Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
   3#include <linux/mm.h>
   4#include <linux/llist.h>
   5#include <linux/bpf.h>
   6#include <linux/irq_work.h>
   7#include <linux/bpf_mem_alloc.h>
   8#include <linux/memcontrol.h>
   9#include <asm/local.h>
  10
  11/* Any context (including NMI) BPF specific memory allocator.
  12 *
  13 * Tracing BPF programs can attach to kprobe and fentry. Hence they
  14 * run in unknown context where calling plain kmalloc() might not be safe.
  15 *
  16 * Front-end kmalloc() with per-cpu per-bucket cache of free elements.
  17 * Refill this cache asynchronously from irq_work.
  18 *
  19 * CPU_0 buckets
  20 * 16 32 64 96 128 196 256 512 1024 2048 4096
  21 * ...
  22 * CPU_N buckets
  23 * 16 32 64 96 128 196 256 512 1024 2048 4096
  24 *
  25 * The buckets are prefilled at the start.
  26 * BPF programs always run with migration disabled.
  27 * It's safe to allocate from cache of the current cpu with irqs disabled.
  28 * Free-ing is always done into bucket of the current cpu as well.
  29 * irq_work trims extra free elements from buckets with kfree
  30 * and refills them with kmalloc, so global kmalloc logic takes care
  31 * of freeing objects allocated by one cpu and freed on another.
  32 *
  33 * Every allocated objected is padded with extra 8 bytes that contains
  34 * struct llist_node.
  35 */
  36#define LLIST_NODE_SZ sizeof(struct llist_node)
  37
  38/* similar to kmalloc, but sizeof == 8 bucket is gone */
  39static u8 size_index[24] __ro_after_init = {
  40	3,	/* 8 */
  41	3,	/* 16 */
  42	4,	/* 24 */
  43	4,	/* 32 */
  44	5,	/* 40 */
  45	5,	/* 48 */
  46	5,	/* 56 */
  47	5,	/* 64 */
  48	1,	/* 72 */
  49	1,	/* 80 */
  50	1,	/* 88 */
  51	1,	/* 96 */
  52	6,	/* 104 */
  53	6,	/* 112 */
  54	6,	/* 120 */
  55	6,	/* 128 */
  56	2,	/* 136 */
  57	2,	/* 144 */
  58	2,	/* 152 */
  59	2,	/* 160 */
  60	2,	/* 168 */
  61	2,	/* 176 */
  62	2,	/* 184 */
  63	2	/* 192 */
  64};
  65
  66static int bpf_mem_cache_idx(size_t size)
  67{
  68	if (!size || size > 4096)
  69		return -1;
  70
  71	if (size <= 192)
  72		return size_index[(size - 1) / 8] - 1;
  73
  74	return fls(size - 1) - 2;
  75}
  76
  77#define NUM_CACHES 11
  78
  79struct bpf_mem_cache {
  80	/* per-cpu list of free objects of size 'unit_size'.
  81	 * All accesses are done with interrupts disabled and 'active' counter
  82	 * protection with __llist_add() and __llist_del_first().
  83	 */
  84	struct llist_head free_llist;
  85	local_t active;
  86
  87	/* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill
  88	 * are sequenced by per-cpu 'active' counter. But unit_free() cannot
  89	 * fail. When 'active' is busy the unit_free() will add an object to
  90	 * free_llist_extra.
