Linux Audio

Check our new training course

Loading...
   1/*
   2 * Copyright (C) 2010-2011 Neil Brown
   3 * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include <linux/slab.h>
   9#include <linux/module.h>
  10
  11#include "md.h"
  12#include "raid1.h"
  13#include "raid5.h"
  14#include "bitmap.h"
  15
  16#include <linux/device-mapper.h>
  17
  18#define DM_MSG_PREFIX "raid"
  19
  20/*
  21 * The following flags are used by dm-raid.c to set up the array state.
  22 * They must be cleared before md_run is called.
  23 */
  24#define FirstUse 10             /* rdev flag */
  25
  26struct raid_dev {
  27	/*
  28	 * Two DM devices, one to hold metadata and one to hold the
  29	 * actual data/parity.  The reason for this is to not confuse
  30	 * ti->len and give more flexibility in altering size and
  31	 * characteristics.
  32	 *
  33	 * While it is possible for this device to be associated
  34	 * with a different physical device than the data_dev, it
  35	 * is intended for it to be the same.
  36	 *    |--------- Physical Device ---------|
  37	 *    |- meta_dev -|------ data_dev ------|
  38	 */
  39	struct dm_dev *meta_dev;
  40	struct dm_dev *data_dev;
  41	struct md_rdev rdev;
  42};
  43
  44/*
  45 * Flags for rs->print_flags field.
  46 */
  47#define DMPF_SYNC              0x1
  48#define DMPF_NOSYNC            0x2
  49#define DMPF_REBUILD           0x4
  50#define DMPF_DAEMON_SLEEP      0x8
  51#define DMPF_MIN_RECOVERY_RATE 0x10
  52#define DMPF_MAX_RECOVERY_RATE 0x20
  53#define DMPF_MAX_WRITE_BEHIND  0x40
  54#define DMPF_STRIPE_CACHE      0x80
  55#define DMPF_REGION_SIZE       0X100
  56struct raid_set {
  57	struct dm_target *ti;
  58
  59	uint32_t bitmap_loaded;
  60	uint32_t print_flags;
  61
  62	struct mddev md;
  63	struct raid_type *raid_type;
  64	struct dm_target_callbacks callbacks;
  65
  66	struct raid_dev dev[0];
  67};
  68
  69/* Supported raid types and properties. */
  70static struct raid_type {
  71	const char *name;		/* RAID algorithm. */
  72	const char *descr;		/* Descriptor text for logging. */
  73	const unsigned parity_devs;	/* # of parity devices. */
  74	const unsigned minimal_devs;	/* minimal # of devices in set. */
  75	const unsigned level;		/* RAID level. */
  76	const unsigned algorithm;	/* RAID algorithm. */
  77} raid_types[] = {
  78	{"raid1",    "RAID1 (mirroring)",               0, 2, 1, 0 /* NONE */},
  79	{"raid4",    "RAID4 (dedicated parity disk)",	1, 2, 5, ALGORITHM_PARITY_0},
  80	{"raid5_la", "RAID5 (left asymmetric)",		1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
  81	{"raid5_ra", "RAID5 (right asymmetric)",	1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
  82	{"raid5_ls", "RAID5 (left symmetric)",		1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
  83	{"raid5_rs", "RAID5 (right symmetric)",		1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
  84	{"raid6_zr", "RAID6 (zero restart)",		2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
  85	{"raid6_nr", "RAID6 (N restart)",		2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
  86	{"raid6_nc", "RAID6 (N continue)",		2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
  87};
  88
  89static struct raid_type *get_raid_type(char *name)
  90{
  91	int i;
  92
  93	for (i = 0; i < ARRAY_SIZE(raid_types); i++)
  94		if (!strcmp(raid_types[i].name, name))
  95			return &raid_types[i];
  96
  97	return NULL;
  98}
  99
 100static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
 101{
 102	unsigned i;
 103	struct raid_set *rs;
 104	sector_t sectors_per_dev;
 105
 106	if (raid_devs <= raid_type->parity_devs) {
 107		ti->error = "Insufficient number of devices";
 108		return ERR_PTR(-EINVAL);
 109	}
 110
 111	sectors_per_dev = ti->len;
 112	if ((raid_type->level > 1) &&
 113	    sector_div(sectors_per_dev, (raid_devs - raid_type->parity_devs))) {
 114		ti->error = "Target length not divisible by number of data devices";
 115		return ERR_PTR(-EINVAL);
 116	}
 117
 118	rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
 119	if (!rs) {
 120		ti->error = "Cannot allocate raid context";
 121		return ERR_PTR(-ENOMEM);
 122	}
 123
 124	mddev_init(&rs->md);
 125
 126	rs->ti = ti;
 127	rs->raid_type = raid_type;
 128	rs->md.raid_disks = raid_devs;
 129	rs->md.level = raid_type->level;
 130	rs->md.new_level = rs->md.level;
 131	rs->md.dev_sectors = sectors_per_dev;
 132	rs->md.layout = raid_type->algorithm;
 133	rs->md.new_layout = rs->md.layout;
 134	rs->md.delta_disks = 0;
 135	rs->md.recovery_cp = 0;
 136
 137	for (i = 0; i < raid_devs; i++)
 138		md_rdev_init(&rs->dev[i].rdev);
 139
 140	/*
 141	 * Remaining items to be initialized by further RAID params:
 142	 *  rs->md.persistent
 143	 *  rs->md.external
 144	 *  rs->md.chunk_sectors
 145	 *  rs->md.new_chunk_sectors
 146	 */
 147
 148	return rs;
 149}
 150
 151static void context_free(struct raid_set *rs)
 152{
 153	int i;
 154
 155	for (i = 0; i < rs->md.raid_disks; i++) {
 156		if (rs->dev[i].meta_dev)
 157			dm_put_device(rs->ti, rs->dev[i].meta_dev);
 158		md_rdev_clear(&rs->dev[i].rdev);
 159		if (rs->dev[i].data_dev)
 160			dm_put_device(rs->ti, rs->dev[i].data_dev);
 161	}
 162
 163	kfree(rs);
 164}
 165
 166/*
 167 * For every device we have two words
 168 *  <meta_dev>: meta device name or '-' if missing
 169 *  <data_dev>: data device name or '-' if missing
 170 *
 171 * The following are permitted:
 172 *    - -
 173 *    - <data_dev>
 174 *    <meta_dev> <data_dev>
 175 *
 176 * The following is not allowed:
 177 *    <meta_dev> -
 178 *
 179 * This code parses those words.  If there is a failure,
 180 * the caller must use context_free to unwind the operations.
