Linux Audio

Check our new training course

Loading...
v6.8
   1/* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
   2/*
   3	Written 1996-1999 by Donald Becker.
   4
   5	This software may be used and distributed according to the terms
   6	of the GNU General Public License, incorporated herein by reference.
   7
   8	This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
   9	Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
  10	and the EtherLink XL 3c900 and 3c905 cards.
  11
  12	Problem reports and questions should be directed to
  13	vortex@scyld.com
  14
  15	The author may be reached as becker@scyld.com, or C/O
  16	Scyld Computing Corporation
  17	410 Severn Ave., Suite 210
  18	Annapolis MD 21403
  19
  20*/
  21
  22/*
  23 * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
  24 * as well as other drivers
  25 *
  26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
  27 * due to dead code elimination.  There will be some performance benefits from this due to
  28 * elimination of all the tests and reduced cache footprint.
  29 */
  30
  31
  32#define DRV_NAME	"3c59x"
  33
  34
  35
  36/* A few values that may be tweaked. */
  37/* Keep the ring sizes a power of two for efficiency. */
  38#define TX_RING_SIZE	16
  39#define RX_RING_SIZE	32
  40#define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
  41
  42/* "Knobs" that adjust features and parameters. */
  43/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  44   Setting to > 1512 effectively disables this feature. */
  45#ifndef __arm__
  46static int rx_copybreak = 200;
  47#else
  48/* ARM systems perform better by disregarding the bus-master
  49   transfer capability of these cards. -- rmk */
  50static int rx_copybreak = 1513;
  51#endif
  52/* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
  53static const int mtu = 1500;
  54/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
  55static int max_interrupt_work = 32;
  56/* Tx timeout interval (millisecs) */
  57static int watchdog = 5000;
  58
  59/* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
  60 * of possible Tx stalls if the system is blocking interrupts
  61 * somewhere else.  Undefine this to disable.
  62 */
  63#define tx_interrupt_mitigation 1
  64
  65/* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
  66#define vortex_debug debug
  67#ifdef VORTEX_DEBUG
  68static int vortex_debug = VORTEX_DEBUG;
  69#else
  70static int vortex_debug = 1;
  71#endif
  72
  73#include <linux/module.h>
  74#include <linux/kernel.h>
  75#include <linux/string.h>
  76#include <linux/timer.h>
  77#include <linux/errno.h>
  78#include <linux/in.h>
  79#include <linux/ioport.h>
  80#include <linux/interrupt.h>
  81#include <linux/pci.h>
  82#include <linux/mii.h>
  83#include <linux/init.h>
  84#include <linux/netdevice.h>
  85#include <linux/etherdevice.h>
  86#include <linux/skbuff.h>
  87#include <linux/ethtool.h>
  88#include <linux/highmem.h>
  89#include <linux/eisa.h>
  90#include <linux/bitops.h>
  91#include <linux/jiffies.h>
  92#include <linux/gfp.h>
  93#include <asm/irq.h>			/* For nr_irqs only. */
  94#include <asm/io.h>
  95#include <linux/uaccess.h>
  96
  97/* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
  98   This is only in the support-all-kernels source code. */
  99
 100#define RUN_AT(x) (jiffies + (x))
 101
 102#include <linux/delay.h>
 103
 104
 105static const char version[] =
 106	DRV_NAME ": Donald Becker and others.\n";
 107
 108MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 109MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
 110MODULE_LICENSE("GPL");
 111
 112
 113/* Operational parameter that usually are not changed. */
 114
 115/* The Vortex size is twice that of the original EtherLinkIII series: the
 116   runtime register window, window 1, is now always mapped in.
 117   The Boomerang size is twice as large as the Vortex -- it has additional
 118   bus master control registers. */
 119#define VORTEX_TOTAL_SIZE 0x20
 120#define BOOMERANG_TOTAL_SIZE 0x40
 121
 122/* Set iff a MII transceiver on any interface requires mdio preamble.
 123   This only set with the original DP83840 on older 3c905 boards, so the extra
 124   code size of a per-interface flag is not worthwhile. */
 125static char mii_preamble_required;
 126
 127#define PFX DRV_NAME ": "
 128
 129
 130
 131/*
 132				Theory of Operation
 133
 134I. Board Compatibility
 135
 136This device driver is designed for the 3Com FastEtherLink and FastEtherLink
 137XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
 138versions of the FastEtherLink cards.  The supported product IDs are
 139  3c590, 3c592, 3c595, 3c597, 3c900, 3c905
 140
 141The related ISA 3c515 is supported with a separate driver, 3c515.c, included
 142with the kernel source or available from
 143    cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
 144
 145II. Board-specific settings
 146
 147PCI bus devices are configured by the system at boot time, so no jumpers
 148need to be set on the board.  The system BIOS should be set to assign the
 149PCI INTA signal to an otherwise unused system IRQ line.
 150
 151The EEPROM settings for media type and forced-full-duplex are observed.
 152The EEPROM media type should be left at the default "autoselect" unless using
 15310base2 or AUI connections which cannot be reliably detected.
 154
 155III. Driver operation
 156
 157The 3c59x series use an interface that's very similar to the previous 3c5x9
 158series.  The primary interface is two programmed-I/O FIFOs, with an
 159alternate single-contiguous-region bus-master transfer (see next).
 160
 161The 3c900 "Boomerang" series uses a full-bus-master interface with separate
 162lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
 163DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
 164programmed-I/O interface that has been removed in 'B' and subsequent board
 165revisions.
 166
 167One extension that is advertised in a very large font is that the adapters
 168are capable of being bus masters.  On the Vortex chip this capability was
 169only for a single contiguous region making it far less useful than the full
 170bus master capability.  There is a significant performance impact of taking
 171an extra interrupt or polling for the completion of each transfer, as well
 172as difficulty sharing the single transfer engine between the transmit and
 173receive threads.  Using DMA transfers is a win only with large blocks or
 174with the flawed versions of the Intel Orion motherboard PCI controller.
 175
 176The Boomerang chip's full-bus-master interface is useful, and has the
 177currently-unused advantages over other similar chips that queued transmit
 178packets may be reordered and receive buffer groups are associated with a
 179single frame.
 180
 181With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
 182Rather than a fixed intermediate receive buffer, this scheme allocates
 183full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
 184the copying breakpoint: it is chosen to trade-off the memory wasted by
 185passing the full-sized skbuff to the queue layer for all frames vs. the
 186copying cost of copying a frame to a correctly-sized skbuff.
 187
 188IIIC. Synchronization
 189The driver runs as two independent, single-threaded flows of control.  One
 190is the send-packet routine, which enforces single-threaded use by the
 191dev->tbusy flag.  The other thread is the interrupt handler, which is single
 192threaded by the hardware and other software.
 193
 194IV. Notes
 195
 196Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
 1973c590, 3c595, and 3c900 boards.
 198The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
 199the EISA version is called "Demon".  According to Terry these names come
 200from rides at the local amusement park.
 201
 202The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
 203This driver only supports ethernet packets because of the skbuff allocation
 204limit of 4K.
 205*/
 206
 207/* This table drives the PCI probe routines.  It's mostly boilerplate in all
 208   of the drivers, and will likely be provided by some future kernel.
 209*/
 210enum pci_flags_bit {
 211	PCI_USES_MASTER=4,
 212};
 213
 214enum {	IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
 215	EEPROM_8BIT=0x10,	/* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
 216	HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
 217	INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
 218	EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
 219	EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
 220
 221enum vortex_chips {
 222	CH_3C590 = 0,
 223	CH_3C592,
 224	CH_3C597,
 225	CH_3C595_1,
 226	CH_3C595_2,
 227
 228	CH_3C595_3,
 229	CH_3C900_1,
 230	CH_3C900_2,
 231	CH_3C900_3,
 232	CH_3C900_4,
 233
 234	CH_3C900_5,
 235	CH_3C900B_FL,
 236	CH_3C905_1,
 237	CH_3C905_2,
 238	CH_3C905B_TX,
 239	CH_3C905B_1,
 240
 241	CH_3C905B_2,
 242	CH_3C905B_FX,
 243	CH_3C905C,
 244	CH_3C9202,
 245	CH_3C980,
 246	CH_3C9805,
 247
 248	CH_3CSOHO100_TX,
 249	CH_3C555,
 250	CH_3C556,
 251	CH_3C556B,
 252	CH_3C575,
 253
 254	CH_3C575_1,
 255	CH_3CCFE575,
 256	CH_3CCFE575CT,
 257	CH_3CCFE656,
 258	CH_3CCFEM656,
 259
 260	CH_3CCFEM656_1,
 261	CH_3C450,
 262	CH_3C920,
 263	CH_3C982A,
 264	CH_3C982B,
 265
 266	CH_905BT4,
 267	CH_920B_EMB_WNM,
 268};
 269
 270
 271/* note: this array directly indexed by above enums, and MUST
 272 * be kept in sync with both the enums above, and the PCI device
 273 * table below
 274 */
 275static struct vortex_chip_info {
 276	const char *name;
 277	int flags;
 278	int drv_flags;
 279	int io_size;
 280} vortex_info_tbl[] = {
 281	{"3c590 Vortex 10Mbps",
 282	 PCI_USES_MASTER, IS_VORTEX, 32, },
 283	{"3c592 EISA 10Mbps Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
 284	 PCI_USES_MASTER, IS_VORTEX, 32, },
 285	{"3c597 EISA Fast Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
 286	 PCI_USES_MASTER, IS_VORTEX, 32, },
 287	{"3c595 Vortex 100baseTx",
 288	 PCI_USES_MASTER, IS_VORTEX, 32, },
 289	{"3c595 Vortex 100baseT4",
 290	 PCI_USES_MASTER, IS_VORTEX, 32, },
 291
 292	{"3c595 Vortex 100base-MII",
 293	 PCI_USES_MASTER, IS_VORTEX, 32, },
 294	{"3c900 Boomerang 10baseT",
 295	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 296	{"3c900 Boomerang 10Mbps Combo",
 297	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 298	{"3c900 Cyclone 10Mbps TPO",						/* AKPM: from Don's 0.99M */
 299	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 300	{"3c900 Cyclone 10Mbps Combo",
 301	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 302
 303	{"3c900 Cyclone 10Mbps TPC",						/* AKPM: from Don's 0.99M */
 304	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 305	{"3c900B-FL Cyclone 10base-FL",
 306	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 307	{"3c905 Boomerang 100baseTx",
 308	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 309	{"3c905 Boomerang 100baseT4",
 310	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 311	{"3C905B-TX Fast Etherlink XL PCI",
 312	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 313	{"3c905B Cyclone 100baseTx",
 314	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 315
 316	{"3c905B Cyclone 10/100/BNC",
 317	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 318	{"3c905B-FX Cyclone 100baseFx",
 319	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 320	{"3c905C Tornado",
 321	PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 322	{"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
 323	 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
 324	{"3c980 Cyclone",
 325	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 326
 327	{"3c980C Python-T",
 328	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 329	{"3cSOHO100-TX Hurricane",
 330	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 331	{"3c555 Laptop Hurricane",
 332	 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
 333	{"3c556 Laptop Tornado",
 334	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
 335									HAS_HWCKSM, 128, },
 336	{"3c556B Laptop Hurricane",
 337	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
 338	                                WNO_XCVR_PWR|HAS_HWCKSM, 128, },
 339
 340	{"3c575 [Megahertz] 10/100 LAN 	CardBus",
 341	PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 342	{"3c575 Boomerang CardBus",
 343	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 344	{"3CCFE575BT Cyclone CardBus",
 345	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
 346									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 347	{"3CCFE575CT Tornado CardBus",
 348	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 349									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 350	{"3CCFE656 Cyclone CardBus",
 351	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 352									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 353
 354	{"3CCFEM656B Cyclone+Winmodem CardBus",
 355	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 356									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 357	{"3CXFEM656C Tornado+Winmodem CardBus",			/* From pcmcia-cs-3.1.5 */
 358	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 359									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 360	{"3c450 HomePNA Tornado",						/* AKPM: from Don's 0.99Q */
 361	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 362	{"3c920 Tornado",
 363	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 364	{"3c982 Hydra Dual Port A",
 365	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 366
 367	{"3c982 Hydra Dual Port B",
 368	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 369	{"3c905B-T4",
 370	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 371	{"3c920B-EMB-WNM Tornado",
 372	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 373
 374	{NULL,}, /* NULL terminated list. */
 375};
 376
 377
 378static const struct pci_device_id vortex_pci_tbl[] = {
 379	{ 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
 380	{ 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
 381	{ 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
 382	{ 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
 383	{ 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
 384
 385	{ 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
 386	{ 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
 387	{ 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
 388	{ 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
 389	{ 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
 390
 391	{ 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
 392	{ 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
 393	{ 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
 394	{ 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
 395	{ 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
 396	{ 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
 397
 398	{ 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
 399	{ 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
 400	{ 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
 401	{ 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
 402	{ 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
 403	{ 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
 404
 405	{ 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
 406	{ 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
 407	{ 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
 408	{ 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
 409	{ 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
 410
 411	{ 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
 412	{ 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
 413	{ 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
 414	{ 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
 415	{ 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
 416
 417	{ 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
 418	{ 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
 419	{ 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
 420	{ 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
 421	{ 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
 422
 423	{ 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
 424	{ 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
 425
 426	{0,}						/* 0 terminated list. */
 427};
 428MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
 429
 430
 431/* Operational definitions.
 432   These are not used by other compilation units and thus are not
 433   exported in a ".h" file.
 434
 435   First the windows.  There are eight register windows, with the command
 436   and status registers available in each.
 437   */
 438#define EL3_CMD 0x0e
 439#define EL3_STATUS 0x0e
 440
 441/* The top five bits written to EL3_CMD are a command, the lower
 442   11 bits are the parameter, if applicable.
 443   Note that 11 parameters bits was fine for ethernet, but the new chip
 444   can handle FDDI length frames (~4500 octets) and now parameters count
 445   32-bit 'Dwords' rather than octets. */
 446
 447enum vortex_cmd {
 448	TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
 449	RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
 450	UpStall = 6<<11, UpUnstall = (6<<11)+1,
 451	DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
 452	RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
 453	FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
 454	SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
 455	SetTxThreshold = 18<<11, SetTxStart = 19<<11,
 456	StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
 457	StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
 458
 459/* The SetRxFilter command accepts the following classes: */
 460enum RxFilter {
 461	RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
 462
 463/* Bits in the general status register. */
 464enum vortex_status {
 465	IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
 466	TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
 467	IntReq = 0x0040, StatsFull = 0x0080,
 468	DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
 469	DMAInProgress = 1<<11,			/* DMA controller is still busy.*/
 470	CmdInProgress = 1<<12,			/* EL3_CMD is still busy.*/
 471};
 472
 473/* Register window 1 offsets, the window used in normal operation.
 474   On the Vortex this window is always mapped at offsets 0x10-0x1f. */
 475enum Window1 {
 476	TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
 477	RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
 478	TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
 479};
 480enum Window0 {
 481	Wn0EepromCmd = 10,		/* Window 0: EEPROM command register. */
 482	Wn0EepromData = 12,		/* Window 0: EEPROM results register. */
 483	IntrStatus=0x0E,		/* Valid in all windows. */
 484};
 485enum Win0_EEPROM_bits {
 486	EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
 487	EEPROM_EWENB = 0x30,		/* Enable erasing/writing for 10 msec. */
 488	EEPROM_EWDIS = 0x00,		/* Disable EWENB before 10 msec timeout. */
 489};
 490/* EEPROM locations. */
 491enum eeprom_offset {
 492	PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
 493	EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
 494	NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
 495	DriverTune=13, Checksum=15};
 496
 497enum Window2 {			/* Window 2. */
 498	Wn2_ResetOptions=12,
 499};
 500enum Window3 {			/* Window 3: MAC/config bits. */
 501	Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
 502};
 503
 504#define BFEXT(value, offset, bitcount)  \
 505    ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
 506
 507#define BFINS(lhs, rhs, offset, bitcount)					\
 508	(((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |	\
 509	(((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
 510
 511#define RAM_SIZE(v)		BFEXT(v, 0, 3)
 512#define RAM_WIDTH(v)	BFEXT(v, 3, 1)
 513#define RAM_SPEED(v)	BFEXT(v, 4, 2)
 514#define ROM_SIZE(v)		BFEXT(v, 6, 2)
 515#define RAM_SPLIT(v)	BFEXT(v, 16, 2)
 516#define XCVR(v)			BFEXT(v, 20, 4)
 517#define AUTOSELECT(v)	BFEXT(v, 24, 1)
 518
 519enum Window4 {		/* Window 4: Xcvr/media bits. */
 520	Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
 521};
 522enum Win4_Media_bits {
 523	Media_SQE = 0x0008,		/* Enable SQE error counting for AUI. */
 524	Media_10TP = 0x00C0,	/* Enable link beat and jabber for 10baseT. */
 525	Media_Lnk = 0x0080,		/* Enable just link beat for 100TX/100FX. */
 526	Media_LnkBeat = 0x0800,
 527};
 528enum Window7 {					/* Window 7: Bus Master control. */
 529	Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
 530	Wn7_MasterStatus = 12,
 531};
 532/* Boomerang bus master control registers. */
 533enum MasterCtrl {
 534	PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
 535	TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
 536};
 537
 538/* The Rx and Tx descriptor lists.
 539   Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
 540   alignment contraint on tx_ring[] and rx_ring[]. */
 541#define LAST_FRAG 	0x80000000			/* Last Addr/Len pair in descriptor. */
 542#define DN_COMPLETE	0x00010000			/* This packet has been downloaded */
 543struct boom_rx_desc {
 544	__le32 next;					/* Last entry points to 0.   */
 545	__le32 status;
 546	__le32 addr;					/* Up to 63 addr/len pairs possible. */
 547	__le32 length;					/* Set LAST_FRAG to indicate last pair. */
 548};
 549/* Values for the Rx status entry. */
 550enum rx_desc_status {
 551	RxDComplete=0x00008000, RxDError=0x4000,
 552	/* See boomerang_rx() for actual error bits */
 553	IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
 554	IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
 555};
 556
 557#ifdef MAX_SKB_FRAGS
 558#define DO_ZEROCOPY 1
 559#else
 560#define DO_ZEROCOPY 0
 561#endif
 562
 563struct boom_tx_desc {
 564	__le32 next;					/* Last entry points to 0.   */
 565	__le32 status;					/* bits 0:12 length, others see below.  */
 566#if DO_ZEROCOPY
 567	struct {
 568		__le32 addr;
 569		__le32 length;
 570	} frag[1+MAX_SKB_FRAGS];
 571#else
 572		__le32 addr;
 573		__le32 length;
 574#endif
 575};
 576
 577/* Values for the Tx status entry. */
 578enum tx_desc_status {
 579	CRCDisable=0x2000, TxDComplete=0x8000,
 580	AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
 581	TxIntrUploaded=0x80000000,		/* IRQ when in FIFO, but maybe not sent. */
 582};
 583
 584/* Chip features we care about in vp->capabilities, read from the EEPROM. */
 585enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
 586
 587struct vortex_extra_stats {
 588	unsigned long tx_deferred;
 589	unsigned long tx_max_collisions;
 590	unsigned long tx_multiple_collisions;
 591	unsigned long tx_single_collisions;
 592	unsigned long rx_bad_ssd;
 593};
 594
 595struct vortex_private {
 596	/* The Rx and Tx rings should be quad-word-aligned. */
 597	struct boom_rx_desc* rx_ring;
 598	struct boom_tx_desc* tx_ring;
 599	dma_addr_t rx_ring_dma;
 600	dma_addr_t tx_ring_dma;
 601	/* The addresses of transmit- and receive-in-place skbuffs. */
 602	struct sk_buff* rx_skbuff[RX_RING_SIZE];
 603	struct sk_buff* tx_skbuff[TX_RING_SIZE];
 604	unsigned int cur_rx, cur_tx;		/* The next free ring entry */
 605	unsigned int dirty_tx;	/* The ring entries to be free()ed. */
 606	struct vortex_extra_stats xstats;	/* NIC-specific extra stats */
 607	struct sk_buff *tx_skb;				/* Packet being eaten by bus master ctrl.  */
 608	dma_addr_t tx_skb_dma;				/* Allocated DMA address for bus master ctrl DMA.   */
 609
 610	/* PCI configuration space information. */
 611	struct device *gendev;
 612	void __iomem *ioaddr;			/* IO address space */
 613	void __iomem *cb_fn_base;		/* CardBus function status addr space. */
 614
 615	/* Some values here only for performance evaluation and path-coverage */
 616	int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
 617	int card_idx;
 618
 619	/* The remainder are related to chip state, mostly media selection. */
 620	struct timer_list timer;			/* Media selection timer. */
 
 621	int options;						/* User-settable misc. driver options. */
 622	unsigned int media_override:4, 		/* Passed-in media type. */
 623		default_media:4,				/* Read from the EEPROM/Wn3_Config. */
 624		full_duplex:1, autoselect:1,
 625		bus_master:1,					/* Vortex can only do a fragment bus-m. */
 626		full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
 627		flow_ctrl:1,					/* Use 802.3x flow control (PAUSE only) */
 628		partner_flow_ctrl:1,			/* Partner supports flow control */
 629		has_nway:1,
 630		enable_wol:1,					/* Wake-on-LAN is enabled */
 631		pm_state_valid:1,				/* pci_dev->saved_config_space has sane contents */
 632		open:1,
 633		medialock:1,
 
 634		large_frames:1,			/* accept large frames */
 635		handling_irq:1;			/* private in_irq indicator */
 636	/* {get|set}_wol operations are already serialized by rtnl.
 637	 * no additional locking is required for the enable_wol and acpi_set_WOL()
 638	 */
 639	int drv_flags;
 640	u16 status_enable;
 641	u16 intr_enable;
 642	u16 available_media;				/* From Wn3_Options. */
 643	u16 capabilities, info1, info2;		/* Various, from EEPROM. */
 644	u16 advertising;					/* NWay media advertisement */
 645	unsigned char phys[2];				/* MII device addresses. */
 646	u16 deferred;						/* Resend these interrupts when we
 647										 * bale from the ISR */
 648	u16 io_size;						/* Size of PCI region (for release_region) */
 649
 650	/* Serialises access to hardware other than MII and variables below.
 651	 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
 652	spinlock_t lock;
 653
 654	spinlock_t mii_lock;		/* Serialises access to MII */
 655	struct mii_if_info mii;		/* MII lib hooks/info */
 656	spinlock_t window_lock;		/* Serialises access to windowed regs */
 657	int window;			/* Register window */
 658};
 659
 660static void window_set(struct vortex_private *vp, int window)
 661{
 662	if (window != vp->window) {
 663		iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
 664		vp->window = window;
 665	}
 666}
 667
 668#define DEFINE_WINDOW_IO(size)						\
 669static u ## size							\
 670window_read ## size(struct vortex_private *vp, int window, int addr)	\
 671{									\
 672	unsigned long flags;						\
 673	u ## size ret;							\
 674	spin_lock_irqsave(&vp->window_lock, flags);			\
 675	window_set(vp, window);						\
 676	ret = ioread ## size(vp->ioaddr + addr);			\
 677	spin_unlock_irqrestore(&vp->window_lock, flags);		\
 678	return ret;							\
 679}									\
 680static void								\
 681window_write ## size(struct vortex_private *vp, u ## size value,	\
 682		     int window, int addr)				\
 683{									\
 684	unsigned long flags;						\
 685	spin_lock_irqsave(&vp->window_lock, flags);			\
 686	window_set(vp, window);						\
 687	iowrite ## size(value, vp->ioaddr + addr);			\
 688	spin_unlock_irqrestore(&vp->window_lock, flags);		\
 689}
 690DEFINE_WINDOW_IO(8)
 691DEFINE_WINDOW_IO(16)
 692DEFINE_WINDOW_IO(32)
 693
 694#ifdef CONFIG_PCI
 695#define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL)
 696#else
 697#define DEVICE_PCI(dev) NULL
 698#endif
 699
 700#define VORTEX_PCI(vp)							\
 701	((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
 702
 703#ifdef CONFIG_EISA
 704#define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
 705#else
 706#define DEVICE_EISA(dev) NULL
 707#endif
 708
 709#define VORTEX_EISA(vp)							\
 710	((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
 711
 712/* The action to take with a media selection timer tick.
 713   Note that we deviate from the 3Com order by checking 10base2 before AUI.
 714 */
 715enum xcvr_types {
 716	XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
 717	XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
 718};
 719
 720static const struct media_table {
 721	char *name;
 722	unsigned int media_bits:16,		/* Bits to set in Wn4_Media register. */
 723		mask:8,						/* The transceiver-present bit in Wn3_Config.*/
 724		next:8;						/* The media type to try next. */
 725	int wait;						/* Time before we check media status. */
 726} media_tbl[] = {
 727  {	"10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
 728  { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
 729  { "undefined", 0,			0x80, XCVR_10baseT, 10000},
 730  { "10base2",   0,			0x10, XCVR_AUI,		(1*HZ)/10},
 731  { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
 732  { "100baseFX", Media_Lnk, 0x04, XCVR_MII,		(14*HZ)/10},
 733  { "MII",		 0,			0x41, XCVR_10baseT, 3*HZ },
 734  { "undefined", 0,			0x01, XCVR_10baseT, 10000},
 735  { "Autonegotiate", 0,		0x41, XCVR_10baseT, 3*HZ},
 736  { "MII-External",	 0,		0x41, XCVR_10baseT, 3*HZ },
 737  { "Default",	 0,			0xFF, XCVR_10baseT, 10000},
 738};
 739
 740static struct {
 741	const char str[ETH_GSTRING_LEN];
 742} ethtool_stats_keys[] = {
 743	{ "tx_deferred" },
 744	{ "tx_max_collisions" },
 745	{ "tx_multiple_collisions" },
 746	{ "tx_single_collisions" },
 747	{ "rx_bad_ssd" },
 748};
 749
 750/* number of ETHTOOL_GSTATS u64's */
 751#define VORTEX_NUM_STATS    5
 752
 753static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
 754				   int chip_idx, int card_idx);
 755static int vortex_up(struct net_device *dev);
 756static void vortex_down(struct net_device *dev, int final);
 757static int vortex_open(struct net_device *dev);
 758static void mdio_sync(struct vortex_private *vp, int bits);
 759static int mdio_read(struct net_device *dev, int phy_id, int location);
 760static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
 761static void vortex_timer(struct timer_list *t);
 
 762static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
 763				     struct net_device *dev);
 764static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
 765					struct net_device *dev);
 766static int vortex_rx(struct net_device *dev);
 767static int boomerang_rx(struct net_device *dev);
 768static irqreturn_t vortex_boomerang_interrupt(int irq, void *dev_id);
 769static irqreturn_t _vortex_interrupt(int irq, struct net_device *dev);
 770static irqreturn_t _boomerang_interrupt(int irq, struct net_device *dev);
 771static int vortex_close(struct net_device *dev);
 772static void dump_tx_ring(struct net_device *dev);
 773static void update_stats(void __iomem *ioaddr, struct net_device *dev);
 774static struct net_device_stats *vortex_get_stats(struct net_device *dev);
 775static void set_rx_mode(struct net_device *dev);
 776#ifdef CONFIG_PCI
 777static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 778#endif
 779static void vortex_tx_timeout(struct net_device *dev, unsigned int txqueue);
 780static void acpi_set_WOL(struct net_device *dev);
 781static const struct ethtool_ops vortex_ethtool_ops;
 782static void set_8021q_mode(struct net_device *dev, int enable);
 783
 784/* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
 785/* Option count limit only -- unlimited interfaces are supported. */
 786#define MAX_UNITS 8
 787static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
 788static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 789static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 790static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 791static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 792static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 793static int global_options = -1;
 794static int global_full_duplex = -1;
 795static int global_enable_wol = -1;
 796static int global_use_mmio = -1;
 797
 798/* Variables to work-around the Compaq PCI BIOS32 problem. */
 799static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
 800static struct net_device *compaq_net_device;
 801
 802static int vortex_cards_found;
 803
 804module_param(debug, int, 0);
 805module_param(global_options, int, 0);
 806module_param_array(options, int, NULL, 0);
 807module_param(global_full_duplex, int, 0);
 808module_param_array(full_duplex, int, NULL, 0);
 809module_param_array(hw_checksums, int, NULL, 0);
 810module_param_array(flow_ctrl, int, NULL, 0);
 811module_param(global_enable_wol, int, 0);
 812module_param_array(enable_wol, int, NULL, 0);
 813module_param(rx_copybreak, int, 0);
 814module_param(max_interrupt_work, int, 0);
 815module_param_hw(compaq_ioaddr, int, ioport, 0);
 816module_param_hw(compaq_irq, int, irq, 0);
 817module_param(compaq_device_id, int, 0);
 818module_param(watchdog, int, 0);
 819module_param(global_use_mmio, int, 0);
 820module_param_array(use_mmio, int, NULL, 0);
 821MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
 822MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
 823MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
 824MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
 825MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
 826MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
 827MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
 828MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
 829MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
 830MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
 831MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
 832MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
 833MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
 834MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
 835MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
 836MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
 837MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
 838
 839#ifdef CONFIG_NET_POLL_CONTROLLER
 840static void poll_vortex(struct net_device *dev)
 841{
 842	vortex_boomerang_interrupt(dev->irq, dev);
 
