Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2010-2011 Neil Brown
4 * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9#include <linux/slab.h>
10#include <linux/module.h>
11
12#include "md.h"
13#include "raid1.h"
14#include "raid5.h"
15#include "raid10.h"
16#include "md-bitmap.h"
17
18#include <linux/device-mapper.h>
19
20#define DM_MSG_PREFIX "raid"
21#define MAX_RAID_DEVICES 253 /* md-raid kernel limit */
22
23/*
24 * Minimum sectors of free reshape space per raid device
25 */
26#define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
27
28/*
29 * Minimum journal space 4 MiB in sectors.
30 */
31#define MIN_RAID456_JOURNAL_SPACE (4*2048)
32
33static bool devices_handle_discard_safely;
34
35/*
36 * The following flags are used by dm-raid to set up the array state.
37 * They must be cleared before md_run is called.
38 */
39#define FirstUse 10 /* rdev flag */
40
41struct raid_dev {
42 /*
43 * Two DM devices, one to hold metadata and one to hold the
44 * actual data/parity. The reason for this is to not confuse
45 * ti->len and give more flexibility in altering size and
46 * characteristics.
47 *
48 * While it is possible for this device to be associated
49 * with a different physical device than the data_dev, it
50 * is intended for it to be the same.
51 * |--------- Physical Device ---------|
52 * |- meta_dev -|------ data_dev ------|
53 */
54 struct dm_dev *meta_dev;
55 struct dm_dev *data_dev;
56 struct md_rdev rdev;
57};
58
59/*
60 * Bits for establishing rs->ctr_flags
61 *
62 * 1 = no flag value
63 * 2 = flag with value
64 */
65#define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */
66#define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */
67#define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */
68#define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */
69#define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */
70#define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */
71#define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */
72#define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */
73#define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */
74#define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */
75#define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */
76#define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */
77/* New for v1.9.0 */
78#define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
79#define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
80#define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
81
82/* New for v1.10.0 */
83#define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6 (journal device)! */
84
85/* New for v1.11.1 */
86#define __CTR_FLAG_JOURNAL_MODE 16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */
87
88/*
89 * Flags for rs->ctr_flags field.
90 */
91#define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC)
92#define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC)
93#define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD)
94#define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP)
95#define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
96#define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
97#define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
98#define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY)
99#define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE)
100#define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE)
101#define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES)
102#define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT)
103#define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS)
104#define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET)
105#define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
106#define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV)
107#define CTR_FLAG_JOURNAL_MODE (1 << __CTR_FLAG_JOURNAL_MODE)
108
109/*
110 * Definitions of various constructor flags to
111 * be used in checks of valid / invalid flags
112 * per raid level.
113 */
114/* Define all any sync flags */
115#define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
116
117/* Define flags for options without argument (e.g. 'nosync') */
118#define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \
119 CTR_FLAG_RAID10_USE_NEAR_SETS)
120
121/* Define flags for options with one argument (e.g. 'delta_disks +2') */
122#define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
123 CTR_FLAG_WRITE_MOSTLY | \
124 CTR_FLAG_DAEMON_SLEEP | \
125 CTR_FLAG_MIN_RECOVERY_RATE | \
126 CTR_FLAG_MAX_RECOVERY_RATE | \
127 CTR_FLAG_MAX_WRITE_BEHIND | \
128 CTR_FLAG_STRIPE_CACHE | \
129 CTR_FLAG_REGION_SIZE | \
130 CTR_FLAG_RAID10_COPIES | \
131 CTR_FLAG_RAID10_FORMAT | \
132 CTR_FLAG_DELTA_DISKS | \
133 CTR_FLAG_DATA_OFFSET | \
134 CTR_FLAG_JOURNAL_DEV | \
135 CTR_FLAG_JOURNAL_MODE)
136
137/* Valid options definitions per raid level... */
138
139/* "raid0" does only accept data offset */
140#define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET)
141
142/* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
143#define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
144 CTR_FLAG_REBUILD | \
145 CTR_FLAG_WRITE_MOSTLY | \
146 CTR_FLAG_DAEMON_SLEEP | \
147 CTR_FLAG_MIN_RECOVERY_RATE | \
148 CTR_FLAG_MAX_RECOVERY_RATE | \
149 CTR_FLAG_MAX_WRITE_BEHIND | \
150 CTR_FLAG_REGION_SIZE | \
151 CTR_FLAG_DELTA_DISKS | \
152 CTR_FLAG_DATA_OFFSET)
153
154/* "raid10" does not accept any raid1 or stripe cache options */
155#define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
156 CTR_FLAG_REBUILD | \
157 CTR_FLAG_DAEMON_SLEEP | \
158 CTR_FLAG_MIN_RECOVERY_RATE | \
159 CTR_FLAG_MAX_RECOVERY_RATE | \
160 CTR_FLAG_REGION_SIZE | \
161 CTR_FLAG_RAID10_COPIES | \
162 CTR_FLAG_RAID10_FORMAT | \
163 CTR_FLAG_DELTA_DISKS | \
164 CTR_FLAG_DATA_OFFSET | \
165 CTR_FLAG_RAID10_USE_NEAR_SETS)
166
167/*
168 * "raid4/5/6" do not accept any raid1 or raid10 specific options
169 *
170 * "raid6" does not accept "nosync", because it is not guaranteed
171 * that both parity and q-syndrome are being written properly with
172 * any writes
173 */
174#define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
175 CTR_FLAG_REBUILD | \
176 CTR_FLAG_DAEMON_SLEEP | \
177 CTR_FLAG_MIN_RECOVERY_RATE | \
178 CTR_FLAG_MAX_RECOVERY_RATE | \
179 CTR_FLAG_STRIPE_CACHE | \
180 CTR_FLAG_REGION_SIZE | \
181 CTR_FLAG_DELTA_DISKS | \
182 CTR_FLAG_DATA_OFFSET | \
183 CTR_FLAG_JOURNAL_DEV | \
184 CTR_FLAG_JOURNAL_MODE)
185
186#define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \
187 CTR_FLAG_REBUILD | \
188 CTR_FLAG_DAEMON_SLEEP | \
189 CTR_FLAG_MIN_RECOVERY_RATE | \
190 CTR_FLAG_MAX_RECOVERY_RATE | \
191 CTR_FLAG_STRIPE_CACHE | \
192 CTR_FLAG_REGION_SIZE | \
193 CTR_FLAG_DELTA_DISKS | \
194 CTR_FLAG_DATA_OFFSET | \
195 CTR_FLAG_JOURNAL_DEV | \
196 CTR_FLAG_JOURNAL_MODE)
197/* ...valid options definitions per raid level */
198
199/*
200 * Flags for rs->runtime_flags field
201 * (RT_FLAG prefix meaning "runtime flag")
202 *
203 * These are all internal and used to define runtime state,
204 * e.g. to prevent another resume from preresume processing
205 * the raid set all over again.
206 */
207#define RT_FLAG_RS_PRERESUMED 0
208#define RT_FLAG_RS_RESUMED 1
209#define RT_FLAG_RS_BITMAP_LOADED 2
210#define RT_FLAG_UPDATE_SBS 3
211#define RT_FLAG_RESHAPE_RS 4
212#define RT_FLAG_RS_SUSPENDED 5
213#define RT_FLAG_RS_IN_SYNC 6
214#define RT_FLAG_RS_RESYNCING 7
215#define RT_FLAG_RS_GROW 8
216
217/* Array elements of 64 bit needed for rebuild/failed disk bits */
218#define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
219
220/*
221 * raid set level, layout and chunk sectors backup/restore
222 */
223struct rs_layout {
224 int new_level;
225 int new_layout;
226 int new_chunk_sectors;
227};
228
229struct raid_set {
230 struct dm_target *ti;
231
232 uint32_t stripe_cache_entries;
233 unsigned long ctr_flags;
234 unsigned long runtime_flags;
235
236 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
237
238 int raid_disks;
239 int delta_disks;
240 int data_offset;
241 int raid10_copies;
242 int requested_bitmap_chunk_sectors;
243
244 struct mddev md;
245 struct raid_type *raid_type;
246
247 sector_t array_sectors;
248 sector_t dev_sectors;
249
250 /* Optional raid4/5/6 journal device */
251 struct journal_dev {
252 struct dm_dev *dev;
253 struct md_rdev rdev;
254 int mode;
255 } journal_dev;
256
257 struct raid_dev dev[] __counted_by(raid_disks);
258};
259
260static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
261{
262 struct mddev *mddev = &rs->md;
263
264 l->new_level = mddev->new_level;
265 l->new_layout = mddev->new_layout;
266 l->new_chunk_sectors = mddev->new_chunk_sectors;
267}
268
269static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
270{
271 struct mddev *mddev = &rs->md;
272
273 mddev->new_level = l->new_level;
274 mddev->new_layout = l->new_layout;
275 mddev->new_chunk_sectors = l->new_chunk_sectors;
276}
277
278/* raid10 algorithms (i.e. formats) */
279#define ALGORITHM_RAID10_DEFAULT 0
280#define ALGORITHM_RAID10_NEAR 1
281#define ALGORITHM_RAID10_OFFSET 2
282#define ALGORITHM_RAID10_FAR 3
283
284/* Supported raid types and properties. */
285static struct raid_type {
286 const char *name; /* RAID algorithm. */
287 const char *descr; /* Descriptor text for logging. */
288 const unsigned int parity_devs; /* # of parity devices. */
289 const unsigned int minimal_devs;/* minimal # of devices in set. */
290 const unsigned int level; /* RAID level. */
291 const unsigned int algorithm; /* RAID algorithm. */
292} raid_types[] = {
293 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */},
294 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */},
295 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR},
296 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET},
297 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR},
298 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT},
299 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
300 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N},
301 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
302 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
303 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
304 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
305 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
306 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
307 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE},
308 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6},
309 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6},
310 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6},
311 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6},
312 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6}
313};
314
315/* True, if @v is in inclusive range [@min, @max] */
316static bool __within_range(long v, long min, long max)
317{
318 return v >= min && v <= max;
319}
320
321/* All table line arguments are defined here */
322static struct arg_name_flag {
323 const unsigned long flag;
324 const char *name;
325} __arg_name_flags[] = {
326 { CTR_FLAG_SYNC, "sync"},
327 { CTR_FLAG_NOSYNC, "nosync"},
328 { CTR_FLAG_REBUILD, "rebuild"},
329 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
330 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
331 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
332 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
333 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
334 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
335 { CTR_FLAG_REGION_SIZE, "region_size"},
336 { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
337 { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
338 { CTR_FLAG_DATA_OFFSET, "data_offset"},
339 { CTR_FLAG_DELTA_DISKS, "delta_disks"},
340 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
341 { CTR_FLAG_JOURNAL_DEV, "journal_dev" },
342 { CTR_FLAG_JOURNAL_MODE, "journal_mode" },
343};
344
345/* Return argument name string for given @flag */
346static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
347{
348 if (hweight32(flag) == 1) {
349 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
350
351 while (anf-- > __arg_name_flags)
352 if (flag & anf->flag)
353 return anf->name;
354
355 } else
356 DMERR("%s called with more than one flag!", __func__);
357
358 return NULL;
359}
360
361/* Define correlation of raid456 journal cache modes and dm-raid target line parameters */
362static struct {
363 const int mode;
364 const char *param;
365} _raid456_journal_mode[] = {
366 { R5C_JOURNAL_MODE_WRITE_THROUGH, "writethrough" },
367 { R5C_JOURNAL_MODE_WRITE_BACK, "writeback" }
368};
369
370/* Return MD raid4/5/6 journal mode for dm @journal_mode one */
371static int dm_raid_journal_mode_to_md(const char *mode)
372{
373 int m = ARRAY_SIZE(_raid456_journal_mode);
374
375 while (m--)
376 if (!strcasecmp(mode, _raid456_journal_mode[m].param))
377 return _raid456_journal_mode[m].mode;
378
379 return -EINVAL;
380}
381
382/* Return dm-raid raid4/5/6 journal mode string for @mode */
383static const char *md_journal_mode_to_dm_raid(const int mode)
384{
385 int m = ARRAY_SIZE(_raid456_journal_mode);
386
387 while (m--)
388 if (mode == _raid456_journal_mode[m].mode)
389 return _raid456_journal_mode[m].param;
390
391 return "unknown";
392}
393
394/*
395 * Bool helpers to test for various raid levels of a raid set.
396 * It's level as reported by the superblock rather than
397 * the requested raid_type passed to the constructor.
398 */
399/* Return true, if raid set in @rs is raid0 */
400static bool rs_is_raid0(struct raid_set *rs)
401{
402 return !rs->md.level;
403}
404
405/* Return true, if raid set in @rs is raid1 */
406static bool rs_is_raid1(struct raid_set *rs)
407{
408 return rs->md.level == 1;
409}
410
411/* Return true, if raid set in @rs is raid10 */
412static bool rs_is_raid10(struct raid_set *rs)
413{
414 return rs->md.level == 10;
415}
416
417/* Return true, if raid set in @rs is level 6 */
418static bool rs_is_raid6(struct raid_set *rs)
419{
420 return rs->md.level == 6;
421}
422
423/* Return true, if raid set in @rs is level 4, 5 or 6 */
424static bool rs_is_raid456(struct raid_set *rs)
425{
426 return __within_range(rs->md.level, 4, 6);
427}
428
429/* Return true, if raid set in @rs is reshapable */
430static bool __is_raid10_far(int layout);
431static bool rs_is_reshapable(struct raid_set *rs)
432{
433 return rs_is_raid456(rs) ||
434 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
435}
436
437/* Return true, if raid set in @rs is recovering */
438static bool rs_is_recovering(struct raid_set *rs)
439{
440 return rs->md.recovery_cp < rs->md.dev_sectors;
441}
442
443/* Return true, if raid set in @rs is reshaping */
444static bool rs_is_reshaping(struct raid_set *rs)
445{
446 return rs->md.reshape_position != MaxSector;
447}
448
449/*
450 * bool helpers to test for various raid levels of a raid type @rt
451 */
452
453/* Return true, if raid type in @rt is raid0 */
454static bool rt_is_raid0(struct raid_type *rt)
455{
456 return !rt->level;
457}
458
459/* Return true, if raid type in @rt is raid1 */
460static bool rt_is_raid1(struct raid_type *rt)
461{
462 return rt->level == 1;
463}
464
465/* Return true, if raid type in @rt is raid10 */
466static bool rt_is_raid10(struct raid_type *rt)
467{
468 return rt->level == 10;
469}
470
471/* Return true, if raid type in @rt is raid4/5 */
472static bool rt_is_raid45(struct raid_type *rt)
473{
474 return __within_range(rt->level, 4, 5);
475}
476
477/* Return true, if raid type in @rt is raid6 */
478static bool rt_is_raid6(struct raid_type *rt)
479{
480 return rt->level == 6;
481}
482
483/* Return true, if raid type in @rt is raid4/5/6 */
484static bool rt_is_raid456(struct raid_type *rt)
485{
486 return __within_range(rt->level, 4, 6);
487}
488/* END: raid level bools */
489
490/* Return valid ctr flags for the raid level of @rs */
491static unsigned long __valid_flags(struct raid_set *rs)
492{
493 if (rt_is_raid0(rs->raid_type))
494 return RAID0_VALID_FLAGS;
495 else if (rt_is_raid1(rs->raid_type))
496 return RAID1_VALID_FLAGS;
497 else if (rt_is_raid10(rs->raid_type))
498 return RAID10_VALID_FLAGS;
499 else if (rt_is_raid45(rs->raid_type))
500 return RAID45_VALID_FLAGS;
501 else if (rt_is_raid6(rs->raid_type))
502 return RAID6_VALID_FLAGS;
503
504 return 0;
505}
506
507/*
508 * Check for valid flags set on @rs
509 *
510 * Has to be called after parsing of the ctr flags!
511 */
512static int rs_check_for_valid_flags(struct raid_set *rs)
513{
514 if (rs->ctr_flags & ~__valid_flags(rs)) {
515 rs->ti->error = "Invalid flags combination";
516 return -EINVAL;
517 }
518
519 return 0;
520}
521
522/* MD raid10 bit definitions and helpers */
523#define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */
524#define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
525#define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */
526#define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */
527
528/* Return md raid10 near copies for @layout */
529static unsigned int __raid10_near_copies(int layout)
530{
531 return layout & 0xFF;
532}
533
534/* Return md raid10 far copies for @layout */
535static unsigned int __raid10_far_copies(int layout)
536{
537 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
538}
539
540/* Return true if md raid10 offset for @layout */
541static bool __is_raid10_offset(int layout)
542{
543 return !!(layout & RAID10_OFFSET);
544}
545
546/* Return true if md raid10 near for @layout */
547static bool __is_raid10_near(int layout)
548{
549 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
550}
551
552/* Return true if md raid10 far for @layout */
553static bool __is_raid10_far(int layout)
554{
555 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
556}
557
558/* Return md raid10 layout string for @layout */
559static const char *raid10_md_layout_to_format(int layout)
560{
561 /*
562 * Bit 16 stands for "offset"
563 * (i.e. adjacent stripes hold copies)
564 *
565 * Refer to MD's raid10.c for details
566 */
567 if (__is_raid10_offset(layout))
568 return "offset";
569
570 if (__raid10_near_copies(layout) > 1)
571 return "near";
572
573 if (__raid10_far_copies(layout) > 1)
574 return "far";
575
576 return "unknown";
577}
578
579/* Return md raid10 algorithm for @name */
580static int raid10_name_to_format(const char *name)
581{
582 if (!strcasecmp(name, "near"))
583 return ALGORITHM_RAID10_NEAR;
584 else if (!strcasecmp(name, "offset"))
585 return ALGORITHM_RAID10_OFFSET;
586 else if (!strcasecmp(name, "far"))
587 return ALGORITHM_RAID10_FAR;
588
589 return -EINVAL;
590}
591
592/* Return md raid10 copies for @layout */
593static unsigned int raid10_md_layout_to_copies(int layout)
594{
595 return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
596}
597
598/* Return md raid10 format id for @format string */
599static int raid10_format_to_md_layout(struct raid_set *rs,
600 unsigned int algorithm,
601 unsigned int copies)
602{
603 unsigned int n = 1, f = 1, r = 0;
604
605 /*
606 * MD resilienece flaw:
607 *
608 * enabling use_far_sets for far/offset formats causes copies
609 * to be colocated on the same devs together with their origins!
610 *
611 * -> disable it for now in the definition above
612 */
613 if (algorithm == ALGORITHM_RAID10_DEFAULT ||
614 algorithm == ALGORITHM_RAID10_NEAR)
615 n = copies;
616
617 else if (algorithm == ALGORITHM_RAID10_OFFSET) {
618 f = copies;
619 r = RAID10_OFFSET;
620 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
621 r |= RAID10_USE_FAR_SETS;
622
623 } else if (algorithm == ALGORITHM_RAID10_FAR) {
624 f = copies;
625 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
626 r |= RAID10_USE_FAR_SETS;
627
628 } else
629 return -EINVAL;
630
631 return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
632}
633/* END: MD raid10 bit definitions and helpers */
634
635/* Check for any of the raid10 algorithms */
636static bool __got_raid10(struct raid_type *rtp, const int layout)
637{
638 if (rtp->level == 10) {
639 switch (rtp->algorithm) {
640 case ALGORITHM_RAID10_DEFAULT:
641 case ALGORITHM_RAID10_NEAR:
642 return __is_raid10_near(layout);
643 case ALGORITHM_RAID10_OFFSET:
644 return __is_raid10_offset(layout);
645 case ALGORITHM_RAID10_FAR:
646 return __is_raid10_far(layout);
647 default:
648 break;
649 }
650 }
651
652 return false;
653}
654
655/* Return raid_type for @name */
656static struct raid_type *get_raid_type(const char *name)
657{
658 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
659
660 while (rtp-- > raid_types)
661 if (!strcasecmp(rtp->name, name))
662 return rtp;
663
664 return NULL;
665}
666
667/* Return raid_type for @name based derived from @level and @layout */
668static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
669{
670 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
671
672 while (rtp-- > raid_types) {
673 /* RAID10 special checks based on @layout flags/properties */
674 if (rtp->level == level &&
675 (__got_raid10(rtp, layout) || rtp->algorithm == layout))
676 return rtp;
677 }
678
679 return NULL;
680}
681
682/* Adjust rdev sectors */
683static void rs_set_rdev_sectors(struct raid_set *rs)
684{
685 struct mddev *mddev = &rs->md;
686 struct md_rdev *rdev;
687
688 /*
689 * raid10 sets rdev->sector to the device size, which
690 * is unintended in case of out-of-place reshaping
691 */
692 rdev_for_each(rdev, mddev)
693 if (!test_bit(Journal, &rdev->flags))
694 rdev->sectors = mddev->dev_sectors;
695}
696
697/*
698 * Change bdev capacity of @rs in case of a disk add/remove reshape
699 */
700static void rs_set_capacity(struct raid_set *rs)
701{
702 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
703
704 set_capacity_and_notify(gendisk, rs->md.array_sectors);
705}
706
707/*
708 * Set the mddev properties in @rs to the current
709 * ones retrieved from the freshest superblock
710 */
711static void rs_set_cur(struct raid_set *rs)
712{
713 struct mddev *mddev = &rs->md;
714
715 mddev->new_level = mddev->level;
716 mddev->new_layout = mddev->layout;
717 mddev->new_chunk_sectors = mddev->chunk_sectors;
718}
719
720/*
721 * Set the mddev properties in @rs to the new
722 * ones requested by the ctr
723 */
724static void rs_set_new(struct raid_set *rs)
725{
726 struct mddev *mddev = &rs->md;
727
728 mddev->level = mddev->new_level;
729 mddev->layout = mddev->new_layout;
730 mddev->chunk_sectors = mddev->new_chunk_sectors;
731 mddev->raid_disks = rs->raid_disks;
732 mddev->delta_disks = 0;
733}
734
735static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
736 unsigned int raid_devs)
737{
738 unsigned int i;
739 struct raid_set *rs;
740
741 if (raid_devs <= raid_type->parity_devs) {
742 ti->error = "Insufficient number of devices";
743 return ERR_PTR(-EINVAL);
744 }
745
746 rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL);
747 if (!rs) {
748 ti->error = "Cannot allocate raid context";
749 return ERR_PTR(-ENOMEM);
750 }
751
752 if (mddev_init(&rs->md)) {
753 kfree(rs);
754 ti->error = "Cannot initialize raid context";
755 return ERR_PTR(-ENOMEM);
756 }
757
758 rs->raid_disks = raid_devs;
759 rs->delta_disks = 0;
760
761 rs->ti = ti;
762 rs->raid_type = raid_type;
763 rs->stripe_cache_entries = 256;
764 rs->md.raid_disks = raid_devs;
765 rs->md.level = raid_type->level;
766 rs->md.new_level = rs->md.level;
767 rs->md.layout = raid_type->algorithm;
768 rs->md.new_layout = rs->md.layout;
769 rs->md.delta_disks = 0;
770 rs->md.recovery_cp = MaxSector;
771
772 for (i = 0; i < raid_devs; i++)
773 md_rdev_init(&rs->dev[i].rdev);
774
775 /*
776 * Remaining items to be initialized by further RAID params:
777 * rs->md.persistent
778 * rs->md.external
779 * rs->md.chunk_sectors
780 * rs->md.new_chunk_sectors
781 * rs->md.dev_sectors
782 */
783
784 return rs;
785}
786
787/* Free all @rs allocations */
788static void raid_set_free(struct raid_set *rs)
789{
790 int i;
791
792 if (rs->journal_dev.dev) {
793 md_rdev_clear(&rs->journal_dev.rdev);
794 dm_put_device(rs->ti, rs->journal_dev.dev);
795 }
796
797 for (i = 0; i < rs->raid_disks; i++) {
798 if (rs->dev[i].meta_dev)
799 dm_put_device(rs->ti, rs->dev[i].meta_dev);
800 md_rdev_clear(&rs->dev[i].rdev);
801 if (rs->dev[i].data_dev)
802 dm_put_device(rs->ti, rs->dev[i].data_dev);
803 }
804
805 mddev_destroy(&rs->md);
806 kfree(rs);
807}
808
809/*
810 * For every device we have two words
811 * <meta_dev>: meta device name or '-' if missing
812 * <data_dev>: data device name or '-' if missing
813 *
814 * The following are permitted:
815 * - -
816 * - <data_dev>
817 * <meta_dev> <data_dev>
818 *
819 * The following is not allowed:
820 * <meta_dev> -
821 *
822 * This code parses those words. If there is a failure,
823 * the caller must use raid_set_free() to unwind the operations.
824 */
825static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
826{
827 int i;
828 int rebuild = 0;
829 int metadata_available = 0;
830 int r = 0;
831 const char *arg;
832
833 /* Put off the number of raid devices argument to get to dev pairs */
834 arg = dm_shift_arg(as);
835 if (!arg)
836 return -EINVAL;
837
838 for (i = 0; i < rs->raid_disks; i++) {
839 rs->dev[i].rdev.raid_disk = i;
840
841 rs->dev[i].meta_dev = NULL;
842 rs->dev[i].data_dev = NULL;
843
844 /*
845 * There are no offsets initially.
846 * Out of place reshape will set them accordingly.
847 */
848 rs->dev[i].rdev.data_offset = 0;
849 rs->dev[i].rdev.new_data_offset = 0;
850 rs->dev[i].rdev.mddev = &rs->md;
851
852 arg = dm_shift_arg(as);
853 if (!arg)
854 return -EINVAL;
855
856 if (strcmp(arg, "-")) {
857 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
858 &rs->dev[i].meta_dev);
859 if (r) {
860 rs->ti->error = "RAID metadata device lookup failure";
861 return r;
862 }
863
864 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
865 if (!rs->dev[i].rdev.sb_page) {
866 rs->ti->error = "Failed to allocate superblock page";
867 return -ENOMEM;
868 }
869 }
870
871 arg = dm_shift_arg(as);
872 if (!arg)
873 return -EINVAL;
874
875 if (!strcmp(arg, "-")) {
876 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
877 (!rs->dev[i].rdev.recovery_offset)) {
878 rs->ti->error = "Drive designated for rebuild not specified";
879 return -EINVAL;
880 }
881
882 if (rs->dev[i].meta_dev) {
883 rs->ti->error = "No data device supplied with metadata device";
884 return -EINVAL;
885 }
886
887 continue;
888 }
889
890 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
891 &rs->dev[i].data_dev);
892 if (r) {
893 rs->ti->error = "RAID device lookup failure";
894 return r;
895 }
896
897 if (rs->dev[i].meta_dev) {
898 metadata_available = 1;
899 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
900 }
901 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
902 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
903 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
904 rebuild++;
905 }
906
907 if (rs->journal_dev.dev)
908 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
909
910 if (metadata_available) {
911 rs->md.external = 0;
912 rs->md.persistent = 1;
913 rs->md.major_version = 2;
914 } else if (rebuild && !rs->md.recovery_cp) {
915 /*
916 * Without metadata, we will not be able to tell if the array
917 * is in-sync or not - we must assume it is not. Therefore,
918 * it is impossible to rebuild a drive.
919 *
920 * Even if there is metadata, the on-disk information may
921 * indicate that the array is not in-sync and it will then
922 * fail at that time.
923 *
924 * User could specify 'nosync' option if desperate.
925 */
926 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
927 return -EINVAL;
928 }
929
930 return 0;
931}
932
933/*
934 * validate_region_size
935 * @rs
936 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
937 *
938 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
939 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
940 *
941 * Returns: 0 on success, -EINVAL on failure.
942 */
943static int validate_region_size(struct raid_set *rs, unsigned long region_size)
944{
945 unsigned long min_region_size = rs->ti->len / (1 << 21);
946
947 if (rs_is_raid0(rs))
948 return 0;
949
950 if (!region_size) {
951 /*
952 * Choose a reasonable default. All figures in sectors.
953 */
954 if (min_region_size > (1 << 13)) {
955 /* If not a power of 2, make it the next power of 2 */
956 region_size = roundup_pow_of_two(min_region_size);
957 DMINFO("Choosing default region size of %lu sectors",
958 region_size);
959 } else {
960 DMINFO("Choosing default region size of 4MiB");
961 region_size = 1 << 13; /* sectors */
962 }
963 } else {
964 /*
965 * Validate user-supplied value.
966 */
967 if (region_size > rs->ti->len) {
968 rs->ti->error = "Supplied region size is too large";
969 return -EINVAL;
970 }
971
972 if (region_size < min_region_size) {
973 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
974 region_size, min_region_size);
975 rs->ti->error = "Supplied region size is too small";
976 return -EINVAL;
977 }
978
979 if (!is_power_of_2(region_size)) {
980 rs->ti->error = "Region size is not a power of 2";
981 return -EINVAL;
982 }
983
984 if (region_size < rs->md.chunk_sectors) {
985 rs->ti->error = "Region size is smaller than the chunk size";
986 return -EINVAL;
987 }
988 }
989
990 /*
991 * Convert sectors to bytes.