 181 */
 182static int dev_parms(struct raid_set *rs, char **argv)
 183{
 184	int i;
 185	int rebuild = 0;
 186	int metadata_available = 0;
 187	int ret = 0;
 188
 189	for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
 190		rs->dev[i].rdev.raid_disk = i;
 191
 192		rs->dev[i].meta_dev = NULL;
 193		rs->dev[i].data_dev = NULL;
 194
 195		/*
 196		 * There are no offsets, since there is a separate device
 197		 * for data and metadata.
 198		 */
 199		rs->dev[i].rdev.data_offset = 0;
 200		rs->dev[i].rdev.mddev = &rs->md;
 201
 202		if (strcmp(argv[0], "-")) {
 203			ret = dm_get_device(rs->ti, argv[0],
 204					    dm_table_get_mode(rs->ti->table),
 205					    &rs->dev[i].meta_dev);
 206			rs->ti->error = "RAID metadata device lookup failure";
 207			if (ret)
 208				return ret;
 209
 210			rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
 211			if (!rs->dev[i].rdev.sb_page)
 212				return -ENOMEM;
 213		}
 214
 215		if (!strcmp(argv[1], "-")) {
 216			if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
 217			    (!rs->dev[i].rdev.recovery_offset)) {
 218				rs->ti->error = "Drive designated for rebuild not specified";
 219				return -EINVAL;
 220			}
 221
 222			rs->ti->error = "No data device supplied with metadata device";
 223			if (rs->dev[i].meta_dev)
 224				return -EINVAL;
 225
 226			continue;
 227		}
 228
 229		ret = dm_get_device(rs->ti, argv[1],
 230				    dm_table_get_mode(rs->ti->table),
 231				    &rs->dev[i].data_dev);
 232		if (ret) {
 233			rs->ti->error = "RAID device lookup failure";
 234			return ret;
 235		}
 236
 237		if (rs->dev[i].meta_dev) {
 238			metadata_available = 1;
 239			rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
 240		}
 241		rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
 242		list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
 243		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
 244			rebuild++;
 245	}
 246
 247	if (metadata_available) {
 248		rs->md.external = 0;
 249		rs->md.persistent = 1;
 250		rs->md.major_version = 2;
 251	} else if (rebuild && !rs->md.recovery_cp) {
 252		/*
 253		 * Without metadata, we will not be able to tell if the array
 254		 * is in-sync or not - we must assume it is not.  Therefore,
 255		 * it is impossible to rebuild a drive.
 256		 *
 257		 * Even if there is metadata, the on-disk information may
 258		 * indicate that the array is not in-sync and it will then
 259		 * fail at that time.
 260		 *
 261		 * User could specify 'nosync' option if desperate.
 262		 */
 263		DMERR("Unable to rebuild drive while array is not in-sync");
 264		rs->ti->error = "RAID device lookup failure";
 265		return -EINVAL;
 266	}
 267
 268	return 0;
 269}
 270
 271/*
 272 * validate_region_size
 273 * @rs
 274 * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
 275 *
 276 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
 277 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
 278 *
 279 * Returns: 0 on success, -EINVAL on failure.
 280 */
 281static int validate_region_size(struct raid_set *rs, unsigned long region_size)
 282{
 283	unsigned long min_region_size = rs->ti->len / (1 << 21);
 284
 285	if (!region_size) {
 286		/*
 287		 * Choose a reasonable default.  All figures in sectors.
 288		 */
 289		if (min_region_size > (1 << 13)) {
 290			DMINFO("Choosing default region size of %lu sectors",
 291			       region_size);
 292			region_size = min_region_size;
 293		} else {
 294			DMINFO("Choosing default region size of 4MiB");
 295			region_size = 1 << 13; /* sectors */
 296		}
 297	} else {
 298		/*
 299		 * Validate user-supplied value.
 300		 */
 301		if (region_size > rs->ti->len) {
 302			rs->ti->error = "Supplied region size is too large";
 303			return -EINVAL;
 304		}
 305
 306		if (region_size < min_region_size) {
 307			DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
 308			      region_size, min_region_size);
 309			rs->ti->error = "Supplied region size is too small";
 310			return -EINVAL;
 311		}
 312
 313		if (!is_power_of_2(region_size)) {
 314			rs->ti->error = "Region size is not a power of 2";
 315			return -EINVAL;
 316		}
 317
 318		if (region_size < rs->md.chunk_sectors) {
 319			rs->ti->error = "Region size is smaller than the chunk size";
 320			return -EINVAL;
 321		}
 322	}
 323
 324	/*
 325	 * Convert sectors to bytes.
