debug("%s: Media selection timer tick happened, %s.\n",
1810 dev->name, media_tbl[dev->if_port].name);
1811 pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1812 }
1813
1814 media_status = window_read16(vp, 4, Wn4_Media);
1815 switch (dev->if_port) {
1816 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1817 if (media_status & Media_LnkBeat) {
1818 netif_carrier_on(dev);
1819 ok = 1;
1820 if (vortex_debug > 1)
1821 pr_debug("%s: Media %s has link beat, %x.\n",
1822 dev->name, media_tbl[dev->if_port].name, media_status);
1823 } else {
1824 netif_carrier_off(dev);
1825 if (vortex_debug > 1) {
1826 pr_debug("%s: Media %s has no link beat, %x.\n",
1827 dev->name, media_tbl[dev->if_port].name, media_status);
1828 }
1829 }
1830 break;
1831 case XCVR_MII: case XCVR_NWAY:
1832 {
1833 ok = 1;
1834 vortex_check_media(dev, 0);
1835 }
1836 break;
1837 default: /* Other media types handled by Tx timeouts. */
1838 if (vortex_debug > 1)
1839 pr_debug("%s: Media %s has no indication, %x.\n",
1840 dev->name, media_tbl[dev->if_port].name, media_status);
1841 ok = 1;
1842 }
1843
1844 if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1845 next_tick = 5*HZ;
1846
1847 if (vp->medialock)
1848 goto leave_media_alone;
1849
1850 if (!ok) {
1851 unsigned int config;
1852
1853 spin_lock_irq(&vp->lock);
1854
1855 do {
1856 dev->if_port = media_tbl[dev->if_port].next;
1857 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1858 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1859 dev->if_port = vp->default_media;
1860 if (vortex_debug > 1)
1861 pr_debug("%s: Media selection failing, using default %s port.\n",
1862 dev->name, media_tbl[dev->if_port].name);
1863 } else {
1864 if (vortex_debug > 1)
1865 pr_debug("%s: Media selection failed, now trying %s port.\n",
1866 dev->name, media_tbl[dev->if_port].name);
1867 next_tick = media_tbl[dev->if_port].wait;
1868 }
1869 window_write16(vp,
1870 (media_status & ~(Media_10TP|Media_SQE)) |
1871 media_tbl[dev->if_port].media_bits,
1872 4, Wn4_Media);
1873
1874 config = window_read32(vp, 3, Wn3_Config);
1875 config = BFINS(config, dev->if_port, 20, 4);
1876 window_write32(vp, config, 3, Wn3_Config);
1877
1878 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1879 ioaddr + EL3_CMD);
1880 if (vortex_debug > 1)
1881 pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1882 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
1883
1884 spin_unlock_irq(&vp->lock);
1885 }
1886
1887leave_media_alone:
1888 if (vortex_debug > 2)
1889 pr_debug("%s: Media selection timer finished, %s.\n",
1890 dev->name, media_tbl[dev->if_port].name);
1891
1892 mod_timer(&vp->timer, RUN_AT(next_tick));
1893 if (vp->deferred)
1894 iowrite16(FakeIntr, ioaddr + EL3_CMD);
1895}
1896
1897static void vortex_tx_timeout(struct net_device *dev)
1898{
1899 struct vortex_private *vp = netdev_priv(dev);
1900 void __iomem *ioaddr = vp->ioaddr;
1901
1902 pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1903 dev->name, ioread8(ioaddr + TxStatus),
1904 ioread16(ioaddr + EL3_STATUS));
1905 pr_err(" diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1906 window_read16(vp, 4, Wn4_NetDiag),
1907 window_read16(vp, 4, Wn4_Media),
1908 ioread32(ioaddr + PktStatus),
1909 window_read16(vp, 4, Wn4_FIFODiag));
1910 /* Slight code bloat to be user friendly. */
1911 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1912 pr_err("%s: Transmitter encountered 16 collisions --"
1913 " network cable problem?\n", dev->name);
1914 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1915 pr_err("%s: Interrupt posted but not delivered --"
1916 " IRQ blocked by another device?\n", dev->name);
1917 /* Bad idea here.. but we might as well handle a few events. */
1918 {
1919 /*
1920 * Block interrupts because vortex_interrupt does a bare spin_lock()
1921 */
1922 unsigned long flags;
1923 local_irq_save(flags);
1924 if (vp->full_bus_master_tx)
1925 boomerang_interrupt(dev->irq, dev);
1926 else
1927 vortex_interrupt(dev->irq, dev);
1928 local_irq_restore(flags);
1929 }
1930 }
1931
1932 if (vortex_debug > 0)
1933 dump_tx_ring(dev);
1934
1935 issue_and_wait(dev, TxReset);
1936
1937 dev->stats.tx_errors++;
1938 if (vp->full_bus_master_tx) {
1939 pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1940 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0)
1941 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1942 ioaddr + DownListPtr);
1943 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1944 netif_wake_queue (dev);
1945 if (vp->drv_flags & IS_BOOMERANG)
1946 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1947 iowrite16(DownUnstall, ioaddr + EL3_CMD);
1948 } else {
1949 dev->stats.tx_dropped++;
1950 netif_wake_queue(dev);
1951 }
1952
1953 /* Issue Tx Enable */
1954 iowrite16(TxEnable, ioaddr + EL3_CMD);
1955 dev->trans_start = jiffies; /* prevent tx timeout */
1956}
1957
1958/*
1959 * Handle uncommon interrupt sources. This is a separate routine to minimize
1960 * the cache impact.
