Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Written for linux by Johan Myreen as a translation from
4 * the assembly version by Linus (with diacriticals added)
5 *
6 * Some additional features added by Christoph Niemann (ChN), March 1993
7 *
8 * Loadable keymaps by Risto Kankkunen, May 1993
9 *
10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11 * Added decr/incr_console, dynamic keymaps, Unicode support,
12 * dynamic function/string keys, led setting, Sept 1994
13 * `Sticky' modifier keys, 951006.
14 *
15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16 *
17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
18 * Merge with the m68k keyboard driver and split-off of the PC low-level
19 * parts by Geert Uytterhoeven, May 1997
20 *
21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/consolemap.h>
29#include <linux/init.h>
30#include <linux/input.h>
31#include <linux/jiffies.h>
32#include <linux/kbd_diacr.h>
33#include <linux/kbd_kern.h>
34#include <linux/leds.h>
35#include <linux/mm.h>
36#include <linux/module.h>
37#include <linux/nospec.h>
38#include <linux/notifier.h>
39#include <linux/reboot.h>
40#include <linux/sched/debug.h>
41#include <linux/sched/signal.h>
42#include <linux/slab.h>
43#include <linux/spinlock.h>
44#include <linux/string.h>
45#include <linux/tty_flip.h>
46#include <linux/tty.h>
47#include <linux/uaccess.h>
48#include <linux/vt_kern.h>
49
50#include <asm/irq_regs.h>
51
52/*
53 * Exported functions/variables
54 */
55
56#define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META))
57
58#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
59#include <asm/kbdleds.h>
60#else
61static inline int kbd_defleds(void)
62{
63 return 0;
64}
65#endif
66
67#define KBD_DEFLOCK 0
68
69/*
70 * Handler Tables.
71 */
72
73#define K_HANDLERS\
74 k_self, k_fn, k_spec, k_pad,\
75 k_dead, k_cons, k_cur, k_shift,\
76 k_meta, k_ascii, k_lock, k_lowercase,\
77 k_slock, k_dead2, k_brl, k_ignore
78
79typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
80 char up_flag);
81static k_handler_fn K_HANDLERS;
82static k_handler_fn *k_handler[16] = { K_HANDLERS };
83
84#define FN_HANDLERS\
85 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
86 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
87 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
88 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
89 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
90
91typedef void (fn_handler_fn)(struct vc_data *vc);
92static fn_handler_fn FN_HANDLERS;
93static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
94
95/*
96 * Variables exported for vt_ioctl.c
97 */
98
99struct vt_spawn_console vt_spawn_con = {
100 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
101 .pid = NULL,
102 .sig = 0,
103};
104
105
106/*
107 * Internal Data.
108 */
109
110static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
111static struct kbd_struct *kbd = kbd_table;
112
113/* maximum values each key_handler can handle */
114static const unsigned char max_vals[] = {
115 [ KT_LATIN ] = 255,
116 [ KT_FN ] = ARRAY_SIZE(func_table) - 1,
117 [ KT_SPEC ] = ARRAY_SIZE(fn_handler) - 1,
118 [ KT_PAD ] = NR_PAD - 1,
119 [ KT_DEAD ] = NR_DEAD - 1,
120 [ KT_CONS ] = 255,
121 [ KT_CUR ] = 3,
122 [ KT_SHIFT ] = NR_SHIFT - 1,
123 [ KT_META ] = 255,
124 [ KT_ASCII ] = NR_ASCII - 1,
125 [ KT_LOCK ] = NR_LOCK - 1,
126 [ KT_LETTER ] = 255,
127 [ KT_SLOCK ] = NR_LOCK - 1,
128 [ KT_DEAD2 ] = 255,
129 [ KT_BRL ] = NR_BRL - 1,
130};
131
132static const int NR_TYPES = ARRAY_SIZE(max_vals);
133
134static void kbd_bh(struct tasklet_struct *unused);
135static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh);
136
137static struct input_handler kbd_handler;
138static DEFINE_SPINLOCK(kbd_event_lock);
139static DEFINE_SPINLOCK(led_lock);
140static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */
141static DECLARE_BITMAP(key_down, KEY_CNT); /* keyboard key bitmap */
142static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
143static bool dead_key_next;
144
145/* Handles a number being assembled on the number pad */
146static bool npadch_active;
147static unsigned int npadch_value;
148
149static unsigned int diacr;
150static bool rep; /* flag telling character repeat */
151
152static int shift_state = 0;
153
154static unsigned int ledstate = -1U; /* undefined */
155static unsigned char ledioctl;
156static bool vt_switch;
157
158/*
159 * Notifier list for console keyboard events
160 */
161static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
162
163int register_keyboard_notifier(struct notifier_block *nb)
164{
165 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
166}
167EXPORT_SYMBOL_GPL(register_keyboard_notifier);
168
169int unregister_keyboard_notifier(struct notifier_block *nb)
170{
171 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
172}
173EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
174
175/*
176 * Translation of scancodes to keycodes. We set them on only the first
177 * keyboard in the list that accepts the scancode and keycode.
178 * Explanation for not choosing the first attached keyboard anymore:
179 * USB keyboards for example have two event devices: one for all "normal"
180 * keys and one for extra function keys (like "volume up", "make coffee",
181 * etc.). So this means that scancodes for the extra function keys won't
182 * be valid for the first event device, but will be for the second.
183 */
184
185struct getset_keycode_data {
186 struct input_keymap_entry ke;
187 int error;
188};
189
190static int getkeycode_helper(struct input_handle *handle, void *data)
191{
192 struct getset_keycode_data *d = data;
193
194 d->error = input_get_keycode(handle->dev, &d->ke);
195
196 return d->error == 0; /* stop as soon as we successfully get one */
197}
198
199static int getkeycode(unsigned int scancode)
200{
201 struct getset_keycode_data d = {
202 .ke = {
203 .flags = 0,
204 .len = sizeof(scancode),
205 .keycode = 0,
206 },
207 .error = -ENODEV,
208 };
209
210 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
211
212 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
213
214 return d.error ?: d.ke.keycode;
215}
216
217static int setkeycode_helper(struct input_handle *handle, void *data)
218{
219 struct getset_keycode_data *d = data;
220
221 d->error = input_set_keycode(handle->dev, &d->ke);
222
223 return d->error == 0; /* stop as soon as we successfully set one */
224}
225
226static int setkeycode(unsigned int scancode, unsigned int keycode)
227{
228 struct getset_keycode_data d = {
229 .ke = {
230 .flags = 0,
231 .len = sizeof(scancode),
232 .keycode = keycode,
233 },
234 .error = -ENODEV,
235 };
236
237 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
238
239 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
240
241 return d.error;
242}
243
244/*
245 * Making beeps and bells. Note that we prefer beeps to bells, but when
246 * shutting the sound off we do both.
247 */
248
249static int kd_sound_helper(struct input_handle *handle, void *data)
250{
251 unsigned int *hz = data;
252 struct input_dev *dev = handle->dev;
253
254 if (test_bit(EV_SND, dev->evbit)) {
255 if (test_bit(SND_TONE, dev->sndbit)) {
256 input_inject_event(handle, EV_SND, SND_TONE, *hz);
257 if (*hz)
258 return 0;
259 }
260 if (test_bit(SND_BELL, dev->sndbit))
261 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
262 }
263
264 return 0;
265}
266
267static void kd_nosound(struct timer_list *unused)
268{
269 static unsigned int zero;
270
271 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
272}
273
274static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
275
276void kd_mksound(unsigned int hz, unsigned int ticks)
277{
278 del_timer_sync(&kd_mksound_timer);
279
280 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
281
282 if (hz && ticks)
283 mod_timer(&kd_mksound_timer, jiffies + ticks);
284}
285EXPORT_SYMBOL(kd_mksound);
286
287/*
288 * Setting the keyboard rate.
289 */
290
291static int kbd_rate_helper(struct input_handle *handle, void *data)
292{
293 struct input_dev *dev = handle->dev;
294 struct kbd_repeat *rpt = data;
295
296 if (test_bit(EV_REP, dev->evbit)) {
297
298 if (rpt[0].delay > 0)
299 input_inject_event(handle,
300 EV_REP, REP_DELAY, rpt[0].delay);
301 if (rpt[0].period > 0)
302 input_inject_event(handle,
303 EV_REP, REP_PERIOD, rpt[0].period);
304
305 rpt[1].delay = dev->rep[REP_DELAY];
306 rpt[1].period = dev->rep[REP_PERIOD];
307 }
308
309 return 0;
310}
311
312int kbd_rate(struct kbd_repeat *rpt)
313{
314 struct kbd_repeat data[2] = { *rpt };
315
316 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
317 *rpt = data[1]; /* Copy currently used settings */
318
319 return 0;
320}
321
322/*
323 * Helper Functions.
324 */
325static void put_queue(struct vc_data *vc, int ch)
326{
327 tty_insert_flip_char(&vc->port, ch, 0);
328 tty_flip_buffer_push(&vc->port);
329}
330
331static void puts_queue(struct vc_data *vc, const char *cp)
332{
333 tty_insert_flip_string(&vc->port, cp, strlen(cp));
334 tty_flip_buffer_push(&vc->port);
335}
336
337static void applkey(struct vc_data *vc, int key, char mode)
338{
339 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
340
341 buf[1] = (mode ? 'O' : '[');
342 buf[2] = key;
343 puts_queue(vc, buf);
344}
345
346/*
347 * Many other routines do put_queue, but I think either
348 * they produce ASCII, or they produce some user-assigned
349 * string, and in both cases we might assume that it is
350 * in utf-8 already.
351 */
352static void to_utf8(struct vc_data *vc, uint c)
353{
354 if (c < 0x80)
355 /* 0******* */
356 put_queue(vc, c);
357 else if (c < 0x800) {
358 /* 110***** 10****** */
359 put_queue(vc, 0xc0 | (c >> 6));
360 put_queue(vc, 0x80 | (c & 0x3f));
361 } else if (c < 0x10000) {
362 if (c >= 0xD800 && c < 0xE000)
363 return;
364 if (c == 0xFFFF)
365 return;
366 /* 1110**** 10****** 10****** */
367 put_queue(vc, 0xe0 | (c >> 12));
368 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
369 put_queue(vc, 0x80 | (c & 0x3f));
370 } else if (c < 0x110000) {
371 /* 11110*** 10****** 10****** 10****** */
372 put_queue(vc, 0xf0 | (c >> 18));
373 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
374 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
375 put_queue(vc, 0x80 | (c & 0x3f));
376 }
377}
378
379/* FIXME: review locking for vt.c callers */
380static void set_leds(void)
381{
382 tasklet_schedule(&keyboard_tasklet);
383}
384
385/*
386 * Called after returning from RAW mode or when changing consoles - recompute
387 * shift_down[] and shift_state from key_down[] maybe called when keymap is
388 * undefined, so that shiftkey release is seen. The caller must hold the
389 * kbd_event_lock.
390 */
391
392static void do_compute_shiftstate(void)
393{
394 unsigned int k, sym, val;
395
396 shift_state = 0;
397 memset(shift_down, 0, sizeof(shift_down));
398
399 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
400 sym = U(key_maps[0][k]);
401 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
402 continue;
403
404 val = KVAL(sym);
405 if (val == KVAL(K_CAPSSHIFT))
406 val = KVAL(K_SHIFT);
407
408 shift_down[val]++;
409 shift_state |= BIT(val);
410 }
411}
412
413/* We still have to export this method to vt.c */
414void vt_set_leds_compute_shiftstate(void)
415{
416 unsigned long flags;
417
418 /*
419 * When VT is switched, the keyboard led needs to be set once.
420 * Ensure that after the switch is completed, the state of the
421 * keyboard LED is consistent with the state of the keyboard lock.
422 */
423 vt_switch = true;
424 set_leds();
425
426 spin_lock_irqsave(&kbd_event_lock, flags);
427 do_compute_shiftstate();
428 spin_unlock_irqrestore(&kbd_event_lock, flags);
429}
430
431/*
432 * We have a combining character DIACR here, followed by the character CH.
433 * If the combination occurs in the table, return the corresponding value.
434 * Otherwise, if CH is a space or equals DIACR, return DIACR.
435 * Otherwise, conclude that DIACR was not combining after all,
436 * queue it and return CH.
437 */
438static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
439{
440 unsigned int d = diacr;
441 unsigned int i;
442
443 diacr = 0;
444
445 if ((d & ~0xff) == BRL_UC_ROW) {
446 if ((ch & ~0xff) == BRL_UC_ROW)
447 return d | ch;
448 } else {
449 for (i = 0; i < accent_table_size; i++)
450 if (accent_table[i].diacr == d && accent_table[i].base == ch)
451 return accent_table[i].result;
452 }
453
454 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
455 return d;
456
457 if (kbd->kbdmode == VC_UNICODE)
458 to_utf8(vc, d);
459 else {
460 int c = conv_uni_to_8bit(d);
461 if (c != -1)
462 put_queue(vc, c);
463 }
464
465 return ch;
466}
467
468/*
469 * Special function handlers
470 */
471static void fn_enter(struct vc_data *vc)
472{
473 if (diacr) {
474 if (kbd->kbdmode == VC_UNICODE)
475 to_utf8(vc, diacr);
476 else {
477 int c = conv_uni_to_8bit(diacr);
478 if (c != -1)
479 put_queue(vc, c);
480 }
481 diacr = 0;
482 }
483
484 put_queue(vc, '\r');
485 if (vc_kbd_mode(kbd, VC_CRLF))
486 put_queue(vc, '\n');
487}
488
489static void fn_caps_toggle(struct vc_data *vc)
490{
491 if (rep)
492 return;
493
494 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
495}
496
497static void fn_caps_on(struct vc_data *vc)
498{
499 if (rep)
500 return;
501
502 set_vc_kbd_led(kbd, VC_CAPSLOCK);
503}
504
505static void fn_show_ptregs(struct vc_data *vc)
506{
507 struct pt_regs *regs = get_irq_regs();
508
509 if (regs)
510 show_regs(regs);
511}
512
513static void fn_hold(struct vc_data *vc)
514{
515 struct tty_struct *tty = vc->port.tty;
516
517 if (rep || !tty)
518 return;
519
520 /*
521 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
522 * these routines are also activated by ^S/^Q.
523 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
524 */
525 if (tty->flow.stopped)
526 start_tty(tty);
527 else
528 stop_tty(tty);
529}
530
531static void fn_num(struct vc_data *vc)
532{
533 if (vc_kbd_mode(kbd, VC_APPLIC))
534 applkey(vc, 'P', 1);
535 else
536 fn_bare_num(vc);
537}
538
539/*
540 * Bind this to Shift-NumLock if you work in application keypad mode
541 * but want to be able to change the NumLock flag.
542 * Bind this to NumLock if you prefer that the NumLock key always
543 * changes the NumLock flag.