992 */
993 rs->md.bitmap_info.chunksize = to_bytes(region_size);
994
995 return 0;
996}
997
998/*
999 * validate_raid_redundancy
1000 * @rs
1001 *
1002 * Determine if there are enough devices in the array that haven't
1003 * failed (or are being rebuilt) to form a usable array.
1004 *
1005 * Returns: 0 on success, -EINVAL on failure.
1006 */
1007static int validate_raid_redundancy(struct raid_set *rs)
1008{
1009 unsigned int i, rebuild_cnt = 0;
1010 unsigned int rebuilds_per_group = 0, copies, raid_disks;
1011 unsigned int group_size, last_group_start;
1012
1013 for (i = 0; i < rs->raid_disks; i++)
1014 if (!test_bit(FirstUse, &rs->dev[i].rdev.flags) &&
1015 ((!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
1016 !rs->dev[i].rdev.sb_page)))
1017 rebuild_cnt++;
1018
1019 switch (rs->md.level) {
1020 case 0:
1021 break;
1022 case 1:
1023 if (rebuild_cnt >= rs->md.raid_disks)
1024 goto too_many;
1025 break;
1026 case 4:
1027 case 5:
1028 case 6:
1029 if (rebuild_cnt > rs->raid_type->parity_devs)
1030 goto too_many;
1031 break;
1032 case 10:
1033 copies = raid10_md_layout_to_copies(rs->md.new_layout);
1034 if (copies < 2) {
1035 DMERR("Bogus raid10 data copies < 2!");
1036 return -EINVAL;
1037 }
1038
1039 if (rebuild_cnt < copies)
1040 break;
1041
1042 /*
1043 * It is possible to have a higher rebuild count for RAID10,
1044 * as long as the failed devices occur in different mirror
1045 * groups (i.e. different stripes).
1046 *
1047 * When checking "near" format, make sure no adjacent devices
1048 * have failed beyond what can be handled. In addition to the
1049 * simple case where the number of devices is a multiple of the
1050 * number of copies, we must also handle cases where the number
1051 * of devices is not a multiple of the number of copies.
1052 * E.g. dev1 dev2 dev3 dev4 dev5
1053 * A A B B C
1054 * C D D E E
1055 */
1056 raid_disks = min(rs->raid_disks, rs->md.raid_disks);
1057 if (__is_raid10_near(rs->md.new_layout)) {
1058 for (i = 0; i < raid_disks; i++) {
1059 if (!(i % copies))
1060 rebuilds_per_group = 0;
1061 if ((!rs->dev[i].rdev.sb_page ||
1062 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1063 (++rebuilds_per_group >= copies))
1064 goto too_many;
1065 }
1066 break;
1067 }
1068
1069 /*
1070 * When checking "far" and "offset" formats, we need to ensure
1071 * that the device that holds its copy is not also dead or
1072 * being rebuilt. (Note that "far" and "offset" formats only
1073 * support two copies right now. These formats also only ever
1074 * use the 'use_far_sets' variant.)
1075 *
1076 * This check is somewhat complicated by the need to account
1077 * for arrays that are not a multiple of (far) copies. This
1078 * results in the need to treat the last (potentially larger)
1079 * set differently.
1080 */
1081 group_size = (raid_disks / copies);
1082 last_group_start = (raid_disks / group_size) - 1;
1083 last_group_start *= group_size;
1084 for (i = 0; i < raid_disks; i++) {
1085 if (!(i % copies) && !(i > last_group_start))
1086 rebuilds_per_group = 0;
1087 if ((!rs->dev[i].rdev.sb_page ||
1088 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1089 (++rebuilds_per_group >= copies))
1090 goto too_many;
1091 }
1092 break;
1093 default:
1094 if (rebuild_cnt)
1095 return -EINVAL;
1096 }
1097
1098 return 0;
1099
1100too_many:
1101 return -EINVAL;
1102}
1103
1104/*
1105 * Possible arguments are...
1106 * <chunk_size> [optional_args]
1107 *
1108 * Argument definitions
1109 * <chunk_size> The number of sectors per disk that
1110 * will form the "stripe"
1111 * [[no]sync] Force or prevent recovery of the
1112 * entire array
1113 * [rebuild <idx>] Rebuild the drive indicated by the index
1114 * [daemon_sleep <ms>] Time between bitmap daemon work to
1115 * clear bits
1116 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1117 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1118 * [write_mostly <idx>] Indicate a write mostly drive via index
1119 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
1120 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
1121 * [region_size <sectors>] Defines granularity of bitmap
1122 * [journal_dev <dev>] raid4/5/6 journaling deviice
1123 * (i.e. write hole closing log)
1124 *
1125 * RAID10-only options:
1126 * [raid10_copies <# copies>] Number of copies. (Default: 2)
1127 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
1128 */
1129static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1130 unsigned int num_raid_params)
1131{
1132 int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1133 unsigned int raid10_copies = 2;
1134 unsigned int i, write_mostly = 0;
1135 unsigned int region_size = 0;
1136 sector_t max_io_len;
1137 const char *arg, *key;
1138 struct raid_dev *rd;
1139 struct raid_type *rt = rs->raid_type;
1140
1141 arg = dm_shift_arg(as);
1142 num_raid_params--; /* Account for chunk_size argument */
1143
1144 if (kstrtoint(arg, 10, &value) < 0) {
1145 rs->ti->error = "Bad numerical argument given for chunk_size";
1146 return -EINVAL;
1147 }
1148
1149 /*
1150 * First, parse the in-order required arguments
1151 * "chunk_size" is the only argument of this type.
1152 */
1153 if (rt_is_raid1(rt)) {
1154 if (value)
1155 DMERR("Ignoring chunk size parameter for RAID 1");
1156 value = 0;
1157 } else if (!is_power_of_2(value)) {
1158 rs->ti->error = "Chunk size must be a power of 2";
1159 return -EINVAL;
1160 } else if (value < 8) {
1161 rs->ti->error = "Chunk size value is too small";
1162 return -EINVAL;
1163 }
1164
1165 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1166
1167 /*
1168 * We set each individual device as In_sync with a completed
1169 * 'recovery_offset'. If there has been a device failure or
1170 * replacement then one of the following cases applies:
1171 *
1172 * 1) User specifies 'rebuild'.
1173 * - Device is reset when param is read.
1174 * 2) A new device is supplied.
1175 * - No matching superblock found, resets device.
1176 * 3) Device failure was transient and returns on reload.
1177 * - Failure noticed, resets device for bitmap replay.
1178 * 4) Device hadn't completed recovery after previous failure.
1179 * - Superblock is read and overrides recovery_offset.
1180 *
1181 * What is found in the superblocks of the devices is always
1182 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1183 */
1184 for (i = 0; i < rs->raid_disks; i++) {
1185 set_bit(In_sync, &rs->dev[i].rdev.flags);
1186 rs->dev[i].rdev.recovery_offset = MaxSector;
1187 }
1188
1189 /*
1190 * Second, parse the unordered optional arguments
1191 */
1192 for (i = 0; i < num_raid_params; i++) {
1193 key = dm_shift_arg(as);
1194 if (!key) {
1195 rs->ti->error = "Not enough raid parameters given";
1196 return -EINVAL;
1197 }
1198
1199 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1200 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1201 rs->ti->error = "Only one 'nosync' argument allowed";
1202 return -EINVAL;
1203 }
1204 continue;
1205 }
1206 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1207 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1208 rs->ti->error = "Only one 'sync' argument allowed";
1209 return -EINVAL;
1210 }
1211 continue;
1212 }
1213 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1214 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1215 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1216 return -EINVAL;
1217 }
1218 continue;
1219 }
1220
1221 arg = dm_shift_arg(as);
1222 i++; /* Account for the argument pairs */
1223 if (!arg) {
1224 rs->ti->error = "Wrong number of raid parameters given";
1225 return -EINVAL;
1226 }
1227
1228 /*
1229 * Parameters that take a string value are checked here.
1230 */
1231 /* "raid10_format {near|offset|far} */
1232 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1233 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1234 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1235 return -EINVAL;
1236 }
1237 if (!rt_is_raid10(rt)) {
1238 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1239 return -EINVAL;
1240 }
1241 raid10_format = raid10_name_to_format(arg);
1242 if (raid10_format < 0) {
1243 rs->ti->error = "Invalid 'raid10_format' value given";
1244 return raid10_format;
1245 }
1246 continue;
1247 }
1248
1249 /* "journal_dev <dev>" */
1250 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
1251 int r;
1252 struct md_rdev *jdev;
1253
1254 if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1255 rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
1256 return -EINVAL;
1257 }
1258 if (!rt_is_raid456(rt)) {
1259 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
1260 return -EINVAL;
1261 }
1262 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
1263 &rs->journal_dev.dev);
1264 if (r) {
1265 rs->ti->error = "raid4/5/6 journal device lookup failure";
1266 return r;
1267 }
1268 jdev = &rs->journal_dev.rdev;
1269 md_rdev_init(jdev);
1270 jdev->mddev = &rs->md;
1271 jdev->bdev = rs->journal_dev.dev->bdev;
1272 jdev->sectors = bdev_nr_sectors(jdev->bdev);
1273 if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
1274 rs->ti->error = "No space for raid4/5/6 journal";
1275 return -ENOSPC;
1276 }
1277 rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
1278 set_bit(Journal, &jdev->flags);
1279 continue;
1280 }
1281
1282 /* "journal_mode <mode>" ("journal_dev" mandatory!) */
1283 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) {
1284 int r;
1285
1286 if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1287 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'";
1288 return -EINVAL;
1289 }
1290 if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
1291 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed";
1292 return -EINVAL;
1293 }
1294 r = dm_raid_journal_mode_to_md(arg);
1295 if (r < 0) {
1296 rs->ti->error = "Invalid 'journal_mode' argument";
1297 return r;
1298 }
1299 rs->journal_dev.mode = r;
1300 continue;
1301 }
1302
1303 /*
1304 * Parameters with number values from here on.
1305 */
1306 if (kstrtoint(arg, 10, &value) < 0) {
1307 rs->ti->error = "Bad numerical argument given in raid params";
1308 return -EINVAL;
1309 }
1310
1311 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1312 /*
1313 * "rebuild" is being passed in by userspace to provide
1314 * indexes of replaced devices and to set up additional
1315 * devices on raid level takeover.
1316 */
1317 if (!__within_range(value, 0, rs->raid_disks - 1)) {
1318 rs->ti->error = "Invalid rebuild index given";
1319 return -EINVAL;
1320 }
1321
1322 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1323 rs->ti->error = "rebuild for this index already given";
1324 return -EINVAL;
1325 }
1326
1327 rd = rs->dev + value;
1328 clear_bit(In_sync, &rd->rdev.flags);
1329 clear_bit(Faulty, &rd->rdev.flags);
1330 rd->rdev.recovery_offset = 0;
1331 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1332 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1333 if (!rt_is_raid1(rt)) {
1334 rs->ti->error = "write_mostly option is only valid for RAID1";
1335 return -EINVAL;
1336 }
1337
1338 if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1339 rs->ti->error = "Invalid write_mostly index given";
1340 return -EINVAL;
1341 }
1342
1343 write_mostly++;
1344 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1345 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1346 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1347 if (!rt_is_raid1(rt)) {
1348 rs->ti->error = "max_write_behind option is only valid for RAID1";
1349 return -EINVAL;
1350 }
1351
1352 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1353 rs->ti->error = "Only one max_write_behind argument pair allowed";
1354 return -EINVAL;
1355 }
1356
1357 /*
1358 * In device-mapper, we specify things in sectors, but
1359 * MD records this value in kB
1360 */
1361 if (value < 0 || value / 2 > COUNTER_MAX) {
1362 rs->ti->error = "Max write-behind limit out of range";
1363 return -EINVAL;
1364 }
1365
1366 rs->md.bitmap_info.max_write_behind = value / 2;
1367 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1368 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1369 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1370 return -EINVAL;
1371 }
1372 if (value < 0) {
1373 rs->ti->error = "daemon sleep period out of range";
1374 return -EINVAL;
1375 }
1376 rs->md.bitmap_info.daemon_sleep = value;
1377 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1378 /* Userspace passes new data_offset after having extended the data image LV */
1379 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1380 rs->ti->error = "Only one data_offset argument pair allowed";
1381 return -EINVAL;
1382 }
1383 /* Ensure sensible data offset */
1384 if (value < 0 ||
1385 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1386 rs->ti->error = "Bogus data_offset value";
1387 return -EINVAL;
1388 }
1389 rs->data_offset = value;
1390 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1391 /* Define the +/-# of disks to add to/remove from the given raid set */
1392 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1393 rs->ti->error = "Only one delta_disks argument pair allowed";
1394 return -EINVAL;
1395 }
1396 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1397 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1398 rs->ti->error = "Too many delta_disk requested";
1399 return -EINVAL;
1400 }
1401
1402 rs->delta_disks = value;
1403 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1404 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1405 rs->ti->error = "Only one stripe_cache argument pair allowed";
1406 return -EINVAL;
1407 }
1408
1409 if (!rt_is_raid456(rt)) {
1410 rs->ti->error = "Inappropriate argument: stripe_cache";
1411 return -EINVAL;
1412 }
1413
1414 if (value < 0) {
1415 rs->ti->error = "Bogus stripe cache entries value";
1416 return -EINVAL;
1417 }
1418 rs->stripe_cache_entries = value;
1419 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1420 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1421 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1422 return -EINVAL;
1423 }
1424
1425 if (value < 0) {
1426 rs->ti->error = "min_recovery_rate out of range";
1427 return -EINVAL;
1428 }
1429 rs->md.sync_speed_min = value;
1430 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1431 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1432 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1433 return -EINVAL;
1434 }
1435
1436 if (value < 0) {
1437 rs->ti->error = "max_recovery_rate out of range";
1438 return -EINVAL;
1439 }
1440 rs->md.sync_speed_max = value;
1441 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1442 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1443 rs->ti->error = "Only one region_size argument pair allowed";
1444 return -EINVAL;
1445 }
1446
1447 region_size = value;
1448 rs->requested_bitmap_chunk_sectors = value;
1449 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1450 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1451 rs->ti->error = "Only one raid10_copies argument pair allowed";
1452 return -EINVAL;
1453 }
1454
1455 if (!__within_range(value, 2, rs->md.raid_disks)) {
1456 rs->ti->error = "Bad value for 'raid10_copies'";
1457 return -EINVAL;
1458 }
1459
1460 raid10_copies = value;
1461 } else {
1462 DMERR("Unable to parse RAID parameter: %s", key);
1463 rs->ti->error = "Unable to parse RAID parameter";
1464 return -EINVAL;
1465 }
1466 }
1467
1468 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1469 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1470 rs->ti->error = "sync and nosync are mutually exclusive";
1471 return -EINVAL;
1472 }
1473
1474 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1475 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1476 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1477 rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1478 return -EINVAL;
1479 }
1480
1481 if (write_mostly >= rs->md.raid_disks) {
1482 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1483 return -EINVAL;
1484 }
1485
1486 if (rs->md.sync_speed_max &&
1487 rs->md.sync_speed_min > rs->md.sync_speed_max) {
1488 rs->ti->error = "Bogus recovery rates";
1489 return -EINVAL;
1490 }
1491
1492 if (validate_region_size(rs, region_size))
1493 return -EINVAL;
1494
1495 if (rs->md.chunk_sectors)
1496 max_io_len = rs->md.chunk_sectors;
1497 else
1498 max_io_len = region_size;
1499
1500 if (dm_set_target_max_io_len(rs->ti, max_io_len))
1501 return -EINVAL;
1502
1503 if (rt_is_raid10(rt)) {
1504 if (raid10_copies > rs->md.raid_disks) {
1505 rs->ti->error = "Not enough devices to satisfy specification";
1506 return -EINVAL;
1507 }
1508
1509 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1510 if (rs->md.new_layout < 0) {
1511 rs->ti->error = "Error getting raid10 format";
1512 return rs->md.new_layout;
1513 }
1514
1515 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1516 if (!rt) {
1517 rs->ti->error = "Failed to recognize new raid10 layout";
1518 return -EINVAL;
1519 }
1520
1521 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1522 rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1523 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1524 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1525 return -EINVAL;
1526 }
1527 }
1528
1529 rs->raid10_copies = raid10_copies;
1530
1531 /* Assume there are no metadata devices until the drives are parsed */
1532 rs->md.persistent = 0;
1533 rs->md.external = 1;
1534
1535 /* Check, if any invalid ctr arguments have been passed in for the raid level */
1536 return rs_check_for_valid_flags(rs);
1537}
1538
1539/* Set raid4/5/6 cache size */
1540static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1541{
1542 int r;
1543 struct r5conf *conf;
1544 struct mddev *mddev = &rs->md;
1545 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1546 uint32_t nr_stripes = rs->stripe_cache_entries;
1547
1548 if (!rt_is_raid456(rs->raid_type)) {
1549 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1550 return -EINVAL;
1551 }
1552
1553 if (nr_stripes < min_stripes) {
1554 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1555 nr_stripes, min_stripes);
1556 nr_stripes = min_stripes;
1557 }
1558
1559 conf = mddev->private;
1560 if (!conf) {
1561 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1562 return -EINVAL;
1563 }
1564
1565 /* Try setting number of stripes in raid456 stripe cache */
1566 if (conf->min_nr_stripes != nr_stripes) {
1567 r = raid5_set_cache_size(mddev, nr_stripes);
1568 if (r) {
1569 rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1570 return r;
1571 }
1572
1573 DMINFO("%u stripe cache entries", nr_stripes);
1574 }
1575
1576 return 0;
1577}
1578
1579/* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1580static unsigned int mddev_data_stripes(struct raid_set *rs)
1581{
1582 return rs->md.raid_disks - rs->raid_type->parity_devs;
1583}
1584
1585/* Return # of data stripes of @rs (i.e. as of ctr) */
1586static unsigned int rs_data_stripes(struct raid_set *rs)
1587{
1588 return rs->raid_disks - rs->raid_type->parity_devs;
1589}
1590
1591/*
1592 * Retrieve rdev->sectors from any valid raid device of @rs
1593 * to allow userpace to pass in arbitray "- -" device tupples.
1594 */
1595static sector_t __rdev_sectors(struct raid_set *rs)
1596{
1597 int i;
1598
1599 for (i = 0; i < rs->raid_disks; i++) {
1600 struct md_rdev *rdev = &rs->dev[i].rdev;
1601
1602 if (!test_bit(Journal, &rdev->flags) &&
1603 rdev->bdev && rdev->sectors)
1604 return rdev->sectors;
1605 }
1606
1607 return 0;
1608}
1609
1610/* Check that calculated dev_sectors fits all component devices. */
1611static int _check_data_dev_sectors(struct raid_set *rs)
1612{
1613 sector_t ds = ~0;
1614 struct md_rdev *rdev;
1615
1616 rdev_for_each(rdev, &rs->md)
1617 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) {
1618 ds = min(ds, bdev_nr_sectors(rdev->bdev));
1619 if (ds < rs->md.dev_sectors) {
1620 rs->ti->error = "Component device(s) too small";
1621 return -EINVAL;
1622 }
1623 }
1624
1625 return 0;
1626}
1627
1628/* Calculate the sectors per device and per array used for @rs */
1629static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev)
1630{
1631 int delta_disks;
1632 unsigned int data_stripes;
1633 sector_t array_sectors = sectors, dev_sectors = sectors;
1634 struct mddev *mddev = &rs->md;
1635
1636 if (use_mddev) {
1637 delta_disks = mddev->delta_disks;
1638 data_stripes = mddev_data_stripes(rs);
1639 } else {
1640 delta_disks = rs->delta_disks;
1641 data_stripes = rs_data_stripes(rs);
1642 }
1643
1644 /* Special raid1 case w/o delta_disks support (yet) */
1645 if (rt_is_raid1(rs->raid_type))
1646 ;
1647 else if (rt_is_raid10(rs->raid_type)) {
1648 if (rs->raid10_copies < 2 ||
1649 delta_disks < 0) {
1650 rs->ti->error = "Bogus raid10 data copies or delta disks";
1651 return -EINVAL;
1652 }
1653
1654 dev_sectors *= rs->raid10_copies;
1655 if (sector_div(dev_sectors, data_stripes))
1656 goto bad;
1657
1658 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1659 if (sector_div(array_sectors, rs->raid10_copies))
1660 goto bad;
1661
1662 } else if (sector_div(dev_sectors, data_stripes))
1663 goto bad;
1664
1665 else
1666 /* Striped layouts */
1667 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1668
1669 mddev->array_sectors = array_sectors;
1670 mddev->dev_sectors = dev_sectors;
1671 rs_set_rdev_sectors(rs);
1672
1673 return _check_data_dev_sectors(rs);
1674bad:
1675 rs->ti->error = "Target length not divisible by number of data devices";
1676 return -EINVAL;
1677}
1678
1679/* Setup recovery on @rs */
1680static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1681{
1682 /* raid0 does not recover */
1683 if (rs_is_raid0(rs))
1684 rs->md.recovery_cp = MaxSector;
1685 /*
1686 * A raid6 set has to be recovered either
1687 * completely or for the grown part to
1688 * ensure proper parity and Q-Syndrome
1689 */
1690 else if (rs_is_raid6(rs))
1691 rs->md.recovery_cp = dev_sectors;
1692 /*
1693 * Other raid set types may skip recovery
1694 * depending on the 'nosync' flag.
1695 */
1696 else
1697 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1698 ? MaxSector : dev_sectors;
1699}
1700
1701static void do_table_event(struct work_struct *ws)
1702{
1703 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1704
1705 smp_rmb(); /* Make sure we access most actual mddev properties */
1706 if (!rs_is_reshaping(rs)) {
1707 if (rs_is_raid10(rs))
1708 rs_set_rdev_sectors(rs);
1709 rs_set_capacity(rs);
1710 }
1711 dm_table_event(rs->ti->table);
1712}
1713
1714/*
1715 * Make sure a valid takover (level switch) is being requested on @rs
1716 *
1717 * Conversions of raid sets from one MD personality to another
1718 * have to conform to restrictions which are enforced here.
1719 */
1720static int rs_check_takeover(struct raid_set *rs)
1721{
1722 struct mddev *mddev = &rs->md;
1723 unsigned int near_copies;
1724
1725 if (rs->md.degraded) {
1726 rs->ti->error = "Can't takeover degraded raid set";
1727 return -EPERM;
1728 }
1729
1730 if (rs_is_reshaping(rs)) {
1731 rs->ti->error = "Can't takeover reshaping raid set";
1732 return -EPERM;
1733 }
1734
1735 switch (mddev->level) {
1736 case 0:
1737 /* raid0 -> raid1/5 with one disk */
1738 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1739 mddev->raid_disks == 1)
1740 return 0;
1741
1742 /* raid0 -> raid10 */
1743 if (mddev->new_level == 10 &&
1744 !(rs->raid_disks % mddev->raid_disks))
1745 return 0;
1746
1747 /* raid0 with multiple disks -> raid4/5/6 */
1748 if (__within_range(mddev->new_level, 4, 6) &&
1749 mddev->new_layout == ALGORITHM_PARITY_N &&
1750 mddev->raid_disks > 1)
1751 return 0;
1752
1753 break;
1754
1755 case 10:
1756 /* Can't takeover raid10_offset! */
1757 if (__is_raid10_offset(mddev->layout))
1758 break;
1759
1760 near_copies = __raid10_near_copies(mddev->layout);
1761
1762 /* raid10* -> raid0 */
1763 if (mddev->new_level == 0) {
1764 /* Can takeover raid10_near with raid disks divisable by data copies! */
1765 if (near_copies > 1 &&
1766 !(mddev->raid_disks % near_copies)) {
1767 mddev->raid_disks /= near_copies;
1768 mddev->delta_disks = mddev->raid_disks;
1769 return 0;
1770 }
1771
1772 /* Can takeover raid10_far */
1773 if (near_copies == 1 &&
1774 __raid10_far_copies(mddev->layout) > 1)
1775 return 0;
1776
1777 break;
1778 }
1779
1780 /* raid10_{near,far} -> raid1 */
1781 if (mddev->new_level == 1 &&
1782 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1783 return 0;
1784
1785 /* raid10_{near,far} with 2 disks -> raid4/5 */
1786 if (__within_range(mddev->new_level, 4, 5) &&
1787 mddev->raid_disks == 2)
1788 return 0;
1789 break;
1790
1791 case 1:
1792 /* raid1 with 2 disks -> raid4/5 */
1793 if (__within_range(mddev->new_level, 4, 5) &&
1794 mddev->raid_disks == 2) {
1795 mddev->degraded = 1;
1796 return 0;
1797 }
1798
1799 /* raid1 -> raid0 */
1800 if (mddev->new_level == 0 &&
1801 mddev->raid_disks == 1)
1802 return 0;
1803
1804 /* raid1 -> raid10 */
1805 if (mddev->new_level == 10)
1806 return 0;
1807 break;
1808
1809 case 4:
1810 /* raid4 -> raid0 */
1811 if (mddev->new_level == 0)
1812 return 0;
1813
1814 /* raid4 -> raid1/5 with 2 disks */
1815 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1816 mddev->raid_disks == 2)
1817 return 0;
1818
1819 /* raid4 -> raid5/6 with parity N */
1820 if (__within_range(mddev->new_level, 5, 6) &&
1821 mddev->layout == ALGORITHM_PARITY_N)
1822 return 0;
1823 break;
1824
1825 case 5:
1826 /* raid5 with parity N -> raid0 */
1827 if (mddev->new_level == 0 &&
1828 mddev->layout == ALGORITHM_PARITY_N)
1829 return 0;
1830
1831 /* raid5 with parity N -> raid4 */
1832 if (mddev->new_level == 4 &&
1833 mddev->layout == ALGORITHM_PARITY_N)
1834 return 0;
1835
1836 /* raid5 with 2 disks -> raid1/4/10 */
1837 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1838 mddev->raid_disks == 2)
1839 return 0;
1840
1841 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1842 if (mddev->new_level == 6 &&
1843 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1844 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1845 return 0;
1846 break;
1847
1848 case 6:
1849 /* raid6 with parity N -> raid0 */
1850 if (mddev->new_level == 0 &&
1851 mddev->layout == ALGORITHM_PARITY_N)
1852 return 0;
1853
1854 /* raid6 with parity N -> raid4 */
1855 if (mddev->new_level == 4 &&
1856 mddev->layout == ALGORITHM_PARITY_N)
1857 return 0;
1858
1859 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1860 if (mddev->new_level == 5 &&
1861 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1862 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1863 return 0;
1864 break;
1865
1866 default:
1867 break;
1868 }
1869
1870 rs->ti->error = "takeover not possible";
1871 return -EINVAL;
1872}
1873
1874/* True if @rs requested to be taken over */
1875static bool rs_takeover_requested(struct raid_set *rs)
1876{
1877 return rs->md.new_level != rs->md.level;
1878}
1879
1880/* True if layout is set to reshape. */
1881static bool rs_is_layout_change(struct raid_set *rs, bool use_mddev)
1882{
1883 return (use_mddev ? rs->md.delta_disks : rs->delta_disks) ||
1884 rs->md.new_layout != rs->md.layout ||
1885 rs->md.new_chunk_sectors != rs->md.chunk_sectors;
1886}
1887
1888/* True if @rs is requested to reshape by ctr */
1889static bool rs_reshape_requested(struct raid_set *rs)
1890{
1891 bool change;
1892 struct mddev *mddev = &rs->md;
1893
1894 if (rs_takeover_requested(rs))
1895 return false;
1896
1897 if (rs_is_raid0(rs))
1898 return false;
1899
1900 change = rs_is_layout_change(rs, false);
1901
1902 /* Historical case to support raid1 reshape without delta disks */
1903 if (rs_is_raid1(rs)) {
1904 if (rs->delta_disks)
1905 return !!rs->delta_disks;
1906
1907 return !change &&
1908 mddev->raid_disks != rs->raid_disks;
1909 }
1910
1911 if (rs_is_raid10(rs))
1912 return change &&
1913 !__is_raid10_far(mddev->new_layout) &&
1914 rs->delta_disks >= 0;
1915
1916 return change;
1917}
1918
1919/* Features */
1920#define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */
1921
1922/* State flags for sb->flags */
1923#define SB_FLAG_RESHAPE_ACTIVE 0x1
1924#define SB_FLAG_RESHAPE_BACKWARDS 0x2
1925
1926/*
1927 * This structure is never routinely used by userspace, unlike md superblocks.
1928 * Devices with this superblock should only ever be accessed via device-mapper.
1929 */
1930#define DM_RAID_MAGIC 0x64526D44
1931struct dm_raid_superblock {
1932 __le32 magic; /* "DmRd" */
1933 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1934
1935 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */
1936 __le32 array_position; /* The position of this drive in the raid set */
1937
1938 __le64 events; /* Incremented by md when superblock updated */
1939 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */
1940 /* indicate failures (see extension below) */
1941
1942 /*
1943 * This offset tracks the progress of the repair or replacement of
1944 * an individual drive.
1945 */
1946 __le64 disk_recovery_offset;
1947
1948 /*
1949 * This offset tracks the progress of the initial raid set
1950 * synchronisation/parity calculation.