1961 */
1962static void
1963vortex_error(struct net_device *dev, int status)
1964{
1965 struct vortex_private *vp = netdev_priv(dev);
1966 void __iomem *ioaddr = vp->ioaddr;
1967 int do_tx_reset = 0, reset_mask = 0;
1968 unsigned char tx_status = 0;
1969
1970 if (vortex_debug > 2) {
1971 pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1972 }
1973
1974 if (status & TxComplete) { /* Really "TxError" for us. */
1975 tx_status = ioread8(ioaddr + TxStatus);
1976 /* Presumably a tx-timeout. We must merely re-enable. */
1977 if (vortex_debug > 2 ||
1978 (tx_status != 0x88 && vortex_debug > 0)) {
1979 pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1980 dev->name, tx_status);
1981 if (tx_status == 0x82) {
1982 pr_err("Probably a duplex mismatch. See "
1983 "Documentation/networking/vortex.txt\n");
1984 }
1985 dump_tx_ring(dev);
1986 }
1987 if (tx_status & 0x14) dev->stats.tx_fifo_errors++;
1988 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
1989 if (tx_status & 0x08) vp->xstats.tx_max_collisions++;
1990 iowrite8(0, ioaddr + TxStatus);
1991 if (tx_status & 0x30) { /* txJabber or txUnderrun */
1992 do_tx_reset = 1;
1993 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */
1994 do_tx_reset = 1;
1995 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
1996 } else { /* Merely re-enable the transmitter. */
1997 iowrite16(TxEnable, ioaddr + EL3_CMD);
1998 }
1999 }
2000
2001 if (status & RxEarly) /* Rx early is unused. */
2002 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
2003
2004 if (status & StatsFull) { /* Empty statistics. */
2005 static int DoneDidThat;
2006 if (vortex_debug > 4)
2007 pr_debug("%s: Updating stats.\n", dev->name);
2008 update_stats(ioaddr, dev);
2009 /* HACK: Disable statistics as an interrupt source. */
2010 /* This occurs when we have the wrong media type! */
2011 if (DoneDidThat == 0 &&
2012 ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2013 pr_warning("%s: Updating statistics failed, disabling "
2014 "stats as an interrupt source.\n", dev->name);
2015 iowrite16(SetIntrEnb |
2016 (window_read16(vp, 5, 10) & ~StatsFull),
2017 ioaddr + EL3_CMD);
2018 vp->intr_enable &= ~StatsFull;
2019 DoneDidThat++;
2020 }
2021 }
2022 if (status & IntReq) { /* Restore all interrupt sources. */
2023 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2024 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2025 }
2026 if (status & HostError) {
2027 u16 fifo_diag;
2028 fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2029 pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2030 dev->name, fifo_diag);
2031 /* Adapter failure requires Tx/Rx reset and reinit. */
2032 if (vp->full_bus_master_tx) {
2033 int bus_status = ioread32(ioaddr + PktStatus);
2034 /* 0x80000000 PCI master abort. */
2035 /* 0x40000000 PCI target abort. */
2036 if (vortex_debug)
2037 pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2038
2039 /* In this case, blow the card away */
2040 /* Must not enter D3 or we can't legally issue the reset! */
2041 vortex_down(dev, 0);
2042 issue_and_wait(dev, TotalReset | 0xff);
2043 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
2044 } else if (fifo_diag & 0x0400)
2045 do_tx_reset = 1;
2046 if (fifo_diag & 0x3000) {
2047 /* Reset Rx fifo and upload logic */
2048 issue_and_wait(dev, RxReset|0x07);
2049 /* Set the Rx filter to the current state. */
2050 set_rx_mode(dev);
2051 /* enable 802.1q VLAN tagged frames */
2052 set_8021q_mode(dev, 1);
2053 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2054 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2055 }
2056 }
2057
2058 if (do_tx_reset) {
2059 issue_and_wait(dev, TxReset|reset_mask);
2060 iowrite16(TxEnable, ioaddr + EL3_CMD);
2061 if (!vp->full_bus_master_tx)
2062 netif_wake_queue(dev);
2063 }
2064}
2065
2066static netdev_tx_t
2067vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2068{
2069 struct vortex_private *vp = netdev_priv(dev);
2070 void __iomem *ioaddr = vp->ioaddr;
2071
2072 /* Put out the doubleword header... */
2073 iowrite32(skb->len, ioaddr + TX_FIFO);
2074 if (vp->bus_master) {
2075 /* Set the bus-master controller to transfer the packet. */
2076 int len = (skb->len + 3) & ~3;
2077 vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len,
2078 PCI_DMA_TODEVICE);
2079 spin_lock_irq(&vp->window_lock);
2080 window_set(vp, 7);
2081 iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2082 iowrite16(len, ioaddr + Wn7_MasterLen);
2083 spin_unlock_irq(&vp->window_lock);
2084 vp->tx_skb = skb;
2085 iowrite16(StartDMADown, ioaddr + EL3_CMD);
2086 /* netif_wake_queue() will be called at the DMADone interrupt. */
2087 } else {
2088 /* ... and the packet rounded to a doubleword. */
2089 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2090 dev_kfree_skb (skb);
2091 if (ioread16(ioaddr + TxFree) > 1536) {
2092 netif_start_queue (dev); /* AKPM: redundant? */
2093 } else {
2094 /* Interrupt us when the FIFO has room for max-sized packet. */
2095 netif_stop_queue(dev);
2096 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2097 }
2098 }
2099
2100
2101 /* Clear the Tx status stack. */
2102 {
2103 int tx_status;
2104 int i = 32;
2105
2106 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2107 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2108 if (vortex_debug > 2)
2109 pr_debug("%s: Tx error, status %2.2x.\n",
2110 dev->name, tx_status);
2111 if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2112 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2113 if (tx_status & 0x30) {
2114 issue_and_wait(dev, TxReset);
2115 }
2116 iowrite16(TxEnable, ioaddr + EL3_CMD);
2117 }
2118 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2119 }
2120 }
2121 return NETDEV_TX_OK;
2122}
2123
2124static netdev_tx_t
2125boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2126{
2127 struct vortex_private *vp = netdev_priv(dev);
2128 void __iomem *ioaddr = vp->ioaddr;
2129 /* Calculate the next Tx descriptor entry. */
2130 int entry = vp->cur_tx % TX_RING_SIZE;
2131 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2132 unsigned long flags;
2133
2134 if (vortex_debug > 6) {
2135 pr_debug("boomerang_start_xmit()\n");
2136 pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2137 dev->name, vp->cur_tx);
2138 }
2139
2140 /*
2141 * We can't allow a recursion from our interrupt handler back into the
