Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
#include <linux/mm.h>
#include <linux/llist.h>
#include <linux/bpf.h>
#include <linux/irq_work.h>
#include <linux/bpf_mem_alloc.h>
#include <linux/memcontrol.h>
#include <asm/local.h>

/* Any context (including NMI) BPF specific memory allocator.
 *
 * Tracing BPF programs can attach to kprobe and fentry. Hence they
 * run in unknown context where calling plain kmalloc() might not be safe.
 *
 * Front-end kmalloc() with per-cpu per-bucket cache of free elements.
 * Refill this cache asynchronously from irq_work.
 *
 * CPU_0 buckets
 * 16 32 64 96 128 196 256 512 1024 2048 4096
 * ...
 * CPU_N buckets
 * 16 32 64 96 128 196 256 512 1024 2048 4096
 *
 * The buckets are prefilled at the start.
 * BPF programs always run with migration disabled.
 * It's safe to allocate from cache of the current cpu with irqs disabled.
 * Free-ing is always done into bucket of the current cpu as well.
 * irq_work trims extra free elements from buckets with kfree
 * and refills them with kmalloc, so global kmalloc logic takes care
 * of freeing objects allocated by one cpu and freed on another.
 *
 * Every allocated objected is padded with extra 8 bytes that contains
 * struct llist_node.
 */
#define LLIST_NODE_SZ sizeof(struct llist_node)

/* similar to kmalloc, but sizeof == 8 bucket is gone */
static u8 size_index[24] __ro_after_init = {
	3,	/* 8 */
	3,	/* 16 */
	4,	/* 24 */
	4,	/* 32 */
	5,	/* 40 */
	5,	/* 48 */
	5,	/* 56 */
	5,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	6,	/* 104 */
	6,	/* 112 */
	6,	/* 120 */
	6,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

static int bpf_mem_cache_idx(size_t size)
{
	if (!size || size > 4096)
		return -1;

	if (size <= 192)
		return size_index[(size - 1) / 8] - 1;

	return fls(size - 1) - 2;
}

#define NUM_CACHES 11

struct bpf_mem_cache {
	/* per-cpu list of free objects of size 'unit_size'.
	 * All accesses are done with interrupts disabled and 'active' counter
	 * protection with __llist_add() and __llist_del_first().
	 */
	struct llist_head free_llist;
	local_t active;

	/* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill
	 * are sequenced by per-cpu 'active' counter. But unit_free() cannot
	 * fail. When 'active' is busy the unit_free() will add an object to
	 * free_llist_extra.
	 */
	struct llist_head free_llist_extra;

	struct irq_work refill_work;
	struct obj_cgroup *objcg;
	int unit_size;
	/* count of objects in free_llist */
	int free_cnt;
	int low_watermark, high_watermark, batch;
	int percpu_size;
	bool draining;
	struct bpf_mem_cache *tgt;

	/* list of objects to be freed after RCU GP */
	struct llist_head free_by_rcu;
	struct llist_node *free_by_rcu_tail;
	struct llist_head waiting_for_gp;
	struct llist_node *waiting_for_gp_tail;
	struct rcu_head rcu;
	atomic_t call_rcu_in_progress;
	struct llist_head free_llist_extra_rcu;

	/* list of objects to be freed after RCU tasks trace GP */
	struct llist_head free_by_rcu_ttrace;
	struct llist_head waiting_for_gp_ttrace;
	struct rcu_head rcu_ttrace;
	atomic_t call_rcu_ttrace_in_progress;
};

struct bpf_mem_caches {
	struct bpf_mem_cache cache[NUM_CACHES];
};

static const u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096};

static struct llist_node notrace *__llist_del_first(struct llist_head *head)
{
	struct llist_node *entry, *next;

	entry = head->first;
	if (!entry)
		return NULL;
	next = entry->next;
	head->first = next;
	return entry;
}

static void *__alloc(struct bpf_mem_cache *c, int node, gfp_t flags)
{
	if (c->percpu_size) {
		void **obj = kmalloc_node(c->percpu_size, flags, node);
		void *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags);

		if (!obj || !pptr) {
			free_percpu(pptr);
			kfree(obj);
			return NULL;
		}
		obj[1] = pptr;
		return obj;
	}

	return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node);
}

static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c)
{
#ifdef CONFIG_MEMCG_KMEM
	if (c->objcg)
		return get_mem_cgroup_from_objcg(c->objcg);
#endif