544 */
545static void fn_bare_num(struct vc_data *vc)
546{
547 if (!rep)
548 chg_vc_kbd_led(kbd, VC_NUMLOCK);
549}
550
551static void fn_lastcons(struct vc_data *vc)
552{
553 /* switch to the last used console, ChN */
554 set_console(last_console);
555}
556
557static void fn_dec_console(struct vc_data *vc)
558{
559 int i, cur = fg_console;
560
561 /* Currently switching? Queue this next switch relative to that. */
562 if (want_console != -1)
563 cur = want_console;
564
565 for (i = cur - 1; i != cur; i--) {
566 if (i == -1)
567 i = MAX_NR_CONSOLES - 1;
568 if (vc_cons_allocated(i))
569 break;
570 }
571 set_console(i);
572}
573
574static void fn_inc_console(struct vc_data *vc)
575{
576 int i, cur = fg_console;
577
578 /* Currently switching? Queue this next switch relative to that. */
579 if (want_console != -1)
580 cur = want_console;
581
582 for (i = cur+1; i != cur; i++) {
583 if (i == MAX_NR_CONSOLES)
584 i = 0;
585 if (vc_cons_allocated(i))
586 break;
587 }
588 set_console(i);
589}
590
591static void fn_send_intr(struct vc_data *vc)
592{
593 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
594 tty_flip_buffer_push(&vc->port);
595}
596
597static void fn_scroll_forw(struct vc_data *vc)
598{
599 scrollfront(vc, 0);
600}
601
602static void fn_scroll_back(struct vc_data *vc)
603{
604 scrollback(vc);
605}
606
607static void fn_show_mem(struct vc_data *vc)
608{
609 show_mem();
610}
611
612static void fn_show_state(struct vc_data *vc)
613{
614 show_state();
615}
616
617static void fn_boot_it(struct vc_data *vc)
618{
619 ctrl_alt_del();
620}
621
622static void fn_compose(struct vc_data *vc)
623{
624 dead_key_next = true;
625}
626
627static void fn_spawn_con(struct vc_data *vc)
628{
629 spin_lock(&vt_spawn_con.lock);
630 if (vt_spawn_con.pid)
631 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
632 put_pid(vt_spawn_con.pid);
633 vt_spawn_con.pid = NULL;
634 }
635 spin_unlock(&vt_spawn_con.lock);
636}
637
638static void fn_SAK(struct vc_data *vc)
639{
640 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
641 schedule_work(SAK_work);
642}
643
644static void fn_null(struct vc_data *vc)
645{
646 do_compute_shiftstate();
647}
648
649/*
650 * Special key handlers
651 */
652static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
653{
654}
655
656static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
657{
658 if (up_flag)
659 return;
660 if (value >= ARRAY_SIZE(fn_handler))
661 return;
662 if ((kbd->kbdmode == VC_RAW ||
663 kbd->kbdmode == VC_MEDIUMRAW ||
664 kbd->kbdmode == VC_OFF) &&
665 value != KVAL(K_SAK))
666 return; /* SAK is allowed even in raw mode */
667 fn_handler[value](vc);
668}
669
670static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
671{
672 pr_err("k_lowercase was called - impossible\n");
673}
674
675static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
676{
677 if (up_flag)
678 return; /* no action, if this is a key release */
679
680 if (diacr)
681 value = handle_diacr(vc, value);
682
683 if (dead_key_next) {
684 dead_key_next = false;
685 diacr = value;
686 return;
687 }
688 if (kbd->kbdmode == VC_UNICODE)
689 to_utf8(vc, value);
690 else {
691 int c = conv_uni_to_8bit(value);
692 if (c != -1)
693 put_queue(vc, c);
694 }
695}
696
697/*
698 * Handle dead key. Note that we now may have several
699 * dead keys modifying the same character. Very useful
700 * for Vietnamese.
701 */
702static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
703{
704 if (up_flag)
705 return;
706
707 diacr = (diacr ? handle_diacr(vc, value) : value);
708}
709
710static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
711{
712 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
713}
714
715static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
716{
717 k_deadunicode(vc, value, up_flag);
718}
719
720/*
721 * Obsolete - for backwards compatibility only
722 */
723static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
724{
725 static const unsigned char ret_diacr[NR_DEAD] = {
726 '`', /* dead_grave */
727 '\'', /* dead_acute */
728 '^', /* dead_circumflex */
729 '~', /* dead_tilda */
730 '"', /* dead_diaeresis */
731 ',', /* dead_cedilla */
732 '_', /* dead_macron */
733 'U', /* dead_breve */
734 '.', /* dead_abovedot */
735 '*', /* dead_abovering */
736 '=', /* dead_doubleacute */
737 'c', /* dead_caron */
738 'k', /* dead_ogonek */
739 'i', /* dead_iota */
740 '#', /* dead_voiced_sound */
741 'o', /* dead_semivoiced_sound */
742 '!', /* dead_belowdot */
743 '?', /* dead_hook */
744 '+', /* dead_horn */
745 '-', /* dead_stroke */
746 ')', /* dead_abovecomma */
747 '(', /* dead_abovereversedcomma */
748 ':', /* dead_doublegrave */
749 'n', /* dead_invertedbreve */
750 ';', /* dead_belowcomma */
751 '$', /* dead_currency */
752 '@', /* dead_greek */
753 };
754
755 k_deadunicode(vc, ret_diacr[value], up_flag);
756}
757
758static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
759{
760 if (up_flag)
761 return;
762
763 set_console(value);
764}
765
766static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
767{
768 if (up_flag)
769 return;
770
771 if ((unsigned)value < ARRAY_SIZE(func_table)) {
772 unsigned long flags;
773
774 spin_lock_irqsave(&func_buf_lock, flags);
775 if (func_table[value])
776 puts_queue(vc, func_table[value]);
777 spin_unlock_irqrestore(&func_buf_lock, flags);
778
779 } else
780 pr_err("k_fn called with value=%d\n", value);
781}
782
783static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
784{
785 static const char cur_chars[] = "BDCA";
786
787 if (up_flag)
788 return;
789
790 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
791}
792
793static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
794{
795 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
796 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
797
798 if (up_flag)
799 return; /* no action, if this is a key release */
800
801 /* kludge... shift forces cursor/number keys */
802 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
803 applkey(vc, app_map[value], 1);
804 return;
805 }
806
807 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
808
809 switch (value) {
810 case KVAL(K_PCOMMA):
811 case KVAL(K_PDOT):
812 k_fn(vc, KVAL(K_REMOVE), 0);
813 return;
814 case KVAL(K_P0):
815 k_fn(vc, KVAL(K_INSERT), 0);
816 return;
817 case KVAL(K_P1):
818 k_fn(vc, KVAL(K_SELECT), 0);
819 return;
820 case KVAL(K_P2):
821 k_cur(vc, KVAL(K_DOWN), 0);
822 return;
823 case KVAL(K_P3):
824 k_fn(vc, KVAL(K_PGDN), 0);
825 return;
826 case KVAL(K_P4):
827 k_cur(vc, KVAL(K_LEFT), 0);
828 return;
829 case KVAL(K_P6):
830 k_cur(vc, KVAL(K_RIGHT), 0);
831 return;
832 case KVAL(K_P7):
833 k_fn(vc, KVAL(K_FIND), 0);
834 return;
835 case KVAL(K_P8):
836 k_cur(vc, KVAL(K_UP), 0);
837 return;
838 case KVAL(K_P9):
839 k_fn(vc, KVAL(K_PGUP), 0);
840 return;
841 case KVAL(K_P5):
842 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
843 return;
844 }
845 }
846
847 put_queue(vc, pad_chars[value]);
848 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
849 put_queue(vc, '\n');
850}
851
852static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
853{
854 int old_state = shift_state;
855
856 if (rep)
857 return;
858 /*
859 * Mimic typewriter:
860 * a CapsShift key acts like Shift but undoes CapsLock
861 */
862 if (value == KVAL(K_CAPSSHIFT)) {
863 value = KVAL(K_SHIFT);
864 if (!up_flag)
865 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
866 }
867
868 if (up_flag) {
869 /*
870 * handle the case that two shift or control
871 * keys are depressed simultaneously
872 */
873 if (shift_down[value])
874 shift_down[value]--;
875 } else
876 shift_down[value]++;
877
878 if (shift_down[value])
879 shift_state |= BIT(value);
880 else
881 shift_state &= ~BIT(value);
882
883 /* kludge */
884 if (up_flag && shift_state != old_state && npadch_active) {
885 if (kbd->kbdmode == VC_UNICODE)
886 to_utf8(vc, npadch_value);
887 else
888 put_queue(vc, npadch_value & 0xff);
889 npadch_active = false;
890 }
891}
892
893static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
894{
895 if (up_flag)
896 return;
897
898 if (vc_kbd_mode(kbd, VC_META)) {
899 put_queue(vc, '\033');
900 put_queue(vc, value);
901 } else
902 put_queue(vc, value | BIT(7));
903}
904
905static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
906{
907 unsigned int base;
908
909 if (up_flag)
910 return;
911
912 if (value < 10) {
913 /* decimal input of code, while Alt depressed */
914 base = 10;
915 } else {
916 /* hexadecimal input of code, while AltGr depressed */
917 value -= 10;
918 base = 16;
919 }
920
921 if (!npadch_active) {
922 npadch_value = 0;
923 npadch_active = true;
924 }
925
926 npadch_value = npadch_value * base + value;
927}
928
929static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
930{
931 if (up_flag || rep)
932 return;
933
934 chg_vc_kbd_lock(kbd, value);
935}
936
937static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
938{
939 k_shift(vc, value, up_flag);
940 if (up_flag || rep)
941 return;
942
943 chg_vc_kbd_slock(kbd, value);
944 /* try to make Alt, oops, AltGr and such work */
945 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
946 kbd->slockstate = 0;
947 chg_vc_kbd_slock(kbd, value);
948 }
949}
950
951/* by default, 300ms interval for combination release */
952static unsigned brl_timeout = 300;
953MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
954module_param(brl_timeout, uint, 0644);
955
956static unsigned brl_nbchords = 1;
957MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
958module_param(brl_nbchords, uint, 0644);
959
960static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
961{
962 static unsigned long chords;
963 static unsigned committed;
964
965 if (!brl_nbchords)
966 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
967 else {
968 committed |= pattern;
969 chords++;
970 if (chords == brl_nbchords) {
971 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
972 chords = 0;
973 committed = 0;
974 }
975 }
976}
977
978static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
979{
980 static unsigned pressed, committing;
981 static unsigned long releasestart;
982
983 if (kbd->kbdmode != VC_UNICODE) {
984 if (!up_flag)
985 pr_warn("keyboard mode must be unicode for braille patterns\n");
986 return;
987 }
988
989 if (!value) {
990 k_unicode(vc, BRL_UC_ROW, up_flag);
991 return;
992 }
993
994 if (value > 8)
995 return;
996
997 if (!up_flag) {
998 pressed |= BIT(value - 1);
999 if (!brl_timeout)
1000 committing = pressed;
1001 } else if (brl_timeout) {
1002 if (!committing ||
1003 time_after(jiffies,
1004 releasestart + msecs_to_jiffies(brl_timeout))) {
1005 committing = pressed;
1006 releasestart = jiffies;
1007 }
1008 pressed &= ~BIT(value - 1);
1009 if (!pressed && committing) {
1010 k_brlcommit(vc, committing, 0);
1011 committing = 0;
1012 }
1013 } else {
1014 if (committing) {
1015 k_brlcommit(vc, committing, 0);
1016 committing = 0;
1017 }
1018 pressed &= ~BIT(value - 1);
1019 }
1020}
1021
1022#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
1023
1024struct kbd_led_trigger {
1025 struct led_trigger trigger;
1026 unsigned int mask;
1027};
1028
1029static int kbd_led_trigger_activate(struct led_classdev *cdev)
1030{
1031 struct kbd_led_trigger *trigger =
1032 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1033
1034 tasklet_disable(&keyboard_tasklet);
1035 if (ledstate != -1U)
1036 led_trigger_event(&trigger->trigger,
1037 ledstate & trigger->mask ?
1038 LED_FULL : LED_OFF);
1039 tasklet_enable(&keyboard_tasklet);
1040
1041 return 0;
1042}
1043
1044#define KBD_LED_TRIGGER(_led_bit, _name) { \
1045 .trigger = { \
1046 .name = _name, \
1047 .activate = kbd_led_trigger_activate, \
1048 }, \
1049 .mask = BIT(_led_bit), \
1050 }
1051
1052#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
1053 KBD_LED_TRIGGER((_led_bit) + 8, _name)
1054
1055static struct kbd_led_trigger kbd_led_triggers[] = {
1056 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1057 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
1058 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1059 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1060
1061 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1062 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1063 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1064 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1065 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1066 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1067 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1068 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1069};
1070
1071static void kbd_propagate_led_state(unsigned int old_state,
1072 unsigned int new_state)
1073{
1074 struct kbd_led_trigger *trigger;
1075 unsigned int changed = old_state ^ new_state;
1076 int i;
1077
1078 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1079 trigger = &kbd_led_triggers[i];
1080
1081 if (changed & trigger->mask)
1082 led_trigger_event(&trigger->trigger,
1083 new_state & trigger->mask ?
1084 LED_FULL : LED_OFF);
1085 }
1086}
1087
1088static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1089{
1090 unsigned int led_state = *(unsigned int *)data;
1091
1092 if (test_bit(EV_LED, handle->dev->evbit))
1093 kbd_propagate_led_state(~led_state, led_state);
1094
1095 return 0;
1096}
1097
1098static void kbd_init_leds(void)
1099{
1100 int error;
1101 int i;
1102
1103 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1104 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1105 if (error)
1106 pr_err("error %d while registering trigger %s\n",
1107 error, kbd_led_triggers[i].trigger.name);
1108 }
1109}
1110
1111#else
1112
1113static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1114{
1115 unsigned int leds = *(unsigned int *)data;
1116
1117 if (test_bit(EV_LED, handle->dev->evbit)) {
1118 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0)));
1119 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & BIT(1)));
1120 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & BIT(2)));
1121 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1122 }
1123
1124 return 0;
1125}
1126
1127static void kbd_propagate_led_state(unsigned int old_state,
1128 unsigned int new_state)
1129{
1130 input_handler_for_each_handle(&kbd_handler, &new_state,
1131 kbd_update_leds_helper);
1132}
1133
1134static void kbd_init_leds(void)
1135{
1136}
1137
1138#endif
1139
1140/*
1141 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1142 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1143 * or (iii) specified bits of specified words in kernel memory.
1144 */
1145static unsigned char getledstate(void)
1146{
1147 return ledstate & 0xff;
1148}
1149
1150void setledstate(struct kbd_struct *kb, unsigned int led)
1151{
1152 unsigned long flags;
1153 spin_lock_irqsave(&led_lock, flags);
1154 if (!(led & ~7)) {
1155 ledioctl = led;
1156 kb->ledmode = LED_SHOW_IOCTL;
1157 } else
1158 kb->ledmode = LED_SHOW_FLAGS;
1159
1160 set_leds();
1161 spin_unlock_irqrestore(&led_lock, flags);
1162}
1163
1164static inline unsigned char getleds(void)
1165{
1166 struct kbd_struct *kb = kbd_table + fg_console;
1167
1168 if (kb->ledmode == LED_SHOW_IOCTL)
1169 return ledioctl;
1170
1171 return kb->ledflagstate;
1172}
1173
1174/**
1175 * vt_get_leds - helper for braille console
1176 * @console: console to read
1177 * @flag: flag we want to check
1178 *
1179 * Check the status of a keyboard led flag and report it back
1180 */
1181int vt_get_leds(unsigned int console, int flag)
1182{
1183 struct kbd_struct *kb = &kbd_table[console];
1184 int ret;
1185 unsigned long flags;
1186
1187 spin_lock_irqsave(&led_lock, flags);
1188 ret = vc_kbd_led(kb, flag);
1189 spin_unlock_irqrestore(&led_lock, flags);
1190
1191 return ret;
1192}
1193EXPORT_SYMBOL_GPL(vt_get_leds);
1194
1195/**
1196 * vt_set_led_state - set LED state of a console
1197 * @console: console to set
1198 * @leds: LED bits
1199 *
1200 * Set the LEDs on a console. This is a wrapper for the VT layer
1201 * so that we can keep kbd knowledge internal
1202 */
1203void vt_set_led_state(unsigned int console, int leds)
1204{
1205 struct kbd_struct *kb = &kbd_table[console];
1206 setledstate(kb, leds);
1207}
1208
1209/**
1210 * vt_kbd_con_start - Keyboard side of console start
1211 * @console: console
1212 *
1213 * Handle console start. This is a wrapper for the VT layer
1214 * so that we can keep kbd knowledge internal
1215 *
1216 * FIXME: We eventually need to hold the kbd lock here to protect
1217 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1218 * and start_tty under the kbd_event_lock, while normal tty paths
1219 * don't hold the lock. We probably need to split out an LED lock
1220 * but not during an -rc release!
