Loading...
1/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2/*
3 * Copyright(c) 2015 - 2018 Intel Corporation.
4 */
5
6#ifndef _HFI1_SDMA_H
7#define _HFI1_SDMA_H
8
9#include <linux/types.h>
10#include <linux/list.h>
11#include <asm/byteorder.h>
12#include <linux/workqueue.h>
13#include <linux/rculist.h>
14
15#include "hfi.h"
16#include "verbs.h"
17#include "sdma_txreq.h"
18
19/* Hardware limit */
20#define MAX_DESC 64
21/* Hardware limit for SDMA packet size */
22#define MAX_SDMA_PKT_SIZE ((16 * 1024) - 1)
23
24#define SDMA_MAP_NONE 0
25#define SDMA_MAP_SINGLE 1
26#define SDMA_MAP_PAGE 2
27
28#define SDMA_AHG_VALUE_MASK 0xffff
29#define SDMA_AHG_VALUE_SHIFT 0
30#define SDMA_AHG_INDEX_MASK 0xf
31#define SDMA_AHG_INDEX_SHIFT 16
32#define SDMA_AHG_FIELD_LEN_MASK 0xf
33#define SDMA_AHG_FIELD_LEN_SHIFT 20
34#define SDMA_AHG_FIELD_START_MASK 0x1f
35#define SDMA_AHG_FIELD_START_SHIFT 24
36#define SDMA_AHG_UPDATE_ENABLE_MASK 0x1
37#define SDMA_AHG_UPDATE_ENABLE_SHIFT 31
38
39/* AHG modes */
40
41/*
42 * Be aware the ordering and values
43 * for SDMA_AHG_APPLY_UPDATE[123]
44 * are assumed in generating a skip
45 * count in submit_tx() in sdma.c
46 */
47#define SDMA_AHG_NO_AHG 0
48#define SDMA_AHG_COPY 1
49#define SDMA_AHG_APPLY_UPDATE1 2
50#define SDMA_AHG_APPLY_UPDATE2 3
51#define SDMA_AHG_APPLY_UPDATE3 4
52
53/*
54 * Bits defined in the send DMA descriptor.
55 */
56#define SDMA_DESC0_FIRST_DESC_FLAG BIT_ULL(63)
57#define SDMA_DESC0_LAST_DESC_FLAG BIT_ULL(62)
58#define SDMA_DESC0_BYTE_COUNT_SHIFT 48
59#define SDMA_DESC0_BYTE_COUNT_WIDTH 14
60#define SDMA_DESC0_BYTE_COUNT_MASK \
61 ((1ULL << SDMA_DESC0_BYTE_COUNT_WIDTH) - 1)
62#define SDMA_DESC0_BYTE_COUNT_SMASK \
63 (SDMA_DESC0_BYTE_COUNT_MASK << SDMA_DESC0_BYTE_COUNT_SHIFT)
64#define SDMA_DESC0_PHY_ADDR_SHIFT 0
65#define SDMA_DESC0_PHY_ADDR_WIDTH 48
66#define SDMA_DESC0_PHY_ADDR_MASK \
67 ((1ULL << SDMA_DESC0_PHY_ADDR_WIDTH) - 1)
68#define SDMA_DESC0_PHY_ADDR_SMASK \
69 (SDMA_DESC0_PHY_ADDR_MASK << SDMA_DESC0_PHY_ADDR_SHIFT)
70
71#define SDMA_DESC1_HEADER_UPDATE1_SHIFT 32
72#define SDMA_DESC1_HEADER_UPDATE1_WIDTH 32
73#define SDMA_DESC1_HEADER_UPDATE1_MASK \
74 ((1ULL << SDMA_DESC1_HEADER_UPDATE1_WIDTH) - 1)
75#define SDMA_DESC1_HEADER_UPDATE1_SMASK \
76 (SDMA_DESC1_HEADER_UPDATE1_MASK << SDMA_DESC1_HEADER_UPDATE1_SHIFT)
77#define SDMA_DESC1_HEADER_MODE_SHIFT 13
78#define SDMA_DESC1_HEADER_MODE_WIDTH 3
79#define SDMA_DESC1_HEADER_MODE_MASK \
80 ((1ULL << SDMA_DESC1_HEADER_MODE_WIDTH) - 1)
81#define SDMA_DESC1_HEADER_MODE_SMASK \
82 (SDMA_DESC1_HEADER_MODE_MASK << SDMA_DESC1_HEADER_MODE_SHIFT)
83#define SDMA_DESC1_HEADER_INDEX_SHIFT 8
84#define SDMA_DESC1_HEADER_INDEX_WIDTH 5
85#define SDMA_DESC1_HEADER_INDEX_MASK \
86 ((1ULL << SDMA_DESC1_HEADER_INDEX_WIDTH) - 1)
87#define SDMA_DESC1_HEADER_INDEX_SMASK \
88 (SDMA_DESC1_HEADER_INDEX_MASK << SDMA_DESC1_HEADER_INDEX_SHIFT)
89#define SDMA_DESC1_HEADER_DWS_SHIFT 4
90#define SDMA_DESC1_HEADER_DWS_WIDTH 4
91#define SDMA_DESC1_HEADER_DWS_MASK \
92 ((1ULL << SDMA_DESC1_HEADER_DWS_WIDTH) - 1)
93#define SDMA_DESC1_HEADER_DWS_SMASK \
94 (SDMA_DESC1_HEADER_DWS_MASK << SDMA_DESC1_HEADER_DWS_SHIFT)
95#define SDMA_DESC1_GENERATION_SHIFT 2
96#define SDMA_DESC1_GENERATION_WIDTH 2
97#define SDMA_DESC1_GENERATION_MASK \
98 ((1ULL << SDMA_DESC1_GENERATION_WIDTH) - 1)
99#define SDMA_DESC1_GENERATION_SMASK \
100 (SDMA_DESC1_GENERATION_MASK << SDMA_DESC1_GENERATION_SHIFT)
101#define SDMA_DESC1_INT_REQ_FLAG BIT_ULL(1)
102#define SDMA_DESC1_HEAD_TO_HOST_FLAG BIT_ULL(0)
103
104enum sdma_states {
105 sdma_state_s00_hw_down,
106 sdma_state_s10_hw_start_up_halt_wait,
107 sdma_state_s15_hw_start_up_clean_wait,
108 sdma_state_s20_idle,
109 sdma_state_s30_sw_clean_up_wait,
110 sdma_state_s40_hw_clean_up_wait,
111 sdma_state_s50_hw_halt_wait,
112 sdma_state_s60_idle_halt_wait,
113 sdma_state_s80_hw_freeze,
114 sdma_state_s82_freeze_sw_clean,
115 sdma_state_s99_running,
116};
117
118enum sdma_events {
119 sdma_event_e00_go_hw_down,
120 sdma_event_e10_go_hw_start,
121 sdma_event_e15_hw_halt_done,
122 sdma_event_e25_hw_clean_up_done,
123 sdma_event_e30_go_running,
124 sdma_event_e40_sw_cleaned,
125 sdma_event_e50_hw_cleaned,
126 sdma_event_e60_hw_halted,
127 sdma_event_e70_go_idle,
128 sdma_event_e80_hw_freeze,
129 sdma_event_e81_hw_frozen,
130 sdma_event_e82_hw_unfreeze,
131 sdma_event_e85_link_down,
132 sdma_event_e90_sw_halted,
133};
134
135struct sdma_set_state_action {
136 unsigned op_enable:1;
137 unsigned op_intenable:1;
138 unsigned op_halt:1;
139 unsigned op_cleanup:1;
140 unsigned go_s99_running_tofalse:1;
141 unsigned go_s99_running_totrue:1;
142};
143
144struct sdma_state {
145 struct kref kref;
146 struct completion comp;
147 enum sdma_states current_state;
148 unsigned current_op;
149 unsigned go_s99_running;
150 /* debugging/development */
151 enum sdma_states previous_state;
152 unsigned previous_op;
153 enum sdma_events last_event;
154};
155
156/**
157 * DOC: sdma exported routines
158 *
159 * These sdma routines fit into three categories:
160 * - The SDMA API for building and submitting packets
161 * to the ring
162 *
163 * - Initialization and tear down routines to buildup
164 * and tear down SDMA
165 *
166 * - ISR entrances to handle interrupts, state changes
167 * and errors
168 */
169
170/**
171 * DOC: sdma PSM/verbs API
172 *
173 * The sdma API is designed to be used by both PSM
174 * and verbs to supply packets to the SDMA ring.
175 *
176 * The usage of the API is as follows:
177 *
178 * Embed a struct iowait in the QP or
179 * PQ. The iowait should be initialized with a
180 * call to iowait_init().
181 *
182 * The user of the API should create an allocation method
183 * for their version of the txreq. slabs, pre-allocated lists,
184 * and dma pools can be used. Once the user's overload of
185 * the sdma_txreq has been allocated, the sdma_txreq member
186 * must be initialized with sdma_txinit() or sdma_txinit_ahg().
187 *
188 * The txreq must be declared with the sdma_txreq first.
189 *
190 * The tx request, once initialized, is manipulated with calls to
191 * sdma_txadd_daddr(), sdma_txadd_page(), or sdma_txadd_kvaddr()
192 * for each disjoint memory location. It is the user's responsibility
193 * to understand the packet boundaries and page boundaries to do the
194 * appropriate number of sdma_txadd_* calls.. The user
195 * must be prepared to deal with failures from these routines due to
196 * either memory allocation or dma_mapping failures.
197 *
198 * The mapping specifics for each memory location are recorded
199 * in the tx. Memory locations added with sdma_txadd_page()
200 * and sdma_txadd_kvaddr() are automatically mapped when added
201 * to the tx and nmapped as part of the progress processing in the
202 * SDMA interrupt handling.
203 *
204 * sdma_txadd_daddr() is used to add an dma_addr_t memory to the
205 * tx. An example of a use case would be a pre-allocated
206 * set of headers allocated via dma_pool_alloc() or
207 * dma_alloc_coherent(). For these memory locations, it
208 * is the responsibility of the user to handle that unmapping.
