Linux Audio

Check our new training course

Loading...
   1/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
   2/*
   3 * Copyright(c) 2015 - 2018 Intel Corporation.
   4 */
   5
   6#ifndef _HFI1_SDMA_H
   7#define _HFI1_SDMA_H
   8
   9#include <linux/types.h>
  10#include <linux/list.h>
  11#include <asm/byteorder.h>
  12#include <linux/workqueue.h>
  13#include <linux/rculist.h>
  14
  15#include "hfi.h"
  16#include "verbs.h"
  17#include "sdma_txreq.h"
  18
  19/* Hardware limit */
  20#define MAX_DESC 64
  21/* Hardware limit for SDMA packet size */
  22#define MAX_SDMA_PKT_SIZE ((16 * 1024) - 1)
  23
  24#define SDMA_MAP_NONE          0
  25#define SDMA_MAP_SINGLE        1
  26#define SDMA_MAP_PAGE          2
  27
  28#define SDMA_AHG_VALUE_MASK          0xffff
  29#define SDMA_AHG_VALUE_SHIFT         0
  30#define SDMA_AHG_INDEX_MASK          0xf
  31#define SDMA_AHG_INDEX_SHIFT         16
  32#define SDMA_AHG_FIELD_LEN_MASK      0xf
  33#define SDMA_AHG_FIELD_LEN_SHIFT     20
  34#define SDMA_AHG_FIELD_START_MASK    0x1f
  35#define SDMA_AHG_FIELD_START_SHIFT   24
  36#define SDMA_AHG_UPDATE_ENABLE_MASK  0x1
  37#define SDMA_AHG_UPDATE_ENABLE_SHIFT 31
  38
  39/* AHG modes */
  40
  41/*
  42 * Be aware the ordering and values
  43 * for SDMA_AHG_APPLY_UPDATE[123]
  44 * are assumed in generating a skip
  45 * count in submit_tx() in sdma.c
  46 */
  47#define SDMA_AHG_NO_AHG              0
  48#define SDMA_AHG_COPY                1
  49#define SDMA_AHG_APPLY_UPDATE1       2
  50#define SDMA_AHG_APPLY_UPDATE2       3
  51#define SDMA_AHG_APPLY_UPDATE3       4
  52
  53/*
  54 * Bits defined in the send DMA descriptor.
  55 */
  56#define SDMA_DESC0_FIRST_DESC_FLAG      BIT_ULL(63)
  57#define SDMA_DESC0_LAST_DESC_FLAG       BIT_ULL(62)
  58#define SDMA_DESC0_BYTE_COUNT_SHIFT     48
  59#define SDMA_DESC0_BYTE_COUNT_WIDTH     14
  60#define SDMA_DESC0_BYTE_COUNT_MASK \
  61	((1ULL << SDMA_DESC0_BYTE_COUNT_WIDTH) - 1)
  62#define SDMA_DESC0_BYTE_COUNT_SMASK \
  63	(SDMA_DESC0_BYTE_COUNT_MASK << SDMA_DESC0_BYTE_COUNT_SHIFT)
  64#define SDMA_DESC0_PHY_ADDR_SHIFT       0
  65#define SDMA_DESC0_PHY_ADDR_WIDTH       48
  66#define SDMA_DESC0_PHY_ADDR_MASK \
  67	((1ULL << SDMA_DESC0_PHY_ADDR_WIDTH) - 1)
  68#define SDMA_DESC0_PHY_ADDR_SMASK \
  69	(SDMA_DESC0_PHY_ADDR_MASK << SDMA_DESC0_PHY_ADDR_SHIFT)
  70
  71#define SDMA_DESC1_HEADER_UPDATE1_SHIFT 32
  72#define SDMA_DESC1_HEADER_UPDATE1_WIDTH 32
  73#define SDMA_DESC1_HEADER_UPDATE1_MASK \
  74	((1ULL << SDMA_DESC1_HEADER_UPDATE1_WIDTH) - 1)
  75#define SDMA_DESC1_HEADER_UPDATE1_SMASK \
  76	(SDMA_DESC1_HEADER_UPDATE1_MASK << SDMA_DESC1_HEADER_UPDATE1_SHIFT)
  77#define SDMA_DESC1_HEADER_MODE_SHIFT    13
  78#define SDMA_DESC1_HEADER_MODE_WIDTH    3
  79#define SDMA_DESC1_HEADER_MODE_MASK \
  80	((1ULL << SDMA_DESC1_HEADER_MODE_WIDTH) - 1)
  81#define SDMA_DESC1_HEADER_MODE_SMASK \
  82	(SDMA_DESC1_HEADER_MODE_MASK << SDMA_DESC1_HEADER_MODE_SHIFT)
  83#define SDMA_DESC1_HEADER_INDEX_SHIFT   8
  84#define SDMA_DESC1_HEADER_INDEX_WIDTH   5
  85#define SDMA_DESC1_HEADER_INDEX_MASK \
  86	((1ULL << SDMA_DESC1_HEADER_INDEX_WIDTH) - 1)
  87#define SDMA_DESC1_HEADER_INDEX_SMASK \
  88	(SDMA_DESC1_HEADER_INDEX_MASK << SDMA_DESC1_HEADER_INDEX_SHIFT)
  89#define SDMA_DESC1_HEADER_DWS_SHIFT     4
  90#define SDMA_DESC1_HEADER_DWS_WIDTH     4
  91#define SDMA_DESC1_HEADER_DWS_MASK \
  92	((1ULL << SDMA_DESC1_HEADER_DWS_WIDTH) - 1)
  93#define SDMA_DESC1_HEADER_DWS_SMASK \
  94	(SDMA_DESC1_HEADER_DWS_MASK << SDMA_DESC1_HEADER_DWS_SHIFT)
  95#define SDMA_DESC1_GENERATION_SHIFT     2
  96#define SDMA_DESC1_GENERATION_WIDTH     2
  97#define SDMA_DESC1_GENERATION_MASK \
  98	((1ULL << SDMA_DESC1_GENERATION_WIDTH) - 1)
  99#define SDMA_DESC1_GENERATION_SMASK \
 100	(SDMA_DESC1_GENERATION_MASK << SDMA_DESC1_GENERATION_SHIFT)
 101#define SDMA_DESC1_INT_REQ_FLAG         BIT_ULL(1)