1951 */
1952 __le64 array_resync_offset;
1953
1954 /*
1955 * raid characteristics
1956 */
1957 __le32 level;
1958 __le32 layout;
1959 __le32 stripe_sectors;
1960
1961 /********************************************************************
1962 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1963 *
1964 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
1965 */
1966
1967 __le32 flags; /* Flags defining array states for reshaping */
1968
1969 /*
1970 * This offset tracks the progress of a raid
1971 * set reshape in order to be able to restart it
1972 */
1973 __le64 reshape_position;
1974
1975 /*
1976 * These define the properties of the array in case of an interrupted reshape
1977 */
1978 __le32 new_level;
1979 __le32 new_layout;
1980 __le32 new_stripe_sectors;
1981 __le32 delta_disks;
1982
1983 __le64 array_sectors; /* Array size in sectors */
1984
1985 /*
1986 * Sector offsets to data on devices (reshaping).
1987 * Needed to support out of place reshaping, thus
1988 * not writing over any stripes whilst converting
1989 * them from old to new layout
1990 */
1991 __le64 data_offset;
1992 __le64 new_data_offset;
1993
1994 __le64 sectors; /* Used device size in sectors */
1995
1996 /*
1997 * Additional Bit field of devices indicating failures to support
1998 * up to 256 devices with the 1.9.0 on-disk metadata format
1999 */
2000 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
2001
2002 __le32 incompat_features; /* Used to indicate any incompatible features */
2003
2004 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
2005} __packed;
2006
2007/*
2008 * Check for reshape constraints on raid set @rs:
2009 *
2010 * - reshape function non-existent
2011 * - degraded set
2012 * - ongoing recovery
2013 * - ongoing reshape
2014 *
2015 * Returns 0 if none or -EPERM if given constraint
2016 * and error message reference in @errmsg
2017 */
2018static int rs_check_reshape(struct raid_set *rs)
2019{
2020 struct mddev *mddev = &rs->md;
2021
2022 if (!mddev->pers || !mddev->pers->check_reshape)
2023 rs->ti->error = "Reshape not supported";
2024 else if (mddev->degraded)
2025 rs->ti->error = "Can't reshape degraded raid set";
2026 else if (rs_is_recovering(rs))
2027 rs->ti->error = "Convert request on recovering raid set prohibited";
2028 else if (rs_is_reshaping(rs))
2029 rs->ti->error = "raid set already reshaping!";
2030 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
2031 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
2032 else
2033 return 0;
2034
2035 return -EPERM;
2036}
2037
2038static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload)
2039{
2040 BUG_ON(!rdev->sb_page);
2041
2042 if (rdev->sb_loaded && !force_reload)
2043 return 0;
2044
2045 rdev->sb_loaded = 0;
2046
2047 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) {
2048 DMERR("Failed to read superblock of device at position %d",
2049 rdev->raid_disk);
2050 md_error(rdev->mddev, rdev);
2051 set_bit(Faulty, &rdev->flags);
2052 return -EIO;
2053 }
2054
2055 rdev->sb_loaded = 1;
2056
2057 return 0;
2058}
2059
2060static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2061{
2062 failed_devices[0] = le64_to_cpu(sb->failed_devices);
2063 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
2064
2065 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2066 int i = ARRAY_SIZE(sb->extended_failed_devices);
2067
2068 while (i--)
2069 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
2070 }
2071}
2072
2073static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2074{
2075 int i = ARRAY_SIZE(sb->extended_failed_devices);
2076
2077 sb->failed_devices = cpu_to_le64(failed_devices[0]);
2078 while (i--)
2079 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
2080}
2081
2082/*
2083 * Synchronize the superblock members with the raid set properties
2084 *
2085 * All superblock data is little endian.
2086 */
2087static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
2088{
2089 bool update_failed_devices = false;
2090 unsigned int i;
2091 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2092 struct dm_raid_superblock *sb;
2093 struct raid_set *rs = container_of(mddev, struct raid_set, md);
2094
2095 /* No metadata device, no superblock */
2096 if (!rdev->meta_bdev)
2097 return;
2098
2099 BUG_ON(!rdev->sb_page);
2100
2101 sb = page_address(rdev->sb_page);
2102
2103 sb_retrieve_failed_devices(sb, failed_devices);
2104
2105 for (i = 0; i < rs->raid_disks; i++)
2106 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
2107 update_failed_devices = true;
2108 set_bit(i, (void *) failed_devices);
2109 }
2110
2111 if (update_failed_devices)
2112 sb_update_failed_devices(sb, failed_devices);
2113
2114 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
2115 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2116
2117 sb->num_devices = cpu_to_le32(mddev->raid_disks);
2118 sb->array_position = cpu_to_le32(rdev->raid_disk);
2119
2120 sb->events = cpu_to_le64(mddev->events);
2121
2122 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
2123 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
2124
2125 sb->level = cpu_to_le32(mddev->level);
2126 sb->layout = cpu_to_le32(mddev->layout);
2127 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
2128
2129 /********************************************************************
2130 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
2131 *
2132 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
2133 */
2134 sb->new_level = cpu_to_le32(mddev->new_level);
2135 sb->new_layout = cpu_to_le32(mddev->new_layout);
2136 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
2137
2138 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2139
2140 smp_rmb(); /* Make sure we access most recent reshape position */
2141 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2142 if (le64_to_cpu(sb->reshape_position) != MaxSector) {
2143 /* Flag ongoing reshape */
2144 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
2145
2146 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
2147 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
2148 } else {
2149 /* Clear reshape flags */
2150 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
2151 }
2152
2153 sb->array_sectors = cpu_to_le64(mddev->array_sectors);
2154 sb->data_offset = cpu_to_le64(rdev->data_offset);
2155 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
2156 sb->sectors = cpu_to_le64(rdev->sectors);
2157 sb->incompat_features = cpu_to_le32(0);
2158
2159 /* Zero out the rest of the payload after the size of the superblock */
2160 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
2161}
2162
2163/*
2164 * super_load
2165 *
2166 * This function creates a superblock if one is not found on the device
2167 * and will decide which superblock to use if there's a choice.
2168 *
2169 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
2170 */
2171static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
2172{
2173 int r;
2174 struct dm_raid_superblock *sb;
2175 struct dm_raid_superblock *refsb;
2176 uint64_t events_sb, events_refsb;
2177
2178 r = read_disk_sb(rdev, rdev->sb_size, false);
2179 if (r)
2180 return r;
2181
2182 sb = page_address(rdev->sb_page);
2183
2184 /*
2185 * Two cases that we want to write new superblocks and rebuild:
2186 * 1) New device (no matching magic number)
2187 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2188 */
2189 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2190 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2191 super_sync(rdev->mddev, rdev);
2192
2193 set_bit(FirstUse, &rdev->flags);
2194 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2195
2196 /* Force writing of superblocks to disk */
2197 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2198
2199 /* Any superblock is better than none, choose that if given */
2200 return refdev ? 0 : 1;
2201 }
2202
2203 if (!refdev)
2204 return 1;
2205
2206 events_sb = le64_to_cpu(sb->events);
2207
2208 refsb = page_address(refdev->sb_page);
2209 events_refsb = le64_to_cpu(refsb->events);
2210
2211 return (events_sb > events_refsb) ? 1 : 0;
2212}
2213
2214static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2215{
2216 int role;
2217 struct mddev *mddev = &rs->md;
2218 uint64_t events_sb;
2219 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2220 struct dm_raid_superblock *sb;
2221 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2222 struct md_rdev *r;
2223 struct dm_raid_superblock *sb2;
2224
2225 sb = page_address(rdev->sb_page);
2226 events_sb = le64_to_cpu(sb->events);
2227
2228 /*
2229 * Initialise to 1 if this is a new superblock.
2230 */
2231 mddev->events = events_sb ? : 1;
2232
2233 mddev->reshape_position = MaxSector;
2234
2235 mddev->raid_disks = le32_to_cpu(sb->num_devices);
2236 mddev->level = le32_to_cpu(sb->level);
2237 mddev->layout = le32_to_cpu(sb->layout);
2238 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2239
2240 /*
2241 * Reshaping is supported, e.g. reshape_position is valid
2242 * in superblock and superblock content is authoritative.
2243 */
2244 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2245 /* Superblock is authoritative wrt given raid set layout! */
2246 mddev->new_level = le32_to_cpu(sb->new_level);
2247 mddev->new_layout = le32_to_cpu(sb->new_layout);
2248 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2249 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2250 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2251
2252 /* raid was reshaping and got interrupted */
2253 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2254 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2255 DMERR("Reshape requested but raid set is still reshaping");
2256 return -EINVAL;
2257 }
2258
2259 if (mddev->delta_disks < 0 ||
2260 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2261 mddev->reshape_backwards = 1;
2262 else
2263 mddev->reshape_backwards = 0;
2264
2265 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2266 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2267 }
2268
2269 } else {
2270 /*
2271 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2272 */
2273 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2274 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2275
2276 if (rs_takeover_requested(rs)) {
2277 if (rt_cur && rt_new)
2278 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2279 rt_cur->name, rt_new->name);
2280 else
2281 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2282 return -EINVAL;
2283 } else if (rs_reshape_requested(rs)) {
2284 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2285 if (mddev->layout != mddev->new_layout) {
2286 if (rt_cur && rt_new)
2287 DMERR(" current layout %s vs new layout %s",
2288 rt_cur->name, rt_new->name);
2289 else
2290 DMERR(" current layout 0x%X vs new layout 0x%X",
2291 le32_to_cpu(sb->layout), mddev->new_layout);
2292 }
2293 if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2294 DMERR(" current stripe sectors %u vs new stripe sectors %u",
2295 mddev->chunk_sectors, mddev->new_chunk_sectors);
2296 if (rs->delta_disks)
2297 DMERR(" current %u disks vs new %u disks",
2298 mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2299 if (rs_is_raid10(rs)) {
2300 DMERR(" Old layout: %s w/ %u copies",
2301 raid10_md_layout_to_format(mddev->layout),
2302 raid10_md_layout_to_copies(mddev->layout));
2303 DMERR(" New layout: %s w/ %u copies",
2304 raid10_md_layout_to_format(mddev->new_layout),
2305 raid10_md_layout_to_copies(mddev->new_layout));
2306 }
2307 return -EINVAL;
2308 }
2309
2310 DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2311 }
2312
2313 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2314 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2315
2316 /*
2317 * During load, we set FirstUse if a new superblock was written.
2318 * There are two reasons we might not have a superblock:
2319 * 1) The raid set is brand new - in which case, all of the
2320 * devices must have their In_sync bit set. Also,
2321 * recovery_cp must be 0, unless forced.
2322 * 2) This is a new device being added to an old raid set
2323 * and the new device needs to be rebuilt - in which
2324 * case the In_sync bit will /not/ be set and
2325 * recovery_cp must be MaxSector.
2326 * 3) This is/are a new device(s) being added to an old
2327 * raid set during takeover to a higher raid level
2328 * to provide capacity for redundancy or during reshape
2329 * to add capacity to grow the raid set.
2330 */
2331 rdev_for_each(r, mddev) {
2332 if (test_bit(Journal, &rdev->flags))
2333 continue;
2334
2335 if (test_bit(FirstUse, &r->flags))
2336 new_devs++;
2337
2338 if (!test_bit(In_sync, &r->flags)) {
2339 DMINFO("Device %d specified for rebuild; clearing superblock",
2340 r->raid_disk);
2341 rebuilds++;
2342
2343 if (test_bit(FirstUse, &r->flags))
2344 rebuild_and_new++;
2345 }
2346 }
2347
2348 if (new_devs == rs->raid_disks || !rebuilds) {
2349 /* Replace a broken device */
2350 if (new_devs == rs->raid_disks) {
2351 DMINFO("Superblocks created for new raid set");
2352 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2353 } else if (new_devs != rebuilds &&
2354 new_devs != rs->delta_disks) {
2355 DMERR("New device injected into existing raid set without "
2356 "'delta_disks' or 'rebuild' parameter specified");
2357 return -EINVAL;
2358 }
2359 } else if (new_devs && new_devs != rebuilds) {
2360 DMERR("%u 'rebuild' devices cannot be injected into"
2361 " a raid set with %u other first-time devices",
2362 rebuilds, new_devs);
2363 return -EINVAL;
2364 } else if (rebuilds) {
2365 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2366 DMERR("new device%s provided without 'rebuild'",
2367 new_devs > 1 ? "s" : "");
2368 return -EINVAL;
2369 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) {
2370 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2371 (unsigned long long) mddev->recovery_cp);
2372 return -EINVAL;
2373 } else if (rs_is_reshaping(rs)) {
2374 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2375 (unsigned long long) mddev->reshape_position);
2376 return -EINVAL;
2377 }
2378 }
2379
2380 /*
2381 * Now we set the Faulty bit for those devices that are
2382 * recorded in the superblock as failed.
2383 */
2384 sb_retrieve_failed_devices(sb, failed_devices);
2385 rdev_for_each(r, mddev) {
2386 if (test_bit(Journal, &rdev->flags) ||
2387 !r->sb_page)
2388 continue;
2389 sb2 = page_address(r->sb_page);
2390 sb2->failed_devices = 0;
2391 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2392
2393 /*
2394 * Check for any device re-ordering.
2395 */
2396 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2397 role = le32_to_cpu(sb2->array_position);
2398 if (role < 0)
2399 continue;
2400
2401 if (role != r->raid_disk) {
2402 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2403 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2404 rs->raid_disks % rs->raid10_copies) {
2405 rs->ti->error =
2406 "Cannot change raid10 near set to odd # of devices!";
2407 return -EINVAL;
2408 }
2409
2410 sb2->array_position = cpu_to_le32(r->raid_disk);
2411
2412 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2413 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2414 !rt_is_raid1(rs->raid_type)) {
2415 rs->ti->error = "Cannot change device positions in raid set";
2416 return -EINVAL;
2417 }
2418
2419 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2420 }
2421
2422 /*
2423 * Partial recovery is performed on
2424 * returning failed devices.
2425 */
2426 if (test_bit(role, (void *) failed_devices))
2427 set_bit(Faulty, &r->flags);
2428 }
2429 }
2430
2431 return 0;
2432}
2433
2434static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2435{
2436 struct mddev *mddev = &rs->md;
2437 struct dm_raid_superblock *sb;
2438
2439 if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2440 return 0;
2441
2442 sb = page_address(rdev->sb_page);
2443
2444 /*
2445 * If mddev->events is not set, we know we have not yet initialized
2446 * the array.
2447 */
2448 if (!mddev->events && super_init_validation(rs, rdev))
2449 return -EINVAL;
2450
2451 if (le32_to_cpu(sb->compat_features) &&
2452 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2453 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2454 return -EINVAL;
2455 }
2456
2457 if (sb->incompat_features) {
2458 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2459 return -EINVAL;
2460 }
2461
2462 /* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */
2463 mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096);
2464 mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2465
2466 if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2467 /*
2468 * Retrieve rdev size stored in superblock to be prepared for shrink.
2469 * Check extended superblock members are present otherwise the size
2470 * will not be set!
2471 */
2472 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190)
2473 rdev->sectors = le64_to_cpu(sb->sectors);
2474
2475 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2476 if (rdev->recovery_offset == MaxSector)
2477 set_bit(In_sync, &rdev->flags);
2478 /*
2479 * If no reshape in progress -> we're recovering single
2480 * disk(s) and have to set the device(s) to out-of-sync
2481 */
2482 else if (!rs_is_reshaping(rs))
2483 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2484 }
2485
2486 /*
2487 * If a device comes back, set it as not In_sync and no longer faulty.
2488 */
2489 if (test_and_clear_bit(Faulty, &rdev->flags)) {
2490 rdev->recovery_offset = 0;
2491 clear_bit(In_sync, &rdev->flags);
2492 rdev->saved_raid_disk = rdev->raid_disk;
2493 }
2494
2495 /* Reshape support -> restore repective data offsets */
2496 rdev->data_offset = le64_to_cpu(sb->data_offset);
2497 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2498
2499 return 0;
2500}
2501
2502/*
2503 * Analyse superblocks and select the freshest.
2504 */
2505static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2506{
2507 int r;
2508 struct md_rdev *rdev, *freshest;
2509 struct mddev *mddev = &rs->md;
2510
2511 freshest = NULL;
2512 rdev_for_each(rdev, mddev) {
2513 if (test_bit(Journal, &rdev->flags))
2514 continue;
2515
2516 if (!rdev->meta_bdev)
2517 continue;
2518
2519 /* Set superblock offset/size for metadata device. */
2520 rdev->sb_start = 0;
2521 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
2522 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) {
2523 DMERR("superblock size of a logical block is no longer valid");
2524 return -EINVAL;
2525 }
2526
2527 /*
2528 * Skipping super_load due to CTR_FLAG_SYNC will cause
2529 * the array to undergo initialization again as
2530 * though it were new. This is the intended effect
2531 * of the "sync" directive.
2532 *
2533 * With reshaping capability added, we must ensure that
2534 * the "sync" directive is disallowed during the reshape.
2535 */
2536 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2537 continue;
2538
2539 r = super_load(rdev, freshest);
2540
2541 switch (r) {
2542 case 1:
2543 freshest = rdev;
2544 break;
2545 case 0:
2546 break;
2547 default:
2548 /* This is a failure to read the superblock from the metadata device. */
2549 /*
2550 * We have to keep any raid0 data/metadata device pairs or
2551 * the MD raid0 personality will fail to start the array.
2552 */
2553 if (rs_is_raid0(rs))
2554 continue;
2555
2556 /*
2557 * We keep the dm_devs to be able to emit the device tuple
2558 * properly on the table line in raid_status() (rather than
2559 * mistakenly acting as if '- -' got passed into the constructor).
2560 *
2561 * The rdev has to stay on the same_set list to allow for
2562 * the attempt to restore faulty devices on second resume.
2563 */
2564 rdev->raid_disk = rdev->saved_raid_disk = -1;
2565 break;
2566 }
2567 }
2568
2569 if (!freshest)
2570 return 0;
2571
2572 /*
2573 * Validation of the freshest device provides the source of
2574 * validation for the remaining devices.
2575 */
2576 rs->ti->error = "Unable to assemble array: Invalid superblocks";
2577 if (super_validate(rs, freshest))
2578 return -EINVAL;
2579
2580 if (validate_raid_redundancy(rs)) {
2581 rs->ti->error = "Insufficient redundancy to activate array";
2582 return -EINVAL;
2583 }
2584
2585 rdev_for_each(rdev, mddev)
2586 if (!test_bit(Journal, &rdev->flags) &&
2587 rdev != freshest &&
2588 super_validate(rs, rdev))
2589 return -EINVAL;
2590 return 0;
2591}
2592
2593/*
2594 * Adjust data_offset and new_data_offset on all disk members of @rs
2595 * for out of place reshaping if requested by constructor
2596 *
2597 * We need free space at the beginning of each raid disk for forward
2598 * and at the end for backward reshapes which userspace has to provide
2599 * via remapping/reordering of space.
2600 */
2601static int rs_adjust_data_offsets(struct raid_set *rs)
2602{
2603 sector_t data_offset = 0, new_data_offset = 0;
2604 struct md_rdev *rdev;
2605
2606 /* Constructor did not request data offset change */
2607 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2608 if (!rs_is_reshapable(rs))
2609 goto out;
2610
2611 return 0;
2612 }
2613
2614 /* HM FIXME: get In_Sync raid_dev? */
2615 rdev = &rs->dev[0].rdev;
2616
2617 if (rs->delta_disks < 0) {
2618 /*
2619 * Removing disks (reshaping backwards):
2620 *
2621 * - before reshape: data is at offset 0 and free space
2622 * is at end of each component LV
2623 *
2624 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2625 */
2626 data_offset = 0;
2627 new_data_offset = rs->data_offset;
2628
2629 } else if (rs->delta_disks > 0) {
2630 /*
2631 * Adding disks (reshaping forwards):
2632 *
2633 * - before reshape: data is at offset rs->data_offset != 0 and
2634 * free space is at begin of each component LV
2635 *
2636 * - after reshape: data is at offset 0 on each component LV
2637 */
2638 data_offset = rs->data_offset;
2639 new_data_offset = 0;
2640
2641 } else {
2642 /*
2643 * User space passes in 0 for data offset after having removed reshape space
2644 *
2645 * - or - (data offset != 0)
2646 *
2647 * Changing RAID layout or chunk size -> toggle offsets
2648 *
2649 * - before reshape: data is at offset rs->data_offset 0 and
2650 * free space is at end of each component LV
2651 * -or-
2652 * data is at offset rs->data_offset != 0 and
2653 * free space is at begin of each component LV
2654 *
2655 * - after reshape: data is at offset 0 if it was at offset != 0
2656 * or at offset != 0 if it was at offset 0
2657 * on each component LV
2658 *
2659 */
2660 data_offset = rs->data_offset ? rdev->data_offset : 0;
2661 new_data_offset = data_offset ? 0 : rs->data_offset;
2662 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2663 }
2664
2665 /*
2666 * Make sure we got a minimum amount of free sectors per device
2667 */
2668 if (rs->data_offset &&
2669 bdev_nr_sectors(rdev->bdev) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) {
2670 rs->ti->error = data_offset ? "No space for forward reshape" :
2671 "No space for backward reshape";
2672 return -ENOSPC;
2673 }
2674out:
2675 /*
2676 * Raise recovery_cp in case data_offset != 0 to
2677 * avoid false recovery positives in the constructor.
2678 */
2679 if (rs->md.recovery_cp < rs->md.dev_sectors)
2680 rs->md.recovery_cp += rs->dev[0].rdev.data_offset;
2681
2682 /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
2683 rdev_for_each(rdev, &rs->md) {
2684 if (!test_bit(Journal, &rdev->flags)) {
2685 rdev->data_offset = data_offset;
2686 rdev->new_data_offset = new_data_offset;
2687 }
2688 }
2689
2690 return 0;
2691}
2692
2693/* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2694static void __reorder_raid_disk_indexes(struct raid_set *rs)
2695{
2696 int i = 0;
2697 struct md_rdev *rdev;
2698
2699 rdev_for_each(rdev, &rs->md) {
2700 if (!test_bit(Journal, &rdev->flags)) {
2701 rdev->raid_disk = i++;
2702 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2703 }
2704 }
2705}
2706
2707/*
2708 * Setup @rs for takeover by a different raid level
2709 */
2710static int rs_setup_takeover(struct raid_set *rs)
2711{
2712 struct mddev *mddev = &rs->md;
2713 struct md_rdev *rdev;
2714 unsigned int d = mddev->raid_disks = rs->raid_disks;
2715 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2716
2717 if (rt_is_raid10(rs->raid_type)) {
2718 if (rs_is_raid0(rs)) {
2719 /* Userpace reordered disks -> adjust raid_disk indexes */
2720 __reorder_raid_disk_indexes(rs);
2721
2722 /* raid0 -> raid10_far layout */
2723 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2724 rs->raid10_copies);
2725 } else if (rs_is_raid1(rs))
2726 /* raid1 -> raid10_near layout */
2727 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2728 rs->raid_disks);
2729 else
2730 return -EINVAL;
2731
2732 }
2733
2734 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2735 mddev->recovery_cp = MaxSector;
2736
2737 while (d--) {
2738 rdev = &rs->dev[d].rdev;
2739
2740 if (test_bit(d, (void *) rs->rebuild_disks)) {
2741 clear_bit(In_sync, &rdev->flags);
2742 clear_bit(Faulty, &rdev->flags);
2743 mddev->recovery_cp = rdev->recovery_offset = 0;
2744 /* Bitmap has to be created when we do an "up" takeover */
2745 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2746 }
2747
2748 rdev->new_data_offset = new_data_offset;
2749 }
2750
2751 return 0;
2752}
2753
2754/* Prepare @rs for reshape */
2755static int rs_prepare_reshape(struct raid_set *rs)
2756{
2757 bool reshape;
2758 struct mddev *mddev = &rs->md;
2759
2760 if (rs_is_raid10(rs)) {
2761 if (rs->raid_disks != mddev->raid_disks &&
2762 __is_raid10_near(mddev->layout) &&
2763 rs->raid10_copies &&
2764 rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2765 /*
2766 * raid disk have to be multiple of data copies to allow this conversion,
2767 *
2768 * This is actually not a reshape it is a
2769 * rebuild of any additional mirrors per group
2770 */
2771 if (rs->raid_disks % rs->raid10_copies) {
2772 rs->ti->error = "Can't reshape raid10 mirror groups";
2773 return -EINVAL;
2774 }
2775
2776 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2777 __reorder_raid_disk_indexes(rs);
2778 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2779 rs->raid10_copies);
2780 mddev->new_layout = mddev->layout;
2781 reshape = false;
2782 } else
2783 reshape = true;
2784
2785 } else if (rs_is_raid456(rs))
2786 reshape = true;
2787
2788 else if (rs_is_raid1(rs)) {
2789 if (rs->delta_disks) {
2790 /* Process raid1 via delta_disks */
2791 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2792 reshape = true;
2793 } else {
2794 /* Process raid1 without delta_disks */
2795 mddev->raid_disks = rs->raid_disks;
2796 reshape = false;
2797 }
2798 } else {
2799 rs->ti->error = "Called with bogus raid type";
2800 return -EINVAL;
2801 }
2802
2803 if (reshape) {
2804 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2805 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2806 } else if (mddev->raid_disks < rs->raid_disks)
2807 /* Create new superblocks and bitmaps, if any new disks */
2808 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2809
2810 return 0;
2811}
2812
2813/* Get reshape sectors from data_offsets or raid set */
2814static sector_t _get_reshape_sectors(struct raid_set *rs)
2815{
2816 struct md_rdev *rdev;
2817 sector_t reshape_sectors = 0;
2818
2819 rdev_for_each(rdev, &rs->md)
2820 if (!test_bit(Journal, &rdev->flags)) {
2821 reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ?
2822 rdev->data_offset - rdev->new_data_offset :
2823 rdev->new_data_offset - rdev->data_offset;
2824 break;
2825 }
2826
2827 return max(reshape_sectors, (sector_t) rs->data_offset);
2828}
2829
2830/*
2831 * Reshape:
2832 * - change raid layout
2833 * - change chunk size
2834 * - add disks
2835 * - remove disks
2836 */
2837static int rs_setup_reshape(struct raid_set *rs)
2838{
2839 int r = 0;
2840 unsigned int cur_raid_devs, d;
2841 sector_t reshape_sectors = _get_reshape_sectors(rs);
2842 struct mddev *mddev = &rs->md;
2843 struct md_rdev *rdev;
2844
2845 mddev->delta_disks = rs->delta_disks;
2846 cur_raid_devs = mddev->raid_disks;
2847
2848 /* Ignore impossible layout change whilst adding/removing disks */
2849 if (mddev->delta_disks &&
2850 mddev->layout != mddev->new_layout) {
2851 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2852 mddev->new_layout = mddev->layout;
2853 }
2854
2855 /*
2856 * Adjust array size:
2857 *
2858 * - in case of adding disk(s), array size has
2859 * to grow after the disk adding reshape,
2860 * which'll happen in the event handler;
2861 * reshape will happen forward, so space has to
2862 * be available at the beginning of each disk
2863 *
2864 * - in case of removing disk(s), array size
2865 * has to shrink before starting the reshape,
2866 * which'll happen here;
2867 * reshape will happen backward, so space has to
2868 * be available at the end of each disk
2869 *
2870 * - data_offset and new_data_offset are
2871 * adjusted for aforementioned out of place
2872 * reshaping based on userspace passing in
2873 * the "data_offset <sectors>" key/value
2874 * pair via the constructor
2875 */
2876
2877 /* Add disk(s) */
2878 if (rs->delta_disks > 0) {
2879 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2880 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2881 rdev = &rs->dev[d].rdev;
2882 clear_bit(In_sync, &rdev->flags);
2883
2884 /*
2885 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2886 * by md, which'll store that erroneously in the superblock on reshape
2887 */
2888 rdev->saved_raid_disk = -1;
2889 rdev->raid_disk = d;
2890
2891 rdev->sectors = mddev->dev_sectors;
2892 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2893 }
2894
2895 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */
2896
2897 /* Remove disk(s) */
2898 } else if (rs->delta_disks < 0) {
2899 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true);
2900 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2901
2902 /* Change layout and/or chunk size */
2903 } else {
2904 /*
2905 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2906 *
2907 * keeping number of disks and do layout change ->
2908 *
2909 * toggle reshape_backward depending on data_offset:
2910 *
2911 * - free space upfront -> reshape forward
2912 *
2913 * - free space at the end -> reshape backward
2914 *
2915 *
2916 * This utilizes free reshape space avoiding the need
2917 * for userspace to move (parts of) LV segments in
2918 * case of layout/chunksize change (for disk
2919 * adding/removing reshape space has to be at
2920 * the proper address (see above with delta_disks):
2921 *
2922 * add disk(s) -> begin
2923 * remove disk(s)-> end
2924 */
2925 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2926 }
2927
2928 /*
2929 * Adjust device size for forward reshape
2930 * because md_finish_reshape() reduces it.