2142 * tx routine, as they take the same spin lock, and that causes
2143 * deadlock. Just return NETDEV_TX_BUSY and let the stack try again in
2144 * a bit
2145 */
2146 if (vp->handling_irq)
2147 return NETDEV_TX_BUSY;
2148
2149 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2150 if (vortex_debug > 0)
2151 pr_warning("%s: BUG! Tx Ring full, refusing to send buffer.\n",
2152 dev->name);
2153 netif_stop_queue(dev);
2154 return NETDEV_TX_BUSY;
2155 }
2156
2157 vp->tx_skbuff[entry] = skb;
2158
2159 vp->tx_ring[entry].next = 0;
2160#if DO_ZEROCOPY
2161 if (skb->ip_summed != CHECKSUM_PARTIAL)
2162 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2163 else
2164 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2165
2166 if (!skb_shinfo(skb)->nr_frags) {
2167 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2168 skb->len, PCI_DMA_TODEVICE));
2169 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2170 } else {
2171 int i;
2172
2173 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2174 skb_headlen(skb), PCI_DMA_TODEVICE));
2175 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2176
2177 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2178 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2179
2180 vp->tx_ring[entry].frag[i+1].addr =
2181 cpu_to_le32(pci_map_single(
2182 VORTEX_PCI(vp),
2183 (void *)skb_frag_address(frag),
2184 skb_frag_size(frag), PCI_DMA_TODEVICE));
2185
2186 if (i == skb_shinfo(skb)->nr_frags-1)
2187 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2188 else
2189 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2190 }
2191 }
2192#else
2193 vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2194 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2195 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2196#endif
2197
2198 spin_lock_irqsave(&vp->lock, flags);
2199 /* Wait for the stall to complete. */
2200 issue_and_wait(dev, DownStall);
2201 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2202 if (ioread32(ioaddr + DownListPtr) == 0) {
2203 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2204 vp->queued_packet++;
2205 }
2206
2207 vp->cur_tx++;
2208 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2209 netif_stop_queue (dev);
2210 } else { /* Clear previous interrupt enable. */
2211#if defined(tx_interrupt_mitigation)
2212 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2213 * were selected, this would corrupt DN_COMPLETE. No?
2214 */
2215 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2216#endif
2217 }
2218 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2219 spin_unlock_irqrestore(&vp->lock, flags);
2220 return NETDEV_TX_OK;
2221}
2222
2223/* The interrupt handler does all of the Rx thread work and cleans up
2224 after the Tx thread. */
2225
2226/*
2227 * This is the ISR for the vortex series chips.
2228 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2229 */
2230
2231static irqreturn_t
2232vortex_interrupt(int irq, void *dev_id)
2233{
2234 struct net_device *dev = dev_id;
2235 struct vortex_private *vp = netdev_priv(dev);
2236 void __iomem *ioaddr;
2237 int status;
2238 int work_done = max_interrupt_work;
2239 int handled = 0;
2240
2241 ioaddr = vp->ioaddr;
2242 spin_lock(&vp->lock);
2243
2244 status = ioread16(ioaddr + EL3_STATUS);
2245
2246 if (vortex_debug > 6)
2247 pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2248
2249 if ((status & IntLatch) == 0)
2250 goto handler_exit; /* No interrupt: shared IRQs cause this */
2251 handled = 1;
2252
2253 if (status & IntReq) {
2254 status |= vp->deferred;
2255 vp->deferred = 0;
2256 }
2257
2258 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2259 goto handler_exit;
2260
2261 if (vortex_debug > 4)
2262 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2263 dev->name, status, ioread8(ioaddr + Timer));
2264
2265 spin_lock(&vp->window_lock);
2266 window_set(vp, 7);
2267
2268 do {
2269 if (vortex_debug > 5)
2270 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2271 dev->name, status);
2272 if (status & RxComplete)
2273 vortex_rx(dev);
2274
2275 if (status & TxAvailable) {
2276 if (vortex_debug > 5)
2277 pr_debug(" TX room bit was handled.\n");
2278 /* There's room in the FIFO for a full-sized packet. */
2279 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2280 netif_wake_queue (dev);
2281 }
2282
2283 if (status & DMADone) {
2284 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2285 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2286 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2287 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2288 if (ioread16(ioaddr + TxFree) > 1536) {
2289 /*
2290 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2291 * insufficient FIFO room, the TxAvailable test will succeed and call
2292 * netif_wake_queue()
2293 */
2294 netif_wake_queue(dev);
2295 } else { /* Interrupt when FIFO has room for max-sized packet. */
2296 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2297 netif_stop_queue(dev);
2298 }
2299 }
2300 }
2301 /* Check for all uncommon interrupts at once. */
2302 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2303 if (status == 0xffff)
2304 break;
2305 if (status & RxEarly)
2306 vortex_rx(dev);
2307 spin_unlock(&vp->window_lock);
2308 vortex_error(dev, status);
2309 spin_lock(&vp->window_lock);
2310 window_set(vp, 7);
2311 }
2312
2313 if (--work_done < 0) {
2314 pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2315 dev->name, status);
2316 /* Disable all pending interrupts. */
2317 do {
2318 vp->deferred |= status;
2319 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2320 ioaddr + EL3_CMD);
2321 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2322 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2323 /* The timer will reenable interrupts. */
2324 mod_timer(&vp->timer, jiffies + 1*HZ);
2325 break;
2326 }
2327 /* Acknowledge the IRQ. */
2328 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2329 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2330
2331 spin_unlock(&vp->window_lock);
2332
2333 if (vortex_debug > 4)
2334 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2335 dev->name, status);
2336handler_exit:
2337 spin_unlock(&vp->lock);
2338 return IRQ_RETVAL(handled);
2339}
2340
2341/*
2342 * This is the ISR for the boomerang series chips.