 
 
 
 843}
 844#endif
 845
 846#ifdef CONFIG_PM
 847
 848static int vortex_suspend(struct device *dev)
 849{
 850	struct net_device *ndev = dev_get_drvdata(dev);
 
 851
 852	if (!ndev || !netif_running(ndev))
 853		return 0;
 854
 855	netif_device_detach(ndev);
 856	vortex_down(ndev, 1);
 857
 858	return 0;
 859}
 860
 861static int vortex_resume(struct device *dev)
 862{
 863	struct net_device *ndev = dev_get_drvdata(dev);
 
 864	int err;
 865
 866	if (!ndev || !netif_running(ndev))
 867		return 0;
 868
 869	err = vortex_up(ndev);
 870	if (err)
 871		return err;
 872
 873	netif_device_attach(ndev);
 874
 875	return 0;
 876}
 877
 878static const struct dev_pm_ops vortex_pm_ops = {
 879	.suspend = vortex_suspend,
 880	.resume = vortex_resume,
 881	.freeze = vortex_suspend,
 882	.thaw = vortex_resume,
 883	.poweroff = vortex_suspend,
 884	.restore = vortex_resume,
 885};
 886
 887#define VORTEX_PM_OPS (&vortex_pm_ops)
 888
 889#else /* !CONFIG_PM */
 890
 891#define VORTEX_PM_OPS NULL
 892
 893#endif /* !CONFIG_PM */
 894
 895#ifdef CONFIG_EISA
 896static const struct eisa_device_id vortex_eisa_ids[] = {
 897	{ "TCM5920", CH_3C592 },
 898	{ "TCM5970", CH_3C597 },
 899	{ "" }
 900};
 901MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
 902
 903static int vortex_eisa_probe(struct device *device)
 904{
 905	void __iomem *ioaddr;
 906	struct eisa_device *edev;
 907
 908	edev = to_eisa_device(device);
 909
 910	if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
 911		return -EBUSY;
 912
 913	ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
 914
 915	if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
 916					  edev->id.driver_data, vortex_cards_found)) {
 917		release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 918		return -ENODEV;
 919	}
 920
 921	vortex_cards_found++;
 922
 923	return 0;
 924}
 925
 926static int vortex_eisa_remove(struct device *device)
 927{
 928	struct eisa_device *edev;
 929	struct net_device *dev;
 930	struct vortex_private *vp;
 931	void __iomem *ioaddr;
 932
 933	edev = to_eisa_device(device);
 934	dev = eisa_get_drvdata(edev);
 935
 936	if (!dev) {
 937		pr_err("vortex_eisa_remove called for Compaq device!\n");
 938		BUG();
 939	}
 940
 941	vp = netdev_priv(dev);
 942	ioaddr = vp->ioaddr;
 943
 944	unregister_netdev(dev);
 945	iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
 946	release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 947
 948	free_netdev(dev);
 949	return 0;
 950}
 951
 952static struct eisa_driver vortex_eisa_driver = {
 953	.id_table = vortex_eisa_ids,
 954	.driver   = {
 955		.name    = "3c59x",
 956		.probe   = vortex_eisa_probe,
 957		.remove  = vortex_eisa_remove
 958	}
 959};
 960
 961#endif /* CONFIG_EISA */
 962
 963/* returns count found (>= 0), or negative on error */
 964static int __init vortex_eisa_init(void)
 965{
 966	int eisa_found = 0;
 967	int orig_cards_found = vortex_cards_found;
 968
 969#ifdef CONFIG_EISA
 970	int err;
 971
 972	err = eisa_driver_register (&vortex_eisa_driver);
 973	if (!err) {
 974		/*
 975		 * Because of the way EISA bus is probed, we cannot assume
 976		 * any device have been found when we exit from
 977		 * eisa_driver_register (the bus root driver may not be
 978		 * initialized yet). So we blindly assume something was
 979		 * found, and let the sysfs magic happened...
 980		 */
 981		eisa_found = 1;
 982	}
 983#endif
 984
 985	/* Special code to work-around the Compaq PCI BIOS32 problem. */
 986	if (compaq_ioaddr) {
 987		vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
 988			      compaq_irq, compaq_device_id, vortex_cards_found++);
 989	}
 990
 991	return vortex_cards_found - orig_cards_found + eisa_found;
 992}
 993
 994/* returns count (>= 0), or negative on error */
 995static int vortex_init_one(struct pci_dev *pdev,
 996			   const struct pci_device_id *ent)
 997{
 998	int rc, unit, pci_bar;
 999	struct vortex_chip_info *vci;
1000	void __iomem *ioaddr;
1001
1002	/* wake up and enable device */
1003	rc = pci_enable_device(pdev);
1004	if (rc < 0)
1005		goto out;
1006
1007	rc = pci_request_regions(pdev, DRV_NAME);
1008	if (rc < 0)
1009		goto out_disable;
1010
1011	unit = vortex_cards_found;
1012
1013	if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1014		/* Determine the default if the user didn't override us */
1015		vci = &vortex_info_tbl[ent->driver_data];
1016		pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1017	} else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1018		pci_bar = use_mmio[unit] ? 1 : 0;
1019	else
1020		pci_bar = global_use_mmio ? 1 : 0;
1021
1022	ioaddr = pci_iomap(pdev, pci_bar, 0);
1023	if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1024		ioaddr = pci_iomap(pdev, 0, 0);
1025	if (!ioaddr) {
 
1026		rc = -ENOMEM;
1027		goto out_release;
1028	}
1029
1030	rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1031			   ent->driver_data, unit);
1032	if (rc < 0)
1033		goto out_iounmap;
 
 
 
1034
1035	vortex_cards_found++;
1036	goto out;
1037
1038out_iounmap:
1039	pci_iounmap(pdev, ioaddr);
1040out_release:
1041	pci_release_regions(pdev);
1042out_disable:
1043	pci_disable_device(pdev);
1044out:
1045	return rc;
1046}
1047
1048static const struct net_device_ops boomrang_netdev_ops = {
1049	.ndo_open		= vortex_open,
1050	.ndo_stop		= vortex_close,
1051	.ndo_start_xmit		= boomerang_start_xmit,
1052	.ndo_tx_timeout		= vortex_tx_timeout,
1053	.ndo_get_stats		= vortex_get_stats,
1054#ifdef CONFIG_PCI
1055	.ndo_eth_ioctl		= vortex_ioctl,
1056#endif
1057	.ndo_set_rx_mode	= set_rx_mode,
 
1058	.ndo_set_mac_address 	= eth_mac_addr,
1059	.ndo_validate_addr	= eth_validate_addr,
1060#ifdef CONFIG_NET_POLL_CONTROLLER
1061	.ndo_poll_controller	= poll_vortex,
1062#endif
1063};
1064
1065static const struct net_device_ops vortex_netdev_ops = {
1066	.ndo_open		= vortex_open,
1067	.ndo_stop		= vortex_close,
1068	.ndo_start_xmit		= vortex_start_xmit,
1069	.ndo_tx_timeout		= vortex_tx_timeout,
1070	.ndo_get_stats		= vortex_get_stats,
1071#ifdef CONFIG_PCI
1072	.ndo_eth_ioctl		= vortex_ioctl,
1073#endif
1074	.ndo_set_rx_mode	= set_rx_mode,
 
1075	.ndo_set_mac_address 	= eth_mac_addr,
1076	.ndo_validate_addr	= eth_validate_addr,
1077#ifdef CONFIG_NET_POLL_CONTROLLER
1078	.ndo_poll_controller	= poll_vortex,
1079#endif
1080};
1081
1082/*
1083 * Start up the PCI/EISA device which is described by *gendev.
1084 * Return 0 on success.
1085 *
1086 * NOTE: pdev can be NULL, for the case of a Compaq device
1087 */
1088static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1089			 int chip_idx, int card_idx)
 
1090{
1091	struct vortex_private *vp;
1092	int option;
1093	unsigned int eeprom[0x40], checksum = 0;		/* EEPROM contents */
1094	__be16 addr[ETH_ALEN / 2];
1095	int i, step;
1096	struct net_device *dev;
1097	static int printed_version;
1098	int retval, print_info;
1099	struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1100	const char *print_name = "3c59x";
1101	struct pci_dev *pdev = NULL;
1102	struct eisa_device *edev = NULL;
1103
1104	if (!printed_version) {
1105		pr_info("%s", version);
1106		printed_version = 1;
1107	}
1108
1109	if (gendev) {
1110		if ((pdev = DEVICE_PCI(gendev))) {
1111			print_name = pci_name(pdev);
1112		}
1113
1114		if ((edev = DEVICE_EISA(gendev))) {
1115			print_name = dev_name(&edev->dev);
1116		}
1117	}
1118
1119	dev = alloc_etherdev(sizeof(*vp));
1120	retval = -ENOMEM;
1121	if (!dev)
1122		goto out;
1123
1124	SET_NETDEV_DEV(dev, gendev);
1125	vp = netdev_priv(dev);
1126
1127	option = global_options;
1128
1129	/* The lower four bits are the media type. */
1130	if (dev->mem_start) {
1131		/*
1132		 * The 'options' param is passed in as the third arg to the
1133		 * LILO 'ether=' argument for non-modular use
1134		 */
1135		option = dev->mem_start;
1136	}
1137	else if (card_idx < MAX_UNITS) {
1138		if (options[card_idx] >= 0)
1139			option = options[card_idx];
1140	}
1141
1142	if (option > 0) {
1143		if (option & 0x8000)
1144			vortex_debug = 7;
1145		if (option & 0x4000)
1146			vortex_debug = 2;
1147		if (option & 0x0400)
1148			vp->enable_wol = 1;
1149	}
1150
1151	print_info = (vortex_debug > 1);
1152	if (print_info)
1153		pr_info("See Documentation/networking/device_drivers/ethernet/3com/vortex.rst\n");
1154
1155	pr_info("%s: 3Com %s %s at %p.\n",
1156	       print_name,
1157	       pdev ? "PCI" : "EISA",
1158	       vci->name,
1159	       ioaddr);
1160
1161	dev->base_addr = (unsigned long)ioaddr;
1162	dev->irq = irq;
1163	dev->mtu = mtu;
1164	vp->ioaddr = ioaddr;
1165	vp->large_frames = mtu > 1500;
1166	vp->drv_flags = vci->drv_flags;
1167	vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1168	vp->io_size = vci->io_size;
1169	vp->card_idx = card_idx;
1170	vp->window = -1;
1171
1172	/* module list only for Compaq device */
1173	if (gendev == NULL) {
1174		compaq_net_device = dev;
1175	}
1176
1177	/* PCI-only startup logic */
1178	if (pdev) {
 
 
 
 
 
1179		/* enable bus-mastering if necessary */
1180		if (vci->flags & PCI_USES_MASTER)
1181			pci_set_master(pdev);
1182
1183		if (vci->drv_flags & IS_VORTEX) {
1184			u8 pci_latency;
1185			u8 new_latency = 248;
1186
1187			/* Check the PCI latency value.  On the 3c590 series the latency timer
1188			   must be set to the maximum value to avoid data corruption that occurs
1189			   when the timer expires during a transfer.  This bug exists the Vortex
1190			   chip only. */
1191			pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1192			if (pci_latency < new_latency) {
1193				pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1194					print_name, pci_latency, new_latency);
1195				pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1196			}
1197		}
1198	}
1199
1200	spin_lock_init(&vp->lock);
1201	spin_lock_init(&vp->mii_lock);
1202	spin_lock_init(&vp->window_lock);
1203	vp->gendev = gendev;
1204	vp->mii.dev = dev;
1205	vp->mii.mdio_read = mdio_read;
1206	vp->mii.mdio_write = mdio_write;
1207	vp->mii.phy_id_mask = 0x1f;
1208	vp->mii.reg_num_mask = 0x1f;
1209
1210	/* Makes sure rings are at least 16 byte aligned. */
1211	vp->rx_ring = dma_alloc_coherent(gendev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1212					   + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1213					   &vp->rx_ring_dma, GFP_KERNEL);
1214	retval = -ENOMEM;
1215	if (!vp->rx_ring)
1216		goto free_device;
1217
1218	vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1219	vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1220
1221	/* if we are a PCI driver, we store info in pdev->driver_data
1222	 * instead of a module list */
1223	if (pdev)
1224		pci_set_drvdata(pdev, dev);
1225	if (edev)
1226		eisa_set_drvdata(edev, dev);
1227
1228	vp->media_override = 7;
1229	if (option >= 0) {
1230		vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1231		if (vp->media_override != 7)
1232			vp->medialock = 1;
1233		vp->full_duplex = (option & 0x200) ? 1 : 0;
1234		vp->bus_master = (option & 16) ? 1 : 0;
1235	}
1236
1237	if (global_full_duplex > 0)
1238		vp->full_duplex = 1;
1239	if (global_enable_wol > 0)
1240		vp->enable_wol = 1;
1241
1242	if (card_idx < MAX_UNITS) {
1243		if (full_duplex[card_idx] > 0)
1244			vp->full_duplex = 1;
1245		if (flow_ctrl[card_idx] > 0)
1246			vp->flow_ctrl = 1;
1247		if (enable_wol[card_idx] > 0)
1248			vp->enable_wol = 1;
1249	}
1250
1251	vp->mii.force_media = vp->full_duplex;
1252	vp->options = option;
1253	/* Read the station address from the EEPROM. */
1254	{
1255		int base;
1256
1257		if (vci->drv_flags & EEPROM_8BIT)
1258			base = 0x230;
1259		else if (vci->drv_flags & EEPROM_OFFSET)
1260			base = EEPROM_Read + 0x30;
1261		else
1262			base = EEPROM_Read;
1263
1264		for (i = 0; i < 0x40; i++) {
1265			int timer;
1266			window_write16(vp, base + i, 0, Wn0EepromCmd);
1267			/* Pause for at least 162 us. for the read to take place. */
1268			for (timer = 10; timer >= 0; timer--) {
1269				udelay(162);
1270				if ((window_read16(vp, 0, Wn0EepromCmd) &
1271				     0x8000) == 0)
1272					break;
1273			}
1274			eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1275		}
1276	}
1277	for (i = 0; i < 0x18; i++)
1278		checksum ^= eeprom[i];
1279	checksum = (checksum ^ (checksum >> 8)) & 0xff;
1280	if (checksum != 0x00) {		/* Grrr, needless incompatible change 3Com. */
1281		while (i < 0x21)
1282			checksum ^= eeprom[i++];
1283		checksum = (checksum ^ (checksum >> 8)) & 0xff;
1284	}
1285	if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1286		pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1287	for (i = 0; i < 3; i++)
1288		addr[i] = htons(eeprom[i + 10]);
1289	eth_hw_addr_set(dev, (u8 *)addr);
1290	if (print_info)
1291		pr_cont(" %pM", dev->dev_addr);
1292	/* Unfortunately an all zero eeprom passes the checksum and this
1293	   gets found in the wild in failure cases. Crypto is hard 8) */
1294	if (!is_valid_ether_addr(dev->dev_addr)) {
1295		retval = -EINVAL;
1296		pr_err("*** EEPROM MAC address is invalid.\n");
1297		goto free_ring;	/* With every pack */
1298	}
1299	for (i = 0; i < 6; i++)
1300		window_write8(vp, dev->dev_addr[i], 2, i);
1301
1302	if (print_info)
1303		pr_cont(", IRQ %d\n", dev->irq);
1304	/* Tell them about an invalid IRQ. */
1305	if (dev->irq <= 0 || dev->irq >= nr_irqs)
1306		pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n",
1307			dev->irq);
1308
1309	step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1310	if (print_info) {
1311		pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1312			eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1313			step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1314	}
1315
1316
1317	if (pdev && vci->drv_flags & HAS_CB_FNS) {
1318		unsigned short n;
1319
1320		vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1321		if (!vp->cb_fn_base) {
1322			retval = -ENOMEM;
1323			goto free_ring;
1324		}
1325
1326		if (print_info) {
1327			pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1328				print_name,
1329				(unsigned long long)pci_resource_start(pdev, 2),
1330				vp->cb_fn_base);
1331		}
1332
1333		n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1334		if (vp->drv_flags & INVERT_LED_PWR)
1335			n |= 0x10;
1336		if (vp->drv_flags & INVERT_MII_PWR)
1337			n |= 0x4000;
1338		window_write16(vp, n, 2, Wn2_ResetOptions);
1339		if (vp->drv_flags & WNO_XCVR_PWR) {
1340			window_write16(vp, 0x0800, 0, 0);
1341		}
1342	}
1343
1344	/* Extract our information from the EEPROM data. */
1345	vp->info1 = eeprom[13];
1346	vp->info2 = eeprom[15];
1347	vp->capabilities = eeprom[16];
1348
1349	if (vp->info1 & 0x8000) {
1350		vp->full_duplex = 1;
1351		if (print_info)
1352			pr_info("Full duplex capable\n");
1353	}
1354
1355	{
1356		static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1357		unsigned int config;
1358		vp->available_media = window_read16(vp, 3, Wn3_Options);
1359		if ((vp->available_media & 0xff) == 0)		/* Broken 3c916 */
1360			vp->available_media = 0x40;
1361		config = window_read32(vp, 3, Wn3_Config);
1362		if (print_info) {
1363			pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1364				config, window_read16(vp, 3, Wn3_Options));
1365			pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1366				   8 << RAM_SIZE(config),
1367				   RAM_WIDTH(config) ? "word" : "byte",
1368				   ram_split[RAM_SPLIT(config)],
1369				   AUTOSELECT(config) ? "autoselect/" : "",
1370				   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1371				   media_tbl[XCVR(config)].name);
1372		}
1373		vp->default_media = XCVR(config);
1374		if (vp->default_media == XCVR_NWAY)
1375			vp->has_nway = 1;
1376		vp->autoselect = AUTOSELECT(config);
1377	}
1378
1379	if (vp->media_override != 7) {
1380		pr_info("%s:  Media override to transceiver type %d (%s).\n",
1381				print_name, vp->media_override,
1382				media_tbl[vp->media_override].name);
1383		dev->if_port = vp->media_override;
1384	} else
1385		dev->if_port = vp->default_media;
1386
1387	if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1388		dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1389		int phy, phy_idx = 0;
1390		mii_preamble_required++;
1391		if (vp->drv_flags & EXTRA_PREAMBLE)
1392			mii_preamble_required++;
1393		mdio_sync(vp, 32);
1394		mdio_read(dev, 24, MII_BMSR);
1395		for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1396			int mii_status, phyx;
1397
1398			/*
1399			 * For the 3c905CX we look at index 24 first, because it bogusly
1400			 * reports an external PHY at all indices
1401			 */
1402			if (phy == 0)
1403				phyx = 24;
1404			else if (phy <= 24)
1405				phyx = phy - 1;
1406			else
1407				phyx = phy;
1408			mii_status = mdio_read(dev, phyx, MII_BMSR);
1409			if (mii_status  &&  mii_status != 0xffff) {
1410				vp->phys[phy_idx++] = phyx;
1411				if (print_info) {
1412					pr_info("  MII transceiver found at address %d, status %4x.\n",
1413						phyx, mii_status);
1414				}
1415				if ((mii_status & 0x0040) == 0)
1416					mii_preamble_required++;
1417			}
1418		}
1419		mii_preamble_required--;
1420		if (phy_idx == 0) {
1421			pr_warn("  ***WARNING*** No MII transceivers found!\n");
1422			vp->phys[0] = 24;
1423		} else {
1424			vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1425			if (vp->full_duplex) {
1426				/* Only advertise the FD media types. */
1427				vp->advertising &= ~0x02A0;
1428				mdio_write(dev, vp->phys[0], 4, vp->advertising);
1429			}
1430		}
1431		vp->mii.phy_id = vp->phys[0];
1432	}
1433
1434	if (vp->capabilities & CapBusMaster) {
1435		vp->full_bus_master_tx = 1;
1436		if (print_info) {
1437			pr_info("  Enabling bus-master transmits and %s receives.\n",
1438			(vp->info2 & 1) ? "early" : "whole-frame" );
1439		}
1440		vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1441		vp->bus_master = 0;		/* AKPM: vortex only */
1442	}
1443
1444	/* The 3c59x-specific entries in the device structure. */
1445	if (vp->full_bus_master_tx) {
1446		dev->netdev_ops = &boomrang_netdev_ops;
1447		/* Actually, it still should work with iommu. */
1448		if (card_idx < MAX_UNITS &&
1449		    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1450				hw_checksums[card_idx] == 1)) {
1451			dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1452		}
1453	} else
1454		dev->netdev_ops =  &vortex_netdev_ops;
1455
1456	if (print_info) {
1457		pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1458				print_name,
1459				(dev->features & NETIF_F_SG) ? "en":"dis",
1460				(dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1461	}
1462
1463	dev->ethtool_ops = &vortex_ethtool_ops;
1464	dev->watchdog_timeo = (watchdog * HZ) / 1000;
1465
1466	if (pdev) {
1467		vp->pm_state_valid = 1;
1468		pci_save_state(pdev);
1469		acpi_set_WOL(dev);
1470	}
1471	retval = register_netdev(dev);
1472	if (retval == 0)
1473		return 0;
1474
1475free_ring:
1476	dma_free_coherent(&pdev->dev,
1477		sizeof(struct boom_rx_desc) * RX_RING_SIZE +
1478		sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1479		vp->rx_ring, vp->rx_ring_dma);
1480free_device:
 
 
 
1481	free_netdev(dev);
1482	pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1483out:
1484	return retval;
1485}
1486
1487static void
1488issue_and_wait(struct net_device *dev, int cmd)
1489{
1490	struct vortex_private *vp = netdev_priv(dev);
1491	void __iomem *ioaddr = vp->ioaddr;
1492	int i;
1493
1494	iowrite16(cmd, ioaddr + EL3_CMD);
1495	for (i = 0; i < 2000; i++) {
1496		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1497			return;
1498	}
1499
1500	/* OK, that didn't work.  Do it the slow way.  One second */
1501	for (i = 0; i < 100000; i++) {
1502		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1503			if (vortex_debug > 1)
1504				pr_info("%s: command 0x%04x took %d usecs\n",
1505					   dev->name, cmd, i * 10);
1506			return;
1507		}
1508		udelay(10);
1509	}
1510	pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1511			   dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1512}
1513
1514static void
1515vortex_set_duplex(struct net_device *dev)
1516{
1517	struct vortex_private *vp = netdev_priv(dev);
1518
1519	pr_info("%s:  setting %s-duplex.\n",
1520		dev->name, (vp->full_duplex) ? "full" : "half");
1521
1522	/* Set the full-duplex bit. */
1523	window_write16(vp,
1524		       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1525		       (vp->large_frames ? 0x40 : 0) |
1526		       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1527			0x100 : 0),
1528		       3, Wn3_MAC_Ctrl);
1529}
1530
1531static void vortex_check_media(struct net_device *dev, unsigned int init)
1532{
1533	struct vortex_private *vp = netdev_priv(dev);
1534	unsigned int ok_to_print = 0;
1535
1536	if (vortex_debug > 3)
1537		ok_to_print = 1;
1538
1539	if (mii_check_media(&vp->mii, ok_to_print, init)) {
1540		vp->full_duplex = vp->mii.full_duplex;
1541		vortex_set_duplex(dev);
1542	} else if (init) {
1543		vortex_set_duplex(dev);
1544	}
1545}
1546
1547static int
1548vortex_up(struct net_device *dev)
1549{
1550	struct vortex_private *vp = netdev_priv(dev);
1551	void __iomem *ioaddr = vp->ioaddr;
1552	unsigned int config;
1553	int i, mii_reg5, err = 0;
1554
1555	if (VORTEX_PCI(vp)) {
1556		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
1557		if (vp->pm_state_valid)
1558			pci_restore_state(VORTEX_PCI(vp));
1559		err = pci_enable_device(VORTEX_PCI(vp));
1560		if (err) {
1561			pr_warn("%s: Could not enable device\n", dev->name);
 
1562			goto err_out;
1563		}
1564	}
1565
1566	/* Before initializing select the active media port. */
1567	config = window_read32(vp, 3, Wn3_Config);
1568
1569	if (vp->media_override != 7) {
1570		pr_info("%s: Media override to transceiver %d (%s).\n",
1571			   dev->name, vp->media_override,
1572			   media_tbl[vp->media_override].name);
1573		dev->if_port = vp->media_override;
1574	} else if (vp->autoselect) {
1575		if (vp->has_nway) {
1576			if (vortex_debug > 1)
1577				pr_info("%s: using NWAY device table, not %d\n",
1578								dev->name, dev->if_port);
1579			dev->if_port = XCVR_NWAY;
1580		} else {
1581			/* Find first available media type, starting with 100baseTx. */
1582			dev->if_port = XCVR_100baseTx;
1583			while (! (vp->available_media & media_tbl[dev->if_port].mask))
1584				dev->if_port = media_tbl[dev->if_port].next;
1585			if (vortex_debug > 1)
1586				pr_info("%s: first available media type: %s\n",
1587					dev->name, media_tbl[dev->if_port].name);
1588		}
1589	} else {
1590		dev->if_port = vp->default_media;
1591		if (vortex_debug > 1)
1592			pr_info("%s: using default media %s\n",
1593				dev->name, media_tbl[dev->if_port].name);
1594	}
1595
1596	timer_setup(&vp->timer, vortex_timer, 0);
1597	mod_timer(&vp->timer, RUN_AT(media_tbl[dev->if_port].wait));
 
 
 
 
 
 
 