#ifdef CONFIG_MEMCG
	return root_mem_cgroup;
#else
	return NULL;
#endif
}

static void inc_active(struct bpf_mem_cache *c, unsigned long *flags)
{
	if (IS_ENABLED(CONFIG_PREEMPT_RT))
		/* In RT irq_work runs in per-cpu kthread, so disable
		 * interrupts to avoid preemption and interrupts and
		 * reduce the chance of bpf prog executing on this cpu
		 * when active counter is busy.
		 */
		local_irq_save(*flags);
	/* alloc_bulk runs from irq_work which will not preempt a bpf
	 * program that does unit_alloc/unit_free since IRQs are
	 * disabled there. There is no race to increment 'active'
	 * counter. It protects free_llist from corruption in case NMI
	 * bpf prog preempted this loop.
	 */
	WARN_ON_ONCE(local_inc_return(&c->active) != 1);
}

static void dec_active(struct bpf_mem_cache *c, unsigned long *flags)
{
	local_dec(&c->active);
	if (IS_ENABLED(CONFIG_PREEMPT_RT))
		local_irq_restore(*flags);
}

static void add_obj_to_free_list(struct bpf_mem_cache *c, void *obj)
{
	unsigned long flags;

	inc_active(c, &flags);
	__llist_add(obj, &c->free_llist);
	c->free_cnt++;
	dec_active(c, &flags);
}

/* Mostly runs from irq_work except __init phase. */
static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node, bool atomic)
{
	struct mem_cgroup *memcg = NULL, *old_memcg;
	gfp_t gfp;
	void *obj;
	int i;

	gfp = __GFP_NOWARN | __GFP_ACCOUNT;
	gfp |= atomic ? GFP_NOWAIT : GFP_KERNEL;

	for (i = 0; i < cnt; i++) {
		/*
		 * For every 'c' llist_del_first(&c->free_by_rcu_ttrace); is
		 * done only by one CPU == current CPU. Other CPUs might
		 * llist_add() and llist_del_all() in parallel.
		 */
		obj = llist_del_first(&c->free_by_rcu_ttrace);
		if (!obj)
			break;
		add_obj_to_free_list(c, obj);
	}
	if (i >= cnt)
		return;

	for (; i < cnt; i++) {
		obj = llist_del_first(&c->waiting_for_gp_ttrace);
		if (!obj)
			break;
		add_obj_to_free_list(c, obj);
	}
	if (i >= cnt)
		return;

	memcg = get_memcg(c);
	old_memcg = set_active_memcg(memcg);
	for (; i < cnt; i++) {
		/* Allocate, but don't deplete atomic reserves that typical
		 * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc
		 * will allocate from the current numa node which is what we
		 * want here.
		 */
		obj = __alloc(c, node, gfp);
		if (!obj)
			break;
		add_obj_to_free_list(c, obj);
	}
	set_active_memcg(old_memcg);
	mem_cgroup_put(memcg);
}

static void free_one(void *obj, bool percpu)
{
	if (percpu) {
		free_percpu(((void **)obj)[1]);
		kfree(obj);
		return;
	}

	kfree(obj);
}

static int free_all(struct llist_node *llnode, bool percpu)
{
	struct llist_node *pos, *t;
	int cnt = 0;

	llist_for_each_safe(pos, t, llnode) {
		free_one(pos, percpu);
		cnt++;
	}
	return cnt;
}

static void __free_rcu(struct rcu_head *head)
{
	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu_ttrace);

