Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4#include "e1000.h"
5#include <net/ip6_checksum.h>
6#include <linux/io.h>
7#include <linux/prefetch.h>
8#include <linux/bitops.h>
9#include <linux/if_vlan.h>
10
11char e1000_driver_name[] = "e1000";
12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
14
15/* e1000_pci_tbl - PCI Device ID Table
16 *
17 * Last entry must be all 0s
18 *
19 * Macro expands to...
20 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
21 */
22static const struct pci_device_id e1000_pci_tbl[] = {
23 INTEL_E1000_ETHERNET_DEVICE(0x1000),
24 INTEL_E1000_ETHERNET_DEVICE(0x1001),
25 INTEL_E1000_ETHERNET_DEVICE(0x1004),
26 INTEL_E1000_ETHERNET_DEVICE(0x1008),
27 INTEL_E1000_ETHERNET_DEVICE(0x1009),
28 INTEL_E1000_ETHERNET_DEVICE(0x100C),
29 INTEL_E1000_ETHERNET_DEVICE(0x100D),
30 INTEL_E1000_ETHERNET_DEVICE(0x100E),
31 INTEL_E1000_ETHERNET_DEVICE(0x100F),
32 INTEL_E1000_ETHERNET_DEVICE(0x1010),
33 INTEL_E1000_ETHERNET_DEVICE(0x1011),
34 INTEL_E1000_ETHERNET_DEVICE(0x1012),
35 INTEL_E1000_ETHERNET_DEVICE(0x1013),
36 INTEL_E1000_ETHERNET_DEVICE(0x1014),
37 INTEL_E1000_ETHERNET_DEVICE(0x1015),
38 INTEL_E1000_ETHERNET_DEVICE(0x1016),
39 INTEL_E1000_ETHERNET_DEVICE(0x1017),
40 INTEL_E1000_ETHERNET_DEVICE(0x1018),
41 INTEL_E1000_ETHERNET_DEVICE(0x1019),
42 INTEL_E1000_ETHERNET_DEVICE(0x101A),
43 INTEL_E1000_ETHERNET_DEVICE(0x101D),
44 INTEL_E1000_ETHERNET_DEVICE(0x101E),
45 INTEL_E1000_ETHERNET_DEVICE(0x1026),
46 INTEL_E1000_ETHERNET_DEVICE(0x1027),
47 INTEL_E1000_ETHERNET_DEVICE(0x1028),
48 INTEL_E1000_ETHERNET_DEVICE(0x1075),
49 INTEL_E1000_ETHERNET_DEVICE(0x1076),
50 INTEL_E1000_ETHERNET_DEVICE(0x1077),
51 INTEL_E1000_ETHERNET_DEVICE(0x1078),
52 INTEL_E1000_ETHERNET_DEVICE(0x1079),
53 INTEL_E1000_ETHERNET_DEVICE(0x107A),
54 INTEL_E1000_ETHERNET_DEVICE(0x107B),
55 INTEL_E1000_ETHERNET_DEVICE(0x107C),
56 INTEL_E1000_ETHERNET_DEVICE(0x108A),
57 INTEL_E1000_ETHERNET_DEVICE(0x1099),
58 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
59 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
60 /* required last entry */
61 {0,}
62};
63
64MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
65
66int e1000_up(struct e1000_adapter *adapter);
67void e1000_down(struct e1000_adapter *adapter);
68void e1000_reinit_locked(struct e1000_adapter *adapter);
69void e1000_reset(struct e1000_adapter *adapter);
70int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
71int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
72void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
73void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
74static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
75 struct e1000_tx_ring *txdr);
76static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
77 struct e1000_rx_ring *rxdr);
78static void e1000_free_tx_resources(struct e1000_adapter *adapter,
79 struct e1000_tx_ring *tx_ring);
80static void e1000_free_rx_resources(struct e1000_adapter *adapter,
81 struct e1000_rx_ring *rx_ring);
82void e1000_update_stats(struct e1000_adapter *adapter);
83
84static int e1000_init_module(void);
85static void e1000_exit_module(void);
86static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
87static void e1000_remove(struct pci_dev *pdev);
88static int e1000_alloc_queues(struct e1000_adapter *adapter);
89static int e1000_sw_init(struct e1000_adapter *adapter);
90int e1000_open(struct net_device *netdev);
91int e1000_close(struct net_device *netdev);
92static void e1000_configure_tx(struct e1000_adapter *adapter);
93static void e1000_configure_rx(struct e1000_adapter *adapter);
94static void e1000_setup_rctl(struct e1000_adapter *adapter);
95static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
96static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
97static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *tx_ring);
99static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rx_ring);
101static void e1000_set_rx_mode(struct net_device *netdev);
102static void e1000_update_phy_info_task(struct work_struct *work);
103static void e1000_watchdog(struct work_struct *work);
104static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
105static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
106 struct net_device *netdev);
107static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
108static int e1000_set_mac(struct net_device *netdev, void *p);
109static irqreturn_t e1000_intr(int irq, void *data);
110static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
111 struct e1000_tx_ring *tx_ring);
112static int e1000_clean(struct napi_struct *napi, int budget);
113static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
114 struct e1000_rx_ring *rx_ring,
115 int *work_done, int work_to_do);
116static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
117 struct e1000_rx_ring *rx_ring,
118 int *work_done, int work_to_do);
119static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
120 struct e1000_rx_ring *rx_ring,
121 int cleaned_count)
122{
123}
124static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
125 struct e1000_rx_ring *rx_ring,
126 int cleaned_count);
127static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rx_ring,
129 int cleaned_count);
130static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
131static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
132 int cmd);
133static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
134static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
135static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
136static void e1000_reset_task(struct work_struct *work);
137static void e1000_smartspeed(struct e1000_adapter *adapter);
138static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
139 struct sk_buff *skb);
140
141static bool e1000_vlan_used(struct e1000_adapter *adapter);
142static void e1000_vlan_mode(struct net_device *netdev,
143 netdev_features_t features);
144static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
145 bool filter_on);
146static int e1000_vlan_rx_add_vid(struct net_device *netdev,
147 __be16 proto, u16 vid);
148static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
149 __be16 proto, u16 vid);
150static void e1000_restore_vlan(struct e1000_adapter *adapter);
151
152static int __maybe_unused e1000_suspend(struct device *dev);
153static int __maybe_unused e1000_resume(struct device *dev);
154static void e1000_shutdown(struct pci_dev *pdev);
155
156#ifdef CONFIG_NET_POLL_CONTROLLER
157/* for netdump / net console */
158static void e1000_netpoll (struct net_device *netdev);
159#endif
160
161#define COPYBREAK_DEFAULT 256
162static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
163module_param(copybreak, uint, 0644);
164MODULE_PARM_DESC(copybreak,
165 "Maximum size of packet that is copied to a new buffer on receive");
166
167static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
168 pci_channel_state_t state);
169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
170static void e1000_io_resume(struct pci_dev *pdev);
171
172static const struct pci_error_handlers e1000_err_handler = {
173 .error_detected = e1000_io_error_detected,
174 .slot_reset = e1000_io_slot_reset,
175 .resume = e1000_io_resume,
176};
177
178static SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
179
180static struct pci_driver e1000_driver = {
181 .name = e1000_driver_name,
182 .id_table = e1000_pci_tbl,
183 .probe = e1000_probe,
184 .remove = e1000_remove,
185 .driver = {
186 .pm = &e1000_pm_ops,
187 },
188 .shutdown = e1000_shutdown,
189 .err_handler = &e1000_err_handler
190};
191
192MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
193MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
194MODULE_LICENSE("GPL v2");
195
196#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
197static int debug = -1;
198module_param(debug, int, 0);
199MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
200
201/**
202 * e1000_get_hw_dev - helper function for getting netdev
203 * @hw: pointer to HW struct
204 *
205 * return device used by hardware layer to print debugging information
206 *
207 **/
208struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
209{
210 struct e1000_adapter *adapter = hw->back;
211 return adapter->netdev;
212}
213
214/**
215 * e1000_init_module - Driver Registration Routine
216 *
217 * e1000_init_module is the first routine called when the driver is
218 * loaded. All it does is register with the PCI subsystem.
219 **/
220static int __init e1000_init_module(void)
221{
222 int ret;
223 pr_info("%s\n", e1000_driver_string);
224
225 pr_info("%s\n", e1000_copyright);
226
227 ret = pci_register_driver(&e1000_driver);
228 if (copybreak != COPYBREAK_DEFAULT) {
229 if (copybreak == 0)
230 pr_info("copybreak disabled\n");
231 else
232 pr_info("copybreak enabled for "
233 "packets <= %u bytes\n", copybreak);
234 }
235 return ret;
236}
237
238module_init(e1000_init_module);
239
240/**
241 * e1000_exit_module - Driver Exit Cleanup Routine
242 *
243 * e1000_exit_module is called just before the driver is removed
244 * from memory.
