Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Written for linux by Johan Myreen as a translation from
   4 * the assembly version by Linus (with diacriticals added)
   5 *
   6 * Some additional features added by Christoph Niemann (ChN), March 1993
   7 *
   8 * Loadable keymaps by Risto Kankkunen, May 1993
   9 *
  10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  11 * Added decr/incr_console, dynamic keymaps, Unicode support,
  12 * dynamic function/string keys, led setting,  Sept 1994
  13 * `Sticky' modifier keys, 951006.
  14 *
  15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  16 *
  17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
  18 * Merge with the m68k keyboard driver and split-off of the PC low-level
  19 * parts by Geert Uytterhoeven, May 1997
  20 *
  21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
  23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/consolemap.h>
 
 
 
 
 
 
  29#include <linux/init.h>
  30#include <linux/input.h>
  31#include <linux/jiffies.h>
  32#include <linux/kbd_diacr.h>
  33#include <linux/kbd_kern.h>
  34#include <linux/leds.h>
  35#include <linux/mm.h>
  36#include <linux/module.h>
  37#include <linux/nospec.h>
  38#include <linux/notifier.h>
  39#include <linux/reboot.h>
  40#include <linux/sched/debug.h>
  41#include <linux/sched/signal.h>
  42#include <linux/slab.h>
  43#include <linux/spinlock.h>
  44#include <linux/string.h>
  45#include <linux/tty_flip.h>
  46#include <linux/tty.h>
  47#include <linux/uaccess.h>
  48#include <linux/vt_kern.h>
  49
  50#include <asm/irq_regs.h>
  51
 
 
  52/*
  53 * Exported functions/variables
  54 */
  55
  56#define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META))
  57
  58#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
  59#include <asm/kbdleds.h>
  60#else
  61static inline int kbd_defleds(void)
  62{
  63	return 0;
  64}
  65#endif
  66
  67#define KBD_DEFLOCK 0
  68
  69/*
  70 * Handler Tables.
  71 */
  72
  73#define K_HANDLERS\
  74	k_self,		k_fn,		k_spec,		k_pad,\
  75	k_dead,		k_cons,		k_cur,		k_shift,\
  76	k_meta,		k_ascii,	k_lock,		k_lowercase,\
  77	k_slock,	k_dead2,	k_brl,		k_ignore
  78
  79typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  80			    char up_flag);
  81static k_handler_fn K_HANDLERS;
  82static k_handler_fn *k_handler[16] = { K_HANDLERS };
  83
  84#define FN_HANDLERS\
  85	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
  86	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
  87	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
  88	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
  89	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
  90
  91typedef void (fn_handler_fn)(struct vc_data *vc);
  92static fn_handler_fn FN_HANDLERS;
  93static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  94
  95/*
  96 * Variables exported for vt_ioctl.c
  97 */
  98
  99struct vt_spawn_console vt_spawn_con = {
 100	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
 101	.pid  = NULL,
 102	.sig  = 0,
 103};
 104
 105
 106/*
 107 * Internal Data.
 108 */
 109
 110static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
 111static struct kbd_struct *kbd = kbd_table;
 112
 113/* maximum values each key_handler can handle */
 114static const unsigned char max_vals[] = {
 115	[ KT_LATIN	] = 255,
 116	[ KT_FN		] = ARRAY_SIZE(func_table) - 1,
 117	[ KT_SPEC	] = ARRAY_SIZE(fn_handler) - 1,
 118	[ KT_PAD	] = NR_PAD - 1,
 119	[ KT_DEAD	] = NR_DEAD - 1,
 120	[ KT_CONS	] = 255,
 121	[ KT_CUR	] = 3,
 122	[ KT_SHIFT	] = NR_SHIFT - 1,
 123	[ KT_META	] = 255,
 124	[ KT_ASCII	] = NR_ASCII - 1,
 125	[ KT_LOCK	] = NR_LOCK - 1,
 126	[ KT_LETTER	] = 255,
 127	[ KT_SLOCK	] = NR_LOCK - 1,
 128	[ KT_DEAD2	] = 255,
 129	[ KT_BRL	] = NR_BRL - 1,
 130};
 131
 132static const int NR_TYPES = ARRAY_SIZE(max_vals);
 133
 134static void kbd_bh(struct tasklet_struct *unused);
 135static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh);
 136
 137static struct input_handler kbd_handler;
 138static DEFINE_SPINLOCK(kbd_event_lock);
 139static DEFINE_SPINLOCK(led_lock);
 140static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf'  and friends */
 141static DECLARE_BITMAP(key_down, KEY_CNT);	/* keyboard key bitmap */
 142static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
 143static bool dead_key_next;
 144
 145/* Handles a number being assembled on the number pad */
 146static bool npadch_active;
 147static unsigned int npadch_value;
 148
 149static unsigned int diacr;
 150static bool rep;			/* flag telling character repeat */
 151
 152static int shift_state = 0;
 153
 154static unsigned int ledstate = -1U;			/* undefined */
 155static unsigned char ledioctl;
 156static bool vt_switch;
 
 
 
 
 
 157
 158/*
 159 * Notifier list for console keyboard events
 160 */
 161static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
 162
 163int register_keyboard_notifier(struct notifier_block *nb)
 164{
 165	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
 166}
 167EXPORT_SYMBOL_GPL(register_keyboard_notifier);
 168
 169int unregister_keyboard_notifier(struct notifier_block *nb)
 170{
 171	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
 172}
 173EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
 174
 175/*
 176 * Translation of scancodes to keycodes. We set them on only the first
 177 * keyboard in the list that accepts the scancode and keycode.
 178 * Explanation for not choosing the first attached keyboard anymore:
 179 *  USB keyboards for example have two event devices: one for all "normal"
 180 *  keys and one for extra function keys (like "volume up", "make coffee",
 181 *  etc.). So this means that scancodes for the extra function keys won't
 182 *  be valid for the first event device, but will be for the second.
 183 */
 184
 185struct getset_keycode_data {
 186	struct input_keymap_entry ke;
 187	int error;
 188};
 189
 190static int getkeycode_helper(struct input_handle *handle, void *data)
 191{
 192	struct getset_keycode_data *d = data;
 193
 194	d->error = input_get_keycode(handle->dev, &d->ke);
 195
 196	return d->error == 0; /* stop as soon as we successfully get one */
 197}
 198
 199static int getkeycode(unsigned int scancode)
 200{
 201	struct getset_keycode_data d = {
 202		.ke	= {
 203			.flags		= 0,
 204			.len		= sizeof(scancode),
 205			.keycode	= 0,
 206		},
 207		.error	= -ENODEV,
 208	};
 209
 210	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 211
 212	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
 213
 214	return d.error ?: d.ke.keycode;
 215}
 216
 217static int setkeycode_helper(struct input_handle *handle, void *data)
 218{
 219	struct getset_keycode_data *d = data;
 220
 221	d->error = input_set_keycode(handle->dev, &d->ke);
 222
 223	return d->error == 0; /* stop as soon as we successfully set one */
 224}
 225
 226static int setkeycode(unsigned int scancode, unsigned int keycode)
 227{
 228	struct getset_keycode_data d = {
 229		.ke	= {
 230			.flags		= 0,
 231			.len		= sizeof(scancode),
 232			.keycode	= keycode,
 233		},
 234		.error	= -ENODEV,
 235	};
 236
 237	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 238
 239	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
 240
 241	return d.error;
 242}
 243
 244/*
 245 * Making beeps and bells. Note that we prefer beeps to bells, but when
 246 * shutting the sound off we do both.
 247 */
 248
 249static int kd_sound_helper(struct input_handle *handle, void *data)
 250{
 251	unsigned int *hz = data;
 252	struct input_dev *dev = handle->dev;
 253
 254	if (test_bit(EV_SND, dev->evbit)) {
 255		if (test_bit(SND_TONE, dev->sndbit)) {
 256			input_inject_event(handle, EV_SND, SND_TONE, *hz);
 257			if (*hz)
 258				return 0;
 259		}
 260		if (test_bit(SND_BELL, dev->sndbit))
 261			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
 262	}
 263
 264	return 0;
 265}
 266
 267static void kd_nosound(struct timer_list *unused)
 268{
 269	static unsigned int zero;
 270
 271	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
 272}
 273
 274static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
 275
 276void kd_mksound(unsigned int hz, unsigned int ticks)
 277{
 278	del_timer_sync(&kd_mksound_timer);
 279
 280	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
 281
 282	if (hz && ticks)
 283		mod_timer(&kd_mksound_timer, jiffies + ticks);
 284}
 285EXPORT_SYMBOL(kd_mksound);
 286
 287/*
 288 * Setting the keyboard rate.
 289 */
 290
 291static int kbd_rate_helper(struct input_handle *handle, void *data)
 292{
 293	struct input_dev *dev = handle->dev;
 294	struct kbd_repeat *rpt = data;
 295
 296	if (test_bit(EV_REP, dev->evbit)) {
 297
 298		if (rpt[0].delay > 0)
 299			input_inject_event(handle,
 300					   EV_REP, REP_DELAY, rpt[0].delay);
 301		if (rpt[0].period > 0)
 302			input_inject_event(handle,
 303					   EV_REP, REP_PERIOD, rpt[0].period);
 304
 305		rpt[1].delay = dev->rep[REP_DELAY];
 306		rpt[1].period = dev->rep[REP_PERIOD];
 307	}
 308
 309	return 0;
 310}
 311
 312int kbd_rate(struct kbd_repeat *rpt)
 313{
 314	struct kbd_repeat data[2] = { *rpt };
 315
 316	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
 317	*rpt = data[1];	/* Copy currently used settings */
 318
 319	return 0;
 320}
 321
 322/*
 323 * Helper Functions.
 324 */
 325static void put_queue(struct vc_data *vc, int ch)
 326{
 327	tty_insert_flip_char(&vc->port, ch, 0);
 328	tty_flip_buffer_push(&vc->port);
 
 
 
 
 329}
 330
 331static void puts_queue(struct vc_data *vc, const char *cp)
 332{
 333	tty_insert_flip_string(&vc->port, cp, strlen(cp));
 334	tty_flip_buffer_push(&vc->port);
 
 
 
 
 
 
 
 
 335}
 336
 337static void applkey(struct vc_data *vc, int key, char mode)
 338{
 339	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
 340
 341	buf[1] = (mode ? 'O' : '[');
 342	buf[2] = key;
 343	puts_queue(vc, buf);
 344}
 345
 346/*
 347 * Many other routines do put_queue, but I think either
 348 * they produce ASCII, or they produce some user-assigned
 349 * string, and in both cases we might assume that it is
 350 * in utf-8 already.
 351 */
 352static void to_utf8(struct vc_data *vc, uint c)
 353{
 354	if (c < 0x80)
 355		/*  0******* */
 356		put_queue(vc, c);
 357	else if (c < 0x800) {
 358		/* 110***** 10****** */
 359		put_queue(vc, 0xc0 | (c >> 6));
 360		put_queue(vc, 0x80 | (c & 0x3f));
 361	} else if (c < 0x10000) {
 362		if (c >= 0xD800 && c < 0xE000)
 363			return;
 364		if (c == 0xFFFF)
 365			return;
 366		/* 1110**** 10****** 10****** */
 367		put_queue(vc, 0xe0 | (c >> 12));
 368		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 369		put_queue(vc, 0x80 | (c & 0x3f));
 370	} else if (c < 0x110000) {
 371		/* 11110*** 10****** 10****** 10****** */
 372		put_queue(vc, 0xf0 | (c >> 18));
 373		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
 374		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 375		put_queue(vc, 0x80 | (c & 0x3f));
 376	}
 377}
 378
 379/* FIXME: review locking for vt.c callers */
 380static void set_leds(void)
 381{
 382	tasklet_schedule(&keyboard_tasklet);
 383}
 384
 385/*
 386 * Called after returning from RAW mode or when changing consoles - recompute
 387 * shift_down[] and shift_state from key_down[] maybe called when keymap is
 388 * undefined, so that shiftkey release is seen. The caller must hold the
 389 * kbd_event_lock.
 390 */
 391
 392static void do_compute_shiftstate(void)
 393{
 394	unsigned int k, sym, val;
 395
 396	shift_state = 0;
 397	memset(shift_down, 0, sizeof(shift_down));
 398
 399	for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
 400		sym = U(key_maps[0][k]);
 401		if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
 402			continue;
 403
 404		val = KVAL(sym);
 405		if (val == KVAL(K_CAPSSHIFT))
 406			val = KVAL(K_SHIFT);
 407
 408		shift_down[val]++;
 409		shift_state |= BIT(val);
 
 
 
 
 
 
 
 
 
 
 
 
 410	}
 411}
 412
 413/* We still have to export this method to vt.c */
 414void vt_set_leds_compute_shiftstate(void)
 415{
 416	unsigned long flags;
 417
 418	/*
 419	 * When VT is switched, the keyboard led needs to be set once.
 420	 * Ensure that after the switch is completed, the state of the
 421	 * keyboard LED is consistent with the state of the keyboard lock.
 422	 */
 423	vt_switch = true;
 424	set_leds();
 425
 426	spin_lock_irqsave(&kbd_event_lock, flags);
 427	do_compute_shiftstate();
 428	spin_unlock_irqrestore(&kbd_event_lock, flags);
 429}
 430
 431/*
 432 * We have a combining character DIACR here, followed by the character CH.
 433 * If the combination occurs in the table, return the corresponding value.
 434 * Otherwise, if CH is a space or equals DIACR, return DIACR.
 435 * Otherwise, conclude that DIACR was not combining after all,
 436 * queue it and return CH.
 437 */
 438static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
 439{
 440	unsigned int d = diacr;
 441	unsigned int i;
 442
 443	diacr = 0;
 444
 445	if ((d & ~0xff) == BRL_UC_ROW) {
 446		if ((ch & ~0xff) == BRL_UC_ROW)
 447			return d | ch;
 448	} else {
 449		for (i = 0; i < accent_table_size; i++)
 450			if (accent_table[i].diacr == d && accent_table[i].base == ch)
 451				return accent_table[i].result;
 452	}
 453
 454	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
 455		return d;
 456
 457	if (kbd->kbdmode == VC_UNICODE)
 458		to_utf8(vc, d);
 459	else {
 460		int c = conv_uni_to_8bit(d);
 461		if (c != -1)
 462			put_queue(vc, c);
 463	}
 464
 465	return ch;
 466}
 467
 468/*
 469 * Special function handlers
 470 */
 471static void fn_enter(struct vc_data *vc)
 472{
 473	if (diacr) {
 474		if (kbd->kbdmode == VC_UNICODE)
 475			to_utf8(vc, diacr);
 476		else {
 477			int c = conv_uni_to_8bit(diacr);
 478			if (c != -1)
 479				put_queue(vc, c);
 480		}
 481		diacr = 0;
 482	}
 483
 484	put_queue(vc, '\r');
 485	if (vc_kbd_mode(kbd, VC_CRLF))
 486		put_queue(vc, '\n');
 487}
 488
 489static void fn_caps_toggle(struct vc_data *vc)
 490{
 491	if (rep)
 492		return;
 493
 494	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
 495}
 496
 497static void fn_caps_on(struct vc_data *vc)
 498{
 499	if (rep)
 500		return;
 501
 502	set_vc_kbd_led(kbd, VC_CAPSLOCK);
 503}
 504
 505static void fn_show_ptregs(struct vc_data *vc)
 506{
 507	struct pt_regs *regs = get_irq_regs();
 508
 509	if (regs)
 510		show_regs(regs);
 511}
 512
 513static void fn_hold(struct vc_data *vc)
 514{
 515	struct tty_struct *tty = vc->port.tty;
 516
 517	if (rep || !tty)
 518		return;
 519
 520	/*
 521	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
 522	 * these routines are also activated by ^S/^Q.
 523	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
 524	 */
 525	if (tty->flow.stopped)
 526		start_tty(tty);
 527	else
 528		stop_tty(tty);
 529}
 530
 531static void fn_num(struct vc_data *vc)
 532{
 533	if (vc_kbd_mode(kbd, VC_APPLIC))
 534		applkey(vc, 'P', 1);
 535	else
 536		fn_bare_num(vc);
 537}
 538
 539/*
 540 * Bind this to Shift-NumLock if you work in application keypad mode
 541 * but want to be able to change the NumLock flag.
 542 * Bind this to NumLock if you prefer that the NumLock key always
 543 * changes the NumLock flag.
 544 */
 545static void fn_bare_num(struct vc_data *vc)
 546{
 547	if (!rep)
 548		chg_vc_kbd_led(kbd, VC_NUMLOCK);
 549}
 550
 551static void fn_lastcons(struct vc_data *vc)
 552{
 553	/* switch to the last used console, ChN */
 554	set_console(last_console);
 555}
 556
 557static void fn_dec_console(struct vc_data *vc)
 558{
 559	int i, cur = fg_console;
 560
 561	/* Currently switching?  Queue this next switch relative to that. */
 562	if (want_console != -1)
 563		cur = want_console;
 564
 565	for (i = cur - 1; i != cur; i--) {
 566		if (i == -1)
 567			i = MAX_NR_CONSOLES - 1;
 568		if (vc_cons_allocated(i))
 569			break;
 570	}
 571	set_console(i);
 572}
 573
 574static void fn_inc_console(struct vc_data *vc)
 575{
 576	int i, cur = fg_console;
 577
 578	/* Currently switching?  Queue this next switch relative to that. */
 579	if (want_console != -1)
 580		cur = want_console;
 581
 582	for (i = cur+1; i != cur; i++) {
 583		if (i == MAX_NR_CONSOLES)
 584			i = 0;
 585		if (vc_cons_allocated(i))
 586			break;
 587	}
 588	set_console(i);
 589}
 590
 591static void fn_send_intr(struct vc_data *vc)
 592{
 593	tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
 594	tty_flip_buffer_push(&vc->port);
 