1221 */
1222void vt_kbd_con_start(unsigned int console)
1223{
1224 struct kbd_struct *kb = &kbd_table[console];
1225 unsigned long flags;
1226 spin_lock_irqsave(&led_lock, flags);
1227 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1228 set_leds();
1229 spin_unlock_irqrestore(&led_lock, flags);
1230}
1231
1232/**
1233 * vt_kbd_con_stop - Keyboard side of console stop
1234 * @console: console
1235 *
1236 * Handle console stop. This is a wrapper for the VT layer
1237 * so that we can keep kbd knowledge internal
1238 */
1239void vt_kbd_con_stop(unsigned int console)
1240{
1241 struct kbd_struct *kb = &kbd_table[console];
1242 unsigned long flags;
1243 spin_lock_irqsave(&led_lock, flags);
1244 set_vc_kbd_led(kb, VC_SCROLLOCK);
1245 set_leds();
1246 spin_unlock_irqrestore(&led_lock, flags);
1247}
1248
1249/*
1250 * This is the tasklet that updates LED state of LEDs using standard
1251 * keyboard triggers. The reason we use tasklet is that we need to
1252 * handle the scenario when keyboard handler is not registered yet
1253 * but we already getting updates from the VT to update led state.
1254 */
1255static void kbd_bh(struct tasklet_struct *unused)
1256{
1257 unsigned int leds;
1258 unsigned long flags;
1259
1260 spin_lock_irqsave(&led_lock, flags);
1261 leds = getleds();
1262 leds |= (unsigned int)kbd->lockstate << 8;
1263 spin_unlock_irqrestore(&led_lock, flags);
1264
1265 if (vt_switch) {
1266 ledstate = ~leds;
1267 vt_switch = false;
1268 }
1269
1270 if (leds != ledstate) {
1271 kbd_propagate_led_state(ledstate, leds);
1272 ledstate = leds;
1273 }
1274}
1275
1276#if defined(CONFIG_X86) || defined(CONFIG_ALPHA) ||\
1277 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1278 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1279 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1280
1281static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1282{
1283 if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit))
1284 return false;
1285
1286 return dev->id.bustype == BUS_I8042 &&
1287 dev->id.vendor == 0x0001 && dev->id.product == 0x0001;
1288}
1289
1290static const unsigned short x86_keycodes[256] =
1291 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1292 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1293 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1294 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1295 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1296 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1297 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1298 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1299 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1300 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1301 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1302 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1303 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1304 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1305 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1306
1307#ifdef CONFIG_SPARC
1308static int sparc_l1_a_state;
1309extern void sun_do_break(void);
1310#endif
1311
1312static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1313 unsigned char up_flag)
1314{
1315 int code;
1316
1317 switch (keycode) {
1318
1319 case KEY_PAUSE:
1320 put_queue(vc, 0xe1);
1321 put_queue(vc, 0x1d | up_flag);
1322 put_queue(vc, 0x45 | up_flag);
1323 break;
1324
1325 case KEY_HANGEUL:
1326 if (!up_flag)
1327 put_queue(vc, 0xf2);
1328 break;
1329
1330 case KEY_HANJA:
1331 if (!up_flag)
1332 put_queue(vc, 0xf1);
1333 break;
1334
1335 case KEY_SYSRQ:
1336 /*
1337 * Real AT keyboards (that's what we're trying
1338 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1339 * pressing PrtSc/SysRq alone, but simply 0x54
1340 * when pressing Alt+PrtSc/SysRq.
1341 */
1342 if (test_bit(KEY_LEFTALT, key_down) ||
1343 test_bit(KEY_RIGHTALT, key_down)) {
1344 put_queue(vc, 0x54 | up_flag);
1345 } else {
1346 put_queue(vc, 0xe0);
1347 put_queue(vc, 0x2a | up_flag);
1348 put_queue(vc, 0xe0);
1349 put_queue(vc, 0x37 | up_flag);
1350 }
1351 break;
1352
1353 default:
1354 if (keycode > 255)
1355 return -1;
1356
1357 code = x86_keycodes[keycode];
1358 if (!code)
1359 return -1;
1360
1361 if (code & 0x100)
1362 put_queue(vc, 0xe0);
1363 put_queue(vc, (code & 0x7f) | up_flag);
1364
1365 break;
1366 }
1367
1368 return 0;
1369}
1370
1371#else
1372
1373static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1374{
1375 return false;
1376}
1377
1378static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1379{
1380 if (keycode > 127)
1381 return -1;
1382
1383 put_queue(vc, keycode | up_flag);
1384 return 0;
1385}
1386#endif
1387
1388static void kbd_rawcode(unsigned char data)
1389{
1390 struct vc_data *vc = vc_cons[fg_console].d;
1391
1392 kbd = &kbd_table[vc->vc_num];
1393 if (kbd->kbdmode == VC_RAW)
1394 put_queue(vc, data);
1395}
1396
1397static void kbd_keycode(unsigned int keycode, int down, bool hw_raw)
1398{
1399 struct vc_data *vc = vc_cons[fg_console].d;
1400 unsigned short keysym, *key_map;
1401 unsigned char type;
1402 bool raw_mode;
1403 struct tty_struct *tty;
1404 int shift_final;
1405 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1406 int rc;
1407
1408 tty = vc->port.tty;
1409
1410 if (tty && (!tty->driver_data)) {
1411 /* No driver data? Strange. Okay we fix it then. */
1412 tty->driver_data = vc;
1413 }
1414
1415 kbd = &kbd_table[vc->vc_num];
1416
1417#ifdef CONFIG_SPARC
1418 if (keycode == KEY_STOP)
1419 sparc_l1_a_state = down;
1420#endif
1421
1422 rep = (down == 2);
1423
1424 raw_mode = (kbd->kbdmode == VC_RAW);
1425 if (raw_mode && !hw_raw)
1426 if (emulate_raw(vc, keycode, !down << 7))
1427 if (keycode < BTN_MISC && printk_ratelimit())
1428 pr_warn("can't emulate rawmode for keycode %d\n",
1429 keycode);
1430
1431#ifdef CONFIG_SPARC
1432 if (keycode == KEY_A && sparc_l1_a_state) {
1433 sparc_l1_a_state = false;
1434 sun_do_break();
1435 }
1436#endif
1437
1438 if (kbd->kbdmode == VC_MEDIUMRAW) {
1439 /*
1440 * This is extended medium raw mode, with keys above 127
1441 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1442 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1443 * interfere with anything else. The two bytes after 0 will
1444 * always have the up flag set not to interfere with older
1445 * applications. This allows for 16384 different keycodes,
1446 * which should be enough.
1447 */
1448 if (keycode < 128) {
1449 put_queue(vc, keycode | (!down << 7));
1450 } else {
1451 put_queue(vc, !down << 7);
1452 put_queue(vc, (keycode >> 7) | BIT(7));
1453 put_queue(vc, keycode | BIT(7));
1454 }
1455 raw_mode = true;
1456 }
1457
1458 assign_bit(keycode, key_down, down);
1459
1460 if (rep &&
1461 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1462 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1463 /*
1464 * Don't repeat a key if the input buffers are not empty and the
1465 * characters get aren't echoed locally. This makes key repeat
1466 * usable with slow applications and under heavy loads.
1467 */
1468 return;
1469 }
1470
1471 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1472 param.ledstate = kbd->ledflagstate;
1473 key_map = key_maps[shift_final];
1474
1475 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1476 KBD_KEYCODE, ¶m);
1477 if (rc == NOTIFY_STOP || !key_map) {
1478 atomic_notifier_call_chain(&keyboard_notifier_list,
1479 KBD_UNBOUND_KEYCODE, ¶m);
1480 do_compute_shiftstate();
1481 kbd->slockstate = 0;
1482 return;
1483 }
1484
1485 if (keycode < NR_KEYS)
1486 keysym = key_map[keycode];
1487 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1488 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1489 else
1490 return;
1491
1492 type = KTYP(keysym);
1493
1494 if (type < 0xf0) {
1495 param.value = keysym;
1496 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1497 KBD_UNICODE, ¶m);
1498 if (rc != NOTIFY_STOP)
1499 if (down && !raw_mode)
1500 k_unicode(vc, keysym, !down);
1501 return;
1502 }
1503
1504 type -= 0xf0;
1505
1506 if (type == KT_LETTER) {
1507 type = KT_LATIN;
1508 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1509 key_map = key_maps[shift_final ^ BIT(KG_SHIFT)];
1510 if (key_map)
1511 keysym = key_map[keycode];
1512 }
1513 }
1514
1515 param.value = keysym;
1516 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1517 KBD_KEYSYM, ¶m);
1518 if (rc == NOTIFY_STOP)
1519 return;
1520
1521 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1522 return;
1523
1524 (*k_handler[type])(vc, keysym & 0xff, !down);
1525
1526 param.ledstate = kbd->ledflagstate;
1527 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1528
1529 if (type != KT_SLOCK)
1530 kbd->slockstate = 0;
1531}
1532
1533static void kbd_event(struct input_handle *handle, unsigned int event_type,
1534 unsigned int event_code, int value)
1535{
1536 /* We are called with interrupts disabled, just take the lock */
1537 spin_lock(&kbd_event_lock);
1538
1539 if (event_type == EV_MSC && event_code == MSC_RAW &&
1540 kbd_is_hw_raw(handle->dev))
1541 kbd_rawcode(value);
1542 if (event_type == EV_KEY && event_code <= KEY_MAX)
1543 kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev));
1544
1545 spin_unlock(&kbd_event_lock);
1546
1547 tasklet_schedule(&keyboard_tasklet);
1548 do_poke_blanked_console = 1;
1549 schedule_console_callback();
1550}
1551
1552static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1553{
1554 if (test_bit(EV_SND, dev->evbit))
1555 return true;
1556
1557 if (test_bit(EV_KEY, dev->evbit)) {
1558 if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) <
1559 BTN_MISC)
1560 return true;
1561 if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1,
1562 KEY_BRL_DOT1) <= KEY_BRL_DOT10)
1563 return true;
1564 }
1565
1566 return false;
1567}
1568
1569/*
1570 * When a keyboard (or other input device) is found, the kbd_connect
1571 * function is called. The function then looks at the device, and if it
1572 * likes it, it can open it and get events from it. In this (kbd_connect)
1573 * function, we should decide which VT to bind that keyboard to initially.
1574 */
1575static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1576 const struct input_device_id *id)
1577{
1578 struct input_handle *handle;
1579 int error;
1580
1581 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1582 if (!handle)
1583 return -ENOMEM;
1584
1585 handle->dev = dev;
1586 handle->handler = handler;
1587 handle->name = "kbd";
1588
1589 error = input_register_handle(handle);
1590 if (error)
1591 goto err_free_handle;
1592
1593 error = input_open_device(handle);
1594 if (error)
1595 goto err_unregister_handle;
1596
1597 return 0;
1598
1599 err_unregister_handle:
1600 input_unregister_handle(handle);
1601 err_free_handle:
1602 kfree(handle);
1603 return error;
1604}
1605
1606static void kbd_disconnect(struct input_handle *handle)
1607{
1608 input_close_device(handle);
1609 input_unregister_handle(handle);
1610 kfree(handle);
1611}
1612
1613/*
1614 * Start keyboard handler on the new keyboard by refreshing LED state to
1615 * match the rest of the system.
1616 */
1617static void kbd_start(struct input_handle *handle)
1618{
1619 tasklet_disable(&keyboard_tasklet);
1620
1621 if (ledstate != -1U)
1622 kbd_update_leds_helper(handle, &ledstate);
1623
1624 tasklet_enable(&keyboard_tasklet);
1625}
1626
1627static const struct input_device_id kbd_ids[] = {
1628 {
1629 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1630 .evbit = { BIT_MASK(EV_KEY) },
1631 },
1632
1633 {
1634 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1635 .evbit = { BIT_MASK(EV_SND) },
1636 },
1637
1638 { }, /* Terminating entry */
1639};
1640
1641MODULE_DEVICE_TABLE(input, kbd_ids);
1642
1643static struct input_handler kbd_handler = {
1644 .event = kbd_event,
1645 .match = kbd_match,
1646 .connect = kbd_connect,
1647 .disconnect = kbd_disconnect,
1648 .start = kbd_start,
1649 .name = "kbd",
1650 .id_table = kbd_ids,
1651};
1652
1653int __init kbd_init(void)
1654{
1655 int i;
1656 int error;
1657
1658 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1659 kbd_table[i].ledflagstate = kbd_defleds();
1660 kbd_table[i].default_ledflagstate = kbd_defleds();
1661 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1662 kbd_table[i].lockstate = KBD_DEFLOCK;
1663 kbd_table[i].slockstate = 0;
1664 kbd_table[i].modeflags = KBD_DEFMODE;
1665 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1666 }
1667
1668 kbd_init_leds();
1669
1670 error = input_register_handler(&kbd_handler);
1671 if (error)
1672 return error;
1673
1674 tasklet_enable(&keyboard_tasklet);
1675 tasklet_schedule(&keyboard_tasklet);
1676
1677 return 0;
1678}
1679
1680/* Ioctl support code */
1681
1682/**
1683 * vt_do_diacrit - diacritical table updates
1684 * @cmd: ioctl request
1685 * @udp: pointer to user data for ioctl
1686 * @perm: permissions check computed by caller
1687 *
1688 * Update the diacritical tables atomically and safely. Lock them
1689 * against simultaneous keypresses
1690 */
1691int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1692{
1693 unsigned long flags;
1694 int asize;
1695 int ret = 0;
1696
1697 switch (cmd) {
1698 case KDGKBDIACR:
1699 {
1700 struct kbdiacrs __user *a = udp;
1701 struct kbdiacr *dia;
1702 int i;
1703
1704 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1705 GFP_KERNEL);
1706 if (!dia)
1707 return -ENOMEM;
1708
1709 /* Lock the diacriticals table, make a copy and then
1710 copy it after we unlock */
1711 spin_lock_irqsave(&kbd_event_lock, flags);
1712
1713 asize = accent_table_size;
1714 for (i = 0; i < asize; i++) {
1715 dia[i].diacr = conv_uni_to_8bit(
1716 accent_table[i].diacr);
1717 dia[i].base = conv_uni_to_8bit(
1718 accent_table[i].base);
1719 dia[i].result = conv_uni_to_8bit(
1720 accent_table[i].result);
1721 }
1722 spin_unlock_irqrestore(&kbd_event_lock, flags);
1723
1724 if (put_user(asize, &a->kb_cnt))
1725 ret = -EFAULT;
1726 else if (copy_to_user(a->kbdiacr, dia,
1727 asize * sizeof(struct kbdiacr)))
1728 ret = -EFAULT;
1729 kfree(dia);
1730 return ret;
1731 }
1732 case KDGKBDIACRUC:
1733 {
1734 struct kbdiacrsuc __user *a = udp;
1735 void *buf;
1736
1737 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1738 GFP_KERNEL);
1739 if (buf == NULL)
1740 return -ENOMEM;
1741
1742 /* Lock the diacriticals table, make a copy and then
1743 copy it after we unlock */
1744 spin_lock_irqsave(&kbd_event_lock, flags);
1745
1746 asize = accent_table_size;
1747 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1748
1749 spin_unlock_irqrestore(&kbd_event_lock, flags);
1750
1751 if (put_user(asize, &a->kb_cnt))
1752 ret = -EFAULT;
1753 else if (copy_to_user(a->kbdiacruc, buf,
1754 asize*sizeof(struct kbdiacruc)))
1755 ret = -EFAULT;
1756 kfree(buf);
1757 return ret;
1758 }
1759
1760 case KDSKBDIACR:
1761 {
1762 struct kbdiacrs __user *a = udp;
1763 struct kbdiacr *dia = NULL;
1764 unsigned int ct;
1765 int i;
1766
1767 if (!perm)
1768 return -EPERM;
1769 if (get_user(ct, &a->kb_cnt))
1770 return -EFAULT;
1771 if (ct >= MAX_DIACR)
1772 return -EINVAL;
1773
1774 if (ct) {
1775 dia = memdup_array_user(a->kbdiacr,
1776 ct, sizeof(struct kbdiacr));
1777 if (IS_ERR(dia))
1778 return PTR_ERR(dia);
1779 }
1780
1781 spin_lock_irqsave(&kbd_event_lock, flags);
1782 accent_table_size = ct;
1783 for (i = 0; i < ct; i++) {
1784 accent_table[i].diacr =
1785 conv_8bit_to_uni(dia[i].diacr);
1786 accent_table[i].base =
1787 conv_8bit_to_uni(dia[i].base);
1788 accent_table[i].result =
1789 conv_8bit_to_uni(dia[i].result);
1790 }
1791 spin_unlock_irqrestore(&kbd_event_lock, flags);
1792 kfree(dia);
1793 return 0;
1794 }
1795
1796 case KDSKBDIACRUC:
1797 {
1798 struct kbdiacrsuc __user *a = udp;
1799 unsigned int ct;
1800 void *buf = NULL;
1801
1802 if (!perm)
1803 return -EPERM;
1804
1805 if (get_user(ct, &a->kb_cnt))
1806 return -EFAULT;
1807
1808 if (ct >= MAX_DIACR)
1809 return -EINVAL;
1810
1811 if (ct) {
1812 buf = memdup_array_user(a->kbdiacruc,
1813 ct, sizeof(struct kbdiacruc));
1814 if (IS_ERR(buf))
1815 return PTR_ERR(buf);
1816 }
1817 spin_lock_irqsave(&kbd_event_lock, flags);
1818 if (ct)
1819 memcpy(accent_table, buf,
1820 ct * sizeof(struct kbdiacruc));
1821 accent_table_size = ct;
1822 spin_unlock_irqrestore(&kbd_event_lock, flags);
1823 kfree(buf);
1824 return 0;
1825 }
1826 }
1827 return ret;
1828}
1829
1830/**
1831 * vt_do_kdskbmode - set keyboard mode ioctl
1832 * @console: the console to use
1833 * @arg: the requested mode
1834 *
1835 * Update the keyboard mode bits while holding the correct locks.