245 **/
246static void __exit e1000_exit_module(void)
247{
248 pci_unregister_driver(&e1000_driver);
249}
250
251module_exit(e1000_exit_module);
252
253static int e1000_request_irq(struct e1000_adapter *adapter)
254{
255 struct net_device *netdev = adapter->netdev;
256 irq_handler_t handler = e1000_intr;
257 int irq_flags = IRQF_SHARED;
258 int err;
259
260 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
261 netdev);
262 if (err) {
263 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
264 }
265
266 return err;
267}
268
269static void e1000_free_irq(struct e1000_adapter *adapter)
270{
271 struct net_device *netdev = adapter->netdev;
272
273 free_irq(adapter->pdev->irq, netdev);
274}
275
276/**
277 * e1000_irq_disable - Mask off interrupt generation on the NIC
278 * @adapter: board private structure
279 **/
280static void e1000_irq_disable(struct e1000_adapter *adapter)
281{
282 struct e1000_hw *hw = &adapter->hw;
283
284 ew32(IMC, ~0);
285 E1000_WRITE_FLUSH();
286 synchronize_irq(adapter->pdev->irq);
287}
288
289/**
290 * e1000_irq_enable - Enable default interrupt generation settings
291 * @adapter: board private structure
292 **/
293static void e1000_irq_enable(struct e1000_adapter *adapter)
294{
295 struct e1000_hw *hw = &adapter->hw;
296
297 ew32(IMS, IMS_ENABLE_MASK);
298 E1000_WRITE_FLUSH();
299}
300
301static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
302{
303 struct e1000_hw *hw = &adapter->hw;
304 struct net_device *netdev = adapter->netdev;
305 u16 vid = hw->mng_cookie.vlan_id;
306 u16 old_vid = adapter->mng_vlan_id;
307
308 if (!e1000_vlan_used(adapter))
309 return;
310
311 if (!test_bit(vid, adapter->active_vlans)) {
312 if (hw->mng_cookie.status &
313 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
314 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
315 adapter->mng_vlan_id = vid;
316 } else {
317 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
318 }
319 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
320 (vid != old_vid) &&
321 !test_bit(old_vid, adapter->active_vlans))
322 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
323 old_vid);
324 } else {
325 adapter->mng_vlan_id = vid;
326 }
327}
328
329static void e1000_init_manageability(struct e1000_adapter *adapter)
330{
331 struct e1000_hw *hw = &adapter->hw;
332
333 if (adapter->en_mng_pt) {
334 u32 manc = er32(MANC);
335
336 /* disable hardware interception of ARP */
337 manc &= ~(E1000_MANC_ARP_EN);
338
339 ew32(MANC, manc);
340 }
341}
342
343static void e1000_release_manageability(struct e1000_adapter *adapter)
344{
345 struct e1000_hw *hw = &adapter->hw;
346
347 if (adapter->en_mng_pt) {
348 u32 manc = er32(MANC);
349
350 /* re-enable hardware interception of ARP */
351 manc |= E1000_MANC_ARP_EN;
352
353 ew32(MANC, manc);
354 }
355}
356
357/**
358 * e1000_configure - configure the hardware for RX and TX
359 * @adapter: private board structure
360 **/
361static void e1000_configure(struct e1000_adapter *adapter)
362{
363 struct net_device *netdev = adapter->netdev;
364 int i;
365
366 e1000_set_rx_mode(netdev);
367
368 e1000_restore_vlan(adapter);
369 e1000_init_manageability(adapter);
370
371 e1000_configure_tx(adapter);
372 e1000_setup_rctl(adapter);
373 e1000_configure_rx(adapter);
374 /* call E1000_DESC_UNUSED which always leaves
375 * at least 1 descriptor unused to make sure
376 * next_to_use != next_to_clean
377 */
378 for (i = 0; i < adapter->num_rx_queues; i++) {
379 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
380 adapter->alloc_rx_buf(adapter, ring,
381 E1000_DESC_UNUSED(ring));
382 }
383}
384
385int e1000_up(struct e1000_adapter *adapter)
386{
387 struct e1000_hw *hw = &adapter->hw;
388
389 /* hardware has been reset, we need to reload some things */
390 e1000_configure(adapter);
391
392 clear_bit(__E1000_DOWN, &adapter->flags);
393
394 napi_enable(&adapter->napi);
395
396 e1000_irq_enable(adapter);
397
398 netif_wake_queue(adapter->netdev);
399
400 /* fire a link change interrupt to start the watchdog */
401 ew32(ICS, E1000_ICS_LSC);
402 return 0;
403}
404
405/**
406 * e1000_power_up_phy - restore link in case the phy was powered down
407 * @adapter: address of board private structure
408 *
409 * The phy may be powered down to save power and turn off link when the
410 * driver is unloaded and wake on lan is not enabled (among others)
411 * *** this routine MUST be followed by a call to e1000_reset ***
412 **/
413void e1000_power_up_phy(struct e1000_adapter *adapter)
414{
415 struct e1000_hw *hw = &adapter->hw;
416 u16 mii_reg = 0;
417
418 /* Just clear the power down bit to wake the phy back up */
419 if (hw->media_type == e1000_media_type_copper) {
420 /* according to the manual, the phy will retain its
421 * settings across a power-down/up cycle
422 */
423 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
424 mii_reg &= ~MII_CR_POWER_DOWN;
425 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
426 }
427}
428
429static void e1000_power_down_phy(struct e1000_adapter *adapter)
430{
431 struct e1000_hw *hw = &adapter->hw;
432
433 /* Power down the PHY so no link is implied when interface is down *
434 * The PHY cannot be powered down if any of the following is true *
435 * (a) WoL is enabled
436 * (b) AMT is active
437 * (c) SoL/IDER session is active
438 */
439 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
440 hw->media_type == e1000_media_type_copper) {
441 u16 mii_reg = 0;
442
443 switch (hw->mac_type) {
444 case e1000_82540:
445 case e1000_82545:
446 case e1000_82545_rev_3:
447 case e1000_82546:
448 case e1000_ce4100:
449 case e1000_82546_rev_3:
450 case e1000_82541:
451 case e1000_82541_rev_2:
452 case e1000_82547:
453 case e1000_82547_rev_2:
454 if (er32(MANC) & E1000_MANC_SMBUS_EN)
455 goto out;
456 break;
457 default:
458 goto out;
459 }
460 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
461 mii_reg |= MII_CR_POWER_DOWN;
462 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
463 msleep(1);
464 }
465out:
466 return;
467}
468
469static void e1000_down_and_stop(struct e1000_adapter *adapter)
470{
471 set_bit(__E1000_DOWN, &adapter->flags);
472
473 cancel_delayed_work_sync(&adapter->watchdog_task);
474
475 /*
476 * Since the watchdog task can reschedule other tasks, we should cancel
477 * it first, otherwise we can run into the situation when a work is
478 * still running after the adapter has been turned down.
479 */
480
481 cancel_delayed_work_sync(&adapter->phy_info_task);
482 cancel_delayed_work_sync(&adapter->fifo_stall_task);
483
484 /* Only kill reset task if adapter is not resetting */
485 if (!test_bit(__E1000_RESETTING, &adapter->flags))
486 cancel_work_sync(&adapter->reset_task);
487}
488
489void e1000_down(struct e1000_adapter *adapter)
490{
491 struct e1000_hw *hw = &adapter->hw;
492 struct net_device *netdev = adapter->netdev;
493 u32 rctl, tctl;
494
495 /* disable receives in the hardware */
496 rctl = er32(RCTL);
497 ew32(RCTL, rctl & ~E1000_RCTL_EN);
498 /* flush and sleep below */
499
500 netif_tx_disable(netdev);
501
502 /* disable transmits in the hardware */
503 tctl = er32(TCTL);
504 tctl &= ~E1000_TCTL_EN;
505 ew32(TCTL, tctl);
506 /* flush both disables and wait for them to finish */
507 E1000_WRITE_FLUSH();
508 msleep(10);
509
510 /* Set the carrier off after transmits have been disabled in the
511 * hardware, to avoid race conditions with e1000_watchdog() (which
512 * may be running concurrently to us, checking for the carrier
513 * bit to decide whether it should enable transmits again). Such
514 * a race condition would result into transmission being disabled
515 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
516 */
517 netif_carrier_off(netdev);
518
519 napi_disable(&adapter->napi);
520
521 e1000_irq_disable(adapter);
522
523 /* Setting DOWN must be after irq_disable to prevent
524 * a screaming interrupt. Setting DOWN also prevents
525 * tasks from rescheduling.
526 */
527 e1000_down_and_stop(adapter);
528
529 adapter->link_speed = 0;
530 adapter->link_duplex = 0;
531
532 e1000_reset(adapter);
533 e1000_clean_all_tx_rings(adapter);
534 e1000_clean_all_rx_rings(adapter);
535}
536
537void e1000_reinit_locked(struct e1000_adapter *adapter)
538{
539 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
540 msleep(1);
541
542 /* only run the task if not already down */
543 if (!test_bit(__E1000_DOWN, &adapter->flags)) {
544 e1000_down(adapter);
545 e1000_up(adapter);
546 }
547
548 clear_bit(__E1000_RESETTING, &adapter->flags);
549}
550
551void e1000_reset(struct e1000_adapter *adapter)
552{
553 struct e1000_hw *hw = &adapter->hw;
554 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
555 bool legacy_pba_adjust = false;
556 u16 hwm;
557
558 /* Repartition Pba for greater than 9k mtu
559 * To take effect CTRL.RST is required.