	free_all(llist_del_all(&c->waiting_for_gp_ttrace), !!c->percpu_size);
	atomic_set(&c->call_rcu_ttrace_in_progress, 0);
}

static void __free_rcu_tasks_trace(struct rcu_head *head)
{
	/* If RCU Tasks Trace grace period implies RCU grace period,
	 * there is no need to invoke call_rcu().
	 */
	if (rcu_trace_implies_rcu_gp())
		__free_rcu(head);
	else
		call_rcu(head, __free_rcu);
}

static void enque_to_free(struct bpf_mem_cache *c, void *obj)
{
	struct llist_node *llnode = obj;

	/* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work.
	 * Nothing races to add to free_by_rcu_ttrace list.
	 */
	llist_add(llnode, &c->free_by_rcu_ttrace);
}

static void do_call_rcu_ttrace(struct bpf_mem_cache *c)
{
	struct llist_node *llnode, *t;

	if (atomic_xchg(&c->call_rcu_ttrace_in_progress, 1)) {
		if (unlikely(READ_ONCE(c->draining))) {
			llnode = llist_del_all(&c->free_by_rcu_ttrace);
			free_all(llnode, !!c->percpu_size);
		}
		return;
	}

	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
	llist_for_each_safe(llnode, t, llist_del_all(&c->free_by_rcu_ttrace))
		llist_add(llnode, &c->waiting_for_gp_ttrace);

	if (unlikely(READ_ONCE(c->draining))) {
		__free_rcu(&c->rcu_ttrace);
		return;
	}

	/* Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
	 * If RCU Tasks Trace grace period implies RCU grace period, free
	 * these elements directly, else use call_rcu() to wait for normal
	 * progs to finish and finally do free_one() on each element.
	 */
	call_rcu_tasks_trace(&c->rcu_ttrace, __free_rcu_tasks_trace);
}

static void free_bulk(struct bpf_mem_cache *c)
{
	struct bpf_mem_cache *tgt = c->tgt;
	struct llist_node *llnode, *t;
	unsigned long flags;
	int cnt;

	WARN_ON_ONCE(tgt->unit_size != c->unit_size);
	WARN_ON_ONCE(tgt->percpu_size != c->percpu_size);

	do {
		inc_active(c, &flags);
		llnode = __llist_del_first(&c->free_llist);
		if (llnode)
			cnt = --c->free_cnt;
		else
			cnt = 0;
		dec_active(c, &flags);
		if (llnode)
			enque_to_free(tgt, llnode);
	} while (cnt > (c->high_watermark + c->low_watermark) / 2);

	/* and drain free_llist_extra */
	llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra))
		enque_to_free(tgt, llnode);
	do_call_rcu_ttrace(tgt);
}

static void __free_by_rcu(struct rcu_head *head)
{
	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu);
	struct bpf_mem_cache *tgt = c->tgt;
	struct llist_node *llnode;

	WARN_ON_ONCE(tgt->unit_size != c->unit_size);
	WARN_ON_ONCE(tgt->percpu_size != c->percpu_size);

	llnode = llist_del_all(&c->waiting_for_gp);
	if (!llnode)
		goto out;

	llist_add_batch(llnode, c->waiting_for_gp_tail, &tgt->free_by_rcu_ttrace);

	/* Objects went through regular RCU GP. Send them to RCU tasks trace */
	do_call_rcu_ttrace(tgt);
out:
	atomic_set(&c->call_rcu_in_progress, 0);
}

static void check_free_by_rcu(struct bpf_mem_cache *c)
{
	struct llist_node *llnode, *t;
	unsigned long flags;