 
 
 
 595}
 596
 597static void fn_scroll_forw(struct vc_data *vc)
 598{
 599	scrollfront(vc, 0);
 600}
 601
 602static void fn_scroll_back(struct vc_data *vc)
 603{
 604	scrollback(vc);
 605}
 606
 607static void fn_show_mem(struct vc_data *vc)
 608{
 609	show_mem();
 610}
 611
 612static void fn_show_state(struct vc_data *vc)
 613{
 614	show_state();
 615}
 616
 617static void fn_boot_it(struct vc_data *vc)
 618{
 619	ctrl_alt_del();
 620}
 621
 622static void fn_compose(struct vc_data *vc)
 623{
 624	dead_key_next = true;
 625}
 626
 627static void fn_spawn_con(struct vc_data *vc)
 628{
 629	spin_lock(&vt_spawn_con.lock);
 630	if (vt_spawn_con.pid)
 631		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
 632			put_pid(vt_spawn_con.pid);
 633			vt_spawn_con.pid = NULL;
 634		}
 635	spin_unlock(&vt_spawn_con.lock);
 636}
 637
 638static void fn_SAK(struct vc_data *vc)
 639{
 640	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
 641	schedule_work(SAK_work);
 642}
 643
 644static void fn_null(struct vc_data *vc)
 645{
 646	do_compute_shiftstate();
 647}
 648
 649/*
 650 * Special key handlers
 651 */
 652static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
 653{
 654}
 655
 656static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
 657{
 658	if (up_flag)
 659		return;
 660	if (value >= ARRAY_SIZE(fn_handler))
 661		return;
 662	if ((kbd->kbdmode == VC_RAW ||
 663	     kbd->kbdmode == VC_MEDIUMRAW ||
 664	     kbd->kbdmode == VC_OFF) &&
 665	     value != KVAL(K_SAK))
 666		return;		/* SAK is allowed even in raw mode */
 667	fn_handler[value](vc);
 668}
 669
 670static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
 671{
 672	pr_err("k_lowercase was called - impossible\n");
 673}
 674
 675static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
 676{
 677	if (up_flag)
 678		return;		/* no action, if this is a key release */
 679
 680	if (diacr)
 681		value = handle_diacr(vc, value);
 682
 683	if (dead_key_next) {
 684		dead_key_next = false;
 685		diacr = value;
 686		return;
 687	}
 688	if (kbd->kbdmode == VC_UNICODE)
 689		to_utf8(vc, value);
 690	else {
 691		int c = conv_uni_to_8bit(value);
 692		if (c != -1)
 693			put_queue(vc, c);
 694	}
 695}
 696
 697/*
 698 * Handle dead key. Note that we now may have several
 699 * dead keys modifying the same character. Very useful
 700 * for Vietnamese.
 701 */
 702static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
 703{
 704	if (up_flag)
 705		return;
 706
 707	diacr = (diacr ? handle_diacr(vc, value) : value);
 708}
 709
 710static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
 711{
 712	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
 713}
 714
 715static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
 716{
 717	k_deadunicode(vc, value, up_flag);
 718}
 719
 720/*
 721 * Obsolete - for backwards compatibility only
 722 */
 723static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
 724{
 725	static const unsigned char ret_diacr[NR_DEAD] = {
 726		'`',	/* dead_grave */
 727		'\'',	/* dead_acute */
 728		'^',	/* dead_circumflex */
 729		'~',	/* dead_tilda */
 730		'"',	/* dead_diaeresis */
 731		',',	/* dead_cedilla */
 732		'_',	/* dead_macron */
 733		'U',	/* dead_breve */
 734		'.',	/* dead_abovedot */
 735		'*',	/* dead_abovering */
 736		'=',	/* dead_doubleacute */
 737		'c',	/* dead_caron */
 738		'k',	/* dead_ogonek */
 739		'i',	/* dead_iota */
 740		'#',	/* dead_voiced_sound */
 741		'o',	/* dead_semivoiced_sound */
 742		'!',	/* dead_belowdot */
 743		'?',	/* dead_hook */
 744		'+',	/* dead_horn */
 745		'-',	/* dead_stroke */
 746		')',	/* dead_abovecomma */
 747		'(',	/* dead_abovereversedcomma */
 748		':',	/* dead_doublegrave */
 749		'n',	/* dead_invertedbreve */
 750		';',	/* dead_belowcomma */
 751		'$',	/* dead_currency */
 752		'@',	/* dead_greek */
 753	};
 754
 755	k_deadunicode(vc, ret_diacr[value], up_flag);
 756}
 757
 758static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
 759{
 760	if (up_flag)
 761		return;
 762
 763	set_console(value);
 764}
 765
 766static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
 767{
 768	if (up_flag)
 769		return;
 770
 771	if ((unsigned)value < ARRAY_SIZE(func_table)) {
 772		unsigned long flags;
 773
 774		spin_lock_irqsave(&func_buf_lock, flags);
 775		if (func_table[value])
 776			puts_queue(vc, func_table[value]);
 777		spin_unlock_irqrestore(&func_buf_lock, flags);
 778
 779	} else
 780		pr_err("k_fn called with value=%d\n", value);
 781}
 782
 783static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
 784{
 785	static const char cur_chars[] = "BDCA";
 786
 787	if (up_flag)
 788		return;
 789
 790	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
 791}
 792
 793static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
 794{
 795	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
 796	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
 797
 798	if (up_flag)
 799		return;		/* no action, if this is a key release */
 800
 801	/* kludge... shift forces cursor/number keys */
 802	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
 803		applkey(vc, app_map[value], 1);
 804		return;
 805	}
 806
 807	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
 808
 809		switch (value) {
 810		case KVAL(K_PCOMMA):
 811		case KVAL(K_PDOT):
 812			k_fn(vc, KVAL(K_REMOVE), 0);
 813			return;
 814		case KVAL(K_P0):
 815			k_fn(vc, KVAL(K_INSERT), 0);
 816			return;
 817		case KVAL(K_P1):
 818			k_fn(vc, KVAL(K_SELECT), 0);
 819			return;
 820		case KVAL(K_P2):
 821			k_cur(vc, KVAL(K_DOWN), 0);
 822			return;
 823		case KVAL(K_P3):
 824			k_fn(vc, KVAL(K_PGDN), 0);
 825			return;
 826		case KVAL(K_P4):
 827			k_cur(vc, KVAL(K_LEFT), 0);
 828			return;
 829		case KVAL(K_P6):
 830			k_cur(vc, KVAL(K_RIGHT), 0);
 831			return;
 832		case KVAL(K_P7):
 833			k_fn(vc, KVAL(K_FIND), 0);
 834			return;
 835		case KVAL(K_P8):
 836			k_cur(vc, KVAL(K_UP), 0);
 837			return;
 838		case KVAL(K_P9):
 839			k_fn(vc, KVAL(K_PGUP), 0);
 840			return;
 841		case KVAL(K_P5):
 842			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
 843			return;
 844		}
 845	}
 846
 847	put_queue(vc, pad_chars[value]);
 848	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
 849		put_queue(vc, '\n');
 850}
 851
 852static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
 853{
 854	int old_state = shift_state;
 855
 856	if (rep)
 857		return;
 858	/*
 859	 * Mimic typewriter:
 860	 * a CapsShift key acts like Shift but undoes CapsLock
 861	 */
 862	if (value == KVAL(K_CAPSSHIFT)) {
 863		value = KVAL(K_SHIFT);
 864		if (!up_flag)
 865			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
 866	}
 867
 868	if (up_flag) {
 869		/*
 870		 * handle the case that two shift or control
 871		 * keys are depressed simultaneously
 872		 */
 873		if (shift_down[value])
 874			shift_down[value]--;
 875	} else
 876		shift_down[value]++;
 877
 878	if (shift_down[value])
 879		shift_state |= BIT(value);
 880	else
 881		shift_state &= ~BIT(value);
 882
 883	/* kludge */
 884	if (up_flag && shift_state != old_state && npadch_active) {
 885		if (kbd->kbdmode == VC_UNICODE)
 886			to_utf8(vc, npadch_value);
 887		else
 888			put_queue(vc, npadch_value & 0xff);
 889		npadch_active = false;
 890	}
 891}
 892
 893static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
 894{
 895	if (up_flag)
 896		return;
 897
 898	if (vc_kbd_mode(kbd, VC_META)) {
 899		put_queue(vc, '\033');
 900		put_queue(vc, value);
 901	} else
 902		put_queue(vc, value | BIT(7));
 903}
 904
 905static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
 906{
 907	unsigned int base;
 908
 909	if (up_flag)
 910		return;
 911
 912	if (value < 10) {
 913		/* decimal input of code, while Alt depressed */
 914		base = 10;
 915	} else {
 916		/* hexadecimal input of code, while AltGr depressed */
 917		value -= 10;
 918		base = 16;
 919	}
 920
 921	if (!npadch_active) {
 922		npadch_value = 0;
 923		npadch_active = true;
 924	}
 925
 926	npadch_value = npadch_value * base + value;
 927}
 928
 929static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
 930{
 931	if (up_flag || rep)
 932		return;
 933
 934	chg_vc_kbd_lock(kbd, value);
 935}
 936
 937static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
 938{
 939	k_shift(vc, value, up_flag);
 940	if (up_flag || rep)
 941		return;
 942
 943	chg_vc_kbd_slock(kbd, value);
 944	/* try to make Alt, oops, AltGr and such work */
 945	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
 946		kbd->slockstate = 0;
 947		chg_vc_kbd_slock(kbd, value);
 948	}
 949}
 950
 951/* by default, 300ms interval for combination release */
 952static unsigned brl_timeout = 300;
 953MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
 954module_param(brl_timeout, uint, 0644);
 955
 956static unsigned brl_nbchords = 1;
 957MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
 958module_param(brl_nbchords, uint, 0644);
 959
 960static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
 961{
 962	static unsigned long chords;
 963	static unsigned committed;
 964
 965	if (!brl_nbchords)
 966		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
 967	else {
 968		committed |= pattern;
 969		chords++;
 970		if (chords == brl_nbchords) {
 971			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
 972			chords = 0;
 973			committed = 0;
 974		}
 975	}
 976}
 977
 978static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
 979{
 980	static unsigned pressed, committing;
 981	static unsigned long releasestart;
 982
 983	if (kbd->kbdmode != VC_UNICODE) {
 984		if (!up_flag)
 985			pr_warn("keyboard mode must be unicode for braille patterns\n");
 986		return;
 987	}
 988
 989	if (!value) {
 990		k_unicode(vc, BRL_UC_ROW, up_flag);
 991		return;
 992	}
 993
 994	if (value > 8)
 995		return;
 996
 997	if (!up_flag) {
 998		pressed |= BIT(value - 1);
 999		if (!brl_timeout)
1000			committing = pressed;
1001	} else if (brl_timeout) {
1002		if (!committing ||
1003		    time_after(jiffies,
1004			       releasestart + msecs_to_jiffies(brl_timeout))) {
1005			committing = pressed;
1006			releasestart = jiffies;
1007		}
1008		pressed &= ~BIT(value - 1);
1009		if (!pressed && committing) {
1010			k_brlcommit(vc, committing, 0);
1011			committing = 0;
1012		}
1013	} else {
1014		if (committing) {
1015			k_brlcommit(vc, committing, 0);
1016			committing = 0;
1017		}
1018		pressed &= ~BIT(value - 1);
1019	}
1020}
1021
1022#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
1023
1024struct kbd_led_trigger {
1025	struct led_trigger trigger;
1026	unsigned int mask;
1027};
1028
1029static int kbd_led_trigger_activate(struct led_classdev *cdev)
1030{
1031	struct kbd_led_trigger *trigger =
1032		container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1033
1034	tasklet_disable(&keyboard_tasklet);
1035	if (ledstate != -1U)
1036		led_trigger_event(&trigger->trigger,
1037				  ledstate & trigger->mask ?
1038					LED_FULL : LED_OFF);
1039	tasklet_enable(&keyboard_tasklet);
1040
1041	return 0;
1042}
1043
1044#define KBD_LED_TRIGGER(_led_bit, _name) {			\
1045		.trigger = {					\
1046			.name = _name,				\
1047			.activate = kbd_led_trigger_activate,	\
1048		},						\
1049		.mask	= BIT(_led_bit),			\
1050	}
1051
1052#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name)		\
1053	KBD_LED_TRIGGER((_led_bit) + 8, _name)
1054
1055static struct kbd_led_trigger kbd_led_triggers[] = {
1056	KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1057	KBD_LED_TRIGGER(VC_NUMLOCK,   "kbd-numlock"),
1058	KBD_LED_TRIGGER(VC_CAPSLOCK,  "kbd-capslock"),
1059	KBD_LED_TRIGGER(VC_KANALOCK,  "kbd-kanalock"),
1060
1061	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK,  "kbd-shiftlock"),
1062	KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK,  "kbd-altgrlock"),
1063	KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK,   "kbd-ctrllock"),
1064	KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK,    "kbd-altlock"),
1065	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1066	KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1067	KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK,  "kbd-ctrlllock"),
1068	KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK,  "kbd-ctrlrlock"),
1069};
1070
1071static void kbd_propagate_led_state(unsigned int old_state,
1072				    unsigned int new_state)
1073{
1074	struct kbd_led_trigger *trigger;
1075	unsigned int changed = old_state ^ new_state;
1076	int i;
1077
1078	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1079		trigger = &kbd_led_triggers[i];
1080
1081		if (changed & trigger->mask)
1082			led_trigger_event(&trigger->trigger,
1083					  new_state & trigger->mask ?
1084						LED_FULL : LED_OFF);
1085	}
1086}
1087
1088static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1089{
1090	unsigned int led_state = *(unsigned int *)data;
1091
1092	if (test_bit(EV_LED, handle->dev->evbit))
1093		kbd_propagate_led_state(~led_state, led_state);
1094
1095	return 0;
1096}
1097
1098static void kbd_init_leds(void)
1099{
1100	int error;
1101	int i;
1102
1103	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1104		error = led_trigger_register(&kbd_led_triggers[i].trigger);
1105		if (error)
1106			pr_err("error %d while registering trigger %s\n",
1107			       error, kbd_led_triggers[i].trigger.name);
1108	}
1109}
1110
1111#else
1112
1113static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1114{
1115	unsigned int leds = *(unsigned int *)data;
1116
1117	if (test_bit(EV_LED, handle->dev->evbit)) {
1118		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0)));
1119		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & BIT(1)));
1120		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & BIT(2)));
1121		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1122	}
1123
1124	return 0;
1125}
1126
1127static void kbd_propagate_led_state(unsigned int old_state,
1128				    unsigned int new_state)
1129{
1130	input_handler_for_each_handle(&kbd_handler, &new_state,
1131				      kbd_update_leds_helper);
1132}
1133
1134static void kbd_init_leds(void)
1135{
1136}
1137
1138#endif
1139
1140/*
1141 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1142 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1143 * or (iii) specified bits of specified words in kernel memory.
1144 */
1145static unsigned char getledstate(void)
1146{
1147	return ledstate & 0xff;
1148}
1149
1150void setledstate(struct kbd_struct *kb, unsigned int led)
1151{
1152        unsigned long flags;
1153        spin_lock_irqsave(&led_lock, flags);
1154	if (!(led & ~7)) {
1155		ledioctl = led;
1156		kb->ledmode = LED_SHOW_IOCTL;
1157	} else
1158		kb->ledmode = LED_SHOW_FLAGS;
1159
1160	set_leds();
1161	spin_unlock_irqrestore(&led_lock, flags);
1162}
1163
1164static inline unsigned char getleds(void)
1165{
1166	struct kbd_struct *kb = kbd_table + fg_console;
 