560 */
561
562 switch (hw->mac_type) {
563 case e1000_82542_rev2_0:
564 case e1000_82542_rev2_1:
565 case e1000_82543:
566 case e1000_82544:
567 case e1000_82540:
568 case e1000_82541:
569 case e1000_82541_rev_2:
570 legacy_pba_adjust = true;
571 pba = E1000_PBA_48K;
572 break;
573 case e1000_82545:
574 case e1000_82545_rev_3:
575 case e1000_82546:
576 case e1000_ce4100:
577 case e1000_82546_rev_3:
578 pba = E1000_PBA_48K;
579 break;
580 case e1000_82547:
581 case e1000_82547_rev_2:
582 legacy_pba_adjust = true;
583 pba = E1000_PBA_30K;
584 break;
585 case e1000_undefined:
586 case e1000_num_macs:
587 break;
588 }
589
590 if (legacy_pba_adjust) {
591 if (hw->max_frame_size > E1000_RXBUFFER_8192)
592 pba -= 8; /* allocate more FIFO for Tx */
593
594 if (hw->mac_type == e1000_82547) {
595 adapter->tx_fifo_head = 0;
596 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
597 adapter->tx_fifo_size =
598 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
599 atomic_set(&adapter->tx_fifo_stall, 0);
600 }
601 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
602 /* adjust PBA for jumbo frames */
603 ew32(PBA, pba);
604
605 /* To maintain wire speed transmits, the Tx FIFO should be
606 * large enough to accommodate two full transmit packets,
607 * rounded up to the next 1KB and expressed in KB. Likewise,
608 * the Rx FIFO should be large enough to accommodate at least
609 * one full receive packet and is similarly rounded up and
610 * expressed in KB.
611 */
612 pba = er32(PBA);
613 /* upper 16 bits has Tx packet buffer allocation size in KB */
614 tx_space = pba >> 16;
615 /* lower 16 bits has Rx packet buffer allocation size in KB */
616 pba &= 0xffff;
617 /* the Tx fifo also stores 16 bytes of information about the Tx
618 * but don't include ethernet FCS because hardware appends it
619 */
620 min_tx_space = (hw->max_frame_size +
621 sizeof(struct e1000_tx_desc) -
622 ETH_FCS_LEN) * 2;
623 min_tx_space = ALIGN(min_tx_space, 1024);
624 min_tx_space >>= 10;
625 /* software strips receive CRC, so leave room for it */
626 min_rx_space = hw->max_frame_size;
627 min_rx_space = ALIGN(min_rx_space, 1024);
628 min_rx_space >>= 10;
629
630 /* If current Tx allocation is less than the min Tx FIFO size,
631 * and the min Tx FIFO size is less than the current Rx FIFO
632 * allocation, take space away from current Rx allocation
633 */
634 if (tx_space < min_tx_space &&
635 ((min_tx_space - tx_space) < pba)) {
636 pba = pba - (min_tx_space - tx_space);
637
638 /* PCI/PCIx hardware has PBA alignment constraints */
639 switch (hw->mac_type) {
640 case e1000_82545 ... e1000_82546_rev_3:
641 pba &= ~(E1000_PBA_8K - 1);
642 break;
643 default:
644 break;
645 }
646
647 /* if short on Rx space, Rx wins and must trump Tx
648 * adjustment or use Early Receive if available
649 */
650 if (pba < min_rx_space)
651 pba = min_rx_space;
652 }
653 }
654
655 ew32(PBA, pba);
656
657 /* flow control settings:
658 * The high water mark must be low enough to fit one full frame
659 * (or the size used for early receive) above it in the Rx FIFO.
660 * Set it to the lower of:
661 * - 90% of the Rx FIFO size, and
662 * - the full Rx FIFO size minus the early receive size (for parts
663 * with ERT support assuming ERT set to E1000_ERT_2048), or
664 * - the full Rx FIFO size minus one full frame
665 */
666 hwm = min(((pba << 10) * 9 / 10),
667 ((pba << 10) - hw->max_frame_size));
668
669 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
670 hw->fc_low_water = hw->fc_high_water - 8;
671 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
672 hw->fc_send_xon = 1;
673 hw->fc = hw->original_fc;
674
675 /* Allow time for pending master requests to run */
676 e1000_reset_hw(hw);
677 if (hw->mac_type >= e1000_82544)
678 ew32(WUC, 0);
679
680 if (e1000_init_hw(hw))
681 e_dev_err("Hardware Error\n");
682 e1000_update_mng_vlan(adapter);
683
684 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
685 if (hw->mac_type >= e1000_82544 &&
686 hw->autoneg == 1 &&
687 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
688 u32 ctrl = er32(CTRL);
689 /* clear phy power management bit if we are in gig only mode,
690 * which if enabled will attempt negotiation to 100Mb, which
691 * can cause a loss of link at power off or driver unload
692 */
693 ctrl &= ~E1000_CTRL_SWDPIN3;
694 ew32(CTRL, ctrl);
695 }
696
697 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
698 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
699
700 e1000_reset_adaptive(hw);
701 e1000_phy_get_info(hw, &adapter->phy_info);
702
703 e1000_release_manageability(adapter);
704}
705
706/* Dump the eeprom for users having checksum issues */
707static void e1000_dump_eeprom(struct e1000_adapter *adapter)
708{
709 struct net_device *netdev = adapter->netdev;
710 struct ethtool_eeprom eeprom;
711 const struct ethtool_ops *ops = netdev->ethtool_ops;
712 u8 *data;
713 int i;
714 u16 csum_old, csum_new = 0;
715
716 eeprom.len = ops->get_eeprom_len(netdev);
717 eeprom.offset = 0;
718
719 data = kmalloc(eeprom.len, GFP_KERNEL);
720 if (!data)
721 return;
722
723 ops->get_eeprom(netdev, &eeprom, data);
724
725 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
726 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
727 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
728 csum_new += data[i] + (data[i + 1] << 8);
729 csum_new = EEPROM_SUM - csum_new;
730
731 pr_err("/*********************/\n");
732 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
733 pr_err("Calculated : 0x%04x\n", csum_new);
734
735 pr_err("Offset Values\n");
736 pr_err("======== ======\n");
737 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
738
739 pr_err("Include this output when contacting your support provider.\n");
740 pr_err("This is not a software error! Something bad happened to\n");
741 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
742 pr_err("result in further problems, possibly loss of data,\n");
743 pr_err("corruption or system hangs!\n");
744 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
745 pr_err("which is invalid and requires you to set the proper MAC\n");
746 pr_err("address manually before continuing to enable this network\n");
747 pr_err("device. Please inspect the EEPROM dump and report the\n");
748 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
749 pr_err("/*********************/\n");
750
751 kfree(data);
752}
753
754/**
755 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
756 * @pdev: PCI device information struct
757 *
758 * Return true if an adapter needs ioport resources
759 **/
760static int e1000_is_need_ioport(struct pci_dev *pdev)
761{
762 switch (pdev->device) {
763 case E1000_DEV_ID_82540EM:
764 case E1000_DEV_ID_82540EM_LOM:
765 case E1000_DEV_ID_82540EP:
766 case E1000_DEV_ID_82540EP_LOM:
767 case E1000_DEV_ID_82540EP_LP:
768 case E1000_DEV_ID_82541EI:
769 case E1000_DEV_ID_82541EI_MOBILE:
770 case E1000_DEV_ID_82541ER:
771 case E1000_DEV_ID_82541ER_LOM:
772 case E1000_DEV_ID_82541GI:
773 case E1000_DEV_ID_82541GI_LF:
774 case E1000_DEV_ID_82541GI_MOBILE:
775 case E1000_DEV_ID_82544EI_COPPER:
776 case E1000_DEV_ID_82544EI_FIBER:
777 case E1000_DEV_ID_82544GC_COPPER:
778 case E1000_DEV_ID_82544GC_LOM:
779 case E1000_DEV_ID_82545EM_COPPER:
780 case E1000_DEV_ID_82545EM_FIBER:
781 case E1000_DEV_ID_82546EB_COPPER:
782 case E1000_DEV_ID_82546EB_FIBER:
783 case E1000_DEV_ID_82546EB_QUAD_COPPER:
784 return true;
785 default:
786 return false;
787 }
788}
789
790static netdev_features_t e1000_fix_features(struct net_device *netdev,
791 netdev_features_t features)
792{
793 /* Since there is no support for separate Rx/Tx vlan accel
794 * enable/disable make sure Tx flag is always in same state as Rx.
795 */
796 if (features & NETIF_F_HW_VLAN_CTAG_RX)
797 features |= NETIF_F_HW_VLAN_CTAG_TX;
798 else
799 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
800
801 return features;
802}
803
804static int e1000_set_features(struct net_device *netdev,
805 netdev_features_t features)
806{
807 struct e1000_adapter *adapter = netdev_priv(netdev);
808 netdev_features_t changed = features ^ netdev->features;
809
810 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
811 e1000_vlan_mode(netdev, features);
812
813 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
814 return 0;
815
816 netdev->features = features;
817 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
818
819 if (netif_running(netdev))
820 e1000_reinit_locked(adapter);
821 else
822 e1000_reset(adapter);
823
824 return 1;
825}
826
827static const struct net_device_ops e1000_netdev_ops = {
828 .ndo_open = e1000_open,
829 .ndo_stop = e1000_close,
830 .ndo_start_xmit = e1000_xmit_frame,
831 .ndo_set_rx_mode = e1000_set_rx_mode,
832 .ndo_set_mac_address = e1000_set_mac,
833 .ndo_tx_timeout = e1000_tx_timeout,
834 .ndo_change_mtu = e1000_change_mtu,
835 .ndo_eth_ioctl = e1000_ioctl,
836 .ndo_validate_addr = eth_validate_addr,
837 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
838 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
839#ifdef CONFIG_NET_POLL_CONTROLLER
840 .ndo_poll_controller = e1000_netpoll,
841#endif
842 .ndo_fix_features = e1000_fix_features,
843 .ndo_set_features = e1000_set_features,
844};
845
846/**
847 * e1000_init_hw_struct - initialize members of hw struct
848 * @adapter: board private struct
849 * @hw: structure used by e1000_hw.c
850 *
851 * Factors out initialization of the e1000_hw struct to its own function
852 * that can be called very early at init (just after struct allocation).