  91	 */
  92	struct llist_head free_llist_extra;
  93
  94	struct irq_work refill_work;
  95	struct obj_cgroup *objcg;
  96	int unit_size;
  97	/* count of objects in free_llist */
  98	int free_cnt;
  99	int low_watermark, high_watermark, batch;
 100	int percpu_size;
 101	bool draining;
 102	struct bpf_mem_cache *tgt;
 103
 104	/* list of objects to be freed after RCU GP */
 105	struct llist_head free_by_rcu;
 106	struct llist_node *free_by_rcu_tail;
 107	struct llist_head waiting_for_gp;
 108	struct llist_node *waiting_for_gp_tail;
 109	struct rcu_head rcu;
 110	atomic_t call_rcu_in_progress;
 111	struct llist_head free_llist_extra_rcu;
 112
 113	/* list of objects to be freed after RCU tasks trace GP */
 114	struct llist_head free_by_rcu_ttrace;
 115	struct llist_head waiting_for_gp_ttrace;
 116	struct rcu_head rcu_ttrace;
 117	atomic_t call_rcu_ttrace_in_progress;
 118};
 119
 120struct bpf_mem_caches {
 121	struct bpf_mem_cache cache[NUM_CACHES];
 122};
 123
 124static const u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096};
 125
 126static struct llist_node notrace *__llist_del_first(struct llist_head *head)
 127{
 128	struct llist_node *entry, *next;
 129
 130	entry = head->first;
 131	if (!entry)
 132		return NULL;
 133	next = entry->next;
 134	head->first = next;
 135	return entry;
 136}
 137
 138static void *__alloc(struct bpf_mem_cache *c, int node, gfp_t flags)
 139{
 140	if (c->percpu_size) {
 141		void **obj = kmalloc_node(c->percpu_size, flags, node);
 142		void *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags);
 143
 144		if (!obj || !pptr) {
 145			free_percpu(pptr);
 146			kfree(obj);
 147			return NULL;
 148		}
 149		obj[1] = pptr;
 150		return obj;
 151	}
 152
 153	return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node);
 154}
 155
 156static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c)
 157{
 158#ifdef CONFIG_MEMCG_KMEM
 159	if (c->objcg)
 160		return get_mem_cgroup_from_objcg(c->objcg);
 161#endif
 162
 163#ifdef CONFIG_MEMCG
 164	return root_mem_cgroup;
 165#else
 166	return NULL;
 167#endif
 168}
 169
 170static void inc_active(struct bpf_mem_cache *c, unsigned long *flags)
 171{
 172	if (IS_ENABLED(CONFIG_PREEMPT_RT))
 173		/* In RT irq_work runs in per-cpu kthread, so disable
 174		 * interrupts to avoid preemption and interrupts and
 175		 * reduce the chance of bpf prog executing on this cpu
 176		 * when active counter is busy.
 177		 */
 178		local_irq_save(*flags);
 179	/* alloc_bulk runs from irq_work which will not preempt a bpf
 180	 * program that does unit_alloc/unit_free since IRQs are
 181	 * disabled there. There is no race to increment 'active'
 182	 * counter. It protects free_llist from corruption in case NMI
 183	 * bpf prog preempted this loop.
 184	 */
 185	WARN_ON_ONCE(local_inc_return(&c->active) != 1);
 186}
 187
 188static void dec_active(struct bpf_mem_cache *c, unsigned long *flags)
 189{
 190	local_dec(&c->active);
 191	if (IS_ENABLED(CONFIG_PREEMPT_RT))
 192		local_irq_restore(*flags);
 193}
 194
 195static void add_obj_to_free_list(struct bpf_mem_cache *c, void *obj)
 196{
 197	unsigned long flags;
 198
 199	inc_active(c, &flags);
 200	__llist_add(obj, &c->free_llist);
 201	c->free_cnt++;
 202	dec_active(c, &flags);
 203}
 204
 205/* Mostly runs from irq_work except __init phase. */
 206static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node, bool atomic)
 207{
 208	struct mem_cgroup *memcg = NULL, *old_memcg;
 209	gfp_t gfp;
 210	void *obj;
 211	int i;
 212
 213	gfp = __GFP_NOWARN | __GFP_ACCOUNT;
 214	gfp |= atomic ? GFP_NOWAIT : GFP_KERNEL;
 215
 216	for (i = 0; i < cnt; i++) {
 217		/*
 218		 * For every 'c' llist_del_first(&c->free_by_rcu_ttrace); is
 219		 * done only by one CPU == current CPU. Other CPUs might
 220		 * llist_add() and llist_del_all() in parallel.
 221		 */
 222		obj = llist_del_first(&c->free_by_rcu_ttrace);
 223		if (!obj)
 224			break;
 225		add_obj_to_free_list(c, obj);
 226	}
 227	if (i >= cnt)
 228		return;
 229
 230	for (; i < cnt; i++) {
 231		obj = llist_del_first(&c->waiting_for_gp_ttrace);
 232		if (!obj)
 233			break;
 234		add_obj_to_free_list(c, obj);
 235	}
 236	if (i >= cnt)
 237		return;
 238
 239	memcg = get_memcg(c);
 240	old_memcg = set_active_memcg(memcg);
 241	for (; i < cnt; i++) {
 242		/* Allocate, but don't deplete atomic reserves that typical
 243		 * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc
 244		 * will allocate from the current numa node which is what we
 245		 * want here.