209 * (This would usually be at an unload or job termination.)
210 *
211 * The routine sdma_send_txreq() is used to submit
212 * a tx to the ring after the appropriate number of
213 * sdma_txadd_* have been done.
214 *
215 * If it is desired to send a burst of sdma_txreqs, sdma_send_txlist()
216 * can be used to submit a list of packets.
217 *
218 * The user is free to use the link overhead in the struct sdma_txreq as
219 * long as the tx isn't in flight.
220 *
221 * The extreme degenerate case of the number of descriptors
222 * exceeding the ring size is automatically handled as
223 * memory locations are added. An overflow of the descriptor
224 * array that is part of the sdma_txreq is also automatically
225 * handled.
226 *
227 */
228
229/**
230 * DOC: Infrastructure calls
231 *
232 * sdma_init() is used to initialize data structures and
233 * CSRs for the desired number of SDMA engines.
234 *
235 * sdma_start() is used to kick the SDMA engines initialized
236 * with sdma_init(). Interrupts must be enabled at this
237 * point since aspects of the state machine are interrupt
238 * driven.
239 *
240 * sdma_engine_error() and sdma_engine_interrupt() are
241 * entrances for interrupts.
242 *
243 * sdma_map_init() is for the management of the mapping
244 * table when the number of vls is changed.
245 *
246 */
247
248/*
249 * struct hw_sdma_desc - raw 128 bit SDMA descriptor
250 *
251 * This is the raw descriptor in the SDMA ring
252 */
253struct hw_sdma_desc {
254 /* private: don't use directly */
255 __le64 qw[2];
256};
257
258/**
259 * struct sdma_engine - Data pertaining to each SDMA engine.
260 * @dd: a back-pointer to the device data
261 * @ppd: per port back-pointer
262 * @imask: mask for irq manipulation
263 * @idle_mask: mask for determining if an interrupt is due to sdma_idle
264 *
265 * This structure has the state for each sdma_engine.
266 *
267 * Accessing to non public fields are not supported
268 * since the private members are subject to change.
269 */
270struct sdma_engine {
271 /* read mostly */
272 struct hfi1_devdata *dd;
273 struct hfi1_pportdata *ppd;
274 /* private: */
275 void __iomem *tail_csr;
276 u64 imask; /* clear interrupt mask */
277 u64 idle_mask;
278 u64 progress_mask;
279 u64 int_mask;
280 /* private: */
281 volatile __le64 *head_dma; /* DMA'ed by chip */
282 /* private: */
283 dma_addr_t head_phys;
284 /* private: */
285 struct hw_sdma_desc *descq;
286 /* private: */
287 unsigned descq_full_count;
288 struct sdma_txreq **tx_ring;
289 /* private: */
290 dma_addr_t descq_phys;
291 /* private */
292 u32 sdma_mask;
293 /* private */
294 struct sdma_state state;
295 /* private */
296 int cpu;
297 /* private: */
298 u8 sdma_shift;
299 /* private: */
300 u8 this_idx; /* zero relative engine */
301 /* protect changes to senddmactrl shadow */
302 spinlock_t senddmactrl_lock;
303 /* private: */
304 u64 p_senddmactrl; /* shadow per-engine SendDmaCtrl */
305
306 /* read/write using tail_lock */
307 spinlock_t tail_lock ____cacheline_aligned_in_smp;
308#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
309 /* private: */
310 u64 tail_sn;
311#endif
312 /* private: */
313 u32 descq_tail;
314 /* private: */
315 unsigned long ahg_bits;
316 /* private: */
317 u16 desc_avail;
318 /* private: */
319 u16 tx_tail;
320 /* private: */
321 u16 descq_cnt;
322
323 /* read/write using head_lock */
324 /* private: */
325 seqlock_t head_lock ____cacheline_aligned_in_smp;
326#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
327 /* private: */
328 u64 head_sn;
329#endif
330 /* private: */
331 u32 descq_head;
332 /* private: */
333 u16 tx_head;
334 /* private: */
335 u64 last_status;
336 /* private */
337 u64 err_cnt;
338 /* private */
339 u64 sdma_int_cnt;
340 u64 idle_int_cnt;
341 u64 progress_int_cnt;
342
343 /* private: */
344 seqlock_t waitlock;
345 struct list_head dmawait;
346
347 /* CONFIG SDMA for now, just blindly duplicate */
348 /* private: */
349 struct tasklet_struct sdma_hw_clean_up_task
350 ____cacheline_aligned_in_smp;
351
352 /* private: */
353 struct tasklet_struct sdma_sw_clean_up_task
354 ____cacheline_aligned_in_smp;
355 /* private: */
356 struct work_struct err_halt_worker;
357 /* private */
358 struct timer_list err_progress_check_timer;
359 u32 progress_check_head;
360 /* private: */
361 struct work_struct flush_worker;
362 /* protect flush list */
363 spinlock_t flushlist_lock;
364 /* private: */
365 struct list_head flushlist;
366 struct cpumask cpu_mask;
367 struct kobject kobj;
368 u32 msix_intr;
369};
370
371int sdma_init(struct hfi1_devdata *dd, u8 port);
372void sdma_start(struct hfi1_devdata *dd);
373void sdma_exit(struct hfi1_devdata *dd);
374void sdma_clean(struct hfi1_devdata *dd, size_t num_engines);
375void sdma_all_running(struct hfi1_devdata *dd);
376void sdma_all_idle(struct hfi1_devdata *dd);
377void sdma_freeze_notify(struct hfi1_devdata *dd, int go_idle);
378void sdma_freeze(struct hfi1_devdata *dd);
379void sdma_unfreeze(struct hfi1_devdata *dd);
380void sdma_wait(struct hfi1_devdata *dd);
381
382/**
383 * sdma_empty() - idle engine test
384 * @engine: sdma engine
385 *
386 * Currently used by verbs as a latency optimization.
387 *
388 * Return:
389 * 1 - empty, 0 - non-empty
390 */
391static inline int sdma_empty(struct sdma_engine *sde)
392{
393 return sde->descq_tail == sde->descq_head;
394}
395
396static inline u16 sdma_descq_freecnt(struct sdma_engine *sde)
397{
398 return sde->descq_cnt -
399 (sde->descq_tail -
400 READ_ONCE(sde->descq_head)) - 1;
401}
402
403static inline u16 sdma_descq_inprocess(struct sdma_engine *sde)
404{
405 return sde->descq_cnt - sdma_descq_freecnt(sde);
406}
407
408/*
409 * Either head_lock or tail lock required to see
410 * a steady state.
411 */
412static inline int __sdma_running(struct sdma_engine *engine)
413{
414 return engine->state.current_state == sdma_state_s99_running;
415}
416
417/**
418 * sdma_running() - state suitability test
419 * @engine: sdma engine
420 *
421 * sdma_running probes the internal state to determine if it is suitable
422 * for submitting packets.
423 *
424 * Return:
425 * 1 - ok to submit, 0 - not ok to submit
426 *
427 */
428static inline int sdma_running(struct sdma_engine *engine)
429{
430 unsigned long flags;
431 int ret;
432
433 spin_lock_irqsave(&engine->tail_lock, flags);
434 ret = __sdma_running(engine);
435 spin_unlock_irqrestore(&engine->tail_lock, flags);
436 return ret;
437}
438
439void _sdma_txreq_ahgadd(
440 struct sdma_txreq *tx,
441 u8 num_ahg,
442 u8 ahg_entry,
443 u32 *ahg,
444 u8 ahg_hlen);
445
446/**
447 * sdma_txinit_ahg() - initialize an sdma_txreq struct with AHG
448 * @tx: tx request to initialize
449 * @flags: flags to key last descriptor additions
450 * @tlen: total packet length (pbc + headers + data)
451 * @ahg_entry: ahg entry to use (0 - 31)
452 * @num_ahg: ahg descriptor for first descriptor (0 - 9)
453 * @ahg: array of AHG descriptors (up to 9 entries)
454 * @ahg_hlen: number of bytes from ASIC entry to use
455 * @cb: callback
456 *
457 * The allocation of the sdma_txreq and it enclosing structure is user
458 * dependent. This routine must be called to initialize the user independent
459 * fields.
460 *
461 * The currently supported flags are SDMA_TXREQ_F_URGENT,
462 * SDMA_TXREQ_F_AHG_COPY, and SDMA_TXREQ_F_USE_AHG.
463 *
464 * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
465 * completion is desired as soon as possible.
466 *
467 * SDMA_TXREQ_F_AHG_COPY causes the header in the first descriptor to be
468 * copied to chip entry. SDMA_TXREQ_F_USE_AHG causes the code to add in
469 * the AHG descriptors into the first 1 to 3 descriptors.
470 *
471 * Completions of submitted requests can be gotten on selected
472 * txreqs by giving a completion routine callback to sdma_txinit() or
473 * sdma_txinit_ahg(). The environment in which the callback runs
474 * can be from an ISR, a tasklet, or a thread, so no sleeping
475 * kernel routines can be used. Aspects of the sdma ring may
476 * be locked so care should be taken with locking.
477 *
478 * The callback pointer can be NULL to avoid any callback for the packet
479 * being submitted. The callback will be provided this tx, a status, and a flag.
480 *
481 * The status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
482 * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
483 *
484 * The flag, if the is the iowait had been used, indicates the iowait
485 * sdma_busy count has reached zero.
486 *
487 * user data portion of tlen should be precise. The sdma_txadd_* entrances
488 * will pad with a descriptor references 1 - 3 bytes when the number of bytes
489 * specified in tlen have been supplied to the sdma_txreq.
490 *
491 * ahg_hlen is used to determine the number of on-chip entry bytes to
492 * use as the header. This is for cases where the stored header is
493 * larger than the header to be used in a packet. This is typical
494 * for verbs where an RDMA_WRITE_FIRST is larger than the packet in
495 * and RDMA_WRITE_MIDDLE.