853 * Fields are initialized based on PCI device information and
854 * OS network device settings (MTU size).
855 * Returns negative error codes if MAC type setup fails.
856 */
857static int e1000_init_hw_struct(struct e1000_adapter *adapter,
858 struct e1000_hw *hw)
859{
860 struct pci_dev *pdev = adapter->pdev;
861
862 /* PCI config space info */
863 hw->vendor_id = pdev->vendor;
864 hw->device_id = pdev->device;
865 hw->subsystem_vendor_id = pdev->subsystem_vendor;
866 hw->subsystem_id = pdev->subsystem_device;
867 hw->revision_id = pdev->revision;
868
869 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
870
871 hw->max_frame_size = adapter->netdev->mtu +
872 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
873 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
874
875 /* identify the MAC */
876 if (e1000_set_mac_type(hw)) {
877 e_err(probe, "Unknown MAC Type\n");
878 return -EIO;
879 }
880
881 switch (hw->mac_type) {
882 default:
883 break;
884 case e1000_82541:
885 case e1000_82547:
886 case e1000_82541_rev_2:
887 case e1000_82547_rev_2:
888 hw->phy_init_script = 1;
889 break;
890 }
891
892 e1000_set_media_type(hw);
893 e1000_get_bus_info(hw);
894
895 hw->wait_autoneg_complete = false;
896 hw->tbi_compatibility_en = true;
897 hw->adaptive_ifs = true;
898
899 /* Copper options */
900
901 if (hw->media_type == e1000_media_type_copper) {
902 hw->mdix = AUTO_ALL_MODES;
903 hw->disable_polarity_correction = false;
904 hw->master_slave = E1000_MASTER_SLAVE;
905 }
906
907 return 0;
908}
909
910/**
911 * e1000_probe - Device Initialization Routine
912 * @pdev: PCI device information struct
913 * @ent: entry in e1000_pci_tbl
914 *
915 * Returns 0 on success, negative on failure
916 *
917 * e1000_probe initializes an adapter identified by a pci_dev structure.
918 * The OS initialization, configuring of the adapter private structure,
919 * and a hardware reset occur.
920 **/
921static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
922{
923 struct net_device *netdev;
924 struct e1000_adapter *adapter = NULL;
925 struct e1000_hw *hw;
926
927 static int cards_found;
928 static int global_quad_port_a; /* global ksp3 port a indication */
929 int i, err, pci_using_dac;
930 u16 eeprom_data = 0;
931 u16 tmp = 0;
932 u16 eeprom_apme_mask = E1000_EEPROM_APME;
933 int bars, need_ioport;
934 bool disable_dev = false;
935
936 /* do not allocate ioport bars when not needed */
937 need_ioport = e1000_is_need_ioport(pdev);
938 if (need_ioport) {
939 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
940 err = pci_enable_device(pdev);
941 } else {
942 bars = pci_select_bars(pdev, IORESOURCE_MEM);
943 err = pci_enable_device_mem(pdev);
944 }
945 if (err)
946 return err;
947
948 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
949 if (err)
950 goto err_pci_reg;
951
952 pci_set_master(pdev);
953 err = pci_save_state(pdev);
954 if (err)
955 goto err_alloc_etherdev;
956
957 err = -ENOMEM;
958 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
959 if (!netdev)
960 goto err_alloc_etherdev;
961
962 SET_NETDEV_DEV(netdev, &pdev->dev);
963
964 pci_set_drvdata(pdev, netdev);
965 adapter = netdev_priv(netdev);
966 adapter->netdev = netdev;
967 adapter->pdev = pdev;
968 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
969 adapter->bars = bars;
970 adapter->need_ioport = need_ioport;
971
972 hw = &adapter->hw;
973 hw->back = adapter;
974
975 err = -EIO;
976 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
977 if (!hw->hw_addr)
978 goto err_ioremap;
979
980 if (adapter->need_ioport) {
981 for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
982 if (pci_resource_len(pdev, i) == 0)
983 continue;
984 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
985 hw->io_base = pci_resource_start(pdev, i);
986 break;
987 }
988 }
989 }
990
991 /* make ready for any if (hw->...) below */
992 err = e1000_init_hw_struct(adapter, hw);
993 if (err)
994 goto err_sw_init;
995
996 /* there is a workaround being applied below that limits
997 * 64-bit DMA addresses to 64-bit hardware. There are some
998 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
999 */
1000 pci_using_dac = 0;
1001 if ((hw->bus_type == e1000_bus_type_pcix) &&
1002 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1003 pci_using_dac = 1;
1004 } else {
1005 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1006 if (err) {
1007 pr_err("No usable DMA config, aborting\n");
1008 goto err_dma;
1009 }
1010 }
1011
1012 netdev->netdev_ops = &e1000_netdev_ops;
1013 e1000_set_ethtool_ops(netdev);
1014 netdev->watchdog_timeo = 5 * HZ;
1015 netif_napi_add(netdev, &adapter->napi, e1000_clean);
1016
1017 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
1018
1019 adapter->bd_number = cards_found;
1020
1021 /* setup the private structure */
1022
1023 err = e1000_sw_init(adapter);
1024 if (err)
1025 goto err_sw_init;
1026
1027 err = -EIO;
1028 if (hw->mac_type == e1000_ce4100) {
1029 hw->ce4100_gbe_mdio_base_virt =
1030 ioremap(pci_resource_start(pdev, BAR_1),
1031 pci_resource_len(pdev, BAR_1));
1032
1033 if (!hw->ce4100_gbe_mdio_base_virt)
1034 goto err_mdio_ioremap;
1035 }
1036
1037 if (hw->mac_type >= e1000_82543) {
1038 netdev->hw_features = NETIF_F_SG |
1039 NETIF_F_HW_CSUM |
1040 NETIF_F_HW_VLAN_CTAG_RX;
1041 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1042 NETIF_F_HW_VLAN_CTAG_FILTER;
1043 }
1044
1045 if ((hw->mac_type >= e1000_82544) &&
1046 (hw->mac_type != e1000_82547))
1047 netdev->hw_features |= NETIF_F_TSO;
1048
1049 netdev->priv_flags |= IFF_SUPP_NOFCS;
1050
1051 netdev->features |= netdev->hw_features;
1052 netdev->hw_features |= (NETIF_F_RXCSUM |
1053 NETIF_F_RXALL |
1054 NETIF_F_RXFCS);
1055
1056 if (pci_using_dac) {
1057 netdev->features |= NETIF_F_HIGHDMA;
1058 netdev->vlan_features |= NETIF_F_HIGHDMA;
1059 }
1060
1061 netdev->vlan_features |= (NETIF_F_TSO |
1062 NETIF_F_HW_CSUM |
1063 NETIF_F_SG);
1064
1065 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1066 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1067 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1068 netdev->priv_flags |= IFF_UNICAST_FLT;
1069
1070 /* MTU range: 46 - 16110 */
1071 netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1072 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1073
1074 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1075
1076 /* initialize eeprom parameters */
1077 if (e1000_init_eeprom_params(hw)) {
1078 e_err(probe, "EEPROM initialization failed\n");
1079 goto err_eeprom;
1080 }
1081
1082 /* before reading the EEPROM, reset the controller to
1083 * put the device in a known good starting state
1084 */
1085
1086 e1000_reset_hw(hw);
1087
1088 /* make sure the EEPROM is good */
1089 if (e1000_validate_eeprom_checksum(hw) < 0) {
1090 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1091 e1000_dump_eeprom(adapter);
1092 /* set MAC address to all zeroes to invalidate and temporary
1093 * disable this device for the user. This blocks regular
1094 * traffic while still permitting ethtool ioctls from reaching
1095 * the hardware as well as allowing the user to run the
1096 * interface after manually setting a hw addr using
1097 * `ip set address`
1098 */
1099 memset(hw->mac_addr, 0, netdev->addr_len);
1100 } else {
1101 /* copy the MAC address out of the EEPROM */
1102 if (e1000_read_mac_addr(hw))
1103 e_err(probe, "EEPROM Read Error\n");
1104 }
1105 /* don't block initialization here due to bad MAC address */
1106 eth_hw_addr_set(netdev, hw->mac_addr);
1107
1108 if (!is_valid_ether_addr(netdev->dev_addr))
1109 e_err(probe, "Invalid MAC Address\n");
1110
1111
1112 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1113 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1114 e1000_82547_tx_fifo_stall_task);
1115 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1116 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1117
1118 e1000_check_options(adapter);
1119
1120 /* Initial Wake on LAN setting
1121 * If APM wake is enabled in the EEPROM,
1122 * enable the ACPI Magic Packet filter
1123 */
1124
1125 switch (hw->mac_type) {
1126 case e1000_82542_rev2_0:
1127 case e1000_82542_rev2_1:
1128 case e1000_82543:
1129 break;
1130 case e1000_82544:
1131 e1000_read_eeprom(hw,
1132 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1133 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1134 break;
1135 case e1000_82546:
1136 case e1000_82546_rev_3:
1137 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1138 e1000_read_eeprom(hw,
1139 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1140 break;
1141 }
1142 fallthrough;
1143 default:
1144 e1000_read_eeprom(hw,