 326	 */
 327	rs->md.bitmap_info.chunksize = (region_size << 9);
 328
 329	return 0;
 330}
 331
 332/*
 333 * Possible arguments are...
 334 *	<chunk_size> [optional_args]
 335 *
 336 * Argument definitions
 337 *    <chunk_size>			The number of sectors per disk that
 338 *                                      will form the "stripe"
 339 *    [[no]sync]			Force or prevent recovery of the
 340 *                                      entire array
 341 *    [rebuild <idx>]			Rebuild the drive indicated by the index
 342 *    [daemon_sleep <ms>]		Time between bitmap daemon work to
 343 *                                      clear bits
 344 *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
 345 *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
 346 *    [write_mostly <idx>]		Indicate a write mostly drive via index
 347 *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm)
 348 *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs
 349 *    [region_size <sectors>]           Defines granularity of bitmap
 350 */
 351static int parse_raid_params(struct raid_set *rs, char **argv,
 352			     unsigned num_raid_params)
 353{
 354	unsigned i, rebuild_cnt = 0;
 355	unsigned long value, region_size = 0;
 356	char *key;
 357
 358	/*
 359	 * First, parse the in-order required arguments
 360	 * "chunk_size" is the only argument of this type.
 361	 */
 362	if ((strict_strtoul(argv[0], 10, &value) < 0)) {
 363		rs->ti->error = "Bad chunk size";
 364		return -EINVAL;
 365	} else if (rs->raid_type->level == 1) {
 366		if (value)
 367			DMERR("Ignoring chunk size parameter for RAID 1");
 368		value = 0;
 369	} else if (!is_power_of_2(value)) {
 370		rs->ti->error = "Chunk size must be a power of 2";
 371		return -EINVAL;
 372	} else if (value < 8) {
 373		rs->ti->error = "Chunk size value is too small";
 374		return -EINVAL;
 375	}
 376
 377	rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
 378	argv++;
 379	num_raid_params--;
 380
 381	/*
 382	 * We set each individual device as In_sync with a completed
 383	 * 'recovery_offset'.  If there has been a device failure or
 384	 * replacement then one of the following cases applies:
 385	 *
 386	 *   1) User specifies 'rebuild'.
 387	 *      - Device is reset when param is read.
 388	 *   2) A new device is supplied.
 389	 *      - No matching superblock found, resets device.
 390	 *   3) Device failure was transient and returns on reload.
 391	 *      - Failure noticed, resets device for bitmap replay.
 392	 *   4) Device hadn't completed recovery after previous failure.
 393	 *      - Superblock is read and overrides recovery_offset.
 394	 *
 395	 * What is found in the superblocks of the devices is always
 396	 * authoritative, unless 'rebuild' or '[no]sync' was specified.
 397	 */
 398	for (i = 0; i < rs->md.raid_disks; i++) {
 399		set_bit(In_sync, &rs->dev[i].rdev.flags);
 400		rs->dev[i].rdev.recovery_offset = MaxSector;
 401	}
 402
 403	/*
 404	 * Second, parse the unordered optional arguments
 405	 */
 406	for (i = 0; i < num_raid_params; i++) {
 407		if (!strcasecmp(argv[i], "nosync")) {
 408			rs->md.recovery_cp = MaxSector;
 409			rs->print_flags |= DMPF_NOSYNC;
 410			continue;
 411		}
 412		if (!strcasecmp(argv[i], "sync")) {
 413			rs->md.recovery_cp = 0;
 414			rs->print_flags |= DMPF_SYNC;
 415			continue;
 416		}
 417
 418		/* The rest of the optional arguments come in key/value pairs */
 419		if ((i + 1) >= num_raid_params) {
 420			rs->ti->error = "Wrong number of raid parameters given";
 421			return -EINVAL;
 422		}
 423
 424		key = argv[i++];
 425		if (strict_strtoul(argv[i], 10, &value) < 0) {
 426			rs->ti->error = "Bad numerical argument given in raid params";
 427			return -EINVAL;
 428		}
 429
 430		if (!strcasecmp(key, "rebuild")) {
 431			rebuild_cnt++;
 432			if (((rs->raid_type->level != 1) &&
 433			     (rebuild_cnt > rs->raid_type->parity_devs)) ||
 434			    ((rs->raid_type->level == 1) &&
 435			     (rebuild_cnt > (rs->md.raid_disks - 1)))) {
 436				rs->ti->error = "Too many rebuild devices specified for given RAID type";
 437				return -EINVAL;
 438			}
 439			if (value > rs->md.raid_disks) {
 440				rs->ti->error = "Invalid rebuild index given";
 441				return -EINVAL;
 442			}
 443			clear_bit(In_sync, &rs->dev[value].rdev.flags);
 444			rs->dev[value].rdev.recovery_offset = 0;
 445			rs->print_flags |= DMPF_REBUILD;
 446		} else if (!strcasecmp(key, "write_mostly")) {