496 *
497 */
498static inline int sdma_txinit_ahg(
499 struct sdma_txreq *tx,
500 u16 flags,
501 u16 tlen,
502 u8 ahg_entry,
503 u8 num_ahg,
504 u32 *ahg,
505 u8 ahg_hlen,
506 void (*cb)(struct sdma_txreq *, int))
507{
508 if (tlen == 0)
509 return -ENODATA;
510 if (tlen > MAX_SDMA_PKT_SIZE)
511 return -EMSGSIZE;
512 tx->desc_limit = ARRAY_SIZE(tx->descs);
513 tx->descp = &tx->descs[0];
514 INIT_LIST_HEAD(&tx->list);
515 tx->num_desc = 0;
516 tx->flags = flags;
517 tx->complete = cb;
518 tx->coalesce_buf = NULL;
519 tx->wait = NULL;
520 tx->packet_len = tlen;
521 tx->tlen = tx->packet_len;
522 tx->descs[0].qw[0] = SDMA_DESC0_FIRST_DESC_FLAG;
523 tx->descs[0].qw[1] = 0;
524 if (flags & SDMA_TXREQ_F_AHG_COPY)
525 tx->descs[0].qw[1] |=
526 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
527 << SDMA_DESC1_HEADER_INDEX_SHIFT) |
528 (((u64)SDMA_AHG_COPY & SDMA_DESC1_HEADER_MODE_MASK)
529 << SDMA_DESC1_HEADER_MODE_SHIFT);
530 else if (flags & SDMA_TXREQ_F_USE_AHG && num_ahg)
531 _sdma_txreq_ahgadd(tx, num_ahg, ahg_entry, ahg, ahg_hlen);
532 return 0;
533}
534
535/**
536 * sdma_txinit() - initialize an sdma_txreq struct (no AHG)
537 * @tx: tx request to initialize
538 * @flags: flags to key last descriptor additions
539 * @tlen: total packet length (pbc + headers + data)
540 * @cb: callback pointer
541 *
542 * The allocation of the sdma_txreq and it enclosing structure is user
543 * dependent. This routine must be called to initialize the user
544 * independent fields.
545 *
546 * The currently supported flags is SDMA_TXREQ_F_URGENT.
547 *
548 * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
549 * completion is desired as soon as possible.
550 *
551 * Completions of submitted requests can be gotten on selected
552 * txreqs by giving a completion routine callback to sdma_txinit() or
553 * sdma_txinit_ahg(). The environment in which the callback runs
554 * can be from an ISR, a tasklet, or a thread, so no sleeping
555 * kernel routines can be used. The head size of the sdma ring may
556 * be locked so care should be taken with locking.
557 *
558 * The callback pointer can be NULL to avoid any callback for the packet
559 * being submitted.
560 *
561 * The callback, if non-NULL, will be provided this tx and a status. The
562 * status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
563 * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
564 *
565 */
566static inline int sdma_txinit(
567 struct sdma_txreq *tx,
568 u16 flags,
569 u16 tlen,
570 void (*cb)(struct sdma_txreq *, int))
571{
572 return sdma_txinit_ahg(tx, flags, tlen, 0, 0, NULL, 0, cb);
573}
574
575/* helpers - don't use */
576static inline int sdma_mapping_type(struct sdma_desc *d)
577{
578 return (d->qw[1] & SDMA_DESC1_GENERATION_SMASK)
579 >> SDMA_DESC1_GENERATION_SHIFT;
580}
581
582static inline size_t sdma_mapping_len(struct sdma_desc *d)
583{
584 return (d->qw[0] & SDMA_DESC0_BYTE_COUNT_SMASK)
585 >> SDMA_DESC0_BYTE_COUNT_SHIFT;
586}
587
588static inline dma_addr_t sdma_mapping_addr(struct sdma_desc *d)
589{
590 return (d->qw[0] & SDMA_DESC0_PHY_ADDR_SMASK)
591 >> SDMA_DESC0_PHY_ADDR_SHIFT;
592}
593
594static inline void make_tx_sdma_desc(
595 struct sdma_txreq *tx,
596 int type,
597 dma_addr_t addr,
598 size_t len,
599 void *pinning_ctx,
600 void (*ctx_get)(void *),
601 void (*ctx_put)(void *))
602{
603 struct sdma_desc *desc = &tx->descp[tx->num_desc];
604
605 if (!tx->num_desc) {
606 /* qw[0] zero; qw[1] first, ahg mode already in from init */
607 desc->qw[1] |= ((u64)type & SDMA_DESC1_GENERATION_MASK)
608 << SDMA_DESC1_GENERATION_SHIFT;
609 } else {
610 desc->qw[0] = 0;
611 desc->qw[1] = ((u64)type & SDMA_DESC1_GENERATION_MASK)
612 << SDMA_DESC1_GENERATION_SHIFT;
613 }
614 desc->qw[0] |= (((u64)addr & SDMA_DESC0_PHY_ADDR_MASK)
615 << SDMA_DESC0_PHY_ADDR_SHIFT) |
616 (((u64)len & SDMA_DESC0_BYTE_COUNT_MASK)
617 << SDMA_DESC0_BYTE_COUNT_SHIFT);
618
619 desc->pinning_ctx = pinning_ctx;
620 desc->ctx_put = ctx_put;
621 if (pinning_ctx && ctx_get)
622 ctx_get(pinning_ctx);
623}
624
625/* helper to extend txreq */
626int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
627 int type, void *kvaddr, struct page *page,
628 unsigned long offset, u16 len);
629int _pad_sdma_tx_descs(struct hfi1_devdata *, struct sdma_txreq *);
630void __sdma_txclean(struct hfi1_devdata *, struct sdma_txreq *);
631
632static inline void sdma_txclean(struct hfi1_devdata *dd, struct sdma_txreq *tx)
633{
634 if (tx->num_desc)
635 __sdma_txclean(dd, tx);
636}
637
638/* helpers used by public routines */
639static inline void _sdma_close_tx(struct hfi1_devdata *dd,
640 struct sdma_txreq *tx)
641{
642 u16 last_desc = tx->num_desc - 1;
643
644 tx->descp[last_desc].qw[0] |= SDMA_DESC0_LAST_DESC_FLAG;
645 tx->descp[last_desc].qw[1] |= dd->default_desc1;
646 if (tx->flags & SDMA_TXREQ_F_URGENT)
647 tx->descp[last_desc].qw[1] |= (SDMA_DESC1_HEAD_TO_HOST_FLAG |
648 SDMA_DESC1_INT_REQ_FLAG);
649}
650
651static inline int _sdma_txadd_daddr(
652 struct hfi1_devdata *dd,
653 int type,
654 struct sdma_txreq *tx,
655 dma_addr_t addr,
656 u16 len,
657 void *pinning_ctx,
658 void (*ctx_get)(void *),
659 void (*ctx_put)(void *))
660{
661 int rval = 0;
662
663 make_tx_sdma_desc(
664 tx,
665 type,
666 addr, len,
667 pinning_ctx, ctx_get, ctx_put);
668 WARN_ON(len > tx->tlen);
669 tx->num_desc++;
670 tx->tlen -= len;
671 /* special cases for last */
672 if (!tx->tlen) {
673 if (tx->packet_len & (sizeof(u32) - 1)) {
674 rval = _pad_sdma_tx_descs(dd, tx);
675 if (rval)
676 return rval;
677 } else {
678 _sdma_close_tx(dd, tx);
679 }
680 }
681 return rval;
682}
683
684/**
685 * sdma_txadd_page() - add a page to the sdma_txreq
686 * @dd: the device to use for mapping
687 * @tx: tx request to which the page is added
688 * @page: page to map
689 * @offset: offset within the page
690 * @len: length in bytes
691 * @pinning_ctx: context to be stored on struct sdma_desc .pinning_ctx. Not
692 * added if coalesce buffer is used. E.g. pointer to pinned-page
693 * cache entry for the sdma_desc.
694 * @ctx_get: optional function to take reference to @pinning_ctx. Not called if
695 * @pinning_ctx is NULL.
696 * @ctx_put: optional function to release reference to @pinning_ctx after
697 * sdma_desc completes. May be called in interrupt context so must
698 * not sleep. Not called if @pinning_ctx is NULL.
699 *
700 * This is used to add a page/offset/length descriptor.
701 *
702 * The mapping/unmapping of the page/offset/len is automatically handled.
703 *
704 * Return:
705 * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't
706 * extend/coalesce descriptor array
707 */
708static inline int sdma_txadd_page(
709 struct hfi1_devdata *dd,
710 struct sdma_txreq *tx,
711 struct page *page,
712 unsigned long offset,
713 u16 len,
714 void *pinning_ctx,
715 void (*ctx_get)(void *),
716 void (*ctx_put)(void *))
717{
718 dma_addr_t addr;
719 int rval;
720
721 if ((unlikely(tx->num_desc == tx->desc_limit))) {
722 rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_PAGE,
723 NULL, page, offset, len);
724 if (rval <= 0)
725 return rval;
726 }
727
728 addr = dma_map_page(
729 &dd->pcidev->dev,
730 page,
731 offset,
732 len,
733 DMA_TO_DEVICE);
734
735 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
736 __sdma_txclean(dd, tx);
737 return -ENOSPC;
738 }
739
740 return _sdma_txadd_daddr(dd, SDMA_MAP_PAGE, tx, addr, len,
741 pinning_ctx, ctx_get, ctx_put);
742}
743
744/**
745 * sdma_txadd_daddr() - add a dma address to the sdma_txreq
746 * @dd: the device to use for mapping
747 * @tx: sdma_txreq to which the page is added
748 * @addr: dma address mapped by caller
749 * @len: length in bytes
750 *
751 * This is used to add a descriptor for memory that is already dma mapped.
752 *
753 * In this case, there is no unmapping as part of the progress processing for
754 * this memory location.