1598
1599	if (vortex_debug > 1)
1600		pr_debug("%s: Initial media type %s.\n",
1601			   dev->name, media_tbl[dev->if_port].name);
1602
1603	vp->full_duplex = vp->mii.force_media;
1604	config = BFINS(config, dev->if_port, 20, 4);
1605	if (vortex_debug > 6)
1606		pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1607	window_write32(vp, config, 3, Wn3_Config);
1608
1609	if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1610		mdio_read(dev, vp->phys[0], MII_BMSR);
1611		mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1612		vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1613		vp->mii.full_duplex = vp->full_duplex;
1614
1615		vortex_check_media(dev, 1);
1616	}
1617	else
1618		vortex_set_duplex(dev);
1619
1620	issue_and_wait(dev, TxReset);
1621	/*
1622	 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1623	 */
1624	issue_and_wait(dev, RxReset|0x04);
1625
1626
1627	iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1628
1629	if (vortex_debug > 1) {
1630		pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1631			   dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1632	}
1633
1634	/* Set the station address and mask in window 2 each time opened. */
1635	for (i = 0; i < 6; i++)
1636		window_write8(vp, dev->dev_addr[i], 2, i);
1637	for (; i < 12; i+=2)
1638		window_write16(vp, 0, 2, i);
1639
1640	if (vp->cb_fn_base) {
1641		unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1642		if (vp->drv_flags & INVERT_LED_PWR)
1643			n |= 0x10;
1644		if (vp->drv_flags & INVERT_MII_PWR)
1645			n |= 0x4000;
1646		window_write16(vp, n, 2, Wn2_ResetOptions);
1647	}
1648
1649	if (dev->if_port == XCVR_10base2)
1650		/* Start the thinnet transceiver. We should really wait 50ms...*/
1651		iowrite16(StartCoax, ioaddr + EL3_CMD);
1652	if (dev->if_port != XCVR_NWAY) {
1653		window_write16(vp,
1654			       (window_read16(vp, 4, Wn4_Media) &
1655				~(Media_10TP|Media_SQE)) |
1656			       media_tbl[dev->if_port].media_bits,
1657			       4, Wn4_Media);
1658	}
1659
1660	/* Switch to the stats window, and clear all stats by reading. */
1661	iowrite16(StatsDisable, ioaddr + EL3_CMD);
1662	for (i = 0; i < 10; i++)
1663		window_read8(vp, 6, i);
1664	window_read16(vp, 6, 10);
1665	window_read16(vp, 6, 12);
1666	/* New: On the Vortex we must also clear the BadSSD counter. */
1667	window_read8(vp, 4, 12);
1668	/* ..and on the Boomerang we enable the extra statistics bits. */
1669	window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1670
1671	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1672		vp->cur_rx = 0;
1673		/* Initialize the RxEarly register as recommended. */
1674		iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1675		iowrite32(0x0020, ioaddr + PktStatus);
1676		iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1677	}
1678	if (vp->full_bus_master_tx) { 		/* Boomerang bus master Tx. */
1679		vp->cur_tx = vp->dirty_tx = 0;
1680		if (vp->drv_flags & IS_BOOMERANG)
1681			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1682		/* Clear the Rx, Tx rings. */
1683		for (i = 0; i < RX_RING_SIZE; i++)	/* AKPM: this is done in vortex_open, too */
1684			vp->rx_ring[i].status = 0;
1685		for (i = 0; i < TX_RING_SIZE; i++)
1686			vp->tx_skbuff[i] = NULL;
1687		iowrite32(0, ioaddr + DownListPtr);
1688	}
1689	/* Set receiver mode: presumably accept b-case and phys addr only. */
1690	set_rx_mode(dev);
1691	/* enable 802.1q tagged frames */
1692	set_8021q_mode(dev, 1);
1693	iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1694
1695	iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1696	iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1697	/* Allow status bits to be seen. */
1698	vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1699		(vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1700		(vp->full_bus_master_rx ? UpComplete : RxComplete) |
1701		(vp->bus_master ? DMADone : 0);
1702	vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1703		(vp->full_bus_master_rx ? 0 : RxComplete) |
1704		StatsFull | HostError | TxComplete | IntReq
1705		| (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1706	iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1707	/* Ack all pending events, and set active indicator mask. */
1708	iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1709		 ioaddr + EL3_CMD);
1710	iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1711	if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
1712		iowrite32(0x8000, vp->cb_fn_base + 4);
1713	netif_start_queue (dev);
1714	netdev_reset_queue(dev);
1715err_out:
1716	return err;
1717}
1718
1719static int
1720vortex_open(struct net_device *dev)
1721{
1722	struct vortex_private *vp = netdev_priv(dev);
1723	int i;
1724	int retval;
1725	dma_addr_t dma;
1726
1727	/* Use the now-standard shared IRQ implementation. */
1728	if ((retval = request_irq(dev->irq, vortex_boomerang_interrupt, IRQF_SHARED, dev->name, dev))) {
 
1729		pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1730		goto err;
1731	}
1732
1733	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1734		if (vortex_debug > 2)
1735			pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1736		for (i = 0; i < RX_RING_SIZE; i++) {
1737			struct sk_buff *skb;
1738			vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1739			vp->rx_ring[i].status = 0;	/* Clear complete bit. */
1740			vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1741
1742			skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1743						 GFP_KERNEL);
1744			vp->rx_skbuff[i] = skb;
1745			if (skb == NULL)
1746				break;			/* Bad news!  */
1747
1748			skb_reserve(skb, NET_IP_ALIGN);	/* Align IP on 16 byte boundaries */
1749			dma = dma_map_single(vp->gendev, skb->data,
1750					     PKT_BUF_SZ, DMA_FROM_DEVICE);
1751			if (dma_mapping_error(vp->gendev, dma))
1752				break;
1753			vp->rx_ring[i].addr = cpu_to_le32(dma);
1754		}
1755		if (i != RX_RING_SIZE) {
 
1756			pr_emerg("%s: no memory for rx ring\n", dev->name);
 
 
 
 
 
 
1757			retval = -ENOMEM;
1758			goto err_free_skb;
1759		}
1760		/* Wrap the ring. */
1761		vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1762	}
1763
1764	retval = vortex_up(dev);
1765	if (!retval)
1766		goto out;
1767
1768err_free_skb:
1769	for (i = 0; i < RX_RING_SIZE; i++) {
1770		if (vp->rx_skbuff[i]) {
1771			dev_kfree_skb(vp->rx_skbuff[i]);
1772			vp->rx_skbuff[i] = NULL;
1773		}
1774	}
1775	free_irq(dev->irq, dev);
1776err:
1777	if (vortex_debug > 1)
1778		pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1779out:
1780	return retval;
1781}
1782
1783static void
1784vortex_timer(struct timer_list *t)
1785{
1786	struct vortex_private *vp = from_timer(vp, t, timer);
1787	struct net_device *dev = vp->mii.dev;
1788	void __iomem *ioaddr = vp->ioaddr;
1789	int next_tick = 60*HZ;
1790	int ok = 0;
1791	int media_status;
1792
1793	if (vortex_debug > 2) {
1794		pr_debug("%s: Media selection timer tick happened, %s.\n",
1795			   dev->name, media_tbl[dev->if_port].name);
1796		pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1797	}
1798
1799	media_status = window_read16(vp, 4, Wn4_Media);
1800	switch (dev->if_port) {
1801	case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1802		if (media_status & Media_LnkBeat) {
1803			netif_carrier_on(dev);
1804			ok = 1;
1805			if (vortex_debug > 1)
1806				pr_debug("%s: Media %s has link beat, %x.\n",
1807					   dev->name, media_tbl[dev->if_port].name, media_status);
1808		} else {
1809			netif_carrier_off(dev);
1810			if (vortex_debug > 1) {
1811				pr_debug("%s: Media %s has no link beat, %x.\n",
1812					   dev->name, media_tbl[dev->if_port].name, media_status);
1813			}
1814		}
1815		break;
1816	case XCVR_MII: case XCVR_NWAY:
1817		{
1818			ok = 1;
1819			vortex_check_media(dev, 0);
1820		}
1821		break;
1822	  default:					/* Other media types handled by Tx timeouts. */
1823		if (vortex_debug > 1)
1824		  pr_debug("%s: Media %s has no indication, %x.\n",
1825				 dev->name, media_tbl[dev->if_port].name, media_status);
1826		ok = 1;
1827	}
1828
1829	if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1830		next_tick = 5*HZ;
1831
1832	if (vp->medialock)
1833		goto leave_media_alone;
1834
1835	if (!ok) {
1836		unsigned int config;
1837
1838		spin_lock_irq(&vp->lock);
1839
1840		do {
1841			dev->if_port = media_tbl[dev->if_port].next;
1842		} while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1843		if (dev->if_port == XCVR_Default) { /* Go back to default. */
1844		  dev->if_port = vp->default_media;
1845		  if (vortex_debug > 1)
1846			pr_debug("%s: Media selection failing, using default %s port.\n",
1847				   dev->name, media_tbl[dev->if_port].name);
1848		} else {
1849			if (vortex_debug > 1)
1850				pr_debug("%s: Media selection failed, now trying %s port.\n",
1851					   dev->name, media_tbl[dev->if_port].name);
1852			next_tick = media_tbl[dev->if_port].wait;
1853		}
1854		window_write16(vp,
1855			       (media_status & ~(Media_10TP|Media_SQE)) |
1856			       media_tbl[dev->if_port].media_bits,
1857			       4, Wn4_Media);
1858
1859		config = window_read32(vp, 3, Wn3_Config);
1860		config = BFINS(config, dev->if_port, 20, 4);
1861		window_write32(vp, config, 3, Wn3_Config);
1862
1863		iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1864			 ioaddr + EL3_CMD);
1865		if (vortex_debug > 1)
1866			pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1867		/* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1868
1869		spin_unlock_irq(&vp->lock);
1870	}
1871
1872leave_media_alone:
1873	if (vortex_debug > 2)
1874	  pr_debug("%s: Media selection timer finished, %s.\n",
1875			 dev->name, media_tbl[dev->if_port].name);
1876
1877	mod_timer(&vp->timer, RUN_AT(next_tick));
1878	if (vp->deferred)
1879		iowrite16(FakeIntr, ioaddr + EL3_CMD);
1880}
1881
1882static void vortex_tx_timeout(struct net_device *dev, unsigned int txqueue)
1883{
1884	struct vortex_private *vp = netdev_priv(dev);
1885	void __iomem *ioaddr = vp->ioaddr;
1886
1887	pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1888		   dev->name, ioread8(ioaddr + TxStatus),
1889		   ioread16(ioaddr + EL3_STATUS));
1890	pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1891			window_read16(vp, 4, Wn4_NetDiag),
1892			window_read16(vp, 4, Wn4_Media),
1893			ioread32(ioaddr + PktStatus),
1894			window_read16(vp, 4, Wn4_FIFODiag));
1895	/* Slight code bloat to be user friendly. */
1896	if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1897		pr_err("%s: Transmitter encountered 16 collisions --"
1898			   " network cable problem?\n", dev->name);
1899	if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1900		pr_err("%s: Interrupt posted but not delivered --"
1901			   " IRQ blocked by another device?\n", dev->name);
1902		/* Bad idea here.. but we might as well handle a few events. */
1903		vortex_boomerang_interrupt(dev->irq, dev);
 
 
 
 
 
 
 
 
 
 
 
1904	}
1905
1906	if (vortex_debug > 0)
1907		dump_tx_ring(dev);
1908
1909	issue_and_wait(dev, TxReset);
1910
1911	dev->stats.tx_errors++;
1912	if (vp->full_bus_master_tx) {
1913		pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1914		if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1915			iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1916				 ioaddr + DownListPtr);
1917		if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) {
1918			netif_wake_queue (dev);
1919			netdev_reset_queue (dev);
1920		}
1921		if (vp->drv_flags & IS_BOOMERANG)
1922			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1923		iowrite16(DownUnstall, ioaddr + EL3_CMD);
1924	} else {
1925		dev->stats.tx_dropped++;
1926		netif_wake_queue(dev);
1927		netdev_reset_queue(dev);
1928	}
 
1929	/* Issue Tx Enable */
1930	iowrite16(TxEnable, ioaddr + EL3_CMD);
1931	netif_trans_update(dev); /* prevent tx timeout */
1932}
1933
1934/*
1935 * Handle uncommon interrupt sources.  This is a separate routine to minimize
1936 * the cache impact.
1937 */
1938static void
1939vortex_error(struct net_device *dev, int status)
1940{
1941	struct vortex_private *vp = netdev_priv(dev);
1942	void __iomem *ioaddr = vp->ioaddr;
1943	int do_tx_reset = 0, reset_mask = 0;
1944	unsigned char tx_status = 0;
1945
1946	if (vortex_debug > 2) {
1947		pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1948	}
1949
1950	if (status & TxComplete) {			/* Really "TxError" for us. */
1951		tx_status = ioread8(ioaddr + TxStatus);
1952		/* Presumably a tx-timeout. We must merely re-enable. */
1953		if (vortex_debug > 2 ||
1954		    (tx_status != 0x88 && vortex_debug > 0)) {
1955			pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1956				   dev->name, tx_status);
1957			if (tx_status == 0x82) {
1958				pr_err("Probably a duplex mismatch.  See "
1959						"Documentation/networking/device_drivers/ethernet/3com/vortex.rst\n");
1960			}
1961			dump_tx_ring(dev);
1962		}
1963		if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1964		if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1965		if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1966		iowrite8(0, ioaddr + TxStatus);
1967		if (tx_status & 0x30) {			/* txJabber or txUnderrun */
1968			do_tx_reset = 1;
1969		} else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {	/* maxCollisions */
1970			do_tx_reset = 1;
1971			reset_mask = 0x0108;		/* Reset interface logic, but not download logic */
1972		} else {				/* Merely re-enable the transmitter. */
1973			iowrite16(TxEnable, ioaddr + EL3_CMD);
1974		}
1975	}
1976
1977	if (status & RxEarly)				/* Rx early is unused. */
1978		iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1979
1980	if (status & StatsFull) {			/* Empty statistics. */
1981		static int DoneDidThat;
1982		if (vortex_debug > 4)
1983			pr_debug("%s: Updating stats.\n", dev->name);
1984		update_stats(ioaddr, dev);
1985		/* HACK: Disable statistics as an interrupt source. */
1986		/* This occurs when we have the wrong media type! */
1987		if (DoneDidThat == 0  &&
1988			ioread16(ioaddr + EL3_STATUS) & StatsFull) {
1989			pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n",
1990				dev->name);
1991			iowrite16(SetIntrEnb |
1992				  (window_read16(vp, 5, 10) & ~StatsFull),
1993				  ioaddr + EL3_CMD);
1994			vp->intr_enable &= ~StatsFull;
1995			DoneDidThat++;
1996		}
1997	}
1998	if (status & IntReq) {		/* Restore all interrupt sources.  */
1999		iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2000		iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2001	}
2002	if (status & HostError) {
2003		u16 fifo_diag;
2004		fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2005		pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2006			   dev->name, fifo_diag);
2007		/* Adapter failure requires Tx/Rx reset and reinit. */
2008		if (vp->full_bus_master_tx) {
2009			int bus_status = ioread32(ioaddr + PktStatus);
2010			/* 0x80000000 PCI master abort. */
2011			/* 0x40000000 PCI target abort. */
2012			if (vortex_debug)
2013				pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2014
2015			/* In this case, blow the card away */
2016			/* Must not enter D3 or we can't legally issue the reset! */
2017			vortex_down(dev, 0);
2018			issue_and_wait(dev, TotalReset | 0xff);
2019			vortex_up(dev);		/* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2020		} else if (fifo_diag & 0x0400)
2021			do_tx_reset = 1;
2022		if (fifo_diag & 0x3000) {
2023			/* Reset Rx fifo and upload logic */
2024			issue_and_wait(dev, RxReset|0x07);
2025			/* Set the Rx filter to the current state. */
2026			set_rx_mode(dev);
2027			/* enable 802.1q VLAN tagged frames */
2028			set_8021q_mode(dev, 1);
2029			iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2030			iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2031		}
2032	}
2033
2034	if (do_tx_reset) {
2035		issue_and_wait(dev, TxReset|reset_mask);
2036		iowrite16(TxEnable, ioaddr + EL3_CMD);
2037		if (!vp->full_bus_master_tx)
2038			netif_wake_queue(dev);
2039	}
2040}
2041
2042static netdev_tx_t
2043vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2044{
2045	struct vortex_private *vp = netdev_priv(dev);
2046	void __iomem *ioaddr = vp->ioaddr;
2047	int skblen = skb->len;
2048
2049	/* Put out the doubleword header... */
2050	iowrite32(skb->len, ioaddr + TX_FIFO);
2051	if (vp->bus_master) {
2052		/* Set the bus-master controller to transfer the packet. */
2053		int len = (skb->len + 3) & ~3;
2054		vp->tx_skb_dma = dma_map_single(vp->gendev, skb->data, len,
2055						DMA_TO_DEVICE);
2056		if (dma_mapping_error(vp->gendev, vp->tx_skb_dma)) {
2057			dev_kfree_skb_any(skb);
2058			dev->stats.tx_dropped++;
2059			return NETDEV_TX_OK;
2060		}
2061
2062		spin_lock_irq(&vp->window_lock);
2063		window_set(vp, 7);
2064		iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2065		iowrite16(len, ioaddr + Wn7_MasterLen);
2066		spin_unlock_irq(&vp->window_lock);
2067		vp->tx_skb = skb;
2068		skb_tx_timestamp(skb);
2069		iowrite16(StartDMADown, ioaddr + EL3_CMD);
2070		/* netif_wake_queue() will be called at the DMADone interrupt. */
2071	} else {
2072		/* ... and the packet rounded to a doubleword. */
2073		skb_tx_timestamp(skb);
2074		iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2075		dev_consume_skb_any (skb);
2076		if (ioread16(ioaddr + TxFree) > 1536) {
2077			netif_start_queue (dev);	/* AKPM: redundant? */
2078		} else {
2079			/* Interrupt us when the FIFO has room for max-sized packet. */
2080			netif_stop_queue(dev);
2081			iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2082		}
2083	}
2084
2085	netdev_sent_queue(dev, skblen);
2086
2087	/* Clear the Tx status stack. */
2088	{
2089		int tx_status;
2090		int i = 32;
2091
2092		while (--i > 0	&&	(tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2093			if (tx_status & 0x3C) {		/* A Tx-disabling error occurred.  */
2094				if (vortex_debug > 2)
2095				  pr_debug("%s: Tx error, status %2.2x.\n",
2096						 dev->name, tx_status);
2097				if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2098				if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2099				if (tx_status & 0x30) {
2100					issue_and_wait(dev, TxReset);
2101				}
2102				iowrite16(TxEnable, ioaddr + EL3_CMD);
2103			}
2104			iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2105		}
2106	}
2107	return NETDEV_TX_OK;
2108}
2109
2110static netdev_tx_t
2111boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2112{
2113	struct vortex_private *vp = netdev_priv(dev);
2114	void __iomem *ioaddr = vp->ioaddr;
2115	/* Calculate the next Tx descriptor entry. */
2116	int entry = vp->cur_tx % TX_RING_SIZE;
2117	int skblen = skb->len;
2118	struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2119	unsigned long flags;
2120	dma_addr_t dma_addr;
2121
2122	if (vortex_debug > 6) {
2123		pr_debug("boomerang_start_xmit()\n");
2124		pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2125			   dev->name, vp->cur_tx);
2126	}
2127
2128	/*
2129	 * We can't allow a recursion from our interrupt handler back into the
2130	 * tx routine, as they take the same spin lock, and that causes
2131	 * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2132	 * a bit
2133	 */
2134	if (vp->handling_irq)
2135		return NETDEV_TX_BUSY;
2136
2137	if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2138		if (vortex_debug > 0)
2139			pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n",
2140				dev->name);
2141		netif_stop_queue(dev);
2142		return NETDEV_TX_BUSY;
2143	}
2144
2145	vp->tx_skbuff[entry] = skb;
2146
2147	vp->tx_ring[entry].next = 0;
2148#if DO_ZEROCOPY
2149	if (skb->ip_summed != CHECKSUM_PARTIAL)
2150			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2151	else
2152			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2153
2154	if (!skb_shinfo(skb)->nr_frags) {
2155		dma_addr = dma_map_single(vp->gendev, skb->data, skb->len,
2156					  DMA_TO_DEVICE);
2157		if (dma_mapping_error(vp->gendev, dma_addr))
2158			goto out_dma_err;
2159
2160		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2161		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2162	} else {
2163		int i;
2164
2165		dma_addr = dma_map_single(vp->gendev, skb->data,
2166					  skb_headlen(skb), DMA_TO_DEVICE);
2167		if (dma_mapping_error(vp->gendev, dma_addr))
2168			goto out_dma_err;
2169
2170		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2171		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2172
2173		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2174			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2175
2176			dma_addr = skb_frag_dma_map(vp->gendev, frag,
2177						    0,
2178						    skb_frag_size(frag),
2179						    DMA_TO_DEVICE);
2180			if (dma_mapping_error(vp->gendev, dma_addr)) {
2181				for(i = i-1; i >= 0; i--)
2182					dma_unmap_page(vp->gendev,
2183						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr),
2184						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].length),
2185						       DMA_TO_DEVICE);
2186
2187				dma_unmap_single(vp->gendev,
2188						 le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2189						 le32_to_cpu(vp->tx_ring[entry].frag[0].length),
2190						 DMA_TO_DEVICE);
2191
2192				goto out_dma_err;
2193			}
2194
2195			vp->tx_ring[entry].frag[i+1].addr =
2196						cpu_to_le32(dma_addr);
 
 
 
2197
2198			if (i == skb_shinfo(skb)->nr_frags-1)
2199					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2200			else
2201					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2202		}
2203	}
2204#else
2205	dma_addr = dma_map_single(vp->gendev, skb->data, skb->len, DMA_TO_DEVICE);
2206	if (dma_mapping_error(vp->gendev, dma_addr))
2207		goto out_dma_err;
2208	vp->tx_ring[entry].addr = cpu_to_le32(dma_addr);
2209	vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2210	vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2211#endif
2212
2213	spin_lock_irqsave(&vp->lock, flags);
2214	/* Wait for the stall to complete. */
2215	issue_and_wait(dev, DownStall);
2216	prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2217	if (ioread32(ioaddr + DownListPtr) == 0) {
2218		iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2219		vp->queued_packet++;
2220	}
2221
2222	vp->cur_tx++;
2223	netdev_sent_queue(dev, skblen);
2224
2225	if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2226		netif_stop_queue (dev);
2227	} else {					/* Clear previous interrupt enable. */
2228#if defined(tx_interrupt_mitigation)
2229		/* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2230		 * were selected, this would corrupt DN_COMPLETE. No?
2231		 */
2232		prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2233#endif
2234	}
2235	skb_tx_timestamp(skb);
2236	iowrite16(DownUnstall, ioaddr + EL3_CMD);
2237	spin_unlock_irqrestore(&vp->lock, flags);
2238out:
2239	return NETDEV_TX_OK;
2240out_dma_err:
2241	dev_err(vp->gendev, "Error mapping dma buffer\n");
2242	goto out;
2243}
2244
2245/* The interrupt handler does all of the Rx thread work and cleans up
2246   after the Tx thread. */
2247
2248/*
2249 * This is the ISR for the vortex series chips.
2250 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2251 */
2252
2253static irqreturn_t
2254_vortex_interrupt(int irq, struct net_device *dev)
2255{
 
2256	struct vortex_private *vp = netdev_priv(dev);
2257	void __iomem *ioaddr;
2258	int status;
2259	int work_done = max_interrupt_work;
2260	int handled = 0;
2261	unsigned int bytes_compl = 0, pkts_compl = 0;
2262
2263	ioaddr = vp->ioaddr;
 
2264
2265	status = ioread16(ioaddr + EL3_STATUS);
2266
2267	if (vortex_debug > 6)
2268		pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2269
2270	if ((status & IntLatch) == 0)
2271		goto handler_exit;		/* No interrupt: shared IRQs cause this */
2272	handled = 1;
2273
2274	if (status & IntReq) {
2275		status |= vp->deferred;
2276		vp->deferred = 0;
2277	}
2278
2279	if (status == 0xffff)		/* h/w no longer present (hotplug)? */
2280		goto handler_exit;
2281
2282	if (vortex_debug > 4)
2283		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2284			   dev->name, status, ioread8(ioaddr + Timer));
2285
2286	spin_lock(&vp->window_lock);
2287	window_set(vp, 7);
2288
2289	do {
2290		if (vortex_debug > 5)
2291				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2292					   dev->name, status);
2293		if (status & RxComplete)
2294			vortex_rx(dev);
2295
2296		if (status & TxAvailable) {
2297			if (vortex_debug > 5)
2298				pr_debug("	TX room bit was handled.\n");
2299			/* There's room in the FIFO for a full-sized packet. */
2300			iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2301			netif_wake_queue (dev);
2302		}
2303
2304		if (status & DMADone) {
2305			if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2306				iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2307				dma_unmap_single(vp->gendev, vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, DMA_TO_DEVICE);
2308				pkts_compl++;
2309				bytes_compl += vp->tx_skb->len;
2310				dev_consume_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2311				if (ioread16(ioaddr + TxFree) > 1536) {
2312					/*
2313					 * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2314					 * insufficient FIFO room, the TxAvailable test will succeed and call
2315					 * netif_wake_queue()
2316					 */
2317					netif_wake_queue(dev);
2318				} else { /* Interrupt when FIFO has room for max-sized packet. */
2319					iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2320					netif_stop_queue(dev);
2321				}
2322			}
2323		}
2324		/* Check for all uncommon interrupts at once. */
2325		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2326			if (status == 0xffff)
2327				break;
2328			if (status & RxEarly)
2329				vortex_rx(dev);
2330			spin_unlock(&vp->window_lock);
2331			vortex_error(dev, status);
2332			spin_lock(&vp->window_lock);
2333			window_set(vp, 7);
2334		}
2335
2336		if (--work_done < 0) {
2337			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2338				dev->name, status);
2339			/* Disable all pending interrupts. */
2340			do {
2341				vp->deferred |= status;
2342				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2343					 ioaddr + EL3_CMD);
2344				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2345			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2346			/* The timer will reenable interrupts. */
2347			mod_timer(&vp->timer, jiffies + 1*HZ);
2348			break;
2349		}
2350		/* Acknowledge the IRQ. */
2351		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2352	} while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2353
2354	netdev_completed_queue(dev, pkts_compl, bytes_compl);
2355	spin_unlock(&vp->window_lock);
2356
2357	if (vortex_debug > 4)
2358		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2359			   dev->name, status);
2360handler_exit:
 
2361	return IRQ_RETVAL(handled);
2362}
2363
2364/*
2365 * This is the ISR for the boomerang series chips.
2366 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2367 */
2368
2369static irqreturn_t
2370_boomerang_interrupt(int irq, struct net_device *dev)
2371{
 
2372	struct vortex_private *vp = netdev_priv(dev);
2373	void __iomem *ioaddr;
2374	int status;
2375	int work_done = max_interrupt_work;
2376	int handled = 0;
2377	unsigned int bytes_compl = 0, pkts_compl = 0;
2378
2379	ioaddr = vp->ioaddr;
2380
 
 
 
 
 