 102#define SDMA_DESC1_HEAD_TO_HOST_FLAG    BIT_ULL(0)
 103
 104enum sdma_states {
 105	sdma_state_s00_hw_down,
 106	sdma_state_s10_hw_start_up_halt_wait,
 107	sdma_state_s15_hw_start_up_clean_wait,
 108	sdma_state_s20_idle,
 109	sdma_state_s30_sw_clean_up_wait,
 110	sdma_state_s40_hw_clean_up_wait,
 111	sdma_state_s50_hw_halt_wait,
 112	sdma_state_s60_idle_halt_wait,
 113	sdma_state_s80_hw_freeze,
 114	sdma_state_s82_freeze_sw_clean,
 115	sdma_state_s99_running,
 116};
 117
 118enum sdma_events {
 119	sdma_event_e00_go_hw_down,
 120	sdma_event_e10_go_hw_start,
 121	sdma_event_e15_hw_halt_done,
 122	sdma_event_e25_hw_clean_up_done,
 123	sdma_event_e30_go_running,
 124	sdma_event_e40_sw_cleaned,
 125	sdma_event_e50_hw_cleaned,
 126	sdma_event_e60_hw_halted,
 127	sdma_event_e70_go_idle,
 128	sdma_event_e80_hw_freeze,
 129	sdma_event_e81_hw_frozen,
 130	sdma_event_e82_hw_unfreeze,
 131	sdma_event_e85_link_down,
 132	sdma_event_e90_sw_halted,
 133};
 134
 135struct sdma_set_state_action {
 136	unsigned op_enable:1;
 137	unsigned op_intenable:1;
 138	unsigned op_halt:1;
 139	unsigned op_cleanup:1;
 140	unsigned go_s99_running_tofalse:1;
 141	unsigned go_s99_running_totrue:1;
 142};
 143
 144struct sdma_state {
 145	struct kref          kref;
 146	struct completion    comp;
 147	enum sdma_states current_state;
 148	unsigned             current_op;
 149	unsigned             go_s99_running;
 150	/* debugging/development */
 151	enum sdma_states previous_state;
 152	unsigned             previous_op;
 153	enum sdma_events last_event;
 154};
 155
 156/**
 157 * DOC: sdma exported routines
 158 *
 159 * These sdma routines fit into three categories:
 160 * - The SDMA API for building and submitting packets
 161 *   to the ring
 162 *
 163 * - Initialization and tear down routines to buildup
 164 *   and tear down SDMA
 165 *
 166 * - ISR entrances to handle interrupts, state changes
 167 *   and errors
 168 */
 169
 170/**
 171 * DOC: sdma PSM/verbs API
 172 *
 173 * The sdma API is designed to be used by both PSM
 174 * and verbs to supply packets to the SDMA ring.
 175 *
 176 * The usage of the API is as follows:
 177 *
 178 * Embed a struct iowait in the QP or
 179 * PQ.  The iowait should be initialized with a
 180 * call to iowait_init().
 181 *
 182 * The user of the API should create an allocation method
 183 * for their version of the txreq. slabs, pre-allocated lists,
 184 * and dma pools can be used.  Once the user's overload of
 185 * the sdma_txreq has been allocated, the sdma_txreq member
 186 * must be initialized with sdma_txinit() or sdma_txinit_ahg().
 187 *
 188 * The txreq must be declared with the sdma_txreq first.
 189 *
 190 * The tx request, once initialized,  is manipulated with calls to
 191 * sdma_txadd_daddr(), sdma_txadd_page(), or sdma_txadd_kvaddr()
 192 * for each disjoint memory location.  It is the user's responsibility
 193 * to understand the packet boundaries and page boundaries to do the
 194 * appropriate number of sdma_txadd_* calls..  The user
 195 * must be prepared to deal with failures from these routines due to
 196 * either memory allocation or dma_mapping failures.
 197 *
 198 * The mapping specifics for each memory location are recorded
 199 * in the tx. Memory locations added with sdma_txadd_page()
 200 * and sdma_txadd_kvaddr() are automatically mapped when added
 201 * to the tx and nmapped as part of the progress processing in the
 202 * SDMA interrupt handling.
 203 *
 204 * sdma_txadd_daddr() is used to add an dma_addr_t memory to the
 205 * tx.   An example of a use case would be a pre-allocated
 206 * set of headers allocated via dma_pool_alloc() or
 207 * dma_alloc_coherent().  For these memory locations, it
 208 * is the responsibility of the user to handle that unmapping.
 209 * (This would usually be at an unload or job termination.)