755 *
756 * Return:
757 * 0 - success, -ENOMEM - couldn't extend descriptor array
758 */
759
760static inline int sdma_txadd_daddr(
761 struct hfi1_devdata *dd,
762 struct sdma_txreq *tx,
763 dma_addr_t addr,
764 u16 len)
765{
766 int rval;
767
768 if ((unlikely(tx->num_desc == tx->desc_limit))) {
769 rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_NONE,
770 NULL, NULL, 0, 0);
771 if (rval <= 0)
772 return rval;
773 }
774
775 return _sdma_txadd_daddr(dd, SDMA_MAP_NONE, tx, addr, len,
776 NULL, NULL, NULL);
777}
778
779/**
780 * sdma_txadd_kvaddr() - add a kernel virtual address to sdma_txreq
781 * @dd: the device to use for mapping
782 * @tx: sdma_txreq to which the page is added
783 * @kvaddr: the kernel virtual address
784 * @len: length in bytes
785 *
786 * This is used to add a descriptor referenced by the indicated kvaddr and
787 * len.
788 *
789 * The mapping/unmapping of the kvaddr and len is automatically handled.
790 *
791 * Return:
792 * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't extend/coalesce
793 * descriptor array
794 */
795static inline int sdma_txadd_kvaddr(
796 struct hfi1_devdata *dd,
797 struct sdma_txreq *tx,
798 void *kvaddr,
799 u16 len)
800{
801 dma_addr_t addr;
802 int rval;
803
804 if ((unlikely(tx->num_desc == tx->desc_limit))) {
805 rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_SINGLE,
806 kvaddr, NULL, 0, len);
807 if (rval <= 0)
808 return rval;
809 }
810
811 addr = dma_map_single(
812 &dd->pcidev->dev,
813 kvaddr,
814 len,
815 DMA_TO_DEVICE);
816
817 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
818 __sdma_txclean(dd, tx);
819 return -ENOSPC;
820 }
821
822 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx, addr, len,
823 NULL, NULL, NULL);
824}
825
826struct iowait_work;
827
828int sdma_send_txreq(struct sdma_engine *sde,
829 struct iowait_work *wait,
830 struct sdma_txreq *tx,
831 bool pkts_sent);
832int sdma_send_txlist(struct sdma_engine *sde,
833 struct iowait_work *wait,
834 struct list_head *tx_list,
835 u16 *count_out);
836
837int sdma_ahg_alloc(struct sdma_engine *sde);
838void sdma_ahg_free(struct sdma_engine *sde, int ahg_index);
839
840/**
841 * sdma_build_ahg - build ahg descriptor
842 * @data
843 * @dwindex
844 * @startbit
845 * @bits
846 *
847 * Build and return a 32 bit descriptor.
848 */
849static inline u32 sdma_build_ahg_descriptor(
850 u16 data,
851 u8 dwindex,
852 u8 startbit,
853 u8 bits)
854{
855 return (u32)(1UL << SDMA_AHG_UPDATE_ENABLE_SHIFT |
856 ((startbit & SDMA_AHG_FIELD_START_MASK) <<
857 SDMA_AHG_FIELD_START_SHIFT) |
858 ((bits & SDMA_AHG_FIELD_LEN_MASK) <<
859 SDMA_AHG_FIELD_LEN_SHIFT) |
860 ((dwindex & SDMA_AHG_INDEX_MASK) <<
861 SDMA_AHG_INDEX_SHIFT) |
862 ((data & SDMA_AHG_VALUE_MASK) <<
863 SDMA_AHG_VALUE_SHIFT));
864}
865
866/**
867 * sdma_progress - use seq number of detect head progress
868 * @sde: sdma_engine to check
869 * @seq: base seq count
870 * @tx: txreq for which we need to check descriptor availability
871 *
872 * This is used in the appropriate spot in the sleep routine
873 * to check for potential ring progress. This routine gets the
874 * seqcount before queuing the iowait structure for progress.
875 *
876 * If the seqcount indicates that progress needs to be checked,
877 * re-submission is detected by checking whether the descriptor
878 * queue has enough descriptor for the txreq.
879 */
880static inline unsigned sdma_progress(struct sdma_engine *sde, unsigned seq,
881 struct sdma_txreq *tx)
882{
883 if (read_seqretry(&sde->head_lock, seq)) {
884 sde->desc_avail = sdma_descq_freecnt(sde);
885 if (tx->num_desc > sde->desc_avail)
886 return 0;
887 return 1;
888 }
889 return 0;
890}
891
892/* for use by interrupt handling */
893void sdma_engine_error(struct sdma_engine *sde, u64 status);
894void sdma_engine_interrupt(struct sdma_engine *sde, u64 status);
895
896/*
897 *
898 * The diagram below details the relationship of the mapping structures
899 *
900 * Since the mapping now allows for non-uniform engines per vl, the
901 * number of engines for a vl is either the vl_engines[vl] or
902 * a computation based on num_sdma/num_vls:
903 *
904 * For example:
905 * nactual = vl_engines ? vl_engines[vl] : num_sdma/num_vls
906 *
907 * n = roundup to next highest power of 2 using nactual
908 *
909 * In the case where there are num_sdma/num_vls doesn't divide
910 * evenly, the extras are added from the last vl downward.
911 *
912 * For the case where n > nactual, the engines are assigned
913 * in a round robin fashion wrapping back to the first engine
914 * for a particular vl.
915 *
916 * dd->sdma_map
917 * | sdma_map_elem[0]
918 * | +--------------------+
919 * v | mask |
920 * sdma_vl_map |--------------------|
921 * +--------------------------+ | sde[0] -> eng 1 |
922 * | list (RCU) | |--------------------|
923 * |--------------------------| ->| sde[1] -> eng 2 |
924 * | mask | --/ |--------------------|
925 * |--------------------------| -/ | * |
926 * | actual_vls (max 8) | -/ |--------------------|
927 * |--------------------------| --/ | sde[n-1] -> eng n |
928 * | vls (max 8) | -/ +--------------------+
929 * |--------------------------| --/
930 * | map[0] |-/
931 * |--------------------------| +---------------------+
932 * | map[1] |--- | mask |
933 * |--------------------------| \---- |---------------------|
934 * | * | \-- | sde[0] -> eng 1+n |
935 * | * | \---- |---------------------|
936 * | * | \->| sde[1] -> eng 2+n |
937 * |--------------------------| |---------------------|
938 * | map[vls - 1] |- | * |
939 * +--------------------------+ \- |---------------------|
940 * \- | sde[m-1] -> eng m+n |
941 * \ +---------------------+
942 * \-
943 * \
944 * \- +----------------------+
945 * \- | mask |
946 * \ |----------------------|
947 * \- | sde[0] -> eng 1+m+n |
948 * \- |----------------------|
949 * >| sde[1] -> eng 2+m+n |
950 * |----------------------|
951 * | * |
952 * |----------------------|
953 * | sde[o-1] -> eng o+m+n|
954 * +----------------------+
955 *
956 */
957
958/**
959 * struct sdma_map_elem - mapping for a vl
960 * @mask - selector mask
961 * @sde - array of engines for this vl
962 *
963 * The mask is used to "mod" the selector
964 * to produce index into the trailing
965 * array of sdes.
966 */
967struct sdma_map_elem {
968 u32 mask;
969 struct sdma_engine *sde[];
970};
971
972/**
973 * struct sdma_map_el - mapping for a vl
974 * @engine_to_vl - map of an engine to a vl
975 * @list - rcu head for free callback
976 * @mask - vl mask to "mod" the vl to produce an index to map array
977 * @actual_vls - number of vls
978 * @vls - number of vls rounded to next power of 2
979 * @map - array of sdma_map_elem entries
980 *
981 * This is the parent mapping structure. The trailing
982 * members of the struct point to sdma_map_elem entries, which
983 * in turn point to an array of sde's for that vl.
984 */
985struct sdma_vl_map {
986 s8 engine_to_vl[TXE_NUM_SDMA_ENGINES];
987 struct rcu_head list;
988 u32 mask;
989 u8 actual_vls;
990 u8 vls;
991 struct sdma_map_elem *map[];
992};
993
994int sdma_map_init(
995 struct hfi1_devdata *dd,
996 u8 port,
997 u8 num_vls,
998 u8 *vl_engines);
999
1000/* slow path */
1001void _sdma_engine_progress_schedule(struct sdma_engine *sde);
1002
1003/**
1004 * sdma_engine_progress_schedule() - schedule progress on engine
1005 * @sde: sdma_engine to schedule progress
1006 *
1007 * This is the fast path.
1008 *
1009 */
1010static inline void sdma_engine_progress_schedule(
1011 struct sdma_engine *sde)
1012{
1013 if (!sde || sdma_descq_inprocess(sde) < (sde->descq_cnt / 8))
1014 return;
1015 _sdma_engine_progress_schedule(sde);
1016}
1017
1018struct sdma_engine *sdma_select_engine_sc(
1019 struct hfi1_devdata *dd,
1020 u32 selector,
1021 u8 sc5);
1022
1023struct sdma_engine *sdma_select_engine_vl(
1024 struct hfi1_devdata *dd,
1025 u32 selector,
1026 u8 vl);
1027
1028struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
1029 u32 selector, u8 vl);
1030ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf);
1031ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
1032 size_t count);
1033int sdma_engine_get_vl(struct sdma_engine *sde);
1034void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *);
1035void sdma_seqfile_dump_cpu_list(struct seq_file *s, struct hfi1_devdata *dd,
1036 unsigned long cpuid);
1037
1038#ifdef CONFIG_SDMA_VERBOSITY
1039void sdma_dumpstate(struct sdma_engine *);
1040#endif
1041static inline char *slashstrip(char *s)
1042{
1043 char *r = s;
1044
1045 while (*s)
1046 if (*s++ == '/')
1047 r = s;
1048 return r;
1049}
1050
1051u16 sdma_get_descq_cnt(void);
1052
1053extern uint mod_num_sdma;
1054
1055void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid);
1056#endif
1#ifndef _HFI1_SDMA_H
2#define _HFI1_SDMA_H
3/*
4 * Copyright(c) 2015, 2016 Intel Corporation.
5 *
6 * This file is provided under a dual BSD/GPLv2 license. When using or
7 * redistributing this file, you may do so under either license.