 447			if (rs->raid_type->level != 1) {
 448				rs->ti->error = "write_mostly option is only valid for RAID1";
 449				return -EINVAL;
 450			}
 451			if (value >= rs->md.raid_disks) {
 452				rs->ti->error = "Invalid write_mostly drive index given";
 453				return -EINVAL;
 454			}
 455			set_bit(WriteMostly, &rs->dev[value].rdev.flags);
 456		} else if (!strcasecmp(key, "max_write_behind")) {
 457			if (rs->raid_type->level != 1) {
 458				rs->ti->error = "max_write_behind option is only valid for RAID1";
 459				return -EINVAL;
 460			}
 461			rs->print_flags |= DMPF_MAX_WRITE_BEHIND;
 462
 463			/*
 464			 * In device-mapper, we specify things in sectors, but
 465			 * MD records this value in kB
 466			 */
 467			value /= 2;
 468			if (value > COUNTER_MAX) {
 469				rs->ti->error = "Max write-behind limit out of range";
 470				return -EINVAL;
 471			}
 472			rs->md.bitmap_info.max_write_behind = value;
 473		} else if (!strcasecmp(key, "daemon_sleep")) {
 474			rs->print_flags |= DMPF_DAEMON_SLEEP;
 475			if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
 476				rs->ti->error = "daemon sleep period out of range";
 477				return -EINVAL;
 478			}
 479			rs->md.bitmap_info.daemon_sleep = value;
 480		} else if (!strcasecmp(key, "stripe_cache")) {
 481			rs->print_flags |= DMPF_STRIPE_CACHE;
 482
 483			/*
 484			 * In device-mapper, we specify things in sectors, but
 485			 * MD records this value in kB
 486			 */
 487			value /= 2;
 488
 489			if (rs->raid_type->level < 5) {
 490				rs->ti->error = "Inappropriate argument: stripe_cache";
 491				return -EINVAL;
 492			}
 493			if (raid5_set_cache_size(&rs->md, (int)value)) {
 494				rs->ti->error = "Bad stripe_cache size";
 495				return -EINVAL;
 496			}
 497		} else if (!strcasecmp(key, "min_recovery_rate")) {
 498			rs->print_flags |= DMPF_MIN_RECOVERY_RATE;
 499			if (value > INT_MAX) {
 500				rs->ti->error = "min_recovery_rate out of range";
 501				return -EINVAL;
 502			}
 503			rs->md.sync_speed_min = (int)value;
 504		} else if (!strcasecmp(key, "max_recovery_rate")) {
 505			rs->print_flags |= DMPF_MAX_RECOVERY_RATE;
 506			if (value > INT_MAX) {
 507				rs->ti->error = "max_recovery_rate out of range";
 508				return -EINVAL;
 509			}
 510			rs->md.sync_speed_max = (int)value;
 511		} else if (!strcasecmp(key, "region_size")) {
 512			rs->print_flags |= DMPF_REGION_SIZE;
 513			region_size = value;
 514		} else {
 515			DMERR("Unable to parse RAID parameter: %s", key);
 516			rs->ti->error = "Unable to parse RAID parameters";
 517			return -EINVAL;
 518		}
 519	}
 520
 521	if (validate_region_size(rs, region_size))
 522		return -EINVAL;
 523
 524	if (rs->md.chunk_sectors)
 525		rs->ti->split_io = rs->md.chunk_sectors;
 526	else
 527		rs->ti->split_io = region_size;
 528
 529	if (rs->md.chunk_sectors)
 530		rs->ti->split_io = rs->md.chunk_sectors;
 531	else
 532		rs->ti->split_io = region_size;
 533
 534	/* Assume there are no metadata devices until the drives are parsed */
 535	rs->md.persistent = 0;
 536	rs->md.external = 1;
 537
 538	return 0;
 539}
 540
 541static void do_table_event(struct work_struct *ws)
 542{
 543	struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
 544
 545	dm_table_event(rs->ti->table);
 546}
 547
 548static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
 549{
 550	struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
 551
 552	if (rs->raid_type->level == 1)
 553		return md_raid1_congested(&rs->md, bits);
 554
 555	return md_raid5_congested(&rs->md, bits);
 556}
 557
 558/*
 559 * This structure is never routinely used by userspace, unlike md superblocks.
 560 * Devices with this superblock should only ever be accessed via device-mapper.
 561 */
 562#define DM_RAID_MAGIC 0x64526D44
 563struct dm_raid_superblock {
 564	__le32 magic;		/* "DmRd" */
 565	__le32 features;	/* Used to indicate possible future changes */
 566
 567	__le32 num_devices;	/* Number of devices in this array. (Max 64) */
 568	__le32 array_position;	/* The position of this drive in the array */
 569
 570	__le64 events;		/* Incremented by md when superblock updated */
 571	__le64 failed_devices;	/* Bit field of devices to indicate failures */
 572
 573	/*
 574	 * This offset tracks the progress of the repair or replacement of
 575	 * an individual drive.
 576	 */
 577	__le64 disk_recovery_offset;
 578
 579	/*
 580	 * This offset tracks the progress of the initial array
 581	 * synchronisation/parity calculation.