 210 *
 211 * The routine sdma_send_txreq() is used to submit
 212 * a tx to the ring after the appropriate number of
 213 * sdma_txadd_* have been done.
 214 *
 215 * If it is desired to send a burst of sdma_txreqs, sdma_send_txlist()
 216 * can be used to submit a list of packets.
 217 *
 218 * The user is free to use the link overhead in the struct sdma_txreq as
 219 * long as the tx isn't in flight.
 220 *
 221 * The extreme degenerate case of the number of descriptors
 222 * exceeding the ring size is automatically handled as
 223 * memory locations are added.  An overflow of the descriptor
 224 * array that is part of the sdma_txreq is also automatically
 225 * handled.
 226 *
 227 */
 228
 229/**
 230 * DOC: Infrastructure calls
 231 *
 232 * sdma_init() is used to initialize data structures and
 233 * CSRs for the desired number of SDMA engines.
 234 *
 235 * sdma_start() is used to kick the SDMA engines initialized
 236 * with sdma_init().   Interrupts must be enabled at this
 237 * point since aspects of the state machine are interrupt
 238 * driven.
 239 *
 240 * sdma_engine_error() and sdma_engine_interrupt() are
 241 * entrances for interrupts.
 242 *
 243 * sdma_map_init() is for the management of the mapping
 244 * table when the number of vls is changed.
 245 *
 246 */
 247
 248/*
 249 * struct hw_sdma_desc - raw 128 bit SDMA descriptor
 250 *
 251 * This is the raw descriptor in the SDMA ring
 252 */
 253struct hw_sdma_desc {
 254	/* private:  don't use directly */
 255	__le64 qw[2];
 256};
 257
 258/**
 259 * struct sdma_engine - Data pertaining to each SDMA engine.
 260 * @dd: a back-pointer to the device data
 261 * @ppd: per port back-pointer
 262 * @imask: mask for irq manipulation
 263 * @idle_mask: mask for determining if an interrupt is due to sdma_idle
 264 *
 265 * This structure has the state for each sdma_engine.
 266 *
 267 * Accessing to non public fields are not supported
 268 * since the private members are subject to change.
 269 */
 270struct sdma_engine {
 271	/* read mostly */
 272	struct hfi1_devdata *dd;
 273	struct hfi1_pportdata *ppd;
 274	/* private: */
 275	void __iomem *tail_csr;
 276	u64 imask;			/* clear interrupt mask */
 277	u64 idle_mask;
 278	u64 progress_mask;
 279	u64 int_mask;
 280	/* private: */
 281	volatile __le64      *head_dma; /* DMA'ed by chip */
 282	/* private: */
 283	dma_addr_t            head_phys;
 284	/* private: */
 285	struct hw_sdma_desc *descq;
 286	/* private: */
 287	unsigned descq_full_count;
 288	struct sdma_txreq **tx_ring;
 289	/* private: */
 290	dma_addr_t            descq_phys;
 291	/* private */
 292	u32 sdma_mask;
 293	/* private */
 294	struct sdma_state state;
 295	/* private */
 296	int cpu;
 297	/* private: */
 298	u8 sdma_shift;
 299	/* private: */
 300	u8 this_idx; /* zero relative engine */
 301	/* protect changes to senddmactrl shadow */
 302	spinlock_t senddmactrl_lock;
 303	/* private: */
 304	u64 p_senddmactrl;		/* shadow per-engine SendDmaCtrl */
 305
 306	/* read/write using tail_lock */
 307	spinlock_t            tail_lock ____cacheline_aligned_in_smp;
 308#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
 309	/* private: */
 310	u64                   tail_sn;
 311#endif
 312	/* private: */
 313	u32                   descq_tail;
 314	/* private: */
 315	unsigned long         ahg_bits;
 316	/* private: */
 317	u16                   desc_avail;
 318	/* private: */
 319	u16                   tx_tail;
 320	/* private: */
 321	u16 descq_cnt;
 322
 323	/* read/write using head_lock */
 324	/* private: */
 325	seqlock_t            head_lock ____cacheline_aligned_in_smp;
 326#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
 327	/* private: */
 328	u64                   head_sn;
 329#endif
 330	/* private: */
 331	u32                   descq_head;
 332	/* private: */
 333	u16                   tx_head;
 334	/* private: */
 335	u64                   last_status;
 336	/* private */
 337	u64                     err_cnt;
 338	/* private */
 339	u64                     sdma_int_cnt;
 340	u64                     idle_int_cnt;
 341	u64                     progress_int_cnt;
 342
 343	/* private: */
 344	seqlock_t            waitlock;
 345	struct list_head      dmawait;
 346
 347	/* CONFIG SDMA for now, just blindly duplicate */
 348	/* private: */
 349	struct tasklet_struct sdma_hw_clean_up_task
 350		____cacheline_aligned_in_smp;
 351
 352	/* private: */
 353	struct tasklet_struct sdma_sw_clean_up_task
 354		____cacheline_aligned_in_smp;
 355	/* private: */
 356	struct work_struct err_halt_worker;
 357	/* private */
 358	struct timer_list     err_progress_check_timer;
 359	u32                   progress_check_head;
 360	/* private: */
 361	struct work_struct flush_worker;
 362	/* protect flush list */
 363	spinlock_t flushlist_lock;
 364	/* private: */
 365	struct list_head flushlist;
 366	struct cpumask cpu_mask;
 367	struct kobject kobj;
 368	u32 msix_intr;
 369};
 370
 371int sdma_init(struct hfi1_devdata *dd, u8 port);
 372void sdma_start(struct hfi1_devdata *dd);
 373void sdma_exit(struct hfi1_devdata *dd);
 374void sdma_clean(struct hfi1_devdata *dd, size_t num_engines);
 375void sdma_all_running(struct hfi1_devdata *dd);
 376void sdma_all_idle(struct hfi1_devdata *dd);
 377void sdma_freeze_notify(struct hfi1_devdata *dd, int go_idle);
 378void sdma_freeze(struct hfi1_devdata *dd);
 379void sdma_unfreeze(struct hfi1_devdata *dd);
 380void sdma_wait(struct hfi1_devdata *dd);
 381
 382/**
 383 * sdma_empty() - idle engine test
 384 * @engine: sdma engine
 385 *
 386 * Currently used by verbs as a latency optimization.