8 *
9 * GPL LICENSE SUMMARY
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of version 2 of the GNU General Public License as
13 * published by the Free Software Foundation.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * BSD LICENSE
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 *
26 * - Redistributions of source code must retain the above copyright
27 * notice, this list of conditions and the following disclaimer.
28 * - Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in
30 * the documentation and/or other materials provided with the
31 * distribution.
32 * - Neither the name of Intel Corporation nor the names of its
33 * contributors may be used to endorse or promote products derived
34 * from this software without specific prior written permission.
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
37 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
38 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
39 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
40 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
42 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
43 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
44 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
45 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
46 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
47 *
48 */
49
50#include <linux/types.h>
51#include <linux/list.h>
52#include <asm/byteorder.h>
53#include <linux/workqueue.h>
54#include <linux/rculist.h>
55
56#include "hfi.h"
57#include "verbs.h"
58#include "sdma_txreq.h"
59
60/* Hardware limit */
61#define MAX_DESC 64
62/* Hardware limit for SDMA packet size */
63#define MAX_SDMA_PKT_SIZE ((16 * 1024) - 1)
64
65#define SDMA_TXREQ_S_OK 0
66#define SDMA_TXREQ_S_SENDERROR 1
67#define SDMA_TXREQ_S_ABORTED 2
68#define SDMA_TXREQ_S_SHUTDOWN 3
69
70/* flags bits */
71#define SDMA_TXREQ_F_URGENT 0x0001
72#define SDMA_TXREQ_F_AHG_COPY 0x0002
73#define SDMA_TXREQ_F_USE_AHG 0x0004
74
75#define SDMA_MAP_NONE 0
76#define SDMA_MAP_SINGLE 1
77#define SDMA_MAP_PAGE 2
78
79#define SDMA_AHG_VALUE_MASK 0xffff
80#define SDMA_AHG_VALUE_SHIFT 0
81#define SDMA_AHG_INDEX_MASK 0xf
82#define SDMA_AHG_INDEX_SHIFT 16
83#define SDMA_AHG_FIELD_LEN_MASK 0xf
84#define SDMA_AHG_FIELD_LEN_SHIFT 20
85#define SDMA_AHG_FIELD_START_MASK 0x1f
86#define SDMA_AHG_FIELD_START_SHIFT 24
87#define SDMA_AHG_UPDATE_ENABLE_MASK 0x1
88#define SDMA_AHG_UPDATE_ENABLE_SHIFT 31
89
90/* AHG modes */
91
92/*
93 * Be aware the ordering and values
94 * for SDMA_AHG_APPLY_UPDATE[123]
95 * are assumed in generating a skip
96 * count in submit_tx() in sdma.c
97 */
98#define SDMA_AHG_NO_AHG 0
99#define SDMA_AHG_COPY 1
100#define SDMA_AHG_APPLY_UPDATE1 2
101#define SDMA_AHG_APPLY_UPDATE2 3
102#define SDMA_AHG_APPLY_UPDATE3 4
103
104/*
105 * Bits defined in the send DMA descriptor.
106 */
107#define SDMA_DESC0_FIRST_DESC_FLAG BIT_ULL(63)
108#define SDMA_DESC0_LAST_DESC_FLAG BIT_ULL(62)
109#define SDMA_DESC0_BYTE_COUNT_SHIFT 48
110#define SDMA_DESC0_BYTE_COUNT_WIDTH 14
111#define SDMA_DESC0_BYTE_COUNT_MASK \
112 ((1ULL << SDMA_DESC0_BYTE_COUNT_WIDTH) - 1)
113#define SDMA_DESC0_BYTE_COUNT_SMASK \
114 (SDMA_DESC0_BYTE_COUNT_MASK << SDMA_DESC0_BYTE_COUNT_SHIFT)
115#define SDMA_DESC0_PHY_ADDR_SHIFT 0
116#define SDMA_DESC0_PHY_ADDR_WIDTH 48
117#define SDMA_DESC0_PHY_ADDR_MASK \
118 ((1ULL << SDMA_DESC0_PHY_ADDR_WIDTH) - 1)
119#define SDMA_DESC0_PHY_ADDR_SMASK \
120 (SDMA_DESC0_PHY_ADDR_MASK << SDMA_DESC0_PHY_ADDR_SHIFT)
121
122#define SDMA_DESC1_HEADER_UPDATE1_SHIFT 32
123#define SDMA_DESC1_HEADER_UPDATE1_WIDTH 32
124#define SDMA_DESC1_HEADER_UPDATE1_MASK \
125 ((1ULL << SDMA_DESC1_HEADER_UPDATE1_WIDTH) - 1)
126#define SDMA_DESC1_HEADER_UPDATE1_SMASK \
127 (SDMA_DESC1_HEADER_UPDATE1_MASK << SDMA_DESC1_HEADER_UPDATE1_SHIFT)
128#define SDMA_DESC1_HEADER_MODE_SHIFT 13
129#define SDMA_DESC1_HEADER_MODE_WIDTH 3
130#define SDMA_DESC1_HEADER_MODE_MASK \
131 ((1ULL << SDMA_DESC1_HEADER_MODE_WIDTH) - 1)
132#define SDMA_DESC1_HEADER_MODE_SMASK \
133 (SDMA_DESC1_HEADER_MODE_MASK << SDMA_DESC1_HEADER_MODE_SHIFT)
134#define SDMA_DESC1_HEADER_INDEX_SHIFT 8
135#define SDMA_DESC1_HEADER_INDEX_WIDTH 5
136#define SDMA_DESC1_HEADER_INDEX_MASK \
137 ((1ULL << SDMA_DESC1_HEADER_INDEX_WIDTH) - 1)
138#define SDMA_DESC1_HEADER_INDEX_SMASK \
139 (SDMA_DESC1_HEADER_INDEX_MASK << SDMA_DESC1_HEADER_INDEX_SHIFT)
140#define SDMA_DESC1_HEADER_DWS_SHIFT 4
141#define SDMA_DESC1_HEADER_DWS_WIDTH 4
142#define SDMA_DESC1_HEADER_DWS_MASK \
143 ((1ULL << SDMA_DESC1_HEADER_DWS_WIDTH) - 1)
144#define SDMA_DESC1_HEADER_DWS_SMASK \
145 (SDMA_DESC1_HEADER_DWS_MASK << SDMA_DESC1_HEADER_DWS_SHIFT)
146#define SDMA_DESC1_GENERATION_SHIFT 2
147#define SDMA_DESC1_GENERATION_WIDTH 2
148#define SDMA_DESC1_GENERATION_MASK \
149 ((1ULL << SDMA_DESC1_GENERATION_WIDTH) - 1)
150#define SDMA_DESC1_GENERATION_SMASK \
151 (SDMA_DESC1_GENERATION_MASK << SDMA_DESC1_GENERATION_SHIFT)
152#define SDMA_DESC1_INT_REQ_FLAG BIT_ULL(1)
153#define SDMA_DESC1_HEAD_TO_HOST_FLAG BIT_ULL(0)
154
155enum sdma_states {
156 sdma_state_s00_hw_down,
157 sdma_state_s10_hw_start_up_halt_wait,
158 sdma_state_s15_hw_start_up_clean_wait,
159 sdma_state_s20_idle,
160 sdma_state_s30_sw_clean_up_wait,
161 sdma_state_s40_hw_clean_up_wait,
162 sdma_state_s50_hw_halt_wait,
163 sdma_state_s60_idle_halt_wait,
164 sdma_state_s80_hw_freeze,
165 sdma_state_s82_freeze_sw_clean,
166 sdma_state_s99_running,
167};
168
169enum sdma_events {
170 sdma_event_e00_go_hw_down,
171 sdma_event_e10_go_hw_start,
172 sdma_event_e15_hw_halt_done,
173 sdma_event_e25_hw_clean_up_done,
174 sdma_event_e30_go_running,
175 sdma_event_e40_sw_cleaned,
176 sdma_event_e50_hw_cleaned,
177 sdma_event_e60_hw_halted,
178 sdma_event_e70_go_idle,
179 sdma_event_e80_hw_freeze,
180 sdma_event_e81_hw_frozen,
181 sdma_event_e82_hw_unfreeze,
182 sdma_event_e85_link_down,
183 sdma_event_e90_sw_halted,
184};
185
186struct sdma_set_state_action {
187 unsigned op_enable:1;
188 unsigned op_intenable:1;
189 unsigned op_halt:1;
190 unsigned op_cleanup:1;
191 unsigned go_s99_running_tofalse:1;
192 unsigned go_s99_running_totrue:1;
193};
194
195struct sdma_state {
196 struct kref kref;
197 struct completion comp;
198 enum sdma_states current_state;
199 unsigned current_op;
200 unsigned go_s99_running;
201 /* debugging/development */
202 enum sdma_states previous_state;
203 unsigned previous_op;
204 enum sdma_events last_event;
205};
206
207/**
208 * DOC: sdma exported routines
209 *
210 * These sdma routines fit into three categories:
211 * - The SDMA API for building and submitting packets
212 * to the ring
213 *
214 * - Initialization and tear down routines to buildup
215 * and tear down SDMA
216 *
217 * - ISR entrances to handle interrupts, state changes
218 * and errors
219 */
220
221/**
222 * DOC: sdma PSM/verbs API
223 *
224 * The sdma API is designed to be used by both PSM
225 * and verbs to supply packets to the SDMA ring.
226 *
227 * The usage of the API is as follows:
228 *
229 * Embed a struct iowait in the QP or
230 * PQ. The iowait should be initialized with a
231 * call to iowait_init().
232 *
233 * The user of the API should create an allocation method
234 * for their version of the txreq. slabs, pre-allocated lists,
235 * and dma pools can be used. Once the user's overload of
236 * the sdma_txreq has been allocated, the sdma_txreq member
237 * must be initialized with sdma_txinit() or sdma_txinit_ahg().
238 *
239 * The txreq must be declared with the sdma_txreq first.