 
1167
1168	if (kb->ledmode == LED_SHOW_IOCTL)
1169		return ledioctl;
1170
1171	return kb->ledflagstate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1172}
1173
1174/**
1175 *	vt_get_leds	-	helper for braille console
1176 *	@console: console to read
1177 *	@flag: flag we want to check
1178 *
1179 *	Check the status of a keyboard led flag and report it back
1180 */
1181int vt_get_leds(unsigned int console, int flag)
1182{
1183	struct kbd_struct *kb = &kbd_table[console];
1184	int ret;
1185	unsigned long flags;
1186
1187	spin_lock_irqsave(&led_lock, flags);
1188	ret = vc_kbd_led(kb, flag);
1189	spin_unlock_irqrestore(&led_lock, flags);
1190
1191	return ret;
1192}
1193EXPORT_SYMBOL_GPL(vt_get_leds);
1194
1195/**
1196 *	vt_set_led_state	-	set LED state of a console
1197 *	@console: console to set
1198 *	@leds: LED bits
1199 *
1200 *	Set the LEDs on a console. This is a wrapper for the VT layer
1201 *	so that we can keep kbd knowledge internal
1202 */
1203void vt_set_led_state(unsigned int console, int leds)
1204{
1205	struct kbd_struct *kb = &kbd_table[console];
1206	setledstate(kb, leds);
1207}
1208
1209/**
1210 *	vt_kbd_con_start	-	Keyboard side of console start
1211 *	@console: console
1212 *
1213 *	Handle console start. This is a wrapper for the VT layer
1214 *	so that we can keep kbd knowledge internal
1215 *
1216 *	FIXME: We eventually need to hold the kbd lock here to protect
1217 *	the LED updating. We can't do it yet because fn_hold calls stop_tty
1218 *	and start_tty under the kbd_event_lock, while normal tty paths
1219 *	don't hold the lock. We probably need to split out an LED lock
1220 *	but not during an -rc release!
1221 */
1222void vt_kbd_con_start(unsigned int console)
1223{
1224	struct kbd_struct *kb = &kbd_table[console];
1225	unsigned long flags;
1226	spin_lock_irqsave(&led_lock, flags);
1227	clr_vc_kbd_led(kb, VC_SCROLLOCK);
1228	set_leds();
1229	spin_unlock_irqrestore(&led_lock, flags);
1230}
1231
1232/**
1233 *	vt_kbd_con_stop		-	Keyboard side of console stop
1234 *	@console: console
1235 *
1236 *	Handle console stop. This is a wrapper for the VT layer
1237 *	so that we can keep kbd knowledge internal
 
 
 
 
 
 
1238 */
1239void vt_kbd_con_stop(unsigned int console)
1240{
1241	struct kbd_struct *kb = &kbd_table[console];
1242	unsigned long flags;
1243	spin_lock_irqsave(&led_lock, flags);
1244	set_vc_kbd_led(kb, VC_SCROLLOCK);
1245	set_leds();
1246	spin_unlock_irqrestore(&led_lock, flags);
1247}
1248
1249/*
1250 * This is the tasklet that updates LED state of LEDs using standard
1251 * keyboard triggers. The reason we use tasklet is that we need to
1252 * handle the scenario when keyboard handler is not registered yet
1253 * but we already getting updates from the VT to update led state.
 
1254 */
1255static void kbd_bh(struct tasklet_struct *unused)
1256{
1257	unsigned int leds;
1258	unsigned long flags;
1259
1260	spin_lock_irqsave(&led_lock, flags);
1261	leds = getleds();
1262	leds |= (unsigned int)kbd->lockstate << 8;
1263	spin_unlock_irqrestore(&led_lock, flags);
1264
1265	if (vt_switch) {
1266		ledstate = ~leds;
1267		vt_switch = false;
1268	}
1269
1270	if (leds != ledstate) {
1271		kbd_propagate_led_state(ledstate, leds);
 
1272		ledstate = leds;
1273	}
1274}
1275
1276#if defined(CONFIG_X86) || defined(CONFIG_ALPHA) ||\
 
 
1277    defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1278    defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1279    (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1280
1281static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1282{
1283	if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit))
1284		return false;
1285
1286	return dev->id.bustype == BUS_I8042 &&
1287		dev->id.vendor == 0x0001 && dev->id.product == 0x0001;
1288}
1289
1290static const unsigned short x86_keycodes[256] =
1291	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1292	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1293	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1294	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1295	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1296	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1297	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1298	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1299	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1300	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1301	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1302	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1303	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1304	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1305	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1306
1307#ifdef CONFIG_SPARC
1308static int sparc_l1_a_state;
1309extern void sun_do_break(void);
1310#endif
1311
1312static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1313		       unsigned char up_flag)
1314{
1315	int code;
1316
1317	switch (keycode) {
1318
1319	case KEY_PAUSE:
1320		put_queue(vc, 0xe1);
1321		put_queue(vc, 0x1d | up_flag);
1322		put_queue(vc, 0x45 | up_flag);
1323		break;
1324
1325	case KEY_HANGEUL:
1326		if (!up_flag)
1327			put_queue(vc, 0xf2);
1328		break;
1329
1330	case KEY_HANJA:
1331		if (!up_flag)
1332			put_queue(vc, 0xf1);
1333		break;
1334
1335	case KEY_SYSRQ:
1336		/*
1337		 * Real AT keyboards (that's what we're trying
1338		 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1339		 * pressing PrtSc/SysRq alone, but simply 0x54
1340		 * when pressing Alt+PrtSc/SysRq.
1341		 */
1342		if (test_bit(KEY_LEFTALT, key_down) ||
1343		    test_bit(KEY_RIGHTALT, key_down)) {
1344			put_queue(vc, 0x54 | up_flag);
1345		} else {
1346			put_queue(vc, 0xe0);
1347			put_queue(vc, 0x2a | up_flag);
1348			put_queue(vc, 0xe0);
1349			put_queue(vc, 0x37 | up_flag);
1350		}
1351		break;
1352
1353	default:
1354		if (keycode > 255)
1355			return -1;
1356
1357		code = x86_keycodes[keycode];
1358		if (!code)
1359			return -1;
1360
1361		if (code & 0x100)
1362			put_queue(vc, 0xe0);
1363		put_queue(vc, (code & 0x7f) | up_flag);
1364
1365		break;
1366	}
1367
1368	return 0;
1369}
1370
1371#else
1372
1373static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1374{
1375	return false;
1376}
1377
1378static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1379{
1380	if (keycode > 127)
1381		return -1;
1382
1383	put_queue(vc, keycode | up_flag);
1384	return 0;
1385}
1386#endif
1387
1388static void kbd_rawcode(unsigned char data)
1389{
1390	struct vc_data *vc = vc_cons[fg_console].d;
1391
1392	kbd = &kbd_table[vc->vc_num];
1393	if (kbd->kbdmode == VC_RAW)
1394		put_queue(vc, data);
1395}
1396
1397static void kbd_keycode(unsigned int keycode, int down, bool hw_raw)
1398{
1399	struct vc_data *vc = vc_cons[fg_console].d;
1400	unsigned short keysym, *key_map;
1401	unsigned char type;
1402	bool raw_mode;
1403	struct tty_struct *tty;
1404	int shift_final;
1405	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1406	int rc;
1407
1408	tty = vc->port.tty;
1409
1410	if (tty && (!tty->driver_data)) {
1411		/* No driver data? Strange. Okay we fix it then. */
1412		tty->driver_data = vc;
1413	}
1414
1415	kbd = &kbd_table[vc->vc_num];
1416
1417#ifdef CONFIG_SPARC
1418	if (keycode == KEY_STOP)
1419		sparc_l1_a_state = down;
1420#endif
1421
1422	rep = (down == 2);
1423
1424	raw_mode = (kbd->kbdmode == VC_RAW);
1425	if (raw_mode && !hw_raw)
1426		if (emulate_raw(vc, keycode, !down << 7))
1427			if (keycode < BTN_MISC && printk_ratelimit())
1428				pr_warn("can't emulate rawmode for keycode %d\n",
1429					keycode);
1430
1431#ifdef CONFIG_SPARC
1432	if (keycode == KEY_A && sparc_l1_a_state) {
1433		sparc_l1_a_state = false;
1434		sun_do_break();
1435	}
1436#endif
1437
1438	if (kbd->kbdmode == VC_MEDIUMRAW) {
1439		/*
1440		 * This is extended medium raw mode, with keys above 127
1441		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1442		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1443		 * interfere with anything else. The two bytes after 0 will
1444		 * always have the up flag set not to interfere with older
1445		 * applications. This allows for 16384 different keycodes,
1446		 * which should be enough.
1447		 */
1448		if (keycode < 128) {
1449			put_queue(vc, keycode | (!down << 7));
1450		} else {
1451			put_queue(vc, !down << 7);
1452			put_queue(vc, (keycode >> 7) | BIT(7));
1453			put_queue(vc, keycode | BIT(7));
1454		}
1455		raw_mode = true;
1456	}
1457
1458	assign_bit(keycode, key_down, down);
 
 
 
1459
1460	if (rep &&
1461	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1462	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1463		/*
1464		 * Don't repeat a key if the input buffers are not empty and the
1465		 * characters get aren't echoed locally. This makes key repeat
1466		 * usable with slow applications and under heavy loads.
1467		 */
1468		return;
1469	}
1470
1471	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1472	param.ledstate = kbd->ledflagstate;
1473	key_map = key_maps[shift_final];
1474
1475	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1476					KBD_KEYCODE, &param);
1477	if (rc == NOTIFY_STOP || !key_map) {
1478		atomic_notifier_call_chain(&keyboard_notifier_list,
1479					   KBD_UNBOUND_KEYCODE, &param);
1480		do_compute_shiftstate();
1481		kbd->slockstate = 0;
1482		return;
1483	}
1484
1485	if (keycode < NR_KEYS)
1486		keysym = key_map[keycode];
1487	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1488		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1489	else
1490		return;
1491
1492	type = KTYP(keysym);
1493
1494	if (type < 0xf0) {
1495		param.value = keysym;
1496		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1497						KBD_UNICODE, &param);
1498		if (rc != NOTIFY_STOP)
1499			if (down && !raw_mode)
1500				k_unicode(vc, keysym, !down);
1501		return;
1502	}
1503
1504	type -= 0xf0;
1505
1506	if (type == KT_LETTER) {
1507		type = KT_LATIN;
1508		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1509			key_map = key_maps[shift_final ^ BIT(KG_SHIFT)];
1510			if (key_map)
1511				keysym = key_map[keycode];
1512		}
1513	}
1514
1515	param.value = keysym;
1516	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1517					KBD_KEYSYM, &param);
1518	if (rc == NOTIFY_STOP)
1519		return;
1520
1521	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1522		return;
1523
1524	(*k_handler[type])(vc, keysym & 0xff, !down);
1525
1526	param.ledstate = kbd->ledflagstate;
1527	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1528
1529	if (type != KT_SLOCK)
1530		kbd->slockstate = 0;
1531}
1532
1533static void kbd_event(struct input_handle *handle, unsigned int event_type,
1534		      unsigned int event_code, int value)
1535{
1536	/* We are called with interrupts disabled, just take the lock */
1537	spin_lock(&kbd_event_lock);
1538
1539	if (event_type == EV_MSC && event_code == MSC_RAW &&
1540			kbd_is_hw_raw(handle->dev))
1541		kbd_rawcode(value);
1542	if (event_type == EV_KEY && event_code <= KEY_MAX)
1543		kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev));
1544
1545	spin_unlock(&kbd_event_lock);
1546
1547	tasklet_schedule(&keyboard_tasklet);
1548	do_poke_blanked_console = 1;
1549	schedule_console_callback();
1550}
1551
1552static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1553{
 
 
1554	if (test_bit(EV_SND, dev->evbit))
1555		return true;
1556
1557	if (test_bit(EV_KEY, dev->evbit)) {
1558		if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) <
1559				BTN_MISC)
1560			return true;
1561		if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1,
1562					KEY_BRL_DOT1) <= KEY_BRL_DOT10)
1563			return true;
1564	}
1565
1566	return false;
1567}
1568
1569/*
1570 * When a keyboard (or other input device) is found, the kbd_connect
1571 * function is called. The function then looks at the device, and if it
1572 * likes it, it can open it and get events from it. In this (kbd_connect)
1573 * function, we should decide which VT to bind that keyboard to initially.
1574 */
1575static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1576			const struct input_device_id *id)
1577{
1578	struct input_handle *handle;
1579	int error;
1580
1581	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1582	if (!handle)
1583		return -ENOMEM;
1584
1585	handle->dev = dev;
1586	handle->handler = handler;
1587	handle->name = "kbd";
1588
1589	error = input_register_handle(handle);
1590	if (error)
1591		goto err_free_handle;
1592
1593	error = input_open_device(handle);
1594	if (error)
1595		goto err_unregister_handle;
1596
1597	return 0;
1598
1599 err_unregister_handle:
1600	input_unregister_handle(handle);
1601 err_free_handle:
1602	kfree(handle);
1603	return error;
1604}
1605
1606static void kbd_disconnect(struct input_handle *handle)
1607{
1608	input_close_device(handle);
1609	input_unregister_handle(handle);
1610	kfree(handle);
1611}
1612
1613/*
1614 * Start keyboard handler on the new keyboard by refreshing LED state to
1615 * match the rest of the system.
1616 */
1617static void kbd_start(struct input_handle *handle)
1618{
1619	tasklet_disable(&keyboard_tasklet);
1620
1621	if (ledstate != -1U)
1622		kbd_update_leds_helper(handle, &ledstate);
1623
1624	tasklet_enable(&keyboard_tasklet);
1625}
1626
1627static const struct input_device_id kbd_ids[] = {
1628	{
1629		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1630		.evbit = { BIT_MASK(EV_KEY) },
1631	},
1632
1633	{
1634		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1635		.evbit = { BIT_MASK(EV_SND) },
1636	},
1637
1638	{ },    /* Terminating entry */
1639};
1640
1641MODULE_DEVICE_TABLE(input, kbd_ids);
1642
1643static struct input_handler kbd_handler = {
1644	.event		= kbd_event,
1645	.match		= kbd_match,
1646	.connect	= kbd_connect,
1647	.disconnect	= kbd_disconnect,
1648	.start		= kbd_start,
1649	.name		= "kbd",
1650	.id_table	= kbd_ids,
1651};
1652
1653int __init kbd_init(void)
1654{
1655	int i;
1656	int error;
1657
1658	for (i = 0; i < MAX_NR_CONSOLES; i++) {
1659		kbd_table[i].ledflagstate = kbd_defleds();
1660		kbd_table[i].default_ledflagstate = kbd_defleds();
1661		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1662		kbd_table[i].lockstate = KBD_DEFLOCK;
1663		kbd_table[i].slockstate = 0;
1664		kbd_table[i].modeflags = KBD_DEFMODE;
1665		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1666	}
1667
1668	kbd_init_leds();
1669
1670	error = input_register_handler(&kbd_handler);
1671	if (error)
1672		return error;
1673
1674	tasklet_enable(&keyboard_tasklet);
1675	tasklet_schedule(&keyboard_tasklet);
1676
1677	return 0;
1678}
1679
1680/* Ioctl support code */
1681
1682/**
1683 *	vt_do_diacrit		-	diacritical table updates
1684 *	@cmd: ioctl request
1685 *	@udp: pointer to user data for ioctl
1686 *	@perm: permissions check computed by caller
1687 *
1688 *	Update the diacritical tables atomically and safely. Lock them
1689 *	against simultaneous keypresses
1690 */
1691int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1692{
 