 387 *
 388 * Return:
 389 * 1 - empty, 0 - non-empty
 390 */
 391static inline int sdma_empty(struct sdma_engine *sde)
 392{
 393	return sde->descq_tail == sde->descq_head;
 394}
 395
 396static inline u16 sdma_descq_freecnt(struct sdma_engine *sde)
 397{
 398	return sde->descq_cnt -
 399		(sde->descq_tail -
 400		 READ_ONCE(sde->descq_head)) - 1;
 401}
 402
 403static inline u16 sdma_descq_inprocess(struct sdma_engine *sde)
 404{
 405	return sde->descq_cnt - sdma_descq_freecnt(sde);
 406}
 407
 408/*
 409 * Either head_lock or tail lock required to see
 410 * a steady state.
 411 */
 412static inline int __sdma_running(struct sdma_engine *engine)
 413{
 414	return engine->state.current_state == sdma_state_s99_running;
 415}
 416
 417/**
 418 * sdma_running() - state suitability test
 419 * @engine: sdma engine
 420 *
 421 * sdma_running probes the internal state to determine if it is suitable
 422 * for submitting packets.
 423 *
 424 * Return:
 425 * 1 - ok to submit, 0 - not ok to submit
 426 *
 427 */
 428static inline int sdma_running(struct sdma_engine *engine)
 429{
 430	unsigned long flags;
 431	int ret;
 432
 433	spin_lock_irqsave(&engine->tail_lock, flags);
 434	ret = __sdma_running(engine);
 435	spin_unlock_irqrestore(&engine->tail_lock, flags);
 436	return ret;
 437}
 438
 439void _sdma_txreq_ahgadd(
 440	struct sdma_txreq *tx,
 441	u8 num_ahg,
 442	u8 ahg_entry,
 443	u32 *ahg,
 444	u8 ahg_hlen);
 445
 446/**
 447 * sdma_txinit_ahg() - initialize an sdma_txreq struct with AHG
 448 * @tx: tx request to initialize
 449 * @flags: flags to key last descriptor additions
 450 * @tlen: total packet length (pbc + headers + data)
 451 * @ahg_entry: ahg entry to use  (0 - 31)
 452 * @num_ahg: ahg descriptor for first descriptor (0 - 9)
 453 * @ahg: array of AHG descriptors (up to 9 entries)
 454 * @ahg_hlen: number of bytes from ASIC entry to use
 455 * @cb: callback
 456 *
 457 * The allocation of the sdma_txreq and it enclosing structure is user
 458 * dependent.  This routine must be called to initialize the user independent
 459 * fields.
 460 *
 461 * The currently supported flags are SDMA_TXREQ_F_URGENT,
 462 * SDMA_TXREQ_F_AHG_COPY, and SDMA_TXREQ_F_USE_AHG.
 463 *
 464 * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
 465 * completion is desired as soon as possible.
 466 *
 467 * SDMA_TXREQ_F_AHG_COPY causes the header in the first descriptor to be
 468 * copied to chip entry. SDMA_TXREQ_F_USE_AHG causes the code to add in
 469 * the AHG descriptors into the first 1 to 3 descriptors.
 470 *
 471 * Completions of submitted requests can be gotten on selected
 472 * txreqs by giving a completion routine callback to sdma_txinit() or
 473 * sdma_txinit_ahg().  The environment in which the callback runs
 474 * can be from an ISR, a tasklet, or a thread, so no sleeping
 475 * kernel routines can be used.   Aspects of the sdma ring may
 476 * be locked so care should be taken with locking.
 477 *
 478 * The callback pointer can be NULL to avoid any callback for the packet
 479 * being submitted. The callback will be provided this tx, a status, and a flag.
 480 *
 481 * The status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
 482 * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
 483 *
 484 * The flag, if the is the iowait had been used, indicates the iowait
 485 * sdma_busy count has reached zero.
 486 *
 487 * user data portion of tlen should be precise.   The sdma_txadd_* entrances
 488 * will pad with a descriptor references 1 - 3 bytes when the number of bytes
 489 * specified in tlen have been supplied to the sdma_txreq.
 490 *
 491 * ahg_hlen is used to determine the number of on-chip entry bytes to
 492 * use as the header.   This is for cases where the stored header is
 493 * larger than the header to be used in a packet.  This is typical
 494 * for verbs where an RDMA_WRITE_FIRST is larger than the packet in
 495 * and RDMA_WRITE_MIDDLE.