 246		 */
 247		obj = __alloc(c, node, gfp);
 248		if (!obj)
 249			break;
 250		add_obj_to_free_list(c, obj);
 251	}
 252	set_active_memcg(old_memcg);
 253	mem_cgroup_put(memcg);
 254}
 255
 256static void free_one(void *obj, bool percpu)
 257{
 258	if (percpu) {
 259		free_percpu(((void **)obj)[1]);
 260		kfree(obj);
 261		return;
 262	}
 263
 264	kfree(obj);
 265}
 266
 267static int free_all(struct llist_node *llnode, bool percpu)
 268{
 269	struct llist_node *pos, *t;
 270	int cnt = 0;
 271
 272	llist_for_each_safe(pos, t, llnode) {
 273		free_one(pos, percpu);
 274		cnt++;
 275	}
 276	return cnt;
 277}
 278
 279static void __free_rcu(struct rcu_head *head)
 280{
 281	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu_ttrace);
 282
 283	free_all(llist_del_all(&c->waiting_for_gp_ttrace), !!c->percpu_size);
 284	atomic_set(&c->call_rcu_ttrace_in_progress, 0);
 285}
 286
 287static void __free_rcu_tasks_trace(struct rcu_head *head)
 288{
 289	/* If RCU Tasks Trace grace period implies RCU grace period,
 290	 * there is no need to invoke call_rcu().
 291	 */
 292	if (rcu_trace_implies_rcu_gp())
 293		__free_rcu(head);
 294	else
 295		call_rcu(head, __free_rcu);
 296}
 297
 298static void enque_to_free(struct bpf_mem_cache *c, void *obj)
 299{
 300	struct llist_node *llnode = obj;
 301
 302	/* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work.
 303	 * Nothing races to add to free_by_rcu_ttrace list.
 304	 */
 305	llist_add(llnode, &c->free_by_rcu_ttrace);
 306}
 307
 308static void do_call_rcu_ttrace(struct bpf_mem_cache *c)
 309{
 310	struct llist_node *llnode, *t;
 311
 312	if (atomic_xchg(&c->call_rcu_ttrace_in_progress, 1)) {
 313		if (unlikely(READ_ONCE(c->draining))) {
 314			llnode = llist_del_all(&c->free_by_rcu_ttrace);
 315			free_all(llnode, !!c->percpu_size);
 316		}
 317		return;
 318	}
 319
 320	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
 321	llist_for_each_safe(llnode, t, llist_del_all(&c->free_by_rcu_ttrace))
 322		llist_add(llnode, &c->waiting_for_gp_ttrace);
 323
 324	if (unlikely(READ_ONCE(c->draining))) {
 325		__free_rcu(&c->rcu_ttrace);
 326		return;
 327	}
 328
 329	/* Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
 330	 * If RCU Tasks Trace grace period implies RCU grace period, free
 331	 * these elements directly, else use call_rcu() to wait for normal
 332	 * progs to finish and finally do free_one() on each element.
 333	 */
 334	call_rcu_tasks_trace(&c->rcu_ttrace, __free_rcu_tasks_trace);
 335}
 336
 337static void free_bulk(struct bpf_mem_cache *c)
 338{
 339	struct bpf_mem_cache *tgt = c->tgt;
 340	struct llist_node *llnode, *t;
 341	unsigned long flags;
 342	int cnt;
 343
 344	WARN_ON_ONCE(tgt->unit_size != c->unit_size);
 345	WARN_ON_ONCE(tgt->percpu_size != c->percpu_size);
 346
 347	do {
 348		inc_active(c, &flags);
 349		llnode = __llist_del_first(&c->free_llist);
 350		if (llnode)
 351			cnt = --c->free_cnt;
 352		else
 353			cnt = 0;
 354		dec_active(c, &flags);
 355		if (llnode)
 356			enque_to_free(tgt, llnode);
 357	} while (cnt > (c->high_watermark + c->low_watermark) / 2);
 358
 359	/* and drain free_llist_extra */
 360	llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra))
 361		enque_to_free(tgt, llnode);
 362	do_call_rcu_ttrace(tgt);
 363}
 364
 365static void __free_by_rcu(struct rcu_head *head)
 366{
 367	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu);
 368	struct bpf_mem_cache *tgt = c->tgt;
 369	struct llist_node *llnode;
 370
 371	WARN_ON_ONCE(tgt->unit_size != c->unit_size);
 372	WARN_ON_ONCE(tgt->percpu_size != c->percpu_size);
 373
 374	llnode = llist_del_all(&c->waiting_for_gp);
 375	if (!llnode)
 376		goto out;
 377
 378	llist_add_batch(llnode, c->waiting_for_gp_tail, &tgt->free_by_rcu_ttrace);
 379
 380	/* Objects went through regular RCU GP. Send them to RCU tasks trace */
 381	do_call_rcu_ttrace(tgt);
 382out:
 383	atomic_set(&c->call_rcu_in_progress, 0);
 384}
 385
 386static void check_free_by_rcu(struct bpf_mem_cache *c)
 387{
 388	struct llist_node *llnode, *t;
 389	unsigned long flags;
 390
 391	/* drain free_llist_extra_rcu */
 392	if (unlikely(!llist_empty(&c->free_llist_extra_rcu))) {
 393		inc_active(c, &flags);
 394		llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra_rcu))
 395			if (__llist_add(llnode, &c->free_by_rcu))
 396				c->free_by_rcu_tail = llnode;
 397		dec_active(c, &flags);
 398	}
 399
 400	if (llist_empty(&c->free_by_rcu))
 401		return;
 402
 403	if (atomic_xchg(&c->call_rcu_in_progress, 1)) {
 404		/*
 405		 * Instead of kmalloc-ing new rcu_head and triggering 10k
 406		 * call_rcu() to hit rcutree.qhimark and force RCU to notice
 407		 * the overload just ask RCU to hurry up. There could be many
 408		 * objects in free_by_rcu list.