2931 */
2932 if (!mddev->reshape_backwards)
2933 rdev_for_each(rdev, &rs->md)
2934 if (!test_bit(Journal, &rdev->flags))
2935 rdev->sectors += reshape_sectors;
2936
2937 return r;
2938}
2939
2940/*
2941 * If the md resync thread has updated superblock with max reshape position
2942 * at the end of a reshape but not (yet) reset the layout configuration
2943 * changes -> reset the latter.
2944 */
2945static void rs_reset_inconclusive_reshape(struct raid_set *rs)
2946{
2947 if (!rs_is_reshaping(rs) && rs_is_layout_change(rs, true)) {
2948 rs_set_cur(rs);
2949 rs->md.delta_disks = 0;
2950 rs->md.reshape_backwards = 0;
2951 }
2952}
2953
2954/*
2955 * Enable/disable discard support on RAID set depending on
2956 * RAID level and discard properties of underlying RAID members.
2957 */
2958static void configure_discard_support(struct raid_set *rs)
2959{
2960 int i;
2961 bool raid456;
2962 struct dm_target *ti = rs->ti;
2963
2964 /*
2965 * XXX: RAID level 4,5,6 require zeroing for safety.
2966 */
2967 raid456 = rs_is_raid456(rs);
2968
2969 for (i = 0; i < rs->raid_disks; i++) {
2970 if (!rs->dev[i].rdev.bdev ||
2971 !bdev_max_discard_sectors(rs->dev[i].rdev.bdev))
2972 return;
2973
2974 if (raid456) {
2975 if (!devices_handle_discard_safely) {
2976 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2977 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2978 return;
2979 }
2980 }
2981 }
2982
2983 ti->num_discard_bios = 1;
2984}
2985
2986/*
2987 * Construct a RAID0/1/10/4/5/6 mapping:
2988 * Args:
2989 * <raid_type> <#raid_params> <raid_params>{0,} \
2990 * <#raid_devs> [<meta_dev1> <dev1>]{1,}
2991 *
2992 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
2993 * details on possible <raid_params>.
2994 *
2995 * Userspace is free to initialize the metadata devices, hence the superblocks to
2996 * enforce recreation based on the passed in table parameters.
2997 *
2998 */
2999static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3000{
3001 int r;
3002 bool resize = false;
3003 struct raid_type *rt;
3004 unsigned int num_raid_params, num_raid_devs;
3005 sector_t sb_array_sectors, rdev_sectors, reshape_sectors;
3006 struct raid_set *rs = NULL;
3007 const char *arg;
3008 struct rs_layout rs_layout;
3009 struct dm_arg_set as = { argc, argv }, as_nrd;
3010 struct dm_arg _args[] = {
3011 { 0, as.argc, "Cannot understand number of raid parameters" },
3012 { 1, 254, "Cannot understand number of raid devices parameters" }
3013 };
3014
3015 arg = dm_shift_arg(&as);
3016 if (!arg) {
3017 ti->error = "No arguments";
3018 return -EINVAL;
3019 }
3020
3021 rt = get_raid_type(arg);
3022 if (!rt) {
3023 ti->error = "Unrecognised raid_type";
3024 return -EINVAL;
3025 }
3026
3027 /* Must have <#raid_params> */
3028 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
3029 return -EINVAL;
3030
3031 /* number of raid device tupples <meta_dev data_dev> */
3032 as_nrd = as;
3033 dm_consume_args(&as_nrd, num_raid_params);
3034 _args[1].max = (as_nrd.argc - 1) / 2;
3035 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
3036 return -EINVAL;
3037
3038 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
3039 ti->error = "Invalid number of supplied raid devices";
3040 return -EINVAL;
3041 }
3042
3043 rs = raid_set_alloc(ti, rt, num_raid_devs);
3044 if (IS_ERR(rs))
3045 return PTR_ERR(rs);
3046
3047 r = parse_raid_params(rs, &as, num_raid_params);
3048 if (r)
3049 goto bad;
3050
3051 r = parse_dev_params(rs, &as);
3052 if (r)
3053 goto bad;
3054
3055 rs->md.sync_super = super_sync;
3056
3057 /*
3058 * Calculate ctr requested array and device sizes to allow
3059 * for superblock analysis needing device sizes defined.
3060 *
3061 * Any existing superblock will overwrite the array and device sizes
3062 */
3063 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3064 if (r)
3065 goto bad;
3066
3067 /* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */
3068 rs->array_sectors = rs->md.array_sectors;
3069 rs->dev_sectors = rs->md.dev_sectors;
3070
3071 /*
3072 * Backup any new raid set level, layout, ...
3073 * requested to be able to compare to superblock
3074 * members for conversion decisions.
3075 */
3076 rs_config_backup(rs, &rs_layout);
3077
3078 r = analyse_superblocks(ti, rs);
3079 if (r)
3080 goto bad;
3081
3082 /* All in-core metadata now as of current superblocks after calling analyse_superblocks() */
3083 sb_array_sectors = rs->md.array_sectors;
3084 rdev_sectors = __rdev_sectors(rs);
3085 if (!rdev_sectors) {
3086 ti->error = "Invalid rdev size";
3087 r = -EINVAL;
3088 goto bad;
3089 }
3090
3091
3092 reshape_sectors = _get_reshape_sectors(rs);
3093 if (rs->dev_sectors != rdev_sectors) {
3094 resize = (rs->dev_sectors != rdev_sectors - reshape_sectors);
3095 if (rs->dev_sectors > rdev_sectors - reshape_sectors)
3096 set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3097 }
3098
3099 INIT_WORK(&rs->md.event_work, do_table_event);
3100 ti->private = rs;
3101 ti->num_flush_bios = 1;
3102 ti->needs_bio_set_dev = true;
3103
3104 /* Restore any requested new layout for conversion decision */
3105 rs_config_restore(rs, &rs_layout);
3106
3107 /*
3108 * Now that we have any superblock metadata available,
3109 * check for new, recovering, reshaping, to be taken over,
3110 * to be reshaped or an existing, unchanged raid set to
3111 * run in sequence.
3112 */
3113 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
3114 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
3115 if (rs_is_raid6(rs) &&
3116 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
3117 ti->error = "'nosync' not allowed for new raid6 set";
3118 r = -EINVAL;
3119 goto bad;
3120 }
3121 rs_setup_recovery(rs, 0);
3122 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3123 rs_set_new(rs);
3124 } else if (rs_is_recovering(rs)) {
3125 /* A recovering raid set may be resized */
3126 goto size_check;
3127 } else if (rs_is_reshaping(rs)) {
3128 /* Have to reject size change request during reshape */
3129 if (resize) {
3130 ti->error = "Can't resize a reshaping raid set";
3131 r = -EPERM;
3132 goto bad;
3133 }
3134 /* skip setup rs */
3135 } else if (rs_takeover_requested(rs)) {
3136 if (rs_is_reshaping(rs)) {
3137 ti->error = "Can't takeover a reshaping raid set";
3138 r = -EPERM;
3139 goto bad;
3140 }
3141
3142 /* We can't takeover a journaled raid4/5/6 */
3143 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3144 ti->error = "Can't takeover a journaled raid4/5/6 set";
3145 r = -EPERM;
3146 goto bad;
3147 }
3148
3149 /*
3150 * If a takeover is needed, userspace sets any additional
3151 * devices to rebuild and we can check for a valid request here.
3152 *
3153 * If acceptable, set the level to the new requested
3154 * one, prohibit requesting recovery, allow the raid
3155 * set to run and store superblocks during resume.
3156 */
3157 r = rs_check_takeover(rs);
3158 if (r)
3159 goto bad;
3160
3161 r = rs_setup_takeover(rs);
3162 if (r)
3163 goto bad;
3164
3165 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3166 /* Takeover ain't recovery, so disable recovery */
3167 rs_setup_recovery(rs, MaxSector);
3168 rs_set_new(rs);
3169 } else if (rs_reshape_requested(rs)) {
3170 /* Only request grow on raid set size extensions, not on reshapes. */
3171 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3172
3173 /*
3174 * No need to check for 'ongoing' takeover here, because takeover
3175 * is an instant operation as oposed to an ongoing reshape.
3176 */
3177
3178 /* We can't reshape a journaled raid4/5/6 */
3179 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3180 ti->error = "Can't reshape a journaled raid4/5/6 set";
3181 r = -EPERM;
3182 goto bad;
3183 }
3184
3185 /* Out-of-place space has to be available to allow for a reshape unless raid1! */
3186 if (reshape_sectors || rs_is_raid1(rs)) {
3187 /*
3188 * We can only prepare for a reshape here, because the
3189 * raid set needs to run to provide the repective reshape
3190 * check functions via its MD personality instance.
3191 *
3192 * So do the reshape check after md_run() succeeded.
3193 */
3194 r = rs_prepare_reshape(rs);
3195 if (r)
3196 goto bad;
3197
3198 /* Reshaping ain't recovery, so disable recovery */
3199 rs_setup_recovery(rs, MaxSector);
3200 }
3201 rs_set_cur(rs);
3202 } else {
3203size_check:
3204 /* May not set recovery when a device rebuild is requested */
3205 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3206 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3207 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3208 rs_setup_recovery(rs, MaxSector);
3209 } else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3210 /*
3211 * Set raid set to current size, i.e. size as of
3212 * superblocks to grow to larger size in preresume.
3213 */
3214 r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false);
3215 if (r)
3216 goto bad;
3217
3218 rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors);
3219 } else {
3220 /* This is no size change or it is shrinking, update size and record in superblocks */
3221 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3222 if (r)
3223 goto bad;
3224
3225 if (sb_array_sectors > rs->array_sectors)
3226 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3227 }
3228 rs_set_cur(rs);
3229 }
3230
3231 /* If constructor requested it, change data and new_data offsets */
3232 r = rs_adjust_data_offsets(rs);
3233 if (r)
3234 goto bad;
3235
3236 /* Catch any inconclusive reshape superblock content. */
3237 rs_reset_inconclusive_reshape(rs);
3238
3239 /* Start raid set read-only and assumed clean to change in raid_resume() */
3240 rs->md.ro = 1;
3241 rs->md.in_sync = 1;
3242
3243 /* Keep array frozen until resume. */
3244 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
3245
3246 /* Has to be held on running the array */
3247 mddev_suspend_and_lock_nointr(&rs->md);
3248 r = md_run(&rs->md);
3249 rs->md.in_sync = 0; /* Assume already marked dirty */
3250 if (r) {
3251 ti->error = "Failed to run raid array";
3252 mddev_unlock(&rs->md);
3253 goto bad;
3254 }
3255
3256 r = md_start(&rs->md);
3257 if (r) {
3258 ti->error = "Failed to start raid array";
3259 goto bad_unlock;
3260 }
3261
3262 /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */
3263 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
3264 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode);
3265 if (r) {
3266 ti->error = "Failed to set raid4/5/6 journal mode";
3267 goto bad_unlock;
3268 }
3269 }
3270
3271 set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags);
3272
3273 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
3274 if (rs_is_raid456(rs)) {
3275 r = rs_set_raid456_stripe_cache(rs);
3276 if (r)
3277 goto bad_unlock;
3278 }
3279
3280 /* Now do an early reshape check */
3281 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3282 r = rs_check_reshape(rs);
3283 if (r)
3284 goto bad_unlock;
3285
3286 /* Restore new, ctr requested layout to perform check */
3287 rs_config_restore(rs, &rs_layout);
3288
3289 if (rs->md.pers->start_reshape) {
3290 r = rs->md.pers->check_reshape(&rs->md);
3291 if (r) {
3292 ti->error = "Reshape check failed";
3293 goto bad_unlock;
3294 }
3295 }
3296 }
3297
3298 /* Disable/enable discard support on raid set. */
3299 configure_discard_support(rs);
3300
3301 mddev_unlock(&rs->md);
3302 return 0;
3303
3304bad_unlock:
3305 md_stop(&rs->md);
3306 mddev_unlock(&rs->md);
3307bad:
3308 raid_set_free(rs);
3309
3310 return r;
3311}
3312
3313static void raid_dtr(struct dm_target *ti)
3314{
3315 struct raid_set *rs = ti->private;
3316
3317 mddev_lock_nointr(&rs->md);
3318 md_stop(&rs->md);
3319 mddev_unlock(&rs->md);
3320
3321 if (work_pending(&rs->md.event_work))
3322 flush_work(&rs->md.event_work);
3323 raid_set_free(rs);
3324}
3325
3326static int raid_map(struct dm_target *ti, struct bio *bio)
3327{
3328 struct raid_set *rs = ti->private;
3329 struct mddev *mddev = &rs->md;
3330
3331 /*
3332 * If we're reshaping to add disk(s)), ti->len and
3333 * mddev->array_sectors will differ during the process
3334 * (ti->len > mddev->array_sectors), so we have to requeue
3335 * bios with addresses > mddev->array_sectors here or
3336 * there will occur accesses past EOD of the component
3337 * data images thus erroring the raid set.
3338 */
3339 if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
3340 return DM_MAPIO_REQUEUE;
3341
3342 md_handle_request(mddev, bio);
3343
3344 return DM_MAPIO_SUBMITTED;
3345}
3346
3347/* Return sync state string for @state */
3348enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle };
3349static const char *sync_str(enum sync_state state)
3350{
3351 /* Has to be in above sync_state order! */
3352 static const char *sync_strs[] = {
3353 "frozen",
3354 "reshape",
3355 "resync",
3356 "check",
3357 "repair",
3358 "recover",
3359 "idle"
3360 };
3361
3362 return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef";
3363};
3364
3365/* Return enum sync_state for @mddev derived from @recovery flags */
3366static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery)
3367{
3368 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
3369 return st_frozen;
3370
3371 /* The MD sync thread can be done with io or be interrupted but still be running */
3372 if (!test_bit(MD_RECOVERY_DONE, &recovery) &&
3373 (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
3374 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) {
3375 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
3376 return st_reshape;
3377
3378 if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
3379 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
3380 return st_resync;
3381 if (test_bit(MD_RECOVERY_CHECK, &recovery))
3382 return st_check;
3383 return st_repair;
3384 }
3385
3386 if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3387 return st_recover;
3388
3389 if (mddev->reshape_position != MaxSector)
3390 return st_reshape;
3391 }
3392
3393 return st_idle;
3394}
3395
3396/*
3397 * Return status string for @rdev
3398 *
3399 * Status characters:
3400 *
3401 * 'D' = Dead/Failed raid set component or raid4/5/6 journal device
3402 * 'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device
3403 * 'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device
3404 * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3405 */
3406static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev)
3407{
3408 if (!rdev->bdev)
3409 return "-";
3410 else if (test_bit(Faulty, &rdev->flags))
3411 return "D";
3412 else if (test_bit(Journal, &rdev->flags))
3413 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a";
3414 else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) ||
3415 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) &&
3416 !test_bit(In_sync, &rdev->flags)))
3417 return "a";
3418 else
3419 return "A";
3420}
3421
3422/* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */
3423static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery,
3424 enum sync_state state, sector_t resync_max_sectors)
3425{
3426 sector_t r;
3427 struct mddev *mddev = &rs->md;
3428
3429 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3430 clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3431
3432 if (rs_is_raid0(rs)) {
3433 r = resync_max_sectors;
3434 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3435
3436 } else {
3437 if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery))
3438 r = mddev->recovery_cp;
3439 else
3440 r = mddev->curr_resync_completed;
3441
3442 if (state == st_idle && r >= resync_max_sectors) {
3443 /*
3444 * Sync complete.
3445 */
3446 /* In case we have finished recovering, the array is in sync. */
3447 if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3448 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3449
3450 } else if (state == st_recover)
3451 /*
3452 * In case we are recovering, the array is not in sync
3453 * and health chars should show the recovering legs.
3454 *
3455 * Already retrieved recovery offset from curr_resync_completed above.
3456 */
3457 ;
3458
3459 else if (state == st_resync || state == st_reshape)
3460 /*
3461 * If "resync/reshape" is occurring, the raid set
3462 * is or may be out of sync hence the health
3463 * characters shall be 'a'.
3464 */
3465 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3466
3467 else if (state == st_check || state == st_repair)
3468 /*
3469 * If "check" or "repair" is occurring, the raid set has
3470 * undergone an initial sync and the health characters
3471 * should not be 'a' anymore.
3472 */
3473 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3474
3475 else if (test_bit(MD_RECOVERY_NEEDED, &recovery))
3476 /*
3477 * We are idle and recovery is needed, prevent 'A' chars race
3478 * caused by components still set to in-sync by constructor.
3479 */
3480 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3481
3482 else {
3483 /*
3484 * We are idle and the raid set may be doing an initial
3485 * sync, or it may be rebuilding individual components.
3486 * If all the devices are In_sync, then it is the raid set
3487 * that is being initialized.
3488 */
3489 struct md_rdev *rdev;
3490
3491 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3492 rdev_for_each(rdev, mddev)
3493 if (!test_bit(Journal, &rdev->flags) &&
3494 !test_bit(In_sync, &rdev->flags)) {
3495 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3496 break;
3497 }
3498 }
3499 }
3500
3501 return min(r, resync_max_sectors);
3502}
3503
3504/* Helper to return @dev name or "-" if !@dev */
3505static const char *__get_dev_name(struct dm_dev *dev)
3506{
3507 return dev ? dev->name : "-";
3508}
3509
3510static void raid_status(struct dm_target *ti, status_type_t type,
3511 unsigned int status_flags, char *result, unsigned int maxlen)
3512{
3513 struct raid_set *rs = ti->private;
3514 struct mddev *mddev = &rs->md;
3515 struct r5conf *conf = rs_is_raid456(rs) ? mddev->private : NULL;
3516 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3517 unsigned long recovery;
3518 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3519 unsigned int sz = 0;
3520 unsigned int rebuild_writemostly_count = 0;
3521 sector_t progress, resync_max_sectors, resync_mismatches;
3522 enum sync_state state;
3523 struct raid_type *rt;
3524
3525 switch (type) {
3526 case STATUSTYPE_INFO:
3527 /* *Should* always succeed */
3528 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3529 if (!rt)
3530 return;
3531
3532 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3533
3534 /* Access most recent mddev properties for status output */
3535 smp_rmb();
3536 /* Get sensible max sectors even if raid set not yet started */
3537 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3538 mddev->resync_max_sectors : mddev->dev_sectors;
3539 recovery = rs->md.recovery;
3540 state = decipher_sync_action(mddev, recovery);
3541 progress = rs_get_progress(rs, recovery, state, resync_max_sectors);
3542 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3543 atomic64_read(&mddev->resync_mismatches) : 0;
3544
3545 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3546 for (i = 0; i < rs->raid_disks; i++)
3547 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3548
3549 /*
3550 * In-sync/Reshape ratio:
3551 * The in-sync ratio shows the progress of:
3552 * - Initializing the raid set
3553 * - Rebuilding a subset of devices of the raid set
3554 * The user can distinguish between the two by referring
3555 * to the status characters.
3556 *
3557 * The reshape ratio shows the progress of
3558 * changing the raid layout or the number of
3559 * disks of a raid set
3560 */
3561 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3562 (unsigned long long) resync_max_sectors);
3563
3564 /*
3565 * v1.5.0+:
3566 *
3567 * Sync action:
3568 * See Documentation/admin-guide/device-mapper/dm-raid.rst for
3569 * information on each of these states.
3570 */
3571 DMEMIT(" %s", sync_str(state));
3572
3573 /*
3574 * v1.5.0+:
3575 *
3576 * resync_mismatches/mismatch_cnt
3577 * This field shows the number of discrepancies found when
3578 * performing a "check" of the raid set.
3579 */
3580 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3581
3582 /*
3583 * v1.9.0+:
3584 *
3585 * data_offset (needed for out of space reshaping)
3586 * This field shows the data offset into the data
3587 * image LV where the first stripes data starts.
3588 *
3589 * We keep data_offset equal on all raid disks of the set,
3590 * so retrieving it from the first raid disk is sufficient.
3591 */
3592 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3593
3594 /*
3595 * v1.10.0+:
3596 */
3597 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
3598 __raid_dev_status(rs, &rs->journal_dev.rdev) : "-");
3599 break;
3600
3601 case STATUSTYPE_TABLE:
3602 /* Report the table line string you would use to construct this raid set */
3603
3604 /*
3605 * Count any rebuild or writemostly argument pairs and subtract the
3606 * hweight count being added below of any rebuild and writemostly ctr flags.
3607 */
3608 for (i = 0; i < rs->raid_disks; i++) {
3609 rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) +
3610 (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0);
3611 }
3612 rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) +
3613 (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0);
3614 /* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */
3615 raid_param_cnt += rebuild_writemostly_count +
3616 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3617 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3618 /* Emit table line */
3619 /* This has to be in the documented order for userspace! */
3620 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3621 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3622 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3623 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3624 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3625 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags))
3626 for (i = 0; i < rs->raid_disks; i++)
3627 if (test_bit(i, (void *) rs->rebuild_disks))
3628 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i);
3629 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3630 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3631 mddev->bitmap_info.daemon_sleep);
3632 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3633 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3634 mddev->sync_speed_min);
3635 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3636 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3637 mddev->sync_speed_max);
3638 if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags))
3639 for (i = 0; i < rs->raid_disks; i++)
3640 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3641 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3642 rs->dev[i].rdev.raid_disk);
3643 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3644 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3645 mddev->bitmap_info.max_write_behind);
3646 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3647 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3648 max_nr_stripes);
3649 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3650 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3651 (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3652 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3653 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3654 raid10_md_layout_to_copies(mddev->layout));
3655 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3656 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3657 raid10_md_layout_to_format(mddev->layout));
3658 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3659 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3660 max(rs->delta_disks, mddev->delta_disks));
3661 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3662 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3663 (unsigned long long) rs->data_offset);
3664 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
3665 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
3666 __get_dev_name(rs->journal_dev.dev));
3667 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags))
3668 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE),
3669 md_journal_mode_to_dm_raid(rs->journal_dev.mode));
3670 DMEMIT(" %d", rs->raid_disks);
3671 for (i = 0; i < rs->raid_disks; i++)
3672 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3673 __get_dev_name(rs->dev[i].data_dev));
3674 break;
3675
3676 case STATUSTYPE_IMA:
3677 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3678 if (!rt)
3679 return;
3680
3681 DMEMIT_TARGET_NAME_VERSION(ti->type);
3682 DMEMIT(",raid_type=%s,raid_disks=%d", rt->name, mddev->raid_disks);
3683
3684 /* Access most recent mddev properties for status output */
3685 smp_rmb();
3686 recovery = rs->md.recovery;
3687 state = decipher_sync_action(mddev, recovery);
3688 DMEMIT(",raid_state=%s", sync_str(state));
3689
3690 for (i = 0; i < rs->raid_disks; i++) {
3691 DMEMIT(",raid_device_%d_status=", i);
3692 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3693 }
3694
3695 if (rt_is_raid456(rt)) {
3696 DMEMIT(",journal_dev_mode=");
3697 switch (rs->journal_dev.mode) {
3698 case R5C_JOURNAL_MODE_WRITE_THROUGH:
3699 DMEMIT("%s",
3700 _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_THROUGH].param);
3701 break;
3702 case R5C_JOURNAL_MODE_WRITE_BACK:
3703 DMEMIT("%s",
3704 _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_BACK].param);
3705 break;
3706 default:
3707 DMEMIT("invalid");
3708 break;
3709 }
3710 }
3711 DMEMIT(";");
3712 break;
3713 }
3714}
3715
3716static int raid_message(struct dm_target *ti, unsigned int argc, char **argv,
3717 char *result, unsigned int maxlen)
3718{
3719 struct raid_set *rs = ti->private;
3720 struct mddev *mddev = &rs->md;
3721
3722 if (!mddev->pers || !mddev->pers->sync_request)
3723 return -EINVAL;
3724
3725 if (!strcasecmp(argv[0], "frozen"))
3726 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3727 else
3728 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3729
3730 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3731 if (mddev->sync_thread) {
3732 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3733 md_reap_sync_thread(mddev);
3734 }
3735 } else if (decipher_sync_action(mddev, mddev->recovery) != st_idle)
3736 return -EBUSY;
3737 else if (!strcasecmp(argv[0], "resync"))
3738 ; /* MD_RECOVERY_NEEDED set below */
3739 else if (!strcasecmp(argv[0], "recover"))
3740 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3741 else {
3742 if (!strcasecmp(argv[0], "check")) {
3743 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3744 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3745 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3746 } else if (!strcasecmp(argv[0], "repair")) {
3747 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3748 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3749 } else
3750 return -EINVAL;
3751 }
3752 if (mddev->ro == 2) {
3753 /* A write to sync_action is enough to justify
3754 * canceling read-auto mode
3755 */
3756 mddev->ro = 0;
3757 if (!mddev->suspended)
3758 md_wakeup_thread(mddev->sync_thread);
3759 }
3760 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3761 if (!mddev->suspended)
3762 md_wakeup_thread(mddev->thread);
3763
3764 return 0;
3765}
3766
3767static int raid_iterate_devices(struct dm_target *ti,
3768 iterate_devices_callout_fn fn, void *data)
3769{
3770 struct raid_set *rs = ti->private;
3771 unsigned int i;
3772 int r = 0;
3773
3774 for (i = 0; !r && i < rs->raid_disks; i++) {
3775 if (rs->dev[i].data_dev) {
3776 r = fn(ti, rs->dev[i].data_dev,
3777 0, /* No offset on data devs */
3778 rs->md.dev_sectors, data);
3779 }
3780 }
3781
3782 return r;
3783}
3784
3785static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3786{
3787 struct raid_set *rs = ti->private;
3788 unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors);
3789
3790 blk_limits_io_min(limits, chunk_size_bytes);
3791 blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs));
3792}
3793
3794static void raid_postsuspend(struct dm_target *ti)
3795{
3796 struct raid_set *rs = ti->private;
3797
3798 if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
3799 /* Writes have to be stopped before suspending to avoid deadlocks. */
3800 if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery))
3801 md_stop_writes(&rs->md);
3802
3803 mddev_suspend(&rs->md, false);
3804 }
3805}
3806
3807static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3808{
3809 int i;
3810 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3811 unsigned long flags;
3812 bool cleared = false;
3813 struct dm_raid_superblock *sb;
3814 struct mddev *mddev = &rs->md;
3815 struct md_rdev *r;
3816
3817 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3818 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3819 return;
3820
3821 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3822
3823 for (i = 0; i < rs->raid_disks; i++) {
3824 r = &rs->dev[i].rdev;
3825 /* HM FIXME: enhance journal device recovery processing */
3826 if (test_bit(Journal, &r->flags))
3827 continue;
3828
3829 if (test_bit(Faulty, &r->flags) &&
3830 r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) {
3831 DMINFO("Faulty %s device #%d has readable super block."
3832 " Attempting to revive it.",
3833 rs->raid_type->name, i);
3834
3835 /*
3836 * Faulty bit may be set, but sometimes the array can
3837 * be suspended before the personalities can respond
3838 * by removing the device from the array (i.e. calling
3839 * 'hot_remove_disk'). If they haven't yet removed
3840 * the failed device, its 'raid_disk' number will be
3841 * '>= 0' - meaning we must call this function
3842 * ourselves.
3843 */
3844 flags = r->flags;
3845 clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3846 if (r->raid_disk >= 0) {
3847 if (mddev->pers->hot_remove_disk(mddev, r)) {
3848 /* Failed to revive this device, try next */
3849 r->flags = flags;
3850 continue;
3851 }
3852 } else
3853 r->raid_disk = r->saved_raid_disk = i;
3854
3855 clear_bit(Faulty, &r->flags);
3856 clear_bit(WriteErrorSeen, &r->flags);
3857
3858 if (mddev->pers->hot_add_disk(mddev, r)) {
3859 /* Failed to revive this device, try next */
3860 r->raid_disk = r->saved_raid_disk = -1;
3861 r->flags = flags;
3862 } else {
3863 clear_bit(In_sync, &r->flags);
3864 r->recovery_offset = 0;
3865 set_bit(i, (void *) cleared_failed_devices);
3866 cleared = true;
3867 }
3868 }
3869 }
3870
3871 /* If any failed devices could be cleared, update all sbs failed_devices bits */
3872 if (cleared) {
3873 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3874
3875 rdev_for_each(r, &rs->md) {
3876 if (test_bit(Journal, &r->flags))
3877 continue;
3878
3879 sb = page_address(r->sb_page);
3880 sb_retrieve_failed_devices(sb, failed_devices);
3881
3882 for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3883 failed_devices[i] &= ~cleared_failed_devices[i];
3884
3885 sb_update_failed_devices(sb, failed_devices);
3886 }
3887 }
3888}
3889
3890static int __load_dirty_region_bitmap(struct raid_set *rs)
3891{
3892 int r = 0;
3893
3894 /* Try loading the bitmap unless "raid0", which does not have one */
3895 if (!rs_is_raid0(rs) &&
3896 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3897 r = md_bitmap_load(&rs->md);
3898 if (r)
3899 DMERR("Failed to load bitmap");
3900 }
3901
3902 return r;
3903}
3904
3905/* Enforce updating all superblocks */
3906static void rs_update_sbs(struct raid_set *rs)
3907{
3908 struct mddev *mddev = &rs->md;
3909 int ro = mddev->ro;
3910
3911 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3912 mddev->ro = 0;
3913 md_update_sb(mddev, 1);
3914 mddev->ro = ro;
3915}
3916
3917/*
3918 * Reshape changes raid algorithm of @rs to new one within personality
3919 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3920 * disks from a raid set thus growing/shrinking it or resizes the set
3921 *
3922 * Call mddev_lock_nointr() before!