240 *
241 * The tx request, once initialized, is manipulated with calls to
242 * sdma_txadd_daddr(), sdma_txadd_page(), or sdma_txadd_kvaddr()
243 * for each disjoint memory location. It is the user's responsibility
244 * to understand the packet boundaries and page boundaries to do the
245 * appropriate number of sdma_txadd_* calls.. The user
246 * must be prepared to deal with failures from these routines due to
247 * either memory allocation or dma_mapping failures.
248 *
249 * The mapping specifics for each memory location are recorded
250 * in the tx. Memory locations added with sdma_txadd_page()
251 * and sdma_txadd_kvaddr() are automatically mapped when added
252 * to the tx and nmapped as part of the progress processing in the
253 * SDMA interrupt handling.
254 *
255 * sdma_txadd_daddr() is used to add an dma_addr_t memory to the
256 * tx. An example of a use case would be a pre-allocated
257 * set of headers allocated via dma_pool_alloc() or
258 * dma_alloc_coherent(). For these memory locations, it
259 * is the responsibility of the user to handle that unmapping.
260 * (This would usually be at an unload or job termination.)
261 *
262 * The routine sdma_send_txreq() is used to submit
263 * a tx to the ring after the appropriate number of
264 * sdma_txadd_* have been done.
265 *
266 * If it is desired to send a burst of sdma_txreqs, sdma_send_txlist()
267 * can be used to submit a list of packets.
268 *
269 * The user is free to use the link overhead in the struct sdma_txreq as
270 * long as the tx isn't in flight.
271 *
272 * The extreme degenerate case of the number of descriptors
273 * exceeding the ring size is automatically handled as
274 * memory locations are added. An overflow of the descriptor
275 * array that is part of the sdma_txreq is also automatically
276 * handled.
277 *
278 */
279
280/**
281 * DOC: Infrastructure calls
282 *
283 * sdma_init() is used to initialize data structures and
284 * CSRs for the desired number of SDMA engines.
285 *
286 * sdma_start() is used to kick the SDMA engines initialized
287 * with sdma_init(). Interrupts must be enabled at this
288 * point since aspects of the state machine are interrupt
289 * driven.
290 *
291 * sdma_engine_error() and sdma_engine_interrupt() are
292 * entrances for interrupts.
293 *
294 * sdma_map_init() is for the management of the mapping
295 * table when the number of vls is changed.
296 *
297 */
298
299/*
300 * struct hw_sdma_desc - raw 128 bit SDMA descriptor
301 *
302 * This is the raw descriptor in the SDMA ring
303 */
304struct hw_sdma_desc {
305 /* private: don't use directly */
306 __le64 qw[2];
307};
308
309/**
310 * struct sdma_engine - Data pertaining to each SDMA engine.
311 * @dd: a back-pointer to the device data
312 * @ppd: per port back-pointer
313 * @imask: mask for irq manipulation
314 * @idle_mask: mask for determining if an interrupt is due to sdma_idle
315 *
316 * This structure has the state for each sdma_engine.
317 *
318 * Accessing to non public fields are not supported
319 * since the private members are subject to change.
320 */
321struct sdma_engine {
322 /* read mostly */
323 struct hfi1_devdata *dd;
324 struct hfi1_pportdata *ppd;
325 /* private: */
326 void __iomem *tail_csr;
327 u64 imask; /* clear interrupt mask */
328 u64 idle_mask;
329 u64 progress_mask;
330 u64 int_mask;
331 /* private: */
332 volatile __le64 *head_dma; /* DMA'ed by chip */
333 /* private: */
334 dma_addr_t head_phys;
335 /* private: */
336 struct hw_sdma_desc *descq;
337 /* private: */
338 unsigned descq_full_count;
339 struct sdma_txreq **tx_ring;
340 /* private: */
341 dma_addr_t descq_phys;
342 /* private */
343 u32 sdma_mask;
344 /* private */
345 struct sdma_state state;
346 /* private */
347 int cpu;
348 /* private: */
349 u8 sdma_shift;
350 /* private: */
351 u8 this_idx; /* zero relative engine */
352 /* protect changes to senddmactrl shadow */
353 spinlock_t senddmactrl_lock;
354 /* private: */
355 u64 p_senddmactrl; /* shadow per-engine SendDmaCtrl */
356
357 /* read/write using tail_lock */
358 spinlock_t tail_lock ____cacheline_aligned_in_smp;
359#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
360 /* private: */
361 u64 tail_sn;
362#endif
363 /* private: */
364 u32 descq_tail;
365 /* private: */
366 unsigned long ahg_bits;
367 /* private: */
368 u16 desc_avail;
369 /* private: */
370 u16 tx_tail;
371 /* private: */
372 u16 descq_cnt;
373
374 /* read/write using head_lock */
375 /* private: */
376 seqlock_t head_lock ____cacheline_aligned_in_smp;
377#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
378 /* private: */
379 u64 head_sn;
380#endif
381 /* private: */
382 u32 descq_head;
383 /* private: */
384 u16 tx_head;
385 /* private: */
386 u64 last_status;
387 /* private */
388 u64 err_cnt;
389 /* private */
390 u64 sdma_int_cnt;
391 u64 idle_int_cnt;
392 u64 progress_int_cnt;
393
394 /* private: */
395 struct list_head dmawait;
396
397 /* CONFIG SDMA for now, just blindly duplicate */
398 /* private: */
399 struct tasklet_struct sdma_hw_clean_up_task
400 ____cacheline_aligned_in_smp;
401
402 /* private: */
403 struct tasklet_struct sdma_sw_clean_up_task
404 ____cacheline_aligned_in_smp;
405 /* private: */
406 struct work_struct err_halt_worker;
407 /* private */
408 struct timer_list err_progress_check_timer;
409 u32 progress_check_head;
410 /* private: */
411 struct work_struct flush_worker;
412 /* protect flush list */
413 spinlock_t flushlist_lock;
414 /* private: */
415 struct list_head flushlist;
416 struct cpumask cpu_mask;
417 struct kobject kobj;
418};
419
420int sdma_init(struct hfi1_devdata *dd, u8 port);
421void sdma_start(struct hfi1_devdata *dd);
422void sdma_exit(struct hfi1_devdata *dd);
423void sdma_all_running(struct hfi1_devdata *dd);
424void sdma_all_idle(struct hfi1_devdata *dd);
425void sdma_freeze_notify(struct hfi1_devdata *dd, int go_idle);
426void sdma_freeze(struct hfi1_devdata *dd);
427void sdma_unfreeze(struct hfi1_devdata *dd);
428void sdma_wait(struct hfi1_devdata *dd);
429
430/**
431 * sdma_empty() - idle engine test
432 * @engine: sdma engine
433 *
434 * Currently used by verbs as a latency optimization.
435 *
436 * Return:
437 * 1 - empty, 0 - non-empty
438 */
439static inline int sdma_empty(struct sdma_engine *sde)
440{
441 return sde->descq_tail == sde->descq_head;
442}
443
444static inline u16 sdma_descq_freecnt(struct sdma_engine *sde)
445{
446 return sde->descq_cnt -
447 (sde->descq_tail -
448 ACCESS_ONCE(sde->descq_head)) - 1;
449}
450
451static inline u16 sdma_descq_inprocess(struct sdma_engine *sde)
452{
453 return sde->descq_cnt - sdma_descq_freecnt(sde);
454}
455
456/*
457 * Either head_lock or tail lock required to see
458 * a steady state.
459 */
460static inline int __sdma_running(struct sdma_engine *engine)
461{
462 return engine->state.current_state == sdma_state_s99_running;
463}
464
465/**
466 * sdma_running() - state suitability test
467 * @engine: sdma engine
468 *
469 * sdma_running probes the internal state to determine if it is suitable
470 * for submitting packets.
471 *
472 * Return:
473 * 1 - ok to submit, 0 - not ok to submit
474 *
475 */
476static inline int sdma_running(struct sdma_engine *engine)
477{
478 unsigned long flags;
479 int ret;
480
481 spin_lock_irqsave(&engine->tail_lock, flags);
482 ret = __sdma_running(engine);
483 spin_unlock_irqrestore(&engine->tail_lock, flags);
484 return ret;
485}
486
487void _sdma_txreq_ahgadd(
488 struct sdma_txreq *tx,
489 u8 num_ahg,
490 u8 ahg_entry,
491 u32 *ahg,
492 u8 ahg_hlen);
493
494/**
495 * sdma_txinit_ahg() - initialize an sdma_txreq struct with AHG
496 * @tx: tx request to initialize
497 * @flags: flags to key last descriptor additions
498 * @tlen: total packet length (pbc + headers + data)
499 * @ahg_entry: ahg entry to use (0 - 31)
500 * @num_ahg: ahg descriptor for first descriptor (0 - 9)
501 * @ahg: array of AHG descriptors (up to 9 entries)
502 * @ahg_hlen: number of bytes from ASIC entry to use
503 * @cb: callback
504 *
505 * The allocation of the sdma_txreq and it enclosing structure is user
506 * dependent. This routine must be called to initialize the user independent
507 * fields.
508 *
509 * The currently supported flags are SDMA_TXREQ_F_URGENT,
510 * SDMA_TXREQ_F_AHG_COPY, and SDMA_TXREQ_F_USE_AHG.
511 *
512 * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
513 * completion is desired as soon as possible.
514 *
515 * SDMA_TXREQ_F_AHG_COPY causes the header in the first descriptor to be
516 * copied to chip entry. SDMA_TXREQ_F_USE_AHG causes the code to add in
517 * the AHG descriptors into the first 1 to 3 descriptors.
518 *
519 * Completions of submitted requests can be gotten on selected
520 * txreqs by giving a completion routine callback to sdma_txinit() or
521 * sdma_txinit_ahg(). The environment in which the callback runs
522 * can be from an ISR, a tasklet, or a thread, so no sleeping
523 * kernel routines can be used. Aspects of the sdma ring may
524 * be locked so care should be taken with locking.
525 *
526 * The callback pointer can be NULL to avoid any callback for the packet
527 * being submitted. The callback will be provided this tx, a status, and a flag.