1145 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1146 break;
1147 }
1148 if (eeprom_data & eeprom_apme_mask)
1149 adapter->eeprom_wol |= E1000_WUFC_MAG;
1150
1151 /* now that we have the eeprom settings, apply the special cases
1152 * where the eeprom may be wrong or the board simply won't support
1153 * wake on lan on a particular port
1154 */
1155 switch (pdev->device) {
1156 case E1000_DEV_ID_82546GB_PCIE:
1157 adapter->eeprom_wol = 0;
1158 break;
1159 case E1000_DEV_ID_82546EB_FIBER:
1160 case E1000_DEV_ID_82546GB_FIBER:
1161 /* Wake events only supported on port A for dual fiber
1162 * regardless of eeprom setting
1163 */
1164 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1165 adapter->eeprom_wol = 0;
1166 break;
1167 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1168 /* if quad port adapter, disable WoL on all but port A */
1169 if (global_quad_port_a != 0)
1170 adapter->eeprom_wol = 0;
1171 else
1172 adapter->quad_port_a = true;
1173 /* Reset for multiple quad port adapters */
1174 if (++global_quad_port_a == 4)
1175 global_quad_port_a = 0;
1176 break;
1177 }
1178
1179 /* initialize the wol settings based on the eeprom settings */
1180 adapter->wol = adapter->eeprom_wol;
1181 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1182
1183 /* Auto detect PHY address */
1184 if (hw->mac_type == e1000_ce4100) {
1185 for (i = 0; i < 32; i++) {
1186 hw->phy_addr = i;
1187 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1188
1189 if (tmp != 0 && tmp != 0xFF)
1190 break;
1191 }
1192
1193 if (i >= 32)
1194 goto err_eeprom;
1195 }
1196
1197 /* reset the hardware with the new settings */
1198 e1000_reset(adapter);
1199
1200 strcpy(netdev->name, "eth%d");
1201 err = register_netdev(netdev);
1202 if (err)
1203 goto err_register;
1204
1205 e1000_vlan_filter_on_off(adapter, false);
1206
1207 /* print bus type/speed/width info */
1208 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1209 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1210 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1211 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1212 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1213 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1214 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1215 netdev->dev_addr);
1216
1217 /* carrier off reporting is important to ethtool even BEFORE open */
1218 netif_carrier_off(netdev);
1219
1220 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1221
1222 cards_found++;
1223 return 0;
1224
1225err_register:
1226err_eeprom:
1227 e1000_phy_hw_reset(hw);
1228
1229 if (hw->flash_address)
1230 iounmap(hw->flash_address);
1231 kfree(adapter->tx_ring);
1232 kfree(adapter->rx_ring);
1233err_dma:
1234err_sw_init:
1235err_mdio_ioremap:
1236 iounmap(hw->ce4100_gbe_mdio_base_virt);
1237 iounmap(hw->hw_addr);
1238err_ioremap:
1239 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1240 free_netdev(netdev);
1241err_alloc_etherdev:
1242 pci_release_selected_regions(pdev, bars);
1243err_pci_reg:
1244 if (!adapter || disable_dev)
1245 pci_disable_device(pdev);
1246 return err;
1247}
1248
1249/**
1250 * e1000_remove - Device Removal Routine
1251 * @pdev: PCI device information struct
1252 *
1253 * e1000_remove is called by the PCI subsystem to alert the driver
1254 * that it should release a PCI device. That could be caused by a
1255 * Hot-Plug event, or because the driver is going to be removed from
1256 * memory.
1257 **/
1258static void e1000_remove(struct pci_dev *pdev)
1259{
1260 struct net_device *netdev = pci_get_drvdata(pdev);
1261 struct e1000_adapter *adapter = netdev_priv(netdev);
1262 struct e1000_hw *hw = &adapter->hw;
1263 bool disable_dev;
1264
1265 e1000_down_and_stop(adapter);
1266 e1000_release_manageability(adapter);
1267
1268 unregister_netdev(netdev);
1269
1270 e1000_phy_hw_reset(hw);
1271
1272 kfree(adapter->tx_ring);
1273 kfree(adapter->rx_ring);
1274
1275 if (hw->mac_type == e1000_ce4100)
1276 iounmap(hw->ce4100_gbe_mdio_base_virt);
1277 iounmap(hw->hw_addr);
1278 if (hw->flash_address)
1279 iounmap(hw->flash_address);
1280 pci_release_selected_regions(pdev, adapter->bars);
1281
1282 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1283 free_netdev(netdev);
1284
1285 if (disable_dev)
1286 pci_disable_device(pdev);
1287}
1288
1289/**
1290 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1291 * @adapter: board private structure to initialize
1292 *
1293 * e1000_sw_init initializes the Adapter private data structure.
1294 * e1000_init_hw_struct MUST be called before this function
1295 **/
1296static int e1000_sw_init(struct e1000_adapter *adapter)
1297{
1298 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1299
1300 adapter->num_tx_queues = 1;
1301 adapter->num_rx_queues = 1;
1302
1303 if (e1000_alloc_queues(adapter)) {
1304 e_err(probe, "Unable to allocate memory for queues\n");
1305 return -ENOMEM;
1306 }
1307
1308 /* Explicitly disable IRQ since the NIC can be in any state. */
1309 e1000_irq_disable(adapter);
1310
1311 spin_lock_init(&adapter->stats_lock);
1312
1313 set_bit(__E1000_DOWN, &adapter->flags);
1314
1315 return 0;
1316}
1317
1318/**
1319 * e1000_alloc_queues - Allocate memory for all rings
1320 * @adapter: board private structure to initialize
1321 *
1322 * We allocate one ring per queue at run-time since we don't know the
1323 * number of queues at compile-time.
1324 **/
1325static int e1000_alloc_queues(struct e1000_adapter *adapter)
1326{
1327 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1328 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1329 if (!adapter->tx_ring)
1330 return -ENOMEM;
1331
1332 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1333 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1334 if (!adapter->rx_ring) {
1335 kfree(adapter->tx_ring);
1336 return -ENOMEM;
1337 }
1338
1339 return E1000_SUCCESS;
1340}
1341
1342/**
1343 * e1000_open - Called when a network interface is made active
1344 * @netdev: network interface device structure
1345 *
1346 * Returns 0 on success, negative value on failure
1347 *
1348 * The open entry point is called when a network interface is made
1349 * active by the system (IFF_UP). At this point all resources needed
1350 * for transmit and receive operations are allocated, the interrupt
1351 * handler is registered with the OS, the watchdog task is started,
1352 * and the stack is notified that the interface is ready.
1353 **/
1354int e1000_open(struct net_device *netdev)
1355{
1356 struct e1000_adapter *adapter = netdev_priv(netdev);
1357 struct e1000_hw *hw = &adapter->hw;
1358 int err;
1359
1360 /* disallow open during test */
1361 if (test_bit(__E1000_TESTING, &adapter->flags))
1362 return -EBUSY;
1363
1364 netif_carrier_off(netdev);
1365
1366 /* allocate transmit descriptors */
1367 err = e1000_setup_all_tx_resources(adapter);
1368 if (err)
1369 goto err_setup_tx;
1370
1371 /* allocate receive descriptors */
1372 err = e1000_setup_all_rx_resources(adapter);
1373 if (err)
1374 goto err_setup_rx;
1375
1376 e1000_power_up_phy(adapter);
1377
1378 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1379 if ((hw->mng_cookie.status &
1380 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1381 e1000_update_mng_vlan(adapter);
1382 }
1383
1384 /* before we allocate an interrupt, we must be ready to handle it.
1385 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1386 * as soon as we call pci_request_irq, so we have to setup our
1387 * clean_rx handler before we do so.
1388 */
1389 e1000_configure(adapter);
1390
1391 err = e1000_request_irq(adapter);
1392 if (err)
1393 goto err_req_irq;
1394
1395 /* From here on the code is the same as e1000_up() */
1396 clear_bit(__E1000_DOWN, &adapter->flags);
1397
1398 napi_enable(&adapter->napi);
1399
1400 e1000_irq_enable(adapter);
1401
1402 netif_start_queue(netdev);
1403
1404 /* fire a link status change interrupt to start the watchdog */
1405 ew32(ICS, E1000_ICS_LSC);
1406
1407 return E1000_SUCCESS;
1408
1409err_req_irq:
1410 e1000_power_down_phy(adapter);
1411 e1000_free_all_rx_resources(adapter);
1412err_setup_rx:
1413 e1000_free_all_tx_resources(adapter);
1414err_setup_tx:
1415 e1000_reset(adapter);
1416
1417 return err;
1418}
1419
1420/**
1421 * e1000_close - Disables a network interface
1422 * @netdev: network interface device structure
1423 *
1424 * Returns 0, this is not allowed to fail
1425 *
1426 * The close entry point is called when an interface is de-activated
1427 * by the OS. The hardware is still under the drivers control, but
1428 * needs to be disabled. A global MAC reset is issued to stop the
1429 * hardware, and all transmit and receive resources are freed.