3923 */
3924static int rs_start_reshape(struct raid_set *rs)
3925{
3926 int r;
3927 struct mddev *mddev = &rs->md;
3928 struct md_personality *pers = mddev->pers;
3929
3930 /* Don't allow the sync thread to work until the table gets reloaded. */
3931 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
3932
3933 r = rs_setup_reshape(rs);
3934 if (r)
3935 return r;
3936
3937 /*
3938 * Check any reshape constraints enforced by the personalility
3939 *
3940 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3941 */
3942 r = pers->check_reshape(mddev);
3943 if (r) {
3944 rs->ti->error = "pers->check_reshape() failed";
3945 return r;
3946 }
3947
3948 /*
3949 * Personality may not provide start reshape method in which
3950 * case check_reshape above has already covered everything
3951 */
3952 if (pers->start_reshape) {
3953 r = pers->start_reshape(mddev);
3954 if (r) {
3955 rs->ti->error = "pers->start_reshape() failed";
3956 return r;
3957 }
3958 }
3959
3960 /*
3961 * Now reshape got set up, update superblocks to
3962 * reflect the fact so that a table reload will
3963 * access proper superblock content in the ctr.
3964 */
3965 rs_update_sbs(rs);
3966
3967 return 0;
3968}
3969
3970static int raid_preresume(struct dm_target *ti)
3971{
3972 int r;
3973 struct raid_set *rs = ti->private;
3974 struct mddev *mddev = &rs->md;
3975
3976 /* This is a resume after a suspend of the set -> it's already started. */
3977 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3978 return 0;
3979
3980 /*
3981 * The superblocks need to be updated on disk if the
3982 * array is new or new devices got added (thus zeroed
3983 * out by userspace) or __load_dirty_region_bitmap
3984 * will overwrite them in core with old data or fail.
3985 */
3986 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3987 rs_update_sbs(rs);
3988
3989 /* Load the bitmap from disk unless raid0 */
3990 r = __load_dirty_region_bitmap(rs);
3991 if (r)
3992 return r;
3993
3994 /* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */
3995 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3996 mddev->array_sectors = rs->array_sectors;
3997 mddev->dev_sectors = rs->dev_sectors;
3998 rs_set_rdev_sectors(rs);
3999 rs_set_capacity(rs);
4000 }
4001
4002 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */
4003 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap &&
4004 (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) ||
4005 (rs->requested_bitmap_chunk_sectors &&
4006 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) {
4007 int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize;
4008
4009 r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0);
4010 if (r)
4011 DMERR("Failed to resize bitmap");
4012 }
4013
4014 /* Check for any resize/reshape on @rs and adjust/initiate */
4015 /* Be prepared for mddev_resume() in raid_resume() */
4016 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4017 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
4018 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4019 mddev->resync_min = mddev->recovery_cp;
4020 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags))
4021 mddev->resync_max_sectors = mddev->dev_sectors;
4022 }
4023
4024 /* Check for any reshape request unless new raid set */
4025 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
4026 /* Initiate a reshape. */
4027 rs_set_rdev_sectors(rs);
4028 mddev_lock_nointr(mddev);
4029 r = rs_start_reshape(rs);
4030 mddev_unlock(mddev);
4031 if (r)
4032 DMWARN("Failed to check/start reshape, continuing without change");
4033 r = 0;
4034 }
4035
4036 return r;
4037}
4038
4039static void raid_resume(struct dm_target *ti)
4040{
4041 struct raid_set *rs = ti->private;
4042 struct mddev *mddev = &rs->md;
4043
4044 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
4045 /*
4046 * A secondary resume while the device is active.
4047 * Take this opportunity to check whether any failed
4048 * devices are reachable again.
4049 */
4050 attempt_restore_of_faulty_devices(rs);
4051 }
4052
4053 if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
4054 /* Only reduce raid set size before running a disk removing reshape. */
4055 if (mddev->delta_disks < 0)
4056 rs_set_capacity(rs);
4057
4058 mddev_lock_nointr(mddev);
4059 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4060 mddev->ro = 0;
4061 mddev->in_sync = 0;
4062 mddev_unlock_and_resume(mddev);
4063 }
4064}
4065
4066static struct target_type raid_target = {
4067 .name = "raid",
4068 .version = {1, 15, 1},
4069 .module = THIS_MODULE,
4070 .ctr = raid_ctr,
4071 .dtr = raid_dtr,
4072 .map = raid_map,
4073 .status = raid_status,
4074 .message = raid_message,
4075 .iterate_devices = raid_iterate_devices,
4076 .io_hints = raid_io_hints,
4077 .postsuspend = raid_postsuspend,
4078 .preresume = raid_preresume,
4079 .resume = raid_resume,
4080};
4081module_dm(raid);
4082
4083module_param(devices_handle_discard_safely, bool, 0644);
4084MODULE_PARM_DESC(devices_handle_discard_safely,
4085 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
4086
4087MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
4088MODULE_ALIAS("dm-raid0");
4089MODULE_ALIAS("dm-raid1");
4090MODULE_ALIAS("dm-raid10");
4091MODULE_ALIAS("dm-raid4");
4092MODULE_ALIAS("dm-raid5");
4093MODULE_ALIAS("dm-raid6");
4094MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
4095MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
4096MODULE_LICENSE("GPL");
1/*
2 * Copyright (C) 2010-2011 Neil Brown
3 * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include <linux/slab.h>
9#include <linux/module.h>
10
11#include "md.h"
12#include "raid1.h"
13#include "raid5.h"
14#include "raid10.h"
15#include "bitmap.h"
16
17#include <linux/device-mapper.h>
18
19#define DM_MSG_PREFIX "raid"
20#define MAX_RAID_DEVICES 253 /* md-raid kernel limit */
21
22/*
23 * Minimum sectors of free reshape space per raid device
24 */
25#define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26
27static bool devices_handle_discard_safely = false;
28
29/*
30 * The following flags are used by dm-raid.c to set up the array state.
31 * They must be cleared before md_run is called.
32 */
33#define FirstUse 10 /* rdev flag */
34
35struct raid_dev {
36 /*
37 * Two DM devices, one to hold metadata and one to hold the
38 * actual data/parity. The reason for this is to not confuse
39 * ti->len and give more flexibility in altering size and
40 * characteristics.
41 *
42 * While it is possible for this device to be associated
43 * with a different physical device than the data_dev, it
44 * is intended for it to be the same.
45 * |--------- Physical Device ---------|
46 * |- meta_dev -|------ data_dev ------|
47 */
48 struct dm_dev *meta_dev;
49 struct dm_dev *data_dev;
50 struct md_rdev rdev;
51};
52
53/*
54 * Bits for establishing rs->ctr_flags
55 *
56 * 1 = no flag value
57 * 2 = flag with value
58 */
59#define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */
60#define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */
61#define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */
62#define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */
63#define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */
64#define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */
65#define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */
66#define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */
67#define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */
68#define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */
69#define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */
70#define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */
71/* New for v1.9.0 */
72#define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
73#define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
74#define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
75
76/*
77 * Flags for rs->ctr_flags field.
78 */
79#define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC)
80#define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC)
81#define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD)
82#define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP)
83#define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
84#define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
85#define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
86#define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY)
87#define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE)
88#define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE)
89#define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES)
90#define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT)
91#define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS)
92#define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET)
93#define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
94
95/*
96 * Definitions of various constructor flags to
97 * be used in checks of valid / invalid flags
98 * per raid level.
99 */
100/* Define all any sync flags */
101#define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
102
103/* Define flags for options without argument (e.g. 'nosync') */
104#define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \
105 CTR_FLAG_RAID10_USE_NEAR_SETS)
106
107/* Define flags for options with one argument (e.g. 'delta_disks +2') */
108#define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
109 CTR_FLAG_WRITE_MOSTLY | \
110 CTR_FLAG_DAEMON_SLEEP | \
111 CTR_FLAG_MIN_RECOVERY_RATE | \
112 CTR_FLAG_MAX_RECOVERY_RATE | \
113 CTR_FLAG_MAX_WRITE_BEHIND | \
114 CTR_FLAG_STRIPE_CACHE | \
115 CTR_FLAG_REGION_SIZE | \
116 CTR_FLAG_RAID10_COPIES | \
117 CTR_FLAG_RAID10_FORMAT | \
118 CTR_FLAG_DELTA_DISKS | \
119 CTR_FLAG_DATA_OFFSET)
120
121/* Valid options definitions per raid level... */
122
123/* "raid0" does only accept data offset */
124#define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET)
125
126/* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
127#define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
128 CTR_FLAG_REBUILD | \
129 CTR_FLAG_WRITE_MOSTLY | \
130 CTR_FLAG_DAEMON_SLEEP | \
131 CTR_FLAG_MIN_RECOVERY_RATE | \
132 CTR_FLAG_MAX_RECOVERY_RATE | \
133 CTR_FLAG_MAX_WRITE_BEHIND | \
134 CTR_FLAG_REGION_SIZE | \
135 CTR_FLAG_DELTA_DISKS | \
136 CTR_FLAG_DATA_OFFSET)
137
138/* "raid10" does not accept any raid1 or stripe cache options */
139#define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
140 CTR_FLAG_REBUILD | \
141 CTR_FLAG_DAEMON_SLEEP | \
142 CTR_FLAG_MIN_RECOVERY_RATE | \
143 CTR_FLAG_MAX_RECOVERY_RATE | \
144 CTR_FLAG_REGION_SIZE | \
145 CTR_FLAG_RAID10_COPIES | \
146 CTR_FLAG_RAID10_FORMAT | \
147 CTR_FLAG_DELTA_DISKS | \
148 CTR_FLAG_DATA_OFFSET | \
149 CTR_FLAG_RAID10_USE_NEAR_SETS)
150
151/*
152 * "raid4/5/6" do not accept any raid1 or raid10 specific options
153 *
154 * "raid6" does not accept "nosync", because it is not guaranteed
155 * that both parity and q-syndrome are being written properly with
156 * any writes
157 */
158#define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
159 CTR_FLAG_REBUILD | \
160 CTR_FLAG_DAEMON_SLEEP | \
161 CTR_FLAG_MIN_RECOVERY_RATE | \
162 CTR_FLAG_MAX_RECOVERY_RATE | \
163 CTR_FLAG_STRIPE_CACHE | \
164 CTR_FLAG_REGION_SIZE | \
165 CTR_FLAG_DELTA_DISKS | \
166 CTR_FLAG_DATA_OFFSET)
167
168#define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \
169 CTR_FLAG_REBUILD | \
170 CTR_FLAG_DAEMON_SLEEP | \
171 CTR_FLAG_MIN_RECOVERY_RATE | \
172 CTR_FLAG_MAX_RECOVERY_RATE | \
173 CTR_FLAG_STRIPE_CACHE | \
174 CTR_FLAG_REGION_SIZE | \
175 CTR_FLAG_DELTA_DISKS | \
176 CTR_FLAG_DATA_OFFSET)
177/* ...valid options definitions per raid level */
178
179/*
180 * Flags for rs->runtime_flags field
181 * (RT_FLAG prefix meaning "runtime flag")
182 *
183 * These are all internal and used to define runtime state,
184 * e.g. to prevent another resume from preresume processing
185 * the raid set all over again.
186 */
187#define RT_FLAG_RS_PRERESUMED 0
188#define RT_FLAG_RS_RESUMED 1
189#define RT_FLAG_RS_BITMAP_LOADED 2
190#define RT_FLAG_UPDATE_SBS 3
191#define RT_FLAG_RESHAPE_RS 4
192
193/* Array elements of 64 bit needed for rebuild/failed disk bits */
194#define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
195
196/*
197 * raid set level, layout and chunk sectors backup/restore
198 */
199struct rs_layout {
200 int new_level;
201 int new_layout;
202 int new_chunk_sectors;
203};
204
205struct raid_set {
206 struct dm_target *ti;
207
208 uint32_t bitmap_loaded;
209 uint32_t stripe_cache_entries;
210 unsigned long ctr_flags;
211 unsigned long runtime_flags;
212
213 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
214
215 int raid_disks;
216 int delta_disks;
217 int data_offset;
218 int raid10_copies;
219 int requested_bitmap_chunk_sectors;
220
221 struct mddev md;
222 struct raid_type *raid_type;
223 struct dm_target_callbacks callbacks;
224
225 struct raid_dev dev[0];
226};
227
228static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
229{
230 struct mddev *mddev = &rs->md;
231
232 l->new_level = mddev->new_level;
233 l->new_layout = mddev->new_layout;
234 l->new_chunk_sectors = mddev->new_chunk_sectors;
235}
236
237static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
238{
239 struct mddev *mddev = &rs->md;
240
241 mddev->new_level = l->new_level;
242 mddev->new_layout = l->new_layout;
243 mddev->new_chunk_sectors = l->new_chunk_sectors;
244}
245
246/* raid10 algorithms (i.e. formats) */
247#define ALGORITHM_RAID10_DEFAULT 0
248#define ALGORITHM_RAID10_NEAR 1
249#define ALGORITHM_RAID10_OFFSET 2
250#define ALGORITHM_RAID10_FAR 3
251
252/* Supported raid types and properties. */
253static struct raid_type {
254 const char *name; /* RAID algorithm. */
255 const char *descr; /* Descriptor text for logging. */
256 const unsigned int parity_devs; /* # of parity devices. */
257 const unsigned int minimal_devs;/* minimal # of devices in set. */
258 const unsigned int level; /* RAID level. */
259 const unsigned int algorithm; /* RAID algorithm. */
260} raid_types[] = {
261 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */},
262 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */},
263 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR},
264 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET},
265 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR},
266 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT},
267 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
268 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N},
269 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
270 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
271 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
272 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
273 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
274 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
275 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE},
276 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6},
277 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6},
278 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6},
279 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6},
280 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6}
281};
282
283/* True, if @v is in inclusive range [@min, @max] */
284static bool __within_range(long v, long min, long max)
285{
286 return v >= min && v <= max;
287}
288
289/* All table line arguments are defined here */
290static struct arg_name_flag {
291 const unsigned long flag;
292 const char *name;
293} __arg_name_flags[] = {
294 { CTR_FLAG_SYNC, "sync"},
295 { CTR_FLAG_NOSYNC, "nosync"},
296 { CTR_FLAG_REBUILD, "rebuild"},
297 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
298 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
299 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
300 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
301 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
302 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
303 { CTR_FLAG_REGION_SIZE, "region_size"},
304 { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
305 { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
306 { CTR_FLAG_DATA_OFFSET, "data_offset"},
307 { CTR_FLAG_DELTA_DISKS, "delta_disks"},
308 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
309};
310
311/* Return argument name string for given @flag */
312static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
313{
314 if (hweight32(flag) == 1) {
315 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
316
317 while (anf-- > __arg_name_flags)
318 if (flag & anf->flag)
319 return anf->name;
320
321 } else
322 DMERR("%s called with more than one flag!", __func__);
323
324 return NULL;
325}
326
327/*
328 * Bool helpers to test for various raid levels of a raid set.
329 * It's level as reported by the superblock rather than
330 * the requested raid_type passed to the constructor.
331 */
332/* Return true, if raid set in @rs is raid0 */
333static bool rs_is_raid0(struct raid_set *rs)
334{
335 return !rs->md.level;
336}
337
338/* Return true, if raid set in @rs is raid1 */
339static bool rs_is_raid1(struct raid_set *rs)
340{
341 return rs->md.level == 1;
342}
343
344/* Return true, if raid set in @rs is raid10 */
345static bool rs_is_raid10(struct raid_set *rs)
346{
347 return rs->md.level == 10;
348}
349
350/* Return true, if raid set in @rs is level 6 */
351static bool rs_is_raid6(struct raid_set *rs)
352{
353 return rs->md.level == 6;
354}
355
356/* Return true, if raid set in @rs is level 4, 5 or 6 */
357static bool rs_is_raid456(struct raid_set *rs)
358{
359 return __within_range(rs->md.level, 4, 6);
360}
361
362/* Return true, if raid set in @rs is reshapable */
363static bool __is_raid10_far(int layout);
364static bool rs_is_reshapable(struct raid_set *rs)
365{
366 return rs_is_raid456(rs) ||
367 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
368}
369
370/* Return true, if raid set in @rs is recovering */
371static bool rs_is_recovering(struct raid_set *rs)
372{
373 return rs->md.recovery_cp < rs->dev[0].rdev.sectors;
374}
375
376/* Return true, if raid set in @rs is reshaping */
377static bool rs_is_reshaping(struct raid_set *rs)
378{
379 return rs->md.reshape_position != MaxSector;
380}
381
382/*
383 * bool helpers to test for various raid levels of a raid type @rt
384 */
385
386/* Return true, if raid type in @rt is raid0 */
387static bool rt_is_raid0(struct raid_type *rt)
388{
389 return !rt->level;
390}
391
392/* Return true, if raid type in @rt is raid1 */
393static bool rt_is_raid1(struct raid_type *rt)
394{
395 return rt->level == 1;
396}
397
398/* Return true, if raid type in @rt is raid10 */
399static bool rt_is_raid10(struct raid_type *rt)
400{
401 return rt->level == 10;
402}
403
404/* Return true, if raid type in @rt is raid4/5 */
405static bool rt_is_raid45(struct raid_type *rt)
406{
407 return __within_range(rt->level, 4, 5);
408}
409
410/* Return true, if raid type in @rt is raid6 */
411static bool rt_is_raid6(struct raid_type *rt)
412{
413 return rt->level == 6;
414}
415
416/* Return true, if raid type in @rt is raid4/5/6 */
417static bool rt_is_raid456(struct raid_type *rt)
418{
419 return __within_range(rt->level, 4, 6);
420}
421/* END: raid level bools */
422
423/* Return valid ctr flags for the raid level of @rs */
424static unsigned long __valid_flags(struct raid_set *rs)
425{
426 if (rt_is_raid0(rs->raid_type))
427 return RAID0_VALID_FLAGS;
428 else if (rt_is_raid1(rs->raid_type))
429 return RAID1_VALID_FLAGS;
430 else if (rt_is_raid10(rs->raid_type))
431 return RAID10_VALID_FLAGS;
432 else if (rt_is_raid45(rs->raid_type))
433 return RAID45_VALID_FLAGS;
434 else if (rt_is_raid6(rs->raid_type))
435 return RAID6_VALID_FLAGS;
436
437 return 0;
438}
439
440/*
441 * Check for valid flags set on @rs
442 *
443 * Has to be called after parsing of the ctr flags!
444 */
445static int rs_check_for_valid_flags(struct raid_set *rs)
446{
447 if (rs->ctr_flags & ~__valid_flags(rs)) {
448 rs->ti->error = "Invalid flags combination";
449 return -EINVAL;
450 }
451
452 return 0;
453}
454
455/* MD raid10 bit definitions and helpers */
456#define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */
457#define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
458#define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */
459#define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */
460
461/* Return md raid10 near copies for @layout */
462static unsigned int __raid10_near_copies(int layout)
463{
464 return layout & 0xFF;
465}
466
467/* Return md raid10 far copies for @layout */
468static unsigned int __raid10_far_copies(int layout)
469{
470 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
471}
472
473/* Return true if md raid10 offset for @layout */
474static bool __is_raid10_offset(int layout)
475{
476 return !!(layout & RAID10_OFFSET);
477}
478
479/* Return true if md raid10 near for @layout */
480static bool __is_raid10_near(int layout)
481{
482 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
483}
484
485/* Return true if md raid10 far for @layout */
486static bool __is_raid10_far(int layout)
487{
488 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
489}
490
491/* Return md raid10 layout string for @layout */
492static const char *raid10_md_layout_to_format(int layout)
493{
494 /*
495 * Bit 16 stands for "offset"
496 * (i.e. adjacent stripes hold copies)
497 *
498 * Refer to MD's raid10.c for details
499 */
500 if (__is_raid10_offset(layout))
501 return "offset";
502
503 if (__raid10_near_copies(layout) > 1)
504 return "near";
505
506 WARN_ON(__raid10_far_copies(layout) < 2);
507
508 return "far";
509}
510
511/* Return md raid10 algorithm for @name */
512static int raid10_name_to_format(const char *name)
513{
514 if (!strcasecmp(name, "near"))
515 return ALGORITHM_RAID10_NEAR;
516 else if (!strcasecmp(name, "offset"))
517 return ALGORITHM_RAID10_OFFSET;
518 else if (!strcasecmp(name, "far"))
519 return ALGORITHM_RAID10_FAR;
520
521 return -EINVAL;
522}
523
524/* Return md raid10 copies for @layout */
525static unsigned int raid10_md_layout_to_copies(int layout)
526{
527 return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
528}
529
530/* Return md raid10 format id for @format string */
531static int raid10_format_to_md_layout(struct raid_set *rs,
532 unsigned int algorithm,
533 unsigned int copies)
534{
535 unsigned int n = 1, f = 1, r = 0;
536
537 /*
538 * MD resilienece flaw:
539 *
540 * enabling use_far_sets for far/offset formats causes copies
541 * to be colocated on the same devs together with their origins!
542 *
543 * -> disable it for now in the definition above
544 */
545 if (algorithm == ALGORITHM_RAID10_DEFAULT ||
546 algorithm == ALGORITHM_RAID10_NEAR)
547 n = copies;
548
549 else if (algorithm == ALGORITHM_RAID10_OFFSET) {
550 f = copies;
551 r = RAID10_OFFSET;
552 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
553 r |= RAID10_USE_FAR_SETS;
554
555 } else if (algorithm == ALGORITHM_RAID10_FAR) {
556 f = copies;
557 r = !RAID10_OFFSET;
558 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
559 r |= RAID10_USE_FAR_SETS;
560
561 } else
562 return -EINVAL;
563
564 return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
565}
566/* END: MD raid10 bit definitions and helpers */
567
568/* Check for any of the raid10 algorithms */
569static bool __got_raid10(struct raid_type *rtp, const int layout)
570{
571 if (rtp->level == 10) {
572 switch (rtp->algorithm) {
573 case ALGORITHM_RAID10_DEFAULT:
574 case ALGORITHM_RAID10_NEAR:
575 return __is_raid10_near(layout);
576 case ALGORITHM_RAID10_OFFSET:
577 return __is_raid10_offset(layout);
578 case ALGORITHM_RAID10_FAR:
579 return __is_raid10_far(layout);
580 default:
581 break;
582 }
583 }
584
585 return false;
586}
587
588/* Return raid_type for @name */
589static struct raid_type *get_raid_type(const char *name)
590{
591 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
592
593 while (rtp-- > raid_types)
594 if (!strcasecmp(rtp->name, name))
595 return rtp;
596
597 return NULL;
598}
599
600/* Return raid_type for @name based derived from @level and @layout */
601static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
602{
603 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
604
605 while (rtp-- > raid_types) {
606 /* RAID10 special checks based on @layout flags/properties */
607 if (rtp->level == level &&
608 (__got_raid10(rtp, layout) || rtp->algorithm == layout))
609 return rtp;
610 }
611
612 return NULL;
613}
614
615/*
616 * Conditionally change bdev capacity of @rs
617 * in case of a disk add/remove reshape
618 */
619static void rs_set_capacity(struct raid_set *rs)
620{
621 struct mddev *mddev = &rs->md;
622 struct md_rdev *rdev;
623 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
624
625 /*
626 * raid10 sets rdev->sector to the device size, which
627 * is unintended in case of out-of-place reshaping
628 */
629 rdev_for_each(rdev, mddev)
630 rdev->sectors = mddev->dev_sectors;
631
632 set_capacity(gendisk, mddev->array_sectors);
633 revalidate_disk(gendisk);
634}
635
636/*
637 * Set the mddev properties in @rs to the current
638 * ones retrieved from the freshest superblock
639 */
640static void rs_set_cur(struct raid_set *rs)
641{
642 struct mddev *mddev = &rs->md;
643
644 mddev->new_level = mddev->level;
645 mddev->new_layout = mddev->layout;
646 mddev->new_chunk_sectors = mddev->chunk_sectors;
647}
648
649/*
650 * Set the mddev properties in @rs to the new
651 * ones requested by the ctr
652 */
653static void rs_set_new(struct raid_set *rs)
654{
655 struct mddev *mddev = &rs->md;
656
657 mddev->level = mddev->new_level;
658 mddev->layout = mddev->new_layout;
659 mddev->chunk_sectors = mddev->new_chunk_sectors;
660 mddev->raid_disks = rs->raid_disks;
661 mddev->delta_disks = 0;
662}
663
664static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
665 unsigned int raid_devs)
666{
667 unsigned int i;
668 struct raid_set *rs;
669
670 if (raid_devs <= raid_type->parity_devs) {
671 ti->error = "Insufficient number of devices";
672 return ERR_PTR(-EINVAL);
673 }
674
675 rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
676 if (!rs) {
677 ti->error = "Cannot allocate raid context";
678 return ERR_PTR(-ENOMEM);
679 }
680
681 mddev_init(&rs->md);
682
683 rs->raid_disks = raid_devs;
684 rs->delta_disks = 0;
685
686 rs->ti = ti;
687 rs->raid_type = raid_type;
688 rs->stripe_cache_entries = 256;
689 rs->md.raid_disks = raid_devs;
690 rs->md.level = raid_type->level;
691 rs->md.new_level = rs->md.level;
692 rs->md.layout = raid_type->algorithm;
693 rs->md.new_layout = rs->md.layout;
694 rs->md.delta_disks = 0;
695 rs->md.recovery_cp = MaxSector;
696
697 for (i = 0; i < raid_devs; i++)
698 md_rdev_init(&rs->dev[i].rdev);
699
700 /*
701 * Remaining items to be initialized by further RAID params:
702 * rs->md.persistent
703 * rs->md.external
704 * rs->md.chunk_sectors
705 * rs->md.new_chunk_sectors
706 * rs->md.dev_sectors
707 */
708
709 return rs;
710}
711
712static void raid_set_free(struct raid_set *rs)
713{
714 int i;
715
716 for (i = 0; i < rs->raid_disks; i++) {
717 if (rs->dev[i].meta_dev)
718 dm_put_device(rs->ti, rs->dev[i].meta_dev);
719 md_rdev_clear(&rs->dev[i].rdev);
720 if (rs->dev[i].data_dev)
721 dm_put_device(rs->ti, rs->dev[i].data_dev);
722 }
723
724 kfree(rs);
725}
726
727/*
728 * For every device we have two words
729 * <meta_dev>: meta device name or '-' if missing
730 * <data_dev>: data device name or '-' if missing
731 *
732 * The following are permitted:
733 * - -
734 * - <data_dev>
735 * <meta_dev> <data_dev>
736 *
737 * The following is not allowed:
738 * <meta_dev> -
739 *
740 * This code parses those words. If there is a failure,
741 * the caller must use raid_set_free() to unwind the operations.
742 */
743static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
744{
745 int i;
746 int rebuild = 0;
747 int metadata_available = 0;
748 int r = 0;
749 const char *arg;
750
751 /* Put off the number of raid devices argument to get to dev pairs */
752 arg = dm_shift_arg(as);
753 if (!arg)
754 return -EINVAL;
755
756 for (i = 0; i < rs->raid_disks; i++) {
757 rs->dev[i].rdev.raid_disk = i;
758
759 rs->dev[i].meta_dev = NULL;
760 rs->dev[i].data_dev = NULL;
761
762 /*
763 * There are no offsets, since there is a separate device
764 * for data and metadata.
765 */
766 rs->dev[i].rdev.data_offset = 0;
767 rs->dev[i].rdev.mddev = &rs->md;
768
769 arg = dm_shift_arg(as);
770 if (!arg)
771 return -EINVAL;
772
773 if (strcmp(arg, "-")) {
774 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
775 &rs->dev[i].meta_dev);
776 if (r) {
777 rs->ti->error = "RAID metadata device lookup failure";
778 return r;
779 }
780
781 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
782 if (!rs->dev[i].rdev.sb_page) {
783 rs->ti->error = "Failed to allocate superblock page";
784 return -ENOMEM;
785 }
786 }
787
788 arg = dm_shift_arg(as);
789 if (!arg)
790 return -EINVAL;
791
792 if (!strcmp(arg, "-")) {
793 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
794 (!rs->dev[i].rdev.recovery_offset)) {
795 rs->ti->error = "Drive designated for rebuild not specified";
796 return -EINVAL;
797 }
798
799 if (rs->dev[i].meta_dev) {
800 rs->ti->error = "No data device supplied with metadata device";
801 return -EINVAL;
802 }
803
804 continue;
805 }
806
807 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
808 &rs->dev[i].data_dev);
809 if (r) {
810 rs->ti->error = "RAID device lookup failure";
811 return r;
812 }
813
814 if (rs->dev[i].meta_dev) {
815 metadata_available = 1;
816 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
817 }
818 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
819 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
820 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
821 rebuild++;
822 }
823
824 if (metadata_available) {
825 rs->md.external = 0;
826 rs->md.persistent = 1;
827 rs->md.major_version = 2;
828 } else if (rebuild && !rs->md.recovery_cp) {
829 /*
830 * Without metadata, we will not be able to tell if the array
831 * is in-sync or not - we must assume it is not. Therefore,
832 * it is impossible to rebuild a drive.