 
2381	vp->handling_irq = 1;
2382
2383	status = ioread16(ioaddr + EL3_STATUS);
2384
2385	if (vortex_debug > 6)
2386		pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2387
2388	if ((status & IntLatch) == 0)
2389		goto handler_exit;		/* No interrupt: shared IRQs can cause this */
2390	handled = 1;
2391
2392	if (status == 0xffff) {		/* h/w no longer present (hotplug)? */
2393		if (vortex_debug > 1)
2394			pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2395		goto handler_exit;
2396	}
2397
2398	if (status & IntReq) {
2399		status |= vp->deferred;
2400		vp->deferred = 0;
2401	}
2402
2403	if (vortex_debug > 4)
2404		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2405			   dev->name, status, ioread8(ioaddr + Timer));
2406	do {
2407		if (vortex_debug > 5)
2408				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2409					   dev->name, status);
2410		if (status & UpComplete) {
2411			iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2412			if (vortex_debug > 5)
2413				pr_debug("boomerang_interrupt->boomerang_rx\n");
2414			boomerang_rx(dev);
2415		}
2416
2417		if (status & DownComplete) {
2418			unsigned int dirty_tx = vp->dirty_tx;
2419
2420			iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2421			while (vp->cur_tx - dirty_tx > 0) {
2422				int entry = dirty_tx % TX_RING_SIZE;
2423#if 1	/* AKPM: the latter is faster, but cyclone-only */
2424				if (ioread32(ioaddr + DownListPtr) ==
2425					vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2426					break;			/* It still hasn't been processed. */
2427#else
2428				if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2429					break;			/* It still hasn't been processed. */
2430#endif
2431
2432				if (vp->tx_skbuff[entry]) {
2433					struct sk_buff *skb = vp->tx_skbuff[entry];
2434#if DO_ZEROCOPY
2435					int i;
2436					dma_unmap_single(vp->gendev,
2437							le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2438							le32_to_cpu(vp->tx_ring[entry].frag[0].length)&0xFFF,
2439							DMA_TO_DEVICE);
2440
2441					for (i=1; i<=skb_shinfo(skb)->nr_frags; i++)
2442							dma_unmap_page(vp->gendev,
2443											 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2444											 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2445											 DMA_TO_DEVICE);
2446#else
2447					dma_unmap_single(vp->gendev,
2448						le32_to_cpu(vp->tx_ring[entry].addr), skb->len, DMA_TO_DEVICE);
2449#endif
2450					pkts_compl++;
2451					bytes_compl += skb->len;
2452					dev_consume_skb_irq(skb);
2453					vp->tx_skbuff[entry] = NULL;
2454				} else {
2455					pr_debug("boomerang_interrupt: no skb!\n");
2456				}
2457				/* dev->stats.tx_packets++;  Counted below. */
2458				dirty_tx++;
2459			}
2460			vp->dirty_tx = dirty_tx;
2461			if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2462				if (vortex_debug > 6)
2463					pr_debug("boomerang_interrupt: wake queue\n");
2464				netif_wake_queue (dev);
2465			}
2466		}
2467
2468		/* Check for all uncommon interrupts at once. */
2469		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2470			vortex_error(dev, status);
2471
2472		if (--work_done < 0) {
2473			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2474				dev->name, status);
2475			/* Disable all pending interrupts. */
2476			do {
2477				vp->deferred |= status;
2478				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2479					 ioaddr + EL3_CMD);
2480				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2481			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2482			/* The timer will reenable interrupts. */
2483			mod_timer(&vp->timer, jiffies + 1*HZ);
2484			break;
2485		}
2486		/* Acknowledge the IRQ. */
2487		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2488		if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
2489			iowrite32(0x8000, vp->cb_fn_base + 4);
2490
2491	} while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2492	netdev_completed_queue(dev, pkts_compl, bytes_compl);
2493
2494	if (vortex_debug > 4)
2495		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2496			   dev->name, status);
2497handler_exit:
2498	vp->handling_irq = 0;
2499	return IRQ_RETVAL(handled);
2500}
2501
2502static irqreturn_t
2503vortex_boomerang_interrupt(int irq, void *dev_id)
2504{
2505	struct net_device *dev = dev_id;
2506	struct vortex_private *vp = netdev_priv(dev);
2507	unsigned long flags;
2508	irqreturn_t ret;
2509
2510	spin_lock_irqsave(&vp->lock, flags);
2511
2512	if (vp->full_bus_master_rx)
2513		ret = _boomerang_interrupt(dev->irq, dev);
2514	else
2515		ret = _vortex_interrupt(dev->irq, dev);
2516
2517	spin_unlock_irqrestore(&vp->lock, flags);
2518
2519	return ret;
2520}
2521
2522static int vortex_rx(struct net_device *dev)
2523{
2524	struct vortex_private *vp = netdev_priv(dev);
2525	void __iomem *ioaddr = vp->ioaddr;
2526	int i;
2527	short rx_status;
2528
2529	if (vortex_debug > 5)
2530		pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2531			   ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2532	while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2533		if (rx_status & 0x4000) { /* Error, update stats. */
2534			unsigned char rx_error = ioread8(ioaddr + RxErrors);
2535			if (vortex_debug > 2)
2536				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2537			dev->stats.rx_errors++;
2538			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2539			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2540			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2541			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2542			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2543		} else {
2544			/* The packet length: up to 4.5K!. */
2545			int pkt_len = rx_status & 0x1fff;
2546			struct sk_buff *skb;
2547
2548			skb = netdev_alloc_skb(dev, pkt_len + 5);
2549			if (vortex_debug > 4)
2550				pr_debug("Receiving packet size %d status %4.4x.\n",
2551					   pkt_len, rx_status);
2552			if (skb != NULL) {
2553				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2554				/* 'skb_put()' points to the start of sk_buff data area. */
2555				if (vp->bus_master &&
2556					! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2557					dma_addr_t dma = dma_map_single(vp->gendev, skb_put(skb, pkt_len),
2558									   pkt_len, DMA_FROM_DEVICE);
2559					iowrite32(dma, ioaddr + Wn7_MasterAddr);
2560					iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2561					iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2562					while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2563						;
2564					dma_unmap_single(vp->gendev, dma, pkt_len, DMA_FROM_DEVICE);
2565				} else {
2566					ioread32_rep(ioaddr + RX_FIFO,
2567					             skb_put(skb, pkt_len),
2568						     (pkt_len + 3) >> 2);
2569				}
2570				iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2571				skb->protocol = eth_type_trans(skb, dev);
2572				netif_rx(skb);
2573				dev->stats.rx_packets++;
2574				/* Wait a limited time to go to next packet. */
2575				for (i = 200; i >= 0; i--)
2576					if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2577						break;
2578				continue;
2579			} else if (vortex_debug > 0)
2580				pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2581					dev->name, pkt_len);
2582			dev->stats.rx_dropped++;
2583		}
2584		issue_and_wait(dev, RxDiscard);
2585	}
2586
2587	return 0;
2588}
2589
2590static int
2591boomerang_rx(struct net_device *dev)
2592{
2593	struct vortex_private *vp = netdev_priv(dev);
2594	int entry = vp->cur_rx % RX_RING_SIZE;
2595	void __iomem *ioaddr = vp->ioaddr;
2596	int rx_status;
2597	int rx_work_limit = RX_RING_SIZE;
2598
2599	if (vortex_debug > 5)
2600		pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2601
2602	while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2603		if (--rx_work_limit < 0)
2604			break;
2605		if (rx_status & RxDError) { /* Error, update stats. */
2606			unsigned char rx_error = rx_status >> 16;
2607			if (vortex_debug > 2)
2608				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2609			dev->stats.rx_errors++;
2610			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2611			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2612			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2613			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2614			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2615		} else {
2616			/* The packet length: up to 4.5K!. */
2617			int pkt_len = rx_status & 0x1fff;
2618			struct sk_buff *skb, *newskb;
2619			dma_addr_t newdma;
2620			dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2621
2622			if (vortex_debug > 4)
2623				pr_debug("Receiving packet size %d status %4.4x.\n",
2624					   pkt_len, rx_status);
2625
2626			/* Check if the packet is long enough to just accept without
2627			   copying to a properly sized skbuff. */
2628			if (pkt_len < rx_copybreak &&
2629			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2630				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2631				dma_sync_single_for_cpu(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2632				/* 'skb_put()' points to the start of sk_buff data area. */
2633				skb_put_data(skb, vp->rx_skbuff[entry]->data,
2634					     pkt_len);
2635				dma_sync_single_for_device(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
 
2636				vp->rx_copy++;
2637			} else {
2638				/* Pre-allocate the replacement skb.  If it or its
2639				 * mapping fails then recycle the buffer thats already
2640				 * in place
2641				 */
2642				newskb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2643				if (!newskb) {
2644					dev->stats.rx_dropped++;
2645					goto clear_complete;
2646				}
2647				newdma = dma_map_single(vp->gendev, newskb->data,
2648							PKT_BUF_SZ, DMA_FROM_DEVICE);
2649				if (dma_mapping_error(vp->gendev, newdma)) {
2650					dev->stats.rx_dropped++;
2651					consume_skb(newskb);
2652					goto clear_complete;
2653				}
2654
2655				/* Pass up the skbuff already on the Rx ring. */
2656				skb = vp->rx_skbuff[entry];
2657				vp->rx_skbuff[entry] = newskb;
2658				vp->rx_ring[entry].addr = cpu_to_le32(newdma);
2659				skb_put(skb, pkt_len);
2660				dma_unmap_single(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2661				vp->rx_nocopy++;
2662			}
2663			skb->protocol = eth_type_trans(skb, dev);
2664			{					/* Use hardware checksum info. */
2665				int csum_bits = rx_status & 0xee000000;
2666				if (csum_bits &&
2667					(csum_bits == (IPChksumValid | TCPChksumValid) ||
2668					 csum_bits == (IPChksumValid | UDPChksumValid))) {
2669					skb->ip_summed = CHECKSUM_UNNECESSARY;
2670					vp->rx_csumhits++;
2671				}
2672			}
2673			netif_rx(skb);
2674			dev->stats.rx_packets++;
2675		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2676
2677clear_complete:
 
 
2678		vp->rx_ring[entry].status = 0;	/* Clear complete bit. */
2679		iowrite16(UpUnstall, ioaddr + EL3_CMD);
2680		entry = (++vp->cur_rx) % RX_RING_SIZE;
2681	}
2682	return 0;
2683}
2684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2685static void
2686vortex_down(struct net_device *dev, int final_down)
2687{
2688	struct vortex_private *vp = netdev_priv(dev);
2689	void __iomem *ioaddr = vp->ioaddr;
2690
2691	netdev_reset_queue(dev);
2692	netif_stop_queue(dev);
2693
 
2694	del_timer_sync(&vp->timer);
2695
2696	/* Turn off statistics ASAP.  We update dev->stats below. */
2697	iowrite16(StatsDisable, ioaddr + EL3_CMD);
2698
2699	/* Disable the receiver and transmitter. */
2700	iowrite16(RxDisable, ioaddr + EL3_CMD);
2701	iowrite16(TxDisable, ioaddr + EL3_CMD);
2702
2703	/* Disable receiving 802.1q tagged frames */
2704	set_8021q_mode(dev, 0);
2705
2706	if (dev->if_port == XCVR_10base2)
2707		/* Turn off thinnet power.  Green! */
2708		iowrite16(StopCoax, ioaddr + EL3_CMD);
2709
2710	iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2711
2712	update_stats(ioaddr, dev);
2713	if (vp->full_bus_master_rx)
2714		iowrite32(0, ioaddr + UpListPtr);
2715	if (vp->full_bus_master_tx)
2716		iowrite32(0, ioaddr + DownListPtr);
2717
2718	if (final_down && VORTEX_PCI(vp)) {
2719		vp->pm_state_valid = 1;
2720		pci_save_state(VORTEX_PCI(vp));
2721		acpi_set_WOL(dev);
2722	}
2723}
2724
2725static int
2726vortex_close(struct net_device *dev)
2727{
2728	struct vortex_private *vp = netdev_priv(dev);
2729	void __iomem *ioaddr = vp->ioaddr;
2730	int i;
2731
2732	if (netif_device_present(dev))
2733		vortex_down(dev, 1);
2734
2735	if (vortex_debug > 1) {
2736		pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2737			   dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2738		pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2739			   " tx_queued %d Rx pre-checksummed %d.\n",
2740			   dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2741	}
2742
2743#if DO_ZEROCOPY
2744	if (vp->rx_csumhits &&
2745	    (vp->drv_flags & HAS_HWCKSM) == 0 &&
2746	    (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2747		pr_warn("%s supports hardware checksums, and we're not using them!\n",
2748			dev->name);
2749	}
2750#endif
2751
2752	free_irq(dev->irq, dev);
2753
2754	if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2755		for (i = 0; i < RX_RING_SIZE; i++)
2756			if (vp->rx_skbuff[i]) {
2757				dma_unmap_single(vp->gendev, le32_to_cpu(vp->rx_ring[i].addr),
2758									PKT_BUF_SZ, DMA_FROM_DEVICE);
2759				dev_kfree_skb(vp->rx_skbuff[i]);
2760				vp->rx_skbuff[i] = NULL;
2761			}
2762	}
2763	if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2764		for (i = 0; i < TX_RING_SIZE; i++) {
2765			if (vp->tx_skbuff[i]) {
2766				struct sk_buff *skb = vp->tx_skbuff[i];
2767#if DO_ZEROCOPY
2768				int k;
2769
2770				for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2771						dma_unmap_single(vp->gendev,
2772										 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2773										 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2774										 DMA_TO_DEVICE);
2775#else
2776				dma_unmap_single(vp->gendev, le32_to_cpu(vp->tx_ring[i].addr), skb->len, DMA_TO_DEVICE);
2777#endif
2778				dev_kfree_skb(skb);
2779				vp->tx_skbuff[i] = NULL;
2780			}
2781		}
2782	}
2783
2784	return 0;
2785}
2786
2787static void
2788dump_tx_ring(struct net_device *dev)
2789{
2790	if (vortex_debug > 0) {
2791		struct vortex_private *vp = netdev_priv(dev);
2792		void __iomem *ioaddr = vp->ioaddr;
2793
2794		if (vp->full_bus_master_tx) {
2795			int i;
2796			int stalled = ioread32(ioaddr + PktStatus) & 0x04;	/* Possible racy. But it's only debug stuff */
2797
2798			pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2799					vp->full_bus_master_tx,
2800					vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2801					vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2802			pr_err("  Transmit list %8.8x vs. %p.\n",
2803				   ioread32(ioaddr + DownListPtr),
2804				   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2805			issue_and_wait(dev, DownStall);
2806			for (i = 0; i < TX_RING_SIZE; i++) {
2807				unsigned int length;
2808
2809#if DO_ZEROCOPY
2810				length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2811#else
2812				length = le32_to_cpu(vp->tx_ring[i].length);
2813#endif
2814				pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2815					   i, &vp->tx_ring[i], length,
2816					   le32_to_cpu(vp->tx_ring[i].status));
2817			}
2818			if (!stalled)
2819				iowrite16(DownUnstall, ioaddr + EL3_CMD);
2820		}
2821	}
2822}
2823
2824static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2825{
2826	struct vortex_private *vp = netdev_priv(dev);
2827	void __iomem *ioaddr = vp->ioaddr;
2828	unsigned long flags;
2829
2830	if (netif_device_present(dev)) {	/* AKPM: Used to be netif_running */
2831		spin_lock_irqsave (&vp->lock, flags);
2832		update_stats(ioaddr, dev);
2833		spin_unlock_irqrestore (&vp->lock, flags);
2834	}
2835	return &dev->stats;
2836}
2837
2838/*  Update statistics.
2839	Unlike with the EL3 we need not worry about interrupts changing
2840	the window setting from underneath us, but we must still guard
2841	against a race condition with a StatsUpdate interrupt updating the
2842	table.  This is done by checking that the ASM (!) code generated uses
2843	atomic updates with '+='.
2844	*/
2845static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2846{
2847	struct vortex_private *vp = netdev_priv(dev);
2848
2849	/* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2850	/* Switch to the stats window, and read everything. */
2851	dev->stats.tx_carrier_errors		+= window_read8(vp, 6, 0);
2852	dev->stats.tx_heartbeat_errors		+= window_read8(vp, 6, 1);
2853	dev->stats.tx_window_errors		+= window_read8(vp, 6, 4);
2854	dev->stats.rx_fifo_errors		+= window_read8(vp, 6, 5);
2855	dev->stats.tx_packets			+= window_read8(vp, 6, 6);
2856	dev->stats.tx_packets			+= (window_read8(vp, 6, 9) &
2857						    0x30) << 4;
2858	/* Rx packets	*/			window_read8(vp, 6, 7);   /* Must read to clear */
2859	/* Don't bother with register 9, an extension of registers 6&7.
2860	   If we do use the 6&7 values the atomic update assumption above
2861	   is invalid. */
2862	dev->stats.rx_bytes 			+= window_read16(vp, 6, 10);
2863	dev->stats.tx_bytes 			+= window_read16(vp, 6, 12);
2864	/* Extra stats for get_ethtool_stats() */
2865	vp->xstats.tx_multiple_collisions	+= window_read8(vp, 6, 2);
2866	vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2867	vp->xstats.tx_deferred			+= window_read8(vp, 6, 8);
2868	vp->xstats.rx_bad_ssd			+= window_read8(vp, 4, 12);
2869
2870	dev->stats.collisions = vp->xstats.tx_multiple_collisions
2871		+ vp->xstats.tx_single_collisions
2872		+ vp->xstats.tx_max_collisions;
2873
2874	{
2875		u8 up = window_read8(vp, 4, 13);
2876		dev->stats.rx_bytes += (up & 0x0f) << 16;
2877		dev->stats.tx_bytes += (up & 0xf0) << 12;
2878	}
2879}
2880
2881static int vortex_nway_reset(struct net_device *dev)
2882{
2883	struct vortex_private *vp = netdev_priv(dev);
2884
2885	return mii_nway_restart(&vp->mii);
2886}
2887
2888static int vortex_get_link_ksettings(struct net_device *dev,
2889				     struct ethtool_link_ksettings *cmd)
2890{
2891	struct vortex_private *vp = netdev_priv(dev);
2892
2893	mii_ethtool_get_link_ksettings(&vp->mii, cmd);
2894
2895	return 0;
2896}
2897
2898static int vortex_set_link_ksettings(struct net_device *dev,
2899				     const struct ethtool_link_ksettings *cmd)
2900{
2901	struct vortex_private *vp = netdev_priv(dev);
2902
2903	return mii_ethtool_set_link_ksettings(&vp->mii, cmd);
2904}
2905
2906static u32 vortex_get_msglevel(struct net_device *dev)
2907{
2908	return vortex_debug;
2909}
2910
2911static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2912{
2913	vortex_debug = dbg;
2914}
2915
2916static int vortex_get_sset_count(struct net_device *dev, int sset)
2917{
2918	switch (sset) {
2919	case ETH_SS_STATS:
2920		return VORTEX_NUM_STATS;
2921	default:
2922		return -EOPNOTSUPP;
2923	}
2924}
2925
2926static void vortex_get_ethtool_stats(struct net_device *dev,
2927	struct ethtool_stats *stats, u64 *data)
2928{
2929	struct vortex_private *vp = netdev_priv(dev);
2930	void __iomem *ioaddr = vp->ioaddr;
2931	unsigned long flags;
2932
2933	spin_lock_irqsave(&vp->lock, flags);
2934	update_stats(ioaddr, dev);
2935	spin_unlock_irqrestore(&vp->lock, flags);
2936
2937	data[0] = vp->xstats.tx_deferred;
2938	data[1] = vp->xstats.tx_max_collisions;
2939	data[2] = vp->xstats.tx_multiple_collisions;
2940	data[3] = vp->xstats.tx_single_collisions;
2941	data[4] = vp->xstats.rx_bad_ssd;
2942}
2943
2944
2945static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2946{
2947	switch (stringset) {
2948	case ETH_SS_STATS:
2949		memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2950		break;
2951	default:
2952		WARN_ON(1);
2953		break;
2954	}
2955}
2956
2957static void vortex_get_drvinfo(struct net_device *dev,
2958					struct ethtool_drvinfo *info)
2959{
2960	struct vortex_private *vp = netdev_priv(dev);
2961
2962	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2963	if (VORTEX_PCI(vp)) {
2964		strscpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2965			sizeof(info->bus_info));
2966	} else {
2967		if (VORTEX_EISA(vp))
2968			strscpy(info->bus_info, dev_name(vp->gendev),
2969				sizeof(info->bus_info));
2970		else
2971			snprintf(info->bus_info, sizeof(info->bus_info),
2972				"EISA 0x%lx %d", dev->base_addr, dev->irq);
2973	}
2974}
2975
2976static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2977{
2978	struct vortex_private *vp = netdev_priv(dev);
2979
2980	if (!VORTEX_PCI(vp))
2981		return;
2982
2983	wol->supported = WAKE_MAGIC;
2984
2985	wol->wolopts = 0;
2986	if (vp->enable_wol)
2987		wol->wolopts |= WAKE_MAGIC;
2988}
2989
2990static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2991{
2992	struct vortex_private *vp = netdev_priv(dev);
2993
2994	if (!VORTEX_PCI(vp))
2995		return -EOPNOTSUPP;
2996
2997	if (wol->wolopts & ~WAKE_MAGIC)
2998		return -EINVAL;
2999
3000	if (wol->wolopts & WAKE_MAGIC)
3001		vp->enable_wol = 1;
3002	else
3003		vp->enable_wol = 0;
3004	acpi_set_WOL(dev);
3005
3006	return 0;
3007}
3008
3009static const struct ethtool_ops vortex_ethtool_ops = {
3010	.get_drvinfo		= vortex_get_drvinfo,
3011	.get_strings            = vortex_get_strings,
3012	.get_msglevel           = vortex_get_msglevel,
3013	.set_msglevel           = vortex_set_msglevel,
3014	.get_ethtool_stats      = vortex_get_ethtool_stats,
3015	.get_sset_count		= vortex_get_sset_count,
 
 
3016	.get_link               = ethtool_op_get_link,
3017	.nway_reset             = vortex_nway_reset,
3018	.get_wol                = vortex_get_wol,
3019	.set_wol                = vortex_set_wol,
3020	.get_ts_info		= ethtool_op_get_ts_info,
3021	.get_link_ksettings     = vortex_get_link_ksettings,
3022	.set_link_ksettings     = vortex_set_link_ksettings,
3023};
3024
3025#ifdef CONFIG_PCI
3026/*
3027 *	Must power the device up to do MDIO operations
3028 */
3029static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3030{
3031	int err;
3032	struct vortex_private *vp = netdev_priv(dev);
3033	pci_power_t state = 0;
3034
3035	if(VORTEX_PCI(vp))
3036		state = VORTEX_PCI(vp)->current_state;
3037
3038	/* The kernel core really should have pci_get_power_state() */
3039
3040	if(state != 0)
3041		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3042	err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3043	if(state != 0)
3044		pci_set_power_state(VORTEX_PCI(vp), state);
3045
3046	return err;
3047}
3048#endif
3049
3050
3051/* Pre-Cyclone chips have no documented multicast filter, so the only
3052   multicast setting is to receive all multicast frames.  At least
3053   the chip has a very clean way to set the mode, unlike many others. */
3054static void set_rx_mode(struct net_device *dev)
3055{
3056	struct vortex_private *vp = netdev_priv(dev);
3057	void __iomem *ioaddr = vp->ioaddr;
3058	int new_mode;
3059
3060	if (dev->flags & IFF_PROMISC) {
3061		if (vortex_debug > 3)
3062			pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3063		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3064	} else	if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3065		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3066	} else
3067		new_mode = SetRxFilter | RxStation | RxBroadcast;
3068
3069	iowrite16(new_mode, ioaddr + EL3_CMD);
3070}
3071
3072#if IS_ENABLED(CONFIG_VLAN_8021Q)
3073/* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3074   Note that this must be done after each RxReset due to some backwards
3075   compatibility logic in the Cyclone and Tornado ASICs */
3076
3077/* The Ethernet Type used for 802.1q tagged frames */
3078#define VLAN_ETHER_TYPE 0x8100
3079
3080static void set_8021q_mode(struct net_device *dev, int enable)
3081{
3082	struct vortex_private *vp = netdev_priv(dev);
3083	int mac_ctrl;
3084
3085	if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3086		/* cyclone and tornado chipsets can recognize 802.1q
3087		 * tagged frames and treat them correctly */
3088
3089		int max_pkt_size = dev->mtu+14;	/* MTU+Ethernet header */
3090		if (enable)
3091			max_pkt_size += 4;	/* 802.1Q VLAN tag */
3092
3093		window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3094
3095		/* set VlanEtherType to let the hardware checksumming
3096		   treat tagged frames correctly */
3097		window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3098	} else {
3099		/* on older cards we have to enable large frames */
3100
3101		vp->large_frames = dev->mtu > 1500 || enable;
3102
3103		mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3104		if (vp->large_frames)
3105			mac_ctrl |= 0x40;
3106		else
3107			mac_ctrl &= ~0x40;
3108		window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3109	}
3110}
3111#else
3112
3113static void set_8021q_mode(struct net_device *dev, int enable)
3114{
3115}
3116
3117
3118#endif
3119
3120/* MII transceiver control section.
3121   Read and write the MII registers using software-generated serial
3122   MDIO protocol.  See the MII specifications or DP83840A data sheet
3123   for details. */
3124
3125/* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3126   met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3127   "overclocking" issues. */
3128static void mdio_delay(struct vortex_private *vp)
3129{
3130	window_read32(vp, 4, Wn4_PhysicalMgmt);
3131}
3132
3133#define MDIO_SHIFT_CLK	0x01
3134#define MDIO_DIR_WRITE	0x04
3135#define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3136#define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3137#define MDIO_DATA_READ	0x02
3138#define MDIO_ENB_IN		0x00
3139
3140/* Generate the preamble required for initial synchronization and
3141   a few older transceivers. */
3142static void mdio_sync(struct vortex_private *vp, int bits)
3143{
3144	/* Establish sync by sending at least 32 logic ones. */
3145	while (-- bits >= 0) {
3146		window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3147		mdio_delay(vp);
3148		window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3149			       4, Wn4_PhysicalMgmt);
3150		mdio_delay(vp);
3151	}
3152}
3153
3154static int mdio_read(struct net_device *dev, int phy_id, int location)
3155{
3156	int i;
3157	struct vortex_private *vp = netdev_priv(dev);
3158	int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3159	unsigned int retval = 0;
3160
3161	spin_lock_bh(&vp->mii_lock);
3162
3163	if (mii_preamble_required)
3164		mdio_sync(vp, 32);
3165
3166	/* Shift the read command bits out. */
3167	for (i = 14; i >= 0; i--) {
3168		int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3169		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3170		mdio_delay(vp);
3171		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3172			       4, Wn4_PhysicalMgmt);
3173		mdio_delay(vp);
3174	}
3175	/* Read the two transition, 16 data, and wire-idle bits. */
3176	for (i = 19; i > 0; i--) {
3177		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3178		mdio_delay(vp);
3179		retval = (retval << 1) |
3180			((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3181			  MDIO_DATA_READ) ? 1 : 0);
3182		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3183			       4, Wn4_PhysicalMgmt);
3184		mdio_delay(vp);
3185	}
3186
3187	spin_unlock_bh(&vp->mii_lock);
3188
3189	return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3190}
3191
3192static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3193{
3194	struct vortex_private *vp = netdev_priv(dev);
3195	int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3196	int i;
3197
3198	spin_lock_bh(&vp->mii_lock);
3199
3200	if (mii_preamble_required)
3201		mdio_sync(vp, 32);
3202
3203	/* Shift the command bits out. */
3204	for (i = 31; i >= 0; i--) {
3205		int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3206		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3207		mdio_delay(vp);
3208		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3209			       4, Wn4_PhysicalMgmt);
3210		mdio_delay(vp);
3211	}
3212	/* Leave the interface idle. */
3213	for (i = 1; i >= 0; i--) {
3214		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3215		mdio_delay(vp);
3216		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3217			       4, Wn4_PhysicalMgmt);
3218		mdio_delay(vp);
3219	}
3220
3221	spin_unlock_bh(&vp->mii_lock);
3222}
3223
3224/* ACPI: Advanced Configuration and Power Interface. */
3225/* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3226static void acpi_set_WOL(struct net_device *dev)
3227{
3228	struct vortex_private *vp = netdev_priv(dev);
3229	void __iomem *ioaddr = vp->ioaddr;
3230
3231	device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3232
3233	if (vp->enable_wol) {
3234		/* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3235		window_write16(vp, 2, 7, 0x0c);
3236		/* The RxFilter must accept the WOL frames. */
3237		iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3238		iowrite16(RxEnable, ioaddr + EL3_CMD);
3239
3240		if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3241			pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3242
3243			vp->enable_wol = 0;
3244			return;
3245		}
3246
3247		if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3248			return;
3249
3250		/* Change the power state to D3; RxEnable doesn't take effect. */
3251		pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3252	}
3253}
3254
3255
3256static void vortex_remove_one(struct pci_dev *pdev)
3257{
3258	struct net_device *dev = pci_get_drvdata(pdev);
3259	struct vortex_private *vp;
3260
3261	if (!dev) {
3262		pr_err("vortex_remove_one called for Compaq device!\n");
3263		BUG();
3264	}
3265
3266	vp = netdev_priv(dev);
3267
3268	if (vp->cb_fn_base)
3269		pci_iounmap(pdev, vp->cb_fn_base);
3270
3271	unregister_netdev(dev);
3272
3273	pci_set_power_state(pdev, PCI_D0);	/* Go active */
3274	if (vp->pm_state_valid)
3275		pci_restore_state(pdev);
3276	pci_disable_device(pdev);
3277
 
3278	/* Should really use issue_and_wait() here */
3279	iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3280	     vp->ioaddr + EL3_CMD);
3281
3282	pci_iounmap(pdev, vp->ioaddr);
3283
3284	dma_free_coherent(&pdev->dev,
3285			sizeof(struct boom_rx_desc) * RX_RING_SIZE +
3286			sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3287			vp->rx_ring, vp->rx_ring_dma);
3288
3289	pci_release_regions(pdev);
3290
 
 
 
 
 
 
 
3291	free_netdev(dev);
3292}
3293
3294
3295static struct pci_driver vortex_driver = {
3296	.name		= "3c59x",
3297	.probe		= vortex_init_one,
3298	.remove		= vortex_remove_one,
3299	.id_table	= vortex_pci_tbl,
3300	.driver.pm	= VORTEX_PM_OPS,
3301};
3302
3303
3304static int vortex_have_pci;
3305static int vortex_have_eisa;
3306
3307
3308static int __init vortex_init(void)
3309{
3310	int pci_rc, eisa_rc;
3311
3312	pci_rc = pci_register_driver(&vortex_driver);
3313	eisa_rc = vortex_eisa_init();
3314
3315	if (pci_rc == 0)
3316		vortex_have_pci = 1;
3317	if (eisa_rc > 0)
3318		vortex_have_eisa = 1;
3319
3320	return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3321}
3322
3323
3324static void __exit vortex_eisa_cleanup(void)
3325{
 