1693	unsigned long flags;
1694	int asize;
1695	int ret = 0;
1696
1697	switch (cmd) {
1698	case KDGKBDIACR:
1699	{
1700		struct kbdiacrs __user *a = udp;
1701		struct kbdiacr *dia;
1702		int i;
1703
1704		dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1705								GFP_KERNEL);
1706		if (!dia)
1707			return -ENOMEM;
1708
1709		/* Lock the diacriticals table, make a copy and then
1710		   copy it after we unlock */
1711		spin_lock_irqsave(&kbd_event_lock, flags);
1712
1713		asize = accent_table_size;
1714		for (i = 0; i < asize; i++) {
1715			dia[i].diacr = conv_uni_to_8bit(
1716						accent_table[i].diacr);
1717			dia[i].base = conv_uni_to_8bit(
1718						accent_table[i].base);
1719			dia[i].result = conv_uni_to_8bit(
1720						accent_table[i].result);
1721		}
1722		spin_unlock_irqrestore(&kbd_event_lock, flags);
1723
1724		if (put_user(asize, &a->kb_cnt))
1725			ret = -EFAULT;
1726		else  if (copy_to_user(a->kbdiacr, dia,
1727				asize * sizeof(struct kbdiacr)))
1728			ret = -EFAULT;
1729		kfree(dia);
1730		return ret;
1731	}
1732	case KDGKBDIACRUC:
1733	{
1734		struct kbdiacrsuc __user *a = udp;
1735		void *buf;
1736
1737		buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1738								GFP_KERNEL);
1739		if (buf == NULL)
1740			return -ENOMEM;
1741
1742		/* Lock the diacriticals table, make a copy and then
1743		   copy it after we unlock */
1744		spin_lock_irqsave(&kbd_event_lock, flags);
1745
1746		asize = accent_table_size;
1747		memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1748
1749		spin_unlock_irqrestore(&kbd_event_lock, flags);
1750
1751		if (put_user(asize, &a->kb_cnt))
1752			ret = -EFAULT;
1753		else if (copy_to_user(a->kbdiacruc, buf,
1754				asize*sizeof(struct kbdiacruc)))
1755			ret = -EFAULT;
1756		kfree(buf);
1757		return ret;
1758	}
1759
1760	case KDSKBDIACR:
1761	{
1762		struct kbdiacrs __user *a = udp;
1763		struct kbdiacr *dia = NULL;
1764		unsigned int ct;
1765		int i;
1766
1767		if (!perm)
1768			return -EPERM;
1769		if (get_user(ct, &a->kb_cnt))
1770			return -EFAULT;
1771		if (ct >= MAX_DIACR)
1772			return -EINVAL;
1773
1774		if (ct) {
1775			dia = memdup_array_user(a->kbdiacr,
1776						ct, sizeof(struct kbdiacr));
1777			if (IS_ERR(dia))
1778				return PTR_ERR(dia);
 
 
 
 
 
 
1779		}
1780
1781		spin_lock_irqsave(&kbd_event_lock, flags);
1782		accent_table_size = ct;
1783		for (i = 0; i < ct; i++) {
1784			accent_table[i].diacr =
1785					conv_8bit_to_uni(dia[i].diacr);
1786			accent_table[i].base =
1787					conv_8bit_to_uni(dia[i].base);
1788			accent_table[i].result =
1789					conv_8bit_to_uni(dia[i].result);
1790		}
1791		spin_unlock_irqrestore(&kbd_event_lock, flags);
1792		kfree(dia);
1793		return 0;
1794	}
1795
1796	case KDSKBDIACRUC:
1797	{
1798		struct kbdiacrsuc __user *a = udp;
1799		unsigned int ct;
1800		void *buf = NULL;
1801
1802		if (!perm)
1803			return -EPERM;
1804
1805		if (get_user(ct, &a->kb_cnt))
1806			return -EFAULT;
1807
1808		if (ct >= MAX_DIACR)
1809			return -EINVAL;
1810
1811		if (ct) {
1812			buf = memdup_array_user(a->kbdiacruc,
1813						ct, sizeof(struct kbdiacruc));
1814			if (IS_ERR(buf))
1815				return PTR_ERR(buf);
 
 
 
 
 
 
1816		} 
1817		spin_lock_irqsave(&kbd_event_lock, flags);
1818		if (ct)
1819			memcpy(accent_table, buf,
1820					ct * sizeof(struct kbdiacruc));
1821		accent_table_size = ct;
1822		spin_unlock_irqrestore(&kbd_event_lock, flags);
1823		kfree(buf);
1824		return 0;
1825	}
1826	}
1827	return ret;
1828}
1829
1830/**
1831 *	vt_do_kdskbmode		-	set keyboard mode ioctl
1832 *	@console: the console to use
1833 *	@arg: the requested mode
1834 *
1835 *	Update the keyboard mode bits while holding the correct locks.
1836 *	Return 0 for success or an error code.
1837 */
1838int vt_do_kdskbmode(unsigned int console, unsigned int arg)
1839{
1840	struct kbd_struct *kb = &kbd_table[console];
1841	int ret = 0;
1842	unsigned long flags;
1843
1844	spin_lock_irqsave(&kbd_event_lock, flags);
1845	switch(arg) {
1846	case K_RAW:
1847		kb->kbdmode = VC_RAW;
1848		break;
1849	case K_MEDIUMRAW:
1850		kb->kbdmode = VC_MEDIUMRAW;
1851		break;
1852	case K_XLATE:
1853		kb->kbdmode = VC_XLATE;
1854		do_compute_shiftstate();
1855		break;
1856	case K_UNICODE:
1857		kb->kbdmode = VC_UNICODE;
1858		do_compute_shiftstate();
1859		break;
1860	case K_OFF:
1861		kb->kbdmode = VC_OFF;
1862		break;
1863	default:
1864		ret = -EINVAL;
1865	}
1866	spin_unlock_irqrestore(&kbd_event_lock, flags);
1867	return ret;
1868}
1869
1870/**
1871 *	vt_do_kdskbmeta		-	set keyboard meta state
1872 *	@console: the console to use
1873 *	@arg: the requested meta state
1874 *
1875 *	Update the keyboard meta bits while holding the correct locks.
1876 *	Return 0 for success or an error code.
1877 */
1878int vt_do_kdskbmeta(unsigned int console, unsigned int arg)
1879{
1880	struct kbd_struct *kb = &kbd_table[console];
1881	int ret = 0;
1882	unsigned long flags;
1883
1884	spin_lock_irqsave(&kbd_event_lock, flags);
1885	switch(arg) {
1886	case K_METABIT:
1887		clr_vc_kbd_mode(kb, VC_META);
1888		break;
1889	case K_ESCPREFIX:
1890		set_vc_kbd_mode(kb, VC_META);
1891		break;
1892	default:
1893		ret = -EINVAL;
1894	}
1895	spin_unlock_irqrestore(&kbd_event_lock, flags);
1896	return ret;
1897}
1898
1899int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1900								int perm)
1901{
1902	struct kbkeycode tmp;
1903	int kc = 0;
1904
1905	if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1906		return -EFAULT;
1907	switch (cmd) {
1908	case KDGETKEYCODE:
1909		kc = getkeycode(tmp.scancode);
1910		if (kc >= 0)
1911			kc = put_user(kc, &user_kbkc->keycode);
1912		break;
1913	case KDSETKEYCODE:
1914		if (!perm)
1915			return -EPERM;
1916		kc = setkeycode(tmp.scancode, tmp.keycode);
1917		break;
1918	}
1919	return kc;
1920}
1921
1922static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx,
1923		unsigned char map)
 
 
 
 
1924{
1925	unsigned short *key_map, val;
 
 
1926	unsigned long flags;
1927
1928	/* Ensure another thread doesn't free it under us */
1929	spin_lock_irqsave(&kbd_event_lock, flags);
1930	key_map = key_maps[map];
1931	if (key_map) {
1932		val = U(key_map[idx]);
1933		if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1934			val = K_HOLE;
1935	} else
1936		val = idx ? K_HOLE : K_NOSUCHMAP;
1937	spin_unlock_irqrestore(&kbd_event_lock, flags);
1938
1939	return val;
1940}
1941
1942static int vt_kdskbent(unsigned char kbdmode, unsigned char idx,
1943		unsigned char map, unsigned short val)
1944{
1945	unsigned long flags;
1946	unsigned short *key_map, *new_map, oldval;
1947
1948	if (!idx && val == K_NOSUCHMAP) {
1949		spin_lock_irqsave(&kbd_event_lock, flags);
1950		/* deallocate map */
1951		key_map = key_maps[map];
1952		if (map && key_map) {
1953			key_maps[map] = NULL;
1954			if (key_map[0] == U(K_ALLOCATED)) {
1955				kfree(key_map);
1956				keymap_count--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1957			}
 
 
1958		}
1959		spin_unlock_irqrestore(&kbd_event_lock, flags);
1960
1961		return 0;
1962	}
1963
1964	if (KTYP(val) < NR_TYPES) {
1965		if (KVAL(val) > max_vals[KTYP(val)])
1966			return -EINVAL;
1967	} else if (kbdmode != VC_UNICODE)
1968		return -EINVAL;
1969
1970	/* ++Geert: non-PC keyboards may generate keycode zero */
1971#if !defined(__mc68000__) && !defined(__powerpc__)
1972	/* assignment to entry 0 only tests validity of args */
1973	if (!idx)
1974		return 0;
1975#endif
1976
1977	new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1978	if (!new_map)
1979		return -ENOMEM;
1980
1981	spin_lock_irqsave(&kbd_event_lock, flags);
1982	key_map = key_maps[map];
1983	if (key_map == NULL) {
1984		int j;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1985
1986		if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1987		    !capable(CAP_SYS_RESOURCE)) {
 
 
 
 
 
1988			spin_unlock_irqrestore(&kbd_event_lock, flags);
1989			kfree(new_map);
1990			return -EPERM;
1991		}
1992		key_maps[map] = new_map;
1993		key_map = new_map;
1994		key_map[0] = U(K_ALLOCATED);
1995		for (j = 1; j < NR_KEYS; j++)
1996			key_map[j] = U(K_HOLE);
1997		keymap_count++;
1998	} else
1999		kfree(new_map);
2000
2001	oldval = U(key_map[idx]);
2002	if (val == oldval)
2003		goto out;
2004
2005	/* Attention Key */
2006	if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) {
2007		spin_unlock_irqrestore(&kbd_event_lock, flags);
2008		return -EPERM;
2009	}
2010
2011	key_map[idx] = U(val);
2012	if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT))
2013		do_compute_shiftstate();
2014out:
2015	spin_unlock_irqrestore(&kbd_event_lock, flags);
2016
2017	return 0;
2018}
2019
2020int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
2021						unsigned int console)
2022{
2023	struct kbd_struct *kb = &kbd_table[console];
2024	struct kbentry kbe;
2025
2026	if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry)))
2027		return -EFAULT;
2028
2029	switch (cmd) {
2030	case KDGKBENT:
2031		return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index,
2032					kbe.kb_table),
2033				&user_kbe->kb_value);
2034	case KDSKBENT:
2035		if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2036			return -EPERM;
2037		return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table,
2038				kbe.kb_value);
2039	}
2040	return 0;
2041}
 
 
 
2042
2043static char *vt_kdskbsent(char *kbs, unsigned char cur)
2044{
2045	static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC);
2046	char *cur_f = func_table[cur];
2047
2048	if (cur_f && strlen(cur_f) >= strlen(kbs)) {
2049		strcpy(cur_f, kbs);
2050		return kbs;
2051	}
2052
2053	func_table[cur] = kbs;
2054
2055	return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL;
2056}
2057
2058int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
2059{
2060	unsigned char kb_func;
2061	unsigned long flags;
2062	char *kbs;
 
 
 
 
 
2063	int ret;
2064
2065	if (get_user(kb_func, &user_kdgkb->kb_func))
2066		return -EFAULT;
2067
2068	kb_func = array_index_nospec(kb_func, MAX_NR_FUNC);
 
 
 
 
 
 
 
 
 
 
 
 
2069
2070	switch (cmd) {
2071	case KDGKBSENT: {
2072		/* size should have been a struct member */
2073		ssize_t len = sizeof(user_kdgkb->kb_string);
2074
2075		kbs = kmalloc(len, GFP_KERNEL);
2076		if (!kbs)
2077			return -ENOMEM;
2078
2079		spin_lock_irqsave(&func_buf_lock, flags);
2080		len = strscpy(kbs, func_table[kb_func] ? : "", len);
2081		spin_unlock_irqrestore(&func_buf_lock, flags);
2082
2083		if (len < 0) {
2084			ret = -ENOSPC;
2085			break;
2086		}
2087		ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ?
2088			-EFAULT : 0;
2089		break;
2090	}
2091	case KDSKBSENT:
2092		if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2093			return -EPERM;
 
 
2094
2095		kbs = strndup_user(user_kdgkb->kb_string,
2096				sizeof(user_kdgkb->kb_string));
2097		if (IS_ERR(kbs))
2098			return PTR_ERR(kbs);
2099
2100		spin_lock_irqsave(&func_buf_lock, flags);
2101		kbs = vt_kdskbsent(kbs, kb_func);
2102		spin_unlock_irqrestore(&func_buf_lock, flags);
2103
2104		ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2105		break;
2106	}
2107
 
2108	kfree(kbs);
2109
2110	return ret;
2111}
2112
2113int vt_do_kdskled(unsigned int console, int cmd, unsigned long arg, int perm)
2114{
2115	struct kbd_struct *kb = &kbd_table[console];
2116        unsigned long flags;
2117	unsigned char ucval;
2118
2119        switch(cmd) {
2120	/* the ioctls below read/set the flags usually shown in the leds */
2121	/* don't use them - they will go away without warning */
2122	case KDGKBLED:
2123                spin_lock_irqsave(&kbd_event_lock, flags);
2124		ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2125                spin_unlock_irqrestore(&kbd_event_lock, flags);
2126		return put_user(ucval, (char __user *)arg);
2127
2128	case KDSKBLED:
2129		if (!perm)
2130			return -EPERM;
2131		if (arg & ~0x77)
2132			return -EINVAL;
2133                spin_lock_irqsave(&led_lock, flags);
2134		kb->ledflagstate = (arg & 7);
2135		kb->default_ledflagstate = ((arg >> 4) & 7);
2136		set_leds();
2137                spin_unlock_irqrestore(&led_lock, flags);
2138		return 0;
2139
2140	/* the ioctls below only set the lights, not the functions */
2141	/* for those, see KDGKBLED and KDSKBLED above */
2142	case KDGETLED:
2143		ucval = getledstate();
2144		return put_user(ucval, (char __user *)arg);
2145
2146	case KDSETLED:
2147		if (!perm)
2148			return -EPERM;
2149		setledstate(kb, arg);
2150		return 0;
2151        }
2152        return -ENOIOCTLCMD;
2153}
2154
2155int vt_do_kdgkbmode(unsigned int console)
2156{
2157	struct kbd_struct *kb = &kbd_table[console];
2158	/* This is a spot read so needs no locking */
2159	switch (kb->kbdmode) {
2160	case VC_RAW:
2161		return K_RAW;
2162	case VC_MEDIUMRAW:
2163		return K_MEDIUMRAW;
2164	case VC_UNICODE:
2165		return K_UNICODE;
2166	case VC_OFF:
2167		return K_OFF;
2168	default:
2169		return K_XLATE;
2170	}
2171}
2172
2173/**
2174 *	vt_do_kdgkbmeta		-	report meta status
2175 *	@console: console to report
2176 *
2177 *	Report the meta flag status of this console
2178 */
2179int vt_do_kdgkbmeta(unsigned int console)
2180{
2181	struct kbd_struct *kb = &kbd_table[console];
2182        /* Again a spot read so no locking */
2183	return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2184}
2185
2186/**
2187 *	vt_reset_unicode	-	reset the unicode status
2188 *	@console: console being reset
2189 *
2190 *	Restore the unicode console state to its default
2191 */
2192void vt_reset_unicode(unsigned int console)
2193{
2194	unsigned long flags;
2195
2196	spin_lock_irqsave(&kbd_event_lock, flags);
2197	kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2198	spin_unlock_irqrestore(&kbd_event_lock, flags);
2199}
2200
2201/**
2202 *	vt_get_shift_state	-	shift bit state
2203 *
2204 *	Report the shift bits from the keyboard state. We have to export
2205 *	this to support some oddities in the vt layer.
2206 */
2207int vt_get_shift_state(void)
2208{
2209        /* Don't lock as this is a transient report */
2210        return shift_state;
2211}
2212
2213/**
2214 *	vt_reset_keyboard	-	reset keyboard state
2215 *	@console: console to reset
2216 *
2217 *	Reset the keyboard bits for a console as part of a general console
2218 *	reset event
2219 */
2220void vt_reset_keyboard(unsigned int console)
2221{
2222	struct kbd_struct *kb = &kbd_table[console];
2223	unsigned long flags;
2224
2225	spin_lock_irqsave(&kbd_event_lock, flags);
2226	set_vc_kbd_mode(kb, VC_REPEAT);
2227	clr_vc_kbd_mode(kb, VC_CKMODE);
2228	clr_vc_kbd_mode(kb, VC_APPLIC);
2229	clr_vc_kbd_mode(kb, VC_CRLF);
2230	kb->lockstate = 0;
2231	kb->slockstate = 0;
2232	spin_lock(&led_lock);
2233	kb->ledmode = LED_SHOW_FLAGS;
2234	kb->ledflagstate = kb->default_ledflagstate;
2235	spin_unlock(&led_lock);
2236	/* do not do set_leds here because this causes an endless tasklet loop
2237	   when the keyboard hasn't been initialized yet */
2238	spin_unlock_irqrestore(&kbd_event_lock, flags);
2239}
2240
2241/**
2242 *	vt_get_kbd_mode_bit	-	read keyboard status bits
2243 *	@console: console to read from
2244 *	@bit: mode bit to read
2245 *
2246 *	Report back a vt mode bit. We do this without locking so the
2247 *	caller must be sure that there are no synchronization needs
2248 */
2249
2250int vt_get_kbd_mode_bit(unsigned int console, int bit)
2251{
2252	struct kbd_struct *kb = &kbd_table[console];
2253	return vc_kbd_mode(kb, bit);
2254}
2255
2256/**
2257 *	vt_set_kbd_mode_bit	-	read keyboard status bits
2258 *	@console: console to read from
2259 *	@bit: mode bit to read
2260 *
2261 *	Set a vt mode bit. We do this without locking so the
2262 *	caller must be sure that there are no synchronization needs
2263 */
2264
2265void vt_set_kbd_mode_bit(unsigned int console, int bit)
2266{
2267	struct kbd_struct *kb = &kbd_table[console];
2268	unsigned long flags;
2269
2270	spin_lock_irqsave(&kbd_event_lock, flags);
2271	set_vc_kbd_mode(kb, bit);
2272	spin_unlock_irqrestore(&kbd_event_lock, flags);
2273}
2274
2275/**
2276 *	vt_clr_kbd_mode_bit	-	read keyboard status bits
2277 *	@console: console to read from
2278 *	@bit: mode bit to read
2279 *
2280 *	Report back a vt mode bit. We do this without locking so the
2281 *	caller must be sure that there are no synchronization needs
2282 */
2283
2284void vt_clr_kbd_mode_bit(unsigned int console, int bit)
2285{
2286	struct kbd_struct *kb = &kbd_table[console];
2287	unsigned long flags;
2288
2289	spin_lock_irqsave(&kbd_event_lock, flags);
2290	clr_vc_kbd_mode(kb, bit);
2291	spin_unlock_irqrestore(&kbd_event_lock, flags);
2292}
v3.5.6
 