 409		 * This hint reduces memory consumption for an artificial
 410		 * benchmark from 2 Gbyte to 150 Mbyte.
 411		 */
 412		rcu_request_urgent_qs_task(current);
 413		return;
 414	}
 415
 416	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
 417
 418	inc_active(c, &flags);
 419	WRITE_ONCE(c->waiting_for_gp.first, __llist_del_all(&c->free_by_rcu));
 420	c->waiting_for_gp_tail = c->free_by_rcu_tail;
 421	dec_active(c, &flags);
 422
 423	if (unlikely(READ_ONCE(c->draining))) {
 424		free_all(llist_del_all(&c->waiting_for_gp), !!c->percpu_size);
 425		atomic_set(&c->call_rcu_in_progress, 0);
 426	} else {
 427		call_rcu_hurry(&c->rcu, __free_by_rcu);
 428	}
 429}
 430
 431static void bpf_mem_refill(struct irq_work *work)
 432{
 433	struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work);
 434	int cnt;
 435
 436	/* Racy access to free_cnt. It doesn't need to be 100% accurate */
 437	cnt = c->free_cnt;
 438	if (cnt < c->low_watermark)
 439		/* irq_work runs on this cpu and kmalloc will allocate
 440		 * from the current numa node which is what we want here.
 441		 */
 442		alloc_bulk(c, c->batch, NUMA_NO_NODE, true);
 443	else if (cnt > c->high_watermark)
 444		free_bulk(c);
 445
 446	check_free_by_rcu(c);
 447}
 448
 449static void notrace irq_work_raise(struct bpf_mem_cache *c)
 450{
 451	irq_work_queue(&c->refill_work);
 452}
 453
 454/* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket
 455 * the freelist cache will be elem_size * 64 (or less) on each cpu.
 456 *
 457 * For bpf programs that don't have statically known allocation sizes and
 458 * assuming (low_mark + high_mark) / 2 as an average number of elements per
 459 * bucket and all buckets are used the total amount of memory in freelists
 460 * on each cpu will be:
 461 * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096
 462 * == ~ 116 Kbyte using below heuristic.
 463 * Initialized, but unused bpf allocator (not bpf map specific one) will
 464 * consume ~ 11 Kbyte per cpu.
 465 * Typical case will be between 11K and 116K closer to 11K.
 466 * bpf progs can and should share bpf_mem_cache when possible.
 467 *
 468 * Percpu allocation is typically rare. To avoid potential unnecessary large
 469 * memory consumption, set low_mark = 1 and high_mark = 3, resulting in c->batch = 1.
 470 */
 471static void init_refill_work(struct bpf_mem_cache *c)
 472{
 473	init_irq_work(&c->refill_work, bpf_mem_refill);
 474	if (c->percpu_size) {
 475		c->low_watermark = 1;
 476		c->high_watermark = 3;
 477	} else if (c->unit_size <= 256) {
 478		c->low_watermark = 32;
 479		c->high_watermark = 96;
 480	} else {
 481		/* When page_size == 4k, order-0 cache will have low_mark == 2
 482		 * and high_mark == 6 with batch alloc of 3 individual pages at
 483		 * a time.
 484		 * 8k allocs and above low == 1, high == 3, batch == 1.
 485		 */
 486		c->low_watermark = max(32 * 256 / c->unit_size, 1);
 487		c->high_watermark = max(96 * 256 / c->unit_size, 3);
 488	}
 489	c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1);
 490}
 491
 492static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu)
 493{
 494	int cnt = 1;
 495
 496	/* To avoid consuming memory, for non-percpu allocation, assume that
 497	 * 1st run of bpf prog won't be doing more than 4 map_update_elem from
 498	 * irq disabled region if unit size is less than or equal to 256.
 499	 * For all other cases, let us just do one allocation.