528 *
529 * The status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
530 * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
531 *
532 * The flag, if the is the iowait had been used, indicates the iowait
533 * sdma_busy count has reached zero.
534 *
535 * user data portion of tlen should be precise. The sdma_txadd_* entrances
536 * will pad with a descriptor references 1 - 3 bytes when the number of bytes
537 * specified in tlen have been supplied to the sdma_txreq.
538 *
539 * ahg_hlen is used to determine the number of on-chip entry bytes to
540 * use as the header. This is for cases where the stored header is
541 * larger than the header to be used in a packet. This is typical
542 * for verbs where an RDMA_WRITE_FIRST is larger than the packet in
543 * and RDMA_WRITE_MIDDLE.
544 *
545 */
546static inline int sdma_txinit_ahg(
547 struct sdma_txreq *tx,
548 u16 flags,
549 u16 tlen,
550 u8 ahg_entry,
551 u8 num_ahg,
552 u32 *ahg,
553 u8 ahg_hlen,
554 void (*cb)(struct sdma_txreq *, int))
555{
556 if (tlen == 0)
557 return -ENODATA;
558 if (tlen > MAX_SDMA_PKT_SIZE)
559 return -EMSGSIZE;
560 tx->desc_limit = ARRAY_SIZE(tx->descs);
561 tx->descp = &tx->descs[0];
562 INIT_LIST_HEAD(&tx->list);
563 tx->num_desc = 0;
564 tx->flags = flags;
565 tx->complete = cb;
566 tx->coalesce_buf = NULL;
567 tx->wait = NULL;
568 tx->packet_len = tlen;
569 tx->tlen = tx->packet_len;
570 tx->descs[0].qw[0] = SDMA_DESC0_FIRST_DESC_FLAG;
571 tx->descs[0].qw[1] = 0;
572 if (flags & SDMA_TXREQ_F_AHG_COPY)
573 tx->descs[0].qw[1] |=
574 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
575 << SDMA_DESC1_HEADER_INDEX_SHIFT) |
576 (((u64)SDMA_AHG_COPY & SDMA_DESC1_HEADER_MODE_MASK)
577 << SDMA_DESC1_HEADER_MODE_SHIFT);
578 else if (flags & SDMA_TXREQ_F_USE_AHG && num_ahg)
579 _sdma_txreq_ahgadd(tx, num_ahg, ahg_entry, ahg, ahg_hlen);
580 return 0;
581}
582
583/**
584 * sdma_txinit() - initialize an sdma_txreq struct (no AHG)
585 * @tx: tx request to initialize
586 * @flags: flags to key last descriptor additions
587 * @tlen: total packet length (pbc + headers + data)
588 * @cb: callback pointer
589 *
590 * The allocation of the sdma_txreq and it enclosing structure is user
591 * dependent. This routine must be called to initialize the user
592 * independent fields.
593 *
594 * The currently supported flags is SDMA_TXREQ_F_URGENT.
595 *
596 * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
597 * completion is desired as soon as possible.
598 *
599 * Completions of submitted requests can be gotten on selected
600 * txreqs by giving a completion routine callback to sdma_txinit() or
601 * sdma_txinit_ahg(). The environment in which the callback runs
602 * can be from an ISR, a tasklet, or a thread, so no sleeping
603 * kernel routines can be used. The head size of the sdma ring may
604 * be locked so care should be taken with locking.
605 *
606 * The callback pointer can be NULL to avoid any callback for the packet
607 * being submitted.
608 *
609 * The callback, if non-NULL, will be provided this tx and a status. The
610 * status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
611 * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
612 *
613 */
614static inline int sdma_txinit(
615 struct sdma_txreq *tx,
616 u16 flags,
617 u16 tlen,
618 void (*cb)(struct sdma_txreq *, int))
619{
620 return sdma_txinit_ahg(tx, flags, tlen, 0, 0, NULL, 0, cb);
621}
622
623/* helpers - don't use */
624static inline int sdma_mapping_type(struct sdma_desc *d)
625{
626 return (d->qw[1] & SDMA_DESC1_GENERATION_SMASK)
627 >> SDMA_DESC1_GENERATION_SHIFT;
628}
629
630static inline size_t sdma_mapping_len(struct sdma_desc *d)
631{
632 return (d->qw[0] & SDMA_DESC0_BYTE_COUNT_SMASK)
633 >> SDMA_DESC0_BYTE_COUNT_SHIFT;
634}
635
636static inline dma_addr_t sdma_mapping_addr(struct sdma_desc *d)
637{
638 return (d->qw[0] & SDMA_DESC0_PHY_ADDR_SMASK)
639 >> SDMA_DESC0_PHY_ADDR_SHIFT;
640}
641
642static inline void make_tx_sdma_desc(
643 struct sdma_txreq *tx,
644 int type,
645 dma_addr_t addr,
646 size_t len)
647{
648 struct sdma_desc *desc = &tx->descp[tx->num_desc];
649
650 if (!tx->num_desc) {
651 /* qw[0] zero; qw[1] first, ahg mode already in from init */
652 desc->qw[1] |= ((u64)type & SDMA_DESC1_GENERATION_MASK)
653 << SDMA_DESC1_GENERATION_SHIFT;
654 } else {
655 desc->qw[0] = 0;
656 desc->qw[1] = ((u64)type & SDMA_DESC1_GENERATION_MASK)
657 << SDMA_DESC1_GENERATION_SHIFT;
658 }
659 desc->qw[0] |= (((u64)addr & SDMA_DESC0_PHY_ADDR_MASK)
660 << SDMA_DESC0_PHY_ADDR_SHIFT) |
661 (((u64)len & SDMA_DESC0_BYTE_COUNT_MASK)
662 << SDMA_DESC0_BYTE_COUNT_SHIFT);
663}
664
665/* helper to extend txreq */
666int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
667 int type, void *kvaddr, struct page *page,
668 unsigned long offset, u16 len);
669int _pad_sdma_tx_descs(struct hfi1_devdata *, struct sdma_txreq *);
670void __sdma_txclean(struct hfi1_devdata *, struct sdma_txreq *);
671
672static inline void sdma_txclean(struct hfi1_devdata *dd, struct sdma_txreq *tx)
673{
674 if (tx->num_desc)
675 __sdma_txclean(dd, tx);
676}
677
678/* helpers used by public routines */
679static inline void _sdma_close_tx(struct hfi1_devdata *dd,
680 struct sdma_txreq *tx)
681{
682 tx->descp[tx->num_desc].qw[0] |=
683 SDMA_DESC0_LAST_DESC_FLAG;
684 tx->descp[tx->num_desc].qw[1] |=
685 dd->default_desc1;
686 if (tx->flags & SDMA_TXREQ_F_URGENT)
687 tx->descp[tx->num_desc].qw[1] |=
688 (SDMA_DESC1_HEAD_TO_HOST_FLAG |
689 SDMA_DESC1_INT_REQ_FLAG);
690}
691
692static inline int _sdma_txadd_daddr(
693 struct hfi1_devdata *dd,
694 int type,
695 struct sdma_txreq *tx,
696 dma_addr_t addr,
697 u16 len)
698{
699 int rval = 0;
700
701 make_tx_sdma_desc(
702 tx,
703 type,
704 addr, len);
705 WARN_ON(len > tx->tlen);
706 tx->tlen -= len;
707 /* special cases for last */
708 if (!tx->tlen) {
709 if (tx->packet_len & (sizeof(u32) - 1)) {
710 rval = _pad_sdma_tx_descs(dd, tx);
711 if (rval)
712 return rval;
713 } else {
714 _sdma_close_tx(dd, tx);
715 }
716 }
717 tx->num_desc++;
718 return rval;
719}
720
721/**
722 * sdma_txadd_page() - add a page to the sdma_txreq
723 * @dd: the device to use for mapping
724 * @tx: tx request to which the page is added
725 * @page: page to map
726 * @offset: offset within the page
727 * @len: length in bytes
728 *
729 * This is used to add a page/offset/length descriptor.
730 *
731 * The mapping/unmapping of the page/offset/len is automatically handled.
732 *
733 * Return:
734 * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't
735 * extend/coalesce descriptor array
736 */
737static inline int sdma_txadd_page(
738 struct hfi1_devdata *dd,
739 struct sdma_txreq *tx,
740 struct page *page,
741 unsigned long offset,
742 u16 len)
743{
744 dma_addr_t addr;
745 int rval;
746
747 if ((unlikely(tx->num_desc == tx->desc_limit))) {
748 rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_PAGE,
749 NULL, page, offset, len);
750 if (rval <= 0)
751 return rval;
752 }
753
754 addr = dma_map_page(
755 &dd->pcidev->dev,
756 page,
757 offset,
758 len,
759 DMA_TO_DEVICE);
760
761 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
762 __sdma_txclean(dd, tx);
763 return -ENOSPC;
764 }
765
766 return _sdma_txadd_daddr(
767 dd, SDMA_MAP_PAGE, tx, addr, len);
768}
769
770/**
771 * sdma_txadd_daddr() - add a dma address to the sdma_txreq
772 * @dd: the device to use for mapping
773 * @tx: sdma_txreq to which the page is added
774 * @addr: dma address mapped by caller
775 * @len: length in bytes
776 *
777 * This is used to add a descriptor for memory that is already dma mapped.
778 *
779 * In this case, there is no unmapping as part of the progress processing for
780 * this memory location.
781 *
782 * Return:
783 * 0 - success, -ENOMEM - couldn't extend descriptor array
784 */
785
786static inline int sdma_txadd_daddr(
787 struct hfi1_devdata *dd,
788 struct sdma_txreq *tx,
789 dma_addr_t addr,
790 u16 len)
791{
792 int rval;
793
794 if ((unlikely(tx->num_desc == tx->desc_limit))) {
795 rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_NONE,
796 NULL, NULL, 0, 0);
797 if (rval <= 0)
798 return rval;
799 }
800
801 return _sdma_txadd_daddr(dd, SDMA_MAP_NONE, tx, addr, len);
802}
803
804/**
805 * sdma_txadd_kvaddr() - add a kernel virtual address to sdma_txreq
806 * @dd: the device to use for mapping
807 * @tx: sdma_txreq to which the page is added
808 * @kvaddr: the kernel virtual address
809 * @len: length in bytes
810 *
811 * This is used to add a descriptor referenced by the indicated kvaddr and
812 * len.