	/* drain free_llist_extra_rcu */
	if (unlikely(!llist_empty(&c->free_llist_extra_rcu))) {
		inc_active(c, &flags);
		llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra_rcu))
			if (__llist_add(llnode, &c->free_by_rcu))
				c->free_by_rcu_tail = llnode;
		dec_active(c, &flags);
	}

	if (llist_empty(&c->free_by_rcu))
		return;

	if (atomic_xchg(&c->call_rcu_in_progress, 1)) {
		/*
		 * Instead of kmalloc-ing new rcu_head and triggering 10k
		 * call_rcu() to hit rcutree.qhimark and force RCU to notice
		 * the overload just ask RCU to hurry up. There could be many
		 * objects in free_by_rcu list.
		 * This hint reduces memory consumption for an artificial
		 * benchmark from 2 Gbyte to 150 Mbyte.
		 */
		rcu_request_urgent_qs_task(current);
		return;
	}

	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));

	inc_active(c, &flags);
	WRITE_ONCE(c->waiting_for_gp.first, __llist_del_all(&c->free_by_rcu));
	c->waiting_for_gp_tail = c->free_by_rcu_tail;
	dec_active(c, &flags);

	if (unlikely(READ_ONCE(c->draining))) {
		free_all(llist_del_all(&c->waiting_for_gp), !!c->percpu_size);
		atomic_set(&c->call_rcu_in_progress, 0);
	} else {
		call_rcu_hurry(&c->rcu, __free_by_rcu);
	}
}

static void bpf_mem_refill(struct irq_work *work)
{
	struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work);
	int cnt;

	/* Racy access to free_cnt. It doesn't need to be 100% accurate */
	cnt = c->free_cnt;
	if (cnt < c->low_watermark)
		/* irq_work runs on this cpu and kmalloc will allocate
		 * from the current numa node which is what we want here.
		 */
		alloc_bulk(c, c->batch, NUMA_NO_NODE, true);
	else if (cnt > c->high_watermark)
		free_bulk(c);

	check_free_by_rcu(c);
}

static void notrace irq_work_raise(struct bpf_mem_cache *c)
{
	irq_work_queue(&c->refill_work);
}

/* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket
 * the freelist cache will be elem_size * 64 (or less) on each cpu.
 *
 * For bpf programs that don't have statically known allocation sizes and
 * assuming (low_mark + high_mark) / 2 as an average number of elements per
 * bucket and all buckets are used the total amount of memory in freelists
 * on each cpu will be:
 * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096
 * == ~ 116 Kbyte using below heuristic.
 * Initialized, but unused bpf allocator (not bpf map specific one) will
 * consume ~ 11 Kbyte per cpu.
 * Typical case will be between 11K and 116K closer to 11K.
 * bpf progs can and should share bpf_mem_cache when possible.
 *
 * Percpu allocation is typically rare. To avoid potential unnecessary large
 * memory consumption, set low_mark = 1 and high_mark = 3, resulting in c->batch = 1.
 */
static void init_refill_work(struct bpf_mem_cache *c)
{
	init_irq_work(&c->refill_work, bpf_mem_refill);
	if (c->percpu_size) {
		c->low_watermark = 1;
		c->high_watermark = 3;
	} else if (c->unit_size <= 256) {
		c->low_watermark = 32;
		c->high_watermark = 96;
	} else {
		/* When page_size == 4k, order-0 cache will have low_mark == 2
		 * and high_mark == 6 with batch alloc of 3 individual pages at
		 * a time.
		 * 8k allocs and above low == 1, high == 3, batch == 1.
		 */
		c->low_watermark = max(32 * 256 / c->unit_size, 1);
		c->high_watermark = max(96 * 256 / c->unit_size, 3);
	}
	c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1);
}

static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu)
{
	int cnt = 1;

	/* To avoid consuming memory, for non-percpu allocation, assume that
	 * 1st run of bpf prog won't be doing more than 4 map_update_elem from
	 * irq disabled region if unit size is less than or equal to 256.
	 * For all other cases, let us just do one allocation.
	 */
	if (!c->percpu_size && c->unit_size <= 256)
		cnt = 4;
	alloc_bulk(c, cnt, cpu_to_node(cpu), false);
}