 582	 */
 583	__le64 array_resync_offset;
 584
 585	/*
 586	 * RAID characteristics
 587	 */
 588	__le32 level;
 589	__le32 layout;
 590	__le32 stripe_sectors;
 591
 592	__u8 pad[452];		/* Round struct to 512 bytes. */
 593				/* Always set to 0 when writing. */
 594} __packed;
 595
 596static int read_disk_sb(struct md_rdev *rdev, int size)
 597{
 598	BUG_ON(!rdev->sb_page);
 599
 600	if (rdev->sb_loaded)
 601		return 0;
 602
 603	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
 604		DMERR("Failed to read superblock of device at position %d",
 605		      rdev->raid_disk);
 606		md_error(rdev->mddev, rdev);
 607		return -EINVAL;
 608	}
 609
 610	rdev->sb_loaded = 1;
 611
 612	return 0;
 613}
 614
 615static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
 616{
 617	int i;
 618	uint64_t failed_devices;
 619	struct dm_raid_superblock *sb;
 620	struct raid_set *rs = container_of(mddev, struct raid_set, md);
 621
 622	sb = page_address(rdev->sb_page);
 623	failed_devices = le64_to_cpu(sb->failed_devices);
 624
 625	for (i = 0; i < mddev->raid_disks; i++)
 626		if (!rs->dev[i].data_dev ||
 627		    test_bit(Faulty, &(rs->dev[i].rdev.flags)))
 628			failed_devices |= (1ULL << i);
 629
 630	memset(sb, 0, sizeof(*sb));
 631
 632	sb->magic = cpu_to_le32(DM_RAID_MAGIC);
 633	sb->features = cpu_to_le32(0);	/* No features yet */
 634
 635	sb->num_devices = cpu_to_le32(mddev->raid_disks);
 636	sb->array_position = cpu_to_le32(rdev->raid_disk);
 637
 638	sb->events = cpu_to_le64(mddev->events);
 639	sb->failed_devices = cpu_to_le64(failed_devices);
 640
 641	sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
 642	sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
 643
 644	sb->level = cpu_to_le32(mddev->level);
 645	sb->layout = cpu_to_le32(mddev->layout);
 646	sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
 647}
 648
 649/*
 650 * super_load
 651 *
 652 * This function creates a superblock if one is not found on the device
 653 * and will decide which superblock to use if there's a choice.
 654 *
 655 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
 656 */
 657static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
 658{
 659	int ret;
 660	struct dm_raid_superblock *sb;
 661	struct dm_raid_superblock *refsb;
 662	uint64_t events_sb, events_refsb;
 663
 664	rdev->sb_start = 0;
 665	rdev->sb_size = sizeof(*sb);
 666
 667	ret = read_disk_sb(rdev, rdev->sb_size);
 668	if (ret)
 669		return ret;
 670
 671	sb = page_address(rdev->sb_page);
 672
 673	/*
 674	 * Two cases that we want to write new superblocks and rebuild:
 675	 * 1) New device (no matching magic number)
 676	 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
 677	 */
 678	if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
 679	    (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
 680		super_sync(rdev->mddev, rdev);
 681
 682		set_bit(FirstUse, &rdev->flags);
 683
 684		/* Force writing of superblocks to disk */
 685		set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
 686
 687		/* Any superblock is better than none, choose that if given */
 688		return refdev ? 0 : 1;
 689	}
 690
 691	if (!refdev)
 692		return 1;
 693
 694	events_sb = le64_to_cpu(sb->events);
 695
 696	refsb = page_address(refdev->sb_page);
 697	events_refsb = le64_to_cpu(refsb->events);
 698
 699	return (events_sb > events_refsb) ? 1 : 0;
 700}
 701
 702static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
 703{
 704	int role;
 705	struct raid_set *rs = container_of(mddev, struct raid_set, md);
 706	uint64_t events_sb;
 707	uint64_t failed_devices;
 708	struct dm_raid_superblock *sb;
 709	uint32_t new_devs = 0;
 710	uint32_t rebuilds = 0;
 711	struct md_rdev *r;
 712	struct dm_raid_superblock *sb2;
 713
 714	sb = page_address(rdev->sb_page);
 715	events_sb = le64_to_cpu(sb->events);
 716	failed_devices = le64_to_cpu(sb->failed_devices);
 717
 718	/*
 719	 * Initialise to 1 if this is a new superblock.
 720	 */
 721	mddev->events = events_sb ? : 1;
 722
 723	/*
 724	 * Reshaping is not currently allowed
 725	 */
 726	if ((le32_to_cpu(sb->level) != mddev->level) ||
 727	    (le32_to_cpu(sb->layout) != mddev->layout) ||
 728	    (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) {
 729		DMERR("Reshaping arrays not yet supported.");
 730		return -EINVAL;
 731	}
 732
 733	/* We can only change the number of devices in RAID1 right now */
 734	if ((rs->raid_type->level != 1) &&
 735	    (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
 736		DMERR("Reshaping arrays not yet supported.");
 737		return -EINVAL;
 738	}
 739
 740	if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
 741		mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
 742
 743	/*
 744	 * During load, we set FirstUse if a new superblock was written.
 745	 * There are two reasons we might not have a superblock:
 746	 * 1) The array is brand new - in which case, all of the
 747	 *    devices must have their In_sync bit set.  Also,
 748	 *    recovery_cp must be 0, unless forced.
 749	 * 2) This is a new device being added to an old array
 750	 *    and the new device needs to be rebuilt - in which
 751	 *    case the In_sync bit will /not/ be set and
 752	 *    recovery_cp must be MaxSector.
 753	 */
 754	rdev_for_each(r, mddev) {
 755		if (!test_bit(In_sync, &r->flags)) {
 756			DMINFO("Device %d specified for rebuild: "
 757			       "Clearing superblock", r->raid_disk);
 758			rebuilds++;
 759		} else if (test_bit(FirstUse, &r->flags))
 760			new_devs++;
 761	}
 762
 763	if (!rebuilds) {
 764		if (new_devs == mddev->raid_disks) {
 765			DMINFO("Superblocks created for new array");
 766			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
 767		} else if (new_devs) {
 768			DMERR("New device injected "
 769			      "into existing array without 'rebuild' "
 770			      "parameter specified");
 771			return -EINVAL;
 772		}
 773	} else if (new_devs) {
 774		DMERR("'rebuild' devices cannot be "
 775		      "injected into an array with other first-time devices");
 776		return -EINVAL;
 777	} else if (mddev->recovery_cp != MaxSector) {
 778		DMERR("'rebuild' specified while array is not in-sync");
 779		return -EINVAL;
 780	}
 781
 782	/*
 783	 * Now we set the Faulty bit for those devices that are
 784	 * recorded in the superblock as failed.