 500	 */
 501	if (!c->percpu_size && c->unit_size <= 256)
 502		cnt = 4;
 503	alloc_bulk(c, cnt, cpu_to_node(cpu), false);
 504}
 505
 506/* When size != 0 bpf_mem_cache for each cpu.
 507 * This is typical bpf hash map use case when all elements have equal size.
 508 *
 509 * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on
 510 * kmalloc/kfree. Max allocation size is 4096 in this case.
 511 * This is bpf_dynptr and bpf_kptr use case.
 512 */
 513int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu)
 514{
 515	struct bpf_mem_caches *cc, __percpu *pcc;
 516	struct bpf_mem_cache *c, __percpu *pc;
 517	struct obj_cgroup *objcg = NULL;
 518	int cpu, i, unit_size, percpu_size = 0;
 519
 520	if (percpu && size == 0)
 521		return -EINVAL;
 522
 523	/* room for llist_node and per-cpu pointer */
 524	if (percpu)
 525		percpu_size = LLIST_NODE_SZ + sizeof(void *);
 526	ma->percpu = percpu;
 527
 528	if (size) {
 529		pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL);
 530		if (!pc)
 531			return -ENOMEM;
 532
 533		if (!percpu)
 534			size += LLIST_NODE_SZ; /* room for llist_node */
 535		unit_size = size;
 536
 537#ifdef CONFIG_MEMCG_KMEM
 538		if (memcg_bpf_enabled())
 539			objcg = get_obj_cgroup_from_current();
 540#endif
 541		ma->objcg = objcg;
 542
 543		for_each_possible_cpu(cpu) {
 544			c = per_cpu_ptr(pc, cpu);
 545			c->unit_size = unit_size;
 546			c->objcg = objcg;
 547			c->percpu_size = percpu_size;
 548			c->tgt = c;
 549			init_refill_work(c);
 550			prefill_mem_cache(c, cpu);
 551		}
 552		ma->cache = pc;
 553		return 0;
 554	}
 555
 556	pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL);
 557	if (!pcc)
 558		return -ENOMEM;
 559#ifdef CONFIG_MEMCG_KMEM
 560	objcg = get_obj_cgroup_from_current();
 561#endif
 562	ma->objcg = objcg;
 563	for_each_possible_cpu(cpu) {
 564		cc = per_cpu_ptr(pcc, cpu);
 565		for (i = 0; i < NUM_CACHES; i++) {
 566			c = &cc->cache[i];
 567			c->unit_size = sizes[i];
 568			c->objcg = objcg;
 569			c->percpu_size = percpu_size;
 570			c->tgt = c;
 571
 572			init_refill_work(c);
 573			prefill_mem_cache(c, cpu);
 574		}
 575	}
 576
 577	ma->caches = pcc;
 578	return 0;
 579}
 580
 581int bpf_mem_alloc_percpu_init(struct bpf_mem_alloc *ma, struct obj_cgroup *objcg)
 582{
 583	struct bpf_mem_caches __percpu *pcc;
 584
 585	pcc = __alloc_percpu_gfp(sizeof(struct bpf_mem_caches), 8, GFP_KERNEL);
 586	if (!pcc)
 587		return -ENOMEM;
 588
 589	ma->caches = pcc;
 590	ma->objcg = objcg;
 591	ma->percpu = true;
 592	return 0;
 593}
 594
 595int bpf_mem_alloc_percpu_unit_init(struct bpf_mem_alloc *ma, int size)
 596{
 597	struct bpf_mem_caches *cc, __percpu *pcc;
 598	int cpu, i, unit_size, percpu_size;
 599	struct obj_cgroup *objcg;
 600	struct bpf_mem_cache *c;
 601
 602	i = bpf_mem_cache_idx(size);
 603	if (i < 0)
 604		return -EINVAL;
 605
 606	/* room for llist_node and per-cpu pointer */
 607	percpu_size = LLIST_NODE_SZ + sizeof(void *);
 608
 609	unit_size = sizes[i];
 610	objcg = ma->objcg;
 611	pcc = ma->caches;
 612
 613	for_each_possible_cpu(cpu) {
 614		cc = per_cpu_ptr(pcc, cpu);
 615		c = &cc->cache[i];
 616		if (c->unit_size)
 617			break;
 618
 619		c->unit_size = unit_size;
 620		c->objcg = objcg;
 621		c->percpu_size = percpu_size;
 622		c->tgt = c;
 623
 624		init_refill_work(c);
 625		prefill_mem_cache(c, cpu);
 626	}
 627
 628	return 0;
 629}
 630
 631static void drain_mem_cache(struct bpf_mem_cache *c)
 632{
 633	bool percpu = !!c->percpu_size;
 634
 635	/* No progs are using this bpf_mem_cache, but htab_map_free() called
 636	 * bpf_mem_cache_free() for all remaining elements and they can be in
 637	 * free_by_rcu_ttrace or in waiting_for_gp_ttrace lists, so drain those lists now.