1430 **/
1431int e1000_close(struct net_device *netdev)
1432{
1433 struct e1000_adapter *adapter = netdev_priv(netdev);
1434 struct e1000_hw *hw = &adapter->hw;
1435 int count = E1000_CHECK_RESET_COUNT;
1436
1437 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1438 usleep_range(10000, 20000);
1439
1440 WARN_ON(count < 0);
1441
1442 /* signal that we're down so that the reset task will no longer run */
1443 set_bit(__E1000_DOWN, &adapter->flags);
1444 clear_bit(__E1000_RESETTING, &adapter->flags);
1445
1446 e1000_down(adapter);
1447 e1000_power_down_phy(adapter);
1448 e1000_free_irq(adapter);
1449
1450 e1000_free_all_tx_resources(adapter);
1451 e1000_free_all_rx_resources(adapter);
1452
1453 /* kill manageability vlan ID if supported, but not if a vlan with
1454 * the same ID is registered on the host OS (let 8021q kill it)
1455 */
1456 if ((hw->mng_cookie.status &
1457 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1458 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1459 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1460 adapter->mng_vlan_id);
1461 }
1462
1463 return 0;
1464}
1465
1466/**
1467 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1468 * @adapter: address of board private structure
1469 * @start: address of beginning of memory
1470 * @len: length of memory
1471 **/
1472static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1473 unsigned long len)
1474{
1475 struct e1000_hw *hw = &adapter->hw;
1476 unsigned long begin = (unsigned long)start;
1477 unsigned long end = begin + len;
1478
1479 /* First rev 82545 and 82546 need to not allow any memory
1480 * write location to cross 64k boundary due to errata 23
1481 */
1482 if (hw->mac_type == e1000_82545 ||
1483 hw->mac_type == e1000_ce4100 ||
1484 hw->mac_type == e1000_82546) {
1485 return ((begin ^ (end - 1)) >> 16) == 0;
1486 }
1487
1488 return true;
1489}
1490
1491/**
1492 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1493 * @adapter: board private structure
1494 * @txdr: tx descriptor ring (for a specific queue) to setup
1495 *
1496 * Return 0 on success, negative on failure
1497 **/
1498static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1499 struct e1000_tx_ring *txdr)
1500{
1501 struct pci_dev *pdev = adapter->pdev;
1502 int size;
1503
1504 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1505 txdr->buffer_info = vzalloc(size);
1506 if (!txdr->buffer_info)
1507 return -ENOMEM;
1508
1509 /* round up to nearest 4K */
1510
1511 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1512 txdr->size = ALIGN(txdr->size, 4096);
1513
1514 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1515 GFP_KERNEL);
1516 if (!txdr->desc) {
1517setup_tx_desc_die:
1518 vfree(txdr->buffer_info);
1519 return -ENOMEM;
1520 }
1521
1522 /* Fix for errata 23, can't cross 64kB boundary */
1523 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1524 void *olddesc = txdr->desc;
1525 dma_addr_t olddma = txdr->dma;
1526 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1527 txdr->size, txdr->desc);
1528 /* Try again, without freeing the previous */
1529 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1530 &txdr->dma, GFP_KERNEL);
1531 /* Failed allocation, critical failure */
1532 if (!txdr->desc) {
1533 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1534 olddma);
1535 goto setup_tx_desc_die;
1536 }
1537
1538 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1539 /* give up */
1540 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1541 txdr->dma);
1542 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1543 olddma);
1544 e_err(probe, "Unable to allocate aligned memory "
1545 "for the transmit descriptor ring\n");
1546 vfree(txdr->buffer_info);
1547 return -ENOMEM;
1548 } else {
1549 /* Free old allocation, new allocation was successful */
1550 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1551 olddma);
1552 }
1553 }
1554 memset(txdr->desc, 0, txdr->size);
1555
1556 txdr->next_to_use = 0;
1557 txdr->next_to_clean = 0;
1558
1559 return 0;
1560}
1561
1562/**
1563 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1564 * (Descriptors) for all queues
1565 * @adapter: board private structure
1566 *
1567 * Return 0 on success, negative on failure
1568 **/
1569int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1570{
1571 int i, err = 0;
1572
1573 for (i = 0; i < adapter->num_tx_queues; i++) {
1574 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1575 if (err) {
1576 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1577 for (i-- ; i >= 0; i--)
1578 e1000_free_tx_resources(adapter,
1579 &adapter->tx_ring[i]);
1580 break;
1581 }
1582 }
1583
1584 return err;
1585}
1586
1587/**
1588 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1589 * @adapter: board private structure
1590 *
1591 * Configure the Tx unit of the MAC after a reset.
1592 **/
1593static void e1000_configure_tx(struct e1000_adapter *adapter)
1594{
1595 u64 tdba;
1596 struct e1000_hw *hw = &adapter->hw;
1597 u32 tdlen, tctl, tipg;
1598 u32 ipgr1, ipgr2;
1599
1600 /* Setup the HW Tx Head and Tail descriptor pointers */
1601
1602 switch (adapter->num_tx_queues) {
1603 case 1:
1604 default:
1605 tdba = adapter->tx_ring[0].dma;
1606 tdlen = adapter->tx_ring[0].count *
1607 sizeof(struct e1000_tx_desc);
1608 ew32(TDLEN, tdlen);
1609 ew32(TDBAH, (tdba >> 32));
1610 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1611 ew32(TDT, 0);
1612 ew32(TDH, 0);
1613 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1614 E1000_TDH : E1000_82542_TDH);
1615 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1616 E1000_TDT : E1000_82542_TDT);
1617 break;
1618 }
1619
1620 /* Set the default values for the Tx Inter Packet Gap timer */
1621 if ((hw->media_type == e1000_media_type_fiber ||
1622 hw->media_type == e1000_media_type_internal_serdes))
1623 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1624 else
1625 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1626
1627 switch (hw->mac_type) {
1628 case e1000_82542_rev2_0:
1629 case e1000_82542_rev2_1:
1630 tipg = DEFAULT_82542_TIPG_IPGT;
1631 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1632 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1633 break;
1634 default:
1635 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1636 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1637 break;
1638 }
1639 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1640 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1641 ew32(TIPG, tipg);
1642
1643 /* Set the Tx Interrupt Delay register */
1644
1645 ew32(TIDV, adapter->tx_int_delay);
1646 if (hw->mac_type >= e1000_82540)
1647 ew32(TADV, adapter->tx_abs_int_delay);
1648
1649 /* Program the Transmit Control Register */
1650
1651 tctl = er32(TCTL);
1652 tctl &= ~E1000_TCTL_CT;
1653 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1654 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1655
1656 e1000_config_collision_dist(hw);
1657
1658 /* Setup Transmit Descriptor Settings for eop descriptor */
1659 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1660
1661 /* only set IDE if we are delaying interrupts using the timers */
1662 if (adapter->tx_int_delay)
1663 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1664
1665 if (hw->mac_type < e1000_82543)
1666 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1667 else
1668 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1669
1670 /* Cache if we're 82544 running in PCI-X because we'll
1671 * need this to apply a workaround later in the send path.