 496 *
 497 */
 498static inline int sdma_txinit_ahg(
 499	struct sdma_txreq *tx,
 500	u16 flags,
 501	u16 tlen,
 502	u8 ahg_entry,
 503	u8 num_ahg,
 504	u32 *ahg,
 505	u8 ahg_hlen,
 506	void (*cb)(struct sdma_txreq *, int))
 507{
 508	if (tlen == 0)
 509		return -ENODATA;
 510	if (tlen > MAX_SDMA_PKT_SIZE)
 511		return -EMSGSIZE;
 512	tx->desc_limit = ARRAY_SIZE(tx->descs);
 513	tx->descp = &tx->descs[0];
 514	INIT_LIST_HEAD(&tx->list);
 515	tx->num_desc = 0;
 516	tx->flags = flags;
 517	tx->complete = cb;
 518	tx->coalesce_buf = NULL;
 519	tx->wait = NULL;
 520	tx->packet_len = tlen;
 521	tx->tlen = tx->packet_len;
 522	tx->descs[0].qw[0] = SDMA_DESC0_FIRST_DESC_FLAG;
 523	tx->descs[0].qw[1] = 0;
 524	if (flags & SDMA_TXREQ_F_AHG_COPY)
 525		tx->descs[0].qw[1] |=
 526			(((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
 527				<< SDMA_DESC1_HEADER_INDEX_SHIFT) |
 528			(((u64)SDMA_AHG_COPY & SDMA_DESC1_HEADER_MODE_MASK)
 529				<< SDMA_DESC1_HEADER_MODE_SHIFT);
 530	else if (flags & SDMA_TXREQ_F_USE_AHG && num_ahg)
 531		_sdma_txreq_ahgadd(tx, num_ahg, ahg_entry, ahg, ahg_hlen);
 532	return 0;
 533}
 534
 535/**
 536 * sdma_txinit() - initialize an sdma_txreq struct (no AHG)
 537 * @tx: tx request to initialize
 538 * @flags: flags to key last descriptor additions
 539 * @tlen: total packet length (pbc + headers + data)
 540 * @cb: callback pointer
 541 *
 542 * The allocation of the sdma_txreq and it enclosing structure is user
 543 * dependent.  This routine must be called to initialize the user
 544 * independent fields.
 545 *
 546 * The currently supported flags is SDMA_TXREQ_F_URGENT.
 547 *
 548 * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
 549 * completion is desired as soon as possible.
 550 *
 551 * Completions of submitted requests can be gotten on selected
 552 * txreqs by giving a completion routine callback to sdma_txinit() or
 553 * sdma_txinit_ahg().  The environment in which the callback runs
 554 * can be from an ISR, a tasklet, or a thread, so no sleeping
 555 * kernel routines can be used.   The head size of the sdma ring may
 556 * be locked so care should be taken with locking.
 557 *
 558 * The callback pointer can be NULL to avoid any callback for the packet
 559 * being submitted.
 560 *
 561 * The callback, if non-NULL,  will be provided this tx and a status.  The
 562 * status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
 563 * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
 564 *
 565 */
 566static inline int sdma_txinit(
 567	struct sdma_txreq *tx,
 568	u16 flags,
 569	u16 tlen,
 570	void (*cb)(struct sdma_txreq *, int))
 571{
 572	return sdma_txinit_ahg(tx, flags, tlen, 0, 0, NULL, 0, cb);
 573}
 574
 575/* helpers - don't use */
 576static inline int sdma_mapping_type(struct sdma_desc *d)
 577{
 578	return (d->qw[1] & SDMA_DESC1_GENERATION_SMASK)
 579		>> SDMA_DESC1_GENERATION_SHIFT;
 580}
 581
 582static inline size_t sdma_mapping_len(struct sdma_desc *d)
 583{
 584	return (d->qw[0] & SDMA_DESC0_BYTE_COUNT_SMASK)
 585		>> SDMA_DESC0_BYTE_COUNT_SHIFT;
 586}
 587
 588static inline dma_addr_t sdma_mapping_addr(struct sdma_desc *d)
 589{
 590	return (d->qw[0] & SDMA_DESC0_PHY_ADDR_SMASK)
 591		>> SDMA_DESC0_PHY_ADDR_SHIFT;
 592}
 593
 594static inline void make_tx_sdma_desc(
 595	struct sdma_txreq *tx,
 596	int type,
 597	dma_addr_t addr,
 598	size_t len,
 599	void *pinning_ctx,
 600	void (*ctx_get)(void *),
 601	void (*ctx_put)(void *))
 602{
 603	struct sdma_desc *desc = &tx->descp[tx->num_desc];
 604
 605	if (!tx->num_desc) {
 606		/* qw[0] zero; qw[1] first, ahg mode already in from init */
 607		desc->qw[1] |= ((u64)type & SDMA_DESC1_GENERATION_MASK)
 608				<< SDMA_DESC1_GENERATION_SHIFT;
 609	} else {
 610		desc->qw[0] = 0;
 611		desc->qw[1] = ((u64)type & SDMA_DESC1_GENERATION_MASK)
 612				<< SDMA_DESC1_GENERATION_SHIFT;
 613	}
 614	desc->qw[0] |= (((u64)addr & SDMA_DESC0_PHY_ADDR_MASK)
 615				<< SDMA_DESC0_PHY_ADDR_SHIFT) |
 616			(((u64)len & SDMA_DESC0_BYTE_COUNT_MASK)
 617				<< SDMA_DESC0_BYTE_COUNT_SHIFT);
 618
 619	desc->pinning_ctx = pinning_ctx;
 620	desc->ctx_put = ctx_put;
 621	if (pinning_ctx && ctx_get)