 638	 *
 639	 * Except for waiting_for_gp_ttrace list, there are no concurrent operations
 640	 * on these lists, so it is safe to use __llist_del_all().
 641	 */
 642	free_all(llist_del_all(&c->free_by_rcu_ttrace), percpu);
 643	free_all(llist_del_all(&c->waiting_for_gp_ttrace), percpu);
 644	free_all(__llist_del_all(&c->free_llist), percpu);
 645	free_all(__llist_del_all(&c->free_llist_extra), percpu);
 646	free_all(__llist_del_all(&c->free_by_rcu), percpu);
 647	free_all(__llist_del_all(&c->free_llist_extra_rcu), percpu);
 648	free_all(llist_del_all(&c->waiting_for_gp), percpu);
 649}
 650
 651static void check_mem_cache(struct bpf_mem_cache *c)
 652{
 653	WARN_ON_ONCE(!llist_empty(&c->free_by_rcu_ttrace));
 654	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
 655	WARN_ON_ONCE(!llist_empty(&c->free_llist));
 656	WARN_ON_ONCE(!llist_empty(&c->free_llist_extra));
 657	WARN_ON_ONCE(!llist_empty(&c->free_by_rcu));
 658	WARN_ON_ONCE(!llist_empty(&c->free_llist_extra_rcu));
 659	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
 660}
 661
 662static void check_leaked_objs(struct bpf_mem_alloc *ma)
 663{
 664	struct bpf_mem_caches *cc;
 665	struct bpf_mem_cache *c;
 666	int cpu, i;
 667
 668	if (ma->cache) {
 669		for_each_possible_cpu(cpu) {
 670			c = per_cpu_ptr(ma->cache, cpu);
 671			check_mem_cache(c);
 672		}
 673	}
 674	if (ma->caches) {
 675		for_each_possible_cpu(cpu) {
 676			cc = per_cpu_ptr(ma->caches, cpu);
 677			for (i = 0; i < NUM_CACHES; i++) {
 678				c = &cc->cache[i];
 679				check_mem_cache(c);
 680			}
 681		}
 682	}
 683}
 684
 685static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma)
 686{
 687	check_leaked_objs(ma);
 688	free_percpu(ma->cache);
 689	free_percpu(ma->caches);
 690	ma->cache = NULL;
 691	ma->caches = NULL;
 692}
 693
 694static void free_mem_alloc(struct bpf_mem_alloc *ma)
 695{
 696	/* waiting_for_gp[_ttrace] lists were drained, but RCU callbacks
 697	 * might still execute. Wait for them.
 698	 *
 699	 * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(),
 700	 * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used
 701	 * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(),
 702	 * so if call_rcu(head, __free_rcu) is skipped due to
 703	 * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by
 704	 * using rcu_trace_implies_rcu_gp() as well.
 705	 */
 706	rcu_barrier(); /* wait for __free_by_rcu */
 707	rcu_barrier_tasks_trace(); /* wait for __free_rcu */
 708	if (!rcu_trace_implies_rcu_gp())
 709		rcu_barrier();
 710	free_mem_alloc_no_barrier(ma);
 711}
 712
 713static void free_mem_alloc_deferred(struct work_struct *work)
 714{
 715	struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work);
 716
 717	free_mem_alloc(ma);
 718	kfree(ma);
 719}
 720
 721static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress)
 722{
 723	struct bpf_mem_alloc *copy;
 724
 725	if (!rcu_in_progress) {
 726		/* Fast path. No callbacks are pending, hence no need to do
 727		 * rcu_barrier-s.