833 *
834 * Even if there is metadata, the on-disk information may
835 * indicate that the array is not in-sync and it will then
836 * fail at that time.
837 *
838 * User could specify 'nosync' option if desperate.
839 */
840 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
841 return -EINVAL;
842 }
843
844 return 0;
845}
846
847/*
848 * validate_region_size
849 * @rs
850 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
851 *
852 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
853 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
854 *
855 * Returns: 0 on success, -EINVAL on failure.
856 */
857static int validate_region_size(struct raid_set *rs, unsigned long region_size)
858{
859 unsigned long min_region_size = rs->ti->len / (1 << 21);
860
861 if (rs_is_raid0(rs))
862 return 0;
863
864 if (!region_size) {
865 /*
866 * Choose a reasonable default. All figures in sectors.
867 */
868 if (min_region_size > (1 << 13)) {
869 /* If not a power of 2, make it the next power of 2 */
870 region_size = roundup_pow_of_two(min_region_size);
871 DMINFO("Choosing default region size of %lu sectors",
872 region_size);
873 } else {
874 DMINFO("Choosing default region size of 4MiB");
875 region_size = 1 << 13; /* sectors */
876 }
877 } else {
878 /*
879 * Validate user-supplied value.
880 */
881 if (region_size > rs->ti->len) {
882 rs->ti->error = "Supplied region size is too large";
883 return -EINVAL;
884 }
885
886 if (region_size < min_region_size) {
887 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
888 region_size, min_region_size);
889 rs->ti->error = "Supplied region size is too small";
890 return -EINVAL;
891 }
892
893 if (!is_power_of_2(region_size)) {
894 rs->ti->error = "Region size is not a power of 2";
895 return -EINVAL;
896 }
897
898 if (region_size < rs->md.chunk_sectors) {
899 rs->ti->error = "Region size is smaller than the chunk size";
900 return -EINVAL;
901 }
902 }
903
904 /*
905 * Convert sectors to bytes.
906 */
907 rs->md.bitmap_info.chunksize = to_bytes(region_size);
908
909 return 0;
910}
911
912/*
913 * validate_raid_redundancy
914 * @rs
915 *
916 * Determine if there are enough devices in the array that haven't
917 * failed (or are being rebuilt) to form a usable array.
918 *
919 * Returns: 0 on success, -EINVAL on failure.
920 */
921static int validate_raid_redundancy(struct raid_set *rs)
922{
923 unsigned int i, rebuild_cnt = 0;
924 unsigned int rebuilds_per_group = 0, copies;
925 unsigned int group_size, last_group_start;
926
927 for (i = 0; i < rs->md.raid_disks; i++)
928 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
929 !rs->dev[i].rdev.sb_page)
930 rebuild_cnt++;
931
932 switch (rs->raid_type->level) {
933 case 0:
934 break;
935 case 1:
936 if (rebuild_cnt >= rs->md.raid_disks)
937 goto too_many;
938 break;
939 case 4:
940 case 5:
941 case 6:
942 if (rebuild_cnt > rs->raid_type->parity_devs)
943 goto too_many;
944 break;
945 case 10:
946 copies = raid10_md_layout_to_copies(rs->md.new_layout);
947 if (rebuild_cnt < copies)
948 break;
949
950 /*
951 * It is possible to have a higher rebuild count for RAID10,
952 * as long as the failed devices occur in different mirror
953 * groups (i.e. different stripes).
954 *
955 * When checking "near" format, make sure no adjacent devices
956 * have failed beyond what can be handled. In addition to the
957 * simple case where the number of devices is a multiple of the
958 * number of copies, we must also handle cases where the number
959 * of devices is not a multiple of the number of copies.
960 * E.g. dev1 dev2 dev3 dev4 dev5
961 * A A B B C
962 * C D D E E
963 */
964 if (__is_raid10_near(rs->md.new_layout)) {
965 for (i = 0; i < rs->md.raid_disks; i++) {
966 if (!(i % copies))
967 rebuilds_per_group = 0;
968 if ((!rs->dev[i].rdev.sb_page ||
969 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
970 (++rebuilds_per_group >= copies))
971 goto too_many;
972 }
973 break;
974 }
975
976 /*
977 * When checking "far" and "offset" formats, we need to ensure
978 * that the device that holds its copy is not also dead or
979 * being rebuilt. (Note that "far" and "offset" formats only
980 * support two copies right now. These formats also only ever
981 * use the 'use_far_sets' variant.)
982 *
983 * This check is somewhat complicated by the need to account
984 * for arrays that are not a multiple of (far) copies. This
985 * results in the need to treat the last (potentially larger)
986 * set differently.
987 */
988 group_size = (rs->md.raid_disks / copies);
989 last_group_start = (rs->md.raid_disks / group_size) - 1;
990 last_group_start *= group_size;
991 for (i = 0; i < rs->md.raid_disks; i++) {
992 if (!(i % copies) && !(i > last_group_start))
993 rebuilds_per_group = 0;
994 if ((!rs->dev[i].rdev.sb_page ||
995 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
996 (++rebuilds_per_group >= copies))
997 goto too_many;
998 }
999 break;
1000 default:
1001 if (rebuild_cnt)
1002 return -EINVAL;
1003 }
1004
1005 return 0;
1006
1007too_many:
1008 return -EINVAL;
1009}
1010
1011/*
1012 * Possible arguments are...
1013 * <chunk_size> [optional_args]
1014 *
1015 * Argument definitions
1016 * <chunk_size> The number of sectors per disk that
1017 * will form the "stripe"
1018 * [[no]sync] Force or prevent recovery of the
1019 * entire array
1020 * [rebuild <idx>] Rebuild the drive indicated by the index
1021 * [daemon_sleep <ms>] Time between bitmap daemon work to
1022 * clear bits
1023 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1024 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1025 * [write_mostly <idx>] Indicate a write mostly drive via index
1026 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
1027 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
1028 * [region_size <sectors>] Defines granularity of bitmap
1029 *
1030 * RAID10-only options:
1031 * [raid10_copies <# copies>] Number of copies. (Default: 2)
1032 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
1033 */
1034static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1035 unsigned int num_raid_params)
1036{
1037 int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1038 unsigned int raid10_copies = 2;
1039 unsigned int i, write_mostly = 0;
1040 unsigned int region_size = 0;
1041 sector_t max_io_len;
1042 const char *arg, *key;
1043 struct raid_dev *rd;
1044 struct raid_type *rt = rs->raid_type;
1045
1046 arg = dm_shift_arg(as);
1047 num_raid_params--; /* Account for chunk_size argument */
1048
1049 if (kstrtoint(arg, 10, &value) < 0) {
1050 rs->ti->error = "Bad numerical argument given for chunk_size";
1051 return -EINVAL;
1052 }
1053
1054 /*
1055 * First, parse the in-order required arguments
1056 * "chunk_size" is the only argument of this type.
1057 */
1058 if (rt_is_raid1(rt)) {
1059 if (value)
1060 DMERR("Ignoring chunk size parameter for RAID 1");
1061 value = 0;
1062 } else if (!is_power_of_2(value)) {
1063 rs->ti->error = "Chunk size must be a power of 2";
1064 return -EINVAL;
1065 } else if (value < 8) {
1066 rs->ti->error = "Chunk size value is too small";
1067 return -EINVAL;
1068 }
1069
1070 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1071
1072 /*
1073 * We set each individual device as In_sync with a completed
1074 * 'recovery_offset'. If there has been a device failure or
1075 * replacement then one of the following cases applies:
1076 *
1077 * 1) User specifies 'rebuild'.
1078 * - Device is reset when param is read.
1079 * 2) A new device is supplied.
1080 * - No matching superblock found, resets device.
1081 * 3) Device failure was transient and returns on reload.
1082 * - Failure noticed, resets device for bitmap replay.
1083 * 4) Device hadn't completed recovery after previous failure.
1084 * - Superblock is read and overrides recovery_offset.
1085 *
1086 * What is found in the superblocks of the devices is always
1087 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1088 */
1089 for (i = 0; i < rs->raid_disks; i++) {
1090 set_bit(In_sync, &rs->dev[i].rdev.flags);
1091 rs->dev[i].rdev.recovery_offset = MaxSector;
1092 }
1093
1094 /*
1095 * Second, parse the unordered optional arguments
1096 */
1097 for (i = 0; i < num_raid_params; i++) {
1098 key = dm_shift_arg(as);
1099 if (!key) {
1100 rs->ti->error = "Not enough raid parameters given";
1101 return -EINVAL;
1102 }
1103
1104 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1105 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1106 rs->ti->error = "Only one 'nosync' argument allowed";
1107 return -EINVAL;
1108 }
1109 continue;
1110 }
1111 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1112 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1113 rs->ti->error = "Only one 'sync' argument allowed";
1114 return -EINVAL;
1115 }
1116 continue;
1117 }
1118 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1119 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1120 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1121 return -EINVAL;
1122 }
1123 continue;
1124 }
1125
1126 arg = dm_shift_arg(as);
1127 i++; /* Account for the argument pairs */
1128 if (!arg) {
1129 rs->ti->error = "Wrong number of raid parameters given";
1130 return -EINVAL;
1131 }
1132
1133 /*
1134 * Parameters that take a string value are checked here.
1135 */
1136
1137 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1138 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1139 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1140 return -EINVAL;
1141 }
1142 if (!rt_is_raid10(rt)) {
1143 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1144 return -EINVAL;
1145 }
1146 raid10_format = raid10_name_to_format(arg);
1147 if (raid10_format < 0) {
1148 rs->ti->error = "Invalid 'raid10_format' value given";
1149 return raid10_format;
1150 }
1151 continue;
1152 }
1153
1154 if (kstrtoint(arg, 10, &value) < 0) {
1155 rs->ti->error = "Bad numerical argument given in raid params";
1156 return -EINVAL;
1157 }
1158
1159 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1160 /*
1161 * "rebuild" is being passed in by userspace to provide
1162 * indexes of replaced devices and to set up additional
1163 * devices on raid level takeover.
1164 */
1165 if (!__within_range(value, 0, rs->raid_disks - 1)) {
1166 rs->ti->error = "Invalid rebuild index given";
1167 return -EINVAL;
1168 }
1169
1170 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1171 rs->ti->error = "rebuild for this index already given";
1172 return -EINVAL;
1173 }
1174
1175 rd = rs->dev + value;
1176 clear_bit(In_sync, &rd->rdev.flags);
1177 clear_bit(Faulty, &rd->rdev.flags);
1178 rd->rdev.recovery_offset = 0;
1179 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1180 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1181 if (!rt_is_raid1(rt)) {
1182 rs->ti->error = "write_mostly option is only valid for RAID1";
1183 return -EINVAL;
1184 }
1185
1186 if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1187 rs->ti->error = "Invalid write_mostly index given";
1188 return -EINVAL;
1189 }
1190
1191 write_mostly++;
1192 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1193 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1194 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1195 if (!rt_is_raid1(rt)) {
1196 rs->ti->error = "max_write_behind option is only valid for RAID1";
1197 return -EINVAL;
1198 }
1199
1200 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1201 rs->ti->error = "Only one max_write_behind argument pair allowed";
1202 return -EINVAL;
1203 }
1204
1205 /*
1206 * In device-mapper, we specify things in sectors, but
1207 * MD records this value in kB
1208 */
1209 value /= 2;
1210 if (value > COUNTER_MAX) {
1211 rs->ti->error = "Max write-behind limit out of range";
1212 return -EINVAL;
1213 }
1214
1215 rs->md.bitmap_info.max_write_behind = value;
1216 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1217 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1218 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1219 return -EINVAL;
1220 }
1221 if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
1222 rs->ti->error = "daemon sleep period out of range";
1223 return -EINVAL;
1224 }
1225 rs->md.bitmap_info.daemon_sleep = value;
1226 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1227 /* Userspace passes new data_offset after having extended the the data image LV */
1228 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1229 rs->ti->error = "Only one data_offset argument pair allowed";
1230 return -EINVAL;
1231 }
1232 /* Ensure sensible data offset */
1233 if (value < 0 ||
1234 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1235 rs->ti->error = "Bogus data_offset value";
1236 return -EINVAL;
1237 }
1238 rs->data_offset = value;
1239 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1240 /* Define the +/-# of disks to add to/remove from the given raid set */
1241 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1242 rs->ti->error = "Only one delta_disks argument pair allowed";
1243 return -EINVAL;
1244 }
1245 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1246 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1247 rs->ti->error = "Too many delta_disk requested";
1248 return -EINVAL;
1249 }
1250
1251 rs->delta_disks = value;
1252 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1253 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1254 rs->ti->error = "Only one stripe_cache argument pair allowed";
1255 return -EINVAL;
1256 }
1257
1258 if (!rt_is_raid456(rt)) {
1259 rs->ti->error = "Inappropriate argument: stripe_cache";
1260 return -EINVAL;
1261 }
1262
1263 rs->stripe_cache_entries = value;
1264 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1265 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1266 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1267 return -EINVAL;
1268 }
1269 if (value > INT_MAX) {
1270 rs->ti->error = "min_recovery_rate out of range";
1271 return -EINVAL;
1272 }
1273 rs->md.sync_speed_min = (int)value;
1274 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1275 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1276 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1277 return -EINVAL;
1278 }
1279 if (value > INT_MAX) {
1280 rs->ti->error = "max_recovery_rate out of range";
1281 return -EINVAL;
1282 }
1283 rs->md.sync_speed_max = (int)value;
1284 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1285 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1286 rs->ti->error = "Only one region_size argument pair allowed";
1287 return -EINVAL;
1288 }
1289
1290 region_size = value;
1291 rs->requested_bitmap_chunk_sectors = value;
1292 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1293 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1294 rs->ti->error = "Only one raid10_copies argument pair allowed";
1295 return -EINVAL;
1296 }
1297
1298 if (!__within_range(value, 2, rs->md.raid_disks)) {
1299 rs->ti->error = "Bad value for 'raid10_copies'";
1300 return -EINVAL;
1301 }
1302
1303 raid10_copies = value;
1304 } else {
1305 DMERR("Unable to parse RAID parameter: %s", key);
1306 rs->ti->error = "Unable to parse RAID parameter";
1307 return -EINVAL;
1308 }
1309 }
1310
1311 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1312 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1313 rs->ti->error = "sync and nosync are mutually exclusive";
1314 return -EINVAL;
1315 }
1316
1317 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1318 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1319 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1320 rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1321 return -EINVAL;
1322 }
1323
1324 if (write_mostly >= rs->md.raid_disks) {
1325 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1326 return -EINVAL;
1327 }
1328
1329 if (validate_region_size(rs, region_size))
1330 return -EINVAL;
1331
1332 if (rs->md.chunk_sectors)
1333 max_io_len = rs->md.chunk_sectors;
1334 else
1335 max_io_len = region_size;
1336
1337 if (dm_set_target_max_io_len(rs->ti, max_io_len))
1338 return -EINVAL;
1339
1340 if (rt_is_raid10(rt)) {
1341 if (raid10_copies > rs->md.raid_disks) {
1342 rs->ti->error = "Not enough devices to satisfy specification";
1343 return -EINVAL;
1344 }
1345
1346 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1347 if (rs->md.new_layout < 0) {
1348 rs->ti->error = "Error getting raid10 format";
1349 return rs->md.new_layout;
1350 }
1351
1352 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1353 if (!rt) {
1354 rs->ti->error = "Failed to recognize new raid10 layout";
1355 return -EINVAL;
1356 }
1357
1358 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1359 rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1360 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1361 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1362 return -EINVAL;
1363 }
1364 }
1365
1366 rs->raid10_copies = raid10_copies;
1367
1368 /* Assume there are no metadata devices until the drives are parsed */
1369 rs->md.persistent = 0;
1370 rs->md.external = 1;
1371
1372 /* Check, if any invalid ctr arguments have been passed in for the raid level */
1373 return rs_check_for_valid_flags(rs);
1374}
1375
1376/* Set raid4/5/6 cache size */
1377static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1378{
1379 int r;
1380 struct r5conf *conf;
1381 struct mddev *mddev = &rs->md;
1382 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1383 uint32_t nr_stripes = rs->stripe_cache_entries;
1384
1385 if (!rt_is_raid456(rs->raid_type)) {
1386 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1387 return -EINVAL;
1388 }
1389
1390 if (nr_stripes < min_stripes) {
1391 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1392 nr_stripes, min_stripes);
1393 nr_stripes = min_stripes;
1394 }
1395
1396 conf = mddev->private;
1397 if (!conf) {
1398 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1399 return -EINVAL;
1400 }
1401
1402 /* Try setting number of stripes in raid456 stripe cache */
1403 if (conf->min_nr_stripes != nr_stripes) {
1404 r = raid5_set_cache_size(mddev, nr_stripes);
1405 if (r) {
1406 rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1407 return r;
1408 }
1409
1410 DMINFO("%u stripe cache entries", nr_stripes);
1411 }
1412
1413 return 0;
1414}
1415
1416/* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1417static unsigned int mddev_data_stripes(struct raid_set *rs)
1418{
1419 return rs->md.raid_disks - rs->raid_type->parity_devs;
1420}
1421
1422/* Return # of data stripes of @rs (i.e. as of ctr) */
1423static unsigned int rs_data_stripes(struct raid_set *rs)
1424{
1425 return rs->raid_disks - rs->raid_type->parity_devs;
1426}
1427
1428/* Calculate the sectors per device and per array used for @rs */
1429static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev)
1430{
1431 int delta_disks;
1432 unsigned int data_stripes;
1433 struct mddev *mddev = &rs->md;
1434 struct md_rdev *rdev;
1435 sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len;
1436
1437 if (use_mddev) {
1438 delta_disks = mddev->delta_disks;
1439 data_stripes = mddev_data_stripes(rs);
1440 } else {
1441 delta_disks = rs->delta_disks;
1442 data_stripes = rs_data_stripes(rs);
1443 }
1444
1445 /* Special raid1 case w/o delta_disks support (yet) */
1446 if (rt_is_raid1(rs->raid_type))
1447 ;
1448 else if (rt_is_raid10(rs->raid_type)) {
1449 if (rs->raid10_copies < 2 ||
1450 delta_disks < 0) {
1451 rs->ti->error = "Bogus raid10 data copies or delta disks";
1452 return -EINVAL;
1453 }
1454
1455 dev_sectors *= rs->raid10_copies;
1456 if (sector_div(dev_sectors, data_stripes))
1457 goto bad;
1458
1459 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1460 if (sector_div(array_sectors, rs->raid10_copies))
1461 goto bad;
1462
1463 } else if (sector_div(dev_sectors, data_stripes))
1464 goto bad;
1465
1466 else
1467 /* Striped layouts */
1468 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1469
1470 rdev_for_each(rdev, mddev)
1471 rdev->sectors = dev_sectors;
1472
1473 mddev->array_sectors = array_sectors;
1474 mddev->dev_sectors = dev_sectors;
1475
1476 return 0;
1477bad:
1478 rs->ti->error = "Target length not divisible by number of data devices";
1479 return -EINVAL;
1480}
1481
1482/* Setup recovery on @rs */
1483static void __rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1484{
1485 /* raid0 does not recover */
1486 if (rs_is_raid0(rs))
1487 rs->md.recovery_cp = MaxSector;
1488 /*
1489 * A raid6 set has to be recovered either
1490 * completely or for the grown part to
1491 * ensure proper parity and Q-Syndrome
1492 */
1493 else if (rs_is_raid6(rs))
1494 rs->md.recovery_cp = dev_sectors;
1495 /*
1496 * Other raid set types may skip recovery
1497 * depending on the 'nosync' flag.
1498 */
1499 else
1500 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1501 ? MaxSector : dev_sectors;
1502}
1503
1504/* Setup recovery on @rs based on raid type, device size and 'nosync' flag */
1505static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1506{
1507 if (!dev_sectors)
1508 /* New raid set or 'sync' flag provided */
1509 __rs_setup_recovery(rs, 0);
1510 else if (dev_sectors == MaxSector)
1511 /* Prevent recovery */
1512 __rs_setup_recovery(rs, MaxSector);
1513 else if (rs->dev[0].rdev.sectors < dev_sectors)
1514 /* Grown raid set */
1515 __rs_setup_recovery(rs, rs->dev[0].rdev.sectors);
1516 else
1517 __rs_setup_recovery(rs, MaxSector);
1518}
1519
1520static void do_table_event(struct work_struct *ws)
1521{
1522 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1523
1524 smp_rmb(); /* Make sure we access most actual mddev properties */
1525 if (!rs_is_reshaping(rs))
1526 rs_set_capacity(rs);
1527 dm_table_event(rs->ti->table);
1528}
1529
1530static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1531{
1532 struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1533
1534 return mddev_congested(&rs->md, bits);
1535}
1536
1537/*
1538 * Make sure a valid takover (level switch) is being requested on @rs
1539 *
1540 * Conversions of raid sets from one MD personality to another
1541 * have to conform to restrictions which are enforced here.
1542 */
1543static int rs_check_takeover(struct raid_set *rs)
1544{
1545 struct mddev *mddev = &rs->md;
1546 unsigned int near_copies;
1547
1548 if (rs->md.degraded) {
1549 rs->ti->error = "Can't takeover degraded raid set";
1550 return -EPERM;
1551 }
1552
1553 if (rs_is_reshaping(rs)) {
1554 rs->ti->error = "Can't takeover reshaping raid set";
1555 return -EPERM;
1556 }
1557
1558 switch (mddev->level) {
1559 case 0:
1560 /* raid0 -> raid1/5 with one disk */
1561 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1562 mddev->raid_disks == 1)
1563 return 0;
1564
1565 /* raid0 -> raid10 */
1566 if (mddev->new_level == 10 &&
1567 !(rs->raid_disks % mddev->raid_disks))
1568 return 0;
1569
1570 /* raid0 with multiple disks -> raid4/5/6 */
1571 if (__within_range(mddev->new_level, 4, 6) &&
1572 mddev->new_layout == ALGORITHM_PARITY_N &&
1573 mddev->raid_disks > 1)
1574 return 0;
1575
1576 break;
1577
1578 case 10:
1579 /* Can't takeover raid10_offset! */
1580 if (__is_raid10_offset(mddev->layout))
1581 break;
1582
1583 near_copies = __raid10_near_copies(mddev->layout);
1584
1585 /* raid10* -> raid0 */
1586 if (mddev->new_level == 0) {
1587 /* Can takeover raid10_near with raid disks divisable by data copies! */
1588 if (near_copies > 1 &&
1589 !(mddev->raid_disks % near_copies)) {
1590 mddev->raid_disks /= near_copies;
1591 mddev->delta_disks = mddev->raid_disks;
1592 return 0;
1593 }
1594
1595 /* Can takeover raid10_far */
1596 if (near_copies == 1 &&
1597 __raid10_far_copies(mddev->layout) > 1)
1598 return 0;
1599
1600 break;
1601 }
1602
1603 /* raid10_{near,far} -> raid1 */
1604 if (mddev->new_level == 1 &&
1605 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1606 return 0;
1607
1608 /* raid10_{near,far} with 2 disks -> raid4/5 */
1609 if (__within_range(mddev->new_level, 4, 5) &&
1610 mddev->raid_disks == 2)
1611 return 0;
1612 break;
1613
1614 case 1:
1615 /* raid1 with 2 disks -> raid4/5 */
1616 if (__within_range(mddev->new_level, 4, 5) &&
1617 mddev->raid_disks == 2) {
1618 mddev->degraded = 1;
1619 return 0;
1620 }
1621
1622 /* raid1 -> raid0 */
1623 if (mddev->new_level == 0 &&
1624 mddev->raid_disks == 1)
1625 return 0;
1626
1627 /* raid1 -> raid10 */
1628 if (mddev->new_level == 10)
1629 return 0;
1630 break;
1631
1632 case 4:
1633 /* raid4 -> raid0 */
1634 if (mddev->new_level == 0)
1635 return 0;
1636
1637 /* raid4 -> raid1/5 with 2 disks */
1638 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1639 mddev->raid_disks == 2)
1640 return 0;
1641
1642 /* raid4 -> raid5/6 with parity N */
1643 if (__within_range(mddev->new_level, 5, 6) &&
1644 mddev->layout == ALGORITHM_PARITY_N)
1645 return 0;
1646 break;
1647
1648 case 5:
1649 /* raid5 with parity N -> raid0 */
1650 if (mddev->new_level == 0 &&
1651 mddev->layout == ALGORITHM_PARITY_N)
1652 return 0;
1653
1654 /* raid5 with parity N -> raid4 */
1655 if (mddev->new_level == 4 &&
1656 mddev->layout == ALGORITHM_PARITY_N)
1657 return 0;
1658
1659 /* raid5 with 2 disks -> raid1/4/10 */
1660 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1661 mddev->raid_disks == 2)
1662 return 0;
1663
1664 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1665 if (mddev->new_level == 6 &&
1666 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1667 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1668 return 0;
1669 break;
1670
1671 case 6:
1672 /* raid6 with parity N -> raid0 */
1673 if (mddev->new_level == 0 &&
1674 mddev->layout == ALGORITHM_PARITY_N)
1675 return 0;
1676
1677 /* raid6 with parity N -> raid4 */
1678 if (mddev->new_level == 4 &&
1679 mddev->layout == ALGORITHM_PARITY_N)
1680 return 0;
1681
1682 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1683 if (mddev->new_level == 5 &&
1684 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1685 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1686 return 0;
1687
1688 default:
1689 break;
1690 }
1691
1692 rs->ti->error = "takeover not possible";
1693 return -EINVAL;
1694}
1695
1696/* True if @rs requested to be taken over */
1697static bool rs_takeover_requested(struct raid_set *rs)
1698{
1699 return rs->md.new_level != rs->md.level;
1700}
1701
1702/* True if @rs is requested to reshape by ctr */
1703static bool rs_reshape_requested(struct raid_set *rs)
1704{
1705 bool change;
1706 struct mddev *mddev = &rs->md;
1707
1708 if (rs_takeover_requested(rs))
1709 return false;
1710
1711 if (!mddev->level)
1712 return false;
1713
1714 change = mddev->new_layout != mddev->layout ||
1715 mddev->new_chunk_sectors != mddev->chunk_sectors ||
1716 rs->delta_disks;
1717
1718 /* Historical case to support raid1 reshape without delta disks */
1719 if (mddev->level == 1) {
1720 if (rs->delta_disks)
1721 return !!rs->delta_disks;
1722
1723 return !change &&
1724 mddev->raid_disks != rs->raid_disks;
1725 }
1726
1727 if (mddev->level == 10)
1728 return change &&
1729 !__is_raid10_far(mddev->new_layout) &&
1730 rs->delta_disks >= 0;
1731
1732 return change;
1733}
1734
1735/* Features */
1736#define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */
1737
1738/* State flags for sb->flags */
1739#define SB_FLAG_RESHAPE_ACTIVE 0x1
1740#define SB_FLAG_RESHAPE_BACKWARDS 0x2
1741
1742/*
1743 * This structure is never routinely used by userspace, unlike md superblocks.
1744 * Devices with this superblock should only ever be accessed via device-mapper.
1745 */
1746#define DM_RAID_MAGIC 0x64526D44
1747struct dm_raid_superblock {
1748 __le32 magic; /* "DmRd" */
1749 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1750
1751 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */
1752 __le32 array_position; /* The position of this drive in the raid set */
1753
1754 __le64 events; /* Incremented by md when superblock updated */
1755 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */
1756 /* indicate failures (see extension below) */
1757
1758 /*
1759 * This offset tracks the progress of the repair or replacement of
1760 * an individual drive.
1761 */
1762 __le64 disk_recovery_offset;
1763
1764 /*
1765 * This offset tracks the progress of the initial raid set
1766 * synchronisation/parity calculation.
1767 */
1768 __le64 array_resync_offset;
1769
1770 /*
1771 * raid characteristics
1772 */
1773 __le32 level;
1774 __le32 layout;
1775 __le32 stripe_sectors;
1776
1777 /********************************************************************
1778 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1779 *
1780 * FEATURE_FLAG_SUPPORTS_V190 in the features member indicates that those exist
1781 */
1782
1783 __le32 flags; /* Flags defining array states for reshaping */
1784
1785 /*
1786 * This offset tracks the progress of a raid
1787 * set reshape in order to be able to restart it
1788 */
1789 __le64 reshape_position;
1790
1791 /*
1792 * These define the properties of the array in case of an interrupted reshape
1793 */
1794 __le32 new_level;
1795 __le32 new_layout;
1796 __le32 new_stripe_sectors;
1797 __le32 delta_disks;
1798
1799 __le64 array_sectors; /* Array size in sectors */
1800
1801 /*
1802 * Sector offsets to data on devices (reshaping).