2343 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2344 */
2345
2346static irqreturn_t
2347boomerang_interrupt(int irq, void *dev_id)
2348{
2349 struct net_device *dev = dev_id;
2350 struct vortex_private *vp = netdev_priv(dev);
2351 void __iomem *ioaddr;
2352 int status;
2353 int work_done = max_interrupt_work;
2354
2355 ioaddr = vp->ioaddr;
2356
2357
2358 /*
2359 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2360 * and boomerang_start_xmit
2361 */
2362 spin_lock(&vp->lock);
2363 vp->handling_irq = 1;
2364
2365 status = ioread16(ioaddr + EL3_STATUS);
2366
2367 if (vortex_debug > 6)
2368 pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2369
2370 if ((status & IntLatch) == 0)
2371 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2372
2373 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2374 if (vortex_debug > 1)
2375 pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2376 goto handler_exit;
2377 }
2378
2379 if (status & IntReq) {
2380 status |= vp->deferred;
2381 vp->deferred = 0;
2382 }
2383
2384 if (vortex_debug > 4)
2385 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2386 dev->name, status, ioread8(ioaddr + Timer));
2387 do {
2388 if (vortex_debug > 5)
2389 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2390 dev->name, status);
2391 if (status & UpComplete) {
2392 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2393 if (vortex_debug > 5)
2394 pr_debug("boomerang_interrupt->boomerang_rx\n");
2395 boomerang_rx(dev);
2396 }
2397
2398 if (status & DownComplete) {
2399 unsigned int dirty_tx = vp->dirty_tx;
2400
2401 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2402 while (vp->cur_tx - dirty_tx > 0) {
2403 int entry = dirty_tx % TX_RING_SIZE;
2404#if 1 /* AKPM: the latter is faster, but cyclone-only */
2405 if (ioread32(ioaddr + DownListPtr) ==
2406 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2407 break; /* It still hasn't been processed. */
2408#else
2409 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2410 break; /* It still hasn't been processed. */
2411#endif
2412
2413 if (vp->tx_skbuff[entry]) {
2414 struct sk_buff *skb = vp->tx_skbuff[entry];
2415#if DO_ZEROCOPY
2416 int i;
2417 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2418 pci_unmap_single(VORTEX_PCI(vp),
2419 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2420 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2421 PCI_DMA_TODEVICE);
2422#else
2423 pci_unmap_single(VORTEX_PCI(vp),
2424 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2425#endif
2426 dev_kfree_skb_irq(skb);
2427 vp->tx_skbuff[entry] = NULL;
2428 } else {
2429 pr_debug("boomerang_interrupt: no skb!\n");
2430 }
2431 /* dev->stats.tx_packets++; Counted below. */
2432 dirty_tx++;
2433 }
2434 vp->dirty_tx = dirty_tx;
2435 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2436 if (vortex_debug > 6)
2437 pr_debug("boomerang_interrupt: wake queue\n");
2438 netif_wake_queue (dev);
2439 }
2440 }
2441
2442 /* Check for all uncommon interrupts at once. */
2443 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2444 vortex_error(dev, status);
2445
2446 if (--work_done < 0) {
2447 pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2448 dev->name, status);
2449 /* Disable all pending interrupts. */
2450 do {
2451 vp->deferred |= status;
2452 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2453 ioaddr + EL3_CMD);
2454 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2455 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2456 /* The timer will reenable interrupts. */
2457 mod_timer(&vp->timer, jiffies + 1*HZ);
2458 break;
2459 }
2460 /* Acknowledge the IRQ. */
2461 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2462 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2463 iowrite32(0x8000, vp->cb_fn_base + 4);
2464
2465 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2466
2467 if (vortex_debug > 4)
2468 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2469 dev->name, status);
2470handler_exit:
2471 vp->handling_irq = 0;
2472 spin_unlock(&vp->lock);
2473 return IRQ_HANDLED;
2474}
2475
2476static int vortex_rx(struct net_device *dev)
2477{
2478 struct vortex_private *vp = netdev_priv(dev);
2479 void __iomem *ioaddr = vp->ioaddr;
2480 int i;
2481 short rx_status;
2482
2483 if (vortex_debug > 5)
2484 pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2485 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2486 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2487 if (rx_status & 0x4000) { /* Error, update stats. */
2488 unsigned char rx_error = ioread8(ioaddr + RxErrors);
2489 if (vortex_debug > 2)
2490 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2491 dev->stats.rx_errors++;
2492 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2493 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2494 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2495 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2496 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2497 } else {
2498 /* The packet length: up to 4.5K!. */
2499 int pkt_len = rx_status & 0x1fff;
2500 struct sk_buff *skb;
2501
2502 skb = netdev_alloc_skb(dev, pkt_len + 5);
2503 if (vortex_debug > 4)
2504 pr_debug("Receiving packet size %d status %4.4x.\n",
2505 pkt_len, rx_status);
2506 if (skb != NULL) {
2507 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2508 /* 'skb_put()' points to the start of sk_buff data area. */
2509 if (vp->bus_master &&
2510 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2511 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2512 pkt_len, PCI_DMA_FROMDEVICE);
2513 iowrite32(dma, ioaddr + Wn7_MasterAddr);
2514 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2515 iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2516 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2517 ;
2518 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2519 } else {
2520 ioread32_rep(ioaddr + RX_FIFO,
2521 skb_put(skb, pkt_len),
2522 (pkt_len + 3) >> 2);
2523 }
2524 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2525 skb->protocol = eth_type_trans(skb, dev);
2526 netif_rx(skb);
2527 dev->stats.rx_packets++;
2528 /* Wait a limited time to go to next packet. */
2529 for (i = 200; i >= 0; i--)
2530 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2531 break;
2532 continue;
2533 } else if (vortex_debug > 0)
2534 pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2535 dev->name, pkt_len);
2536 dev->stats.rx_dropped++;
2537 }
2538 issue_and_wait(dev, RxDiscard);
2539 }
2540
2541 return 0;
2542}
2543
2544static int
2545boomerang_rx(struct net_device *dev)
2546{
2547 struct vortex_private *vp = netdev_priv(dev);
2548 int entry = vp->cur_rx % RX_RING_SIZE;
2549 void __iomem *ioaddr = vp->ioaddr;
2550 int rx_status;
2551 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2552
2553 if (vortex_debug > 5)
2554 pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2555
2556 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2557 if (--rx_work_limit < 0)
2558 break;
2559 if (rx_status & RxDError) { /* Error, update stats. */
2560 unsigned char rx_error = rx_status >> 16;
2561 if (vortex_debug > 2)
2562 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2563 dev->stats.rx_errors++;
2564 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2565 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2566 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2567 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2568 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2569 } else {