 622		ctx_get(pinning_ctx);
 623}
 624
 625/* helper to extend txreq */
 626int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
 627			   int type, void *kvaddr, struct page *page,
 628			   unsigned long offset, u16 len);
 629int _pad_sdma_tx_descs(struct hfi1_devdata *, struct sdma_txreq *);
 630void __sdma_txclean(struct hfi1_devdata *, struct sdma_txreq *);
 631
 632static inline void sdma_txclean(struct hfi1_devdata *dd, struct sdma_txreq *tx)
 633{
 634	if (tx->num_desc)
 635		__sdma_txclean(dd, tx);
 636}
 637
 638/* helpers used by public routines */
 639static inline void _sdma_close_tx(struct hfi1_devdata *dd,
 640				  struct sdma_txreq *tx)
 641{
 642	u16 last_desc = tx->num_desc - 1;
 643
 644	tx->descp[last_desc].qw[0] |= SDMA_DESC0_LAST_DESC_FLAG;
 645	tx->descp[last_desc].qw[1] |= dd->default_desc1;
 646	if (tx->flags & SDMA_TXREQ_F_URGENT)
 647		tx->descp[last_desc].qw[1] |= (SDMA_DESC1_HEAD_TO_HOST_FLAG |
 648					       SDMA_DESC1_INT_REQ_FLAG);
 649}
 650
 651static inline int _sdma_txadd_daddr(
 652	struct hfi1_devdata *dd,
 653	int type,
 654	struct sdma_txreq *tx,
 655	dma_addr_t addr,
 656	u16 len,
 657	void *pinning_ctx,
 658	void (*ctx_get)(void *),
 659	void (*ctx_put)(void *))
 660{
 661	int rval = 0;
 662
 663	make_tx_sdma_desc(
 664		tx,
 665		type,
 666		addr, len,
 667		pinning_ctx, ctx_get, ctx_put);
 668	WARN_ON(len > tx->tlen);
 669	tx->num_desc++;
 670	tx->tlen -= len;
 671	/* special cases for last */
 672	if (!tx->tlen) {
 673		if (tx->packet_len & (sizeof(u32) - 1)) {
 674			rval = _pad_sdma_tx_descs(dd, tx);
 675			if (rval)
 676				return rval;
 677		} else {
 678			_sdma_close_tx(dd, tx);
 679		}
 680	}
 681	return rval;
 682}
 683
 684/**
 685 * sdma_txadd_page() - add a page to the sdma_txreq
 686 * @dd: the device to use for mapping
 687 * @tx: tx request to which the page is added
 688 * @page: page to map
 689 * @offset: offset within the page
 690 * @len: length in bytes
 691 * @pinning_ctx: context to be stored on struct sdma_desc .pinning_ctx. Not
 692 *               added if coalesce buffer is used. E.g. pointer to pinned-page
 693 *               cache entry for the sdma_desc.
 694 * @ctx_get: optional function to take reference to @pinning_ctx. Not called if
 695 *           @pinning_ctx is NULL.
 696 * @ctx_put: optional function to release reference to @pinning_ctx after
 697 *           sdma_desc completes. May be called in interrupt context so must
 698 *           not sleep. Not called if @pinning_ctx is NULL.
 699 *
 700 * This is used to add a page/offset/length descriptor.
 701 *
 702 * The mapping/unmapping of the page/offset/len is automatically handled.
 703 *
 704 * Return:
 705 * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't
 706 * extend/coalesce descriptor array
 707 */
 708static inline int sdma_txadd_page(
 709	struct hfi1_devdata *dd,
 710	struct sdma_txreq *tx,
 711	struct page *page,
 712	unsigned long offset,
 713	u16 len,
 714	void *pinning_ctx,
 715	void (*ctx_get)(void *),
 716	void (*ctx_put)(void *))
 717{
 718	dma_addr_t addr;
 719	int rval;
 720
 721	if ((unlikely(tx->num_desc == tx->desc_limit))) {
 722		rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_PAGE,
 723					      NULL, page, offset, len);
 724		if (rval <= 0)
 725			return rval;
 726	}
 727
 728	addr = dma_map_page(
 729		       &dd->pcidev->dev,
 730		       page,
 731		       offset,
 732		       len,
 733		       DMA_TO_DEVICE);
 734
 735	if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
 736		__sdma_txclean(dd, tx);
 737		return -ENOSPC;
 738	}
 739
 740	return _sdma_txadd_daddr(dd, SDMA_MAP_PAGE, tx, addr, len,
 741				 pinning_ctx, ctx_get, ctx_put);
 742}
 743
 744/**
 745 * sdma_txadd_daddr() - add a dma address to the sdma_txreq
 746 * @dd: the device to use for mapping
 747 * @tx: sdma_txreq to which the page is added
 748 * @addr: dma address mapped by caller
 749 * @len: length in bytes
 750 *
 751 * This is used to add a descriptor for memory that is already dma mapped.
 752 *
 753 * In this case, there is no unmapping as part of the progress processing for
 754 * this memory location.