1836 * Return 0 for success or an error code.
1837 */
1838int vt_do_kdskbmode(unsigned int console, unsigned int arg)
1839{
1840 struct kbd_struct *kb = &kbd_table[console];
1841 int ret = 0;
1842 unsigned long flags;
1843
1844 spin_lock_irqsave(&kbd_event_lock, flags);
1845 switch(arg) {
1846 case K_RAW:
1847 kb->kbdmode = VC_RAW;
1848 break;
1849 case K_MEDIUMRAW:
1850 kb->kbdmode = VC_MEDIUMRAW;
1851 break;
1852 case K_XLATE:
1853 kb->kbdmode = VC_XLATE;
1854 do_compute_shiftstate();
1855 break;
1856 case K_UNICODE:
1857 kb->kbdmode = VC_UNICODE;
1858 do_compute_shiftstate();
1859 break;
1860 case K_OFF:
1861 kb->kbdmode = VC_OFF;
1862 break;
1863 default:
1864 ret = -EINVAL;
1865 }
1866 spin_unlock_irqrestore(&kbd_event_lock, flags);
1867 return ret;
1868}
1869
1870/**
1871 * vt_do_kdskbmeta - set keyboard meta state
1872 * @console: the console to use
1873 * @arg: the requested meta state
1874 *
1875 * Update the keyboard meta bits while holding the correct locks.
1876 * Return 0 for success or an error code.
1877 */
1878int vt_do_kdskbmeta(unsigned int console, unsigned int arg)
1879{
1880 struct kbd_struct *kb = &kbd_table[console];
1881 int ret = 0;
1882 unsigned long flags;
1883
1884 spin_lock_irqsave(&kbd_event_lock, flags);
1885 switch(arg) {
1886 case K_METABIT:
1887 clr_vc_kbd_mode(kb, VC_META);
1888 break;
1889 case K_ESCPREFIX:
1890 set_vc_kbd_mode(kb, VC_META);
1891 break;
1892 default:
1893 ret = -EINVAL;
1894 }
1895 spin_unlock_irqrestore(&kbd_event_lock, flags);
1896 return ret;
1897}
1898
1899int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1900 int perm)
1901{
1902 struct kbkeycode tmp;
1903 int kc = 0;
1904
1905 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1906 return -EFAULT;
1907 switch (cmd) {
1908 case KDGETKEYCODE:
1909 kc = getkeycode(tmp.scancode);
1910 if (kc >= 0)
1911 kc = put_user(kc, &user_kbkc->keycode);
1912 break;
1913 case KDSETKEYCODE:
1914 if (!perm)
1915 return -EPERM;
1916 kc = setkeycode(tmp.scancode, tmp.keycode);
1917 break;
1918 }
1919 return kc;
1920}
1921
1922static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx,
1923 unsigned char map)
1924{
1925 unsigned short *key_map, val;
1926 unsigned long flags;
1927
1928 /* Ensure another thread doesn't free it under us */
1929 spin_lock_irqsave(&kbd_event_lock, flags);
1930 key_map = key_maps[map];
1931 if (key_map) {
1932 val = U(key_map[idx]);
1933 if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1934 val = K_HOLE;
1935 } else
1936 val = idx ? K_HOLE : K_NOSUCHMAP;
1937 spin_unlock_irqrestore(&kbd_event_lock, flags);
1938
1939 return val;
1940}
1941
1942static int vt_kdskbent(unsigned char kbdmode, unsigned char idx,
1943 unsigned char map, unsigned short val)
1944{
1945 unsigned long flags;
1946 unsigned short *key_map, *new_map, oldval;
1947
1948 if (!idx && val == K_NOSUCHMAP) {
1949 spin_lock_irqsave(&kbd_event_lock, flags);
1950 /* deallocate map */
1951 key_map = key_maps[map];
1952 if (map && key_map) {
1953 key_maps[map] = NULL;
1954 if (key_map[0] == U(K_ALLOCATED)) {
1955 kfree(key_map);
1956 keymap_count--;
1957 }
1958 }
1959 spin_unlock_irqrestore(&kbd_event_lock, flags);
1960
1961 return 0;
1962 }
1963
1964 if (KTYP(val) < NR_TYPES) {
1965 if (KVAL(val) > max_vals[KTYP(val)])
1966 return -EINVAL;
1967 } else if (kbdmode != VC_UNICODE)
1968 return -EINVAL;
1969
1970 /* ++Geert: non-PC keyboards may generate keycode zero */
1971#if !defined(__mc68000__) && !defined(__powerpc__)
1972 /* assignment to entry 0 only tests validity of args */
1973 if (!idx)
1974 return 0;
1975#endif
1976
1977 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1978 if (!new_map)
1979 return -ENOMEM;
1980
1981 spin_lock_irqsave(&kbd_event_lock, flags);
1982 key_map = key_maps[map];
1983 if (key_map == NULL) {
1984 int j;
1985
1986 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1987 !capable(CAP_SYS_RESOURCE)) {
1988 spin_unlock_irqrestore(&kbd_event_lock, flags);
1989 kfree(new_map);
1990 return -EPERM;
1991 }
1992 key_maps[map] = new_map;
1993 key_map = new_map;
1994 key_map[0] = U(K_ALLOCATED);
1995 for (j = 1; j < NR_KEYS; j++)
1996 key_map[j] = U(K_HOLE);
1997 keymap_count++;
1998 } else
1999 kfree(new_map);
2000
2001 oldval = U(key_map[idx]);
2002 if (val == oldval)
2003 goto out;
2004
2005 /* Attention Key */
2006 if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) {
2007 spin_unlock_irqrestore(&kbd_event_lock, flags);
2008 return -EPERM;
2009 }
2010
2011 key_map[idx] = U(val);
2012 if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT))
2013 do_compute_shiftstate();
2014out:
2015 spin_unlock_irqrestore(&kbd_event_lock, flags);
2016
2017 return 0;
2018}
2019
2020int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
2021 unsigned int console)
2022{
2023 struct kbd_struct *kb = &kbd_table[console];
2024 struct kbentry kbe;
2025
2026 if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry)))
2027 return -EFAULT;
2028
2029 switch (cmd) {
2030 case KDGKBENT:
2031 return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index,
2032 kbe.kb_table),
2033 &user_kbe->kb_value);
2034 case KDSKBENT:
2035 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2036 return -EPERM;
2037 return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table,
2038 kbe.kb_value);
2039 }
2040 return 0;
2041}
2042
2043static char *vt_kdskbsent(char *kbs, unsigned char cur)
2044{
2045 static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC);
2046 char *cur_f = func_table[cur];
2047
2048 if (cur_f && strlen(cur_f) >= strlen(kbs)) {
2049 strcpy(cur_f, kbs);
2050 return kbs;
2051 }
2052
2053 func_table[cur] = kbs;
2054
2055 return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL;
2056}
2057
2058int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
2059{
2060 unsigned char kb_func;
2061 unsigned long flags;
2062 char *kbs;
2063 int ret;
2064
2065 if (get_user(kb_func, &user_kdgkb->kb_func))
2066 return -EFAULT;
2067
2068 kb_func = array_index_nospec(kb_func, MAX_NR_FUNC);
2069
2070 switch (cmd) {
2071 case KDGKBSENT: {
2072 /* size should have been a struct member */
2073 ssize_t len = sizeof(user_kdgkb->kb_string);
2074
2075 kbs = kmalloc(len, GFP_KERNEL);
2076 if (!kbs)
2077 return -ENOMEM;
2078
2079 spin_lock_irqsave(&func_buf_lock, flags);
2080 len = strscpy(kbs, func_table[kb_func] ? : "", len);
2081 spin_unlock_irqrestore(&func_buf_lock, flags);
2082
2083 if (len < 0) {
2084 ret = -ENOSPC;
2085 break;
2086 }
2087 ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ?
2088 -EFAULT : 0;
2089 break;
2090 }
2091 case KDSKBSENT:
2092 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2093 return -EPERM;
2094
2095 kbs = strndup_user(user_kdgkb->kb_string,
2096 sizeof(user_kdgkb->kb_string));
2097 if (IS_ERR(kbs))
2098 return PTR_ERR(kbs);
2099
2100 spin_lock_irqsave(&func_buf_lock, flags);
2101 kbs = vt_kdskbsent(kbs, kb_func);
2102 spin_unlock_irqrestore(&func_buf_lock, flags);
2103
2104 ret = 0;
2105 break;
2106 }
2107
2108 kfree(kbs);
2109
2110 return ret;
2111}
2112
2113int vt_do_kdskled(unsigned int console, int cmd, unsigned long arg, int perm)
2114{
2115 struct kbd_struct *kb = &kbd_table[console];
2116 unsigned long flags;
2117 unsigned char ucval;
2118
2119 switch(cmd) {
2120 /* the ioctls below read/set the flags usually shown in the leds */
2121 /* don't use them - they will go away without warning */
2122 case KDGKBLED:
2123 spin_lock_irqsave(&kbd_event_lock, flags);
2124 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2125 spin_unlock_irqrestore(&kbd_event_lock, flags);
2126 return put_user(ucval, (char __user *)arg);
2127
2128 case KDSKBLED:
2129 if (!perm)
2130 return -EPERM;
2131 if (arg & ~0x77)
2132 return -EINVAL;
2133 spin_lock_irqsave(&led_lock, flags);
2134 kb->ledflagstate = (arg & 7);
2135 kb->default_ledflagstate = ((arg >> 4) & 7);
2136 set_leds();
2137 spin_unlock_irqrestore(&led_lock, flags);
2138 return 0;
2139
2140 /* the ioctls below only set the lights, not the functions */
2141 /* for those, see KDGKBLED and KDSKBLED above */
2142 case KDGETLED:
2143 ucval = getledstate();
2144 return put_user(ucval, (char __user *)arg);
2145
2146 case KDSETLED:
2147 if (!perm)
2148 return -EPERM;
2149 setledstate(kb, arg);
2150 return 0;
2151 }
2152 return -ENOIOCTLCMD;
2153}
2154
2155int vt_do_kdgkbmode(unsigned int console)
2156{
2157 struct kbd_struct *kb = &kbd_table[console];
2158 /* This is a spot read so needs no locking */
2159 switch (kb->kbdmode) {
2160 case VC_RAW:
2161 return K_RAW;
2162 case VC_MEDIUMRAW:
2163 return K_MEDIUMRAW;
2164 case VC_UNICODE:
2165 return K_UNICODE;
2166 case VC_OFF:
2167 return K_OFF;
2168 default:
2169 return K_XLATE;
2170 }
2171}
2172
2173/**
2174 * vt_do_kdgkbmeta - report meta status
2175 * @console: console to report
2176 *
2177 * Report the meta flag status of this console
2178 */
2179int vt_do_kdgkbmeta(unsigned int console)
2180{
2181 struct kbd_struct *kb = &kbd_table[console];
2182 /* Again a spot read so no locking */
2183 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2184}
2185
2186/**
2187 * vt_reset_unicode - reset the unicode status
2188 * @console: console being reset
2189 *
2190 * Restore the unicode console state to its default
2191 */
2192void vt_reset_unicode(unsigned int console)
2193{
2194 unsigned long flags;
2195
2196 spin_lock_irqsave(&kbd_event_lock, flags);
2197 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2198 spin_unlock_irqrestore(&kbd_event_lock, flags);
2199}
2200
2201/**
2202 * vt_get_shift_state - shift bit state
2203 *
2204 * Report the shift bits from the keyboard state. We have to export
2205 * this to support some oddities in the vt layer.