2570 /* The packet length: up to 4.5K!. */
2571 int pkt_len = rx_status & 0x1fff;
2572 struct sk_buff *skb;
2573 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2574
2575 if (vortex_debug > 4)
2576 pr_debug("Receiving packet size %d status %4.4x.\n",
2577 pkt_len, rx_status);
2578
2579 /* Check if the packet is long enough to just accept without
2580 copying to a properly sized skbuff. */
2581 if (pkt_len < rx_copybreak &&
2582 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2583 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2584 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2585 /* 'skb_put()' points to the start of sk_buff data area. */
2586 memcpy(skb_put(skb, pkt_len),
2587 vp->rx_skbuff[entry]->data,
2588 pkt_len);
2589 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2590 vp->rx_copy++;
2591 } else {
2592 /* Pass up the skbuff already on the Rx ring. */
2593 skb = vp->rx_skbuff[entry];
2594 vp->rx_skbuff[entry] = NULL;
2595 skb_put(skb, pkt_len);
2596 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2597 vp->rx_nocopy++;
2598 }
2599 skb->protocol = eth_type_trans(skb, dev);
2600 { /* Use hardware checksum info. */
2601 int csum_bits = rx_status & 0xee000000;
2602 if (csum_bits &&
2603 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2604 csum_bits == (IPChksumValid | UDPChksumValid))) {
2605 skb->ip_summed = CHECKSUM_UNNECESSARY;
2606 vp->rx_csumhits++;
2607 }
2608 }
2609 netif_rx(skb);
2610 dev->stats.rx_packets++;
2611 }
2612 entry = (++vp->cur_rx) % RX_RING_SIZE;
2613 }
2614 /* Refill the Rx ring buffers. */
2615 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2616 struct sk_buff *skb;
2617 entry = vp->dirty_rx % RX_RING_SIZE;
2618 if (vp->rx_skbuff[entry] == NULL) {
2619 skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2620 if (skb == NULL) {
2621 static unsigned long last_jif;
2622 if (time_after(jiffies, last_jif + 10 * HZ)) {
2623 pr_warning("%s: memory shortage\n", dev->name);
2624 last_jif = jiffies;
2625 }
2626 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2627 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2628 break; /* Bad news! */
2629 }
2630
2631 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2632 vp->rx_skbuff[entry] = skb;
2633 }
2634 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2635 iowrite16(UpUnstall, ioaddr + EL3_CMD);
2636 }
2637 return 0;
2638}
2639
2640/*
2641 * If we've hit a total OOM refilling the Rx ring we poll once a second
2642 * for some memory. Otherwise there is no way to restart the rx process.
2643 */
2644static void
2645rx_oom_timer(unsigned long arg)
2646{
2647 struct net_device *dev = (struct net_device *)arg;
2648 struct vortex_private *vp = netdev_priv(dev);
2649
2650 spin_lock_irq(&vp->lock);
2651 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */
2652 boomerang_rx(dev);
2653 if (vortex_debug > 1) {
2654 pr_debug("%s: rx_oom_timer %s\n", dev->name,
2655 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2656 }
2657 spin_unlock_irq(&vp->lock);
2658}
2659
2660static void
2661vortex_down(struct net_device *dev, int final_down)
2662{
2663 struct vortex_private *vp = netdev_priv(dev);
2664 void __iomem *ioaddr = vp->ioaddr;
2665
2666 netif_stop_queue (dev);
2667
2668 del_timer_sync(&vp->rx_oom_timer);
2669 del_timer_sync(&vp->timer);
2670
2671 /* Turn off statistics ASAP. We update dev->stats below. */
2672 iowrite16(StatsDisable, ioaddr + EL3_CMD);
2673
2674 /* Disable the receiver and transmitter. */
2675 iowrite16(RxDisable, ioaddr + EL3_CMD);
2676 iowrite16(TxDisable, ioaddr + EL3_CMD);
2677
2678 /* Disable receiving 802.1q tagged frames */
2679 set_8021q_mode(dev, 0);
2680
2681 if (dev->if_port == XCVR_10base2)
2682 /* Turn off thinnet power. Green! */
2683 iowrite16(StopCoax, ioaddr + EL3_CMD);
2684
2685 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2686
2687 update_stats(ioaddr, dev);
2688 if (vp->full_bus_master_rx)
2689 iowrite32(0, ioaddr + UpListPtr);
2690 if (vp->full_bus_master_tx)
2691 iowrite32(0, ioaddr + DownListPtr);
2692
2693 if (final_down && VORTEX_PCI(vp)) {
2694 vp->pm_state_valid = 1;
2695 pci_save_state(VORTEX_PCI(vp));
2696 acpi_set_WOL(dev);
2697 }
2698}
2699
2700static int
2701vortex_close(struct net_device *dev)
2702{
2703 struct vortex_private *vp = netdev_priv(dev);
2704 void __iomem *ioaddr = vp->ioaddr;
2705 int i;
2706
2707 if (netif_device_present(dev))
2708 vortex_down(dev, 1);
2709
2710 if (vortex_debug > 1) {
2711 pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2712 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2713 pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2714 " tx_queued %d Rx pre-checksummed %d.\n",
2715 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2716 }
2717
2718#if DO_ZEROCOPY
2719 if (vp->rx_csumhits &&
2720 (vp->drv_flags & HAS_HWCKSM) == 0 &&
2721 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2722 pr_warning("%s supports hardware checksums, and we're not using them!\n", dev->name);
2723 }
2724#endif
2725
2726 free_irq(dev->irq, dev);
2727
2728 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2729 for (i = 0; i < RX_RING_SIZE; i++)
2730 if (vp->rx_skbuff[i]) {
2731 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2732 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2733 dev_kfree_skb(vp->rx_skbuff[i]);
2734 vp->rx_skbuff[i] = NULL;
2735 }
2736 }
2737 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2738 for (i = 0; i < TX_RING_SIZE; i++) {
2739 if (vp->tx_skbuff[i]) {
2740 struct sk_buff *skb = vp->tx_skbuff[i];
2741#if DO_ZEROCOPY
2742 int k;
2743
2744 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2745 pci_unmap_single(VORTEX_PCI(vp),
2746 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2747 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2748 PCI_DMA_TODEVICE);
2749#else
2750 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2751#endif
2752 dev_kfree_skb(skb);
2753 vp->tx_skbuff[i] = NULL;
2754 }
2755 }
2756 }
2757
2758 return 0;
2759}
2760
2761static void
2762dump_tx_ring(struct net_device *dev)
2763{
2764 if (vortex_debug > 0) {
2765 struct vortex_private *vp = netdev_priv(dev);
2766 void __iomem *ioaddr = vp->ioaddr;
2767
2768 if (vp->full_bus_master_tx) {
2769 int i;
2770 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2771
2772 pr_err(" Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2773 vp->full_bus_master_tx,
2774 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2775 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2776 pr_err(" Transmit list %8.8x vs. %p.\n",
2777 ioread32(ioaddr + DownListPtr),
2778 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2779 issue_and_wait(dev, DownStall);
2780 for (i = 0; i < TX_RING_SIZE; i++) {
2781 unsigned int length;
2782
2783#if DO_ZEROCOPY
2784 length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2785#else
2786 length = le32_to_cpu(vp->tx_ring[i].length);
2787#endif
2788 pr_err(" %d: @%p length %8.8x status %8.8x\n",
2789 i, &vp->tx_ring[i], length,
2790 le32_to_cpu(vp->tx_ring[i].status));
2791 }
2792 if (!stalled)
2793 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2794 }
2795 }
2796}
2797
2798static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2799{
2800 struct vortex_private *vp = netdev_priv(dev);
2801 void __iomem *ioaddr = vp->ioaddr;
2802 unsigned long flags;
2803
2804 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2805 spin_lock_irqsave (&vp->lock, flags);
2806 update_stats(ioaddr, dev);
2807 spin_unlock_irqrestore (&vp->lock, flags);
2808 }
2809 return &dev->stats;
2810}
2811
2812/* Update statistics.