3326	void __iomem *ioaddr;
3327
3328#ifdef CONFIG_EISA
3329	/* Take care of the EISA devices */
3330	eisa_driver_unregister(&vortex_eisa_driver);
3331#endif
3332
3333	if (compaq_net_device) {
 
3334		ioaddr = ioport_map(compaq_net_device->base_addr,
3335		                    VORTEX_TOTAL_SIZE);
3336
3337		unregister_netdev(compaq_net_device);
3338		iowrite16(TotalReset, ioaddr + EL3_CMD);
3339		release_region(compaq_net_device->base_addr,
3340		               VORTEX_TOTAL_SIZE);
3341
3342		free_netdev(compaq_net_device);
3343	}
3344}
3345
3346
3347static void __exit vortex_cleanup(void)
3348{
3349	if (vortex_have_pci)
3350		pci_unregister_driver(&vortex_driver);
3351	if (vortex_have_eisa)
3352		vortex_eisa_cleanup();
3353}
3354
3355
3356module_init(vortex_init);
3357module_exit(vortex_cleanup);
v3.5.6
   1/* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
   2/*
   3	Written 1996-1999 by Donald Becker.
   4
   5	This software may be used and distributed according to the terms
   6	of the GNU General Public License, incorporated herein by reference.
   7
   8	This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
   9	Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
  10	and the EtherLink XL 3c900 and 3c905 cards.
  11
  12	Problem reports and questions should be directed to
  13	vortex@scyld.com
  14
  15	The author may be reached as becker@scyld.com, or C/O
  16	Scyld Computing Corporation
  17	410 Severn Ave., Suite 210
  18	Annapolis MD 21403
  19
  20*/
  21
  22/*
  23 * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
  24 * as well as other drivers
  25 *
  26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
  27 * due to dead code elimination.  There will be some performance benefits from this due to
  28 * elimination of all the tests and reduced cache footprint.
  29 */
  30
  31
  32#define DRV_NAME	"3c59x"
  33
  34
  35
  36/* A few values that may be tweaked. */
  37/* Keep the ring sizes a power of two for efficiency. */
  38#define TX_RING_SIZE	16
  39#define RX_RING_SIZE	32
  40#define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
  41
  42/* "Knobs" that adjust features and parameters. */
  43/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  44   Setting to > 1512 effectively disables this feature. */
  45#ifndef __arm__
  46static int rx_copybreak = 200;
  47#else
  48/* ARM systems perform better by disregarding the bus-master
  49   transfer capability of these cards. -- rmk */
  50static int rx_copybreak = 1513;
  51#endif
  52/* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
  53static const int mtu = 1500;
  54/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
  55static int max_interrupt_work = 32;
  56/* Tx timeout interval (millisecs) */
  57static int watchdog = 5000;
  58
  59/* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
  60 * of possible Tx stalls if the system is blocking interrupts
  61 * somewhere else.  Undefine this to disable.
  62 */
  63#define tx_interrupt_mitigation 1
  64
  65/* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
  66#define vortex_debug debug
  67#ifdef VORTEX_DEBUG
  68static int vortex_debug = VORTEX_DEBUG;
  69#else
  70static int vortex_debug = 1;
  71#endif
  72
  73#include <linux/module.h>
  74#include <linux/kernel.h>
  75#include <linux/string.h>
  76#include <linux/timer.h>
  77#include <linux/errno.h>
  78#include <linux/in.h>
  79#include <linux/ioport.h>
  80#include <linux/interrupt.h>
  81#include <linux/pci.h>
  82#include <linux/mii.h>
  83#include <linux/init.h>
  84#include <linux/netdevice.h>
  85#include <linux/etherdevice.h>
  86#include <linux/skbuff.h>
  87#include <linux/ethtool.h>
  88#include <linux/highmem.h>
  89#include <linux/eisa.h>
  90#include <linux/bitops.h>
  91#include <linux/jiffies.h>
  92#include <linux/gfp.h>
  93#include <asm/irq.h>			/* For nr_irqs only. */
  94#include <asm/io.h>
  95#include <asm/uaccess.h>
  96
  97/* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
  98   This is only in the support-all-kernels source code. */
  99
 100#define RUN_AT(x) (jiffies + (x))
 101
 102#include <linux/delay.h>
 103
 104
 105static const char version[] __devinitconst =
 106	DRV_NAME ": Donald Becker and others.\n";
 107
 108MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 109MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
 110MODULE_LICENSE("GPL");
 111
 112
 113/* Operational parameter that usually are not changed. */
 114
 115/* The Vortex size is twice that of the original EtherLinkIII series: the
 116   runtime register window, window 1, is now always mapped in.
 117   The Boomerang size is twice as large as the Vortex -- it has additional
 118   bus master control registers. */
 119#define VORTEX_TOTAL_SIZE 0x20
 120#define BOOMERANG_TOTAL_SIZE 0x40
 121
 122/* Set iff a MII transceiver on any interface requires mdio preamble.
 123   This only set with the original DP83840 on older 3c905 boards, so the extra
 124   code size of a per-interface flag is not worthwhile. */
 125static char mii_preamble_required;
 126
 127#define PFX DRV_NAME ": "
 128
 129
 130
 131/*
 132				Theory of Operation
 133
 134I. Board Compatibility
 135
 136This device driver is designed for the 3Com FastEtherLink and FastEtherLink
 137XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
 138versions of the FastEtherLink cards.  The supported product IDs are
 139  3c590, 3c592, 3c595, 3c597, 3c900, 3c905
 140
 141The related ISA 3c515 is supported with a separate driver, 3c515.c, included
 142with the kernel source or available from
 143    cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
 144
 145II. Board-specific settings
 146
 147PCI bus devices are configured by the system at boot time, so no jumpers
 148need to be set on the board.  The system BIOS should be set to assign the
 149PCI INTA signal to an otherwise unused system IRQ line.
 150
 151The EEPROM settings for media type and forced-full-duplex are observed.
 152The EEPROM media type should be left at the default "autoselect" unless using
 15310base2 or AUI connections which cannot be reliably detected.
 154
 155III. Driver operation
 156
 157The 3c59x series use an interface that's very similar to the previous 3c5x9
 158series.  The primary interface is two programmed-I/O FIFOs, with an
 159alternate single-contiguous-region bus-master transfer (see next).
 160
 161The 3c900 "Boomerang" series uses a full-bus-master interface with separate
 162lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
 163DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
 164programmed-I/O interface that has been removed in 'B' and subsequent board
 165revisions.
 166
 167One extension that is advertised in a very large font is that the adapters
 168are capable of being bus masters.  On the Vortex chip this capability was
 169only for a single contiguous region making it far less useful than the full
 170bus master capability.  There is a significant performance impact of taking
 171an extra interrupt or polling for the completion of each transfer, as well
 172as difficulty sharing the single transfer engine between the transmit and
 173receive threads.  Using DMA transfers is a win only with large blocks or
 174with the flawed versions of the Intel Orion motherboard PCI controller.
 175
 176The Boomerang chip's full-bus-master interface is useful, and has the
 177currently-unused advantages over other similar chips that queued transmit
 178packets may be reordered and receive buffer groups are associated with a
 179single frame.
 180
 181With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
 182Rather than a fixed intermediate receive buffer, this scheme allocates
 183full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
 184the copying breakpoint: it is chosen to trade-off the memory wasted by
 185passing the full-sized skbuff to the queue layer for all frames vs. the
 186copying cost of copying a frame to a correctly-sized skbuff.
 187
 188IIIC. Synchronization
 189The driver runs as two independent, single-threaded flows of control.  One
 190is the send-packet routine, which enforces single-threaded use by the
 191dev->tbusy flag.  The other thread is the interrupt handler, which is single
 192threaded by the hardware and other software.
 193
 194IV. Notes
 195
 196Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
 1973c590, 3c595, and 3c900 boards.
 198The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
 199the EISA version is called "Demon".  According to Terry these names come
 200from rides at the local amusement park.
 201
 202The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
 203This driver only supports ethernet packets because of the skbuff allocation
 204limit of 4K.
 205*/
 206
 207/* This table drives the PCI probe routines.  It's mostly boilerplate in all
 208   of the drivers, and will likely be provided by some future kernel.
 209*/
 210enum pci_flags_bit {
 211	PCI_USES_MASTER=4,
 212};
 213
 214enum {	IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
 215	EEPROM_8BIT=0x10,	/* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
 216	HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
 217	INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
 218	EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
 219	EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
 220
 221enum vortex_chips {
 222	CH_3C590 = 0,
 223	CH_3C592,
 224	CH_3C597,
 225	CH_3C595_1,
 226	CH_3C595_2,
 227
 228	CH_3C595_3,
 229	CH_3C900_1,
 230	CH_3C900_2,
 231	CH_3C900_3,
 232	CH_3C900_4,
 233
 234	CH_3C900_5,
 235	CH_3C900B_FL,
 236	CH_3C905_1,
 237	CH_3C905_2,
 238	CH_3C905B_TX,
 239	CH_3C905B_1,
 240
 241	CH_3C905B_2,
 242	CH_3C905B_FX,
 243	CH_3C905C,
 244	CH_3C9202,
 245	CH_3C980,
 246	CH_3C9805,
 247
 248	CH_3CSOHO100_TX,
 249	CH_3C555,
 250	CH_3C556,
 251	CH_3C556B,
 252	CH_3C575,
 253
 254	CH_3C575_1,
 255	CH_3CCFE575,
 256	CH_3CCFE575CT,
 257	CH_3CCFE656,
 258	CH_3CCFEM656,
 259
 260	CH_3CCFEM656_1,
 261	CH_3C450,
 262	CH_3C920,
 263	CH_3C982A,
 264	CH_3C982B,
 265
 266	CH_905BT4,
 267	CH_920B_EMB_WNM,
 268};
 269
 270
 271/* note: this array directly indexed by above enums, and MUST
 272 * be kept in sync with both the enums above, and the PCI device
 273 * table below
 274 */
 275static struct vortex_chip_info {
 276	const char *name;
 277	int flags;
 278	int drv_flags;
 279	int io_size;
 280} vortex_info_tbl[] __devinitdata = {
 281	{"3c590 Vortex 10Mbps",
 282	 PCI_USES_MASTER, IS_VORTEX, 32, },
 283	{"3c592 EISA 10Mbps Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
 284	 PCI_USES_MASTER, IS_VORTEX, 32, },
 285	{"3c597 EISA Fast Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
 286	 PCI_USES_MASTER, IS_VORTEX, 32, },
 287	{"3c595 Vortex 100baseTx",
 288	 PCI_USES_MASTER, IS_VORTEX, 32, },
 289	{"3c595 Vortex 100baseT4",
 290	 PCI_USES_MASTER, IS_VORTEX, 32, },
 291
 292	{"3c595 Vortex 100base-MII",
 293	 PCI_USES_MASTER, IS_VORTEX, 32, },
 294	{"3c900 Boomerang 10baseT",
 295	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 296	{"3c900 Boomerang 10Mbps Combo",
 297	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 298	{"3c900 Cyclone 10Mbps TPO",						/* AKPM: from Don's 0.99M */
 299	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 300	{"3c900 Cyclone 10Mbps Combo",
 301	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 302
 303	{"3c900 Cyclone 10Mbps TPC",						/* AKPM: from Don's 0.99M */
 304	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 305	{"3c900B-FL Cyclone 10base-FL",
 306	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 307	{"3c905 Boomerang 100baseTx",
 308	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 309	{"3c905 Boomerang 100baseT4",
 310	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 311	{"3C905B-TX Fast Etherlink XL PCI",
 312	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 313	{"3c905B Cyclone 100baseTx",
 314	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 315
 316	{"3c905B Cyclone 10/100/BNC",
 317	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 318	{"3c905B-FX Cyclone 100baseFx",
 319	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 320	{"3c905C Tornado",
 321	PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 322	{"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
 323	 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
 324	{"3c980 Cyclone",
 325	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 326
 327	{"3c980C Python-T",
 328	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 329	{"3cSOHO100-TX Hurricane",
 330	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 331	{"3c555 Laptop Hurricane",
 332	 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
 333	{"3c556 Laptop Tornado",
 334	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
 335									HAS_HWCKSM, 128, },
 336	{"3c556B Laptop Hurricane",
 337	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
 338	                                WNO_XCVR_PWR|HAS_HWCKSM, 128, },
 339
 340	{"3c575 [Megahertz] 10/100 LAN 	CardBus",
 341	PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 342	{"3c575 Boomerang CardBus",
 343	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 344	{"3CCFE575BT Cyclone CardBus",
 345	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
 346									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 347	{"3CCFE575CT Tornado CardBus",
 348	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 349									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 350	{"3CCFE656 Cyclone CardBus",
 351	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 352									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 353
 354	{"3CCFEM656B Cyclone+Winmodem CardBus",
 355	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 356									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 357	{"3CXFEM656C Tornado+Winmodem CardBus",			/* From pcmcia-cs-3.1.5 */
 358	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 359									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 360	{"3c450 HomePNA Tornado",						/* AKPM: from Don's 0.99Q */
 361	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 362	{"3c920 Tornado",
 363	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 364	{"3c982 Hydra Dual Port A",
 365	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 366
 367	{"3c982 Hydra Dual Port B",
 368	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 369	{"3c905B-T4",
 370	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 371	{"3c920B-EMB-WNM Tornado",
 372	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 373
 374	{NULL,}, /* NULL terminated list. */
 375};
 376
 377
 378static DEFINE_PCI_DEVICE_TABLE(vortex_pci_tbl) = {
 379	{ 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
 380	{ 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
 381	{ 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
 382	{ 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
 383	{ 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
 384
 385	{ 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
 386	{ 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
 387	{ 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
 388	{ 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
 389	{ 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
 390
 391	{ 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
 392	{ 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
 393	{ 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
 394	{ 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
 395	{ 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
 396	{ 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
 397
 398	{ 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
 399	{ 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
 400	{ 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
 401	{ 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
 402	{ 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
 403	{ 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
 404
 405	{ 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
 406	{ 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
 407	{ 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
 408	{ 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
 409	{ 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
 410
 411	{ 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
 412	{ 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
 413	{ 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
 414	{ 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
 415	{ 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
 416
 417	{ 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
 418	{ 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
 419	{ 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
 420	{ 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
 421	{ 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
 422
 423	{ 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
 424	{ 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
 425
 426	{0,}						/* 0 terminated list. */
 427};
 428MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
 429
 430
 431/* Operational definitions.
 432   These are not used by other compilation units and thus are not
 433   exported in a ".h" file.
 434
 435   First the windows.  There are eight register windows, with the command
 436   and status registers available in each.
 437   */
 438#define EL3_CMD 0x0e
 439#define EL3_STATUS 0x0e
 440
 441/* The top five bits written to EL3_CMD are a command, the lower
 442   11 bits are the parameter, if applicable.
 443   Note that 11 parameters bits was fine for ethernet, but the new chip
 444   can handle FDDI length frames (~4500 octets) and now parameters count
 445   32-bit 'Dwords' rather than octets. */
 446
 447enum vortex_cmd {
 448	TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
 449	RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
 450	UpStall = 6<<11, UpUnstall = (6<<11)+1,
 451	DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
 452	RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
 453	FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
 454	SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
 455	SetTxThreshold = 18<<11, SetTxStart = 19<<11,
 456	StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
 457	StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
 458
 459/* The SetRxFilter command accepts the following classes: */
 460enum RxFilter {
 461	RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
 462
 463/* Bits in the general status register. */
 464enum vortex_status {
 465	IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
 466	TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
 467	IntReq = 0x0040, StatsFull = 0x0080,
 468	DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
 469	DMAInProgress = 1<<11,			/* DMA controller is still busy.*/
 470	CmdInProgress = 1<<12,			/* EL3_CMD is still busy.*/
 471};
 472
 473/* Register window 1 offsets, the window used in normal operation.
 474   On the Vortex this window is always mapped at offsets 0x10-0x1f. */
 475enum Window1 {
 476	TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
 477	RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
 478	TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
 479};
 480enum Window0 {
 481	Wn0EepromCmd = 10,		/* Window 0: EEPROM command register. */
 482	Wn0EepromData = 12,		/* Window 0: EEPROM results register. */
 483	IntrStatus=0x0E,		/* Valid in all windows. */
 484};
 485enum Win0_EEPROM_bits {
 486	EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
 487	EEPROM_EWENB = 0x30,		/* Enable erasing/writing for 10 msec. */
 488	EEPROM_EWDIS = 0x00,		/* Disable EWENB before 10 msec timeout. */
 489};
 490/* EEPROM locations. */
 491enum eeprom_offset {
 492	PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
 493	EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
 494	NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
 495	DriverTune=13, Checksum=15};
 496
 497enum Window2 {			/* Window 2. */
 498	Wn2_ResetOptions=12,
 499};
 500enum Window3 {			/* Window 3: MAC/config bits. */
 501	Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
 502};
 503
 504#define BFEXT(value, offset, bitcount)  \
 505    ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
 506
 507#define BFINS(lhs, rhs, offset, bitcount)					\
 508	(((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |	\
 509	(((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
 510
 511#define RAM_SIZE(v)		BFEXT(v, 0, 3)
 512#define RAM_WIDTH(v)	BFEXT(v, 3, 1)
 513#define RAM_SPEED(v)	BFEXT(v, 4, 2)
 514#define ROM_SIZE(v)		BFEXT(v, 6, 2)
 515#define RAM_SPLIT(v)	BFEXT(v, 16, 2)
 516#define XCVR(v)			BFEXT(v, 20, 4)
 517#define AUTOSELECT(v)	BFEXT(v, 24, 1)
 518
 519enum Window4 {		/* Window 4: Xcvr/media bits. */
 520	Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
 521};
 522enum Win4_Media_bits {
 523	Media_SQE = 0x0008,		/* Enable SQE error counting for AUI. */
 524	Media_10TP = 0x00C0,	/* Enable link beat and jabber for 10baseT. */
 525	Media_Lnk = 0x0080,		/* Enable just link beat for 100TX/100FX. */
 526	Media_LnkBeat = 0x0800,
 527};
 528enum Window7 {					/* Window 7: Bus Master control. */
 529	Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
 530	Wn7_MasterStatus = 12,
 531};
 532/* Boomerang bus master control registers. */
 533enum MasterCtrl {
 534	PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
 535	TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
 536};
 537
 538/* The Rx and Tx descriptor lists.
 539   Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
 540   alignment contraint on tx_ring[] and rx_ring[]. */
 541#define LAST_FRAG 	0x80000000			/* Last Addr/Len pair in descriptor. */
 542#define DN_COMPLETE	0x00010000			/* This packet has been downloaded */
 543struct boom_rx_desc {
 544	__le32 next;					/* Last entry points to 0.   */
 545	__le32 status;
 546	__le32 addr;					/* Up to 63 addr/len pairs possible. */
 547	__le32 length;					/* Set LAST_FRAG to indicate last pair. */
 548};
 549/* Values for the Rx status entry. */
 550enum rx_desc_status {
 551	RxDComplete=0x00008000, RxDError=0x4000,
 552	/* See boomerang_rx() for actual error bits */
 553	IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
 554	IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
 555};
 556
 557#ifdef MAX_SKB_FRAGS
 558#define DO_ZEROCOPY 1
 559#else
 560#define DO_ZEROCOPY 0
 561#endif
 562
 563struct boom_tx_desc {
 564	__le32 next;					/* Last entry points to 0.   */
 565	__le32 status;					/* bits 0:12 length, others see below.  */
 566#if DO_ZEROCOPY
 567	struct {
 568		__le32 addr;
 569		__le32 length;
 570	} frag[1+MAX_SKB_FRAGS];
 571#else
 572		__le32 addr;
 573		__le32 length;
 574#endif
 575};
 576
 577/* Values for the Tx status entry. */
 578enum tx_desc_status {
 579	CRCDisable=0x2000, TxDComplete=0x8000,
 580	AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
 581	TxIntrUploaded=0x80000000,		/* IRQ when in FIFO, but maybe not sent. */
 582};
 583
 584/* Chip features we care about in vp->capabilities, read from the EEPROM. */
 585enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
 586
 587struct vortex_extra_stats {
 588	unsigned long tx_deferred;
 589	unsigned long tx_max_collisions;
 590	unsigned long tx_multiple_collisions;
 591	unsigned long tx_single_collisions;
 592	unsigned long rx_bad_ssd;
 593};
 594
 595struct vortex_private {
 596	/* The Rx and Tx rings should be quad-word-aligned. */
 597	struct boom_rx_desc* rx_ring;
 598	struct boom_tx_desc* tx_ring;
 599	dma_addr_t rx_ring_dma;
 600	dma_addr_t tx_ring_dma;
 601	/* The addresses of transmit- and receive-in-place skbuffs. */
 602	struct sk_buff* rx_skbuff[RX_RING_SIZE];
 603	struct sk_buff* tx_skbuff[TX_RING_SIZE];
 604	unsigned int cur_rx, cur_tx;		/* The next free ring entry */
 605	unsigned int dirty_rx, dirty_tx;	/* The ring entries to be free()ed. */
 606	struct vortex_extra_stats xstats;	/* NIC-specific extra stats */
 607	struct sk_buff *tx_skb;				/* Packet being eaten by bus master ctrl.  */
 608	dma_addr_t tx_skb_dma;				/* Allocated DMA address for bus master ctrl DMA.   */
 609
 610	/* PCI configuration space information. */
 611	struct device *gendev;
 612	void __iomem *ioaddr;			/* IO address space */
 613	void __iomem *cb_fn_base;		/* CardBus function status addr space. */
 614
 615	/* Some values here only for performance evaluation and path-coverage */
 616	int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
 617	int card_idx;
 618
 619	/* The remainder are related to chip state, mostly media selection. */
 620	struct timer_list timer;			/* Media selection timer. */
 621	struct timer_list rx_oom_timer;		/* Rx skb allocation retry timer */
 622	int options;						/* User-settable misc. driver options. */
 623	unsigned int media_override:4, 		/* Passed-in media type. */
 624		default_media:4,				/* Read from the EEPROM/Wn3_Config. */
 625		full_duplex:1, autoselect:1,
 626		bus_master:1,					/* Vortex can only do a fragment bus-m. */
 627		full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
 628		flow_ctrl:1,					/* Use 802.3x flow control (PAUSE only) */
 629		partner_flow_ctrl:1,			/* Partner supports flow control */
 630		has_nway:1,
 631		enable_wol:1,					/* Wake-on-LAN is enabled */
 632		pm_state_valid:1,				/* pci_dev->saved_config_space has sane contents */
 633		open:1,
 634		medialock:1,
 635		must_free_region:1,				/* Flag: if zero, Cardbus owns the I/O region */
 636		large_frames:1,			/* accept large frames */
 637		handling_irq:1;			/* private in_irq indicator */
 638	/* {get|set}_wol operations are already serialized by rtnl.
 639	 * no additional locking is required for the enable_wol and acpi_set_WOL()
 640	 */
 641	int drv_flags;
 642	u16 status_enable;
 643	u16 intr_enable;
 644	u16 available_media;				/* From Wn3_Options. */
 645	u16 capabilities, info1, info2;		/* Various, from EEPROM. */
 646	u16 advertising;					/* NWay media advertisement */
 647	unsigned char phys[2];				/* MII device addresses. */
 648	u16 deferred;						/* Resend these interrupts when we
 649										 * bale from the ISR */
 650	u16 io_size;						/* Size of PCI region (for release_region) */
 651
 652	/* Serialises access to hardware other than MII and variables below.
 653	 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
 654	spinlock_t lock;
 655
 656	spinlock_t mii_lock;		/* Serialises access to MII */
 657	struct mii_if_info mii;		/* MII lib hooks/info */
 658	spinlock_t window_lock;		/* Serialises access to windowed regs */
 659	int window;			/* Register window */
 660};
 661
 662static void window_set(struct vortex_private *vp, int window)
 663{
 664	if (window != vp->window) {
 665		iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
 666		vp->window = window;
 667	}
 668}
 669
 670#define DEFINE_WINDOW_IO(size)						\
 671static u ## size							\
 672window_read ## size(struct vortex_private *vp, int window, int addr)	\
 673{									\
 674	unsigned long flags;						\
 675	u ## size ret;							\
 676	spin_lock_irqsave(&vp->window_lock, flags);			\
 677	window_set(vp, window);						\
 678	ret = ioread ## size(vp->ioaddr + addr);			\
 679	spin_unlock_irqrestore(&vp->window_lock, flags);		\
 680	return ret;							\
 681}									\
 682static void								\
 683window_write ## size(struct vortex_private *vp, u ## size value,	\
 684		     int window, int addr)				\
 685{									\
 686	unsigned long flags;						\
 687	spin_lock_irqsave(&vp->window_lock, flags);			\
 688	window_set(vp, window);						\
 689	iowrite ## size(value, vp->ioaddr + addr);			\
 690	spin_unlock_irqrestore(&vp->window_lock, flags);		\
 691}
 692DEFINE_WINDOW_IO(8)
 693DEFINE_WINDOW_IO(16)
 694DEFINE_WINDOW_IO(32)
 695
 696#ifdef CONFIG_PCI
 697#define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
 698#else
 699#define DEVICE_PCI(dev) NULL
 700#endif
 701
 702#define VORTEX_PCI(vp)							\
 703	((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
 704
 705#ifdef CONFIG_EISA
 706#define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
 707#else
 708#define DEVICE_EISA(dev) NULL
 709#endif
 710
 711#define VORTEX_EISA(vp)							\
 712	((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
 713
 714/* The action to take with a media selection timer tick.
 715   Note that we deviate from the 3Com order by checking 10base2 before AUI.
 716 */
 717enum xcvr_types {
 718	XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
 719	XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
 720};
 721
 722static const struct media_table {
 723	char *name;
 724	unsigned int media_bits:16,		/* Bits to set in Wn4_Media register. */
 725		mask:8,						/* The transceiver-present bit in Wn3_Config.*/
 726		next:8;						/* The media type to try next. */
 727	int wait;						/* Time before we check media status. */
 728} media_tbl[] = {
 729  {	"10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
 730  { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
 731  { "undefined", 0,			0x80, XCVR_10baseT, 10000},
 732  { "10base2",   0,			0x10, XCVR_AUI,		(1*HZ)/10},
 733  { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
 734  { "100baseFX", Media_Lnk, 0x04, XCVR_MII,		(14*HZ)/10},
 735  { "MII",		 0,			0x41, XCVR_10baseT, 3*HZ },
 736  { "undefined", 0,			0x01, XCVR_10baseT, 10000},
 737  { "Autonegotiate", 0,		0x41, XCVR_10baseT, 3*HZ},
 738  { "MII-External",	 0,		0x41, XCVR_10baseT, 3*HZ },
 739  { "Default",	 0,			0xFF, XCVR_10baseT, 10000},
 740};
 741
 742static struct {
 743	const char str[ETH_GSTRING_LEN];
 744} ethtool_stats_keys[] = {
 745	{ "tx_deferred" },
 746	{ "tx_max_collisions" },
 747	{ "tx_multiple_collisions" },
 748	{ "tx_single_collisions" },
 749	{ "rx_bad_ssd" },
 750};
 751
 752/* number of ETHTOOL_GSTATS u64's */
 753#define VORTEX_NUM_STATS    5
 754
 755static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
 756				   int chip_idx, int card_idx);
 757static int vortex_up(struct net_device *dev);
 758static void vortex_down(struct net_device *dev, int final);
 759static int vortex_open(struct net_device *dev);
 760static void mdio_sync(struct vortex_private *vp, int bits);
 761static int mdio_read(struct net_device *dev, int phy_id, int location);
 762static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
 763static void vortex_timer(unsigned long arg);
 764static void rx_oom_timer(unsigned long arg);
 765static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
 766				     struct net_device *dev);
 767static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
 768					struct net_device *dev);
 769static int vortex_rx(struct net_device *dev);
 770static int boomerang_rx(struct net_device *dev);
 771static irqreturn_t vortex_interrupt(int irq, void *dev_id);
 772static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
 