   1/*
   2 * Written for linux by Johan Myreen as a translation from
   3 * the assembly version by Linus (with diacriticals added)
   4 *
   5 * Some additional features added by Christoph Niemann (ChN), March 1993
   6 *
   7 * Loadable keymaps by Risto Kankkunen, May 1993
   8 *
   9 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  10 * Added decr/incr_console, dynamic keymaps, Unicode support,
  11 * dynamic function/string keys, led setting,  Sept 1994
  12 * `Sticky' modifier keys, 951006.
  13 *
  14 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  15 *
  16 * Modified to provide 'generic' keyboard support by Hamish Macdonald
  17 * Merge with the m68k keyboard driver and split-off of the PC low-level
  18 * parts by Geert Uytterhoeven, May 1997
  19 *
  20 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  21 * 30-07-98: Dead keys redone, aeb@cwi.nl.
  22 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  23 */
  24
  25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  26
  27#include <linux/consolemap.h>
  28#include <linux/module.h>
  29#include <linux/sched.h>
  30#include <linux/tty.h>
  31#include <linux/tty_flip.h>
  32#include <linux/mm.h>
  33#include <linux/string.h>
  34#include <linux/init.h>
  35#include <linux/slab.h>
  36
 
  37#include <linux/kbd_kern.h>
  38#include <linux/kbd_diacr.h>
  39#include <linux/vt_kern.h>
  40#include <linux/input.h>
 
 
  41#include <linux/reboot.h>
  42#include <linux/notifier.h>
  43#include <linux/jiffies.h>
 
 
 
 
 
  44#include <linux/uaccess.h>
 
  45
  46#include <asm/irq_regs.h>
  47
  48extern void ctrl_alt_del(void);
  49
  50/*
  51 * Exported functions/variables
  52 */
  53
  54#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
  55
  56#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
  57#include <asm/kbdleds.h>
  58#else
  59static inline int kbd_defleds(void)
  60{
  61	return 0;
  62}
  63#endif
  64
  65#define KBD_DEFLOCK 0
  66
  67/*
  68 * Handler Tables.
  69 */
  70
  71#define K_HANDLERS\
  72	k_self,		k_fn,		k_spec,		k_pad,\
  73	k_dead,		k_cons,		k_cur,		k_shift,\
  74	k_meta,		k_ascii,	k_lock,		k_lowercase,\
  75	k_slock,	k_dead2,	k_brl,		k_ignore
  76
  77typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  78			    char up_flag);
  79static k_handler_fn K_HANDLERS;
  80static k_handler_fn *k_handler[16] = { K_HANDLERS };
  81
  82#define FN_HANDLERS\
  83	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
  84	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
  85	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
  86	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
  87	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
  88
  89typedef void (fn_handler_fn)(struct vc_data *vc);
  90static fn_handler_fn FN_HANDLERS;
  91static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  92
  93/*
  94 * Variables exported for vt_ioctl.c
  95 */
  96
  97struct vt_spawn_console vt_spawn_con = {
  98	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
  99	.pid  = NULL,
 100	.sig  = 0,
 101};
 102
 103
 104/*
 105 * Internal Data.
 106 */
 107
 108static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
 109static struct kbd_struct *kbd = kbd_table;
 110
 111/* maximum values each key_handler can handle */
 112static const int max_vals[] = {
 113	255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
 114	NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
 115	255, NR_LOCK - 1, 255, NR_BRL - 1
 
 
 
 
 
 
 
 
 
 
 
 
 116};
 117
 118static const int NR_TYPES = ARRAY_SIZE(max_vals);
 119
 
 
 
 120static struct input_handler kbd_handler;
 121static DEFINE_SPINLOCK(kbd_event_lock);
 122static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)];	/* keyboard key bitmap */
 
 
 123static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
 124static bool dead_key_next;
 125static int npadch = -1;					/* -1 or number assembled on pad */
 
 
 
 
 126static unsigned int diacr;
 127static char rep;					/* flag telling character repeat */
 128
 129static int shift_state = 0;
 130
 131static unsigned char ledstate = 0xff;			/* undefined */
 132static unsigned char ledioctl;
 133
 134static struct ledptr {
 135	unsigned int *addr;
 136	unsigned int mask;
 137	unsigned char valid:1;
 138} ledptrs[3];
 139
 140/*
 141 * Notifier list for console keyboard events
 142 */
 143static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
 144
 145int register_keyboard_notifier(struct notifier_block *nb)
 146{
 147	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
 148}
 149EXPORT_SYMBOL_GPL(register_keyboard_notifier);
 150
 151int unregister_keyboard_notifier(struct notifier_block *nb)
 152{
 153	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
 154}
 155EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
 156
 157/*
 158 * Translation of scancodes to keycodes. We set them on only the first
 159 * keyboard in the list that accepts the scancode and keycode.
 160 * Explanation for not choosing the first attached keyboard anymore:
 161 *  USB keyboards for example have two event devices: one for all "normal"
 162 *  keys and one for extra function keys (like "volume up", "make coffee",
 163 *  etc.). So this means that scancodes for the extra function keys won't
 164 *  be valid for the first event device, but will be for the second.
 165 */
 166
 167struct getset_keycode_data {
 168	struct input_keymap_entry ke;
 169	int error;
 170};
 171
 172static int getkeycode_helper(struct input_handle *handle, void *data)
 173{
 174	struct getset_keycode_data *d = data;
 175
 176	d->error = input_get_keycode(handle->dev, &d->ke);
 177
 178	return d->error == 0; /* stop as soon as we successfully get one */
 179}
 180
 181static int getkeycode(unsigned int scancode)
 182{
 183	struct getset_keycode_data d = {
 184		.ke	= {
 185			.flags		= 0,
 186			.len		= sizeof(scancode),
 187			.keycode	= 0,
 188		},
 189		.error	= -ENODEV,
 190	};
 191
 192	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 193
 194	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
 195
 196	return d.error ?: d.ke.keycode;
 197}
 198
 199static int setkeycode_helper(struct input_handle *handle, void *data)
 200{
 201	struct getset_keycode_data *d = data;
 202
 203	d->error = input_set_keycode(handle->dev, &d->ke);
 204
 205	return d->error == 0; /* stop as soon as we successfully set one */
 206}
 207
 208static int setkeycode(unsigned int scancode, unsigned int keycode)
 209{
 210	struct getset_keycode_data d = {
 211		.ke	= {
 212			.flags		= 0,
 213			.len		= sizeof(scancode),
 214			.keycode	= keycode,
 215		},
 216		.error	= -ENODEV,
 217	};
 218
 219	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 220
 221	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
 222
 223	return d.error;
 224}
 225
 226/*
 227 * Making beeps and bells. Note that we prefer beeps to bells, but when
 228 * shutting the sound off we do both.
 229 */
 230
 231static int kd_sound_helper(struct input_handle *handle, void *data)
 232{
 233	unsigned int *hz = data;
 234	struct input_dev *dev = handle->dev;
 235
 236	if (test_bit(EV_SND, dev->evbit)) {
 237		if (test_bit(SND_TONE, dev->sndbit)) {
 238			input_inject_event(handle, EV_SND, SND_TONE, *hz);
 239			if (*hz)
 240				return 0;
 241		}
 242		if (test_bit(SND_BELL, dev->sndbit))
 243			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
 244	}
 245
 246	return 0;
 247}
 248
 249static void kd_nosound(unsigned long ignored)
 250{
 251	static unsigned int zero;
 252
 253	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
 254}
 255
 256static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
 257
 258void kd_mksound(unsigned int hz, unsigned int ticks)
 259{
 260	del_timer_sync(&kd_mksound_timer);
 261
 262	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
 263
 264	if (hz && ticks)
 265		mod_timer(&kd_mksound_timer, jiffies + ticks);
 266}
 267EXPORT_SYMBOL(kd_mksound);
 268
 269/*
 270 * Setting the keyboard rate.
 271 */
 272
 273static int kbd_rate_helper(struct input_handle *handle, void *data)
 274{
 275	struct input_dev *dev = handle->dev;
 276	struct kbd_repeat *rep = data;
 277
 278	if (test_bit(EV_REP, dev->evbit)) {
 279
 280		if (rep[0].delay > 0)
 281			input_inject_event(handle,
 282					   EV_REP, REP_DELAY, rep[0].delay);
 283		if (rep[0].period > 0)
 284			input_inject_event(handle,
 285					   EV_REP, REP_PERIOD, rep[0].period);
 286
 287		rep[1].delay = dev->rep[REP_DELAY];
 288		rep[1].period = dev->rep[REP_PERIOD];
 289	}
 290
 291	return 0;
 292}
 293
 294int kbd_rate(struct kbd_repeat *rep)
 295{
 296	struct kbd_repeat data[2] = { *rep };
 297
 298	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
 299	*rep = data[1];	/* Copy currently used settings */
 300
 301	return 0;
 302}
 303
 304/*
 305 * Helper Functions.
 306 */
 307static void put_queue(struct vc_data *vc, int ch)
 308{
 309	struct tty_struct *tty = vc->port.tty;
 310
 311	if (tty) {
 312		tty_insert_flip_char(tty, ch, 0);
 313		con_schedule_flip(tty);
 314	}
 315}
 316
 317static void puts_queue(struct vc_data *vc, char *cp)
 318{
 319	struct tty_struct *tty = vc->port.tty;
 320
 321	if (!tty)
 322		return;
 323
 324	while (*cp) {
 325		tty_insert_flip_char(tty, *cp, 0);
 326		cp++;
 327	}
 328	con_schedule_flip(tty);
 329}
 330
 331static void applkey(struct vc_data *vc, int key, char mode)
 332{
 333	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
 334
 335	buf[1] = (mode ? 'O' : '[');
 336	buf[2] = key;
 337	puts_queue(vc, buf);
 338}
 339
 340/*
 341 * Many other routines do put_queue, but I think either
 342 * they produce ASCII, or they produce some user-assigned
 343 * string, and in both cases we might assume that it is
 344 * in utf-8 already.
 345 */
 346static void to_utf8(struct vc_data *vc, uint c)
 347{
 348	if (c < 0x80)
 349		/*  0******* */
 350		put_queue(vc, c);
 351	else if (c < 0x800) {
 352		/* 110***** 10****** */
 353		put_queue(vc, 0xc0 | (c >> 6));
 354		put_queue(vc, 0x80 | (c & 0x3f));
 355	} else if (c < 0x10000) {
 356		if (c >= 0xD800 && c < 0xE000)
 357			return;
 358		if (c == 0xFFFF)
 359			return;
 360		/* 1110**** 10****** 10****** */
 361		put_queue(vc, 0xe0 | (c >> 12));
 362		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 363		put_queue(vc, 0x80 | (c & 0x3f));
 364	} else if (c < 0x110000) {
 365		/* 11110*** 10****** 10****** 10****** */
 366		put_queue(vc, 0xf0 | (c >> 18));
 367		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
 368		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 369		put_queue(vc, 0x80 | (c & 0x3f));
 370	}
 371}
 372
 
 
 
 
 
 
 373/*
 374 * Called after returning from RAW mode or when changing consoles - recompute
 375 * shift_down[] and shift_state from key_down[] maybe called when keymap is
 376 * undefined, so that shiftkey release is seen. The caller must hold the
 377 * kbd_event_lock.
 378 */
 379
 380static void do_compute_shiftstate(void)
 381{
 382	unsigned int i, j, k, sym, val;
 383
 384	shift_state = 0;
 385	memset(shift_down, 0, sizeof(shift_down));
 386
 387	for (i = 0; i < ARRAY_SIZE(key_down); i++) {
 388
 389		if (!key_down[i])
 390			continue;
 391
 392		k = i * BITS_PER_LONG;
 393
 394		for (j = 0; j < BITS_PER_LONG; j++, k++) {
 395
 396			if (!test_bit(k, key_down))
 397				continue;
 398
 399			sym = U(key_maps[0][k]);
 400			if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
 401				continue;
 402
 403			val = KVAL(sym);
 404			if (val == KVAL(K_CAPSSHIFT))
 405				val = KVAL(K_SHIFT);
 406
 407			shift_down[val]++;
 408			shift_state |= (1 << val);
 409		}
 410	}
 411}
 412
 413/* We still have to export this method to vt.c */
 414void compute_shiftstate(void)
 415{
 416	unsigned long flags;
 
 
 
 
 
 
 
 
 