2813 Unlike with the EL3 we need not worry about interrupts changing
2814 the window setting from underneath us, but we must still guard
2815 against a race condition with a StatsUpdate interrupt updating the
2816 table. This is done by checking that the ASM (!) code generated uses
2817 atomic updates with '+='.
2818 */
2819static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2820{
2821 struct vortex_private *vp = netdev_priv(dev);
2822
2823 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2824 /* Switch to the stats window, and read everything. */
2825 dev->stats.tx_carrier_errors += window_read8(vp, 6, 0);
2826 dev->stats.tx_heartbeat_errors += window_read8(vp, 6, 1);
2827 dev->stats.tx_window_errors += window_read8(vp, 6, 4);
2828 dev->stats.rx_fifo_errors += window_read8(vp, 6, 5);
2829 dev->stats.tx_packets += window_read8(vp, 6, 6);
2830 dev->stats.tx_packets += (window_read8(vp, 6, 9) &
2831 0x30) << 4;
2832 /* Rx packets */ window_read8(vp, 6, 7); /* Must read to clear */
2833 /* Don't bother with register 9, an extension of registers 6&7.
2834 If we do use the 6&7 values the atomic update assumption above
2835 is invalid. */
2836 dev->stats.rx_bytes += window_read16(vp, 6, 10);
2837 dev->stats.tx_bytes += window_read16(vp, 6, 12);
2838 /* Extra stats for get_ethtool_stats() */
2839 vp->xstats.tx_multiple_collisions += window_read8(vp, 6, 2);
2840 vp->xstats.tx_single_collisions += window_read8(vp, 6, 3);
2841 vp->xstats.tx_deferred += window_read8(vp, 6, 8);
2842 vp->xstats.rx_bad_ssd += window_read8(vp, 4, 12);
2843
2844 dev->stats.collisions = vp->xstats.tx_multiple_collisions
2845 + vp->xstats.tx_single_collisions
2846 + vp->xstats.tx_max_collisions;
2847
2848 {
2849 u8 up = window_read8(vp, 4, 13);
2850 dev->stats.rx_bytes += (up & 0x0f) << 16;
2851 dev->stats.tx_bytes += (up & 0xf0) << 12;
2852 }
2853}
2854
2855static int vortex_nway_reset(struct net_device *dev)
2856{
2857 struct vortex_private *vp = netdev_priv(dev);
2858
2859 return mii_nway_restart(&vp->mii);
2860}
2861
2862static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2863{
2864 struct vortex_private *vp = netdev_priv(dev);
2865
2866 return mii_ethtool_gset(&vp->mii, cmd);
2867}
2868
2869static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2870{
2871 struct vortex_private *vp = netdev_priv(dev);
2872
2873 return mii_ethtool_sset(&vp->mii, cmd);
2874}
2875
2876static u32 vortex_get_msglevel(struct net_device *dev)
2877{
2878 return vortex_debug;
2879}
2880
2881static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2882{
2883 vortex_debug = dbg;
2884}
2885
2886static int vortex_get_sset_count(struct net_device *dev, int sset)
2887{
2888 switch (sset) {
2889 case ETH_SS_STATS:
2890 return VORTEX_NUM_STATS;
2891 default:
2892 return -EOPNOTSUPP;
2893 }
2894}
2895
2896static void vortex_get_ethtool_stats(struct net_device *dev,
2897 struct ethtool_stats *stats, u64 *data)
2898{
2899 struct vortex_private *vp = netdev_priv(dev);
2900 void __iomem *ioaddr = vp->ioaddr;
2901 unsigned long flags;
2902
2903 spin_lock_irqsave(&vp->lock, flags);
2904 update_stats(ioaddr, dev);
2905 spin_unlock_irqrestore(&vp->lock, flags);
2906
2907 data[0] = vp->xstats.tx_deferred;
2908 data[1] = vp->xstats.tx_max_collisions;
2909 data[2] = vp->xstats.tx_multiple_collisions;
2910 data[3] = vp->xstats.tx_single_collisions;
2911 data[4] = vp->xstats.rx_bad_ssd;
2912}
2913
2914
2915static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2916{
2917 switch (stringset) {
2918 case ETH_SS_STATS:
2919 memcpy(data, ðtool_stats_keys, sizeof(ethtool_stats_keys));
2920 break;
2921 default:
2922 WARN_ON(1);
2923 break;
2924 }
2925}
2926
2927static void vortex_get_drvinfo(struct net_device *dev,
2928 struct ethtool_drvinfo *info)
2929{
2930 struct vortex_private *vp = netdev_priv(dev);
2931
2932 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2933 if (VORTEX_PCI(vp)) {
2934 strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2935 sizeof(info->bus_info));
2936 } else {
2937 if (VORTEX_EISA(vp))
2938 strlcpy(info->bus_info, dev_name(vp->gendev),
2939 sizeof(info->bus_info));
2940 else
2941 snprintf(info->bus_info, sizeof(info->bus_info),
2942 "EISA 0x%lx %d", dev->base_addr, dev->irq);
2943 }
2944}
2945