2206 */
2207int vt_get_shift_state(void)
2208{
2209 /* Don't lock as this is a transient report */
2210 return shift_state;
2211}
2212
2213/**
2214 * vt_reset_keyboard - reset keyboard state
2215 * @console: console to reset
2216 *
2217 * Reset the keyboard bits for a console as part of a general console
2218 * reset event
2219 */
2220void vt_reset_keyboard(unsigned int console)
2221{
2222 struct kbd_struct *kb = &kbd_table[console];
2223 unsigned long flags;
2224
2225 spin_lock_irqsave(&kbd_event_lock, flags);
2226 set_vc_kbd_mode(kb, VC_REPEAT);
2227 clr_vc_kbd_mode(kb, VC_CKMODE);
2228 clr_vc_kbd_mode(kb, VC_APPLIC);
2229 clr_vc_kbd_mode(kb, VC_CRLF);
2230 kb->lockstate = 0;
2231 kb->slockstate = 0;
2232 spin_lock(&led_lock);
2233 kb->ledmode = LED_SHOW_FLAGS;
2234 kb->ledflagstate = kb->default_ledflagstate;
2235 spin_unlock(&led_lock);
2236 /* do not do set_leds here because this causes an endless tasklet loop
2237 when the keyboard hasn't been initialized yet */
2238 spin_unlock_irqrestore(&kbd_event_lock, flags);
2239}
2240
2241/**
2242 * vt_get_kbd_mode_bit - read keyboard status bits
2243 * @console: console to read from
2244 * @bit: mode bit to read
2245 *
2246 * Report back a vt mode bit. We do this without locking so the
2247 * caller must be sure that there are no synchronization needs
2248 */
2249
2250int vt_get_kbd_mode_bit(unsigned int console, int bit)
2251{
2252 struct kbd_struct *kb = &kbd_table[console];
2253 return vc_kbd_mode(kb, bit);
2254}
2255
2256/**
2257 * vt_set_kbd_mode_bit - read keyboard status bits
2258 * @console: console to read from
2259 * @bit: mode bit to read
2260 *
2261 * Set a vt mode bit. We do this without locking so the
2262 * caller must be sure that there are no synchronization needs
2263 */
2264
2265void vt_set_kbd_mode_bit(unsigned int console, int bit)
2266{
2267 struct kbd_struct *kb = &kbd_table[console];
2268 unsigned long flags;
2269
2270 spin_lock_irqsave(&kbd_event_lock, flags);
2271 set_vc_kbd_mode(kb, bit);
2272 spin_unlock_irqrestore(&kbd_event_lock, flags);
2273}
2274
2275/**
2276 * vt_clr_kbd_mode_bit - read keyboard status bits
2277 * @console: console to read from
2278 * @bit: mode bit to read
2279 *
2280 * Report back a vt mode bit. We do this without locking so the
2281 * caller must be sure that there are no synchronization needs
2282 */
2283
2284void vt_clr_kbd_mode_bit(unsigned int console, int bit)
2285{
2286 struct kbd_struct *kb = &kbd_table[console];
2287 unsigned long flags;
2288
2289 spin_lock_irqsave(&kbd_event_lock, flags);
2290 clr_vc_kbd_mode(kb, bit);
2291 spin_unlock_irqrestore(&kbd_event_lock, flags);
2292}
1/*
2 * Written for linux by Johan Myreen as a translation from
3 * the assembly version by Linus (with diacriticals added)
4 *
5 * Some additional features added by Christoph Niemann (ChN), March 1993
6 *
7 * Loadable keymaps by Risto Kankkunen, May 1993
8 *
9 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
10 * Added decr/incr_console, dynamic keymaps, Unicode support,
11 * dynamic function/string keys, led setting, Sept 1994
12 * `Sticky' modifier keys, 951006.
13 *
14 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
15 *
16 * Modified to provide 'generic' keyboard support by Hamish Macdonald
17 * Merge with the m68k keyboard driver and split-off of the PC low-level
18 * parts by Geert Uytterhoeven, May 1997
19 *
20 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
21 * 30-07-98: Dead keys redone, aeb@cwi.nl.
22 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
23 */
24
25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27#include <linux/consolemap.h>
28#include <linux/module.h>
29#include <linux/sched.h>
30#include <linux/tty.h>
31#include <linux/tty_flip.h>
32#include <linux/mm.h>
33#include <linux/string.h>
34#include <linux/init.h>
35#include <linux/slab.h>
36
37#include <linux/kbd_kern.h>
38#include <linux/kbd_diacr.h>
39#include <linux/vt_kern.h>
40#include <linux/input.h>
41#include <linux/reboot.h>
42#include <linux/notifier.h>
43#include <linux/jiffies.h>
44#include <linux/uaccess.h>
45
46#include <asm/irq_regs.h>
47
48extern void ctrl_alt_del(void);
49
50/*
51 * Exported functions/variables
52 */
53
54#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
55
56#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
57#include <asm/kbdleds.h>
58#else
59static inline int kbd_defleds(void)
60{
61 return 0;
62}
63#endif
64
65#define KBD_DEFLOCK 0
66
67/*
68 * Handler Tables.
69 */
70
71#define K_HANDLERS\
72 k_self, k_fn, k_spec, k_pad,\
73 k_dead, k_cons, k_cur, k_shift,\
74 k_meta, k_ascii, k_lock, k_lowercase,\
75 k_slock, k_dead2, k_brl, k_ignore
76
77typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
78 char up_flag);
79static k_handler_fn K_HANDLERS;
80static k_handler_fn *k_handler[16] = { K_HANDLERS };
81
82#define FN_HANDLERS\
83 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
84 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
85 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
86 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
87 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
88
89typedef void (fn_handler_fn)(struct vc_data *vc);
90static fn_handler_fn FN_HANDLERS;
91static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
92
93/*
94 * Variables exported for vt_ioctl.c
95 */
96
97struct vt_spawn_console vt_spawn_con = {
98 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
99 .pid = NULL,
100 .sig = 0,
101};
102
103
104/*
105 * Internal Data.
106 */
107
108static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
109static struct kbd_struct *kbd = kbd_table;
110
111/* maximum values each key_handler can handle */
112static const int max_vals[] = {
113 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
114 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
115 255, NR_LOCK - 1, 255, NR_BRL - 1
116};
117
118static const int NR_TYPES = ARRAY_SIZE(max_vals);
119
120static struct input_handler kbd_handler;
121static DEFINE_SPINLOCK(kbd_event_lock);
122static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
123static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
124static bool dead_key_next;
125static int npadch = -1; /* -1 or number assembled on pad */
126static unsigned int diacr;
127static char rep; /* flag telling character repeat */
128
129static int shift_state = 0;
130
131static unsigned char ledstate = 0xff; /* undefined */
132static unsigned char ledioctl;
133
134static struct ledptr {
135 unsigned int *addr;
136 unsigned int mask;
137 unsigned char valid:1;
138} ledptrs[3];
139
140/*
141 * Notifier list for console keyboard events
142 */
143static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
144
145int register_keyboard_notifier(struct notifier_block *nb)
146{
147 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
148}
149EXPORT_SYMBOL_GPL(register_keyboard_notifier);
150
151int unregister_keyboard_notifier(struct notifier_block *nb)
152{
153 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
154}
155EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
156
157/*
158 * Translation of scancodes to keycodes. We set them on only the first
159 * keyboard in the list that accepts the scancode and keycode.
160 * Explanation for not choosing the first attached keyboard anymore:
161 * USB keyboards for example have two event devices: one for all "normal"
162 * keys and one for extra function keys (like "volume up", "make coffee",
163 * etc.). So this means that scancodes for the extra function keys won't
164 * be valid for the first event device, but will be for the second.
165 */
166
167struct getset_keycode_data {
168 struct input_keymap_entry ke;
169 int error;
170};
171
172static int getkeycode_helper(struct input_handle *handle, void *data)
173{
174 struct getset_keycode_data *d = data;
175
176 d->error = input_get_keycode(handle->dev, &d->ke);
177
178 return d->error == 0; /* stop as soon as we successfully get one */
179}
180
181static int getkeycode(unsigned int scancode)
182{
183 struct getset_keycode_data d = {
184 .ke = {
185 .flags = 0,
186 .len = sizeof(scancode),
187 .keycode = 0,
188 },
189 .error = -ENODEV,
190 };
191
192 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
193
194 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
195
196 return d.error ?: d.ke.keycode;
197}
198
199static int setkeycode_helper(struct input_handle *handle, void *data)
200{
201 struct getset_keycode_data *d = data;
202
203 d->error = input_set_keycode(handle->dev, &d->ke);
204
205 return d->error == 0; /* stop as soon as we successfully set one */
206}
207
208static int setkeycode(unsigned int scancode, unsigned int keycode)
209{
210 struct getset_keycode_data d = {
211 .ke = {
212 .flags = 0,
213 .len = sizeof(scancode),
214 .keycode = keycode,
215 },
216 .error = -ENODEV,
217 };
218
219 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
220
221 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
222
223 return d.error;
224}
225
226/*
227 * Making beeps and bells. Note that we prefer beeps to bells, but when
228 * shutting the sound off we do both.
229 */
230
231static int kd_sound_helper(struct input_handle *handle, void *data)
232{
233 unsigned int *hz = data;
234 struct input_dev *dev = handle->dev;
235
236 if (test_bit(EV_SND, dev->evbit)) {
237 if (test_bit(SND_TONE, dev->sndbit)) {
238 input_inject_event(handle, EV_SND, SND_TONE, *hz);
239 if (*hz)
240 return 0;
241 }
242 if (test_bit(SND_BELL, dev->sndbit))
243 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
244 }
245
246 return 0;
247}
248
249static void kd_nosound(unsigned long ignored)
250{
251 static unsigned int zero;
252
253 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
254}
255
256static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
257
258void kd_mksound(unsigned int hz, unsigned int ticks)
259{
260 del_timer_sync(&kd_mksound_timer);
261
262 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
263
264 if (hz && ticks)
265 mod_timer(&kd_mksound_timer, jiffies + ticks);
266}
267EXPORT_SYMBOL(kd_mksound);
268
269/*
270 * Setting the keyboard rate.
271 */
272
273static int kbd_rate_helper(struct input_handle *handle, void *data)
274{
275 struct input_dev *dev = handle->dev;
276 struct kbd_repeat *rep = data;
277
278 if (test_bit(EV_REP, dev->evbit)) {
279
280 if (rep[0].delay > 0)
281 input_inject_event(handle,
282 EV_REP, REP_DELAY, rep[0].delay);
283 if (rep[0].period > 0)
284 input_inject_event(handle,
285 EV_REP, REP_PERIOD, rep[0].period);
286
287 rep[1].delay = dev->rep[REP_DELAY];
288 rep[1].period = dev->rep[REP_PERIOD];
289 }
290
291 return 0;
292}
293
294int kbd_rate(struct kbd_repeat *rep)
295{
296 struct kbd_repeat data[2] = { *rep };
297
298 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
299 *rep = data[1]; /* Copy currently used settings */
300
301 return 0;
302}
303
304/*
305 * Helper Functions.
306 */
307static void put_queue(struct vc_data *vc, int ch)
308{
309 struct tty_struct *tty = vc->port.tty;
310
311 if (tty) {
312 tty_insert_flip_char(tty, ch, 0);
313 con_schedule_flip(tty);
314 }
315}
316
317static void puts_queue(struct vc_data *vc, char *cp)
318{
319 struct tty_struct *tty = vc->port.tty;
320
321 if (!tty)
322 return;
323
324 while (*cp) {
325 tty_insert_flip_char(tty, *cp, 0);
326 cp++;
327 }
328 con_schedule_flip(tty);
329}
330
331static void applkey(struct vc_data *vc, int key, char mode)
332{
333 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
334
335 buf[1] = (mode ? 'O' : '[');
336 buf[2] = key;
337 puts_queue(vc, buf);
338}
339
340/*
341 * Many other routines do put_queue, but I think either
342 * they produce ASCII, or they produce some user-assigned
343 * string, and in both cases we might assume that it is
344 * in utf-8 already.
345 */
346static void to_utf8(struct vc_data *vc, uint c)
347{
348 if (c < 0x80)
349 /* 0******* */
350 put_queue(vc, c);
351 else if (c < 0x800) {
352 /* 110***** 10****** */
353 put_queue(vc, 0xc0 | (c >> 6));
354 put_queue(vc, 0x80 | (c & 0x3f));
355 } else if (c < 0x10000) {
356 if (c >= 0xD800 && c < 0xE000)
357 return;
358 if (c == 0xFFFF)
359 return;
360 /* 1110**** 10****** 10****** */
361 put_queue(vc, 0xe0 | (c >> 12));
362 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
363 put_queue(vc, 0x80 | (c & 0x3f));
364 } else if (c < 0x110000) {
365 /* 11110*** 10****** 10****** 10****** */
366 put_queue(vc, 0xf0 | (c >> 18));
367 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
368 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
369 put_queue(vc, 0x80 | (c & 0x3f));
370 }
371}
372
373/*
374 * Called after returning from RAW mode or when changing consoles - recompute
375 * shift_down[] and shift_state from key_down[] maybe called when keymap is
376 * undefined, so that shiftkey release is seen. The caller must hold the
377 * kbd_event_lock.
378 */
379
380static void do_compute_shiftstate(void)
381{
382 unsigned int i, j, k, sym, val;
383
384 shift_state = 0;
385 memset(shift_down, 0, sizeof(shift_down));
386
387 for (i = 0; i < ARRAY_SIZE(key_down); i++) {
388
389 if (!key_down[i])
390 continue;
391
392 k = i * BITS_PER_LONG;
393
394 for (j = 0; j < BITS_PER_LONG; j++, k++) {
395
396 if (!test_bit(k, key_down))
397 continue;
398
399 sym = U(key_maps[0][k]);
400 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
401 continue;
402
403 val = KVAL(sym);
404 if (val == KVAL(K_CAPSSHIFT))
405 val = KVAL(K_SHIFT);
406
407 shift_down[val]++;
408 shift_state |= (1 << val);
409 }
410 }
411}
412
413/* We still have to export this method to vt.c */
414void compute_shiftstate(void)
415{
416 unsigned long flags;
417 spin_lock_irqsave(&kbd_event_lock, flags);
418 do_compute_shiftstate();
419 spin_unlock_irqrestore(&kbd_event_lock, flags);
420}
421
422/*
423 * We have a combining character DIACR here, followed by the character CH.
424 * If the combination occurs in the table, return the corresponding value.
425 * Otherwise, if CH is a space or equals DIACR, return DIACR.
426 * Otherwise, conclude that DIACR was not combining after all,
427 * queue it and return CH.
428 */
429static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
430{
431 unsigned int d = diacr;
432 unsigned int i;
433
434 diacr = 0;
435
436 if ((d & ~0xff) == BRL_UC_ROW) {
437 if ((ch & ~0xff) == BRL_UC_ROW)
438 return d | ch;
439 } else {
440 for (i = 0; i < accent_table_size; i++)
441 if (accent_table[i].diacr == d && accent_table[i].base == ch)
442 return accent_table[i].result;
443 }
444
445 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
446 return d;
447
448 if (kbd->kbdmode == VC_UNICODE)
449 to_utf8(vc, d);
450 else {
451 int c = conv_uni_to_8bit(d);
452 if (c != -1)
453 put_queue(vc, c);
454 }
455
456 return ch;
457}
458
459/*
460 * Special function handlers
461 */
462static void fn_enter(struct vc_data *vc)
463{
464 if (diacr) {
465 if (kbd->kbdmode == VC_UNICODE)
466 to_utf8(vc, diacr);
467 else {
468 int c = conv_uni_to_8bit(diacr);
469 if (c != -1)
470 put_queue(vc, c);
471 }
472 diacr = 0;
473 }
474
475 put_queue(vc, 13);
476 if (vc_kbd_mode(kbd, VC_CRLF))
477 put_queue(vc, 10);
478}
479
480static void fn_caps_toggle(struct vc_data *vc)
481{
482 if (rep)
483 return;
484
485 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
486}
487
488static void fn_caps_on(struct vc_data *vc)
489{
490 if (rep)
491 return;
492
493 set_vc_kbd_led(kbd, VC_CAPSLOCK);
494}
495
496static void fn_show_ptregs(struct vc_data *vc)
497{
498 struct pt_regs *regs = get_irq_regs();
499
500 if (regs)
501 show_regs(regs);
502}
503
504static void fn_hold(struct vc_data *vc)
505{
506 struct tty_struct *tty = vc->port.tty;
507
508 if (rep || !tty)
509 return;
510
511 /*
512 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
513 * these routines are also activated by ^S/^Q.
514 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
515 */
516 if (tty->stopped)
517 start_tty(tty);
518 else
519 stop_tty(tty);
520}
521
522static void fn_num(struct vc_data *vc)
523{
524 if (vc_kbd_mode(kbd, VC_APPLIC))
525 applkey(vc, 'P', 1);
526 else
527 fn_bare_num(vc);
528}
529
530/*
531 * Bind this to Shift-NumLock if you work in application keypad mode
532 * but want to be able to change the NumLock flag.
533 * Bind this to NumLock if you prefer that the NumLock key always
534 * changes the NumLock flag.