/* When size != 0 bpf_mem_cache for each cpu.
 * This is typical bpf hash map use case when all elements have equal size.
 *
 * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on
 * kmalloc/kfree. Max allocation size is 4096 in this case.
 * This is bpf_dynptr and bpf_kptr use case.
 */
int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu)
{
	struct bpf_mem_caches *cc, __percpu *pcc;
	struct bpf_mem_cache *c, __percpu *pc;
	struct obj_cgroup *objcg = NULL;
	int cpu, i, unit_size, percpu_size = 0;

	if (percpu && size == 0)
		return -EINVAL;

	/* room for llist_node and per-cpu pointer */
	if (percpu)
		percpu_size = LLIST_NODE_SZ + sizeof(void *);
	ma->percpu = percpu;

	if (size) {
		pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL);
		if (!pc)
			return -ENOMEM;

		if (!percpu)
			size += LLIST_NODE_SZ; /* room for llist_node */
		unit_size = size;

#ifdef CONFIG_MEMCG_KMEM
		if (memcg_bpf_enabled())
			objcg = get_obj_cgroup_from_current();
#endif
		ma->objcg = objcg;

		for_each_possible_cpu(cpu) {
			c = per_cpu_ptr(pc, cpu);
			c->unit_size = unit_size;
			c->objcg = objcg;
			c->percpu_size = percpu_size;
			c->tgt = c;
			init_refill_work(c);
			prefill_mem_cache(c, cpu);
		}
		ma->cache = pc;
		return 0;
	}

	pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL);
	if (!pcc)
		return -ENOMEM;
#ifdef CONFIG_MEMCG_KMEM
	objcg = get_obj_cgroup_from_current();
#endif
	ma->objcg = objcg;
	for_each_possible_cpu(cpu) {
		cc = per_cpu_ptr(pcc, cpu);
		for (i = 0; i < NUM_CACHES; i++) {
			c = &cc->cache[i];
			c->unit_size = sizes[i];
			c->objcg = objcg;
			c->percpu_size = percpu_size;
			c->tgt = c;

			init_refill_work(c);
			prefill_mem_cache(c, cpu);
		}
	}

	ma->caches = pcc;
	return 0;
}

int bpf_mem_alloc_percpu_init(struct bpf_mem_alloc *ma, struct obj_cgroup *objcg)
{
	struct bpf_mem_caches __percpu *pcc;

	pcc = __alloc_percpu_gfp(sizeof(struct bpf_mem_caches), 8, GFP_KERNEL);
	if (!pcc)
		return -ENOMEM;

	ma->caches = pcc;
	ma->objcg = objcg;
	ma->percpu = true;
	return 0;
}

int bpf_mem_alloc_percpu_unit_init(struct bpf_mem_alloc *ma, int size)
{
	struct bpf_mem_caches *cc, __percpu *pcc;
	int cpu, i, unit_size, percpu_size;
	struct obj_cgroup *objcg;
	struct bpf_mem_cache *c;

	i = bpf_mem_cache_idx(size);
	if (i < 0)
		return -EINVAL;

	/* room for llist_node and per-cpu pointer */
	percpu_size = LLIST_NODE_SZ + sizeof(void *);

	unit_size = sizes[i];
	objcg = ma->objcg;
	pcc = ma->caches;

	for_each_possible_cpu(cpu) {
		cc = per_cpu_ptr(pcc, cpu);
		c = &cc->cache[i];
		if (c->unit_size)
			break;

		c->unit_size = unit_size;
		c->objcg = objcg;
		c->percpu_size = percpu_size;
		c->tgt = c;

		init_refill_work(c);
		prefill_mem_cache(c, cpu);
	}

	return 0;
}

static void drain_mem_cache(struct bpf_mem_cache *c)
{
	bool percpu = !!c->percpu_size;