813 *
814 * The mapping/unmapping of the kvaddr and len is automatically handled.
815 *
816 * Return:
817 * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't extend/coalesce
818 * descriptor array
819 */
820static inline int sdma_txadd_kvaddr(
821 struct hfi1_devdata *dd,
822 struct sdma_txreq *tx,
823 void *kvaddr,
824 u16 len)
825{
826 dma_addr_t addr;
827 int rval;
828
829 if ((unlikely(tx->num_desc == tx->desc_limit))) {
830 rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_SINGLE,
831 kvaddr, NULL, 0, len);
832 if (rval <= 0)
833 return rval;
834 }
835
836 addr = dma_map_single(
837 &dd->pcidev->dev,
838 kvaddr,
839 len,
840 DMA_TO_DEVICE);
841
842 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
843 __sdma_txclean(dd, tx);
844 return -ENOSPC;
845 }
846
847 return _sdma_txadd_daddr(
848 dd, SDMA_MAP_SINGLE, tx, addr, len);
849}
850
851struct iowait;
852
853int sdma_send_txreq(struct sdma_engine *sde,
854 struct iowait *wait,
855 struct sdma_txreq *tx);
856int sdma_send_txlist(struct sdma_engine *sde,
857 struct iowait *wait,
858 struct list_head *tx_list,
859 u32 *count);
860
861int sdma_ahg_alloc(struct sdma_engine *sde);
862void sdma_ahg_free(struct sdma_engine *sde, int ahg_index);
863
864/**
865 * sdma_build_ahg - build ahg descriptor
866 * @data
867 * @dwindex
868 * @startbit
869 * @bits
870 *
871 * Build and return a 32 bit descriptor.
872 */
873static inline u32 sdma_build_ahg_descriptor(
874 u16 data,
875 u8 dwindex,
876 u8 startbit,
877 u8 bits)
878{
879 return (u32)(1UL << SDMA_AHG_UPDATE_ENABLE_SHIFT |
880 ((startbit & SDMA_AHG_FIELD_START_MASK) <<
881 SDMA_AHG_FIELD_START_SHIFT) |
882 ((bits & SDMA_AHG_FIELD_LEN_MASK) <<
883 SDMA_AHG_FIELD_LEN_SHIFT) |
884 ((dwindex & SDMA_AHG_INDEX_MASK) <<
885 SDMA_AHG_INDEX_SHIFT) |
886 ((data & SDMA_AHG_VALUE_MASK) <<
887 SDMA_AHG_VALUE_SHIFT));
888}
889
890/**
891 * sdma_progress - use seq number of detect head progress
892 * @sde: sdma_engine to check
893 * @seq: base seq count
894 * @tx: txreq for which we need to check descriptor availability
895 *
896 * This is used in the appropriate spot in the sleep routine
897 * to check for potential ring progress. This routine gets the
898 * seqcount before queuing the iowait structure for progress.
899 *
900 * If the seqcount indicates that progress needs to be checked,
901 * re-submission is detected by checking whether the descriptor
902 * queue has enough descriptor for the txreq.
903 */
904static inline unsigned sdma_progress(struct sdma_engine *sde, unsigned seq,
905 struct sdma_txreq *tx)
906{
907 if (read_seqretry(&sde->head_lock, seq)) {
908 sde->desc_avail = sdma_descq_freecnt(sde);
909 if (tx->num_desc > sde->desc_avail)
910 return 0;
911 return 1;
912 }
913 return 0;
914}
915
916/**
917 * sdma_iowait_schedule() - initialize wait structure
918 * @sde: sdma_engine to schedule
919 * @wait: wait struct to schedule
920 *
921 * This function initializes the iowait
922 * structure embedded in the QP or PQ.
923 *
924 */
925static inline void sdma_iowait_schedule(
926 struct sdma_engine *sde,
927 struct iowait *wait)
928{
929 struct hfi1_pportdata *ppd = sde->dd->pport;
930
931 iowait_schedule(wait, ppd->hfi1_wq, sde->cpu);
932}
933
934/* for use by interrupt handling */
935void sdma_engine_error(struct sdma_engine *sde, u64 status);
936void sdma_engine_interrupt(struct sdma_engine *sde, u64 status);
937
938/*
939 *
940 * The diagram below details the relationship of the mapping structures
941 *
942 * Since the mapping now allows for non-uniform engines per vl, the
943 * number of engines for a vl is either the vl_engines[vl] or
944 * a computation based on num_sdma/num_vls:
945 *
946 * For example:
947 * nactual = vl_engines ? vl_engines[vl] : num_sdma/num_vls
948 *
949 * n = roundup to next highest power of 2 using nactual
950 *
951 * In the case where there are num_sdma/num_vls doesn't divide
952 * evenly, the extras are added from the last vl downward.
953 *
954 * For the case where n > nactual, the engines are assigned
955 * in a round robin fashion wrapping back to the first engine
956 * for a particular vl.
957 *
958 * dd->sdma_map
959 * | sdma_map_elem[0]
960 * | +--------------------+
961 * v | mask |
962 * sdma_vl_map |--------------------|
963 * +--------------------------+ | sde[0] -> eng 1 |
964 * | list (RCU) | |--------------------|
965 * |--------------------------| ->| sde[1] -> eng 2 |
966 * | mask | --/ |--------------------|
967 * |--------------------------| -/ | * |
968 * | actual_vls (max 8) | -/ |--------------------|
969 * |--------------------------| --/ | sde[n] -> eng n |
970 * | vls (max 8) | -/ +--------------------+
971 * |--------------------------| --/
972 * | map[0] |-/
973 * |--------------------------| +--------------------+
974 * | map[1] |--- | mask |
975 * |--------------------------| \---- |--------------------|
976 * | * | \-- | sde[0] -> eng 1+n |
977 * | * | \---- |--------------------|
978 * | * | \->| sde[1] -> eng 2+n |
979 * |--------------------------| |--------------------|
980 * | map[vls - 1] |- | * |
981 * +--------------------------+ \- |--------------------|
982 * \- | sde[m] -> eng m+n |
983 * \ +--------------------+
984 * \-
985 * \
986 * \- +--------------------+
987 * \- | mask |
988 * \ |--------------------|
989 * \- | sde[0] -> eng 1+m+n|
990 * \- |--------------------|
991 * >| sde[1] -> eng 2+m+n|
992 * |--------------------|
993 * | * |
994 * |--------------------|
995 * | sde[o] -> eng o+m+n|
996 * +--------------------+
997 *
998 */
999
1000/**
1001 * struct sdma_map_elem - mapping for a vl
1002 * @mask - selector mask
1003 * @sde - array of engines for this vl
1004 *
1005 * The mask is used to "mod" the selector
1006 * to produce index into the trailing
1007 * array of sdes.
1008 */
1009struct sdma_map_elem {
1010 u32 mask;
1011 struct sdma_engine *sde[0];
1012};
1013
1014/**
1015 * struct sdma_map_el - mapping for a vl
1016 * @engine_to_vl - map of an engine to a vl
1017 * @list - rcu head for free callback
1018 * @mask - vl mask to "mod" the vl to produce an index to map array
1019 * @actual_vls - number of vls
1020 * @vls - number of vls rounded to next power of 2
1021 * @map - array of sdma_map_elem entries
1022 *
1023 * This is the parent mapping structure. The trailing
1024 * members of the struct point to sdma_map_elem entries, which
1025 * in turn point to an array of sde's for that vl.
1026 */
1027struct sdma_vl_map {
1028 s8 engine_to_vl[TXE_NUM_SDMA_ENGINES];
1029 struct rcu_head list;
1030 u32 mask;
1031 u8 actual_vls;
1032 u8 vls;
1033 struct sdma_map_elem *map[0];
1034};
1035
1036int sdma_map_init(
1037 struct hfi1_devdata *dd,
1038 u8 port,
1039 u8 num_vls,
1040 u8 *vl_engines);
1041
1042/* slow path */
1043void _sdma_engine_progress_schedule(struct sdma_engine *sde);
1044
1045/**
1046 * sdma_engine_progress_schedule() - schedule progress on engine
1047 * @sde: sdma_engine to schedule progress
1048 *
1049 * This is the fast path.
1050 *
1051 */
1052static inline void sdma_engine_progress_schedule(
1053 struct sdma_engine *sde)
1054{
1055 if (!sde || sdma_descq_inprocess(sde) < (sde->descq_cnt / 8))
1056 return;
1057 _sdma_engine_progress_schedule(sde);
1058}
1059
1060struct sdma_engine *sdma_select_engine_sc(
1061 struct hfi1_devdata *dd,
1062 u32 selector,
1063 u8 sc5);
1064
1065struct sdma_engine *sdma_select_engine_vl(
1066 struct hfi1_devdata *dd,
1067 u32 selector,
1068 u8 vl);
1069
1070struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
1071 u32 selector, u8 vl);
1072ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf);
1073ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
1074 size_t count);
1075int sdma_engine_get_vl(struct sdma_engine *sde);
1076void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *);
1077void sdma_seqfile_dump_cpu_list(struct seq_file *s, struct hfi1_devdata *dd,
1078 unsigned long cpuid);
1079
1080#ifdef CONFIG_SDMA_VERBOSITY
1081void sdma_dumpstate(struct sdma_engine *);
1082#endif
1083static inline char *slashstrip(char *s)
1084{
1085 char *r = s;
1086
1087 while (*s)
1088 if (*s++ == '/')
1089 r = s;
1090 return r;
1091}
1092
1093u16 sdma_get_descq_cnt(void);
1094
1095extern uint mod_num_sdma;
1096
1097void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid);
1098
1099#endif