 728		 */
 729		free_mem_alloc_no_barrier(ma);
 730		return;
 731	}
 732
 733	copy = kmemdup(ma, sizeof(*ma), GFP_KERNEL);
 734	if (!copy) {
 735		/* Slow path with inline barrier-s */
 736		free_mem_alloc(ma);
 737		return;
 738	}
 739
 740	/* Defer barriers into worker to let the rest of map memory to be freed */
 741	memset(ma, 0, sizeof(*ma));
 742	INIT_WORK(&copy->work, free_mem_alloc_deferred);
 743	queue_work(system_unbound_wq, &copy->work);
 744}
 745
 746void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma)
 747{
 748	struct bpf_mem_caches *cc;
 749	struct bpf_mem_cache *c;
 750	int cpu, i, rcu_in_progress;
 751
 752	if (ma->cache) {
 753		rcu_in_progress = 0;
 754		for_each_possible_cpu(cpu) {
 755			c = per_cpu_ptr(ma->cache, cpu);
 756			WRITE_ONCE(c->draining, true);
 757			irq_work_sync(&c->refill_work);
 758			drain_mem_cache(c);
 759			rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
 760			rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
 761		}
 762		if (ma->objcg)
 763			obj_cgroup_put(ma->objcg);
 764		destroy_mem_alloc(ma, rcu_in_progress);
 765	}
 766	if (ma->caches) {
 767		rcu_in_progress = 0;
 768		for_each_possible_cpu(cpu) {
 769			cc = per_cpu_ptr(ma->caches, cpu);
 770			for (i = 0; i < NUM_CACHES; i++) {
 771				c = &cc->cache[i];
 772				WRITE_ONCE(c->draining, true);
 773				irq_work_sync(&c->refill_work);
 774				drain_mem_cache(c);
 775				rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
 776				rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
 777			}
 778		}
 779		if (ma->objcg)
 780			obj_cgroup_put(ma->objcg);
 781		destroy_mem_alloc(ma, rcu_in_progress);
 782	}
 783}
 784
 785/* notrace is necessary here and in other functions to make sure
 786 * bpf programs cannot attach to them and cause llist corruptions.
 787 */
 788static void notrace *unit_alloc(struct bpf_mem_cache *c)
 789{
 790	struct llist_node *llnode = NULL;
 791	unsigned long flags;
 792	int cnt = 0;
 793
 794	/* Disable irqs to prevent the following race for majority of prog types:
 795	 * prog_A
 796	 *   bpf_mem_alloc
 797	 *      preemption or irq -> prog_B
 798	 *        bpf_mem_alloc
 799	 *
 800	 * but prog_B could be a perf_event NMI prog.
 801	 * Use per-cpu 'active' counter to order free_list access between
 802	 * unit_alloc/unit_free/bpf_mem_refill.
 803	 */
 804	local_irq_save(flags);
 805	if (local_inc_return(&c->active) == 1) {
 806		llnode = __llist_del_first(&c->free_llist);
 807		if (llnode) {
 808			cnt = --c->free_cnt;
 809			*(struct bpf_mem_cache **)llnode = c;
 810		}
 811	}
 812	local_dec(&c->active);
 813
 814	WARN_ON(cnt < 0);
 815
 816	if (cnt < c->low_watermark)
 817		irq_work_raise(c);
 818	/* Enable IRQ after the enqueue of irq work completes, so irq work
 819	 * will run after IRQ is enabled and free_llist may be refilled by
 820	 * irq work before other task preempts current task.
 821	 */
 822	local_irq_restore(flags);
 823
 824	return llnode;
 825}
 826
 827/* Though 'ptr' object could have been allocated on a different cpu
 828 * add it to the free_llist of the current cpu.
 829 * Let kfree() logic deal with it when it's later called from irq_work.
 830 */
 831static void notrace unit_free(struct bpf_mem_cache *c, void *ptr)
 832{
 833	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
 834	unsigned long flags;
 835	int cnt = 0;
 836
 837	BUILD_BUG_ON(LLIST_NODE_SZ > 8);
 838
 839	/*
 840	 * Remember bpf_mem_cache that allocated this object.
 841	 * The hint is not accurate.
 842	 */
 843	c->tgt = *(struct bpf_mem_cache **)llnode;
 844
 845	local_irq_save(flags);
 846	if (local_inc_return(&c->active) == 1) {
 847		__llist_add(llnode, &c->free_llist);
 848		cnt = ++c->free_cnt;
 849	} else {
 850		/* unit_free() cannot fail. Therefore add an object to atomic
 851		 * llist. free_bulk() will drain it. Though free_llist_extra is
 852		 * a per-cpu list we have to use atomic llist_add here, since
 853		 * it also can be interrupted by bpf nmi prog that does another
 854		 * unit_free() into the same free_llist_extra.
 855		 */
 856		llist_add(llnode, &c->free_llist_extra);
 857	}
 858	local_dec(&c->active);
 859
 860	if (cnt > c->high_watermark)
 861		/* free few objects from current cpu into global kmalloc pool */
 862		irq_work_raise(c);
 863	/* Enable IRQ after irq_work_raise() completes, otherwise when current
 864	 * task is preempted by task which does unit_alloc(), unit_alloc() may
 865	 * return NULL unexpectedly because irq work is already pending but can
 866	 * not been triggered and free_llist can not be refilled timely.