	/* No progs are using this bpf_mem_cache, but htab_map_free() called
	 * bpf_mem_cache_free() for all remaining elements and they can be in
	 * free_by_rcu_ttrace or in waiting_for_gp_ttrace lists, so drain those lists now.
	 *
	 * Except for waiting_for_gp_ttrace list, there are no concurrent operations
	 * on these lists, so it is safe to use __llist_del_all().
	 */
	free_all(llist_del_all(&c->free_by_rcu_ttrace), percpu);
	free_all(llist_del_all(&c->waiting_for_gp_ttrace), percpu);
	free_all(__llist_del_all(&c->free_llist), percpu);
	free_all(__llist_del_all(&c->free_llist_extra), percpu);
	free_all(__llist_del_all(&c->free_by_rcu), percpu);
	free_all(__llist_del_all(&c->free_llist_extra_rcu), percpu);
	free_all(llist_del_all(&c->waiting_for_gp), percpu);
}

static void check_mem_cache(struct bpf_mem_cache *c)
{
	WARN_ON_ONCE(!llist_empty(&c->free_by_rcu_ttrace));
	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
	WARN_ON_ONCE(!llist_empty(&c->free_llist));
	WARN_ON_ONCE(!llist_empty(&c->free_llist_extra));
	WARN_ON_ONCE(!llist_empty(&c->free_by_rcu));
	WARN_ON_ONCE(!llist_empty(&c->free_llist_extra_rcu));
	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
}

static void check_leaked_objs(struct bpf_mem_alloc *ma)
{
	struct bpf_mem_caches *cc;
	struct bpf_mem_cache *c;
	int cpu, i;

	if (ma->cache) {
		for_each_possible_cpu(cpu) {
			c = per_cpu_ptr(ma->cache, cpu);
			check_mem_cache(c);
		}
	}
	if (ma->caches) {
		for_each_possible_cpu(cpu) {
			cc = per_cpu_ptr(ma->caches, cpu);
			for (i = 0; i < NUM_CACHES; i++) {
				c = &cc->cache[i];
				check_mem_cache(c);
			}
		}
	}
}

static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma)
{
	check_leaked_objs(ma);
	free_percpu(ma->cache);
	free_percpu(ma->caches);
	ma->cache = NULL;
	ma->caches = NULL;
}

static void free_mem_alloc(struct bpf_mem_alloc *ma)
{
	/* waiting_for_gp[_ttrace] lists were drained, but RCU callbacks
	 * might still execute. Wait for them.
	 *
	 * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(),
	 * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used
	 * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(),
	 * so if call_rcu(head, __free_rcu) is skipped due to
	 * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by
	 * using rcu_trace_implies_rcu_gp() as well.
	 */
	rcu_barrier(); /* wait for __free_by_rcu */
	rcu_barrier_tasks_trace(); /* wait for __free_rcu */
	if (!rcu_trace_implies_rcu_gp())
		rcu_barrier();
	free_mem_alloc_no_barrier(ma);
}

static void free_mem_alloc_deferred(struct work_struct *work)
{
	struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work);

	free_mem_alloc(ma);
	kfree(ma);
}

static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress)
{
	struct bpf_mem_alloc *copy;

	if (!rcu_in_progress) {
		/* Fast path. No callbacks are pending, hence no need to do
		 * rcu_barrier-s.
		 */
		free_mem_alloc_no_barrier(ma);
		return;
	}

	copy = kmemdup(ma, sizeof(*ma), GFP_KERNEL);
	if (!copy) {
		/* Slow path with inline barrier-s */
		free_mem_alloc(ma);
		return;
	}