 417	spin_lock_irqsave(&kbd_event_lock, flags);
 418	do_compute_shiftstate();
 419	spin_unlock_irqrestore(&kbd_event_lock, flags);
 420}
 421
 422/*
 423 * We have a combining character DIACR here, followed by the character CH.
 424 * If the combination occurs in the table, return the corresponding value.
 425 * Otherwise, if CH is a space or equals DIACR, return DIACR.
 426 * Otherwise, conclude that DIACR was not combining after all,
 427 * queue it and return CH.
 428 */
 429static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
 430{
 431	unsigned int d = diacr;
 432	unsigned int i;
 433
 434	diacr = 0;
 435
 436	if ((d & ~0xff) == BRL_UC_ROW) {
 437		if ((ch & ~0xff) == BRL_UC_ROW)
 438			return d | ch;
 439	} else {
 440		for (i = 0; i < accent_table_size; i++)
 441			if (accent_table[i].diacr == d && accent_table[i].base == ch)
 442				return accent_table[i].result;
 443	}
 444
 445	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
 446		return d;
 447
 448	if (kbd->kbdmode == VC_UNICODE)
 449		to_utf8(vc, d);
 450	else {
 451		int c = conv_uni_to_8bit(d);
 452		if (c != -1)
 453			put_queue(vc, c);
 454	}
 455
 456	return ch;
 457}
 458
 459/*
 460 * Special function handlers
 461 */
 462static void fn_enter(struct vc_data *vc)
 463{
 464	if (diacr) {
 465		if (kbd->kbdmode == VC_UNICODE)
 466			to_utf8(vc, diacr);
 467		else {
 468			int c = conv_uni_to_8bit(diacr);
 469			if (c != -1)
 470				put_queue(vc, c);
 471		}
 472		diacr = 0;
 473	}
 474
 475	put_queue(vc, 13);
 476	if (vc_kbd_mode(kbd, VC_CRLF))
 477		put_queue(vc, 10);
 478}
 479
 480static void fn_caps_toggle(struct vc_data *vc)
 481{
 482	if (rep)
 483		return;
 484
 485	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
 486}
 487
 488static void fn_caps_on(struct vc_data *vc)
 489{
 490	if (rep)
 491		return;
 492
 493	set_vc_kbd_led(kbd, VC_CAPSLOCK);
 494}
 495
 496static void fn_show_ptregs(struct vc_data *vc)
 497{
 498	struct pt_regs *regs = get_irq_regs();
 499
 500	if (regs)
 501		show_regs(regs);
 502}
 503
 504static void fn_hold(struct vc_data *vc)
 505{
 506	struct tty_struct *tty = vc->port.tty;
 507
 508	if (rep || !tty)
 509		return;
 510
 511	/*
 512	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
 513	 * these routines are also activated by ^S/^Q.
 514	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
 515	 */
 516	if (tty->stopped)
 517		start_tty(tty);
 518	else
 519		stop_tty(tty);
 520}
 521
 522static void fn_num(struct vc_data *vc)
 523{
 524	if (vc_kbd_mode(kbd, VC_APPLIC))
 525		applkey(vc, 'P', 1);
 526	else
 527		fn_bare_num(vc);
 528}
 529
 530/*
 531 * Bind this to Shift-NumLock if you work in application keypad mode
 532 * but want to be able to change the NumLock flag.
 533 * Bind this to NumLock if you prefer that the NumLock key always
 534 * changes the NumLock flag.
 535 */
 536static void fn_bare_num(struct vc_data *vc)
 537{
 538	if (!rep)
 539		chg_vc_kbd_led(kbd, VC_NUMLOCK);
 540}
 541
 542static void fn_lastcons(struct vc_data *vc)
 543{
 544	/* switch to the last used console, ChN */
 545	set_console(last_console);
 546}
 547
 548static void fn_dec_console(struct vc_data *vc)
 549{
 550	int i, cur = fg_console;
 551
 552	/* Currently switching?  Queue this next switch relative to that. */
 553	if (want_console != -1)
 554		cur = want_console;
 555
 556	for (i = cur - 1; i != cur; i--) {
 557		if (i == -1)
 558			i = MAX_NR_CONSOLES - 1;
 559		if (vc_cons_allocated(i))
 560			break;
 561	}
 562	set_console(i);
 563}
 564
 565static void fn_inc_console(struct vc_data *vc)
 566{
 567	int i, cur = fg_console;
 568
 569	/* Currently switching?  Queue this next switch relative to that. */
 570	if (want_console != -1)
 571		cur = want_console;
 572
 573	for (i = cur+1; i != cur; i++) {
 574		if (i == MAX_NR_CONSOLES)
 575			i = 0;
 576		if (vc_cons_allocated(i))
 577			break;
 578	}
 579	set_console(i);
 580}
 581
 582static void fn_send_intr(struct vc_data *vc)
 583{
 584	struct tty_struct *tty = vc->port.tty;
 585
 586	if (!tty)
 587		return;
 588	tty_insert_flip_char(tty, 0, TTY_BREAK);
 589	con_schedule_flip(tty);
 590}
 591
 592static void fn_scroll_forw(struct vc_data *vc)
 593{
 594	scrollfront(vc, 0);
 595}
 596
 597static void fn_scroll_back(struct vc_data *vc)
 598{
 599	scrollback(vc, 0);
 600}
 601
 602static void fn_show_mem(struct vc_data *vc)
 603{
 604	show_mem(0);
 605}
 606
 607static void fn_show_state(struct vc_data *vc)
 608{
 609	show_state();
 610}
 611
 612static void fn_boot_it(struct vc_data *vc)
 613{
 614	ctrl_alt_del();
 615}
 616
 617static void fn_compose(struct vc_data *vc)
 618{
 619	dead_key_next = true;
 620}
 621
 622static void fn_spawn_con(struct vc_data *vc)
 623{
 624	spin_lock(&vt_spawn_con.lock);
 625	if (vt_spawn_con.pid)
 626		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
 627			put_pid(vt_spawn_con.pid);
 628			vt_spawn_con.pid = NULL;
 629		}
 630	spin_unlock(&vt_spawn_con.lock);
 631}
 632
 633static void fn_SAK(struct vc_data *vc)
 634{
 635	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
 636	schedule_work(SAK_work);
 637}
 638
 639static void fn_null(struct vc_data *vc)
 640{
 641	do_compute_shiftstate();
 642}
 643
 644/*
 645 * Special key handlers
 646 */
 647static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
 648{
 649}
 650
 651static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
 652{
 653	if (up_flag)
 654		return;
 655	if (value >= ARRAY_SIZE(fn_handler))
 656		return;
 657	if ((kbd->kbdmode == VC_RAW ||
 658	     kbd->kbdmode == VC_MEDIUMRAW ||
 659	     kbd->kbdmode == VC_OFF) &&
 660	     value != KVAL(K_SAK))
 661		return;		/* SAK is allowed even in raw mode */
 662	fn_handler[value](vc);
 663}
 664
 665static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
 666{
 667	pr_err("k_lowercase was called - impossible\n");
 668}
 669
 670static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
 671{
 672	if (up_flag)
 673		return;		/* no action, if this is a key release */
 674
 675	if (diacr)
 676		value = handle_diacr(vc, value);
 677
 678	if (dead_key_next) {
 679		dead_key_next = false;
 680		diacr = value;
 681		return;
 682	}
 683	if (kbd->kbdmode == VC_UNICODE)
 684		to_utf8(vc, value);
 685	else {
 686		int c = conv_uni_to_8bit(value);
 687		if (c != -1)
 688			put_queue(vc, c);
 689	}
 690}
 691
 692/*
 693 * Handle dead key. Note that we now may have several
 694 * dead keys modifying the same character. Very useful
 695 * for Vietnamese.
 696 */
 697static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
 698{
 699	if (up_flag)
 700		return;
 701
 702	diacr = (diacr ? handle_diacr(vc, value) : value);
 703}
 704
 705static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
 706{
 707	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
 708}
 709
 710static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
 711{
 712	k_deadunicode(vc, value, up_flag);
 713}
 714
 715/*
 716 * Obsolete - for backwards compatibility only
 717 */
 718static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
 719{
 720	static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721
 722	k_deadunicode(vc, ret_diacr[value], up_flag);
 723}
 724
 725static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
 726{
 727	if (up_flag)
 728		return;
 729
 730	set_console(value);
 731}
 732
 733static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
 734{
 735	if (up_flag)
 736		return;
 737
 738	if ((unsigned)value < ARRAY_SIZE(func_table)) {
 
 
 
 739		if (func_table[value])
 740			puts_queue(vc, func_table[value]);
 
 
 741	} else
 742		pr_err("k_fn called with value=%d\n", value);
 743}
 744
 745static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
 746{
 747	static const char cur_chars[] = "BDCA";
 748
 749	if (up_flag)
 750		return;
 751
 752	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
 753}
 754
 755static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
 756{
 757	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
 758	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
 759
 760	if (up_flag)
 761		return;		/* no action, if this is a key release */
 762
 763	/* kludge... shift forces cursor/number keys */
 764	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
 765		applkey(vc, app_map[value], 1);
 766		return;
 767	}
 768
 769	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
 770
 771		switch (value) {
 772		case KVAL(K_PCOMMA):
 773		case KVAL(K_PDOT):
 774			k_fn(vc, KVAL(K_REMOVE), 0);
 775			return;
 776		case KVAL(K_P0):
 777			k_fn(vc, KVAL(K_INSERT), 0);
 778			return;
 779		case KVAL(K_P1):
 780			k_fn(vc, KVAL(K_SELECT), 0);
 781			return;
 782		case KVAL(K_P2):
 783			k_cur(vc, KVAL(K_DOWN), 0);
 784			return;
 785		case KVAL(K_P3):
 786			k_fn(vc, KVAL(K_PGDN), 0);
 787			return;
 788		case KVAL(K_P4):
 789			k_cur(vc, KVAL(K_LEFT), 0);
 790			return;
 791		case KVAL(K_P6):
 792			k_cur(vc, KVAL(K_RIGHT), 0);
 793			return;
 794		case KVAL(K_P7):
 795			k_fn(vc, KVAL(K_FIND), 0);
 796			return;
 797		case KVAL(K_P8):
 798			k_cur(vc, KVAL(K_UP), 0);
 799			return;
 800		case KVAL(K_P9):
 801			k_fn(vc, KVAL(K_PGUP), 0);
 802			return;
 803		case KVAL(K_P5):
 804			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
 805			return;
 806		}
 807	}
 808
 809	put_queue(vc, pad_chars[value]);
 810	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
 811		put_queue(vc, 10);
 812}
 813
 814static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
 815{
 816	int old_state = shift_state;
 817
 818	if (rep)
 819		return;
 820	/*
 821	 * Mimic typewriter:
 822	 * a CapsShift key acts like Shift but undoes CapsLock
 823	 */
 824	if (value == KVAL(K_CAPSSHIFT)) {
 825		value = KVAL(K_SHIFT);
 826		if (!up_flag)
 827			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
 828	}
 829
 830	if (up_flag) {
 831		/*
 832		 * handle the case that two shift or control
 833		 * keys are depressed simultaneously
 834		 */
 835		if (shift_down[value])
 836			shift_down[value]--;
 837	} else
 838		shift_down[value]++;
 839
 840	if (shift_down[value])
 841		shift_state |= (1 << value);
 842	else
 843		shift_state &= ~(1 << value);
 844
 845	/* kludge */
 846	if (up_flag && shift_state != old_state && npadch != -1) {
 847		if (kbd->kbdmode == VC_UNICODE)
 848			to_utf8(vc, npadch);
 849		else
 850			put_queue(vc, npadch & 0xff);
 851		npadch = -1;
 852	}
 853}
 854
 855static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
 856{
 857	if (up_flag)
 858		return;
 859
 860	if (vc_kbd_mode(kbd, VC_META)) {
 861		put_queue(vc, '\033');
 862		put_queue(vc, value);
 863	} else
 864		put_queue(vc, value | 0x80);
 865}
 866
 867static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
 868{
 869	int base;
 870
 871	if (up_flag)
 872		return;
 873
 874	if (value < 10) {
 875		/* decimal input of code, while Alt depressed */
 876		base = 10;
 877	} else {
 878		/* hexadecimal input of code, while AltGr depressed */
 879		value -= 10;
 880		base = 16;
 881	}
 882
 883	if (npadch == -1)
 884		npadch = value;
 885	else
 886		npadch = npadch * base + value;
 
 
 887}
 888
 889static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
 890{
 891	if (up_flag || rep)
 892		return;
 893
 894	chg_vc_kbd_lock(kbd, value);
 895}
 896
 897static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
 898{
 899	k_shift(vc, value, up_flag);
 900	if (up_flag || rep)
 901		return;
 902
 903	chg_vc_kbd_slock(kbd, value);
 904	/* try to make Alt, oops, AltGr and such work */
 905	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
 906		kbd->slockstate = 0;
 907		chg_vc_kbd_slock(kbd, value);
 908	}
 909}
 910
 911/* by default, 300ms interval for combination release */
 912static unsigned brl_timeout = 300;
 913MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
 914module_param(brl_timeout, uint, 0644);
 915
 916static unsigned brl_nbchords = 1;
 917MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
 918module_param(brl_nbchords, uint, 0644);
 919
 920static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
 921{
 922	static unsigned long chords;
 923	static unsigned committed;
 924
 925	if (!brl_nbchords)
 926		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
 927	else {
 928		committed |= pattern;
 929		chords++;
 930		if (chords == brl_nbchords) {
 931			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
 932			chords = 0;
 933			committed = 0;
 934		}
 935	}
 936}
 937
 938static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
 939{
 940	static unsigned pressed, committing;
 941	static unsigned long releasestart;
 942
 943	if (kbd->kbdmode != VC_UNICODE) {
 944		if (!up_flag)
 945			pr_warning("keyboard mode must be unicode for braille patterns\n");
 946		return;
 947	}
 948
 949	if (!value) {
 950		k_unicode(vc, BRL_UC_ROW, up_flag);
 951		return;
 952	}
 953
 954	if (value > 8)
 955		return;
 956
 957	if (!up_flag) {
 958		pressed |= 1 << (value - 1);
 959		if (!brl_timeout)
 960			committing = pressed;
 961	} else if (brl_timeout) {
 962		if (!committing ||
 963		    time_after(jiffies,
 964			       releasestart + msecs_to_jiffies(brl_timeout))) {
 965			committing = pressed;
 966			releasestart = jiffies;
 967		}
 968		pressed &= ~(1 << (value - 1));
 969		if (!pressed && committing) {
 970			k_brlcommit(vc, committing, 0);
 971			committing = 0;
 972		}
 973	} else {
 974		if (committing) {
 975			k_brlcommit(vc, committing, 0);
 976			committing = 0;
 977		}
 978		pressed &= ~(1 << (value - 1));
 979	}
 980}
 981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982/*
 983 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
 984 * or (ii) whatever pattern of lights people want to show using KDSETLED,
 985 * or (iii) specified bits of specified words in kernel memory.
 986 */
 987unsigned char getledstate(void)
 988{
 989	return ledstate;
 990}
 991
 992void setledstate(struct kbd_struct *kbd, unsigned int led)
 993{
 994        unsigned long flags;
 995        spin_lock_irqsave(&kbd_event_lock, flags);
 996	if (!(led & ~7)) {
 997		ledioctl = led;
 998		kbd->ledmode = LED_SHOW_IOCTL;
 999	} else
1000		kbd->ledmode = LED_SHOW_FLAGS;
1001
1002	set_leds();
1003	spin_unlock_irqrestore(&kbd_event_lock, flags);
1004}
1005
1006static inline unsigned char getleds(void)
1007{
1008	struct kbd_struct *kbd = kbd_table + fg_console;
1009	unsigned char leds;
1010	int i;
1011
1012	if (kbd->ledmode == LED_SHOW_IOCTL)
1013		return ledioctl;
1014
1015	leds = kbd->ledflagstate;
1016
1017	if (kbd->ledmode == LED_SHOW_MEM) {
1018		for (i = 0; i < 3; i++)
1019			if (ledptrs[i].valid) {
1020				if (*ledptrs[i].addr & ledptrs[i].mask)
1021					leds |= (1 << i);
1022				else
1023					leds &= ~(1 << i);
1024			}
1025	}
1026	return leds;
1027}
1028
1029static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1030{
1031	unsigned char leds = *(unsigned char *)data;
1032
1033	if (test_bit(EV_LED, handle->dev->evbit)) {
1034		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1035		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & 0x02));
1036		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & 0x04));
1037		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1038	}
1039
1040	return 0;
1041}
1042
1043/**
1044 *	vt_get_leds	-	helper for braille console
1045 *	@console: console to read
1046 *	@flag: flag we want to check
1047 *
1048 *	Check the status of a keyboard led flag and report it back
1049 */
1050int vt_get_leds(int console, int flag)
1051{
1052	struct kbd_struct * kbd = kbd_table + console;
1053	int ret;
 
1054
1055	ret = vc_kbd_led(kbd, flag);
 
 
1056
1057	return ret;
1058}
1059EXPORT_SYMBOL_GPL(vt_get_leds);
1060
1061/**
1062 *	vt_set_led_state	-	set LED state of a console
1063 *	@console: console to set
1064 *	@leds: LED bits
1065 *
1066 *	Set the LEDs on a console. This is a wrapper for the VT layer
1067 *	so that we can keep kbd knowledge internal
1068 */
1069void vt_set_led_state(int console, int leds)
1070{
1071	struct kbd_struct * kbd = kbd_table + console;
1072	setledstate(kbd, leds);
1073}
1074
1075/**
1076 *	vt_kbd_con_start	-	Keyboard side of console start
1077 *	@console: console
1078 *
1079 *	Handle console start. This is a wrapper for the VT layer
1080 *	so that we can keep kbd knowledge internal
1081 *
1082 *	FIXME: We eventually need to hold the kbd lock here to protect
1083 *	the LED updating. We can't do it yet because fn_hold calls stop_tty
1084 *	and start_tty under the kbd_event_lock, while normal tty paths
1085 *	don't hold the lock. We probably need to split out an LED lock
1086 *	but not during an -rc release!
1087 */
1088void vt_kbd_con_start(int console)
1089{
1090	struct kbd_struct * kbd = kbd_table + console;
1091/*	unsigned long flags; */
1092/*	spin_lock_irqsave(&kbd_event_lock, flags); */
1093	clr_vc_kbd_led(kbd, VC_SCROLLOCK);
1094	set_leds();
1095/*	spin_unlock_irqrestore(&kbd_event_lock, flags); */
1096}
1097
1098/**
1099 *	vt_kbd_con_stop		-	Keyboard side of console stop
1100 *	@console: console
1101 *
1102 *	Handle console stop. This is a wrapper for the VT layer
1103 *	so that we can keep kbd knowledge internal
1104 *
1105 *	FIXME: We eventually need to hold the kbd lock here to protect
1106 *	the LED updating. We can't do it yet because fn_hold calls stop_tty
1107 *	and start_tty under the kbd_event_lock, while normal tty paths
1108 *	don't hold the lock. We probably need to split out an LED lock
1109 *	but not during an -rc release!
1110 */
1111void vt_kbd_con_stop(int console)
1112{
1113	struct kbd_struct * kbd = kbd_table + console;
1114/*	unsigned long flags; */
1115/*	spin_lock_irqsave(&kbd_event_lock, flags); */
1116	set_vc_kbd_led(kbd, VC_SCROLLOCK);
1117	set_leds();
1118/*	spin_unlock_irqrestore(&kbd_event_lock, flags); */
1119}
1120
1121/*
1122 * This is the tasklet that updates LED state on all keyboards
1123 * attached to the box. The reason we use tasklet is that we
1124 * need to handle the scenario when keyboard handler is not
1125 * registered yet but we already getting updates from the VT to
1126 * update led state.
1127 */
1128static void kbd_bh(unsigned long dummy)
1129{
1130	unsigned char leds = getleds();
 