 755 *
 756 * Return:
 757 * 0 - success, -ENOMEM - couldn't extend descriptor array
 758 */
 759
 760static inline int sdma_txadd_daddr(
 761	struct hfi1_devdata *dd,
 762	struct sdma_txreq *tx,
 763	dma_addr_t addr,
 764	u16 len)
 765{
 766	int rval;
 767
 768	if ((unlikely(tx->num_desc == tx->desc_limit))) {
 769		rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_NONE,
 770					      NULL, NULL, 0, 0);
 771		if (rval <= 0)
 772			return rval;
 773	}
 774
 775	return _sdma_txadd_daddr(dd, SDMA_MAP_NONE, tx, addr, len,
 776				 NULL, NULL, NULL);
 777}
 778
 779/**
 780 * sdma_txadd_kvaddr() - add a kernel virtual address to sdma_txreq
 781 * @dd: the device to use for mapping
 782 * @tx: sdma_txreq to which the page is added
 783 * @kvaddr: the kernel virtual address
 784 * @len: length in bytes
 785 *
 786 * This is used to add a descriptor referenced by the indicated kvaddr and
 787 * len.
 788 *
 789 * The mapping/unmapping of the kvaddr and len is automatically handled.
 790 *
 791 * Return:
 792 * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't extend/coalesce
 793 * descriptor array
 794 */
 795static inline int sdma_txadd_kvaddr(
 796	struct hfi1_devdata *dd,
 797	struct sdma_txreq *tx,
 798	void *kvaddr,
 799	u16 len)
 800{
 801	dma_addr_t addr;
 802	int rval;
 803
 804	if ((unlikely(tx->num_desc == tx->desc_limit))) {
 805		rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_SINGLE,
 806					      kvaddr, NULL, 0, len);
 807		if (rval <= 0)
 808			return rval;
 809	}
 810
 811	addr = dma_map_single(
 812		       &dd->pcidev->dev,
 813		       kvaddr,
 814		       len,
 815		       DMA_TO_DEVICE);
 816
 817	if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
 818		__sdma_txclean(dd, tx);
 819		return -ENOSPC;
 820	}
 821
 822	return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx, addr, len,
 823				 NULL, NULL, NULL);
 824}
 825
 826struct iowait_work;
 827
 828int sdma_send_txreq(struct sdma_engine *sde,
 829		    struct iowait_work *wait,
 830		    struct sdma_txreq *tx,
 831		    bool pkts_sent);
 832int sdma_send_txlist(struct sdma_engine *sde,
 833		     struct iowait_work *wait,
 834		     struct list_head *tx_list,
 835		     u16 *count_out);
 836
 837int sdma_ahg_alloc(struct sdma_engine *sde);
 838void sdma_ahg_free(struct sdma_engine *sde, int ahg_index);
 839
 840/**
 841 * sdma_build_ahg - build ahg descriptor
 842 * @data
 843 * @dwindex
 844 * @startbit
 845 * @bits
 846 *
 847 * Build and return a 32 bit descriptor.
 848 */
 849static inline u32 sdma_build_ahg_descriptor(
 850	u16 data,
 851	u8 dwindex,
 852	u8 startbit,
 853	u8 bits)
 854{
 855	return (u32)(1UL << SDMA_AHG_UPDATE_ENABLE_SHIFT |
 856		((startbit & SDMA_AHG_FIELD_START_MASK) <<
 857		SDMA_AHG_FIELD_START_SHIFT) |
 858		((bits & SDMA_AHG_FIELD_LEN_MASK) <<
 859		SDMA_AHG_FIELD_LEN_SHIFT) |
 860		((dwindex & SDMA_AHG_INDEX_MASK) <<
 861		SDMA_AHG_INDEX_SHIFT) |
 862		((data & SDMA_AHG_VALUE_MASK) <<
 863		SDMA_AHG_VALUE_SHIFT));
 864}
 865
 866/**
 867 * sdma_progress - use seq number of detect head progress
 868 * @sde: sdma_engine to check
 869 * @seq: base seq count
 870 * @tx: txreq for which we need to check descriptor availability
 871 *
 872 * This is used in the appropriate spot in the sleep routine
 873 * to check for potential ring progress.  This routine gets the
 874 * seqcount before queuing the iowait structure for progress.
 875 *
 876 * If the seqcount indicates that progress needs to be checked,
 877 * re-submission is detected by checking whether the descriptor
 878 * queue has enough descriptor for the txreq.
 879 */
 880static inline unsigned sdma_progress(struct sdma_engine *sde, unsigned seq,
 881				     struct sdma_txreq *tx)
 882{
 883	if (read_seqretry(&sde->head_lock, seq)) {
 884		sde->desc_avail = sdma_descq_freecnt(sde);
 885		if (tx->num_desc > sde->desc_avail)
 886			return 0;
 887		return 1;
 888	}
 889	return 0;
 890}
 891
 892/* for use by interrupt handling */
 893void sdma_engine_error(struct sdma_engine *sde, u64 status);
 894void sdma_engine_interrupt(struct sdma_engine *sde, u64 status);
 895
 896/*
 897 *
 898 * The diagram below details the relationship of the mapping structures
 899 *
 900 * Since the mapping now allows for non-uniform engines per vl, the
 901 * number of engines for a vl is either the vl_engines[vl] or
 902 * a computation based on num_sdma/num_vls:
 903 *
 904 * For example:
 905 * nactual = vl_engines ? vl_engines[vl] : num_sdma/num_vls
 906 *
 907 * n = roundup to next highest power of 2 using nactual
 908 *
 909 * In the case where there are num_sdma/num_vls doesn't divide
 910 * evenly, the extras are added from the last vl downward.