1803 * Needed to support out of place reshaping, thus
1804 * not writing over any stripes whilst converting
1805 * them from old to new layout
1806 */
1807 __le64 data_offset;
1808 __le64 new_data_offset;
1809
1810 __le64 sectors; /* Used device size in sectors */
1811
1812 /*
1813 * Additonal Bit field of devices indicating failures to support
1814 * up to 256 devices with the 1.9.0 on-disk metadata format
1815 */
1816 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1817
1818 __le32 incompat_features; /* Used to indicate any incompatible features */
1819
1820 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1821} __packed;
1822
1823/*
1824 * Check for reshape constraints on raid set @rs:
1825 *
1826 * - reshape function non-existent
1827 * - degraded set
1828 * - ongoing recovery
1829 * - ongoing reshape
1830 *
1831 * Returns 0 if none or -EPERM if given constraint
1832 * and error message reference in @errmsg
1833 */
1834static int rs_check_reshape(struct raid_set *rs)
1835{
1836 struct mddev *mddev = &rs->md;
1837
1838 if (!mddev->pers || !mddev->pers->check_reshape)
1839 rs->ti->error = "Reshape not supported";
1840 else if (mddev->degraded)
1841 rs->ti->error = "Can't reshape degraded raid set";
1842 else if (rs_is_recovering(rs))
1843 rs->ti->error = "Convert request on recovering raid set prohibited";
1844 else if (rs_is_reshaping(rs))
1845 rs->ti->error = "raid set already reshaping!";
1846 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
1847 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
1848 else
1849 return 0;
1850
1851 return -EPERM;
1852}
1853
1854static int read_disk_sb(struct md_rdev *rdev, int size)
1855{
1856 BUG_ON(!rdev->sb_page);
1857
1858 if (rdev->sb_loaded)
1859 return 0;
1860
1861 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
1862 DMERR("Failed to read superblock of device at position %d",
1863 rdev->raid_disk);
1864 md_error(rdev->mddev, rdev);
1865 return -EINVAL;
1866 }
1867
1868 rdev->sb_loaded = 1;
1869
1870 return 0;
1871}
1872
1873static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1874{
1875 failed_devices[0] = le64_to_cpu(sb->failed_devices);
1876 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
1877
1878 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
1879 int i = ARRAY_SIZE(sb->extended_failed_devices);
1880
1881 while (i--)
1882 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
1883 }
1884}
1885
1886static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1887{
1888 int i = ARRAY_SIZE(sb->extended_failed_devices);
1889
1890 sb->failed_devices = cpu_to_le64(failed_devices[0]);
1891 while (i--)
1892 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
1893}
1894
1895/*
1896 * Synchronize the superblock members with the raid set properties
1897 *
1898 * All superblock data is little endian.
1899 */
1900static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
1901{
1902 bool update_failed_devices = false;
1903 unsigned int i;
1904 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1905 struct dm_raid_superblock *sb;
1906 struct raid_set *rs = container_of(mddev, struct raid_set, md);
1907
1908 /* No metadata device, no superblock */
1909 if (!rdev->meta_bdev)
1910 return;
1911
1912 BUG_ON(!rdev->sb_page);
1913
1914 sb = page_address(rdev->sb_page);
1915
1916 sb_retrieve_failed_devices(sb, failed_devices);
1917
1918 for (i = 0; i < rs->raid_disks; i++)
1919 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
1920 update_failed_devices = true;
1921 set_bit(i, (void *) failed_devices);
1922 }
1923
1924 if (update_failed_devices)
1925 sb_update_failed_devices(sb, failed_devices);
1926
1927 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
1928 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1929
1930 sb->num_devices = cpu_to_le32(mddev->raid_disks);
1931 sb->array_position = cpu_to_le32(rdev->raid_disk);
1932
1933 sb->events = cpu_to_le64(mddev->events);
1934
1935 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
1936 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
1937
1938 sb->level = cpu_to_le32(mddev->level);
1939 sb->layout = cpu_to_le32(mddev->layout);
1940 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
1941
1942 sb->new_level = cpu_to_le32(mddev->new_level);
1943 sb->new_layout = cpu_to_le32(mddev->new_layout);
1944 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
1945
1946 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1947
1948 smp_rmb(); /* Make sure we access most recent reshape position */
1949 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1950 if (le64_to_cpu(sb->reshape_position) != MaxSector) {
1951 /* Flag ongoing reshape */
1952 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
1953
1954 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
1955 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
1956 } else {
1957 /* Clear reshape flags */
1958 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
1959 }
1960
1961 sb->array_sectors = cpu_to_le64(mddev->array_sectors);
1962 sb->data_offset = cpu_to_le64(rdev->data_offset);
1963 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
1964 sb->sectors = cpu_to_le64(rdev->sectors);
1965 sb->incompat_features = cpu_to_le32(0);
1966
1967 /* Zero out the rest of the payload after the size of the superblock */
1968 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
1969}
1970
1971/*
1972 * super_load
1973 *
1974 * This function creates a superblock if one is not found on the device
1975 * and will decide which superblock to use if there's a choice.
1976 *
1977 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
1978 */
1979static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
1980{
1981 int r;
1982 struct dm_raid_superblock *sb;
1983 struct dm_raid_superblock *refsb;
1984 uint64_t events_sb, events_refsb;
1985
1986 rdev->sb_start = 0;
1987 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
1988 if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
1989 DMERR("superblock size of a logical block is no longer valid");
1990 return -EINVAL;
1991 }
1992
1993 r = read_disk_sb(rdev, rdev->sb_size);
1994 if (r)
1995 return r;
1996
1997 sb = page_address(rdev->sb_page);
1998
1999 /*
2000 * Two cases that we want to write new superblocks and rebuild:
2001 * 1) New device (no matching magic number)
2002 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2003 */
2004 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2005 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2006 super_sync(rdev->mddev, rdev);
2007
2008 set_bit(FirstUse, &rdev->flags);
2009 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2010
2011 /* Force writing of superblocks to disk */
2012 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2013
2014 /* Any superblock is better than none, choose that if given */
2015 return refdev ? 0 : 1;
2016 }
2017
2018 if (!refdev)
2019 return 1;
2020
2021 events_sb = le64_to_cpu(sb->events);
2022
2023 refsb = page_address(refdev->sb_page);
2024 events_refsb = le64_to_cpu(refsb->events);
2025
2026 return (events_sb > events_refsb) ? 1 : 0;
2027}
2028
2029static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2030{
2031 int role;
2032 unsigned int d;
2033 struct mddev *mddev = &rs->md;
2034 uint64_t events_sb;
2035 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2036 struct dm_raid_superblock *sb;
2037 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2038 struct md_rdev *r;
2039 struct dm_raid_superblock *sb2;
2040
2041 sb = page_address(rdev->sb_page);
2042 events_sb = le64_to_cpu(sb->events);
2043
2044 /*
2045 * Initialise to 1 if this is a new superblock.
2046 */
2047 mddev->events = events_sb ? : 1;
2048
2049 mddev->reshape_position = MaxSector;
2050
2051 mddev->raid_disks = le32_to_cpu(sb->num_devices);
2052 mddev->level = le32_to_cpu(sb->level);
2053 mddev->layout = le32_to_cpu(sb->layout);
2054 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2055
2056 /*
2057 * Reshaping is supported, e.g. reshape_position is valid
2058 * in superblock and superblock content is authoritative.
2059 */
2060 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2061 /* Superblock is authoritative wrt given raid set layout! */
2062 mddev->new_level = le32_to_cpu(sb->new_level);
2063 mddev->new_layout = le32_to_cpu(sb->new_layout);
2064 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2065 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2066 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2067
2068 /* raid was reshaping and got interrupted */
2069 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2070 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2071 DMERR("Reshape requested but raid set is still reshaping");
2072 return -EINVAL;
2073 }
2074
2075 if (mddev->delta_disks < 0 ||
2076 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2077 mddev->reshape_backwards = 1;
2078 else
2079 mddev->reshape_backwards = 0;
2080
2081 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2082 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2083 }
2084
2085 } else {
2086 /*
2087 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2088 */
2089 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2090 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2091
2092 if (rs_takeover_requested(rs)) {
2093 if (rt_cur && rt_new)
2094 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2095 rt_cur->name, rt_new->name);
2096 else
2097 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2098 return -EINVAL;
2099 } else if (rs_reshape_requested(rs)) {
2100 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2101 if (mddev->layout != mddev->new_layout) {
2102 if (rt_cur && rt_new)
2103 DMERR(" current layout %s vs new layout %s",
2104 rt_cur->name, rt_new->name);
2105 else
2106 DMERR(" current layout 0x%X vs new layout 0x%X",
2107 le32_to_cpu(sb->layout), mddev->new_layout);
2108 }
2109 if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2110 DMERR(" current stripe sectors %u vs new stripe sectors %u",
2111 mddev->chunk_sectors, mddev->new_chunk_sectors);
2112 if (rs->delta_disks)
2113 DMERR(" current %u disks vs new %u disks",
2114 mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2115 if (rs_is_raid10(rs)) {
2116 DMERR(" Old layout: %s w/ %u copies",
2117 raid10_md_layout_to_format(mddev->layout),
2118 raid10_md_layout_to_copies(mddev->layout));
2119 DMERR(" New layout: %s w/ %u copies",
2120 raid10_md_layout_to_format(mddev->new_layout),
2121 raid10_md_layout_to_copies(mddev->new_layout));
2122 }
2123 return -EINVAL;
2124 }
2125
2126 DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2127 }
2128
2129 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2130 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2131
2132 /*
2133 * During load, we set FirstUse if a new superblock was written.
2134 * There are two reasons we might not have a superblock:
2135 * 1) The raid set is brand new - in which case, all of the
2136 * devices must have their In_sync bit set. Also,
2137 * recovery_cp must be 0, unless forced.
2138 * 2) This is a new device being added to an old raid set
2139 * and the new device needs to be rebuilt - in which
2140 * case the In_sync bit will /not/ be set and
2141 * recovery_cp must be MaxSector.
2142 * 3) This is/are a new device(s) being added to an old
2143 * raid set during takeover to a higher raid level
2144 * to provide capacity for redundancy or during reshape
2145 * to add capacity to grow the raid set.
2146 */
2147 d = 0;
2148 rdev_for_each(r, mddev) {
2149 if (test_bit(FirstUse, &r->flags))
2150 new_devs++;
2151
2152 if (!test_bit(In_sync, &r->flags)) {
2153 DMINFO("Device %d specified for rebuild; clearing superblock",
2154 r->raid_disk);
2155 rebuilds++;
2156
2157 if (test_bit(FirstUse, &r->flags))
2158 rebuild_and_new++;
2159 }
2160
2161 d++;
2162 }
2163
2164 if (new_devs == rs->raid_disks || !rebuilds) {
2165 /* Replace a broken device */
2166 if (new_devs == 1 && !rs->delta_disks)
2167 ;
2168 if (new_devs == rs->raid_disks) {
2169 DMINFO("Superblocks created for new raid set");
2170 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2171 } else if (new_devs != rebuilds &&
2172 new_devs != rs->delta_disks) {
2173 DMERR("New device injected into existing raid set without "
2174 "'delta_disks' or 'rebuild' parameter specified");
2175 return -EINVAL;
2176 }
2177 } else if (new_devs && new_devs != rebuilds) {
2178 DMERR("%u 'rebuild' devices cannot be injected into"
2179 " a raid set with %u other first-time devices",
2180 rebuilds, new_devs);
2181 return -EINVAL;
2182 } else if (rebuilds) {
2183 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2184 DMERR("new device%s provided without 'rebuild'",
2185 new_devs > 1 ? "s" : "");
2186 return -EINVAL;
2187 } else if (rs_is_recovering(rs)) {
2188 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2189 (unsigned long long) mddev->recovery_cp);
2190 return -EINVAL;
2191 } else if (rs_is_reshaping(rs)) {
2192 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2193 (unsigned long long) mddev->reshape_position);
2194 return -EINVAL;
2195 }
2196 }
2197
2198 /*
2199 * Now we set the Faulty bit for those devices that are
2200 * recorded in the superblock as failed.
2201 */
2202 sb_retrieve_failed_devices(sb, failed_devices);
2203 rdev_for_each(r, mddev) {
2204 if (!r->sb_page)
2205 continue;
2206 sb2 = page_address(r->sb_page);
2207 sb2->failed_devices = 0;
2208 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2209
2210 /*
2211 * Check for any device re-ordering.
2212 */
2213 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2214 role = le32_to_cpu(sb2->array_position);
2215 if (role < 0)
2216 continue;
2217
2218 if (role != r->raid_disk) {
2219 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2220 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2221 rs->raid_disks % rs->raid10_copies) {
2222 rs->ti->error =
2223 "Cannot change raid10 near set to odd # of devices!";
2224 return -EINVAL;
2225 }
2226
2227 sb2->array_position = cpu_to_le32(r->raid_disk);
2228
2229 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2230 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2231 !rt_is_raid1(rs->raid_type)) {
2232 rs->ti->error = "Cannot change device positions in raid set";
2233 return -EINVAL;
2234 }
2235
2236 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2237 }
2238
2239 /*
2240 * Partial recovery is performed on
2241 * returning failed devices.
2242 */
2243 if (test_bit(role, (void *) failed_devices))
2244 set_bit(Faulty, &r->flags);
2245 }
2246 }
2247
2248 return 0;
2249}
2250
2251static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2252{
2253 struct mddev *mddev = &rs->md;
2254 struct dm_raid_superblock *sb;
2255
2256 if (rs_is_raid0(rs) || !rdev->sb_page)
2257 return 0;
2258
2259 sb = page_address(rdev->sb_page);
2260
2261 /*
2262 * If mddev->events is not set, we know we have not yet initialized
2263 * the array.
2264 */
2265 if (!mddev->events && super_init_validation(rs, rdev))
2266 return -EINVAL;
2267
2268 if (le32_to_cpu(sb->compat_features) &&
2269 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2270 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2271 return -EINVAL;
2272 }
2273
2274 if (sb->incompat_features) {
2275 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2276 return -EINVAL;
2277 }
2278
2279 /* Enable bitmap creation for RAID levels != 0 */
2280 mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096);
2281 rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2282
2283 if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2284 /* Retrieve device size stored in superblock to be prepared for shrink */
2285 rdev->sectors = le64_to_cpu(sb->sectors);
2286 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2287 if (rdev->recovery_offset == MaxSector)
2288 set_bit(In_sync, &rdev->flags);
2289 /*
2290 * If no reshape in progress -> we're recovering single
2291 * disk(s) and have to set the device(s) to out-of-sync
2292 */
2293 else if (!rs_is_reshaping(rs))
2294 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2295 }
2296
2297 /*
2298 * If a device comes back, set it as not In_sync and no longer faulty.
2299 */
2300 if (test_and_clear_bit(Faulty, &rdev->flags)) {
2301 rdev->recovery_offset = 0;
2302 clear_bit(In_sync, &rdev->flags);
2303 rdev->saved_raid_disk = rdev->raid_disk;
2304 }
2305
2306 /* Reshape support -> restore repective data offsets */
2307 rdev->data_offset = le64_to_cpu(sb->data_offset);
2308 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2309
2310 return 0;
2311}
2312
2313/*
2314 * Analyse superblocks and select the freshest.
2315 */
2316static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2317{
2318 int r;
2319 struct raid_dev *dev;
2320 struct md_rdev *rdev, *tmp, *freshest;
2321 struct mddev *mddev = &rs->md;
2322
2323 freshest = NULL;
2324 rdev_for_each_safe(rdev, tmp, mddev) {
2325 /*
2326 * Skipping super_load due to CTR_FLAG_SYNC will cause
2327 * the array to undergo initialization again as
2328 * though it were new. This is the intended effect
2329 * of the "sync" directive.
2330 *
2331 * When reshaping capability is added, we must ensure
2332 * that the "sync" directive is disallowed during the
2333 * reshape.
2334 */
2335 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2336 continue;
2337
2338 if (!rdev->meta_bdev)
2339 continue;
2340
2341 r = super_load(rdev, freshest);
2342
2343 switch (r) {
2344 case 1:
2345 freshest = rdev;
2346 break;
2347 case 0:
2348 break;
2349 default:
2350 /*
2351 * We have to keep any raid0 data/metadata device pairs or
2352 * the MD raid0 personality will fail to start the array.
2353 */
2354 if (rs_is_raid0(rs))
2355 continue;
2356
2357 dev = container_of(rdev, struct raid_dev, rdev);
2358 if (dev->meta_dev)
2359 dm_put_device(ti, dev->meta_dev);
2360
2361 dev->meta_dev = NULL;
2362 rdev->meta_bdev = NULL;
2363
2364 if (rdev->sb_page)
2365 put_page(rdev->sb_page);
2366
2367 rdev->sb_page = NULL;
2368
2369 rdev->sb_loaded = 0;
2370
2371 /*
2372 * We might be able to salvage the data device
2373 * even though the meta device has failed. For
2374 * now, we behave as though '- -' had been
2375 * set for this device in the table.
2376 */
2377 if (dev->data_dev)
2378 dm_put_device(ti, dev->data_dev);
2379
2380 dev->data_dev = NULL;
2381 rdev->bdev = NULL;
2382
2383 list_del(&rdev->same_set);
2384 }
2385 }
2386
2387 if (!freshest)
2388 return 0;
2389
2390 if (validate_raid_redundancy(rs)) {
2391 rs->ti->error = "Insufficient redundancy to activate array";
2392 return -EINVAL;
2393 }
2394
2395 /*
2396 * Validation of the freshest device provides the source of
2397 * validation for the remaining devices.
2398 */
2399 rs->ti->error = "Unable to assemble array: Invalid superblocks";
2400 if (super_validate(rs, freshest))
2401 return -EINVAL;
2402
2403 rdev_for_each(rdev, mddev)
2404 if ((rdev != freshest) && super_validate(rs, rdev))
2405 return -EINVAL;
2406 return 0;
2407}
2408
2409/*
2410 * Adjust data_offset and new_data_offset on all disk members of @rs
2411 * for out of place reshaping if requested by contructor
2412 *
2413 * We need free space at the beginning of each raid disk for forward
2414 * and at the end for backward reshapes which userspace has to provide
2415 * via remapping/reordering of space.
2416 */
2417static int rs_adjust_data_offsets(struct raid_set *rs)
2418{
2419 sector_t data_offset = 0, new_data_offset = 0;
2420 struct md_rdev *rdev;
2421
2422 /* Constructor did not request data offset change */
2423 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2424 if (!rs_is_reshapable(rs))
2425 goto out;
2426
2427 return 0;
2428 }
2429
2430 /* HM FIXME: get InSync raid_dev? */
2431 rdev = &rs->dev[0].rdev;
2432
2433 if (rs->delta_disks < 0) {
2434 /*
2435 * Removing disks (reshaping backwards):
2436 *
2437 * - before reshape: data is at offset 0 and free space
2438 * is at end of each component LV
2439 *
2440 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2441 */
2442 data_offset = 0;
2443 new_data_offset = rs->data_offset;
2444
2445 } else if (rs->delta_disks > 0) {
2446 /*
2447 * Adding disks (reshaping forwards):
2448 *
2449 * - before reshape: data is at offset rs->data_offset != 0 and
2450 * free space is at begin of each component LV
2451 *
2452 * - after reshape: data is at offset 0 on each component LV
2453 */
2454 data_offset = rs->data_offset;
2455 new_data_offset = 0;
2456
2457 } else {
2458 /*
2459 * User space passes in 0 for data offset after having removed reshape space
2460 *
2461 * - or - (data offset != 0)
2462 *
2463 * Changing RAID layout or chunk size -> toggle offsets
2464 *
2465 * - before reshape: data is at offset rs->data_offset 0 and
2466 * free space is at end of each component LV
2467 * -or-
2468 * data is at offset rs->data_offset != 0 and
2469 * free space is at begin of each component LV
2470 *
2471 * - after reshape: data is at offset 0 if it was at offset != 0
2472 * or at offset != 0 if it was at offset 0
2473 * on each component LV
2474 *
2475 */
2476 data_offset = rs->data_offset ? rdev->data_offset : 0;
2477 new_data_offset = data_offset ? 0 : rs->data_offset;
2478 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2479 }
2480
2481 /*
2482 * Make sure we got a minimum amount of free sectors per device
2483 */
2484 if (rs->data_offset &&
2485 to_sector(i_size_read(rdev->bdev->bd_inode)) - rdev->sectors < MIN_FREE_RESHAPE_SPACE) {
2486 rs->ti->error = data_offset ? "No space for forward reshape" :
2487 "No space for backward reshape";
2488 return -ENOSPC;
2489 }
2490out:
2491 /* Adjust data offsets on all rdevs */
2492 rdev_for_each(rdev, &rs->md) {
2493 rdev->data_offset = data_offset;
2494 rdev->new_data_offset = new_data_offset;
2495 }
2496
2497 return 0;
2498}
2499
2500/* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2501static void __reorder_raid_disk_indexes(struct raid_set *rs)
2502{
2503 int i = 0;
2504 struct md_rdev *rdev;
2505
2506 rdev_for_each(rdev, &rs->md) {
2507 rdev->raid_disk = i++;
2508 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2509 }
2510}
2511
2512/*
2513 * Setup @rs for takeover by a different raid level
2514 */
2515static int rs_setup_takeover(struct raid_set *rs)
2516{
2517 struct mddev *mddev = &rs->md;
2518 struct md_rdev *rdev;
2519 unsigned int d = mddev->raid_disks = rs->raid_disks;
2520 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2521
2522 if (rt_is_raid10(rs->raid_type)) {
2523 if (mddev->level == 0) {
2524 /* Userpace reordered disks -> adjust raid_disk indexes */
2525 __reorder_raid_disk_indexes(rs);
2526
2527 /* raid0 -> raid10_far layout */
2528 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2529 rs->raid10_copies);
2530 } else if (mddev->level == 1)
2531 /* raid1 -> raid10_near layout */
2532 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2533 rs->raid_disks);
2534 else
2535 return -EINVAL;
2536
2537 }
2538
2539 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2540 mddev->recovery_cp = MaxSector;
2541
2542 while (d--) {
2543 rdev = &rs->dev[d].rdev;
2544
2545 if (test_bit(d, (void *) rs->rebuild_disks)) {
2546 clear_bit(In_sync, &rdev->flags);
2547 clear_bit(Faulty, &rdev->flags);
2548 mddev->recovery_cp = rdev->recovery_offset = 0;
2549 /* Bitmap has to be created when we do an "up" takeover */
2550 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2551 }
2552
2553 rdev->new_data_offset = new_data_offset;
2554 }
2555
2556 return 0;
2557}
2558
2559/* Prepare @rs for reshape */
2560static int rs_prepare_reshape(struct raid_set *rs)
2561{
2562 bool reshape;
2563 struct mddev *mddev = &rs->md;
2564
2565 if (rs_is_raid10(rs)) {
2566 if (rs->raid_disks != mddev->raid_disks &&
2567 __is_raid10_near(mddev->layout) &&
2568 rs->raid10_copies &&
2569 rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2570 /*
2571 * raid disk have to be multiple of data copies to allow this conversion,
2572 *
2573 * This is actually not a reshape it is a
2574 * rebuild of any additional mirrors per group
2575 */
2576 if (rs->raid_disks % rs->raid10_copies) {
2577 rs->ti->error = "Can't reshape raid10 mirror groups";
2578 return -EINVAL;
2579 }
2580
2581 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2582 __reorder_raid_disk_indexes(rs);
2583 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2584 rs->raid10_copies);
2585 mddev->new_layout = mddev->layout;
2586 reshape = false;
2587 } else
2588 reshape = true;
2589
2590 } else if (rs_is_raid456(rs))
2591 reshape = true;
2592
2593 else if (rs_is_raid1(rs)) {
2594 if (rs->delta_disks) {
2595 /* Process raid1 via delta_disks */
2596 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2597 reshape = true;
2598 } else {
2599 /* Process raid1 without delta_disks */
2600 mddev->raid_disks = rs->raid_disks;
2601 reshape = false;
2602 }
2603 } else {
2604 rs->ti->error = "Called with bogus raid type";
2605 return -EINVAL;
2606 }
2607
2608 if (reshape) {
2609 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2610 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2611 } else if (mddev->raid_disks < rs->raid_disks)
2612 /* Create new superblocks and bitmaps, if any new disks */
2613 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2614
2615 return 0;
2616}
2617
2618/*
2619 *
2620 * - change raid layout
2621 * - change chunk size
2622 * - add disks
2623 * - remove disks
2624 */
2625static int rs_setup_reshape(struct raid_set *rs)
2626{
2627 int r = 0;
2628 unsigned int cur_raid_devs, d;
2629 struct mddev *mddev = &rs->md;
2630 struct md_rdev *rdev;
2631
2632 mddev->delta_disks = rs->delta_disks;
2633 cur_raid_devs = mddev->raid_disks;
2634
2635 /* Ignore impossible layout change whilst adding/removing disks */
2636 if (mddev->delta_disks &&
2637 mddev->layout != mddev->new_layout) {
2638 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2639 mddev->new_layout = mddev->layout;
2640 }
2641
2642 /*
2643 * Adjust array size:
2644 *
2645 * - in case of adding disks, array size has
2646 * to grow after the disk adding reshape,
2647 * which'll hapen in the event handler;
2648 * reshape will happen forward, so space has to
2649 * be available at the beginning of each disk
2650 *
2651 * - in case of removing disks, array size
2652 * has to shrink before starting the reshape,
2653 * which'll happen here;
2654 * reshape will happen backward, so space has to
2655 * be available at the end of each disk
2656 *
2657 * - data_offset and new_data_offset are
2658 * adjusted for aforementioned out of place
2659 * reshaping based on userspace passing in
2660 * the "data_offset <sectors>" key/value
2661 * pair via the constructor
2662 */
2663
2664 /* Add disk(s) */
2665 if (rs->delta_disks > 0) {
2666 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2667 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2668 rdev = &rs->dev[d].rdev;
2669 clear_bit(In_sync, &rdev->flags);
2670
2671 /*
2672 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2673 * by md, which'll store that erroneously in the superblock on reshape
2674 */
2675 rdev->saved_raid_disk = -1;
2676 rdev->raid_disk = d;
2677
2678 rdev->sectors = mddev->dev_sectors;
2679 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2680 }
2681
2682 mddev->reshape_backwards = 0; /* adding disks -> forward reshape */
2683
2684 /* Remove disk(s) */
2685 } else if (rs->delta_disks < 0) {
2686 r = rs_set_dev_and_array_sectors(rs, true);
2687 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2688
2689 /* Change layout and/or chunk size */
2690 } else {
2691 /*
2692 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2693 *
2694 * keeping number of disks and do layout change ->
2695 *
2696 * toggle reshape_backward depending on data_offset:
2697 *
2698 * - free space upfront -> reshape forward
2699 *
2700 * - free space at the end -> reshape backward
2701 *
2702 *
2703 * This utilizes free reshape space avoiding the need
2704 * for userspace to move (parts of) LV segments in
2705 * case of layout/chunksize change (for disk
2706 * adding/removing reshape space has to be at
2707 * the proper address (see above with delta_disks):
2708 *
2709 * add disk(s) -> begin
2710 * remove disk(s)-> end
2711 */
2712 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2713 }
2714
2715 return r;
2716}
2717
2718/*
2719 * Enable/disable discard support on RAID set depending on
2720 * RAID level and discard properties of underlying RAID members.
2721 */
2722static void configure_discard_support(struct raid_set *rs)
2723{
2724 int i;
2725 bool raid456;
2726 struct dm_target *ti = rs->ti;
2727
2728 /* Assume discards not supported until after checks below. */
2729 ti->discards_supported = false;
2730
2731 /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
2732 raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
2733
2734 for (i = 0; i < rs->raid_disks; i++) {
2735 struct request_queue *q;
2736
2737 if (!rs->dev[i].rdev.bdev)
2738 continue;
2739
2740 q = bdev_get_queue(rs->dev[i].rdev.bdev);
2741 if (!q || !blk_queue_discard(q))
2742 return;
2743
2744 if (raid456) {
2745 if (!q->limits.discard_zeroes_data)
2746 return;
2747 if (!devices_handle_discard_safely) {
2748 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2749 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2750 return;
2751 }
2752 }
2753 }
2754
2755 /* All RAID members properly support discards */
2756 ti->discards_supported = true;
2757
2758 /*
2759 * RAID1 and RAID10 personalities require bio splitting,
2760 * RAID0/4/5/6 don't and process large discard bios properly.
2761 */
2762 ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
2763 ti->num_discard_bios = 1;
2764}
2765
2766/*
2767 * Construct a RAID0/1/10/4/5/6 mapping:
2768 * Args:
2769 * <raid_type> <#raid_params> <raid_params>{0,} \
2770 * <#raid_devs> [<meta_dev1> <dev1>]{1,}
2771 *
2772 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
2773 * details on possible <raid_params>.