2946static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2947{
2948 struct vortex_private *vp = netdev_priv(dev);
2949
2950 if (!VORTEX_PCI(vp))
2951 return;
2952
2953 wol->supported = WAKE_MAGIC;
2954
2955 wol->wolopts = 0;
2956 if (vp->enable_wol)
2957 wol->wolopts |= WAKE_MAGIC;
2958}
2959
2960static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2961{
2962 struct vortex_private *vp = netdev_priv(dev);
2963
2964 if (!VORTEX_PCI(vp))
2965 return -EOPNOTSUPP;
2966
2967 if (wol->wolopts & ~WAKE_MAGIC)
2968 return -EINVAL;
2969
2970 if (wol->wolopts & WAKE_MAGIC)
2971 vp->enable_wol = 1;
2972 else
2973 vp->enable_wol = 0;
2974 acpi_set_WOL(dev);
2975
2976 return 0;
2977}
2978
2979static const struct ethtool_ops vortex_ethtool_ops = {
2980 .get_drvinfo = vortex_get_drvinfo,
2981 .get_strings = vortex_get_strings,
2982 .get_msglevel = vortex_get_msglevel,
2983 .set_msglevel = vortex_set_msglevel,
2984 .get_ethtool_stats = vortex_get_ethtool_stats,
2985 .get_sset_count = vortex_get_sset_count,
2986 .get_settings = vortex_get_settings,
2987 .set_settings = vortex_set_settings,
2988 .get_link = ethtool_op_get_link,
2989 .nway_reset = vortex_nway_reset,
2990 .get_wol = vortex_get_wol,
2991 .set_wol = vortex_set_wol,
2992};
2993
2994#ifdef CONFIG_PCI
2995/*
2996 * Must power the device up to do MDIO operations
2997 */
2998static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2999{
3000 int err;
3001 struct vortex_private *vp = netdev_priv(dev);
3002 pci_power_t state = 0;
3003
3004 if(VORTEX_PCI(vp))
3005 state = VORTEX_PCI(vp)->current_state;
3006
3007 /* The kernel core really should have pci_get_power_state() */
3008
3009 if(state != 0)
3010 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3011 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3012 if(state != 0)
3013 pci_set_power_state(VORTEX_PCI(vp), state);
3014
3015 return err;
3016}
3017#endif
3018
3019
3020/* Pre-Cyclone chips have no documented multicast filter, so the only
3021 multicast setting is to receive all multicast frames. At least
3022 the chip has a very clean way to set the mode, unlike many others. */
3023static void set_rx_mode(struct net_device *dev)
3024{
3025 struct vortex_private *vp = netdev_priv(dev);
3026 void __iomem *ioaddr = vp->ioaddr;
3027 int new_mode;
3028
3029 if (dev->flags & IFF_PROMISC) {
3030 if (vortex_debug > 3)
3031 pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3032 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3033 } else if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3034 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3035 } else
3036 new_mode = SetRxFilter | RxStation | RxBroadcast;
3037
3038 iowrite16(new_mode, ioaddr + EL3_CMD);
3039}
3040
3041#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3042/* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3043 Note that this must be done after each RxReset due to some backwards
3044 compatibility logic in the Cyclone and Tornado ASICs */
3045
3046/* The Ethernet Type used for 802.1q tagged frames */
3047#define VLAN_ETHER_TYPE 0x8100
3048
3049static void set_8021q_mode(struct net_device *dev, int enable)
3050{
3051 struct vortex_private *vp = netdev_priv(dev);
3052 int mac_ctrl;
3053
3054 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3055 /* cyclone and tornado chipsets can recognize 802.1q
3056 * tagged frames and treat them correctly */
3057
3058 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3059 if (enable)
3060 max_pkt_size += 4; /* 802.1Q VLAN tag */
3061
3062 window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3063
3064 /* set VlanEtherType to let the hardware checksumming
3065 treat tagged frames correctly */
3066 window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3067 } else {
3068 /* on older cards we have to enable large frames */
3069
3070 vp->large_frames = dev->mtu > 1500 || enable;
3071
3072 mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3073 if (vp->large_frames)
3074 mac_ctrl |= 0x40;
3075 else
3076 mac_ctrl &= ~0x40;
3077 window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3078 }
3079}
3080#else
3081
3082static void set_8021q_mode(struct net_device *dev, int enable)
3083{
3084}
3085
3086
3087#endif
3088
3089/* MII transceiver control section.