535 */
536static void fn_bare_num(struct vc_data *vc)
537{
538 if (!rep)
539 chg_vc_kbd_led(kbd, VC_NUMLOCK);
540}
541
542static void fn_lastcons(struct vc_data *vc)
543{
544 /* switch to the last used console, ChN */
545 set_console(last_console);
546}
547
548static void fn_dec_console(struct vc_data *vc)
549{
550 int i, cur = fg_console;
551
552 /* Currently switching? Queue this next switch relative to that. */
553 if (want_console != -1)
554 cur = want_console;
555
556 for (i = cur - 1; i != cur; i--) {
557 if (i == -1)
558 i = MAX_NR_CONSOLES - 1;
559 if (vc_cons_allocated(i))
560 break;
561 }
562 set_console(i);
563}
564
565static void fn_inc_console(struct vc_data *vc)
566{
567 int i, cur = fg_console;
568
569 /* Currently switching? Queue this next switch relative to that. */
570 if (want_console != -1)
571 cur = want_console;
572
573 for (i = cur+1; i != cur; i++) {
574 if (i == MAX_NR_CONSOLES)
575 i = 0;
576 if (vc_cons_allocated(i))
577 break;
578 }
579 set_console(i);
580}
581
582static void fn_send_intr(struct vc_data *vc)
583{
584 struct tty_struct *tty = vc->port.tty;
585
586 if (!tty)
587 return;
588 tty_insert_flip_char(tty, 0, TTY_BREAK);
589 con_schedule_flip(tty);
590}
591
592static void fn_scroll_forw(struct vc_data *vc)
593{
594 scrollfront(vc, 0);
595}
596
597static void fn_scroll_back(struct vc_data *vc)
598{
599 scrollback(vc, 0);
600}
601
602static void fn_show_mem(struct vc_data *vc)
603{
604 show_mem(0);
605}
606
607static void fn_show_state(struct vc_data *vc)
608{
609 show_state();
610}
611
612static void fn_boot_it(struct vc_data *vc)
613{
614 ctrl_alt_del();
615}
616
617static void fn_compose(struct vc_data *vc)
618{
619 dead_key_next = true;
620}
621
622static void fn_spawn_con(struct vc_data *vc)
623{
624 spin_lock(&vt_spawn_con.lock);
625 if (vt_spawn_con.pid)
626 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
627 put_pid(vt_spawn_con.pid);
628 vt_spawn_con.pid = NULL;
629 }
630 spin_unlock(&vt_spawn_con.lock);
631}
632
633static void fn_SAK(struct vc_data *vc)
634{
635 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
636 schedule_work(SAK_work);
637}
638
639static void fn_null(struct vc_data *vc)
640{
641 do_compute_shiftstate();
642}
643
644/*
645 * Special key handlers
646 */
647static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
648{
649}
650
651static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
652{
653 if (up_flag)
654 return;
655 if (value >= ARRAY_SIZE(fn_handler))
656 return;
657 if ((kbd->kbdmode == VC_RAW ||
658 kbd->kbdmode == VC_MEDIUMRAW ||
659 kbd->kbdmode == VC_OFF) &&
660 value != KVAL(K_SAK))
661 return; /* SAK is allowed even in raw mode */
662 fn_handler[value](vc);
663}
664
665static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
666{
667 pr_err("k_lowercase was called - impossible\n");
668}
669
670static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
671{
672 if (up_flag)
673 return; /* no action, if this is a key release */
674
675 if (diacr)
676 value = handle_diacr(vc, value);
677
678 if (dead_key_next) {
679 dead_key_next = false;
680 diacr = value;
681 return;
682 }
683 if (kbd->kbdmode == VC_UNICODE)
684 to_utf8(vc, value);
685 else {
686 int c = conv_uni_to_8bit(value);
687 if (c != -1)
688 put_queue(vc, c);
689 }
690}
691
692/*
693 * Handle dead key. Note that we now may have several
694 * dead keys modifying the same character. Very useful
695 * for Vietnamese.
696 */
697static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
698{
699 if (up_flag)
700 return;
701
702 diacr = (diacr ? handle_diacr(vc, value) : value);
703}
704
705static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
706{
707 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
708}
709
710static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
711{
712 k_deadunicode(vc, value, up_flag);
713}
714
715/*
716 * Obsolete - for backwards compatibility only
717 */
718static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
719{
720 static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
721
722 k_deadunicode(vc, ret_diacr[value], up_flag);
723}
724
725static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
726{
727 if (up_flag)
728 return;
729
730 set_console(value);
731}
732
733static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
734{
735 if (up_flag)
736 return;
737
738 if ((unsigned)value < ARRAY_SIZE(func_table)) {
739 if (func_table[value])
740 puts_queue(vc, func_table[value]);
741 } else
742 pr_err("k_fn called with value=%d\n", value);
743}
744
745static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
746{
747 static const char cur_chars[] = "BDCA";
748
749 if (up_flag)
750 return;
751
752 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
753}
754
755static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
756{
757 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
758 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
759
760 if (up_flag)
761 return; /* no action, if this is a key release */
762
763 /* kludge... shift forces cursor/number keys */
764 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
765 applkey(vc, app_map[value], 1);
766 return;
767 }
768
769 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
770
771 switch (value) {
772 case KVAL(K_PCOMMA):
773 case KVAL(K_PDOT):
774 k_fn(vc, KVAL(K_REMOVE), 0);
775 return;
776 case KVAL(K_P0):
777 k_fn(vc, KVAL(K_INSERT), 0);
778 return;
779 case KVAL(K_P1):
780 k_fn(vc, KVAL(K_SELECT), 0);
781 return;
782 case KVAL(K_P2):
783 k_cur(vc, KVAL(K_DOWN), 0);
784 return;
785 case KVAL(K_P3):
786 k_fn(vc, KVAL(K_PGDN), 0);
787 return;
788 case KVAL(K_P4):
789 k_cur(vc, KVAL(K_LEFT), 0);
790 return;
791 case KVAL(K_P6):
792 k_cur(vc, KVAL(K_RIGHT), 0);
793 return;
794 case KVAL(K_P7):
795 k_fn(vc, KVAL(K_FIND), 0);
796 return;
797 case KVAL(K_P8):
798 k_cur(vc, KVAL(K_UP), 0);
799 return;
800 case KVAL(K_P9):
801 k_fn(vc, KVAL(K_PGUP), 0);
802 return;
803 case KVAL(K_P5):
804 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
805 return;
806 }
807 }
808
809 put_queue(vc, pad_chars[value]);
810 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
811 put_queue(vc, 10);
812}
813
814static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
815{
816 int old_state = shift_state;
817
818 if (rep)
819 return;
820 /*
821 * Mimic typewriter:
822 * a CapsShift key acts like Shift but undoes CapsLock
823 */
824 if (value == KVAL(K_CAPSSHIFT)) {
825 value = KVAL(K_SHIFT);
826 if (!up_flag)
827 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
828 }
829
830 if (up_flag) {
831 /*
832 * handle the case that two shift or control
833 * keys are depressed simultaneously
834 */
835 if (shift_down[value])
836 shift_down[value]--;
837 } else
838 shift_down[value]++;
839
840 if (shift_down[value])
841 shift_state |= (1 << value);
842 else
843 shift_state &= ~(1 << value);
844
845 /* kludge */
846 if (up_flag && shift_state != old_state && npadch != -1) {
847 if (kbd->kbdmode == VC_UNICODE)
848 to_utf8(vc, npadch);
849 else
850 put_queue(vc, npadch & 0xff);
851 npadch = -1;
852 }
853}
854
855static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
856{
857 if (up_flag)
858 return;
859
860 if (vc_kbd_mode(kbd, VC_META)) {
861 put_queue(vc, '\033');
862 put_queue(vc, value);
863 } else
864 put_queue(vc, value | 0x80);
865}
866
867static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
868{
869 int base;
870
871 if (up_flag)
872 return;
873
874 if (value < 10) {
875 /* decimal input of code, while Alt depressed */
876 base = 10;
877 } else {
878 /* hexadecimal input of code, while AltGr depressed */
879 value -= 10;
880 base = 16;
881 }
882
883 if (npadch == -1)
884 npadch = value;
885 else
886 npadch = npadch * base + value;
887}
888
889static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
890{
891 if (up_flag || rep)
892 return;
893
894 chg_vc_kbd_lock(kbd, value);
895}
896
897static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
898{
899 k_shift(vc, value, up_flag);
900 if (up_flag || rep)
901 return;
902
903 chg_vc_kbd_slock(kbd, value);
904 /* try to make Alt, oops, AltGr and such work */
905 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
906 kbd->slockstate = 0;
907 chg_vc_kbd_slock(kbd, value);
908 }
909}
910
911/* by default, 300ms interval for combination release */
912static unsigned brl_timeout = 300;
913MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
914module_param(brl_timeout, uint, 0644);
915
916static unsigned brl_nbchords = 1;
917MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
918module_param(brl_nbchords, uint, 0644);
919
920static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
921{
922 static unsigned long chords;
923 static unsigned committed;
924
925 if (!brl_nbchords)
926 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
927 else {
928 committed |= pattern;
929 chords++;
930 if (chords == brl_nbchords) {
931 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
932 chords = 0;
933 committed = 0;
934 }
935 }
936}
937
938static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
939{
940 static unsigned pressed, committing;
941 static unsigned long releasestart;
942
943 if (kbd->kbdmode != VC_UNICODE) {
944 if (!up_flag)
945 pr_warning("keyboard mode must be unicode for braille patterns\n");
946 return;
947 }
948
949 if (!value) {
950 k_unicode(vc, BRL_UC_ROW, up_flag);
951 return;
952 }
953
954 if (value > 8)
955 return;
956
957 if (!up_flag) {
958 pressed |= 1 << (value - 1);
959 if (!brl_timeout)
960 committing = pressed;
961 } else if (brl_timeout) {
962 if (!committing ||
963 time_after(jiffies,
964 releasestart + msecs_to_jiffies(brl_timeout))) {
965 committing = pressed;
966 releasestart = jiffies;
967 }
968 pressed &= ~(1 << (value - 1));
969 if (!pressed && committing) {
970 k_brlcommit(vc, committing, 0);
971 committing = 0;
972 }
973 } else {
974 if (committing) {
975 k_brlcommit(vc, committing, 0);
976 committing = 0;
977 }
978 pressed &= ~(1 << (value - 1));
979 }
980}
981
982/*
983 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
984 * or (ii) whatever pattern of lights people want to show using KDSETLED,
985 * or (iii) specified bits of specified words in kernel memory.
986 */
987unsigned char getledstate(void)
988{
989 return ledstate;
990}
991
992void setledstate(struct kbd_struct *kbd, unsigned int led)
993{
994 unsigned long flags;
995 spin_lock_irqsave(&kbd_event_lock, flags);
996 if (!(led & ~7)) {
997 ledioctl = led;
998 kbd->ledmode = LED_SHOW_IOCTL;
999 } else
1000 kbd->ledmode = LED_SHOW_FLAGS;
1001
1002 set_leds();
1003 spin_unlock_irqrestore(&kbd_event_lock, flags);
1004}
1005
1006static inline unsigned char getleds(void)
1007{
1008 struct kbd_struct *kbd = kbd_table + fg_console;
1009 unsigned char leds;
1010 int i;
1011
1012 if (kbd->ledmode == LED_SHOW_IOCTL)
1013 return ledioctl;
1014
1015 leds = kbd->ledflagstate;
1016
1017 if (kbd->ledmode == LED_SHOW_MEM) {
1018 for (i = 0; i < 3; i++)
1019 if (ledptrs[i].valid) {
1020 if (*ledptrs[i].addr & ledptrs[i].mask)
1021 leds |= (1 << i);
1022 else
1023 leds &= ~(1 << i);
1024 }
1025 }
1026 return leds;
1027}
1028
1029static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1030{
1031 unsigned char leds = *(unsigned char *)data;
1032
1033 if (test_bit(EV_LED, handle->dev->evbit)) {
1034 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1035 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1036 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1037 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1038 }
1039
1040 return 0;
1041}
1042
1043/**
1044 * vt_get_leds - helper for braille console
1045 * @console: console to read
1046 * @flag: flag we want to check
1047 *
1048 * Check the status of a keyboard led flag and report it back
1049 */
1050int vt_get_leds(int console, int flag)
1051{
1052 struct kbd_struct * kbd = kbd_table + console;
1053 int ret;
1054
1055 ret = vc_kbd_led(kbd, flag);
1056
1057 return ret;
1058}
1059EXPORT_SYMBOL_GPL(vt_get_leds);
1060
1061/**
1062 * vt_set_led_state - set LED state of a console
1063 * @console: console to set
1064 * @leds: LED bits
1065 *
1066 * Set the LEDs on a console. This is a wrapper for the VT layer
1067 * so that we can keep kbd knowledge internal
1068 */
1069void vt_set_led_state(int console, int leds)
1070{
1071 struct kbd_struct * kbd = kbd_table + console;
1072 setledstate(kbd, leds);
1073}
1074
1075/**
1076 * vt_kbd_con_start - Keyboard side of console start
1077 * @console: console
1078 *
1079 * Handle console start. This is a wrapper for the VT layer
1080 * so that we can keep kbd knowledge internal
1081 *
1082 * FIXME: We eventually need to hold the kbd lock here to protect
1083 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1084 * and start_tty under the kbd_event_lock, while normal tty paths
1085 * don't hold the lock. We probably need to split out an LED lock
1086 * but not during an -rc release!
1087 */
1088void vt_kbd_con_start(int console)
1089{
1090 struct kbd_struct * kbd = kbd_table + console;
1091/* unsigned long flags; */
1092/* spin_lock_irqsave(&kbd_event_lock, flags); */
1093 clr_vc_kbd_led(kbd, VC_SCROLLOCK);
1094 set_leds();
1095/* spin_unlock_irqrestore(&kbd_event_lock, flags); */
1096}
1097
1098/**
1099 * vt_kbd_con_stop - Keyboard side of console stop
1100 * @console: console
1101 *
1102 * Handle console stop. This is a wrapper for the VT layer
1103 * so that we can keep kbd knowledge internal
1104 *
1105 * FIXME: We eventually need to hold the kbd lock here to protect
1106 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1107 * and start_tty under the kbd_event_lock, while normal tty paths
1108 * don't hold the lock. We probably need to split out an LED lock
1109 * but not during an -rc release!
1110 */
1111void vt_kbd_con_stop(int console)
1112{
1113 struct kbd_struct * kbd = kbd_table + console;
1114/* unsigned long flags; */
1115/* spin_lock_irqsave(&kbd_event_lock, flags); */
1116 set_vc_kbd_led(kbd, VC_SCROLLOCK);
1117 set_leds();
1118/* spin_unlock_irqrestore(&kbd_event_lock, flags); */
1119}
1120
1121/*
1122 * This is the tasklet that updates LED state on all keyboards
1123 * attached to the box. The reason we use tasklet is that we
1124 * need to handle the scenario when keyboard handler is not
1125 * registered yet but we already getting updates from the VT to
1126 * update led state.