 867	 */
 868	local_irq_restore(flags);
 869}
 870
 871static void notrace unit_free_rcu(struct bpf_mem_cache *c, void *ptr)
 872{
 873	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
 874	unsigned long flags;
 875
 876	c->tgt = *(struct bpf_mem_cache **)llnode;
 877
 878	local_irq_save(flags);
 879	if (local_inc_return(&c->active) == 1) {
 880		if (__llist_add(llnode, &c->free_by_rcu))
 881			c->free_by_rcu_tail = llnode;
 882	} else {
 883		llist_add(llnode, &c->free_llist_extra_rcu);
 884	}
 885	local_dec(&c->active);
 886
 887	if (!atomic_read(&c->call_rcu_in_progress))
 888		irq_work_raise(c);
 889	local_irq_restore(flags);
 890}
 891
 892/* Called from BPF program or from sys_bpf syscall.
 893 * In both cases migration is disabled.
 894 */
 895void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size)
 896{
 897	int idx;
 898	void *ret;
 899
 900	if (!size)
 901		return NULL;
 902
 903	if (!ma->percpu)
 904		size += LLIST_NODE_SZ;
 905	idx = bpf_mem_cache_idx(size);
 906	if (idx < 0)
 907		return NULL;
 908
 909	ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx);
 910	return !ret ? NULL : ret + LLIST_NODE_SZ;
 911}
 912
 913void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr)
 914{
 915	struct bpf_mem_cache *c;
 916	int idx;
 917
 918	if (!ptr)
 919		return;
 920
 921	c = *(void **)(ptr - LLIST_NODE_SZ);
 922	idx = bpf_mem_cache_idx(c->unit_size);
 923	if (WARN_ON_ONCE(idx < 0))
 924		return;
 925
 926	unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr);
 927}
 928
 929void notrace bpf_mem_free_rcu(struct bpf_mem_alloc *ma, void *ptr)
 930{
 931	struct bpf_mem_cache *c;
 932	int idx;
 933
 934	if (!ptr)
 935		return;
 936
 937	c = *(void **)(ptr - LLIST_NODE_SZ);
 938	idx = bpf_mem_cache_idx(c->unit_size);
 939	if (WARN_ON_ONCE(idx < 0))
 940		return;
 941
 942	unit_free_rcu(this_cpu_ptr(ma->caches)->cache + idx, ptr);
 943}
 944
 945void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma)
 946{
 947	void *ret;
 948
 949	ret = unit_alloc(this_cpu_ptr(ma->cache));
 950	return !ret ? NULL : ret + LLIST_NODE_SZ;
 951}
 952
 953void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr)
 954{
 955	if (!ptr)
 956		return;
 957
 958	unit_free(this_cpu_ptr(ma->cache), ptr);
 959}
 960
 961void notrace bpf_mem_cache_free_rcu(struct bpf_mem_alloc *ma, void *ptr)
 962{
 963	if (!ptr)
 964		return;
 965
 966	unit_free_rcu(this_cpu_ptr(ma->cache), ptr);
 967}
 968
 969/* Directly does a kfree() without putting 'ptr' back to the free_llist
 970 * for reuse and without waiting for a rcu_tasks_trace gp.
 971 * The caller must first go through the rcu_tasks_trace gp for 'ptr'
 972 * before calling bpf_mem_cache_raw_free().
 973 * It could be used when the rcu_tasks_trace callback does not have
 974 * a hold on the original bpf_mem_alloc object that allocated the
 975 * 'ptr'. This should only be used in the uncommon code path.
 976 * Otherwise, the bpf_mem_alloc's free_llist cannot be refilled
 977 * and may affect performance.
 978 */
 979void bpf_mem_cache_raw_free(void *ptr)
 980{
 981	if (!ptr)
 982		return;
 983
 984	kfree(ptr - LLIST_NODE_SZ);
 985}
 986
 987/* When flags == GFP_KERNEL, it signals that the caller will not cause
 988 * deadlock when using kmalloc. bpf_mem_cache_alloc_flags() will use
 989 * kmalloc if the free_llist is empty.
 990 */
 991void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags)
 992{
 993	struct bpf_mem_cache *c;
 994	void *ret;
 995
 996	c = this_cpu_ptr(ma->cache);
 997
 998	ret = unit_alloc(c);
 999	if (!ret && flags == GFP_KERNEL) {
1000		struct mem_cgroup *memcg, *old_memcg;
1001
1002		memcg = get_memcg(c);
1003		old_memcg = set_active_memcg(memcg);
1004		ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT);
1005		if (ret)
1006			*(struct bpf_mem_cache **)ret = c;
1007		set_active_memcg(old_memcg);
1008		mem_cgroup_put(memcg);
1009	}
1010
1011	return !ret ? NULL : ret + LLIST_NODE_SZ;
1012}