	/* Defer barriers into worker to let the rest of map memory to be freed */
	memset(ma, 0, sizeof(*ma));
	INIT_WORK(&copy->work, free_mem_alloc_deferred);
	queue_work(system_unbound_wq, &copy->work);
}

void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma)
{
	struct bpf_mem_caches *cc;
	struct bpf_mem_cache *c;
	int cpu, i, rcu_in_progress;

	if (ma->cache) {
		rcu_in_progress = 0;
		for_each_possible_cpu(cpu) {
			c = per_cpu_ptr(ma->cache, cpu);
			WRITE_ONCE(c->draining, true);
			irq_work_sync(&c->refill_work);
			drain_mem_cache(c);
			rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
			rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
		}
		if (ma->objcg)
			obj_cgroup_put(ma->objcg);
		destroy_mem_alloc(ma, rcu_in_progress);
	}
	if (ma->caches) {
		rcu_in_progress = 0;
		for_each_possible_cpu(cpu) {
			cc = per_cpu_ptr(ma->caches, cpu);
			for (i = 0; i < NUM_CACHES; i++) {
				c = &cc->cache[i];
				WRITE_ONCE(c->draining, true);
				irq_work_sync(&c->refill_work);
				drain_mem_cache(c);
				rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
				rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
			}
		}
		if (ma->objcg)
			obj_cgroup_put(ma->objcg);
		destroy_mem_alloc(ma, rcu_in_progress);
	}
}

/* notrace is necessary here and in other functions to make sure
 * bpf programs cannot attach to them and cause llist corruptions.
 */
static void notrace *unit_alloc(struct bpf_mem_cache *c)
{
	struct llist_node *llnode = NULL;
	unsigned long flags;
	int cnt = 0;

	/* Disable irqs to prevent the following race for majority of prog types:
	 * prog_A
	 *   bpf_mem_alloc
	 *      preemption or irq -> prog_B
	 *        bpf_mem_alloc
	 *
	 * but prog_B could be a perf_event NMI prog.
	 * Use per-cpu 'active' counter to order free_list access between
	 * unit_alloc/unit_free/bpf_mem_refill.
	 */
	local_irq_save(flags);
	if (local_inc_return(&c->active) == 1) {
		llnode = __llist_del_first(&c->free_llist);
		if (llnode) {
			cnt = --c->free_cnt;
			*(struct bpf_mem_cache **)llnode = c;
		}
	}
	local_dec(&c->active);

	WARN_ON(cnt < 0);

	if (cnt < c->low_watermark)
		irq_work_raise(c);
	/* Enable IRQ after the enqueue of irq work completes, so irq work
	 * will run after IRQ is enabled and free_llist may be refilled by
	 * irq work before other task preempts current task.
	 */
	local_irq_restore(flags);

	return llnode;
}

/* Though 'ptr' object could have been allocated on a different cpu
 * add it to the free_llist of the current cpu.
 * Let kfree() logic deal with it when it's later called from irq_work.
 */
static void notrace unit_free(struct bpf_mem_cache *c, void *ptr)
{
	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
	unsigned long flags;
	int cnt = 0;

	BUILD_BUG_ON(LLIST_NODE_SZ > 8);

	/*
	 * Remember bpf_mem_cache that allocated this object.
	 * The hint is not accurate.
	 */
	c->tgt = *(struct bpf_mem_cache **)llnode;

	local_irq_save(flags);
	if (local_inc_return(&c->active) == 1) {
		__llist_add(llnode, &c->free_llist);
		cnt = ++c->free_cnt;
	} else {
		/* unit_free() cannot fail. Therefore add an object to atomic
		 * llist. free_bulk() will drain it. Though free_llist_extra is
		 * a per-cpu list we have to use atomic llist_add here, since
		 * it also can be interrupted by bpf nmi prog that does another
		 * unit_free() into the same free_llist_extra.
		 */
		llist_add(llnode, &c->free_llist_extra);
	}
	local_dec(&c->active);

	if (cnt > c->high_watermark)
		/* free few objects from current cpu into global kmalloc pool */
		irq_work_raise(c);
	/* Enable IRQ after irq_work_raise() completes, otherwise when current
	 * task is preempted by task which does unit_alloc(), unit_alloc() may
	 * return NULL unexpectedly because irq work is already pending but can
	 * not been triggered and free_llist can not be refilled timely.
	 */
	local_irq_restore(flags);
}