 773static int vortex_close(struct net_device *dev);
 774static void dump_tx_ring(struct net_device *dev);
 775static void update_stats(void __iomem *ioaddr, struct net_device *dev);
 776static struct net_device_stats *vortex_get_stats(struct net_device *dev);
 777static void set_rx_mode(struct net_device *dev);
 778#ifdef CONFIG_PCI
 779static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 780#endif
 781static void vortex_tx_timeout(struct net_device *dev);
 782static void acpi_set_WOL(struct net_device *dev);
 783static const struct ethtool_ops vortex_ethtool_ops;
 784static void set_8021q_mode(struct net_device *dev, int enable);
 785
 786/* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
 787/* Option count limit only -- unlimited interfaces are supported. */
 788#define MAX_UNITS 8
 789static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
 790static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 791static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 792static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 793static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 794static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 795static int global_options = -1;
 796static int global_full_duplex = -1;
 797static int global_enable_wol = -1;
 798static int global_use_mmio = -1;
 799
 800/* Variables to work-around the Compaq PCI BIOS32 problem. */
 801static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
 802static struct net_device *compaq_net_device;
 803
 804static int vortex_cards_found;
 805
 806module_param(debug, int, 0);
 807module_param(global_options, int, 0);
 808module_param_array(options, int, NULL, 0);
 809module_param(global_full_duplex, int, 0);
 810module_param_array(full_duplex, int, NULL, 0);
 811module_param_array(hw_checksums, int, NULL, 0);
 812module_param_array(flow_ctrl, int, NULL, 0);
 813module_param(global_enable_wol, int, 0);
 814module_param_array(enable_wol, int, NULL, 0);
 815module_param(rx_copybreak, int, 0);
 816module_param(max_interrupt_work, int, 0);
 817module_param(compaq_ioaddr, int, 0);
 818module_param(compaq_irq, int, 0);
 819module_param(compaq_device_id, int, 0);
 820module_param(watchdog, int, 0);
 821module_param(global_use_mmio, int, 0);
 822module_param_array(use_mmio, int, NULL, 0);
 823MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
 824MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
 825MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
 826MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
 827MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
 828MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
 829MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
 830MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
 831MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
 832MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
 833MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
 834MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
 835MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
 836MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
 837MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
 838MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
 839MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
 840
 841#ifdef CONFIG_NET_POLL_CONTROLLER
 842static void poll_vortex(struct net_device *dev)
 843{
 844	struct vortex_private *vp = netdev_priv(dev);
 845	unsigned long flags;
 846	local_irq_save(flags);
 847	(vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
 848	local_irq_restore(flags);
 849}
 850#endif
 851
 852#ifdef CONFIG_PM
 853
 854static int vortex_suspend(struct device *dev)
 855{
 856	struct pci_dev *pdev = to_pci_dev(dev);
 857	struct net_device *ndev = pci_get_drvdata(pdev);
 858
 859	if (!ndev || !netif_running(ndev))
 860		return 0;
 861
 862	netif_device_detach(ndev);
 863	vortex_down(ndev, 1);
 864
 865	return 0;
 866}
 867
 868static int vortex_resume(struct device *dev)
 869{
 870	struct pci_dev *pdev = to_pci_dev(dev);
 871	struct net_device *ndev = pci_get_drvdata(pdev);
 872	int err;
 873
 874	if (!ndev || !netif_running(ndev))
 875		return 0;
 876
 877	err = vortex_up(ndev);
 878	if (err)
 879		return err;
 880
 881	netif_device_attach(ndev);
 882
 883	return 0;
 884}
 885
 886static const struct dev_pm_ops vortex_pm_ops = {
 887	.suspend = vortex_suspend,
 888	.resume = vortex_resume,
 889	.freeze = vortex_suspend,
 890	.thaw = vortex_resume,
 891	.poweroff = vortex_suspend,
 892	.restore = vortex_resume,
 893};
 894
 895#define VORTEX_PM_OPS (&vortex_pm_ops)
 896
 897#else /* !CONFIG_PM */
 898
 899#define VORTEX_PM_OPS NULL
 900
 901#endif /* !CONFIG_PM */
 902
 903#ifdef CONFIG_EISA
 904static struct eisa_device_id vortex_eisa_ids[] = {
 905	{ "TCM5920", CH_3C592 },
 906	{ "TCM5970", CH_3C597 },
 907	{ "" }
 908};
 909MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
 910
 911static int __init vortex_eisa_probe(struct device *device)
 912{
 913	void __iomem *ioaddr;
 914	struct eisa_device *edev;
 915
 916	edev = to_eisa_device(device);
 917
 918	if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
 919		return -EBUSY;
 920
 921	ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
 922
 923	if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
 924					  edev->id.driver_data, vortex_cards_found)) {
 925		release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 926		return -ENODEV;
 927	}
 928
 929	vortex_cards_found++;
 930
 931	return 0;
 932}
 933
 934static int __devexit vortex_eisa_remove(struct device *device)
 935{
 936	struct eisa_device *edev;
 937	struct net_device *dev;
 938	struct vortex_private *vp;
 939	void __iomem *ioaddr;
 940
 941	edev = to_eisa_device(device);
 942	dev = eisa_get_drvdata(edev);
 943
 944	if (!dev) {
 945		pr_err("vortex_eisa_remove called for Compaq device!\n");
 946		BUG();
 947	}
 948
 949	vp = netdev_priv(dev);
 950	ioaddr = vp->ioaddr;
 951
 952	unregister_netdev(dev);
 953	iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
 954	release_region(dev->base_addr, VORTEX_TOTAL_SIZE);
 955
 956	free_netdev(dev);
 957	return 0;
 958}
 959
 960static struct eisa_driver vortex_eisa_driver = {
 961	.id_table = vortex_eisa_ids,
 962	.driver   = {
 963		.name    = "3c59x",
 964		.probe   = vortex_eisa_probe,
 965		.remove  = __devexit_p(vortex_eisa_remove)
 966	}
 967};
 968
 969#endif /* CONFIG_EISA */
 970
 971/* returns count found (>= 0), or negative on error */
 972static int __init vortex_eisa_init(void)
 973{
 974	int eisa_found = 0;
 975	int orig_cards_found = vortex_cards_found;
 976
 977#ifdef CONFIG_EISA
 978	int err;
 979
 980	err = eisa_driver_register (&vortex_eisa_driver);
 981	if (!err) {
 982		/*
 983		 * Because of the way EISA bus is probed, we cannot assume
 984		 * any device have been found when we exit from
 985		 * eisa_driver_register (the bus root driver may not be
 986		 * initialized yet). So we blindly assume something was
 987		 * found, and let the sysfs magic happened...
 988		 */
 989		eisa_found = 1;
 990	}
 991#endif
 992
 993	/* Special code to work-around the Compaq PCI BIOS32 problem. */
 994	if (compaq_ioaddr) {
 995		vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
 996			      compaq_irq, compaq_device_id, vortex_cards_found++);
 997	}
 998
 999	return vortex_cards_found - orig_cards_found + eisa_found;
1000}
1001
1002/* returns count (>= 0), or negative on error */
1003static int __devinit vortex_init_one(struct pci_dev *pdev,
1004				      const struct pci_device_id *ent)
1005{
1006	int rc, unit, pci_bar;
1007	struct vortex_chip_info *vci;
1008	void __iomem *ioaddr;
1009
1010	/* wake up and enable device */
1011	rc = pci_enable_device(pdev);
1012	if (rc < 0)
1013		goto out;
1014
 
 
 
 
1015	unit = vortex_cards_found;
1016
1017	if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1018		/* Determine the default if the user didn't override us */
1019		vci = &vortex_info_tbl[ent->driver_data];
1020		pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1021	} else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1022		pci_bar = use_mmio[unit] ? 1 : 0;
1023	else
1024		pci_bar = global_use_mmio ? 1 : 0;
1025
1026	ioaddr = pci_iomap(pdev, pci_bar, 0);
1027	if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1028		ioaddr = pci_iomap(pdev, 0, 0);
1029	if (!ioaddr) {
1030		pci_disable_device(pdev);
1031		rc = -ENOMEM;
1032		goto out;
1033	}
1034
1035	rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1036			   ent->driver_data, unit);
1037	if (rc < 0) {
1038		pci_iounmap(pdev, ioaddr);
1039		pci_disable_device(pdev);
1040		goto out;
1041	}
1042
1043	vortex_cards_found++;
 
1044
 
 
 
 
 
 
1045out:
1046	return rc;
1047}
1048
1049static const struct net_device_ops boomrang_netdev_ops = {
1050	.ndo_open		= vortex_open,
1051	.ndo_stop		= vortex_close,
1052	.ndo_start_xmit		= boomerang_start_xmit,
1053	.ndo_tx_timeout		= vortex_tx_timeout,
1054	.ndo_get_stats		= vortex_get_stats,
1055#ifdef CONFIG_PCI
1056	.ndo_do_ioctl 		= vortex_ioctl,
1057#endif
1058	.ndo_set_rx_mode	= set_rx_mode,
1059	.ndo_change_mtu		= eth_change_mtu,
1060	.ndo_set_mac_address 	= eth_mac_addr,
1061	.ndo_validate_addr	= eth_validate_addr,
1062#ifdef CONFIG_NET_POLL_CONTROLLER
1063	.ndo_poll_controller	= poll_vortex,
1064#endif
1065};
1066
1067static const struct net_device_ops vortex_netdev_ops = {
1068	.ndo_open		= vortex_open,
1069	.ndo_stop		= vortex_close,
1070	.ndo_start_xmit		= vortex_start_xmit,
1071	.ndo_tx_timeout		= vortex_tx_timeout,
1072	.ndo_get_stats		= vortex_get_stats,
1073#ifdef CONFIG_PCI
1074	.ndo_do_ioctl 		= vortex_ioctl,
1075#endif
1076	.ndo_set_rx_mode	= set_rx_mode,
1077	.ndo_change_mtu		= eth_change_mtu,
1078	.ndo_set_mac_address 	= eth_mac_addr,
1079	.ndo_validate_addr	= eth_validate_addr,
1080#ifdef CONFIG_NET_POLL_CONTROLLER
1081	.ndo_poll_controller	= poll_vortex,
1082#endif
1083};
1084
1085/*
1086 * Start up the PCI/EISA device which is described by *gendev.
1087 * Return 0 on success.
1088 *
1089 * NOTE: pdev can be NULL, for the case of a Compaq device
1090 */
1091static int __devinit vortex_probe1(struct device *gendev,
1092				   void __iomem *ioaddr, int irq,
1093				   int chip_idx, int card_idx)
1094{
1095	struct vortex_private *vp;
1096	int option;
1097	unsigned int eeprom[0x40], checksum = 0;		/* EEPROM contents */
 
1098	int i, step;
1099	struct net_device *dev;
1100	static int printed_version;
1101	int retval, print_info;
1102	struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1103	const char *print_name = "3c59x";
1104	struct pci_dev *pdev = NULL;
1105	struct eisa_device *edev = NULL;
1106
1107	if (!printed_version) {
1108		pr_info("%s", version);
1109		printed_version = 1;
1110	}
1111
1112	if (gendev) {
1113		if ((pdev = DEVICE_PCI(gendev))) {
1114			print_name = pci_name(pdev);
1115		}
1116
1117		if ((edev = DEVICE_EISA(gendev))) {
1118			print_name = dev_name(&edev->dev);
1119		}
1120	}
1121
1122	dev = alloc_etherdev(sizeof(*vp));
1123	retval = -ENOMEM;
1124	if (!dev)
1125		goto out;
1126
1127	SET_NETDEV_DEV(dev, gendev);
1128	vp = netdev_priv(dev);
1129
1130	option = global_options;
1131
1132	/* The lower four bits are the media type. */
1133	if (dev->mem_start) {
1134		/*
1135		 * The 'options' param is passed in as the third arg to the
1136		 * LILO 'ether=' argument for non-modular use
1137		 */
1138		option = dev->mem_start;
1139	}
1140	else if (card_idx < MAX_UNITS) {
1141		if (options[card_idx] >= 0)
1142			option = options[card_idx];
1143	}
1144
1145	if (option > 0) {
1146		if (option & 0x8000)
1147			vortex_debug = 7;
1148		if (option & 0x4000)
1149			vortex_debug = 2;
1150		if (option & 0x0400)
1151			vp->enable_wol = 1;
1152	}
1153
1154	print_info = (vortex_debug > 1);
1155	if (print_info)
1156		pr_info("See Documentation/networking/vortex.txt\n");
1157
1158	pr_info("%s: 3Com %s %s at %p.\n",
1159	       print_name,
1160	       pdev ? "PCI" : "EISA",
1161	       vci->name,
1162	       ioaddr);
1163
1164	dev->base_addr = (unsigned long)ioaddr;
1165	dev->irq = irq;
1166	dev->mtu = mtu;
1167	vp->ioaddr = ioaddr;
1168	vp->large_frames = mtu > 1500;
1169	vp->drv_flags = vci->drv_flags;
1170	vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1171	vp->io_size = vci->io_size;
1172	vp->card_idx = card_idx;
1173	vp->window = -1;
1174
1175	/* module list only for Compaq device */
1176	if (gendev == NULL) {
1177		compaq_net_device = dev;
1178	}
1179
1180	/* PCI-only startup logic */
1181	if (pdev) {
1182		/* EISA resources already marked, so only PCI needs to do this here */
1183		/* Ignore return value, because Cardbus drivers already allocate for us */
1184		if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1185			vp->must_free_region = 1;
1186
1187		/* enable bus-mastering if necessary */
1188		if (vci->flags & PCI_USES_MASTER)
1189			pci_set_master(pdev);
1190
1191		if (vci->drv_flags & IS_VORTEX) {
1192			u8 pci_latency;
1193			u8 new_latency = 248;
1194
1195			/* Check the PCI latency value.  On the 3c590 series the latency timer
1196			   must be set to the maximum value to avoid data corruption that occurs
1197			   when the timer expires during a transfer.  This bug exists the Vortex
1198			   chip only. */
1199			pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1200			if (pci_latency < new_latency) {
1201				pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1202					print_name, pci_latency, new_latency);
1203				pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1204			}
1205		}
1206	}
1207
1208	spin_lock_init(&vp->lock);
1209	spin_lock_init(&vp->mii_lock);
1210	spin_lock_init(&vp->window_lock);
1211	vp->gendev = gendev;
1212	vp->mii.dev = dev;
1213	vp->mii.mdio_read = mdio_read;
1214	vp->mii.mdio_write = mdio_write;
1215	vp->mii.phy_id_mask = 0x1f;
1216	vp->mii.reg_num_mask = 0x1f;
1217
1218	/* Makes sure rings are at least 16 byte aligned. */
1219	vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1220					   + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1221					   &vp->rx_ring_dma);
1222	retval = -ENOMEM;
1223	if (!vp->rx_ring)
1224		goto free_region;
1225
1226	vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1227	vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1228
1229	/* if we are a PCI driver, we store info in pdev->driver_data
1230	 * instead of a module list */
1231	if (pdev)
1232		pci_set_drvdata(pdev, dev);
1233	if (edev)
1234		eisa_set_drvdata(edev, dev);
1235
1236	vp->media_override = 7;
1237	if (option >= 0) {
1238		vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1239		if (vp->media_override != 7)
1240			vp->medialock = 1;
1241		vp->full_duplex = (option & 0x200) ? 1 : 0;
1242		vp->bus_master = (option & 16) ? 1 : 0;
1243	}
1244
1245	if (global_full_duplex > 0)
1246		vp->full_duplex = 1;
1247	if (global_enable_wol > 0)
1248		vp->enable_wol = 1;
1249
1250	if (card_idx < MAX_UNITS) {
1251		if (full_duplex[card_idx] > 0)
1252			vp->full_duplex = 1;
1253		if (flow_ctrl[card_idx] > 0)
1254			vp->flow_ctrl = 1;
1255		if (enable_wol[card_idx] > 0)
1256			vp->enable_wol = 1;
1257	}
1258
1259	vp->mii.force_media = vp->full_duplex;
1260	vp->options = option;
1261	/* Read the station address from the EEPROM. */
1262	{
1263		int base;
1264
1265		if (vci->drv_flags & EEPROM_8BIT)
1266			base = 0x230;
1267		else if (vci->drv_flags & EEPROM_OFFSET)
1268			base = EEPROM_Read + 0x30;
1269		else
1270			base = EEPROM_Read;
1271
1272		for (i = 0; i < 0x40; i++) {
1273			int timer;
1274			window_write16(vp, base + i, 0, Wn0EepromCmd);
1275			/* Pause for at least 162 us. for the read to take place. */
1276			for (timer = 10; timer >= 0; timer--) {
1277				udelay(162);
1278				if ((window_read16(vp, 0, Wn0EepromCmd) &
1279				     0x8000) == 0)
1280					break;
1281			}
1282			eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1283		}
1284	}
1285	for (i = 0; i < 0x18; i++)
1286		checksum ^= eeprom[i];
1287	checksum = (checksum ^ (checksum >> 8)) & 0xff;
1288	if (checksum != 0x00) {		/* Grrr, needless incompatible change 3Com. */
1289		while (i < 0x21)
1290			checksum ^= eeprom[i++];
1291		checksum = (checksum ^ (checksum >> 8)) & 0xff;
1292	}
1293	if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1294		pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1295	for (i = 0; i < 3; i++)
1296		((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1297	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1298	if (print_info)
1299		pr_cont(" %pM", dev->dev_addr);
1300	/* Unfortunately an all zero eeprom passes the checksum and this
1301	   gets found in the wild in failure cases. Crypto is hard 8) */
1302	if (!is_valid_ether_addr(dev->dev_addr)) {
1303		retval = -EINVAL;
1304		pr_err("*** EEPROM MAC address is invalid.\n");
1305		goto free_ring;	/* With every pack */
1306	}
1307	for (i = 0; i < 6; i++)
1308		window_write8(vp, dev->dev_addr[i], 2, i);
1309
1310	if (print_info)
1311		pr_cont(", IRQ %d\n", dev->irq);
1312	/* Tell them about an invalid IRQ. */
1313	if (dev->irq <= 0 || dev->irq >= nr_irqs)
1314		pr_warning(" *** Warning: IRQ %d is unlikely to work! ***\n",
1315			   dev->irq);
1316
1317	step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1318	if (print_info) {
1319		pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1320			eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1321			step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1322	}
1323
1324
1325	if (pdev && vci->drv_flags & HAS_CB_FNS) {
1326		unsigned short n;
1327
1328		vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1329		if (!vp->cb_fn_base) {
1330			retval = -ENOMEM;
1331			goto free_ring;
1332		}
1333
1334		if (print_info) {
1335			pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1336				print_name,
1337				(unsigned long long)pci_resource_start(pdev, 2),
1338				vp->cb_fn_base);
1339		}
1340
1341		n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1342		if (vp->drv_flags & INVERT_LED_PWR)
1343			n |= 0x10;
1344		if (vp->drv_flags & INVERT_MII_PWR)
1345			n |= 0x4000;
1346		window_write16(vp, n, 2, Wn2_ResetOptions);
1347		if (vp->drv_flags & WNO_XCVR_PWR) {
1348			window_write16(vp, 0x0800, 0, 0);
1349		}
1350	}
1351
1352	/* Extract our information from the EEPROM data. */
1353	vp->info1 = eeprom[13];
1354	vp->info2 = eeprom[15];
1355	vp->capabilities = eeprom[16];
1356
1357	if (vp->info1 & 0x8000) {
1358		vp->full_duplex = 1;
1359		if (print_info)
1360			pr_info("Full duplex capable\n");
1361	}
1362
1363	{
1364		static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1365		unsigned int config;
1366		vp->available_media = window_read16(vp, 3, Wn3_Options);
1367		if ((vp->available_media & 0xff) == 0)		/* Broken 3c916 */
1368			vp->available_media = 0x40;
1369		config = window_read32(vp, 3, Wn3_Config);
1370		if (print_info) {
1371			pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1372				config, window_read16(vp, 3, Wn3_Options));
1373			pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1374				   8 << RAM_SIZE(config),
1375				   RAM_WIDTH(config) ? "word" : "byte",
1376				   ram_split[RAM_SPLIT(config)],
1377				   AUTOSELECT(config) ? "autoselect/" : "",
1378				   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1379				   media_tbl[XCVR(config)].name);
1380		}
1381		vp->default_media = XCVR(config);
1382		if (vp->default_media == XCVR_NWAY)
1383			vp->has_nway = 1;
1384		vp->autoselect = AUTOSELECT(config);
1385	}
1386
1387	if (vp->media_override != 7) {
1388		pr_info("%s:  Media override to transceiver type %d (%s).\n",
1389				print_name, vp->media_override,
1390				media_tbl[vp->media_override].name);
1391		dev->if_port = vp->media_override;
1392	} else
1393		dev->if_port = vp->default_media;
1394
1395	if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1396		dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1397		int phy, phy_idx = 0;
1398		mii_preamble_required++;
1399		if (vp->drv_flags & EXTRA_PREAMBLE)
1400			mii_preamble_required++;
1401		mdio_sync(vp, 32);
1402		mdio_read(dev, 24, MII_BMSR);
1403		for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1404			int mii_status, phyx;
1405
1406			/*
1407			 * For the 3c905CX we look at index 24 first, because it bogusly
1408			 * reports an external PHY at all indices
1409			 */
1410			if (phy == 0)
1411				phyx = 24;
1412			else if (phy <= 24)
1413				phyx = phy - 1;
1414			else
1415				phyx = phy;
1416			mii_status = mdio_read(dev, phyx, MII_BMSR);
1417			if (mii_status  &&  mii_status != 0xffff) {
1418				vp->phys[phy_idx++] = phyx;
1419				if (print_info) {
1420					pr_info("  MII transceiver found at address %d, status %4x.\n",
1421						phyx, mii_status);
1422				}
1423				if ((mii_status & 0x0040) == 0)
1424					mii_preamble_required++;
1425			}
1426		}
1427		mii_preamble_required--;
1428		if (phy_idx == 0) {
1429			pr_warning("  ***WARNING*** No MII transceivers found!\n");
1430			vp->phys[0] = 24;
1431		} else {
1432			vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1433			if (vp->full_duplex) {
1434				/* Only advertise the FD media types. */
1435				vp->advertising &= ~0x02A0;
1436				mdio_write(dev, vp->phys[0], 4, vp->advertising);
1437			}
1438		}
1439		vp->mii.phy_id = vp->phys[0];
1440	}
1441
1442	if (vp->capabilities & CapBusMaster) {
1443		vp->full_bus_master_tx = 1;
1444		if (print_info) {
1445			pr_info("  Enabling bus-master transmits and %s receives.\n",
1446			(vp->info2 & 1) ? "early" : "whole-frame" );
1447		}
1448		vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1449		vp->bus_master = 0;		/* AKPM: vortex only */
1450	}
1451
1452	/* The 3c59x-specific entries in the device structure. */
1453	if (vp->full_bus_master_tx) {
1454		dev->netdev_ops = &boomrang_netdev_ops;
1455		/* Actually, it still should work with iommu. */
1456		if (card_idx < MAX_UNITS &&
1457		    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1458				hw_checksums[card_idx] == 1)) {
1459			dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1460		}
1461	} else
1462		dev->netdev_ops =  &vortex_netdev_ops;
1463
1464	if (print_info) {
1465		pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1466				print_name,
1467				(dev->features & NETIF_F_SG) ? "en":"dis",
1468				(dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1469	}
1470
1471	dev->ethtool_ops = &vortex_ethtool_ops;
1472	dev->watchdog_timeo = (watchdog * HZ) / 1000;
1473
1474	if (pdev) {
1475		vp->pm_state_valid = 1;
1476 		pci_save_state(VORTEX_PCI(vp));
1477 		acpi_set_WOL(dev);
1478	}
1479	retval = register_netdev(dev);
1480	if (retval == 0)
1481		return 0;
1482
1483free_ring:
1484	pci_free_consistent(pdev,
1485						sizeof(struct boom_rx_desc) * RX_RING_SIZE
1486							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1487						vp->rx_ring,
1488						vp->rx_ring_dma);
1489free_region:
1490	if (vp->must_free_region)
1491		release_region(dev->base_addr, vci->io_size);
1492	free_netdev(dev);
1493	pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1494out:
1495	return retval;
1496}
1497
1498static void
1499issue_and_wait(struct net_device *dev, int cmd)
1500{
1501	struct vortex_private *vp = netdev_priv(dev);
1502	void __iomem *ioaddr = vp->ioaddr;
1503	int i;
1504
1505	iowrite16(cmd, ioaddr + EL3_CMD);
1506	for (i = 0; i < 2000; i++) {
1507		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1508			return;
1509	}
1510
1511	/* OK, that didn't work.  Do it the slow way.  One second */
1512	for (i = 0; i < 100000; i++) {
1513		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1514			if (vortex_debug > 1)
1515				pr_info("%s: command 0x%04x took %d usecs\n",
1516					   dev->name, cmd, i * 10);
1517			return;
1518		}
1519		udelay(10);
1520	}
1521	pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1522			   dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1523}
1524
1525static void
1526vortex_set_duplex(struct net_device *dev)
1527{
1528	struct vortex_private *vp = netdev_priv(dev);
1529
1530	pr_info("%s:  setting %s-duplex.\n",
1531		dev->name, (vp->full_duplex) ? "full" : "half");
1532
1533	/* Set the full-duplex bit. */
1534	window_write16(vp,
1535		       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1536		       (vp->large_frames ? 0x40 : 0) |
1537		       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1538			0x100 : 0),
1539		       3, Wn3_MAC_Ctrl);
1540}
1541
1542static void vortex_check_media(struct net_device *dev, unsigned int init)
1543{
1544	struct vortex_private *vp = netdev_priv(dev);
1545	unsigned int ok_to_print = 0;
1546
1547	if (vortex_debug > 3)
1548		ok_to_print = 1;
1549
1550	if (mii_check_media(&vp->mii, ok_to_print, init)) {
1551		vp->full_duplex = vp->mii.full_duplex;
1552		vortex_set_duplex(dev);
1553	} else if (init) {
1554		vortex_set_duplex(dev);
1555	}
1556}
1557
1558static int
1559vortex_up(struct net_device *dev)
1560{
1561	struct vortex_private *vp = netdev_priv(dev);
1562	void __iomem *ioaddr = vp->ioaddr;
1563	unsigned int config;
1564	int i, mii_reg1, mii_reg5, err = 0;
1565
1566	if (VORTEX_PCI(vp)) {
1567		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
1568		if (vp->pm_state_valid)
1569			pci_restore_state(VORTEX_PCI(vp));
1570		err = pci_enable_device(VORTEX_PCI(vp));
1571		if (err) {
1572			pr_warning("%s: Could not enable device\n",
1573				dev->name);
1574			goto err_out;
1575		}
1576	}
1577
1578	/* Before initializing select the active media port. */
1579	config = window_read32(vp, 3, Wn3_Config);
1580
1581	if (vp->media_override != 7) {
1582		pr_info("%s: Media override to transceiver %d (%s).\n",
1583			   dev->name, vp->media_override,
1584			   media_tbl[vp->media_override].name);
1585		dev->if_port = vp->media_override;
1586	} else if (vp->autoselect) {
1587		if (vp->has_nway) {
1588			if (vortex_debug > 1)
1589				pr_info("%s: using NWAY device table, not %d\n",
1590								dev->name, dev->if_port);
1591			dev->if_port = XCVR_NWAY;
1592		} else {
1593			/* Find first available media type, starting with 100baseTx. */
1594			dev->if_port = XCVR_100baseTx;
1595			while (! (vp->available_media & media_tbl[dev->if_port].mask))
1596				dev->if_port = media_tbl[dev->if_port].next;
1597			if (vortex_debug > 1)
1598				pr_info("%s: first available media type: %s\n",
1599					dev->name, media_tbl[dev->if_port].name);
1600		}
1601	} else {
1602		dev->if_port = vp->default_media;
1603		if (vortex_debug > 1)
1604			pr_info("%s: using default media %s\n",
1605				dev->name, media_tbl[dev->if_port].name);
1606	}
1607
1608	init_timer(&vp->timer);
1609	vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1610	vp->timer.data = (unsigned long)dev;
1611	vp->timer.function = vortex_timer;		/* timer handler */
1612	add_timer(&vp->timer);
1613
1614	init_timer(&vp->rx_oom_timer);
1615	vp->rx_oom_timer.data = (unsigned long)dev;
1616	vp->rx_oom_timer.function = rx_oom_timer;
1617
1618	if (vortex_debug > 1)
1619		pr_debug("%s: Initial media type %s.\n",
1620			   dev->name, media_tbl[dev->if_port].name);
1621
1622	vp->full_duplex = vp->mii.force_media;
1623	config = BFINS(config, dev->if_port, 20, 4);
1624	if (vortex_debug > 6)
1625		pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1626	window_write32(vp, config, 3, Wn3_Config);
1627
1628	if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1629		mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1630		mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1631		vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1632		vp->mii.full_duplex = vp->full_duplex;
1633
1634		vortex_check_media(dev, 1);
1635	}
1636	else
1637		vortex_set_duplex(dev);
1638
1639	issue_and_wait(dev, TxReset);
1640	/*
1641	 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1642	 */
1643	issue_and_wait(dev, RxReset|0x04);
1644
1645
1646	iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1647
1648	if (vortex_debug > 1) {
1649		pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1650			   dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1651	}
1652
1653	/* Set the station address and mask in window 2 each time opened. */
1654	for (i = 0; i < 6; i++)
1655		window_write8(vp, dev->dev_addr[i], 2, i);
1656	for (; i < 12; i+=2)
1657		window_write16(vp, 0, 2, i);
1658
1659	if (vp->cb_fn_base) {
1660		unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1661		if (vp->drv_flags & INVERT_LED_PWR)
1662			n |= 0x10;
1663		if (vp->drv_flags & INVERT_MII_PWR)
1664			n |= 0x4000;
1665		window_write16(vp, n, 2, Wn2_ResetOptions);
1666	}
1667
1668	if (dev->if_port == XCVR_10base2)
1669		/* Start the thinnet transceiver. We should really wait 50ms...*/
1670		iowrite16(StartCoax, ioaddr + EL3_CMD);
1671	if (dev->if_port != XCVR_NWAY) {
1672		window_write16(vp,
1673			       (window_read16(vp, 4, Wn4_Media) &
1674				~(Media_10TP|Media_SQE)) |
1675			       media_tbl[dev->if_port].media_bits,
1676			       4, Wn4_Media);
1677	}
1678
1679	/* Switch to the stats window, and clear all stats by reading. */
1680	iowrite16(StatsDisable, ioaddr + EL3_CMD);
1681	for (i = 0; i < 10; i++)
1682		window_read8(vp, 6, i);
1683	window_read16(vp, 6, 10);
1684	window_read16(vp, 6, 12);
1685	/* New: On the Vortex we must also clear the BadSSD counter. */
1686	window_read8(vp, 4, 12);
1687	/* ..and on the Boomerang we enable the extra statistics bits. */
1688	window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1689
1690	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1691		vp->cur_rx = vp->dirty_rx = 0;
1692		/* Initialize the RxEarly register as recommended. */
1693		iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1694		iowrite32(0x0020, ioaddr + PktStatus);
1695		iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1696	}
1697	if (vp->full_bus_master_tx) { 		/* Boomerang bus master Tx. */
1698		vp->cur_tx = vp->dirty_tx = 0;
1699		if (vp->drv_flags & IS_BOOMERANG)
1700			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1701		/* Clear the Rx, Tx rings. */
1702		for (i = 0; i < RX_RING_SIZE; i++)	/* AKPM: this is done in vortex_open, too */
1703			vp->rx_ring[i].status = 0;
1704		for (i = 0; i < TX_RING_SIZE; i++)
1705			vp->tx_skbuff[i] = NULL;
1706		iowrite32(0, ioaddr + DownListPtr);
1707	}
1708	/* Set receiver mode: presumably accept b-case and phys addr only. */
1709	set_rx_mode(dev);
1710	/* enable 802.1q tagged frames */
1711	set_8021q_mode(dev, 1);
1712	iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1713
1714	iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1715	iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1716	/* Allow status bits to be seen. */
1717	vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1718		(vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1719		(vp->full_bus_master_rx ? UpComplete : RxComplete) |
1720		(vp->bus_master ? DMADone : 0);
1721	vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1722		(vp->full_bus_master_rx ? 0 : RxComplete) |
1723		StatsFull | HostError | TxComplete | IntReq
1724		| (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1725	iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1726	/* Ack all pending events, and set active indicator mask. */
1727	iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1728		 ioaddr + EL3_CMD);
1729	iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1730	if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
1731		iowrite32(0x8000, vp->cb_fn_base + 4);
1732	netif_start_queue (dev);
 