1127 */
1128static void kbd_bh(unsigned long dummy)
1129{
1130 unsigned char leds = getleds();
1131
1132 if (leds != ledstate) {
1133 input_handler_for_each_handle(&kbd_handler, &leds,
1134 kbd_update_leds_helper);
1135 ledstate = leds;
1136 }
1137}
1138
1139DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1140
1141#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1142 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1143 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1144 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1145 defined(CONFIG_AVR32)
1146
1147#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1148 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1149
1150static const unsigned short x86_keycodes[256] =
1151 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1152 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1153 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1154 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1155 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1156 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1157 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1158 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1159 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1160 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1161 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1162 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1163 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1164 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1165 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1166
1167#ifdef CONFIG_SPARC
1168static int sparc_l1_a_state;
1169extern void sun_do_break(void);
1170#endif
1171
1172static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1173 unsigned char up_flag)
1174{
1175 int code;
1176
1177 switch (keycode) {
1178
1179 case KEY_PAUSE:
1180 put_queue(vc, 0xe1);
1181 put_queue(vc, 0x1d | up_flag);
1182 put_queue(vc, 0x45 | up_flag);
1183 break;
1184
1185 case KEY_HANGEUL:
1186 if (!up_flag)
1187 put_queue(vc, 0xf2);
1188 break;
1189
1190 case KEY_HANJA:
1191 if (!up_flag)
1192 put_queue(vc, 0xf1);
1193 break;
1194
1195 case KEY_SYSRQ:
1196 /*
1197 * Real AT keyboards (that's what we're trying
1198 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1199 * pressing PrtSc/SysRq alone, but simply 0x54
1200 * when pressing Alt+PrtSc/SysRq.
1201 */
1202 if (test_bit(KEY_LEFTALT, key_down) ||
1203 test_bit(KEY_RIGHTALT, key_down)) {
1204 put_queue(vc, 0x54 | up_flag);
1205 } else {
1206 put_queue(vc, 0xe0);
1207 put_queue(vc, 0x2a | up_flag);
1208 put_queue(vc, 0xe0);
1209 put_queue(vc, 0x37 | up_flag);
1210 }
1211 break;
1212
1213 default:
1214 if (keycode > 255)
1215 return -1;
1216
1217 code = x86_keycodes[keycode];
1218 if (!code)
1219 return -1;
1220
1221 if (code & 0x100)
1222 put_queue(vc, 0xe0);
1223 put_queue(vc, (code & 0x7f) | up_flag);
1224
1225 break;
1226 }
1227
1228 return 0;
1229}
1230
1231#else
1232
1233#define HW_RAW(dev) 0
1234
1235static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1236{
1237 if (keycode > 127)
1238 return -1;
1239
1240 put_queue(vc, keycode | up_flag);
1241 return 0;
1242}
1243#endif
1244
1245static void kbd_rawcode(unsigned char data)
1246{
1247 struct vc_data *vc = vc_cons[fg_console].d;
1248
1249 kbd = kbd_table + vc->vc_num;
1250 if (kbd->kbdmode == VC_RAW)
1251 put_queue(vc, data);
1252}
1253
1254static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1255{
1256 struct vc_data *vc = vc_cons[fg_console].d;
1257 unsigned short keysym, *key_map;
1258 unsigned char type;
1259 bool raw_mode;
1260 struct tty_struct *tty;
1261 int shift_final;
1262 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1263 int rc;
1264
1265 tty = vc->port.tty;
1266
1267 if (tty && (!tty->driver_data)) {
1268 /* No driver data? Strange. Okay we fix it then. */
1269 tty->driver_data = vc;
1270 }
1271
1272 kbd = kbd_table + vc->vc_num;
1273
1274#ifdef CONFIG_SPARC
1275 if (keycode == KEY_STOP)
1276 sparc_l1_a_state = down;
1277#endif
1278
1279 rep = (down == 2);
1280
1281 raw_mode = (kbd->kbdmode == VC_RAW);
1282 if (raw_mode && !hw_raw)
1283 if (emulate_raw(vc, keycode, !down << 7))
1284 if (keycode < BTN_MISC && printk_ratelimit())
1285 pr_warning("can't emulate rawmode for keycode %d\n",
1286 keycode);
1287
1288#ifdef CONFIG_SPARC
1289 if (keycode == KEY_A && sparc_l1_a_state) {
1290 sparc_l1_a_state = false;
1291 sun_do_break();
1292 }
1293#endif
1294
1295 if (kbd->kbdmode == VC_MEDIUMRAW) {
1296 /*
1297 * This is extended medium raw mode, with keys above 127
1298 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1299 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1300 * interfere with anything else. The two bytes after 0 will
1301 * always have the up flag set not to interfere with older
1302 * applications. This allows for 16384 different keycodes,
1303 * which should be enough.
1304 */
1305 if (keycode < 128) {
1306 put_queue(vc, keycode | (!down << 7));
1307 } else {
1308 put_queue(vc, !down << 7);
1309 put_queue(vc, (keycode >> 7) | 0x80);
1310 put_queue(vc, keycode | 0x80);
1311 }
1312 raw_mode = true;
1313 }
1314
1315 if (down)
1316 set_bit(keycode, key_down);
1317 else
1318 clear_bit(keycode, key_down);
1319
1320 if (rep &&
1321 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1322 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1323 /*
1324 * Don't repeat a key if the input buffers are not empty and the
1325 * characters get aren't echoed locally. This makes key repeat
1326 * usable with slow applications and under heavy loads.
1327 */
1328 return;
1329 }
1330
1331 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1332 param.ledstate = kbd->ledflagstate;
1333 key_map = key_maps[shift_final];
1334
1335 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1336 KBD_KEYCODE, ¶m);
1337 if (rc == NOTIFY_STOP || !key_map) {
1338 atomic_notifier_call_chain(&keyboard_notifier_list,
1339 KBD_UNBOUND_KEYCODE, ¶m);
1340 do_compute_shiftstate();
1341 kbd->slockstate = 0;
1342 return;
1343 }
1344
1345 if (keycode < NR_KEYS)
1346 keysym = key_map[keycode];
1347 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1348 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1349 else
1350 return;
1351
1352 type = KTYP(keysym);
1353
1354 if (type < 0xf0) {
1355 param.value = keysym;
1356 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1357 KBD_UNICODE, ¶m);
1358 if (rc != NOTIFY_STOP)
1359 if (down && !raw_mode)
1360 to_utf8(vc, keysym);
1361 return;
1362 }
1363
1364 type -= 0xf0;
1365
1366 if (type == KT_LETTER) {
1367 type = KT_LATIN;
1368 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1369 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1370 if (key_map)
1371 keysym = key_map[keycode];
1372 }
1373 }
1374
1375 param.value = keysym;
1376 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1377 KBD_KEYSYM, ¶m);
1378 if (rc == NOTIFY_STOP)
1379 return;
1380
1381 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1382 return;
1383
1384 (*k_handler[type])(vc, keysym & 0xff, !down);
1385
1386 param.ledstate = kbd->ledflagstate;
1387 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1388
1389 if (type != KT_SLOCK)
1390 kbd->slockstate = 0;
1391}
1392
1393static void kbd_event(struct input_handle *handle, unsigned int event_type,
1394 unsigned int event_code, int value)
1395{
1396 /* We are called with interrupts disabled, just take the lock */
1397 spin_lock(&kbd_event_lock);
1398
1399 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1400 kbd_rawcode(value);
1401 if (event_type == EV_KEY)
1402 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1403
1404 spin_unlock(&kbd_event_lock);
1405
1406 tasklet_schedule(&keyboard_tasklet);
1407 do_poke_blanked_console = 1;
1408 schedule_console_callback();
1409}
1410
1411static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1412{
1413 int i;
1414
1415 if (test_bit(EV_SND, dev->evbit))
1416 return true;
1417
1418 if (test_bit(EV_KEY, dev->evbit)) {
1419 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1420 if (test_bit(i, dev->keybit))
1421 return true;
1422 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1423 if (test_bit(i, dev->keybit))
1424 return true;
1425 }
1426
1427 return false;
1428}
1429
1430/*
1431 * When a keyboard (or other input device) is found, the kbd_connect
1432 * function is called. The function then looks at the device, and if it
1433 * likes it, it can open it and get events from it. In this (kbd_connect)
1434 * function, we should decide which VT to bind that keyboard to initially.
1435 */
1436static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1437 const struct input_device_id *id)
1438{
1439 struct input_handle *handle;
1440 int error;
1441
1442 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1443 if (!handle)
1444 return -ENOMEM;
1445
1446 handle->dev = dev;
1447 handle->handler = handler;
1448 handle->name = "kbd";
1449
1450 error = input_register_handle(handle);
1451 if (error)
1452 goto err_free_handle;
1453
1454 error = input_open_device(handle);
1455 if (error)
1456 goto err_unregister_handle;
1457
1458 return 0;
1459
1460 err_unregister_handle:
1461 input_unregister_handle(handle);
1462 err_free_handle:
1463 kfree(handle);
1464 return error;
1465}
1466
1467static void kbd_disconnect(struct input_handle *handle)
1468{
1469 input_close_device(handle);
1470 input_unregister_handle(handle);
1471 kfree(handle);
1472}
1473
1474/*
1475 * Start keyboard handler on the new keyboard by refreshing LED state to
1476 * match the rest of the system.
1477 */
1478static void kbd_start(struct input_handle *handle)
1479{
1480 tasklet_disable(&keyboard_tasklet);
1481
1482 if (ledstate != 0xff)
1483 kbd_update_leds_helper(handle, &ledstate);
1484
1485 tasklet_enable(&keyboard_tasklet);
1486}
1487
1488static const struct input_device_id kbd_ids[] = {
1489 {
1490 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1491 .evbit = { BIT_MASK(EV_KEY) },
1492 },
1493
1494 {
1495 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1496 .evbit = { BIT_MASK(EV_SND) },
1497 },
1498
1499 { }, /* Terminating entry */
1500};
1501
1502MODULE_DEVICE_TABLE(input, kbd_ids);
1503
1504static struct input_handler kbd_handler = {
1505 .event = kbd_event,
1506 .match = kbd_match,
1507 .connect = kbd_connect,
1508 .disconnect = kbd_disconnect,
1509 .start = kbd_start,
1510 .name = "kbd",
1511 .id_table = kbd_ids,
1512};
1513
1514int __init kbd_init(void)
1515{
1516 int i;
1517 int error;
1518
1519 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1520 kbd_table[i].ledflagstate = kbd_defleds();
1521 kbd_table[i].default_ledflagstate = kbd_defleds();
1522 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1523 kbd_table[i].lockstate = KBD_DEFLOCK;
1524 kbd_table[i].slockstate = 0;
1525 kbd_table[i].modeflags = KBD_DEFMODE;
1526 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1527 }
1528
1529 error = input_register_handler(&kbd_handler);
1530 if (error)
1531 return error;
1532
1533 tasklet_enable(&keyboard_tasklet);
1534 tasklet_schedule(&keyboard_tasklet);
1535
1536 return 0;
1537}
1538
1539/* Ioctl support code */
1540
1541/**
1542 * vt_do_diacrit - diacritical table updates
1543 * @cmd: ioctl request
1544 * @up: pointer to user data for ioctl
1545 * @perm: permissions check computed by caller
1546 *
1547 * Update the diacritical tables atomically and safely. Lock them
1548 * against simultaneous keypresses
1549 */
1550int vt_do_diacrit(unsigned int cmd, void __user *up, int perm)
1551{
1552 struct kbdiacrs __user *a = up;
1553 unsigned long flags;
1554 int asize;
1555 int ret = 0;
1556
1557 switch (cmd) {
1558 case KDGKBDIACR:
1559 {
1560 struct kbdiacr *diacr;
1561 int i;
1562
1563 diacr = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
1564 GFP_KERNEL);
1565 if (diacr == NULL)
1566 return -ENOMEM;
1567
1568 /* Lock the diacriticals table, make a copy and then
1569 copy it after we unlock */
1570 spin_lock_irqsave(&kbd_event_lock, flags);
1571
1572 asize = accent_table_size;
1573 for (i = 0; i < asize; i++) {
1574 diacr[i].diacr = conv_uni_to_8bit(
1575 accent_table[i].diacr);
1576 diacr[i].base = conv_uni_to_8bit(
1577 accent_table[i].base);
1578 diacr[i].result = conv_uni_to_8bit(
1579 accent_table[i].result);
1580 }
1581 spin_unlock_irqrestore(&kbd_event_lock, flags);
1582
1583 if (put_user(asize, &a->kb_cnt))
1584 ret = -EFAULT;
1585 else if (copy_to_user(a->kbdiacr, diacr,
1586 asize * sizeof(struct kbdiacr)))
1587 ret = -EFAULT;
1588 kfree(diacr);
1589 return ret;
1590 }
1591 case KDGKBDIACRUC:
1592 {
1593 struct kbdiacrsuc __user *a = up;
1594 void *buf;
1595
1596 buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
1597 GFP_KERNEL);
1598 if (buf == NULL)
1599 return -ENOMEM;
1600
1601 /* Lock the diacriticals table, make a copy and then
1602 copy it after we unlock */
1603 spin_lock_irqsave(&kbd_event_lock, flags);
1604
1605 asize = accent_table_size;
1606 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1607
1608 spin_unlock_irqrestore(&kbd_event_lock, flags);
1609
1610 if (put_user(asize, &a->kb_cnt))
1611 ret = -EFAULT;
1612 else if (copy_to_user(a->kbdiacruc, buf,
1613 asize*sizeof(struct kbdiacruc)))
1614 ret = -EFAULT;
1615 kfree(buf);
1616 return ret;
1617 }
1618
1619 case KDSKBDIACR:
1620 {
1621 struct kbdiacrs __user *a = up;
1622 struct kbdiacr *diacr = NULL;
1623 unsigned int ct;
1624 int i;
1625
1626 if (!perm)
1627 return -EPERM;
1628 if (get_user(ct, &a->kb_cnt))
1629 return -EFAULT;
1630 if (ct >= MAX_DIACR)
1631 return -EINVAL;
1632
1633 if (ct) {
1634 diacr = kmalloc(sizeof(struct kbdiacr) * ct,
1635 GFP_KERNEL);
1636 if (diacr == NULL)
1637 return -ENOMEM;
1638
1639 if (copy_from_user(diacr, a->kbdiacr,
1640 sizeof(struct kbdiacr) * ct)) {
1641 kfree(diacr);
1642 return -EFAULT;
1643 }
1644 }
1645
1646 spin_lock_irqsave(&kbd_event_lock, flags);
1647 accent_table_size = ct;
1648 for (i = 0; i < ct; i++) {
1649 accent_table[i].diacr =
1650 conv_8bit_to_uni(diacr[i].diacr);
1651 accent_table[i].base =
1652 conv_8bit_to_uni(diacr[i].base);
1653 accent_table[i].result =
1654 conv_8bit_to_uni(diacr[i].result);
1655 }
1656 spin_unlock_irqrestore(&kbd_event_lock, flags);
1657 kfree(diacr);
1658 return 0;
1659 }
1660
1661 case KDSKBDIACRUC:
1662 {
1663 struct kbdiacrsuc __user *a = up;
1664 unsigned int ct;
1665 void *buf = NULL;
1666
1667 if (!perm)
1668 return -EPERM;
1669
1670 if (get_user(ct, &a->kb_cnt))
1671 return -EFAULT;
1672
1673 if (ct >= MAX_DIACR)
1674 return -EINVAL;
1675
1676 if (ct) {
1677 buf = kmalloc(ct * sizeof(struct kbdiacruc),
1678 GFP_KERNEL);
1679 if (buf == NULL)
1680 return -ENOMEM;
1681
1682 if (copy_from_user(buf, a->kbdiacruc,
1683 ct * sizeof(struct kbdiacruc))) {
1684 kfree(buf);
1685 return -EFAULT;
1686 }
1687 }
1688 spin_lock_irqsave(&kbd_event_lock, flags);
1689 if (ct)
1690 memcpy(accent_table, buf,
1691 ct * sizeof(struct kbdiacruc));
1692 accent_table_size = ct;
1693 spin_unlock_irqrestore(&kbd_event_lock, flags);
1694 kfree(buf);
1695 return 0;
1696 }
1697 }
1698 return ret;
1699}
1700
1701/**
1702 * vt_do_kdskbmode - set keyboard mode ioctl
1703 * @console: the console to use
1704 * @arg: the requested mode
1705 *
1706 * Update the keyboard mode bits while holding the correct locks.