3090 Read and write the MII registers using software-generated serial
3091 MDIO protocol. See the MII specifications or DP83840A data sheet
3092 for details. */
3093
3094/* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3095 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3096 "overclocking" issues. */
3097static void mdio_delay(struct vortex_private *vp)
3098{
3099 window_read32(vp, 4, Wn4_PhysicalMgmt);
3100}
3101
3102#define MDIO_SHIFT_CLK 0x01
3103#define MDIO_DIR_WRITE 0x04
3104#define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3105#define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3106#define MDIO_DATA_READ 0x02
3107#define MDIO_ENB_IN 0x00
3108
3109/* Generate the preamble required for initial synchronization and
3110 a few older transceivers. */
3111static void mdio_sync(struct vortex_private *vp, int bits)
3112{
3113 /* Establish sync by sending at least 32 logic ones. */
3114 while (-- bits >= 0) {
3115 window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3116 mdio_delay(vp);
3117 window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3118 4, Wn4_PhysicalMgmt);
3119 mdio_delay(vp);
3120 }
3121}
3122
3123static int mdio_read(struct net_device *dev, int phy_id, int location)
3124{
3125 int i;
3126 struct vortex_private *vp = netdev_priv(dev);
3127 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3128 unsigned int retval = 0;
3129
3130 spin_lock_bh(&vp->mii_lock);
3131
3132 if (mii_preamble_required)
3133 mdio_sync(vp, 32);
3134
3135 /* Shift the read command bits out. */
3136 for (i = 14; i >= 0; i--) {
3137 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3138 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3139 mdio_delay(vp);
3140 window_write16(vp, dataval | MDIO_SHIFT_CLK,
3141 4, Wn4_PhysicalMgmt);
3142 mdio_delay(vp);
3143 }
3144 /* Read the two transition, 16 data, and wire-idle bits. */
3145 for (i = 19; i > 0; i--) {
3146 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3147 mdio_delay(vp);
3148 retval = (retval << 1) |
3149 ((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3150 MDIO_DATA_READ) ? 1 : 0);
3151 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3152 4, Wn4_PhysicalMgmt);
3153 mdio_delay(vp);
3154 }
3155
3156 spin_unlock_bh(&vp->mii_lock);
3157
3158 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3159}
3160
3161static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3162{
3163 struct vortex_private *vp = netdev_priv(dev);
3164 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3165 int i;
3166
3167 spin_lock_bh(&vp->mii_lock);
3168
3169 if (mii_preamble_required)
3170 mdio_sync(vp, 32);
3171
3172 /* Shift the command bits out. */
3173 for (i = 31; i >= 0; i--) {
3174 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3175 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3176 mdio_delay(vp);
3177 window_write16(vp, dataval | MDIO_SHIFT_CLK,
3178 4, Wn4_PhysicalMgmt);
3179 mdio_delay(vp);
3180 }
3181 /* Leave the interface idle. */
3182 for (i = 1; i >= 0; i--) {
3183 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3184 mdio_delay(vp);
3185 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3186 4, Wn4_PhysicalMgmt);
3187 mdio_delay(vp);
3188 }
3189
3190 spin_unlock_bh(&vp->mii_lock);
3191}
3192
3193/* ACPI: Advanced Configuration and Power Interface. */
3194/* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3195static void acpi_set_WOL(struct net_device *dev)
3196{
3197 struct vortex_private *vp = netdev_priv(dev);
3198 void __iomem *ioaddr = vp->ioaddr;
3199
3200 device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3201
3202 if (vp->enable_wol) {
3203 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3204 window_write16(vp, 2, 7, 0x0c);
3205 /* The RxFilter must accept the WOL frames. */
3206 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3207 iowrite16(RxEnable, ioaddr + EL3_CMD);
3208
3209 if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3210 pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3211
3212 vp->enable_wol = 0;
3213 return;
3214 }
3215
3216 if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3217 return;
3218
3219 /* Change the power state to D3; RxEnable doesn't take effect. */
3220 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3221 }
3222}
3223
3224
3225static void __devexit vortex_remove_one(struct pci_dev *pdev)
3226{
3227 struct net_device *dev = pci_get_drvdata(pdev);
3228 struct vortex_private *vp;
3229
3230 if (!dev) {
3231 pr_err("vortex_remove_one called for Compaq device!\n");
3232 BUG();
3233 }
3234
3235 vp = netdev_priv(dev);
3236
3237 if (vp->cb_fn_base)
3238 pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3239
3240 unregister_netdev(dev);
3241
3242 if (VORTEX_PCI(vp)) {
3243 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
3244 if (vp->pm_state_valid)
3245 pci_restore_state(VORTEX_PCI(vp));
3246 pci_disable_device(VORTEX_PCI(vp));
3247 }
3248 /* Should really use issue_and_wait() here */
3249 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3250 vp->ioaddr + EL3_CMD);
3251
3252 pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3253
3254 pci_free_consistent(pdev,
3255 sizeof(struct boom_rx_desc) * RX_RING_SIZE
3256 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3257 vp->rx_ring,
3258 vp->rx_ring_dma);
3259 if (vp->must_free_region)
3260 release_region(dev->base_addr, vp->io_size);
3261 free_netdev(dev);
3262}
3263
3264
3265static struct pci_driver vortex_driver = {
3266 .name = "3c59x",
3267 .probe = vortex_init_one,
3268 .remove = __devexit_p(vortex_remove_one),
3269 .id_table = vortex_pci_tbl,
3270 .driver.pm = VORTEX_PM_OPS,
3271};
3272
3273
3274static int vortex_have_pci;
3275static int vortex_have_eisa;
3276
3277
3278static int __init vortex_init(void)
3279{
3280 int pci_rc, eisa_rc;
3281
3282 pci_rc = pci_register_driver(&vortex_driver);
3283 eisa_rc = vortex_eisa_init();
3284
3285 if (pci_rc == 0)
3286 vortex_have_pci = 1;
3287 if (eisa_rc > 0)
3288 vortex_have_eisa = 1;
3289
3290 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3291}
3292
3293
3294static void __exit vortex_eisa_cleanup(void)
3295{
3296 struct vortex_private *vp;
3297 void __iomem *ioaddr;
3298
3299#ifdef CONFIG_EISA
3300 /* Take care of the EISA devices */
3301 eisa_driver_unregister(&vortex_eisa_driver);
3302#endif
3303
3304 if (compaq_net_device) {
3305 vp = netdev_priv(compaq_net_device);
3306 ioaddr = ioport_map(compaq_net_device->base_addr,
3307 VORTEX_TOTAL_SIZE);
3308
3309 unregister_netdev(compaq_net_device);
3310 iowrite16(TotalReset, ioaddr + EL3_CMD);
3311 release_region(compaq_net_device->base_addr,
3312 VORTEX_TOTAL_SIZE);
3313
3314 free_netdev(compaq_net_device);
3315 }
3316}
3317
3318
3319static void __exit vortex_cleanup(void)
3320{
3321 if (vortex_have_pci)
3322 pci_unregister_driver(&vortex_driver);
3323 if (vortex_have_eisa)
3324 vortex_eisa_cleanup();
3325}
3326
3327
3328module_init(vortex_init);
3329module_exit(vortex_cleanup);