static void notrace unit_free_rcu(struct bpf_mem_cache *c, void *ptr)
{
	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
	unsigned long flags;

	c->tgt = *(struct bpf_mem_cache **)llnode;

	local_irq_save(flags);
	if (local_inc_return(&c->active) == 1) {
		if (__llist_add(llnode, &c->free_by_rcu))
			c->free_by_rcu_tail = llnode;
	} else {
		llist_add(llnode, &c->free_llist_extra_rcu);
	}
	local_dec(&c->active);

	if (!atomic_read(&c->call_rcu_in_progress))
		irq_work_raise(c);
	local_irq_restore(flags);
}

/* Called from BPF program or from sys_bpf syscall.
 * In both cases migration is disabled.
 */
void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size)
{
	int idx;
	void *ret;

	if (!size)
		return NULL;

	if (!ma->percpu)
		size += LLIST_NODE_SZ;
	idx = bpf_mem_cache_idx(size);
	if (idx < 0)
		return NULL;

	ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx);
	return !ret ? NULL : ret + LLIST_NODE_SZ;
}

void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr)
{
	struct bpf_mem_cache *c;
	int idx;

	if (!ptr)
		return;

	c = *(void **)(ptr - LLIST_NODE_SZ);
	idx = bpf_mem_cache_idx(c->unit_size);
	if (WARN_ON_ONCE(idx < 0))
		return;

	unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr);
}

void notrace bpf_mem_free_rcu(struct bpf_mem_alloc *ma, void *ptr)
{
	struct bpf_mem_cache *c;
	int idx;

	if (!ptr)
		return;

	c = *(void **)(ptr - LLIST_NODE_SZ);
	idx = bpf_mem_cache_idx(c->unit_size);
	if (WARN_ON_ONCE(idx < 0))
		return;

	unit_free_rcu(this_cpu_ptr(ma->caches)->cache + idx, ptr);
}

void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma)
{
	void *ret;

	ret = unit_alloc(this_cpu_ptr(ma->cache));
	return !ret ? NULL : ret + LLIST_NODE_SZ;
}

void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr)
{
	if (!ptr)
		return;

	unit_free(this_cpu_ptr(ma->cache), ptr);
}

void notrace bpf_mem_cache_free_rcu(struct bpf_mem_alloc *ma, void *ptr)
{
	if (!ptr)
		return;

	unit_free_rcu(this_cpu_ptr(ma->cache), ptr);
}

/* Directly does a kfree() without putting 'ptr' back to the free_llist
 * for reuse and without waiting for a rcu_tasks_trace gp.
 * The caller must first go through the rcu_tasks_trace gp for 'ptr'
 * before calling bpf_mem_cache_raw_free().
 * It could be used when the rcu_tasks_trace callback does not have
 * a hold on the original bpf_mem_alloc object that allocated the
 * 'ptr'. This should only be used in the uncommon code path.
 * Otherwise, the bpf_mem_alloc's free_llist cannot be refilled
 * and may affect performance.
 */
void bpf_mem_cache_raw_free(void *ptr)
{
	if (!ptr)
		return;

	kfree(ptr - LLIST_NODE_SZ);
}

/* When flags == GFP_KERNEL, it signals that the caller will not cause
 * deadlock when using kmalloc. bpf_mem_cache_alloc_flags() will use
 * kmalloc if the free_llist is empty.
 */
void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags)
{
	struct bpf_mem_cache *c;
	void *ret;

	c = this_cpu_ptr(ma->cache);

	ret = unit_alloc(c);
	if (!ret && flags == GFP_KERNEL) {
		struct mem_cgroup *memcg, *old_memcg;

		memcg = get_memcg(c);
		old_memcg = set_active_memcg(memcg);
		ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT);
		if (ret)
			*(struct bpf_mem_cache **)ret = c;
		set_active_memcg(old_memcg);
		mem_cgroup_put(memcg);
	}

	return !ret ? NULL : ret + LLIST_NODE_SZ;
}