1733err_out:
1734	return err;
1735}
1736
1737static int
1738vortex_open(struct net_device *dev)
1739{
1740	struct vortex_private *vp = netdev_priv(dev);
1741	int i;
1742	int retval;
 
1743
1744	/* Use the now-standard shared IRQ implementation. */
1745	if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1746				boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1747		pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1748		goto err;
1749	}
1750
1751	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1752		if (vortex_debug > 2)
1753			pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1754		for (i = 0; i < RX_RING_SIZE; i++) {
1755			struct sk_buff *skb;
1756			vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1757			vp->rx_ring[i].status = 0;	/* Clear complete bit. */
1758			vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1759
1760			skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1761						 GFP_KERNEL);
1762			vp->rx_skbuff[i] = skb;
1763			if (skb == NULL)
1764				break;			/* Bad news!  */
1765
1766			skb_reserve(skb, NET_IP_ALIGN);	/* Align IP on 16 byte boundaries */
1767			vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
 
 
 
 
1768		}
1769		if (i != RX_RING_SIZE) {
1770			int j;
1771			pr_emerg("%s: no memory for rx ring\n", dev->name);
1772			for (j = 0; j < i; j++) {
1773				if (vp->rx_skbuff[j]) {
1774					dev_kfree_skb(vp->rx_skbuff[j]);
1775					vp->rx_skbuff[j] = NULL;
1776				}
1777			}
1778			retval = -ENOMEM;
1779			goto err_free_irq;
1780		}
1781		/* Wrap the ring. */
1782		vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1783	}
1784
1785	retval = vortex_up(dev);
1786	if (!retval)
1787		goto out;
1788
1789err_free_irq:
 
 
 
 
 
 
1790	free_irq(dev->irq, dev);
1791err:
1792	if (vortex_debug > 1)
1793		pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1794out:
1795	return retval;
1796}
1797
1798static void
1799vortex_timer(unsigned long data)
1800{
1801	struct net_device *dev = (struct net_device *)data;
1802	struct vortex_private *vp = netdev_priv(dev);
1803	void __iomem *ioaddr = vp->ioaddr;
1804	int next_tick = 60*HZ;
1805	int ok = 0;
1806	int media_status;
1807
1808	if (vortex_debug > 2) {
1809		pr_debug("%s: Media selection timer tick happened, %s.\n",
1810			   dev->name, media_tbl[dev->if_port].name);
1811		pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1812	}
1813
1814	media_status = window_read16(vp, 4, Wn4_Media);
1815	switch (dev->if_port) {
1816	case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1817		if (media_status & Media_LnkBeat) {
1818			netif_carrier_on(dev);
1819			ok = 1;
1820			if (vortex_debug > 1)
1821				pr_debug("%s: Media %s has link beat, %x.\n",
1822					   dev->name, media_tbl[dev->if_port].name, media_status);
1823		} else {
1824			netif_carrier_off(dev);
1825			if (vortex_debug > 1) {
1826				pr_debug("%s: Media %s has no link beat, %x.\n",
1827					   dev->name, media_tbl[dev->if_port].name, media_status);
1828			}
1829		}
1830		break;
1831	case XCVR_MII: case XCVR_NWAY:
1832		{
1833			ok = 1;
1834			vortex_check_media(dev, 0);
1835		}
1836		break;
1837	  default:					/* Other media types handled by Tx timeouts. */
1838		if (vortex_debug > 1)
1839		  pr_debug("%s: Media %s has no indication, %x.\n",
1840				 dev->name, media_tbl[dev->if_port].name, media_status);
1841		ok = 1;
1842	}
1843
1844	if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1845		next_tick = 5*HZ;
1846
1847	if (vp->medialock)
1848		goto leave_media_alone;
1849
1850	if (!ok) {
1851		unsigned int config;
1852
1853		spin_lock_irq(&vp->lock);
1854
1855		do {
1856			dev->if_port = media_tbl[dev->if_port].next;
1857		} while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1858		if (dev->if_port == XCVR_Default) { /* Go back to default. */
1859		  dev->if_port = vp->default_media;
1860		  if (vortex_debug > 1)
1861			pr_debug("%s: Media selection failing, using default %s port.\n",
1862				   dev->name, media_tbl[dev->if_port].name);
1863		} else {
1864			if (vortex_debug > 1)
1865				pr_debug("%s: Media selection failed, now trying %s port.\n",
1866					   dev->name, media_tbl[dev->if_port].name);
1867			next_tick = media_tbl[dev->if_port].wait;
1868		}
1869		window_write16(vp,
1870			       (media_status & ~(Media_10TP|Media_SQE)) |
1871			       media_tbl[dev->if_port].media_bits,
1872			       4, Wn4_Media);
1873
1874		config = window_read32(vp, 3, Wn3_Config);
1875		config = BFINS(config, dev->if_port, 20, 4);
1876		window_write32(vp, config, 3, Wn3_Config);
1877
1878		iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1879			 ioaddr + EL3_CMD);
1880		if (vortex_debug > 1)
1881			pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1882		/* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1883
1884		spin_unlock_irq(&vp->lock);
1885	}
1886
1887leave_media_alone:
1888	if (vortex_debug > 2)
1889	  pr_debug("%s: Media selection timer finished, %s.\n",
1890			 dev->name, media_tbl[dev->if_port].name);
1891
1892	mod_timer(&vp->timer, RUN_AT(next_tick));
1893	if (vp->deferred)
1894		iowrite16(FakeIntr, ioaddr + EL3_CMD);
1895}
1896
1897static void vortex_tx_timeout(struct net_device *dev)
1898{
1899	struct vortex_private *vp = netdev_priv(dev);
1900	void __iomem *ioaddr = vp->ioaddr;
1901
1902	pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1903		   dev->name, ioread8(ioaddr + TxStatus),
1904		   ioread16(ioaddr + EL3_STATUS));
1905	pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1906			window_read16(vp, 4, Wn4_NetDiag),
1907			window_read16(vp, 4, Wn4_Media),
1908			ioread32(ioaddr + PktStatus),
1909			window_read16(vp, 4, Wn4_FIFODiag));
1910	/* Slight code bloat to be user friendly. */
1911	if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1912		pr_err("%s: Transmitter encountered 16 collisions --"
1913			   " network cable problem?\n", dev->name);
1914	if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1915		pr_err("%s: Interrupt posted but not delivered --"
1916			   " IRQ blocked by another device?\n", dev->name);
1917		/* Bad idea here.. but we might as well handle a few events. */
1918		{
1919			/*
1920			 * Block interrupts because vortex_interrupt does a bare spin_lock()
1921			 */
1922			unsigned long flags;
1923			local_irq_save(flags);
1924			if (vp->full_bus_master_tx)
1925				boomerang_interrupt(dev->irq, dev);
1926			else
1927				vortex_interrupt(dev->irq, dev);
1928			local_irq_restore(flags);
1929		}
1930	}
1931
1932	if (vortex_debug > 0)
1933		dump_tx_ring(dev);
1934
1935	issue_and_wait(dev, TxReset);
1936
1937	dev->stats.tx_errors++;
1938	if (vp->full_bus_master_tx) {
1939		pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1940		if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1941			iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1942				 ioaddr + DownListPtr);
1943		if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1944			netif_wake_queue (dev);
 
 
1945		if (vp->drv_flags & IS_BOOMERANG)
1946			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1947		iowrite16(DownUnstall, ioaddr + EL3_CMD);
1948	} else {
1949		dev->stats.tx_dropped++;
1950		netif_wake_queue(dev);
 
1951	}
1952
1953	/* Issue Tx Enable */
1954	iowrite16(TxEnable, ioaddr + EL3_CMD);
1955	dev->trans_start = jiffies; /* prevent tx timeout */
1956}
1957
1958/*
1959 * Handle uncommon interrupt sources.  This is a separate routine to minimize
1960 * the cache impact.
1961 */
1962static void
1963vortex_error(struct net_device *dev, int status)
1964{
1965	struct vortex_private *vp = netdev_priv(dev);
1966	void __iomem *ioaddr = vp->ioaddr;
1967	int do_tx_reset = 0, reset_mask = 0;
1968	unsigned char tx_status = 0;
1969
1970	if (vortex_debug > 2) {
1971		pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1972	}
1973
1974	if (status & TxComplete) {			/* Really "TxError" for us. */
1975		tx_status = ioread8(ioaddr + TxStatus);
1976		/* Presumably a tx-timeout. We must merely re-enable. */
1977		if (vortex_debug > 2 ||
1978		    (tx_status != 0x88 && vortex_debug > 0)) {
1979			pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1980				   dev->name, tx_status);
1981			if (tx_status == 0x82) {
1982				pr_err("Probably a duplex mismatch.  See "
1983						"Documentation/networking/vortex.txt\n");
1984			}
1985			dump_tx_ring(dev);
1986		}
1987		if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1988		if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1989		if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1990		iowrite8(0, ioaddr + TxStatus);
1991		if (tx_status & 0x30) {			/* txJabber or txUnderrun */
1992			do_tx_reset = 1;
1993		} else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {	/* maxCollisions */
1994			do_tx_reset = 1;
1995			reset_mask = 0x0108;		/* Reset interface logic, but not download logic */
1996		} else {				/* Merely re-enable the transmitter. */
1997			iowrite16(TxEnable, ioaddr + EL3_CMD);
1998		}
1999	}
2000
2001	if (status & RxEarly)				/* Rx early is unused. */
2002		iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
2003
2004	if (status & StatsFull) {			/* Empty statistics. */
2005		static int DoneDidThat;
2006		if (vortex_debug > 4)
2007			pr_debug("%s: Updating stats.\n", dev->name);
2008		update_stats(ioaddr, dev);
2009		/* HACK: Disable statistics as an interrupt source. */
2010		/* This occurs when we have the wrong media type! */
2011		if (DoneDidThat == 0  &&
2012			ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2013			pr_warning("%s: Updating statistics failed, disabling "
2014				   "stats as an interrupt source.\n", dev->name);
2015			iowrite16(SetIntrEnb |
2016				  (window_read16(vp, 5, 10) & ~StatsFull),
2017				  ioaddr + EL3_CMD);
2018			vp->intr_enable &= ~StatsFull;
2019			DoneDidThat++;
2020		}
2021	}
2022	if (status & IntReq) {		/* Restore all interrupt sources.  */
2023		iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2024		iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2025	}
2026	if (status & HostError) {
2027		u16 fifo_diag;
2028		fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2029		pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2030			   dev->name, fifo_diag);
2031		/* Adapter failure requires Tx/Rx reset and reinit. */
2032		if (vp->full_bus_master_tx) {
2033			int bus_status = ioread32(ioaddr + PktStatus);
2034			/* 0x80000000 PCI master abort. */
2035			/* 0x40000000 PCI target abort. */
2036			if (vortex_debug)
2037				pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2038
2039			/* In this case, blow the card away */
2040			/* Must not enter D3 or we can't legally issue the reset! */
2041			vortex_down(dev, 0);
2042			issue_and_wait(dev, TotalReset | 0xff);
2043			vortex_up(dev);		/* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2044		} else if (fifo_diag & 0x0400)
2045			do_tx_reset = 1;
2046		if (fifo_diag & 0x3000) {
2047			/* Reset Rx fifo and upload logic */
2048			issue_and_wait(dev, RxReset|0x07);
2049			/* Set the Rx filter to the current state. */
2050			set_rx_mode(dev);
2051			/* enable 802.1q VLAN tagged frames */
2052			set_8021q_mode(dev, 1);
2053			iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2054			iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2055		}
2056	}
2057
2058	if (do_tx_reset) {
2059		issue_and_wait(dev, TxReset|reset_mask);
2060		iowrite16(TxEnable, ioaddr + EL3_CMD);
2061		if (!vp->full_bus_master_tx)
2062			netif_wake_queue(dev);
2063	}
2064}
2065
2066static netdev_tx_t
2067vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2068{
2069	struct vortex_private *vp = netdev_priv(dev);
2070	void __iomem *ioaddr = vp->ioaddr;
 
2071
2072	/* Put out the doubleword header... */
2073	iowrite32(skb->len, ioaddr + TX_FIFO);
2074	if (vp->bus_master) {
2075		/* Set the bus-master controller to transfer the packet. */
2076		int len = (skb->len + 3) & ~3;
2077		vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len,
2078						PCI_DMA_TODEVICE);
 
 
 
 
 
 
2079		spin_lock_irq(&vp->window_lock);
2080		window_set(vp, 7);
2081		iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2082		iowrite16(len, ioaddr + Wn7_MasterLen);
2083		spin_unlock_irq(&vp->window_lock);
2084		vp->tx_skb = skb;
 
2085		iowrite16(StartDMADown, ioaddr + EL3_CMD);
2086		/* netif_wake_queue() will be called at the DMADone interrupt. */
2087	} else {
2088		/* ... and the packet rounded to a doubleword. */
 
2089		iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2090		dev_kfree_skb (skb);
2091		if (ioread16(ioaddr + TxFree) > 1536) {
2092			netif_start_queue (dev);	/* AKPM: redundant? */
2093		} else {
2094			/* Interrupt us when the FIFO has room for max-sized packet. */
2095			netif_stop_queue(dev);
2096			iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2097		}
2098	}
2099
 
2100
2101	/* Clear the Tx status stack. */
2102	{
2103		int tx_status;
2104		int i = 32;
2105
2106		while (--i > 0	&&	(tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2107			if (tx_status & 0x3C) {		/* A Tx-disabling error occurred.  */
2108				if (vortex_debug > 2)
2109				  pr_debug("%s: Tx error, status %2.2x.\n",
2110						 dev->name, tx_status);
2111				if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2112				if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2113				if (tx_status & 0x30) {
2114					issue_and_wait(dev, TxReset);
2115				}
2116				iowrite16(TxEnable, ioaddr + EL3_CMD);
2117			}
2118			iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2119		}
2120	}
2121	return NETDEV_TX_OK;
2122}
2123
2124static netdev_tx_t
2125boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2126{
2127	struct vortex_private *vp = netdev_priv(dev);
2128	void __iomem *ioaddr = vp->ioaddr;
2129	/* Calculate the next Tx descriptor entry. */
2130	int entry = vp->cur_tx % TX_RING_SIZE;
 
2131	struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2132	unsigned long flags;
 
2133
2134	if (vortex_debug > 6) {
2135		pr_debug("boomerang_start_xmit()\n");
2136		pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2137			   dev->name, vp->cur_tx);
2138	}
2139
2140	/*
2141	 * We can't allow a recursion from our interrupt handler back into the
2142	 * tx routine, as they take the same spin lock, and that causes
2143	 * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2144	 * a bit
2145	 */
2146	if (vp->handling_irq)
2147		return NETDEV_TX_BUSY;
2148
2149	if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2150		if (vortex_debug > 0)
2151			pr_warning("%s: BUG! Tx Ring full, refusing to send buffer.\n",
2152				   dev->name);
2153		netif_stop_queue(dev);
2154		return NETDEV_TX_BUSY;
2155	}
2156
2157	vp->tx_skbuff[entry] = skb;
2158
2159	vp->tx_ring[entry].next = 0;
2160#if DO_ZEROCOPY
2161	if (skb->ip_summed != CHECKSUM_PARTIAL)
2162			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2163	else
2164			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2165
2166	if (!skb_shinfo(skb)->nr_frags) {
2167		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2168										skb->len, PCI_DMA_TODEVICE));
 
 
 
 
2169		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2170	} else {
2171		int i;
2172
2173		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2174										skb_headlen(skb), PCI_DMA_TODEVICE));
 
 
 
 
2175		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2176
2177		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2178			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2180			vp->tx_ring[entry].frag[i+1].addr =
2181					cpu_to_le32(pci_map_single(
2182						VORTEX_PCI(vp),
2183						(void *)skb_frag_address(frag),
2184						skb_frag_size(frag), PCI_DMA_TODEVICE));
2185
2186			if (i == skb_shinfo(skb)->nr_frags-1)
2187					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2188			else
2189					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2190		}
2191	}
2192#else
2193	vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
 
 
 
2194	vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2195	vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2196#endif
2197
2198	spin_lock_irqsave(&vp->lock, flags);
2199	/* Wait for the stall to complete. */
2200	issue_and_wait(dev, DownStall);
2201	prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2202	if (ioread32(ioaddr + DownListPtr) == 0) {
2203		iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2204		vp->queued_packet++;
2205	}
2206
2207	vp->cur_tx++;
 
 
2208	if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2209		netif_stop_queue (dev);
2210	} else {					/* Clear previous interrupt enable. */
2211#if defined(tx_interrupt_mitigation)
2212		/* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2213		 * were selected, this would corrupt DN_COMPLETE. No?
2214		 */
2215		prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2216#endif
2217	}
 
2218	iowrite16(DownUnstall, ioaddr + EL3_CMD);
2219	spin_unlock_irqrestore(&vp->lock, flags);
 
2220	return NETDEV_TX_OK;
 
 
 
2221}
2222
2223/* The interrupt handler does all of the Rx thread work and cleans up
2224   after the Tx thread. */
2225
2226/*
2227 * This is the ISR for the vortex series chips.
2228 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2229 */
2230
2231static irqreturn_t
2232vortex_interrupt(int irq, void *dev_id)
2233{
2234	struct net_device *dev = dev_id;
2235	struct vortex_private *vp = netdev_priv(dev);
2236	void __iomem *ioaddr;
2237	int status;
2238	int work_done = max_interrupt_work;
2239	int handled = 0;
 
2240
2241	ioaddr = vp->ioaddr;
2242	spin_lock(&vp->lock);
2243
2244	status = ioread16(ioaddr + EL3_STATUS);
2245
2246	if (vortex_debug > 6)
2247		pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2248
2249	if ((status & IntLatch) == 0)
2250		goto handler_exit;		/* No interrupt: shared IRQs cause this */
2251	handled = 1;
2252
2253	if (status & IntReq) {
2254		status |= vp->deferred;
2255		vp->deferred = 0;
2256	}
2257
2258	if (status == 0xffff)		/* h/w no longer present (hotplug)? */
2259		goto handler_exit;
2260
2261	if (vortex_debug > 4)
2262		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2263			   dev->name, status, ioread8(ioaddr + Timer));
2264
2265	spin_lock(&vp->window_lock);
2266	window_set(vp, 7);
2267
2268	do {
2269		if (vortex_debug > 5)
2270				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2271					   dev->name, status);
2272		if (status & RxComplete)
2273			vortex_rx(dev);
2274
2275		if (status & TxAvailable) {
2276			if (vortex_debug > 5)
2277				pr_debug("	TX room bit was handled.\n");
2278			/* There's room in the FIFO for a full-sized packet. */
2279			iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2280			netif_wake_queue (dev);
2281		}
2282
2283		if (status & DMADone) {
2284			if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2285				iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2286				pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2287				dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
 
 
2288				if (ioread16(ioaddr + TxFree) > 1536) {
2289					/*
2290					 * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2291					 * insufficient FIFO room, the TxAvailable test will succeed and call
2292					 * netif_wake_queue()
2293					 */
2294					netif_wake_queue(dev);
2295				} else { /* Interrupt when FIFO has room for max-sized packet. */
2296					iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2297					netif_stop_queue(dev);
2298				}
2299			}
2300		}
2301		/* Check for all uncommon interrupts at once. */
2302		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2303			if (status == 0xffff)
2304				break;
2305			if (status & RxEarly)
2306				vortex_rx(dev);
2307			spin_unlock(&vp->window_lock);
2308			vortex_error(dev, status);
2309			spin_lock(&vp->window_lock);
2310			window_set(vp, 7);
2311		}
2312
2313		if (--work_done < 0) {
2314			pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2315				dev->name, status);
2316			/* Disable all pending interrupts. */
2317			do {
2318				vp->deferred |= status;
2319				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2320					 ioaddr + EL3_CMD);
2321				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2322			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2323			/* The timer will reenable interrupts. */
2324			mod_timer(&vp->timer, jiffies + 1*HZ);
2325			break;
2326		}
2327		/* Acknowledge the IRQ. */
2328		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2329	} while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2330
 
2331	spin_unlock(&vp->window_lock);
2332
2333	if (vortex_debug > 4)
2334		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2335			   dev->name, status);
2336handler_exit:
2337	spin_unlock(&vp->lock);
2338	return IRQ_RETVAL(handled);
2339}
2340
2341/*
2342 * This is the ISR for the boomerang series chips.
2343 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2344 */
2345
2346static irqreturn_t
2347boomerang_interrupt(int irq, void *dev_id)
2348{
2349	struct net_device *dev = dev_id;
2350	struct vortex_private *vp = netdev_priv(dev);
2351	void __iomem *ioaddr;
2352	int status;
2353	int work_done = max_interrupt_work;
 
 
2354
2355	ioaddr = vp->ioaddr;
2356
2357
2358	/*
2359	 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2360	 * and boomerang_start_xmit
2361	 */
2362	spin_lock(&vp->lock);
2363	vp->handling_irq = 1;
2364
2365	status = ioread16(ioaddr + EL3_STATUS);
2366
2367	if (vortex_debug > 6)
2368		pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2369
2370	if ((status & IntLatch) == 0)
2371		goto handler_exit;		/* No interrupt: shared IRQs can cause this */
 
2372
2373	if (status == 0xffff) {		/* h/w no longer present (hotplug)? */
2374		if (vortex_debug > 1)
2375			pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2376		goto handler_exit;
2377	}
2378
2379	if (status & IntReq) {
2380		status |= vp->deferred;
2381		vp->deferred = 0;
2382	}
2383
2384	if (vortex_debug > 4)
2385		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2386			   dev->name, status, ioread8(ioaddr + Timer));
2387	do {
2388		if (vortex_debug > 5)
2389				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2390					   dev->name, status);
2391		if (status & UpComplete) {
2392			iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2393			if (vortex_debug > 5)
2394				pr_debug("boomerang_interrupt->boomerang_rx\n");
2395			boomerang_rx(dev);
2396		}
2397
2398		if (status & DownComplete) {
2399			unsigned int dirty_tx = vp->dirty_tx;
2400
2401			iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2402			while (vp->cur_tx - dirty_tx > 0) {
2403				int entry = dirty_tx % TX_RING_SIZE;
2404#if 1	/* AKPM: the latter is faster, but cyclone-only */
2405				if (ioread32(ioaddr + DownListPtr) ==
2406					vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2407					break;			/* It still hasn't been processed. */
2408#else
2409				if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2410					break;			/* It still hasn't been processed. */
2411#endif
2412
2413				if (vp->tx_skbuff[entry]) {
2414					struct sk_buff *skb = vp->tx_skbuff[entry];
2415#if DO_ZEROCOPY
2416					int i;
2417					for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2418							pci_unmap_single(VORTEX_PCI(vp),
 
 
 
 
 
2419											 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2420											 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2421											 PCI_DMA_TODEVICE);
2422#else
2423					pci_unmap_single(VORTEX_PCI(vp),
2424						le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2425#endif
2426					dev_kfree_skb_irq(skb);
 
 
2427					vp->tx_skbuff[entry] = NULL;
2428				} else {
2429					pr_debug("boomerang_interrupt: no skb!\n");
2430				}
2431				/* dev->stats.tx_packets++;  Counted below. */
2432				dirty_tx++;
2433			}
2434			vp->dirty_tx = dirty_tx;
2435			if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2436				if (vortex_debug > 6)
2437					pr_debug("boomerang_interrupt: wake queue\n");
2438				netif_wake_queue (dev);
2439			}
2440		}
2441
2442		/* Check for all uncommon interrupts at once. */
2443		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2444			vortex_error(dev, status);
2445
2446		if (--work_done < 0) {
2447			pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2448				dev->name, status);
2449			/* Disable all pending interrupts. */
2450			do {
2451				vp->deferred |= status;
2452				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2453					 ioaddr + EL3_CMD);
2454				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2455			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2456			/* The timer will reenable interrupts. */
2457			mod_timer(&vp->timer, jiffies + 1*HZ);
2458			break;
2459		}
2460		/* Acknowledge the IRQ. */
2461		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2462		if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
2463			iowrite32(0x8000, vp->cb_fn_base + 4);
2464
2465	} while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
 