1707 * Return 0 for success or an error code.
1708 */
1709int vt_do_kdskbmode(int console, unsigned int arg)
1710{
1711 struct kbd_struct * kbd = kbd_table + console;
1712 int ret = 0;
1713 unsigned long flags;
1714
1715 spin_lock_irqsave(&kbd_event_lock, flags);
1716 switch(arg) {
1717 case K_RAW:
1718 kbd->kbdmode = VC_RAW;
1719 break;
1720 case K_MEDIUMRAW:
1721 kbd->kbdmode = VC_MEDIUMRAW;
1722 break;
1723 case K_XLATE:
1724 kbd->kbdmode = VC_XLATE;
1725 do_compute_shiftstate();
1726 break;
1727 case K_UNICODE:
1728 kbd->kbdmode = VC_UNICODE;
1729 do_compute_shiftstate();
1730 break;
1731 case K_OFF:
1732 kbd->kbdmode = VC_OFF;
1733 break;
1734 default:
1735 ret = -EINVAL;
1736 }
1737 spin_unlock_irqrestore(&kbd_event_lock, flags);
1738 return ret;
1739}
1740
1741/**
1742 * vt_do_kdskbmeta - set keyboard meta state
1743 * @console: the console to use
1744 * @arg: the requested meta state
1745 *
1746 * Update the keyboard meta bits while holding the correct locks.
1747 * Return 0 for success or an error code.
1748 */
1749int vt_do_kdskbmeta(int console, unsigned int arg)
1750{
1751 struct kbd_struct * kbd = kbd_table + console;
1752 int ret = 0;
1753 unsigned long flags;
1754
1755 spin_lock_irqsave(&kbd_event_lock, flags);
1756 switch(arg) {
1757 case K_METABIT:
1758 clr_vc_kbd_mode(kbd, VC_META);
1759 break;
1760 case K_ESCPREFIX:
1761 set_vc_kbd_mode(kbd, VC_META);
1762 break;
1763 default:
1764 ret = -EINVAL;
1765 }
1766 spin_unlock_irqrestore(&kbd_event_lock, flags);
1767 return ret;
1768}
1769
1770int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1771 int perm)
1772{
1773 struct kbkeycode tmp;
1774 int kc = 0;
1775
1776 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1777 return -EFAULT;
1778 switch (cmd) {
1779 case KDGETKEYCODE:
1780 kc = getkeycode(tmp.scancode);
1781 if (kc >= 0)
1782 kc = put_user(kc, &user_kbkc->keycode);
1783 break;
1784 case KDSETKEYCODE:
1785 if (!perm)
1786 return -EPERM;
1787 kc = setkeycode(tmp.scancode, tmp.keycode);
1788 break;
1789 }
1790 return kc;
1791}
1792
1793#define i (tmp.kb_index)
1794#define s (tmp.kb_table)
1795#define v (tmp.kb_value)
1796
1797int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1798 int console)
1799{
1800 struct kbd_struct * kbd = kbd_table + console;
1801 struct kbentry tmp;
1802 ushort *key_map, *new_map, val, ov;
1803 unsigned long flags;
1804
1805 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1806 return -EFAULT;
1807
1808 if (!capable(CAP_SYS_TTY_CONFIG))
1809 perm = 0;
1810
1811 switch (cmd) {
1812 case KDGKBENT:
1813 /* Ensure another thread doesn't free it under us */
1814 spin_lock_irqsave(&kbd_event_lock, flags);
1815 key_map = key_maps[s];
1816 if (key_map) {
1817 val = U(key_map[i]);
1818 if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1819 val = K_HOLE;
1820 } else
1821 val = (i ? K_HOLE : K_NOSUCHMAP);
1822 spin_unlock_irqrestore(&kbd_event_lock, flags);
1823 return put_user(val, &user_kbe->kb_value);
1824 case KDSKBENT:
1825 if (!perm)
1826 return -EPERM;
1827 if (!i && v == K_NOSUCHMAP) {
1828 spin_lock_irqsave(&kbd_event_lock, flags);
1829 /* deallocate map */
1830 key_map = key_maps[s];
1831 if (s && key_map) {
1832 key_maps[s] = NULL;
1833 if (key_map[0] == U(K_ALLOCATED)) {
1834 kfree(key_map);
1835 keymap_count--;
1836 }
1837 }
1838 spin_unlock_irqrestore(&kbd_event_lock, flags);
1839 break;
1840 }
1841
1842 if (KTYP(v) < NR_TYPES) {
1843 if (KVAL(v) > max_vals[KTYP(v)])
1844 return -EINVAL;
1845 } else
1846 if (kbd->kbdmode != VC_UNICODE)
1847 return -EINVAL;
1848
1849 /* ++Geert: non-PC keyboards may generate keycode zero */
1850#if !defined(__mc68000__) && !defined(__powerpc__)
1851 /* assignment to entry 0 only tests validity of args */
1852 if (!i)
1853 break;
1854#endif
1855
1856 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1857 if (!new_map)
1858 return -ENOMEM;
1859 spin_lock_irqsave(&kbd_event_lock, flags);
1860 key_map = key_maps[s];
1861 if (key_map == NULL) {
1862 int j;
1863
1864 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1865 !capable(CAP_SYS_RESOURCE)) {
1866 spin_unlock_irqrestore(&kbd_event_lock, flags);
1867 kfree(new_map);
1868 return -EPERM;
1869 }
1870 key_maps[s] = new_map;
1871 key_map = new_map;
1872 key_map[0] = U(K_ALLOCATED);
1873 for (j = 1; j < NR_KEYS; j++)
1874 key_map[j] = U(K_HOLE);
1875 keymap_count++;
1876 } else
1877 kfree(new_map);
1878
1879 ov = U(key_map[i]);
1880 if (v == ov)
1881 goto out;
1882 /*
1883 * Attention Key.
1884 */
1885 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1886 spin_unlock_irqrestore(&kbd_event_lock, flags);
1887 return -EPERM;
1888 }
1889 key_map[i] = U(v);
1890 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1891 do_compute_shiftstate();
1892out:
1893 spin_unlock_irqrestore(&kbd_event_lock, flags);
1894 break;
1895 }
1896 return 0;
1897}
1898#undef i
1899#undef s
1900#undef v
1901
1902/* FIXME: This one needs untangling and locking */
1903int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1904{
1905 struct kbsentry *kbs;
1906 char *p;
1907 u_char *q;
1908 u_char __user *up;
1909 int sz;
1910 int delta;
1911 char *first_free, *fj, *fnw;
1912 int i, j, k;
1913 int ret;
1914
1915 if (!capable(CAP_SYS_TTY_CONFIG))
1916 perm = 0;
1917
1918 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1919 if (!kbs) {
1920 ret = -ENOMEM;
1921 goto reterr;
1922 }
1923
1924 /* we mostly copy too much here (512bytes), but who cares ;) */
1925 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
1926 ret = -EFAULT;
1927 goto reterr;
1928 }
1929 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
1930 i = kbs->kb_func;
1931
1932 switch (cmd) {
1933 case KDGKBSENT:
1934 sz = sizeof(kbs->kb_string) - 1; /* sz should have been
1935 a struct member */
1936 up = user_kdgkb->kb_string;
1937 p = func_table[i];
1938 if(p)
1939 for ( ; *p && sz; p++, sz--)
1940 if (put_user(*p, up++)) {
1941 ret = -EFAULT;
1942 goto reterr;
1943 }
1944 if (put_user('\0', up)) {
1945 ret = -EFAULT;
1946 goto reterr;
1947 }
1948 kfree(kbs);
1949 return ((p && *p) ? -EOVERFLOW : 0);
1950 case KDSKBSENT:
1951 if (!perm) {
1952 ret = -EPERM;
1953 goto reterr;
1954 }
1955
1956 q = func_table[i];
1957 first_free = funcbufptr + (funcbufsize - funcbufleft);
1958 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
1959 ;
1960 if (j < MAX_NR_FUNC)
1961 fj = func_table[j];
1962 else
1963 fj = first_free;
1964
1965 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
1966 if (delta <= funcbufleft) { /* it fits in current buf */
1967 if (j < MAX_NR_FUNC) {
1968 memmove(fj + delta, fj, first_free - fj);
1969 for (k = j; k < MAX_NR_FUNC; k++)
1970 if (func_table[k])
1971 func_table[k] += delta;
1972 }
1973 if (!q)
1974 func_table[i] = fj;
1975 funcbufleft -= delta;
1976 } else { /* allocate a larger buffer */
1977 sz = 256;
1978 while (sz < funcbufsize - funcbufleft + delta)
1979 sz <<= 1;
1980 fnw = kmalloc(sz, GFP_KERNEL);
1981 if(!fnw) {
1982 ret = -ENOMEM;
1983 goto reterr;
1984 }
1985
1986 if (!q)
1987 func_table[i] = fj;
1988 if (fj > funcbufptr)
1989 memmove(fnw, funcbufptr, fj - funcbufptr);
1990 for (k = 0; k < j; k++)
1991 if (func_table[k])
1992 func_table[k] = fnw + (func_table[k] - funcbufptr);
1993
1994 if (first_free > fj) {
1995 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
1996 for (k = j; k < MAX_NR_FUNC; k++)
1997 if (func_table[k])
1998 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
1999 }
2000 if (funcbufptr != func_buf)
2001 kfree(funcbufptr);
2002 funcbufptr = fnw;
2003 funcbufleft = funcbufleft - delta + sz - funcbufsize;
2004 funcbufsize = sz;
2005 }
2006 strcpy(func_table[i], kbs->kb_string);
2007 break;
2008 }
2009 ret = 0;
2010reterr:
2011 kfree(kbs);
2012 return ret;
2013}
2014
2015int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2016{
2017 struct kbd_struct * kbd = kbd_table + console;
2018 unsigned long flags;
2019 unsigned char ucval;
2020
2021 switch(cmd) {
2022 /* the ioctls below read/set the flags usually shown in the leds */
2023 /* don't use them - they will go away without warning */
2024 case KDGKBLED:
2025 spin_lock_irqsave(&kbd_event_lock, flags);
2026 ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4);
2027 spin_unlock_irqrestore(&kbd_event_lock, flags);
2028 return put_user(ucval, (char __user *)arg);
2029
2030 case KDSKBLED:
2031 if (!perm)
2032 return -EPERM;
2033 if (arg & ~0x77)
2034 return -EINVAL;
2035 spin_lock_irqsave(&kbd_event_lock, flags);
2036 kbd->ledflagstate = (arg & 7);
2037 kbd->default_ledflagstate = ((arg >> 4) & 7);
2038 set_leds();
2039 spin_unlock_irqrestore(&kbd_event_lock, flags);
2040 return 0;
2041
2042 /* the ioctls below only set the lights, not the functions */
2043 /* for those, see KDGKBLED and KDSKBLED above */
2044 case KDGETLED:
2045 ucval = getledstate();
2046 return put_user(ucval, (char __user *)arg);
2047
2048 case KDSETLED:
2049 if (!perm)
2050 return -EPERM;
2051 setledstate(kbd, arg);
2052 return 0;
2053 }
2054 return -ENOIOCTLCMD;
2055}
2056
2057int vt_do_kdgkbmode(int console)
2058{
2059 struct kbd_struct * kbd = kbd_table + console;
2060 /* This is a spot read so needs no locking */
2061 switch (kbd->kbdmode) {
2062 case VC_RAW:
2063 return K_RAW;
2064 case VC_MEDIUMRAW:
2065 return K_MEDIUMRAW;
2066 case VC_UNICODE:
2067 return K_UNICODE;
2068 case VC_OFF:
2069 return K_OFF;
2070 default:
2071 return K_XLATE;
2072 }
2073}
2074
2075/**
2076 * vt_do_kdgkbmeta - report meta status
2077 * @console: console to report
2078 *
2079 * Report the meta flag status of this console
2080 */
2081int vt_do_kdgkbmeta(int console)
2082{
2083 struct kbd_struct * kbd = kbd_table + console;
2084 /* Again a spot read so no locking */
2085 return vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT;
2086}
2087
2088/**
2089 * vt_reset_unicode - reset the unicode status
2090 * @console: console being reset
2091 *
2092 * Restore the unicode console state to its default
2093 */
2094void vt_reset_unicode(int console)
2095{
2096 unsigned long flags;
2097
2098 spin_lock_irqsave(&kbd_event_lock, flags);
2099 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2100 spin_unlock_irqrestore(&kbd_event_lock, flags);
2101}
2102
2103/**
2104 * vt_get_shiftstate - shift bit state
2105 *
2106 * Report the shift bits from the keyboard state. We have to export
2107 * this to support some oddities in the vt layer.
2108 */
2109int vt_get_shift_state(void)
2110{
2111 /* Don't lock as this is a transient report */
2112 return shift_state;
2113}
2114
2115/**
2116 * vt_reset_keyboard - reset keyboard state
2117 * @console: console to reset
2118 *
2119 * Reset the keyboard bits for a console as part of a general console
2120 * reset event
2121 */
2122void vt_reset_keyboard(int console)
2123{
2124 struct kbd_struct * kbd = kbd_table + console;
2125 unsigned long flags;
2126
2127 spin_lock_irqsave(&kbd_event_lock, flags);
2128 set_vc_kbd_mode(kbd, VC_REPEAT);
2129 clr_vc_kbd_mode(kbd, VC_CKMODE);
2130 clr_vc_kbd_mode(kbd, VC_APPLIC);
2131 clr_vc_kbd_mode(kbd, VC_CRLF);
2132 kbd->lockstate = 0;
2133 kbd->slockstate = 0;
2134 kbd->ledmode = LED_SHOW_FLAGS;
2135 kbd->ledflagstate = kbd->default_ledflagstate;
2136 /* do not do set_leds here because this causes an endless tasklet loop
2137 when the keyboard hasn't been initialized yet */
2138 spin_unlock_irqrestore(&kbd_event_lock, flags);
2139}
2140
2141/**
2142 * vt_get_kbd_mode_bit - read keyboard status bits
2143 * @console: console to read from
2144 * @bit: mode bit to read
2145 *
2146 * Report back a vt mode bit. We do this without locking so the
2147 * caller must be sure that there are no synchronization needs
2148 */
2149
2150int vt_get_kbd_mode_bit(int console, int bit)
2151{
2152 struct kbd_struct * kbd = kbd_table + console;
2153 return vc_kbd_mode(kbd, bit);
2154}
2155
2156/**
2157 * vt_set_kbd_mode_bit - read keyboard status bits
2158 * @console: console to read from
2159 * @bit: mode bit to read
2160 *
2161 * Set a vt mode bit. We do this without locking so the
2162 * caller must be sure that there are no synchronization needs
2163 */
2164
2165void vt_set_kbd_mode_bit(int console, int bit)
2166{
2167 struct kbd_struct * kbd = kbd_table + console;
2168 unsigned long flags;
2169
2170 spin_lock_irqsave(&kbd_event_lock, flags);
2171 set_vc_kbd_mode(kbd, bit);
2172 spin_unlock_irqrestore(&kbd_event_lock, flags);
2173}
2174
2175/**
2176 * vt_clr_kbd_mode_bit - read keyboard status bits
2177 * @console: console to read from
2178 * @bit: mode bit to read
2179 *
2180 * Report back a vt mode bit. We do this without locking so the
2181 * caller must be sure that there are no synchronization needs
2182 */
2183
2184void vt_clr_kbd_mode_bit(int console, int bit)
2185{
2186 struct kbd_struct * kbd = kbd_table + console;
2187 unsigned long flags;
2188
2189 spin_lock_irqsave(&kbd_event_lock, flags);
2190 clr_vc_kbd_mode(kbd, bit);
2191 spin_unlock_irqrestore(&kbd_event_lock, flags);
2192}