 
 
 
 
 
 
 
 
 
 
1131
1132	if (leds != ledstate) {
1133		input_handler_for_each_handle(&kbd_handler, &leds,
1134					      kbd_update_leds_helper);
1135		ledstate = leds;
1136	}
1137}
1138
1139DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1140
1141#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1142    defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1143    defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1144    (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1145    defined(CONFIG_AVR32)
 
 
 
 
1146
1147#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1148			((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
 
1149
1150static const unsigned short x86_keycodes[256] =
1151	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1152	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1153	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1154	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1155	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1156	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1157	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1158	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1159	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1160	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1161	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1162	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1163	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1164	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1165	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1166
1167#ifdef CONFIG_SPARC
1168static int sparc_l1_a_state;
1169extern void sun_do_break(void);
1170#endif
1171
1172static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1173		       unsigned char up_flag)
1174{
1175	int code;
1176
1177	switch (keycode) {
1178
1179	case KEY_PAUSE:
1180		put_queue(vc, 0xe1);
1181		put_queue(vc, 0x1d | up_flag);
1182		put_queue(vc, 0x45 | up_flag);
1183		break;
1184
1185	case KEY_HANGEUL:
1186		if (!up_flag)
1187			put_queue(vc, 0xf2);
1188		break;
1189
1190	case KEY_HANJA:
1191		if (!up_flag)
1192			put_queue(vc, 0xf1);
1193		break;
1194
1195	case KEY_SYSRQ:
1196		/*
1197		 * Real AT keyboards (that's what we're trying
1198		 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1199		 * pressing PrtSc/SysRq alone, but simply 0x54
1200		 * when pressing Alt+PrtSc/SysRq.
1201		 */
1202		if (test_bit(KEY_LEFTALT, key_down) ||
1203		    test_bit(KEY_RIGHTALT, key_down)) {
1204			put_queue(vc, 0x54 | up_flag);
1205		} else {
1206			put_queue(vc, 0xe0);
1207			put_queue(vc, 0x2a | up_flag);
1208			put_queue(vc, 0xe0);
1209			put_queue(vc, 0x37 | up_flag);
1210		}
1211		break;
1212
1213	default:
1214		if (keycode > 255)
1215			return -1;
1216
1217		code = x86_keycodes[keycode];
1218		if (!code)
1219			return -1;
1220
1221		if (code & 0x100)
1222			put_queue(vc, 0xe0);
1223		put_queue(vc, (code & 0x7f) | up_flag);
1224
1225		break;
1226	}
1227
1228	return 0;
1229}
1230
1231#else
1232
1233#define HW_RAW(dev)	0
 
 
 
1234
1235static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1236{
1237	if (keycode > 127)
1238		return -1;
1239
1240	put_queue(vc, keycode | up_flag);
1241	return 0;
1242}
1243#endif
1244
1245static void kbd_rawcode(unsigned char data)
1246{
1247	struct vc_data *vc = vc_cons[fg_console].d;
1248
1249	kbd = kbd_table + vc->vc_num;
1250	if (kbd->kbdmode == VC_RAW)
1251		put_queue(vc, data);
1252}
1253
1254static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1255{
1256	struct vc_data *vc = vc_cons[fg_console].d;
1257	unsigned short keysym, *key_map;
1258	unsigned char type;
1259	bool raw_mode;
1260	struct tty_struct *tty;
1261	int shift_final;
1262	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1263	int rc;
1264
1265	tty = vc->port.tty;
1266
1267	if (tty && (!tty->driver_data)) {
1268		/* No driver data? Strange. Okay we fix it then. */
1269		tty->driver_data = vc;
1270	}
1271
1272	kbd = kbd_table + vc->vc_num;
1273
1274#ifdef CONFIG_SPARC
1275	if (keycode == KEY_STOP)
1276		sparc_l1_a_state = down;
1277#endif
1278
1279	rep = (down == 2);
1280
1281	raw_mode = (kbd->kbdmode == VC_RAW);
1282	if (raw_mode && !hw_raw)
1283		if (emulate_raw(vc, keycode, !down << 7))
1284			if (keycode < BTN_MISC && printk_ratelimit())
1285				pr_warning("can't emulate rawmode for keycode %d\n",
1286					   keycode);
1287
1288#ifdef CONFIG_SPARC
1289	if (keycode == KEY_A && sparc_l1_a_state) {
1290		sparc_l1_a_state = false;
1291		sun_do_break();
1292	}
1293#endif
1294
1295	if (kbd->kbdmode == VC_MEDIUMRAW) {
1296		/*
1297		 * This is extended medium raw mode, with keys above 127
1298		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1299		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1300		 * interfere with anything else. The two bytes after 0 will
1301		 * always have the up flag set not to interfere with older
1302		 * applications. This allows for 16384 different keycodes,
1303		 * which should be enough.
1304		 */
1305		if (keycode < 128) {
1306			put_queue(vc, keycode | (!down << 7));
1307		} else {
1308			put_queue(vc, !down << 7);
1309			put_queue(vc, (keycode >> 7) | 0x80);
1310			put_queue(vc, keycode | 0x80);
1311		}
1312		raw_mode = true;
1313	}
1314
1315	if (down)
1316		set_bit(keycode, key_down);
1317	else
1318		clear_bit(keycode, key_down);
1319
1320	if (rep &&
1321	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1322	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1323		/*
1324		 * Don't repeat a key if the input buffers are not empty and the
1325		 * characters get aren't echoed locally. This makes key repeat
1326		 * usable with slow applications and under heavy loads.
1327		 */
1328		return;
1329	}
1330
1331	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1332	param.ledstate = kbd->ledflagstate;
1333	key_map = key_maps[shift_final];
1334
1335	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1336					KBD_KEYCODE, &param);
1337	if (rc == NOTIFY_STOP || !key_map) {
1338		atomic_notifier_call_chain(&keyboard_notifier_list,
1339					   KBD_UNBOUND_KEYCODE, &param);
1340		do_compute_shiftstate();
1341		kbd->slockstate = 0;
1342		return;
1343	}
1344
1345	if (keycode < NR_KEYS)
1346		keysym = key_map[keycode];
1347	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1348		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1349	else
1350		return;
1351
1352	type = KTYP(keysym);
1353
1354	if (type < 0xf0) {
1355		param.value = keysym;
1356		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1357						KBD_UNICODE, &param);
1358		if (rc != NOTIFY_STOP)
1359			if (down && !raw_mode)
1360				to_utf8(vc, keysym);
1361		return;
1362	}
1363
1364	type -= 0xf0;
1365
1366	if (type == KT_LETTER) {
1367		type = KT_LATIN;
1368		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1369			key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1370			if (key_map)
1371				keysym = key_map[keycode];
1372		}
1373	}
1374
1375	param.value = keysym;
1376	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1377					KBD_KEYSYM, &param);
1378	if (rc == NOTIFY_STOP)
1379		return;
1380
1381	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1382		return;
1383
1384	(*k_handler[type])(vc, keysym & 0xff, !down);
1385
1386	param.ledstate = kbd->ledflagstate;
1387	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1388
1389	if (type != KT_SLOCK)
1390		kbd->slockstate = 0;
1391}
1392
1393static void kbd_event(struct input_handle *handle, unsigned int event_type,
1394		      unsigned int event_code, int value)
1395{
1396	/* We are called with interrupts disabled, just take the lock */
1397	spin_lock(&kbd_event_lock);
1398
1399	if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
 
1400		kbd_rawcode(value);
1401	if (event_type == EV_KEY)
1402		kbd_keycode(event_code, value, HW_RAW(handle->dev));
1403
1404	spin_unlock(&kbd_event_lock);
1405
1406	tasklet_schedule(&keyboard_tasklet);
1407	do_poke_blanked_console = 1;
1408	schedule_console_callback();
1409}
1410
1411static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1412{
1413	int i;
1414
1415	if (test_bit(EV_SND, dev->evbit))
1416		return true;
1417
1418	if (test_bit(EV_KEY, dev->evbit)) {
1419		for (i = KEY_RESERVED; i < BTN_MISC; i++)
1420			if (test_bit(i, dev->keybit))
1421				return true;
1422		for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1423			if (test_bit(i, dev->keybit))
1424				return true;
1425	}
1426
1427	return false;
1428}
1429
1430/*
1431 * When a keyboard (or other input device) is found, the kbd_connect
1432 * function is called. The function then looks at the device, and if it
1433 * likes it, it can open it and get events from it. In this (kbd_connect)
1434 * function, we should decide which VT to bind that keyboard to initially.
1435 */
1436static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1437			const struct input_device_id *id)
1438{
1439	struct input_handle *handle;
1440	int error;
1441
1442	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1443	if (!handle)
1444		return -ENOMEM;
1445
1446	handle->dev = dev;
1447	handle->handler = handler;
1448	handle->name = "kbd";
1449
1450	error = input_register_handle(handle);
1451	if (error)
1452		goto err_free_handle;
1453
1454	error = input_open_device(handle);
1455	if (error)
1456		goto err_unregister_handle;
1457
1458	return 0;
1459
1460 err_unregister_handle:
1461	input_unregister_handle(handle);
1462 err_free_handle:
1463	kfree(handle);
1464	return error;
1465}
1466
1467static void kbd_disconnect(struct input_handle *handle)
1468{
1469	input_close_device(handle);
1470	input_unregister_handle(handle);
1471	kfree(handle);
1472}
1473
1474/*
1475 * Start keyboard handler on the new keyboard by refreshing LED state to
1476 * match the rest of the system.
1477 */
1478static void kbd_start(struct input_handle *handle)
1479{
1480	tasklet_disable(&keyboard_tasklet);
1481
1482	if (ledstate != 0xff)
1483		kbd_update_leds_helper(handle, &ledstate);
1484
1485	tasklet_enable(&keyboard_tasklet);
1486}
1487
1488static const struct input_device_id kbd_ids[] = {
1489	{
1490		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1491		.evbit = { BIT_MASK(EV_KEY) },
1492	},
1493
1494	{
1495		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1496		.evbit = { BIT_MASK(EV_SND) },
1497	},
1498
1499	{ },    /* Terminating entry */
1500};
1501
1502MODULE_DEVICE_TABLE(input, kbd_ids);
1503
1504static struct input_handler kbd_handler = {
1505	.event		= kbd_event,
1506	.match		= kbd_match,
1507	.connect	= kbd_connect,
1508	.disconnect	= kbd_disconnect,
1509	.start		= kbd_start,
1510	.name		= "kbd",
1511	.id_table	= kbd_ids,
1512};
1513
1514int __init kbd_init(void)
1515{
1516	int i;
1517	int error;
1518
1519	for (i = 0; i < MAX_NR_CONSOLES; i++) {
1520		kbd_table[i].ledflagstate = kbd_defleds();
1521		kbd_table[i].default_ledflagstate = kbd_defleds();
1522		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1523		kbd_table[i].lockstate = KBD_DEFLOCK;
1524		kbd_table[i].slockstate = 0;
1525		kbd_table[i].modeflags = KBD_DEFMODE;
1526		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1527	}
1528
 
 
1529	error = input_register_handler(&kbd_handler);
1530	if (error)
1531		return error;
1532
1533	tasklet_enable(&keyboard_tasklet);
1534	tasklet_schedule(&keyboard_tasklet);
1535
1536	return 0;
1537}
1538
1539/* Ioctl support code */
1540
1541/**
1542 *	vt_do_diacrit		-	diacritical table updates
1543 *	@cmd: ioctl request
1544 *	@up: pointer to user data for ioctl
1545 *	@perm: permissions check computed by caller
1546 *
1547 *	Update the diacritical tables atomically and safely. Lock them
1548 *	against simultaneous keypresses
1549 */
1550int vt_do_diacrit(unsigned int cmd, void __user *up, int perm)
1551{
1552	struct kbdiacrs __user *a = up;
1553	unsigned long flags;
1554	int asize;
1555	int ret = 0;
1556
1557	switch (cmd) {
1558	case KDGKBDIACR:
1559	{
1560		struct kbdiacr *diacr;
 
1561		int i;
1562
1563		diacr = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
1564								GFP_KERNEL);
1565		if (diacr == NULL)
1566			return -ENOMEM;
1567
1568		/* Lock the diacriticals table, make a copy and then
1569		   copy it after we unlock */
1570		spin_lock_irqsave(&kbd_event_lock, flags);
1571
1572		asize = accent_table_size;
1573		for (i = 0; i < asize; i++) {
1574			diacr[i].diacr = conv_uni_to_8bit(
1575						accent_table[i].diacr);
1576			diacr[i].base = conv_uni_to_8bit(
1577						accent_table[i].base);
1578			diacr[i].result = conv_uni_to_8bit(
1579						accent_table[i].result);
1580		}
1581		spin_unlock_irqrestore(&kbd_event_lock, flags);
1582
1583		if (put_user(asize, &a->kb_cnt))
1584			ret = -EFAULT;
1585		else  if (copy_to_user(a->kbdiacr, diacr,
1586				asize * sizeof(struct kbdiacr)))
1587			ret = -EFAULT;
1588		kfree(diacr);
1589		return ret;
1590	}
1591	case KDGKBDIACRUC:
1592	{
1593		struct kbdiacrsuc __user *a = up;
1594		void *buf;
1595
1596		buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
1597								GFP_KERNEL);
1598		if (buf == NULL)
1599			return -ENOMEM;
1600
1601		/* Lock the diacriticals table, make a copy and then
1602		   copy it after we unlock */
1603		spin_lock_irqsave(&kbd_event_lock, flags);
1604
1605		asize = accent_table_size;
1606		memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1607
1608		spin_unlock_irqrestore(&kbd_event_lock, flags);
1609
1610		if (put_user(asize, &a->kb_cnt))
1611			ret = -EFAULT;
1612		else if (copy_to_user(a->kbdiacruc, buf,
1613				asize*sizeof(struct kbdiacruc)))
1614			ret = -EFAULT;
1615		kfree(buf);
1616		return ret;
1617	}
1618
1619	case KDSKBDIACR:
1620	{
1621		struct kbdiacrs __user *a = up;
1622		struct kbdiacr *diacr = NULL;
1623		unsigned int ct;
1624		int i;
1625
1626		if (!perm)
1627			return -EPERM;
1628		if (get_user(ct, &a->kb_cnt))
1629			return -EFAULT;
1630		if (ct >= MAX_DIACR)
1631			return -EINVAL;
1632
1633		if (ct) {
1634			diacr = kmalloc(sizeof(struct kbdiacr) * ct,
1635								GFP_KERNEL);
1636			if (diacr == NULL)
1637				return -ENOMEM;
1638
1639			if (copy_from_user(diacr, a->kbdiacr,
1640					sizeof(struct kbdiacr) * ct)) {
1641				kfree(diacr);
1642				return -EFAULT;
1643			}
1644		}
1645
1646		spin_lock_irqsave(&kbd_event_lock, flags);
1647		accent_table_size = ct;
1648		for (i = 0; i < ct; i++) {
1649			accent_table[i].diacr =
1650					conv_8bit_to_uni(diacr[i].diacr);
1651			accent_table[i].base =
1652					conv_8bit_to_uni(diacr[i].base);
1653			accent_table[i].result =
1654					conv_8bit_to_uni(diacr[i].result);
1655		}
1656		spin_unlock_irqrestore(&kbd_event_lock, flags);
1657		kfree(diacr);
1658		return 0;
1659	}
1660
1661	case KDSKBDIACRUC:
1662	{
1663		struct kbdiacrsuc __user *a = up;
1664		unsigned int ct;
1665		void *buf = NULL;
1666
1667		if (!perm)
1668			return -EPERM;
1669
1670		if (get_user(ct, &a->kb_cnt))
1671			return -EFAULT;
1672
1673		if (ct >= MAX_DIACR)
1674			return -EINVAL;
1675
1676		if (ct) {
1677			buf = kmalloc(ct * sizeof(struct kbdiacruc),
1678								GFP_KERNEL);
1679			if (buf == NULL)
1680				return -ENOMEM;
1681
1682			if (copy_from_user(buf, a->kbdiacruc,
1683					ct * sizeof(struct kbdiacruc))) {
1684				kfree(buf);
1685				return -EFAULT;
1686			}
1687		} 
1688		spin_lock_irqsave(&kbd_event_lock, flags);
1689		if (ct)
1690			memcpy(accent_table, buf,
1691					ct * sizeof(struct kbdiacruc));
1692		accent_table_size = ct;
1693		spin_unlock_irqrestore(&kbd_event_lock, flags);
1694		kfree(buf);
1695		return 0;
1696	}
1697	}
1698	return ret;
1699}
1700
1701/**
1702 *	vt_do_kdskbmode		-	set keyboard mode ioctl
1703 *	@console: the console to use
1704 *	@arg: the requested mode
1705 *
1706 *	Update the keyboard mode bits while holding the correct locks.
1707 *	Return 0 for success or an error code.
1708 */
1709int vt_do_kdskbmode(int console, unsigned int arg)
1710{
1711	struct kbd_struct * kbd = kbd_table + console;
1712	int ret = 0;
1713	unsigned long flags;
1714
1715	spin_lock_irqsave(&kbd_event_lock, flags);
1716	switch(arg) {
1717	case K_RAW:
1718		kbd->kbdmode = VC_RAW;
1719		break;
1720	case K_MEDIUMRAW:
1721		kbd->kbdmode = VC_MEDIUMRAW;
1722		break;
1723	case K_XLATE:
1724		kbd->kbdmode = VC_XLATE;
1725		do_compute_shiftstate();
1726		break;
1727	case K_UNICODE:
1728		kbd->kbdmode = VC_UNICODE;
1729		do_compute_shiftstate();
1730		break;
1731	case K_OFF:
1732		kbd->kbdmode = VC_OFF;
1733		break;
1734	default:
1735		ret = -EINVAL;
1736	}
1737	spin_unlock_irqrestore(&kbd_event_lock, flags);
1738	return ret;
1739}
1740
1741/**
1742 *	vt_do_kdskbmeta		-	set keyboard meta state
1743 *	@console: the console to use
1744 *	@arg: the requested meta state
1745 *
1746 *	Update the keyboard meta bits while holding the correct locks.
1747 *	Return 0 for success or an error code.
1748 */
1749int vt_do_kdskbmeta(int console, unsigned int arg)
1750{
1751	struct kbd_struct * kbd = kbd_table + console;
1752	int ret = 0;
1753	unsigned long flags;
1754
1755	spin_lock_irqsave(&kbd_event_lock, flags);
1756	switch(arg) {
1757	case K_METABIT:
1758		clr_vc_kbd_mode(kbd, VC_META);
1759		break;
1760	case K_ESCPREFIX:
1761		set_vc_kbd_mode(kbd, VC_META);
1762		break;
1763	default:
1764		ret = -EINVAL;
1765	}
1766	spin_unlock_irqrestore(&kbd_event_lock, flags);
1767	return ret;
1768}
1769
1770int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1771								int perm)
1772{
1773	struct kbkeycode tmp;
1774	int kc = 0;
1775
1776	if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1777		return -EFAULT;
1778	switch (cmd) {
1779	case KDGETKEYCODE:
1780		kc = getkeycode(tmp.scancode);
1781		if (kc >= 0)
1782			kc = put_user(kc, &user_kbkc->keycode);
1783		break;
1784	case KDSETKEYCODE:
1785		if (!perm)
1786			return -EPERM;
1787		kc = setkeycode(tmp.scancode, tmp.keycode);
1788		break;
1789	}
1790	return kc;
1791}
1792
1793#define i (tmp.kb_index)
1794#define s (tmp.kb_table)
1795#define v (tmp.kb_value)
1796
1797int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1798						int console)
1799{
1800	struct kbd_struct * kbd = kbd_table + console;
1801	struct kbentry tmp;
1802	ushort *key_map, *new_map, val, ov;
1803	unsigned long flags;
1804
1805	if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1806		return -EFAULT;
 