1672 */
1673 if (hw->mac_type == e1000_82544 &&
1674 hw->bus_type == e1000_bus_type_pcix)
1675 adapter->pcix_82544 = true;
1676
1677 ew32(TCTL, tctl);
1678
1679}
1680
1681/**
1682 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1683 * @adapter: board private structure
1684 * @rxdr: rx descriptor ring (for a specific queue) to setup
1685 *
1686 * Returns 0 on success, negative on failure
1687 **/
1688static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1689 struct e1000_rx_ring *rxdr)
1690{
1691 struct pci_dev *pdev = adapter->pdev;
1692 int size, desc_len;
1693
1694 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1695 rxdr->buffer_info = vzalloc(size);
1696 if (!rxdr->buffer_info)
1697 return -ENOMEM;
1698
1699 desc_len = sizeof(struct e1000_rx_desc);
1700
1701 /* Round up to nearest 4K */
1702
1703 rxdr->size = rxdr->count * desc_len;
1704 rxdr->size = ALIGN(rxdr->size, 4096);
1705
1706 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1707 GFP_KERNEL);
1708 if (!rxdr->desc) {
1709setup_rx_desc_die:
1710 vfree(rxdr->buffer_info);
1711 return -ENOMEM;
1712 }
1713
1714 /* Fix for errata 23, can't cross 64kB boundary */
1715 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1716 void *olddesc = rxdr->desc;
1717 dma_addr_t olddma = rxdr->dma;
1718 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1719 rxdr->size, rxdr->desc);
1720 /* Try again, without freeing the previous */
1721 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1722 &rxdr->dma, GFP_KERNEL);
1723 /* Failed allocation, critical failure */
1724 if (!rxdr->desc) {
1725 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1726 olddma);
1727 goto setup_rx_desc_die;
1728 }
1729
1730 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1731 /* give up */
1732 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1733 rxdr->dma);
1734 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1735 olddma);
1736 e_err(probe, "Unable to allocate aligned memory for "
1737 "the Rx descriptor ring\n");
1738 goto setup_rx_desc_die;
1739 } else {
1740 /* Free old allocation, new allocation was successful */
1741 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1742 olddma);
1743 }
1744 }
1745 memset(rxdr->desc, 0, rxdr->size);
1746
1747 rxdr->next_to_clean = 0;
1748 rxdr->next_to_use = 0;
1749 rxdr->rx_skb_top = NULL;
1750
1751 return 0;
1752}
1753
1754/**
1755 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1756 * (Descriptors) for all queues
1757 * @adapter: board private structure
1758 *
1759 * Return 0 on success, negative on failure
1760 **/
1761int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1762{
1763 int i, err = 0;
1764
1765 for (i = 0; i < adapter->num_rx_queues; i++) {
1766 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1767 if (err) {
1768 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1769 for (i-- ; i >= 0; i--)
1770 e1000_free_rx_resources(adapter,
1771 &adapter->rx_ring[i]);
1772 break;
1773 }
1774 }
1775
1776 return err;
1777}
1778
1779/**
1780 * e1000_setup_rctl - configure the receive control registers
1781 * @adapter: Board private structure
1782 **/
1783static void e1000_setup_rctl(struct e1000_adapter *adapter)
1784{
1785 struct e1000_hw *hw = &adapter->hw;
1786 u32 rctl;
1787
1788 rctl = er32(RCTL);
1789
1790 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1791
1792 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1793 E1000_RCTL_RDMTS_HALF |
1794 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1795
1796 if (hw->tbi_compatibility_on == 1)
1797 rctl |= E1000_RCTL_SBP;
1798 else
1799 rctl &= ~E1000_RCTL_SBP;
1800
1801 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1802 rctl &= ~E1000_RCTL_LPE;
1803 else
1804 rctl |= E1000_RCTL_LPE;
1805
1806 /* Setup buffer sizes */
1807 rctl &= ~E1000_RCTL_SZ_4096;
1808 rctl |= E1000_RCTL_BSEX;
1809 switch (adapter->rx_buffer_len) {
1810 case E1000_RXBUFFER_2048:
1811 default:
1812 rctl |= E1000_RCTL_SZ_2048;
1813 rctl &= ~E1000_RCTL_BSEX;
1814 break;
1815 case E1000_RXBUFFER_4096:
1816 rctl |= E1000_RCTL_SZ_4096;
1817 break;
1818 case E1000_RXBUFFER_8192:
1819 rctl |= E1000_RCTL_SZ_8192;
1820 break;
1821 case E1000_RXBUFFER_16384:
1822 rctl |= E1000_RCTL_SZ_16384;
1823 break;
1824 }
1825
1826 /* This is useful for sniffing bad packets. */
1827 if (adapter->netdev->features & NETIF_F_RXALL) {
1828 /* UPE and MPE will be handled by normal PROMISC logic
1829 * in e1000e_set_rx_mode
1830 */
1831 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1832 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1833 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1834
1835 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1836 E1000_RCTL_DPF | /* Allow filtered pause */
1837 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1838 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1839 * and that breaks VLANs.
1840 */
1841 }
1842
1843 ew32(RCTL, rctl);
1844}
1845
1846/**
1847 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1848 * @adapter: board private structure
1849 *
1850 * Configure the Rx unit of the MAC after a reset.
1851 **/
1852static void e1000_configure_rx(struct e1000_adapter *adapter)
1853{
1854 u64 rdba;
1855 struct e1000_hw *hw = &adapter->hw;
1856 u32 rdlen, rctl, rxcsum;
1857
1858 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1859 rdlen = adapter->rx_ring[0].count *
1860 sizeof(struct e1000_rx_desc);
1861 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1862 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1863 } else {
1864 rdlen = adapter->rx_ring[0].count *
1865 sizeof(struct e1000_rx_desc);
1866 adapter->clean_rx = e1000_clean_rx_irq;
1867 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1868 }
1869
1870 /* disable receives while setting up the descriptors */
1871 rctl = er32(RCTL);
1872 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1873
1874 /* set the Receive Delay Timer Register */
1875 ew32(RDTR, adapter->rx_int_delay);
1876
1877 if (hw->mac_type >= e1000_82540) {
1878 ew32(RADV, adapter->rx_abs_int_delay);
1879 if (adapter->itr_setting != 0)
1880 ew32(ITR, 1000000000 / (adapter->itr * 256));
1881 }
1882
1883 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1884 * the Base and Length of the Rx Descriptor Ring
1885 */
1886 switch (adapter->num_rx_queues) {
1887 case 1:
1888 default:
1889 rdba = adapter->rx_ring[0].dma;
1890 ew32(RDLEN, rdlen);
1891 ew32(RDBAH, (rdba >> 32));
1892 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1893 ew32(RDT, 0);
1894 ew32(RDH, 0);
1895 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1896 E1000_RDH : E1000_82542_RDH);
1897 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1898 E1000_RDT : E1000_82542_RDT);
1899 break;
1900 }
1901
1902 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1903 if (hw->mac_type >= e1000_82543) {
1904 rxcsum = er32(RXCSUM);
1905 if (adapter->rx_csum)
1906 rxcsum |= E1000_RXCSUM_TUOFL;
1907 else
1908 /* don't need to clear IPPCSE as it defaults to 0 */
1909 rxcsum &= ~E1000_RXCSUM_TUOFL;
1910 ew32(RXCSUM, rxcsum);
1911 }
1912
1913 /* Enable Receives */
1914 ew32(RCTL, rctl | E1000_RCTL_EN);
1915}
1916
1917/**
1918 * e1000_free_tx_resources - Free Tx Resources per Queue
1919 * @adapter: board private structure
1920 * @tx_ring: Tx descriptor ring for a specific queue
1921 *
1922 * Free all transmit software resources
1923 **/
1924static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1925 struct e1000_tx_ring *tx_ring)
1926{
1927 struct pci_dev *pdev = adapter->pdev;
1928
1929 e1000_clean_tx_ring(adapter, tx_ring);
1930
1931 vfree(tx_ring->buffer_info);
1932 tx_ring->buffer_info = NULL;
1933
1934 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1935 tx_ring->dma);
1936
1937 tx_ring->desc = NULL;
1938}
1939
1940/**
1941 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1942 * @adapter: board private structure
1943 *
1944 * Free all transmit software resources
1945 **/
1946void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1947{
1948 int i;
1949
1950 for (i = 0; i < adapter->num_tx_queues; i++)
1951 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1952}
1953
1954static void
1955e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1956 struct e1000_tx_buffer *buffer_info,
1957 int budget)
1958{
1959 if (buffer_info->dma) {
1960 if (buffer_info->mapped_as_page)
1961 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1962 buffer_info->length, DMA_TO_DEVICE);
1963 else
1964 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1965 buffer_info->length,
1966 DMA_TO_DEVICE);
1967 buffer_info->dma = 0;
1968 }
1969 if (buffer_info->skb) {
1970 napi_consume_skb(buffer_info->skb, budget);
1971 buffer_info->skb = NULL;
1972 }
1973 buffer_info->time_stamp = 0;
1974 /* buffer_info must be completely set up in the transmit path */
1975}
1976
1977/**
1978 * e1000_clean_tx_ring - Free Tx Buffers
1979 * @adapter: board private structure
1980 * @tx_ring: ring to be cleaned
1981 **/
1982static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1983 struct e1000_tx_ring *tx_ring)
1984{
1985 struct e1000_hw *hw = &adapter->hw;
1986 struct e1000_tx_buffer *buffer_info;
1987 unsigned long size;
1988 unsigned int i;
1989
1990 /* Free all the Tx ring sk_buffs */
1991
1992 for (i = 0; i < tx_ring->count; i++) {
1993 buffer_info = &tx_ring->buffer_info[i];
1994 e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
1995 }
1996
1997 netdev_reset_queue(adapter->netdev);
1998 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
1999 memset(tx_ring->buffer_info, 0, size);
2000
2001 /* Zero out the descriptor ring */
2002
2003 memset(tx_ring->desc, 0, tx_ring->size);
2004
2005 tx_ring->next_to_use = 0;
2006 tx_ring->next_to_clean = 0;
2007 tx_ring->last_tx_tso = false;
2008
2009 writel(0, hw->hw_addr + tx_ring->tdh);
2010 writel(0, hw->hw_addr + tx_ring->tdt);