 911 *
 912 * For the case where n > nactual, the engines are assigned
 913 * in a round robin fashion wrapping back to the first engine
 914 * for a particular vl.
 915 *
 916 *               dd->sdma_map
 917 *                    |                                   sdma_map_elem[0]
 918 *                    |                                +--------------------+
 919 *                    v                                |       mask         |
 920 *               sdma_vl_map                           |--------------------|
 921 *      +--------------------------+                   | sde[0] -> eng 1    |
 922 *      |    list (RCU)            |                   |--------------------|
 923 *      |--------------------------|                 ->| sde[1] -> eng 2    |
 924 *      |    mask                  |              --/  |--------------------|
 925 *      |--------------------------|            -/     |        *           |
 926 *      |    actual_vls (max 8)    |          -/       |--------------------|
 927 *      |--------------------------|       --/         | sde[n-1] -> eng n  |
 928 *      |    vls (max 8)           |     -/            +--------------------+
 929 *      |--------------------------|  --/
 930 *      |    map[0]                |-/
 931 *      |--------------------------|                   +---------------------+
 932 *      |    map[1]                |---                |       mask          |
 933 *      |--------------------------|   \----           |---------------------|
 934 *      |           *              |        \--        | sde[0] -> eng 1+n   |
 935 *      |           *              |           \----   |---------------------|
 936 *      |           *              |                \->| sde[1] -> eng 2+n   |
 937 *      |--------------------------|                   |---------------------|
 938 *      |   map[vls - 1]           |-                  |         *           |
 939 *      +--------------------------+ \-                |---------------------|
 940 *                                     \-              | sde[m-1] -> eng m+n |
 941 *                                       \             +---------------------+
 942 *                                        \-
 943 *                                          \
 944 *                                           \-        +----------------------+
 945 *                                             \-      |       mask           |
 946 *                                               \     |----------------------|
 947 *                                                \-   | sde[0] -> eng 1+m+n  |
 948 *                                                  \- |----------------------|
 949 *                                                    >| sde[1] -> eng 2+m+n  |
 950 *                                                     |----------------------|
 951 *                                                     |         *            |
 952 *                                                     |----------------------|
 953 *                                                     | sde[o-1] -> eng o+m+n|
 954 *                                                     +----------------------+
 955 *
 956 */
 957
 958/**
 959 * struct sdma_map_elem - mapping for a vl
 960 * @mask - selector mask
 961 * @sde - array of engines for this vl
 962 *
 963 * The mask is used to "mod" the selector
 964 * to produce index into the trailing
 965 * array of sdes.
 966 */
 967struct sdma_map_elem {
 968	u32 mask;
 969	struct sdma_engine *sde[];
 970};
 971
 972/**
 973 * struct sdma_map_el - mapping for a vl
 974 * @engine_to_vl - map of an engine to a vl
 975 * @list - rcu head for free callback
 976 * @mask - vl mask to "mod" the vl to produce an index to map array
 977 * @actual_vls - number of vls
 978 * @vls - number of vls rounded to next power of 2
 979 * @map - array of sdma_map_elem entries
 980 *
 981 * This is the parent mapping structure.  The trailing
 982 * members of the struct point to sdma_map_elem entries, which
 983 * in turn point to an array of sde's for that vl.
 984 */
 985struct sdma_vl_map {
 986	s8 engine_to_vl[TXE_NUM_SDMA_ENGINES];
 987	struct rcu_head list;
 988	u32 mask;
 989	u8 actual_vls;
 990	u8 vls;
 991	struct sdma_map_elem *map[];
 992};
 993
 994int sdma_map_init(
 995	struct hfi1_devdata *dd,
 996	u8 port,
 997	u8 num_vls,
 998	u8 *vl_engines);
 999
1000/* slow path */
1001void _sdma_engine_progress_schedule(struct sdma_engine *sde);
1002
1003/**
1004 * sdma_engine_progress_schedule() - schedule progress on engine
1005 * @sde: sdma_engine to schedule progress
1006 *
1007 * This is the fast path.
1008 *
1009 */
1010static inline void sdma_engine_progress_schedule(
1011	struct sdma_engine *sde)
1012{
1013	if (!sde || sdma_descq_inprocess(sde) < (sde->descq_cnt / 8))
1014		return;
1015	_sdma_engine_progress_schedule(sde);
1016}
1017
1018struct sdma_engine *sdma_select_engine_sc(
1019	struct hfi1_devdata *dd,
1020	u32 selector,
1021	u8 sc5);
1022
1023struct sdma_engine *sdma_select_engine_vl(
1024	struct hfi1_devdata *dd,
1025	u32 selector,
1026	u8 vl);
1027
1028struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
1029					    u32 selector, u8 vl);
1030ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf);
1031ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
1032				size_t count);
1033int sdma_engine_get_vl(struct sdma_engine *sde);
1034void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *);
1035void sdma_seqfile_dump_cpu_list(struct seq_file *s, struct hfi1_devdata *dd,
1036				unsigned long cpuid);
1037
1038#ifdef CONFIG_SDMA_VERBOSITY
1039void sdma_dumpstate(struct sdma_engine *);
1040#endif
1041static inline char *slashstrip(char *s)
1042{
1043	char *r = s;
1044
1045	while (*s)
1046		if (*s++ == '/')
1047			r = s;
1048	return r;
1049}
1050
1051u16 sdma_get_descq_cnt(void);
1052
1053extern uint mod_num_sdma;
1054
1055void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid);
1056#endif