 785	 */
 786	rdev_for_each(r, mddev) {
 787		if (!r->sb_page)
 788			continue;
 789		sb2 = page_address(r->sb_page);
 790		sb2->failed_devices = 0;
 791
 792		/*
 793		 * Check for any device re-ordering.
 794		 */
 795		if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
 796			role = le32_to_cpu(sb2->array_position);
 797			if (role != r->raid_disk) {
 798				if (rs->raid_type->level != 1) {
 799					rs->ti->error = "Cannot change device "
 800						"positions in RAID array";
 801					return -EINVAL;
 802				}
 803				DMINFO("RAID1 device #%d now at position #%d",
 804				       role, r->raid_disk);
 805			}
 806
 807			/*
 808			 * Partial recovery is performed on
 809			 * returning failed devices.
 810			 */
 811			if (failed_devices & (1 << role))
 812				set_bit(Faulty, &r->flags);
 813		}
 814	}
 815
 816	return 0;
 817}
 818
 819static int super_validate(struct mddev *mddev, struct md_rdev *rdev)
 820{
 821	struct dm_raid_superblock *sb = page_address(rdev->sb_page);
 822
 823	/*
 824	 * If mddev->events is not set, we know we have not yet initialized
 825	 * the array.
 826	 */
 827	if (!mddev->events && super_init_validation(mddev, rdev))
 828		return -EINVAL;
 829
 830	mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
 831	rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
 832	if (!test_bit(FirstUse, &rdev->flags)) {
 833		rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
 834		if (rdev->recovery_offset != MaxSector)
 835			clear_bit(In_sync, &rdev->flags);
 836	}
 837
 838	/*
 839	 * If a device comes back, set it as not In_sync and no longer faulty.
 840	 */
 841	if (test_bit(Faulty, &rdev->flags)) {
 842		clear_bit(Faulty, &rdev->flags);
 843		clear_bit(In_sync, &rdev->flags);
 844		rdev->saved_raid_disk = rdev->raid_disk;
 845		rdev->recovery_offset = 0;
 846	}
 847
 848	clear_bit(FirstUse, &rdev->flags);
 849
 850	return 0;
 851}
 852
 853/*
 854 * Analyse superblocks and select the freshest.
 855 */
 856static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
 857{
 858	int ret;
 859	unsigned redundancy = 0;
 860	struct raid_dev *dev;
 861	struct md_rdev *rdev, *tmp, *freshest;
 862	struct mddev *mddev = &rs->md;
 863
 864	switch (rs->raid_type->level) {
 865	case 1:
 866		redundancy = rs->md.raid_disks - 1;
 867		break;
 868	case 4:
 869	case 5:
 870	case 6:
 871		redundancy = rs->raid_type->parity_devs;
 872		break;
 873	default:
 874		ti->error = "Unknown RAID type";
 875		return -EINVAL;
 876	}
 877
 878	freshest = NULL;
 879	rdev_for_each_safe(rdev, tmp, mddev) {
 880		if (!rdev->meta_bdev)
 881			continue;
 882
 883		ret = super_load(rdev, freshest);
 884
 885		switch (ret) {
 886		case 1:
 887			freshest = rdev;
 888			break;
 889		case 0:
 890			break;
 891		default:
 892			dev = container_of(rdev, struct raid_dev, rdev);
 893			if (redundancy--) {
 894				if (dev->meta_dev)
 895					dm_put_device(ti, dev->meta_dev);
 896
 897				dev->meta_dev = NULL;
 898				rdev->meta_bdev = NULL;
 899
 900				if (rdev->sb_page)
 901					put_page(rdev->sb_page);
 902
 903				rdev->sb_page = NULL;
 904
 905				rdev->sb_loaded = 0;
 906
 907				/*
 908				 * We might be able to salvage the data device
 909				 * even though the meta device has failed.  For
 910				 * now, we behave as though '- -' had been
 911				 * set for this device in the table.
 912				 */
 913				if (dev->data_dev)
 914					dm_put_device(ti, dev->data_dev);
 915
 916				dev->data_dev = NULL;
 917				rdev->bdev = NULL;
 918
 919				list_del(&rdev->same_set);
 920
 921				continue;
 922			}
 923			ti->error = "Failed to load superblock";
 924			return ret;
 925		}
 926	}
 927
 928	if (!freshest)
 929		return 0;
 930
 931	/*
 932	 * Validation of the freshest device provides the source of
 933	 * validation for the remaining devices.
 934	 */
 935	ti->error = "Unable to assemble array: Invalid superblocks";
 936	if (super_validate(mddev, freshest))
 937		return -EINVAL;
 938
 939	rdev_for_each(rdev, mddev)
 940		if ((rdev != freshest) && super_validate(mddev, rdev))
 941			return -EINVAL;
 942
 943	return 0;
 944}
 945
 946/*
 947 * Construct a RAID4/5/6 mapping:
 948 * Args:
 949 *	<raid_type> <#raid_params> <raid_params>		\
 950 *	<#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
 951 *
 952 * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
 953 * details on possible <raid_params>.