 
 
 
 
 
 
 
1807
1808	if (!capable(CAP_SYS_TTY_CONFIG))
1809		perm = 0;
1810
1811	switch (cmd) {
1812	case KDGKBENT:
1813		/* Ensure another thread doesn't free it under us */
 
 
 
 
1814		spin_lock_irqsave(&kbd_event_lock, flags);
1815		key_map = key_maps[s];
1816		if (key_map) {
1817		    val = U(key_map[i]);
1818		    if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1819			val = K_HOLE;
1820		} else
1821		    val = (i ? K_HOLE : K_NOSUCHMAP);
1822		spin_unlock_irqrestore(&kbd_event_lock, flags);
1823		return put_user(val, &user_kbe->kb_value);
1824	case KDSKBENT:
1825		if (!perm)
1826			return -EPERM;
1827		if (!i && v == K_NOSUCHMAP) {
1828			spin_lock_irqsave(&kbd_event_lock, flags);
1829			/* deallocate map */
1830			key_map = key_maps[s];
1831			if (s && key_map) {
1832			    key_maps[s] = NULL;
1833			    if (key_map[0] == U(K_ALLOCATED)) {
1834					kfree(key_map);
1835					keymap_count--;
1836			    }
1837			}
1838			spin_unlock_irqrestore(&kbd_event_lock, flags);
1839			break;
1840		}
 
1841
1842		if (KTYP(v) < NR_TYPES) {
1843		    if (KVAL(v) > max_vals[KTYP(v)])
1844				return -EINVAL;
1845		} else
1846		    if (kbd->kbdmode != VC_UNICODE)
1847				return -EINVAL;
 
 
1848
1849		/* ++Geert: non-PC keyboards may generate keycode zero */
1850#if !defined(__mc68000__) && !defined(__powerpc__)
1851		/* assignment to entry 0 only tests validity of args */
1852		if (!i)
1853			break;
1854#endif
1855
1856		new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1857		if (!new_map)
1858			return -ENOMEM;
1859		spin_lock_irqsave(&kbd_event_lock, flags);
1860		key_map = key_maps[s];
1861		if (key_map == NULL) {
1862			int j;
1863
1864			if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1865			    !capable(CAP_SYS_RESOURCE)) {
1866				spin_unlock_irqrestore(&kbd_event_lock, flags);
1867				kfree(new_map);
1868				return -EPERM;
1869			}
1870			key_maps[s] = new_map;
1871			key_map = new_map;
1872			key_map[0] = U(K_ALLOCATED);
1873			for (j = 1; j < NR_KEYS; j++)
1874				key_map[j] = U(K_HOLE);
1875			keymap_count++;
1876		} else
1877			kfree(new_map);
1878
1879		ov = U(key_map[i]);
1880		if (v == ov)
1881			goto out;
1882		/*
1883		 * Attention Key.
1884		 */
1885		if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1886			spin_unlock_irqrestore(&kbd_event_lock, flags);
 
1887			return -EPERM;
1888		}
1889		key_map[i] = U(v);
1890		if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1891			do_compute_shiftstate();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1892out:
1893		spin_unlock_irqrestore(&kbd_event_lock, flags);
1894		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1895	}
1896	return 0;
1897}
1898#undef i
1899#undef s
1900#undef v
1901
1902/* FIXME: This one needs untangling and locking */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1903int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1904{
1905	struct kbsentry *kbs;
1906	char *p;
1907	u_char *q;
1908	u_char __user *up;
1909	int sz;
1910	int delta;
1911	char *first_free, *fj, *fnw;
1912	int i, j, k;
1913	int ret;
1914
1915	if (!capable(CAP_SYS_TTY_CONFIG))
1916		perm = 0;
1917
1918	kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1919	if (!kbs) {
1920		ret = -ENOMEM;
1921		goto reterr;
1922	}
1923
1924	/* we mostly copy too much here (512bytes), but who cares ;) */
1925	if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
1926		ret = -EFAULT;
1927		goto reterr;
1928	}
1929	kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
1930	i = kbs->kb_func;
1931
1932	switch (cmd) {
1933	case KDGKBSENT:
1934		sz = sizeof(kbs->kb_string) - 1; /* sz should have been
1935						  a struct member */
1936		up = user_kdgkb->kb_string;
1937		p = func_table[i];
1938		if(p)
1939			for ( ; *p && sz; p++, sz--)
1940				if (put_user(*p, up++)) {
1941					ret = -EFAULT;
1942					goto reterr;
1943				}
1944		if (put_user('\0', up)) {
1945			ret = -EFAULT;
1946			goto reterr;
 
1947		}
1948		kfree(kbs);
1949		return ((p && *p) ? -EOVERFLOW : 0);
 
 
1950	case KDSKBSENT:
1951		if (!perm) {
1952			ret = -EPERM;
1953			goto reterr;
1954		}
1955
1956		q = func_table[i];
1957		first_free = funcbufptr + (funcbufsize - funcbufleft);
1958		for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
1959			;
1960		if (j < MAX_NR_FUNC)
1961			fj = func_table[j];
1962		else
1963			fj = first_free;
1964
1965		delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
1966		if (delta <= funcbufleft) { 	/* it fits in current buf */
1967		    if (j < MAX_NR_FUNC) {
1968			memmove(fj + delta, fj, first_free - fj);
1969			for (k = j; k < MAX_NR_FUNC; k++)
1970			    if (func_table[k])
1971				func_table[k] += delta;
1972		    }
1973		    if (!q)
1974		      func_table[i] = fj;
1975		    funcbufleft -= delta;
1976		} else {			/* allocate a larger buffer */
1977		    sz = 256;
1978		    while (sz < funcbufsize - funcbufleft + delta)
1979		      sz <<= 1;
1980		    fnw = kmalloc(sz, GFP_KERNEL);
1981		    if(!fnw) {
1982		      ret = -ENOMEM;
1983		      goto reterr;
1984		    }
1985
1986		    if (!q)
1987		      func_table[i] = fj;
1988		    if (fj > funcbufptr)
1989			memmove(fnw, funcbufptr, fj - funcbufptr);
1990		    for (k = 0; k < j; k++)
1991		      if (func_table[k])
1992			func_table[k] = fnw + (func_table[k] - funcbufptr);
1993
1994		    if (first_free > fj) {
1995			memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
1996			for (k = j; k < MAX_NR_FUNC; k++)
1997			  if (func_table[k])
1998			    func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
1999		    }
2000		    if (funcbufptr != func_buf)
2001		      kfree(funcbufptr);
2002		    funcbufptr = fnw;
2003		    funcbufleft = funcbufleft - delta + sz - funcbufsize;
2004		    funcbufsize = sz;
2005		}
2006		strcpy(func_table[i], kbs->kb_string);
2007		break;
2008	}
2009	ret = 0;
2010reterr:
2011	kfree(kbs);
 
2012	return ret;
2013}
2014
2015int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2016{
2017	struct kbd_struct * kbd = kbd_table + console;
2018        unsigned long flags;
2019	unsigned char ucval;
2020
2021        switch(cmd) {
2022	/* the ioctls below read/set the flags usually shown in the leds */
2023	/* don't use them - they will go away without warning */
2024	case KDGKBLED:
2025                spin_lock_irqsave(&kbd_event_lock, flags);
2026		ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4);
2027                spin_unlock_irqrestore(&kbd_event_lock, flags);
2028		return put_user(ucval, (char __user *)arg);
2029
2030	case KDSKBLED:
2031		if (!perm)
2032			return -EPERM;
2033		if (arg & ~0x77)
2034			return -EINVAL;
2035                spin_lock_irqsave(&kbd_event_lock, flags);
2036		kbd->ledflagstate = (arg & 7);
2037		kbd->default_ledflagstate = ((arg >> 4) & 7);
2038		set_leds();
2039                spin_unlock_irqrestore(&kbd_event_lock, flags);
2040		return 0;
2041
2042	/* the ioctls below only set the lights, not the functions */
2043	/* for those, see KDGKBLED and KDSKBLED above */
2044	case KDGETLED:
2045		ucval = getledstate();
2046		return put_user(ucval, (char __user *)arg);
2047
2048	case KDSETLED:
2049		if (!perm)
2050			return -EPERM;
2051		setledstate(kbd, arg);
2052		return 0;
2053        }
2054        return -ENOIOCTLCMD;
2055}
2056
2057int vt_do_kdgkbmode(int console)
2058{
2059	struct kbd_struct * kbd = kbd_table + console;
2060	/* This is a spot read so needs no locking */
2061	switch (kbd->kbdmode) {
2062	case VC_RAW:
2063		return K_RAW;
2064	case VC_MEDIUMRAW:
2065		return K_MEDIUMRAW;
2066	case VC_UNICODE:
2067		return K_UNICODE;
2068	case VC_OFF:
2069		return K_OFF;
2070	default:
2071		return K_XLATE;
2072	}
2073}
2074
2075/**
2076 *	vt_do_kdgkbmeta		-	report meta status
2077 *	@console: console to report
2078 *
2079 *	Report the meta flag status of this console
2080 */
2081int vt_do_kdgkbmeta(int console)
2082{
2083	struct kbd_struct * kbd = kbd_table + console;
2084        /* Again a spot read so no locking */
2085	return vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT;
2086}
2087
2088/**
2089 *	vt_reset_unicode	-	reset the unicode status
2090 *	@console: console being reset
2091 *
2092 *	Restore the unicode console state to its default
2093 */
2094void vt_reset_unicode(int console)
2095{
2096	unsigned long flags;
2097
2098	spin_lock_irqsave(&kbd_event_lock, flags);
2099	kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2100	spin_unlock_irqrestore(&kbd_event_lock, flags);
2101}
2102
2103/**
2104 *	vt_get_shiftstate	-	shift bit state
2105 *
2106 *	Report the shift bits from the keyboard state. We have to export
2107 *	this to support some oddities in the vt layer.
2108 */
2109int vt_get_shift_state(void)
2110{
2111        /* Don't lock as this is a transient report */
2112        return shift_state;
2113}
2114
2115/**
2116 *	vt_reset_keyboard	-	reset keyboard state
2117 *	@console: console to reset
2118 *
2119 *	Reset the keyboard bits for a console as part of a general console
2120 *	reset event
2121 */
2122void vt_reset_keyboard(int console)
2123{
2124	struct kbd_struct * kbd = kbd_table + console;
2125	unsigned long flags;
2126
2127	spin_lock_irqsave(&kbd_event_lock, flags);
2128	set_vc_kbd_mode(kbd, VC_REPEAT);
2129	clr_vc_kbd_mode(kbd, VC_CKMODE);
2130	clr_vc_kbd_mode(kbd, VC_APPLIC);
2131	clr_vc_kbd_mode(kbd, VC_CRLF);
2132	kbd->lockstate = 0;
2133	kbd->slockstate = 0;
2134	kbd->ledmode = LED_SHOW_FLAGS;
2135	kbd->ledflagstate = kbd->default_ledflagstate;
 
 
2136	/* do not do set_leds here because this causes an endless tasklet loop
2137	   when the keyboard hasn't been initialized yet */
2138	spin_unlock_irqrestore(&kbd_event_lock, flags);
2139}
2140
2141/**
2142 *	vt_get_kbd_mode_bit	-	read keyboard status bits
2143 *	@console: console to read from
2144 *	@bit: mode bit to read
2145 *
2146 *	Report back a vt mode bit. We do this without locking so the
2147 *	caller must be sure that there are no synchronization needs
2148 */
2149
2150int vt_get_kbd_mode_bit(int console, int bit)
2151{
2152	struct kbd_struct * kbd = kbd_table + console;
2153	return vc_kbd_mode(kbd, bit);
2154}
2155
2156/**
2157 *	vt_set_kbd_mode_bit	-	read keyboard status bits
2158 *	@console: console to read from
2159 *	@bit: mode bit to read
2160 *
2161 *	Set a vt mode bit. We do this without locking so the
2162 *	caller must be sure that there are no synchronization needs
2163 */
2164
2165void vt_set_kbd_mode_bit(int console, int bit)
2166{
2167	struct kbd_struct * kbd = kbd_table + console;
2168	unsigned long flags;
2169
2170	spin_lock_irqsave(&kbd_event_lock, flags);
2171	set_vc_kbd_mode(kbd, bit);
2172	spin_unlock_irqrestore(&kbd_event_lock, flags);
2173}
2174
2175/**
2176 *	vt_clr_kbd_mode_bit	-	read keyboard status bits
2177 *	@console: console to read from
2178 *	@bit: mode bit to read
2179 *
2180 *	Report back a vt mode bit. We do this without locking so the
2181 *	caller must be sure that there are no synchronization needs
2182 */
2183
2184void vt_clr_kbd_mode_bit(int console, int bit)
2185{
2186	struct kbd_struct * kbd = kbd_table + console;
2187	unsigned long flags;
2188
2189	spin_lock_irqsave(&kbd_event_lock, flags);
2190	clr_vc_kbd_mode(kbd, bit);
2191	spin_unlock_irqrestore(&kbd_event_lock, flags);
2192}