2774 *
2775 * Userspace is free to initialize the metadata devices, hence the superblocks to
2776 * enforce recreation based on the passed in table parameters.
2777 *
2778 */
2779static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2780{
2781 int r;
2782 bool resize;
2783 struct raid_type *rt;
2784 unsigned int num_raid_params, num_raid_devs;
2785 sector_t calculated_dev_sectors;
2786 struct raid_set *rs = NULL;
2787 const char *arg;
2788 struct rs_layout rs_layout;
2789 struct dm_arg_set as = { argc, argv }, as_nrd;
2790 struct dm_arg _args[] = {
2791 { 0, as.argc, "Cannot understand number of raid parameters" },
2792 { 1, 254, "Cannot understand number of raid devices parameters" }
2793 };
2794
2795 /* Must have <raid_type> */
2796 arg = dm_shift_arg(&as);
2797 if (!arg) {
2798 ti->error = "No arguments";
2799 return -EINVAL;
2800 }
2801
2802 rt = get_raid_type(arg);
2803 if (!rt) {
2804 ti->error = "Unrecognised raid_type";
2805 return -EINVAL;
2806 }
2807
2808 /* Must have <#raid_params> */
2809 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
2810 return -EINVAL;
2811
2812 /* number of raid device tupples <meta_dev data_dev> */
2813 as_nrd = as;
2814 dm_consume_args(&as_nrd, num_raid_params);
2815 _args[1].max = (as_nrd.argc - 1) / 2;
2816 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
2817 return -EINVAL;
2818
2819 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
2820 ti->error = "Invalid number of supplied raid devices";
2821 return -EINVAL;
2822 }
2823
2824 rs = raid_set_alloc(ti, rt, num_raid_devs);
2825 if (IS_ERR(rs))
2826 return PTR_ERR(rs);
2827
2828 r = parse_raid_params(rs, &as, num_raid_params);
2829 if (r)
2830 goto bad;
2831
2832 r = parse_dev_params(rs, &as);
2833 if (r)
2834 goto bad;
2835
2836 rs->md.sync_super = super_sync;
2837
2838 /*
2839 * Calculate ctr requested array and device sizes to allow
2840 * for superblock analysis needing device sizes defined.
2841 *
2842 * Any existing superblock will overwrite the array and device sizes
2843 */
2844 r = rs_set_dev_and_array_sectors(rs, false);
2845 if (r)
2846 goto bad;
2847
2848 calculated_dev_sectors = rs->dev[0].rdev.sectors;
2849
2850 /*
2851 * Backup any new raid set level, layout, ...
2852 * requested to be able to compare to superblock
2853 * members for conversion decisions.
2854 */
2855 rs_config_backup(rs, &rs_layout);
2856
2857 r = analyse_superblocks(ti, rs);
2858 if (r)
2859 goto bad;
2860
2861 resize = calculated_dev_sectors != rs->dev[0].rdev.sectors;
2862
2863 INIT_WORK(&rs->md.event_work, do_table_event);
2864 ti->private = rs;
2865 ti->num_flush_bios = 1;
2866
2867 /* Restore any requested new layout for conversion decision */
2868 rs_config_restore(rs, &rs_layout);
2869
2870 /*
2871 * Now that we have any superblock metadata available,
2872 * check for new, recovering, reshaping, to be taken over,
2873 * to be reshaped or an existing, unchanged raid set to
2874 * run in sequence.
2875 */
2876 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
2877 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
2878 if (rs_is_raid6(rs) &&
2879 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
2880 ti->error = "'nosync' not allowed for new raid6 set";
2881 r = -EINVAL;
2882 goto bad;
2883 }
2884 rs_setup_recovery(rs, 0);
2885 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2886 rs_set_new(rs);
2887 } else if (rs_is_recovering(rs)) {
2888 /* A recovering raid set may be resized */
2889 ; /* skip setup rs */
2890 } else if (rs_is_reshaping(rs)) {
2891 /* Have to reject size change request during reshape */
2892 if (resize) {
2893 ti->error = "Can't resize a reshaping raid set";
2894 r = -EPERM;
2895 goto bad;
2896 }
2897 /* skip setup rs */
2898 } else if (rs_takeover_requested(rs)) {
2899 if (rs_is_reshaping(rs)) {
2900 ti->error = "Can't takeover a reshaping raid set";
2901 r = -EPERM;
2902 goto bad;
2903 }
2904
2905 /*
2906 * If a takeover is needed, userspace sets any additional
2907 * devices to rebuild and we can check for a valid request here.
2908 *
2909 * If acceptible, set the level to the new requested
2910 * one, prohibit requesting recovery, allow the raid
2911 * set to run and store superblocks during resume.
2912 */
2913 r = rs_check_takeover(rs);
2914 if (r)
2915 goto bad;
2916
2917 r = rs_setup_takeover(rs);
2918 if (r)
2919 goto bad;
2920
2921 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2922 /* Takeover ain't recovery, so disable recovery */
2923 rs_setup_recovery(rs, MaxSector);
2924 rs_set_new(rs);
2925 } else if (rs_reshape_requested(rs)) {
2926 /*
2927 * We can only prepare for a reshape here, because the
2928 * raid set needs to run to provide the repective reshape
2929 * check functions via its MD personality instance.
2930 *
2931 * So do the reshape check after md_run() succeeded.
2932 */
2933 r = rs_prepare_reshape(rs);
2934 if (r)
2935 return r;
2936
2937 /* Reshaping ain't recovery, so disable recovery */
2938 rs_setup_recovery(rs, MaxSector);
2939 rs_set_cur(rs);
2940 } else {
2941 /* May not set recovery when a device rebuild is requested */
2942 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
2943 rs_setup_recovery(rs, MaxSector);
2944 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2945 } else
2946 rs_setup_recovery(rs, test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ?
2947 0 : (resize ? calculated_dev_sectors : MaxSector));
2948 rs_set_cur(rs);
2949 }
2950
2951 /* If constructor requested it, change data and new_data offsets */
2952 r = rs_adjust_data_offsets(rs);
2953 if (r)
2954 goto bad;
2955
2956 /* Start raid set read-only and assumed clean to change in raid_resume() */
2957 rs->md.ro = 1;
2958 rs->md.in_sync = 1;
2959 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
2960
2961 /* Has to be held on running the array */
2962 mddev_lock_nointr(&rs->md);
2963 r = md_run(&rs->md);
2964 rs->md.in_sync = 0; /* Assume already marked dirty */
2965
2966 if (r) {
2967 ti->error = "Failed to run raid array";
2968 mddev_unlock(&rs->md);
2969 goto bad;
2970 }
2971
2972 rs->callbacks.congested_fn = raid_is_congested;
2973 dm_table_add_target_callbacks(ti->table, &rs->callbacks);
2974
2975 mddev_suspend(&rs->md);
2976
2977 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
2978 if (rs_is_raid456(rs)) {
2979 r = rs_set_raid456_stripe_cache(rs);
2980 if (r)
2981 goto bad_stripe_cache;
2982 }
2983
2984 /* Now do an early reshape check */
2985 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
2986 r = rs_check_reshape(rs);
2987 if (r)
2988 goto bad_check_reshape;
2989
2990 /* Restore new, ctr requested layout to perform check */
2991 rs_config_restore(rs, &rs_layout);
2992
2993 if (rs->md.pers->start_reshape) {
2994 r = rs->md.pers->check_reshape(&rs->md);
2995 if (r) {
2996 ti->error = "Reshape check failed";
2997 goto bad_check_reshape;
2998 }
2999 }
3000 }
3001
3002 /* Disable/enable discard support on raid set. */
3003 configure_discard_support(rs);
3004
3005 mddev_unlock(&rs->md);
3006 return 0;
3007
3008bad_stripe_cache:
3009bad_check_reshape:
3010 md_stop(&rs->md);
3011bad:
3012 raid_set_free(rs);
3013
3014 return r;
3015}
3016
3017static void raid_dtr(struct dm_target *ti)
3018{
3019 struct raid_set *rs = ti->private;
3020
3021 list_del_init(&rs->callbacks.list);
3022 md_stop(&rs->md);
3023 raid_set_free(rs);
3024}
3025
3026static int raid_map(struct dm_target *ti, struct bio *bio)
3027{
3028 struct raid_set *rs = ti->private;
3029 struct mddev *mddev = &rs->md;
3030
3031 /*
3032 * If we're reshaping to add disk(s)), ti->len and
3033 * mddev->array_sectors will differ during the process
3034 * (ti->len > mddev->array_sectors), so we have to requeue
3035 * bios with addresses > mddev->array_sectors here or
3036 * there will occur accesses past EOD of the component
3037 * data images thus erroring the raid set.
3038 */
3039 if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
3040 return DM_MAPIO_REQUEUE;
3041
3042 mddev->pers->make_request(mddev, bio);
3043
3044 return DM_MAPIO_SUBMITTED;
3045}
3046
3047/* Return string describing the current sync action of @mddev */
3048static const char *decipher_sync_action(struct mddev *mddev)
3049{
3050 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3051 return "frozen";
3052
3053 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3054 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3055 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3056 return "reshape";
3057
3058 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3059 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3060 return "resync";
3061 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3062 return "check";
3063 return "repair";
3064 }
3065
3066 if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3067 return "recover";
3068 }
3069
3070 return "idle";
3071}
3072
3073/*
3074 * Return status string @rdev
3075 *
3076 * Status characters:
3077 *
3078 * 'D' = Dead/Failed device
3079 * 'a' = Alive but not in-sync
3080 * 'A' = Alive and in-sync
3081 */
3082static const char *__raid_dev_status(struct md_rdev *rdev, bool array_in_sync)
3083{
3084 if (test_bit(Faulty, &rdev->flags))
3085 return "D";
3086 else if (!array_in_sync || !test_bit(In_sync, &rdev->flags))
3087 return "a";
3088 else
3089 return "A";
3090}
3091
3092/* Helper to return resync/reshape progress for @rs and @array_in_sync */
3093static sector_t rs_get_progress(struct raid_set *rs,
3094 sector_t resync_max_sectors, bool *array_in_sync)
3095{
3096 sector_t r, recovery_cp, curr_resync_completed;
3097 struct mddev *mddev = &rs->md;
3098
3099 curr_resync_completed = mddev->curr_resync_completed ?: mddev->recovery_cp;
3100 recovery_cp = mddev->recovery_cp;
3101 *array_in_sync = false;
3102
3103 if (rs_is_raid0(rs)) {
3104 r = resync_max_sectors;
3105 *array_in_sync = true;
3106
3107 } else {
3108 r = mddev->reshape_position;
3109
3110 /* Reshape is relative to the array size */
3111 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
3112 r != MaxSector) {
3113 if (r == MaxSector) {
3114 *array_in_sync = true;
3115 r = resync_max_sectors;
3116 } else {
3117 /* Got to reverse on backward reshape */
3118 if (mddev->reshape_backwards)
3119 r = mddev->array_sectors - r;
3120
3121 /* Devide by # of data stripes */
3122 sector_div(r, mddev_data_stripes(rs));
3123 }
3124
3125 /* Sync is relative to the component device size */
3126 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3127 r = curr_resync_completed;
3128 else
3129 r = recovery_cp;
3130
3131 if (r == MaxSector) {
3132 /*
3133 * Sync complete.
3134 */
3135 *array_in_sync = true;
3136 r = resync_max_sectors;
3137 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3138 /*
3139 * If "check" or "repair" is occurring, the raid set has
3140 * undergone an initial sync and the health characters
3141 * should not be 'a' anymore.
3142 */
3143 *array_in_sync = true;
3144 } else {
3145 struct md_rdev *rdev;
3146
3147 /*
3148 * The raid set may be doing an initial sync, or it may
3149 * be rebuilding individual components. If all the
3150 * devices are In_sync, then it is the raid set that is
3151 * being initialized.
3152 */
3153 rdev_for_each(rdev, mddev)
3154 if (!test_bit(In_sync, &rdev->flags))
3155 *array_in_sync = true;
3156#if 0
3157 r = 0; /* HM FIXME: TESTME: https://bugzilla.redhat.com/show_bug.cgi?id=1210637 ? */
3158#endif
3159 }
3160 }
3161
3162 return r;
3163}
3164
3165/* Helper to return @dev name or "-" if !@dev */
3166static const char *__get_dev_name(struct dm_dev *dev)
3167{
3168 return dev ? dev->name : "-";
3169}
3170
3171static void raid_status(struct dm_target *ti, status_type_t type,
3172 unsigned int status_flags, char *result, unsigned int maxlen)
3173{
3174 struct raid_set *rs = ti->private;
3175 struct mddev *mddev = &rs->md;
3176 struct r5conf *conf = mddev->private;
3177 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3178 bool array_in_sync;
3179 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3180 unsigned int sz = 0;
3181 unsigned int rebuild_disks;
3182 unsigned int write_mostly_params = 0;
3183 sector_t progress, resync_max_sectors, resync_mismatches;
3184 const char *sync_action;
3185 struct raid_type *rt;
3186 struct md_rdev *rdev;
3187
3188 switch (type) {
3189 case STATUSTYPE_INFO:
3190 /* *Should* always succeed */
3191 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3192 if (!rt)
3193 return;
3194
3195 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3196
3197 /* Access most recent mddev properties for status output */
3198 smp_rmb();
3199 /* Get sensible max sectors even if raid set not yet started */
3200 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3201 mddev->resync_max_sectors : mddev->dev_sectors;
3202 progress = rs_get_progress(rs, resync_max_sectors, &array_in_sync);
3203 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3204 atomic64_read(&mddev->resync_mismatches) : 0;
3205 sync_action = decipher_sync_action(&rs->md);
3206
3207 /* HM FIXME: do we want another state char for raid0? It shows 'D' or 'A' now */
3208 rdev_for_each(rdev, mddev)
3209 DMEMIT(__raid_dev_status(rdev, array_in_sync));
3210
3211 /*
3212 * In-sync/Reshape ratio:
3213 * The in-sync ratio shows the progress of:
3214 * - Initializing the raid set
3215 * - Rebuilding a subset of devices of the raid set
3216 * The user can distinguish between the two by referring
3217 * to the status characters.
3218 *
3219 * The reshape ratio shows the progress of
3220 * changing the raid layout or the number of
3221 * disks of a raid set
3222 */
3223 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3224 (unsigned long long) resync_max_sectors);
3225
3226 /*
3227 * v1.5.0+:
3228 *
3229 * Sync action:
3230 * See Documentation/device-mapper/dm-raid.txt for
3231 * information on each of these states.
3232 */
3233 DMEMIT(" %s", sync_action);
3234
3235 /*
3236 * v1.5.0+:
3237 *
3238 * resync_mismatches/mismatch_cnt
3239 * This field shows the number of discrepancies found when
3240 * performing a "check" of the raid set.
3241 */
3242 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3243
3244 /*
3245 * v1.9.0+:
3246 *
3247 * data_offset (needed for out of space reshaping)
3248 * This field shows the data offset into the data
3249 * image LV where the first stripes data starts.
3250 *
3251 * We keep data_offset equal on all raid disks of the set,
3252 * so retrieving it from the first raid disk is sufficient.
3253 */
3254 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3255 break;
3256
3257 case STATUSTYPE_TABLE:
3258 /* Report the table line string you would use to construct this raid set */
3259
3260 /* Calculate raid parameter count */
3261 for (i = 0; i < rs->raid_disks; i++)
3262 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3263 write_mostly_params += 2;
3264 rebuild_disks = memweight(rs->rebuild_disks, DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks));
3265 raid_param_cnt += rebuild_disks * 2 +
3266 write_mostly_params +
3267 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3268 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3269 /* Emit table line */
3270 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3271 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3272 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3273 raid10_md_layout_to_format(mddev->layout));
3274 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3275 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3276 raid10_md_layout_to_copies(mddev->layout));
3277 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3278 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3279 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3280 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3281 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3282 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3283 (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3284 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3285 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3286 (unsigned long long) rs->data_offset);
3287 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3288 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3289 mddev->bitmap_info.daemon_sleep);
3290 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3291 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3292 max(rs->delta_disks, mddev->delta_disks));
3293 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3294 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3295 max_nr_stripes);
3296 if (rebuild_disks)
3297 for (i = 0; i < rs->raid_disks; i++)
3298 if (test_bit(rs->dev[i].rdev.raid_disk, (void *) rs->rebuild_disks))
3299 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3300 rs->dev[i].rdev.raid_disk);
3301 if (write_mostly_params)
3302 for (i = 0; i < rs->raid_disks; i++)
3303 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3304 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3305 rs->dev[i].rdev.raid_disk);
3306 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3307 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3308 mddev->bitmap_info.max_write_behind);
3309 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3310 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3311 mddev->sync_speed_max);
3312 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3313 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3314 mddev->sync_speed_min);
3315 DMEMIT(" %d", rs->raid_disks);
3316 for (i = 0; i < rs->raid_disks; i++)
3317 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3318 __get_dev_name(rs->dev[i].data_dev));
3319 }
3320}
3321
3322static int raid_message(struct dm_target *ti, unsigned int argc, char **argv)
3323{
3324 struct raid_set *rs = ti->private;
3325 struct mddev *mddev = &rs->md;
3326
3327 if (!mddev->pers || !mddev->pers->sync_request)
3328 return -EINVAL;
3329
3330 if (!strcasecmp(argv[0], "frozen"))
3331 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3332 else
3333 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3334
3335 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3336 if (mddev->sync_thread) {
3337 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3338 md_reap_sync_thread(mddev);
3339 }
3340 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3341 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3342 return -EBUSY;
3343 else if (!strcasecmp(argv[0], "resync"))
3344 ; /* MD_RECOVERY_NEEDED set below */
3345 else if (!strcasecmp(argv[0], "recover"))
3346 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3347 else {
3348 if (!strcasecmp(argv[0], "check"))
3349 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3350 else if (!!strcasecmp(argv[0], "repair"))
3351 return -EINVAL;
3352 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3353 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3354 }
3355 if (mddev->ro == 2) {
3356 /* A write to sync_action is enough to justify
3357 * canceling read-auto mode
3358 */
3359 mddev->ro = 0;
3360 if (!mddev->suspended && mddev->sync_thread)
3361 md_wakeup_thread(mddev->sync_thread);
3362 }
3363 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3364 if (!mddev->suspended && mddev->thread)
3365 md_wakeup_thread(mddev->thread);
3366
3367 return 0;
3368}
3369
3370static int raid_iterate_devices(struct dm_target *ti,
3371 iterate_devices_callout_fn fn, void *data)
3372{
3373 struct raid_set *rs = ti->private;
3374 unsigned int i;
3375 int r = 0;
3376
3377 for (i = 0; !r && i < rs->md.raid_disks; i++)
3378 if (rs->dev[i].data_dev)
3379 r = fn(ti,
3380 rs->dev[i].data_dev,
3381 0, /* No offset on data devs */
3382 rs->md.dev_sectors,
3383 data);
3384
3385 return r;
3386}
3387
3388static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3389{
3390 struct raid_set *rs = ti->private;
3391 unsigned int chunk_size = to_bytes(rs->md.chunk_sectors);
3392
3393 blk_limits_io_min(limits, chunk_size);
3394 blk_limits_io_opt(limits, chunk_size * mddev_data_stripes(rs));
3395}
3396
3397static void raid_presuspend(struct dm_target *ti)
3398{
3399 struct raid_set *rs = ti->private;
3400
3401 md_stop_writes(&rs->md);
3402}
3403
3404static void raid_postsuspend(struct dm_target *ti)
3405{
3406 struct raid_set *rs = ti->private;
3407
3408 if (!rs->md.suspended)
3409 mddev_suspend(&rs->md);
3410
3411 rs->md.ro = 1;
3412}
3413
3414static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3415{
3416 int i;
3417 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3418 unsigned long flags;
3419 bool cleared = false;
3420 struct dm_raid_superblock *sb;
3421 struct mddev *mddev = &rs->md;
3422 struct md_rdev *r;
3423
3424 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3425 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3426 return;
3427
3428 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3429
3430 for (i = 0; i < rs->md.raid_disks; i++) {
3431 r = &rs->dev[i].rdev;
3432 if (test_bit(Faulty, &r->flags) && r->sb_page &&
3433 sync_page_io(r, 0, r->sb_size, r->sb_page,
3434 REQ_OP_READ, 0, true)) {
3435 DMINFO("Faulty %s device #%d has readable super block."
3436 " Attempting to revive it.",
3437 rs->raid_type->name, i);
3438
3439 /*
3440 * Faulty bit may be set, but sometimes the array can
3441 * be suspended before the personalities can respond
3442 * by removing the device from the array (i.e. calling
3443 * 'hot_remove_disk'). If they haven't yet removed
3444 * the failed device, its 'raid_disk' number will be
3445 * '>= 0' - meaning we must call this function
3446 * ourselves.
3447 */
3448 if ((r->raid_disk >= 0) &&
3449 (mddev->pers->hot_remove_disk(mddev, r) != 0))
3450 /* Failed to revive this device, try next */
3451 continue;
3452
3453 r->raid_disk = i;
3454 r->saved_raid_disk = i;
3455 flags = r->flags;
3456 clear_bit(Faulty, &r->flags);
3457 clear_bit(WriteErrorSeen, &r->flags);
3458 clear_bit(In_sync, &r->flags);
3459 if (mddev->pers->hot_add_disk(mddev, r)) {
3460 r->raid_disk = -1;
3461 r->saved_raid_disk = -1;
3462 r->flags = flags;
3463 } else {
3464 r->recovery_offset = 0;
3465 set_bit(i, (void *) cleared_failed_devices);
3466 cleared = true;
3467 }
3468 }
3469 }
3470
3471 /* If any failed devices could be cleared, update all sbs failed_devices bits */
3472 if (cleared) {
3473 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3474
3475 rdev_for_each(r, &rs->md) {
3476 sb = page_address(r->sb_page);
3477 sb_retrieve_failed_devices(sb, failed_devices);
3478
3479 for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3480 failed_devices[i] &= ~cleared_failed_devices[i];
3481
3482 sb_update_failed_devices(sb, failed_devices);
3483 }
3484 }
3485}
3486
3487static int __load_dirty_region_bitmap(struct raid_set *rs)
3488{
3489 int r = 0;
3490
3491 /* Try loading the bitmap unless "raid0", which does not have one */
3492 if (!rs_is_raid0(rs) &&
3493 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3494 r = bitmap_load(&rs->md);
3495 if (r)
3496 DMERR("Failed to load bitmap");
3497 }
3498
3499 return r;
3500}
3501
3502/* Enforce updating all superblocks */
3503static void rs_update_sbs(struct raid_set *rs)
3504{
3505 struct mddev *mddev = &rs->md;
3506 int ro = mddev->ro;
3507
3508 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3509 mddev->ro = 0;
3510 md_update_sb(mddev, 1);
3511 mddev->ro = ro;
3512}
3513
3514/*
3515 * Reshape changes raid algorithm of @rs to new one within personality
3516 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3517 * disks from a raid set thus growing/shrinking it or resizes the set
3518 *
3519 * Call mddev_lock_nointr() before!
3520 */
3521static int rs_start_reshape(struct raid_set *rs)
3522{
3523 int r;
3524 struct mddev *mddev = &rs->md;
3525 struct md_personality *pers = mddev->pers;
3526
3527 r = rs_setup_reshape(rs);
3528 if (r)
3529 return r;
3530
3531 /* Need to be resumed to be able to start reshape, recovery is frozen until raid_resume() though */
3532 if (mddev->suspended)
3533 mddev_resume(mddev);
3534
3535 /*
3536 * Check any reshape constraints enforced by the personalility
3537 *
3538 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3539 */
3540 r = pers->check_reshape(mddev);
3541 if (r) {
3542 rs->ti->error = "pers->check_reshape() failed";
3543 return r;
3544 }
3545
3546 /*
3547 * Personality may not provide start reshape method in which
3548 * case check_reshape above has already covered everything
3549 */
3550 if (pers->start_reshape) {
3551 r = pers->start_reshape(mddev);
3552 if (r) {
3553 rs->ti->error = "pers->start_reshape() failed";
3554 return r;
3555 }
3556 }
3557
3558 /* Suspend because a resume will happen in raid_resume() */
3559 if (!mddev->suspended)
3560 mddev_suspend(mddev);
3561
3562 /*
3563 * Now reshape got set up, update superblocks to
3564 * reflect the fact so that a table reload will
3565 * access proper superblock content in the ctr.
3566 */
3567 rs_update_sbs(rs);
3568
3569 return 0;
3570}
3571
3572static int raid_preresume(struct dm_target *ti)
3573{
3574 int r;
3575 struct raid_set *rs = ti->private;
3576 struct mddev *mddev = &rs->md;
3577
3578 /* This is a resume after a suspend of the set -> it's already started */
3579 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3580 return 0;
3581
3582 /*
3583 * The superblocks need to be updated on disk if the
3584 * array is new or new devices got added (thus zeroed
3585 * out by userspace) or __load_dirty_region_bitmap
3586 * will overwrite them in core with old data or fail.
3587 */
3588 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3589 rs_update_sbs(rs);
3590
3591 /* Load the bitmap from disk unless raid0 */
3592 r = __load_dirty_region_bitmap(rs);
3593 if (r)
3594 return r;
3595
3596 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */
3597 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap &&
3598 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) {
3599 r = bitmap_resize(mddev->bitmap, mddev->dev_sectors,
3600 to_bytes(rs->requested_bitmap_chunk_sectors), 0);
3601 if (r)
3602 DMERR("Failed to resize bitmap");
3603 }
3604
3605 /* Check for any resize/reshape on @rs and adjust/initiate */
3606 /* Be prepared for mddev_resume() in raid_resume() */
3607 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3608 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3609 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3610 mddev->resync_min = mddev->recovery_cp;
3611 }
3612
3613 rs_set_capacity(rs);
3614
3615 /* Check for any reshape request unless new raid set */
3616 if (test_and_clear_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3617 /* Initiate a reshape. */
3618 mddev_lock_nointr(mddev);
3619 r = rs_start_reshape(rs);
3620 mddev_unlock(mddev);
3621 if (r)
3622 DMWARN("Failed to check/start reshape, continuing without change");
3623 r = 0;
3624 }
3625
3626 return r;
3627}
3628
3629#define RESUME_STAY_FROZEN_FLAGS (CTR_FLAG_DELTA_DISKS | CTR_FLAG_DATA_OFFSET)
3630
3631static void raid_resume(struct dm_target *ti)
3632{
3633 struct raid_set *rs = ti->private;
3634 struct mddev *mddev = &rs->md;
3635
3636 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3637 /*
3638 * A secondary resume while the device is active.
3639 * Take this opportunity to check whether any failed
3640 * devices are reachable again.
3641 */
3642 attempt_restore_of_faulty_devices(rs);
3643 }
3644
3645 mddev->ro = 0;
3646 mddev->in_sync = 0;
3647
3648 /*
3649 * Keep the RAID set frozen if reshape/rebuild flags are set.
3650 * The RAID set is unfrozen once the next table load/resume,
3651 * which clears the reshape/rebuild flags, occurs.
3652 * This ensures that the constructor for the inactive table
3653 * retrieves an up-to-date reshape_position.
3654 */
3655 if (!(rs->ctr_flags & RESUME_STAY_FROZEN_FLAGS))
3656 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3657
3658 if (mddev->suspended)
3659 mddev_resume(mddev);
3660}
3661
3662static struct target_type raid_target = {
3663 .name = "raid",
3664 .version = {1, 9, 1},
3665 .module = THIS_MODULE,
3666 .ctr = raid_ctr,
3667 .dtr = raid_dtr,
3668 .map = raid_map,
3669 .status = raid_status,
3670 .message = raid_message,
3671 .iterate_devices = raid_iterate_devices,
3672 .io_hints = raid_io_hints,
3673 .presuspend = raid_presuspend,
3674 .postsuspend = raid_postsuspend,
3675 .preresume = raid_preresume,
3676 .resume = raid_resume,
3677};
3678
3679static int __init dm_raid_init(void)
3680{
3681 DMINFO("Loading target version %u.%u.%u",
3682 raid_target.version[0],
3683 raid_target.version[1],
3684 raid_target.version[2]);
3685 return dm_register_target(&raid_target);
3686}
3687
3688static void __exit dm_raid_exit(void)
3689{
3690 dm_unregister_target(&raid_target);
3691}
3692
3693module_init(dm_raid_init);
3694module_exit(dm_raid_exit);
3695
3696module_param(devices_handle_discard_safely, bool, 0644);
3697MODULE_PARM_DESC(devices_handle_discard_safely,
3698 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
3699
3700MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
3701MODULE_ALIAS("dm-raid0");
3702MODULE_ALIAS("dm-raid1");
3703MODULE_ALIAS("dm-raid10");
3704MODULE_ALIAS("dm-raid4");
3705MODULE_ALIAS("dm-raid5");
3706MODULE_ALIAS("dm-raid6");
3707MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
3708MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
3709MODULE_LICENSE("GPL");