 954 */
 955static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
 956{
 957	int ret;
 958	struct raid_type *rt;
 959	unsigned long num_raid_params, num_raid_devs;
 960	struct raid_set *rs = NULL;
 961
 962	/* Must have at least <raid_type> <#raid_params> */
 963	if (argc < 2) {
 964		ti->error = "Too few arguments";
 965		return -EINVAL;
 966	}
 967
 968	/* raid type */
 969	rt = get_raid_type(argv[0]);
 970	if (!rt) {
 971		ti->error = "Unrecognised raid_type";
 972		return -EINVAL;
 973	}
 974	argc--;
 975	argv++;
 976
 977	/* number of RAID parameters */
 978	if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) {
 979		ti->error = "Cannot understand number of RAID parameters";
 980		return -EINVAL;
 981	}
 982	argc--;
 983	argv++;
 984
 985	/* Skip over RAID params for now and find out # of devices */
 986	if (num_raid_params + 1 > argc) {
 987		ti->error = "Arguments do not agree with counts given";
 988		return -EINVAL;
 989	}
 990
 991	if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
 992	    (num_raid_devs >= INT_MAX)) {
 993		ti->error = "Cannot understand number of raid devices";
 994		return -EINVAL;
 995	}
 996
 997	rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
 998	if (IS_ERR(rs))
 999		return PTR_ERR(rs);
1000
1001	ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
1002	if (ret)
1003		goto bad;
1004
1005	ret = -EINVAL;
1006
1007	argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
1008	argv += num_raid_params + 1;
1009
1010	if (argc != (num_raid_devs * 2)) {
1011		ti->error = "Supplied RAID devices does not match the count given";
1012		goto bad;
1013	}
1014
1015	ret = dev_parms(rs, argv);
1016	if (ret)
1017		goto bad;
1018
1019	rs->md.sync_super = super_sync;
1020	ret = analyse_superblocks(ti, rs);
1021	if (ret)
1022		goto bad;
1023
1024	INIT_WORK(&rs->md.event_work, do_table_event);
1025	ti->private = rs;
1026	ti->num_flush_requests = 1;
1027
1028	mutex_lock(&rs->md.reconfig_mutex);
1029	ret = md_run(&rs->md);
1030	rs->md.in_sync = 0; /* Assume already marked dirty */
1031	mutex_unlock(&rs->md.reconfig_mutex);
1032
1033	if (ret) {
1034		ti->error = "Fail to run raid array";
1035		goto bad;
1036	}
1037
1038	rs->callbacks.congested_fn = raid_is_congested;
1039	dm_table_add_target_callbacks(ti->table, &rs->callbacks);
1040
1041	mddev_suspend(&rs->md);
1042	return 0;
1043
1044bad:
1045	context_free(rs);
1046
1047	return ret;
1048}
1049
1050static void raid_dtr(struct dm_target *ti)
1051{
1052	struct raid_set *rs = ti->private;
1053
1054	list_del_init(&rs->callbacks.list);
1055	md_stop(&rs->md);
1056	context_free(rs);
1057}
1058
1059static int raid_map(struct dm_target *ti, struct bio *bio, union map_info *map_context)
1060{
1061	struct raid_set *rs = ti->private;
1062	struct mddev *mddev = &rs->md;
1063
1064	mddev->pers->make_request(mddev, bio);
1065
1066	return DM_MAPIO_SUBMITTED;
1067}
1068
1069static int raid_status(struct dm_target *ti, status_type_t type,
1070		       char *result, unsigned maxlen)
1071{
1072	struct raid_set *rs = ti->private;
1073	unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
1074	unsigned sz = 0;
1075	int i, array_in_sync = 0;
1076	sector_t sync;
1077
1078	switch (type) {
1079	case STATUSTYPE_INFO:
1080		DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
1081
1082		if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
1083			sync = rs->md.curr_resync_completed;
1084		else
1085			sync = rs->md.recovery_cp;
1086
1087		if (sync >= rs->md.resync_max_sectors) {
1088			array_in_sync = 1;
1089			sync = rs->md.resync_max_sectors;
1090		} else {
1091			/*
1092			 * The array may be doing an initial sync, or it may
1093			 * be rebuilding individual components.  If all the
1094			 * devices are In_sync, then it is the array that is
1095			 * being initialized.
1096			 */
1097			for (i = 0; i < rs->md.raid_disks; i++)
1098				if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
1099					array_in_sync = 1;
1100		}
1101		/*
1102		 * Status characters:
1103		 *  'D' = Dead/Failed device
1104		 *  'a' = Alive but not in-sync
1105		 *  'A' = Alive and in-sync
1106		 */
1107		for (i = 0; i < rs->md.raid_disks; i++) {
1108			if (test_bit(Faulty, &rs->dev[i].rdev.flags))
1109				DMEMIT("D");
1110			else if (!array_in_sync ||
1111				 !test_bit(In_sync, &rs->dev[i].rdev.flags))
1112				DMEMIT("a");
1113			else
1114				DMEMIT("A");
1115		}
1116
1117		/*
1118		 * In-sync ratio:
1119		 *  The in-sync ratio shows the progress of:
1120		 *   - Initializing the array
1121		 *   - Rebuilding a subset of devices of the array
1122		 *  The user can distinguish between the two by referring
1123		 *  to the status characters.