2466
2467	if (vortex_debug > 4)
2468		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2469			   dev->name, status);
2470handler_exit:
2471	vp->handling_irq = 0;
2472	spin_unlock(&vp->lock);
2473	return IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2474}
2475
2476static int vortex_rx(struct net_device *dev)
2477{
2478	struct vortex_private *vp = netdev_priv(dev);
2479	void __iomem *ioaddr = vp->ioaddr;
2480	int i;
2481	short rx_status;
2482
2483	if (vortex_debug > 5)
2484		pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2485			   ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2486	while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2487		if (rx_status & 0x4000) { /* Error, update stats. */
2488			unsigned char rx_error = ioread8(ioaddr + RxErrors);
2489			if (vortex_debug > 2)
2490				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2491			dev->stats.rx_errors++;
2492			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2493			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2494			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2495			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2496			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2497		} else {
2498			/* The packet length: up to 4.5K!. */
2499			int pkt_len = rx_status & 0x1fff;
2500			struct sk_buff *skb;
2501
2502			skb = netdev_alloc_skb(dev, pkt_len + 5);
2503			if (vortex_debug > 4)
2504				pr_debug("Receiving packet size %d status %4.4x.\n",
2505					   pkt_len, rx_status);
2506			if (skb != NULL) {
2507				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2508				/* 'skb_put()' points to the start of sk_buff data area. */
2509				if (vp->bus_master &&
2510					! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2511					dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2512									   pkt_len, PCI_DMA_FROMDEVICE);
2513					iowrite32(dma, ioaddr + Wn7_MasterAddr);
2514					iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2515					iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2516					while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2517						;
2518					pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2519				} else {
2520					ioread32_rep(ioaddr + RX_FIFO,
2521					             skb_put(skb, pkt_len),
2522						     (pkt_len + 3) >> 2);
2523				}
2524				iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2525				skb->protocol = eth_type_trans(skb, dev);
2526				netif_rx(skb);
2527				dev->stats.rx_packets++;
2528				/* Wait a limited time to go to next packet. */
2529				for (i = 200; i >= 0; i--)
2530					if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2531						break;
2532				continue;
2533			} else if (vortex_debug > 0)
2534				pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2535					dev->name, pkt_len);
2536			dev->stats.rx_dropped++;
2537		}
2538		issue_and_wait(dev, RxDiscard);
2539	}
2540
2541	return 0;
2542}
2543
2544static int
2545boomerang_rx(struct net_device *dev)
2546{
2547	struct vortex_private *vp = netdev_priv(dev);
2548	int entry = vp->cur_rx % RX_RING_SIZE;
2549	void __iomem *ioaddr = vp->ioaddr;
2550	int rx_status;
2551	int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2552
2553	if (vortex_debug > 5)
2554		pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2555
2556	while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2557		if (--rx_work_limit < 0)
2558			break;
2559		if (rx_status & RxDError) { /* Error, update stats. */
2560			unsigned char rx_error = rx_status >> 16;
2561			if (vortex_debug > 2)
2562				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2563			dev->stats.rx_errors++;
2564			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2565			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2566			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2567			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2568			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2569		} else {
2570			/* The packet length: up to 4.5K!. */
2571			int pkt_len = rx_status & 0x1fff;
2572			struct sk_buff *skb;
 
2573			dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2574
2575			if (vortex_debug > 4)
2576				pr_debug("Receiving packet size %d status %4.4x.\n",
2577					   pkt_len, rx_status);
2578
2579			/* Check if the packet is long enough to just accept without
2580			   copying to a properly sized skbuff. */
2581			if (pkt_len < rx_copybreak &&
2582			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2583				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2584				pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2585				/* 'skb_put()' points to the start of sk_buff data area. */
2586				memcpy(skb_put(skb, pkt_len),
2587					   vp->rx_skbuff[entry]->data,
2588					   pkt_len);
2589				pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2590				vp->rx_copy++;
2591			} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2592				/* Pass up the skbuff already on the Rx ring. */
2593				skb = vp->rx_skbuff[entry];
2594				vp->rx_skbuff[entry] = NULL;
 
2595				skb_put(skb, pkt_len);
2596				pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2597				vp->rx_nocopy++;
2598			}
2599			skb->protocol = eth_type_trans(skb, dev);
2600			{					/* Use hardware checksum info. */
2601				int csum_bits = rx_status & 0xee000000;
2602				if (csum_bits &&
2603					(csum_bits == (IPChksumValid | TCPChksumValid) ||
2604					 csum_bits == (IPChksumValid | UDPChksumValid))) {
2605					skb->ip_summed = CHECKSUM_UNNECESSARY;
2606					vp->rx_csumhits++;
2607				}
2608			}
2609			netif_rx(skb);
2610			dev->stats.rx_packets++;
2611		}
2612		entry = (++vp->cur_rx) % RX_RING_SIZE;
2613	}
2614	/* Refill the Rx ring buffers. */
2615	for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2616		struct sk_buff *skb;
2617		entry = vp->dirty_rx % RX_RING_SIZE;
2618		if (vp->rx_skbuff[entry] == NULL) {
2619			skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2620			if (skb == NULL) {
2621				static unsigned long last_jif;
2622				if (time_after(jiffies, last_jif + 10 * HZ)) {
2623					pr_warning("%s: memory shortage\n", dev->name);
2624					last_jif = jiffies;
2625				}
2626				if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2627					mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2628				break;			/* Bad news!  */
2629			}
2630
2631			vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2632			vp->rx_skbuff[entry] = skb;
2633		}
2634		vp->rx_ring[entry].status = 0;	/* Clear complete bit. */
2635		iowrite16(UpUnstall, ioaddr + EL3_CMD);
 
2636	}
2637	return 0;
2638}
2639
2640/*
2641 * If we've hit a total OOM refilling the Rx ring we poll once a second
2642 * for some memory.  Otherwise there is no way to restart the rx process.
2643 */
2644static void
2645rx_oom_timer(unsigned long arg)
2646{
2647	struct net_device *dev = (struct net_device *)arg;
2648	struct vortex_private *vp = netdev_priv(dev);
2649
2650	spin_lock_irq(&vp->lock);
2651	if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)	/* This test is redundant, but makes me feel good */
2652		boomerang_rx(dev);
2653	if (vortex_debug > 1) {
2654		pr_debug("%s: rx_oom_timer %s\n", dev->name,
2655			((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2656	}
2657	spin_unlock_irq(&vp->lock);
2658}
2659
2660static void
2661vortex_down(struct net_device *dev, int final_down)
2662{
2663	struct vortex_private *vp = netdev_priv(dev);
2664	void __iomem *ioaddr = vp->ioaddr;
2665
2666	netif_stop_queue (dev);
 
2667
2668	del_timer_sync(&vp->rx_oom_timer);
2669	del_timer_sync(&vp->timer);
2670
2671	/* Turn off statistics ASAP.  We update dev->stats below. */
2672	iowrite16(StatsDisable, ioaddr + EL3_CMD);
2673
2674	/* Disable the receiver and transmitter. */
2675	iowrite16(RxDisable, ioaddr + EL3_CMD);
2676	iowrite16(TxDisable, ioaddr + EL3_CMD);
2677
2678	/* Disable receiving 802.1q tagged frames */
2679	set_8021q_mode(dev, 0);
2680
2681	if (dev->if_port == XCVR_10base2)
2682		/* Turn off thinnet power.  Green! */
2683		iowrite16(StopCoax, ioaddr + EL3_CMD);
2684
2685	iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2686
2687	update_stats(ioaddr, dev);
2688	if (vp->full_bus_master_rx)
2689		iowrite32(0, ioaddr + UpListPtr);
2690	if (vp->full_bus_master_tx)
2691		iowrite32(0, ioaddr + DownListPtr);
2692
2693	if (final_down && VORTEX_PCI(vp)) {
2694		vp->pm_state_valid = 1;
2695		pci_save_state(VORTEX_PCI(vp));
2696		acpi_set_WOL(dev);
2697	}
2698}
2699
2700static int
2701vortex_close(struct net_device *dev)
2702{
2703	struct vortex_private *vp = netdev_priv(dev);
2704	void __iomem *ioaddr = vp->ioaddr;
2705	int i;
2706
2707	if (netif_device_present(dev))
2708		vortex_down(dev, 1);
2709
2710	if (vortex_debug > 1) {
2711		pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2712			   dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2713		pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2714			   " tx_queued %d Rx pre-checksummed %d.\n",
2715			   dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2716	}
2717
2718#if DO_ZEROCOPY
2719	if (vp->rx_csumhits &&
2720	    (vp->drv_flags & HAS_HWCKSM) == 0 &&
2721	    (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2722		pr_warning("%s supports hardware checksums, and we're not using them!\n", dev->name);
 
2723	}
2724#endif
2725
2726	free_irq(dev->irq, dev);
2727
2728	if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2729		for (i = 0; i < RX_RING_SIZE; i++)
2730			if (vp->rx_skbuff[i]) {
2731				pci_unmap_single(	VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2732									PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2733				dev_kfree_skb(vp->rx_skbuff[i]);
2734				vp->rx_skbuff[i] = NULL;
2735			}
2736	}
2737	if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2738		for (i = 0; i < TX_RING_SIZE; i++) {
2739			if (vp->tx_skbuff[i]) {
2740				struct sk_buff *skb = vp->tx_skbuff[i];
2741#if DO_ZEROCOPY
2742				int k;
2743
2744				for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2745						pci_unmap_single(VORTEX_PCI(vp),
2746										 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2747										 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2748										 PCI_DMA_TODEVICE);
2749#else
2750				pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2751#endif
2752				dev_kfree_skb(skb);
2753				vp->tx_skbuff[i] = NULL;
2754			}
2755		}
2756	}
2757
2758	return 0;
2759}
2760
2761static void
2762dump_tx_ring(struct net_device *dev)
2763{
2764	if (vortex_debug > 0) {
2765	struct vortex_private *vp = netdev_priv(dev);
2766		void __iomem *ioaddr = vp->ioaddr;
2767
2768		if (vp->full_bus_master_tx) {
2769			int i;
2770			int stalled = ioread32(ioaddr + PktStatus) & 0x04;	/* Possible racy. But it's only debug stuff */
2771
2772			pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2773					vp->full_bus_master_tx,
2774					vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2775					vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2776			pr_err("  Transmit list %8.8x vs. %p.\n",
2777				   ioread32(ioaddr + DownListPtr),
2778				   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2779			issue_and_wait(dev, DownStall);
2780			for (i = 0; i < TX_RING_SIZE; i++) {
2781				unsigned int length;
2782
2783#if DO_ZEROCOPY
2784				length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2785#else
2786				length = le32_to_cpu(vp->tx_ring[i].length);
2787#endif
2788				pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2789					   i, &vp->tx_ring[i], length,
2790					   le32_to_cpu(vp->tx_ring[i].status));
2791			}
2792			if (!stalled)
2793				iowrite16(DownUnstall, ioaddr + EL3_CMD);
2794		}
2795	}
2796}
2797
2798static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2799{
2800	struct vortex_private *vp = netdev_priv(dev);
2801	void __iomem *ioaddr = vp->ioaddr;
2802	unsigned long flags;
2803
2804	if (netif_device_present(dev)) {	/* AKPM: Used to be netif_running */
2805		spin_lock_irqsave (&vp->lock, flags);
2806		update_stats(ioaddr, dev);
2807		spin_unlock_irqrestore (&vp->lock, flags);
2808	}
2809	return &dev->stats;
2810}
2811
2812/*  Update statistics.
2813	Unlike with the EL3 we need not worry about interrupts changing
2814	the window setting from underneath us, but we must still guard
2815	against a race condition with a StatsUpdate interrupt updating the
2816	table.  This is done by checking that the ASM (!) code generated uses
2817	atomic updates with '+='.
2818	*/
2819static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2820{
2821	struct vortex_private *vp = netdev_priv(dev);
2822
2823	/* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2824	/* Switch to the stats window, and read everything. */
2825	dev->stats.tx_carrier_errors		+= window_read8(vp, 6, 0);
2826	dev->stats.tx_heartbeat_errors		+= window_read8(vp, 6, 1);
2827	dev->stats.tx_window_errors		+= window_read8(vp, 6, 4);
2828	dev->stats.rx_fifo_errors		+= window_read8(vp, 6, 5);
2829	dev->stats.tx_packets			+= window_read8(vp, 6, 6);
2830	dev->stats.tx_packets			+= (window_read8(vp, 6, 9) &
2831						    0x30) << 4;
2832	/* Rx packets	*/			window_read8(vp, 6, 7);   /* Must read to clear */
2833	/* Don't bother with register 9, an extension of registers 6&7.
2834	   If we do use the 6&7 values the atomic update assumption above
2835	   is invalid. */
2836	dev->stats.rx_bytes 			+= window_read16(vp, 6, 10);
2837	dev->stats.tx_bytes 			+= window_read16(vp, 6, 12);
2838	/* Extra stats for get_ethtool_stats() */
2839	vp->xstats.tx_multiple_collisions	+= window_read8(vp, 6, 2);
2840	vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2841	vp->xstats.tx_deferred			+= window_read8(vp, 6, 8);
2842	vp->xstats.rx_bad_ssd			+= window_read8(vp, 4, 12);
2843
2844	dev->stats.collisions = vp->xstats.tx_multiple_collisions
2845		+ vp->xstats.tx_single_collisions
2846		+ vp->xstats.tx_max_collisions;
2847
2848	{
2849		u8 up = window_read8(vp, 4, 13);
2850		dev->stats.rx_bytes += (up & 0x0f) << 16;
2851		dev->stats.tx_bytes += (up & 0xf0) << 12;
2852	}
2853}
2854
2855static int vortex_nway_reset(struct net_device *dev)
2856{
2857	struct vortex_private *vp = netdev_priv(dev);
2858
2859	return mii_nway_restart(&vp->mii);
2860}
2861
2862static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 
2863{
2864	struct vortex_private *vp = netdev_priv(dev);
2865
2866	return mii_ethtool_gset(&vp->mii, cmd);
 
 
2867}
2868
2869static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 
2870{
2871	struct vortex_private *vp = netdev_priv(dev);
2872
2873	return mii_ethtool_sset(&vp->mii, cmd);
2874}
2875
2876static u32 vortex_get_msglevel(struct net_device *dev)
2877{
2878	return vortex_debug;
2879}
2880
2881static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2882{
2883	vortex_debug = dbg;
2884}
2885
2886static int vortex_get_sset_count(struct net_device *dev, int sset)
2887{
2888	switch (sset) {
2889	case ETH_SS_STATS:
2890		return VORTEX_NUM_STATS;
2891	default:
2892		return -EOPNOTSUPP;
2893	}
2894}
2895
2896static void vortex_get_ethtool_stats(struct net_device *dev,
2897	struct ethtool_stats *stats, u64 *data)
2898{
2899	struct vortex_private *vp = netdev_priv(dev);
2900	void __iomem *ioaddr = vp->ioaddr;
2901	unsigned long flags;
2902
2903	spin_lock_irqsave(&vp->lock, flags);
2904	update_stats(ioaddr, dev);
2905	spin_unlock_irqrestore(&vp->lock, flags);
2906
2907	data[0] = vp->xstats.tx_deferred;
2908	data[1] = vp->xstats.tx_max_collisions;
2909	data[2] = vp->xstats.tx_multiple_collisions;
2910	data[3] = vp->xstats.tx_single_collisions;
2911	data[4] = vp->xstats.rx_bad_ssd;
2912}
2913
2914
2915static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2916{
2917	switch (stringset) {
2918	case ETH_SS_STATS:
2919		memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2920		break;
2921	default:
2922		WARN_ON(1);
2923		break;
2924	}
2925}
2926
2927static void vortex_get_drvinfo(struct net_device *dev,
2928					struct ethtool_drvinfo *info)
2929{
2930	struct vortex_private *vp = netdev_priv(dev);
2931
2932	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2933	if (VORTEX_PCI(vp)) {
2934		strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2935			sizeof(info->bus_info));
2936	} else {
2937		if (VORTEX_EISA(vp))
2938			strlcpy(info->bus_info, dev_name(vp->gendev),
2939				sizeof(info->bus_info));
2940		else
2941			snprintf(info->bus_info, sizeof(info->bus_info),
2942				"EISA 0x%lx %d", dev->base_addr, dev->irq);
2943	}
2944}
2945
2946static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2947{
2948	struct vortex_private *vp = netdev_priv(dev);
2949
2950	if (!VORTEX_PCI(vp))
2951		return;
2952
2953	wol->supported = WAKE_MAGIC;
2954
2955	wol->wolopts = 0;
2956	if (vp->enable_wol)
2957		wol->wolopts |= WAKE_MAGIC;
2958}
2959
2960static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2961{
2962	struct vortex_private *vp = netdev_priv(dev);
2963
2964	if (!VORTEX_PCI(vp))
2965		return -EOPNOTSUPP;
2966
2967	if (wol->wolopts & ~WAKE_MAGIC)
2968		return -EINVAL;
2969
2970	if (wol->wolopts & WAKE_MAGIC)
2971		vp->enable_wol = 1;
2972	else
2973		vp->enable_wol = 0;
2974	acpi_set_WOL(dev);
2975
2976	return 0;
2977}
2978
2979static const struct ethtool_ops vortex_ethtool_ops = {
2980	.get_drvinfo		= vortex_get_drvinfo,
2981	.get_strings            = vortex_get_strings,
2982	.get_msglevel           = vortex_get_msglevel,
2983	.set_msglevel           = vortex_set_msglevel,
2984	.get_ethtool_stats      = vortex_get_ethtool_stats,
2985	.get_sset_count		= vortex_get_sset_count,
2986	.get_settings           = vortex_get_settings,
2987	.set_settings           = vortex_set_settings,
2988	.get_link               = ethtool_op_get_link,
2989	.nway_reset             = vortex_nway_reset,
2990	.get_wol                = vortex_get_wol,
2991	.set_wol                = vortex_set_wol,
 
 
 
2992};
2993
2994#ifdef CONFIG_PCI
2995/*
2996 *	Must power the device up to do MDIO operations
2997 */
2998static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2999{
3000	int err;
3001	struct vortex_private *vp = netdev_priv(dev);
3002	pci_power_t state = 0;
3003
3004	if(VORTEX_PCI(vp))
3005		state = VORTEX_PCI(vp)->current_state;
3006
3007	/* The kernel core really should have pci_get_power_state() */
3008
3009	if(state != 0)
3010		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3011	err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3012	if(state != 0)
3013		pci_set_power_state(VORTEX_PCI(vp), state);
3014
3015	return err;
3016}
3017#endif
3018
3019
3020/* Pre-Cyclone chips have no documented multicast filter, so the only
3021   multicast setting is to receive all multicast frames.  At least
3022   the chip has a very clean way to set the mode, unlike many others. */
3023static void set_rx_mode(struct net_device *dev)
3024{
3025	struct vortex_private *vp = netdev_priv(dev);
3026	void __iomem *ioaddr = vp->ioaddr;
3027	int new_mode;
3028
3029	if (dev->flags & IFF_PROMISC) {
3030		if (vortex_debug > 3)
3031			pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3032		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3033	} else	if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3034		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3035	} else
3036		new_mode = SetRxFilter | RxStation | RxBroadcast;
3037
3038	iowrite16(new_mode, ioaddr + EL3_CMD);
3039}
3040
3041#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3042/* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3043   Note that this must be done after each RxReset due to some backwards
3044   compatibility logic in the Cyclone and Tornado ASICs */
3045
3046/* The Ethernet Type used for 802.1q tagged frames */
3047#define VLAN_ETHER_TYPE 0x8100
3048
3049static void set_8021q_mode(struct net_device *dev, int enable)
3050{
3051	struct vortex_private *vp = netdev_priv(dev);
3052	int mac_ctrl;
3053
3054	if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3055		/* cyclone and tornado chipsets can recognize 802.1q
3056		 * tagged frames and treat them correctly */
3057
3058		int max_pkt_size = dev->mtu+14;	/* MTU+Ethernet header */
3059		if (enable)
3060			max_pkt_size += 4;	/* 802.1Q VLAN tag */
3061
3062		window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3063
3064		/* set VlanEtherType to let the hardware checksumming
3065		   treat tagged frames correctly */
3066		window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3067	} else {
3068		/* on older cards we have to enable large frames */
3069
3070		vp->large_frames = dev->mtu > 1500 || enable;
3071
3072		mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3073		if (vp->large_frames)
3074			mac_ctrl |= 0x40;
3075		else
3076			mac_ctrl &= ~0x40;
3077		window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3078	}
3079}
3080#else
3081
3082static void set_8021q_mode(struct net_device *dev, int enable)
3083{
3084}
3085
3086
3087#endif
3088
3089/* MII transceiver control section.
3090   Read and write the MII registers using software-generated serial
3091   MDIO protocol.  See the MII specifications or DP83840A data sheet
3092   for details. */
3093
3094/* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3095   met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3096   "overclocking" issues. */
3097static void mdio_delay(struct vortex_private *vp)
3098{
3099	window_read32(vp, 4, Wn4_PhysicalMgmt);
3100}
3101
3102#define MDIO_SHIFT_CLK	0x01
3103#define MDIO_DIR_WRITE	0x04
3104#define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3105#define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3106#define MDIO_DATA_READ	0x02
3107#define MDIO_ENB_IN		0x00
3108
3109/* Generate the preamble required for initial synchronization and
3110   a few older transceivers. */
3111static void mdio_sync(struct vortex_private *vp, int bits)
3112{
3113	/* Establish sync by sending at least 32 logic ones. */
3114	while (-- bits >= 0) {
3115		window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3116		mdio_delay(vp);
3117		window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3118			       4, Wn4_PhysicalMgmt);
3119		mdio_delay(vp);
3120	}
3121}
3122
3123static int mdio_read(struct net_device *dev, int phy_id, int location)
3124{
3125	int i;
3126	struct vortex_private *vp = netdev_priv(dev);
3127	int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3128	unsigned int retval = 0;
3129
3130	spin_lock_bh(&vp->mii_lock);
3131
3132	if (mii_preamble_required)
3133		mdio_sync(vp, 32);
3134
3135	/* Shift the read command bits out. */
3136	for (i = 14; i >= 0; i--) {
3137		int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3138		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3139		mdio_delay(vp);
3140		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3141			       4, Wn4_PhysicalMgmt);
3142		mdio_delay(vp);
3143	}
3144	/* Read the two transition, 16 data, and wire-idle bits. */
3145	for (i = 19; i > 0; i--) {
3146		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3147		mdio_delay(vp);
3148		retval = (retval << 1) |
3149			((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3150			  MDIO_DATA_READ) ? 1 : 0);
3151		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3152			       4, Wn4_PhysicalMgmt);
3153		mdio_delay(vp);
3154	}
3155
3156	spin_unlock_bh(&vp->mii_lock);
3157
3158	return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3159}
3160
3161static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3162{
3163	struct vortex_private *vp = netdev_priv(dev);
3164	int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3165	int i;
3166
3167	spin_lock_bh(&vp->mii_lock);
3168
3169	if (mii_preamble_required)
3170		mdio_sync(vp, 32);
3171
3172	/* Shift the command bits out. */
3173	for (i = 31; i >= 0; i--) {
3174		int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3175		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3176		mdio_delay(vp);
3177		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3178			       4, Wn4_PhysicalMgmt);
3179		mdio_delay(vp);
3180	}
3181	/* Leave the interface idle. */
3182	for (i = 1; i >= 0; i--) {
3183		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3184		mdio_delay(vp);
3185		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3186			       4, Wn4_PhysicalMgmt);
3187		mdio_delay(vp);
3188	}
3189
3190	spin_unlock_bh(&vp->mii_lock);
3191}
3192
3193/* ACPI: Advanced Configuration and Power Interface. */
3194/* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3195static void acpi_set_WOL(struct net_device *dev)
3196{
3197	struct vortex_private *vp = netdev_priv(dev);
3198	void __iomem *ioaddr = vp->ioaddr;
3199
3200	device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3201
3202	if (vp->enable_wol) {
3203		/* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3204		window_write16(vp, 2, 7, 0x0c);
3205		/* The RxFilter must accept the WOL frames. */
3206		iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3207		iowrite16(RxEnable, ioaddr + EL3_CMD);
3208
3209		if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3210			pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3211
3212			vp->enable_wol = 0;
3213			return;
3214		}
3215
3216		if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3217			return;
3218
3219		/* Change the power state to D3; RxEnable doesn't take effect. */
3220		pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3221	}
3222}
3223
3224
3225static void __devexit vortex_remove_one(struct pci_dev *pdev)
3226{
3227	struct net_device *dev = pci_get_drvdata(pdev);
3228	struct vortex_private *vp;
3229
3230	if (!dev) {
3231		pr_err("vortex_remove_one called for Compaq device!\n");
3232		BUG();
3233	}
3234
3235	vp = netdev_priv(dev);
3236
3237	if (vp->cb_fn_base)
3238		pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3239
3240	unregister_netdev(dev);
3241
3242	if (VORTEX_PCI(vp)) {
3243		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
3244		if (vp->pm_state_valid)
3245			pci_restore_state(VORTEX_PCI(vp));
3246		pci_disable_device(VORTEX_PCI(vp));
3247	}
3248	/* Should really use issue_and_wait() here */
3249	iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3250	     vp->ioaddr + EL3_CMD);
3251
3252	pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
 
 
 
 
 
 
 
3253
3254	pci_free_consistent(pdev,
3255						sizeof(struct boom_rx_desc) * RX_RING_SIZE
3256							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3257						vp->rx_ring,
3258						vp->rx_ring_dma);
3259	if (vp->must_free_region)
3260		release_region(dev->base_addr, vp->io_size);
3261	free_netdev(dev);
3262}
3263
3264
3265static struct pci_driver vortex_driver = {
3266	.name		= "3c59x",
3267	.probe		= vortex_init_one,
3268	.remove		= __devexit_p(vortex_remove_one),
3269	.id_table	= vortex_pci_tbl,
3270	.driver.pm	= VORTEX_PM_OPS,
3271};
3272
3273
3274static int vortex_have_pci;
3275static int vortex_have_eisa;
3276
3277
3278static int __init vortex_init(void)
3279{
3280	int pci_rc, eisa_rc;
3281
3282	pci_rc = pci_register_driver(&vortex_driver);
3283	eisa_rc = vortex_eisa_init();
3284
3285	if (pci_rc == 0)
3286		vortex_have_pci = 1;
3287	if (eisa_rc > 0)
3288		vortex_have_eisa = 1;
3289
3290	return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3291}
3292
3293
3294static void __exit vortex_eisa_cleanup(void)
3295{
3296	struct vortex_private *vp;
3297	void __iomem *ioaddr;
3298
3299#ifdef CONFIG_EISA
3300	/* Take care of the EISA devices */
3301	eisa_driver_unregister(&vortex_eisa_driver);
3302#endif
3303
3304	if (compaq_net_device) {
3305		vp = netdev_priv(compaq_net_device);
3306		ioaddr = ioport_map(compaq_net_device->base_addr,
3307		                    VORTEX_TOTAL_SIZE);
3308
3309		unregister_netdev(compaq_net_device);
3310		iowrite16(TotalReset, ioaddr + EL3_CMD);
3311		release_region(compaq_net_device->base_addr,
3312		               VORTEX_TOTAL_SIZE);
3313
3314		free_netdev(compaq_net_device);
3315	}
3316}
3317
3318
3319static void __exit vortex_cleanup(void)
3320{
3321	if (vortex_have_pci)
3322		pci_unregister_driver(&vortex_driver);
3323	if (vortex_have_eisa)
3324		vortex_eisa_cleanup();
3325}
3326
3327
3328module_init(vortex_init);
3329module_exit(vortex_cleanup);