1124		 */
1125		DMEMIT(" %llu/%llu",
1126		       (unsigned long long) sync,
1127		       (unsigned long long) rs->md.resync_max_sectors);
1128
1129		break;
1130	case STATUSTYPE_TABLE:
1131		/* The string you would use to construct this array */
1132		for (i = 0; i < rs->md.raid_disks; i++) {
1133			if ((rs->print_flags & DMPF_REBUILD) &&
1134			    rs->dev[i].data_dev &&
1135			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1136				raid_param_cnt += 2; /* for rebuilds */
1137			if (rs->dev[i].data_dev &&
1138			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1139				raid_param_cnt += 2;
1140		}
1141
1142		raid_param_cnt += (hweight32(rs->print_flags & ~DMPF_REBUILD) * 2);
1143		if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
1144			raid_param_cnt--;
1145
1146		DMEMIT("%s %u %u", rs->raid_type->name,
1147		       raid_param_cnt, rs->md.chunk_sectors);
1148
1149		if ((rs->print_flags & DMPF_SYNC) &&
1150		    (rs->md.recovery_cp == MaxSector))
1151			DMEMIT(" sync");
1152		if (rs->print_flags & DMPF_NOSYNC)
1153			DMEMIT(" nosync");
1154
1155		for (i = 0; i < rs->md.raid_disks; i++)
1156			if ((rs->print_flags & DMPF_REBUILD) &&
1157			    rs->dev[i].data_dev &&
1158			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
1159				DMEMIT(" rebuild %u", i);
1160
1161		if (rs->print_flags & DMPF_DAEMON_SLEEP)
1162			DMEMIT(" daemon_sleep %lu",
1163			       rs->md.bitmap_info.daemon_sleep);
1164
1165		if (rs->print_flags & DMPF_MIN_RECOVERY_RATE)
1166			DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
1167
1168		if (rs->print_flags & DMPF_MAX_RECOVERY_RATE)
1169			DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
1170
1171		for (i = 0; i < rs->md.raid_disks; i++)
1172			if (rs->dev[i].data_dev &&
1173			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1174				DMEMIT(" write_mostly %u", i);
1175
1176		if (rs->print_flags & DMPF_MAX_WRITE_BEHIND)
1177			DMEMIT(" max_write_behind %lu",
1178			       rs->md.bitmap_info.max_write_behind);
1179
1180		if (rs->print_flags & DMPF_STRIPE_CACHE) {
1181			struct r5conf *conf = rs->md.private;
1182
1183			/* convert from kiB to sectors */
1184			DMEMIT(" stripe_cache %d",
1185			       conf ? conf->max_nr_stripes * 2 : 0);
1186		}
1187
1188		if (rs->print_flags & DMPF_REGION_SIZE)
1189			DMEMIT(" region_size %lu",
1190			       rs->md.bitmap_info.chunksize >> 9);
1191
1192		DMEMIT(" %d", rs->md.raid_disks);
1193		for (i = 0; i < rs->md.raid_disks; i++) {
1194			if (rs->dev[i].meta_dev)
1195				DMEMIT(" %s", rs->dev[i].meta_dev->name);
1196			else
1197				DMEMIT(" -");
1198
1199			if (rs->dev[i].data_dev)
1200				DMEMIT(" %s", rs->dev[i].data_dev->name);
1201			else
1202				DMEMIT(" -");
1203		}
1204	}
1205
1206	return 0;
1207}
1208
1209static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data)
1210{
1211	struct raid_set *rs = ti->private;
1212	unsigned i;
1213	int ret = 0;
1214
1215	for (i = 0; !ret && i < rs->md.raid_disks; i++)
1216		if (rs->dev[i].data_dev)
1217			ret = fn(ti,
1218				 rs->dev[i].data_dev,
1219				 0, /* No offset on data devs */
1220				 rs->md.dev_sectors,
1221				 data);
1222
1223	return ret;
1224}
1225
1226static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
1227{
1228	struct raid_set *rs = ti->private;
1229	unsigned chunk_size = rs->md.chunk_sectors << 9;
1230	struct r5conf *conf = rs->md.private;
1231
1232	blk_limits_io_min(limits, chunk_size);
1233	blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
1234}
1235
1236static void raid_presuspend(struct dm_target *ti)
1237{
1238	struct raid_set *rs = ti->private;
1239
1240	md_stop_writes(&rs->md);
1241}
1242
1243static void raid_postsuspend(struct dm_target *ti)
1244{
1245	struct raid_set *rs = ti->private;
1246
1247	mddev_suspend(&rs->md);
1248}
1249
1250static void raid_resume(struct dm_target *ti)
1251{
1252	struct raid_set *rs = ti->private;
1253
1254	set_bit(MD_CHANGE_DEVS, &rs->md.flags);
1255	if (!rs->bitmap_loaded) {
1256		bitmap_load(&rs->md);
1257		rs->bitmap_loaded = 1;
1258	}
1259
1260	clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
1261	mddev_resume(&rs->md);
1262}
1263
1264static struct target_type raid_target = {
1265	.name = "raid",
1266	.version = {1, 2, 0},
1267	.module = THIS_MODULE,
1268	.ctr = raid_ctr,
1269	.dtr = raid_dtr,
1270	.map = raid_map,
1271	.status = raid_status,
1272	.iterate_devices = raid_iterate_devices,
1273	.io_hints = raid_io_hints,
1274	.presuspend = raid_presuspend,
1275	.postsuspend = raid_postsuspend,
1276	.resume = raid_resume,
1277};
1278
1279static int __init dm_raid_init(void)
1280{
1281	return dm_register_target(&raid_target);
1282}
1283
1284static void __exit dm_raid_exit(void)
1285{
1286	dm_unregister_target(&raid_target);
1287}
1288
1289module_init(dm_raid_init);
1290module_exit(dm_raid_exit);
1291
1292MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
1293MODULE_ALIAS("dm-raid4");
1294MODULE_ALIAS("dm-raid5");
1295MODULE_ALIAS("dm-raid6");
1296MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
1297MODULE_LICENSE("GPL");