2011}
2012
2013/**
2014 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2015 * @adapter: board private structure
2016 **/
2017static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2018{
2019 int i;
2020
2021 for (i = 0; i < adapter->num_tx_queues; i++)
2022 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2023}
2024
2025/**
2026 * e1000_free_rx_resources - Free Rx Resources
2027 * @adapter: board private structure
2028 * @rx_ring: ring to clean the resources from
2029 *
2030 * Free all receive software resources
2031 **/
2032static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2033 struct e1000_rx_ring *rx_ring)
2034{
2035 struct pci_dev *pdev = adapter->pdev;
2036
2037 e1000_clean_rx_ring(adapter, rx_ring);
2038
2039 vfree(rx_ring->buffer_info);
2040 rx_ring->buffer_info = NULL;
2041
2042 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2043 rx_ring->dma);
2044
2045 rx_ring->desc = NULL;
2046}
2047
2048/**
2049 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2050 * @adapter: board private structure
2051 *
2052 * Free all receive software resources
2053 **/
2054void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2055{
2056 int i;
2057
2058 for (i = 0; i < adapter->num_rx_queues; i++)
2059 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2060}
2061
2062#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2063static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2064{
2065 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2066 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2067}
2068
2069static void *e1000_alloc_frag(const struct e1000_adapter *a)
2070{
2071 unsigned int len = e1000_frag_len(a);
2072 u8 *data = netdev_alloc_frag(len);
2073
2074 if (likely(data))
2075 data += E1000_HEADROOM;
2076 return data;
2077}
2078
2079/**
2080 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2081 * @adapter: board private structure
2082 * @rx_ring: ring to free buffers from
2083 **/
2084static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2085 struct e1000_rx_ring *rx_ring)
2086{
2087 struct e1000_hw *hw = &adapter->hw;
2088 struct e1000_rx_buffer *buffer_info;
2089 struct pci_dev *pdev = adapter->pdev;
2090 unsigned long size;
2091 unsigned int i;
2092
2093 /* Free all the Rx netfrags */
2094 for (i = 0; i < rx_ring->count; i++) {
2095 buffer_info = &rx_ring->buffer_info[i];
2096 if (adapter->clean_rx == e1000_clean_rx_irq) {
2097 if (buffer_info->dma)
2098 dma_unmap_single(&pdev->dev, buffer_info->dma,
2099 adapter->rx_buffer_len,
2100 DMA_FROM_DEVICE);
2101 if (buffer_info->rxbuf.data) {
2102 skb_free_frag(buffer_info->rxbuf.data);
2103 buffer_info->rxbuf.data = NULL;
2104 }
2105 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2106 if (buffer_info->dma)
2107 dma_unmap_page(&pdev->dev, buffer_info->dma,
2108 adapter->rx_buffer_len,
2109 DMA_FROM_DEVICE);
2110 if (buffer_info->rxbuf.page) {
2111 put_page(buffer_info->rxbuf.page);
2112 buffer_info->rxbuf.page = NULL;
2113 }
2114 }
2115
2116 buffer_info->dma = 0;
2117 }
2118
2119 /* there also may be some cached data from a chained receive */
2120 napi_free_frags(&adapter->napi);
2121 rx_ring->rx_skb_top = NULL;
2122
2123 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2124 memset(rx_ring->buffer_info, 0, size);
2125
2126 /* Zero out the descriptor ring */
2127 memset(rx_ring->desc, 0, rx_ring->size);
2128
2129 rx_ring->next_to_clean = 0;
2130 rx_ring->next_to_use = 0;
2131
2132 writel(0, hw->hw_addr + rx_ring->rdh);
2133 writel(0, hw->hw_addr + rx_ring->rdt);
2134}
2135
2136/**
2137 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2138 * @adapter: board private structure
2139 **/
2140static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2141{
2142 int i;
2143
2144 for (i = 0; i < adapter->num_rx_queues; i++)
2145 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2146}
2147
2148/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2149 * and memory write and invalidate disabled for certain operations
2150 */
2151static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2152{
2153 struct e1000_hw *hw = &adapter->hw;
2154 struct net_device *netdev = adapter->netdev;
2155 u32 rctl;
2156
2157 e1000_pci_clear_mwi(hw);
2158
2159 rctl = er32(RCTL);
2160 rctl |= E1000_RCTL_RST;
2161 ew32(RCTL, rctl);
2162 E1000_WRITE_FLUSH();
2163 mdelay(5);
2164
2165 if (netif_running(netdev))
2166 e1000_clean_all_rx_rings(adapter);
2167}
2168
2169static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2170{
2171 struct e1000_hw *hw = &adapter->hw;
2172 struct net_device *netdev = adapter->netdev;
2173 u32 rctl;
2174
2175 rctl = er32(RCTL);
2176 rctl &= ~E1000_RCTL_RST;
2177 ew32(RCTL, rctl);
2178 E1000_WRITE_FLUSH();
2179 mdelay(5);
2180
2181 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2182 e1000_pci_set_mwi(hw);
2183
2184 if (netif_running(netdev)) {
2185 /* No need to loop, because 82542 supports only 1 queue */
2186 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2187 e1000_configure_rx(adapter);
2188 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2189 }
2190}
2191
2192/**
2193 * e1000_set_mac - Change the Ethernet Address of the NIC
2194 * @netdev: network interface device structure
2195 * @p: pointer to an address structure
2196 *
2197 * Returns 0 on success, negative on failure
2198 **/
2199static int e1000_set_mac(struct net_device *netdev, void *p)
2200{
2201 struct e1000_adapter *adapter = netdev_priv(netdev);
2202 struct e1000_hw *hw = &adapter->hw;
2203 struct sockaddr *addr = p;
2204
2205 if (!is_valid_ether_addr(addr->sa_data))
2206 return -EADDRNOTAVAIL;
2207
2208 /* 82542 2.0 needs to be in reset to write receive address registers */
2209
2210 if (hw->mac_type == e1000_82542_rev2_0)
2211 e1000_enter_82542_rst(adapter);
2212
2213 eth_hw_addr_set(netdev, addr->sa_data);
2214 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2215
2216 e1000_rar_set(hw, hw->mac_addr, 0);
2217
2218 if (hw->mac_type == e1000_82542_rev2_0)
2219 e1000_leave_82542_rst(adapter);
2220
2221 return 0;
2222}
2223
2224/**
2225 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2226 * @netdev: network interface device structure
2227 *
2228 * The set_rx_mode entry point is called whenever the unicast or multicast
2229 * address lists or the network interface flags are updated. This routine is
2230 * responsible for configuring the hardware for proper unicast, multicast,
2231 * promiscuous mode, and all-multi behavior.
2232 **/
2233static void e1000_set_rx_mode(struct net_device *netdev)
2234{
2235 struct e1000_adapter *adapter = netdev_priv(netdev);
2236 struct e1000_hw *hw = &adapter->hw;
2237 struct netdev_hw_addr *ha;
2238 bool use_uc = false;
2239 u32 rctl;
2240 u32 hash_value;
2241 int i, rar_entries = E1000_RAR_ENTRIES;
2242 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2243 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2244
2245 if (!mcarray)
2246 return;
2247
2248 /* Check for Promiscuous and All Multicast modes */
2249
2250 rctl = er32(RCTL);
2251
2252 if (netdev->flags & IFF_PROMISC) {
2253 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2254 rctl &= ~E1000_RCTL_VFE;
2255 } else {
2256 if (netdev->flags & IFF_ALLMULTI)
2257 rctl |= E1000_RCTL_MPE;
2258 else
2259 rctl &= ~E1000_RCTL_MPE;
2260 /* Enable VLAN filter if there is a VLAN */
2261 if (e1000_vlan_used(adapter))
2262 rctl |= E1000_RCTL_VFE;
2263 }
2264
2265 if (netdev_uc_count(netdev) > rar_entries - 1) {
2266 rctl |= E1000_RCTL_UPE;
2267 } else if (!(netdev->flags & IFF_PROMISC)) {
2268 rctl &= ~E1000_RCTL_UPE;
2269 use_uc = true;
2270 }
2271
2272 ew32(RCTL, rctl);
2273
2274 /* 82542 2.0 needs to be in reset to write receive address registers */
2275
2276 if (hw->mac_type == e1000_82542_rev2_0)
2277 e1000_enter_82542_rst(adapter);
2278
2279 /* load the first 14 addresses into the exact filters 1-14. Unicast
2280 * addresses take precedence to avoid disabling unicast filtering
2281 * when possible.
2282 *
2283 * RAR 0 is used for the station MAC address
2284 * if there are not 14 addresses, go ahead and clear the filters
2285 */
2286 i = 1;
2287 if (use_uc)
2288 netdev_for_each_uc_addr(ha, netdev) {
2289 if (i == rar_entries)
2290 break;
2291 e1000_rar_set(hw, ha->addr, i++);
2292 }
2293
2294 netdev_for_each_mc_addr(ha, netdev) {
2295 if (i == rar_entries) {
2296 /* load any remaining addresses into the hash table */
2297 u32 hash_reg, hash_bit, mta;
2298 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2299 hash_reg = (hash_value >> 5) & 0x7F;
2300 hash_bit = hash_value & 0x1F;
2301 mta = (1 << hash_bit);
2302 mcarray[hash_reg] |= mta;
2303 } else {
2304 e1000_rar_set(hw, ha->addr, i++);
2305 }
2306 }
2307
2308 for (; i < rar_entries; i++) {
2309 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2310 E1000_WRITE_FLUSH();
2311 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2312 E1000_WRITE_FLUSH();
2313 }
2314
2315 /* write the hash table completely, write from bottom to avoid
2316 * both stupid write combining chipsets, and flushing each write
2317 */
2318 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2319 /* If we are on an 82544 has an errata where writing odd
2320 * offsets overwrites the previous even offset, but writing
2321 * backwards over the range solves the issue by always
2322 * writing the odd offset first
2323 */
2324 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2325 }
2326 E1000_WRITE_FLUSH();
2327
2328 if (hw->mac_type == e1000_82542_rev2_0)
2329 e1000_leave_82542_rst(adapter);
2330
2331 kfree(mcarray);
2332}
2333
2334/**
2335 * e1000_update_phy_info_task - get phy info
2336 * @work: work struct contained inside adapter struct
2337 *
2338 * Need to wait a few seconds after link up to get diagnostic information from
2339 * the phy
2340 */
2341static void e1000_update_phy_info_task(struct work_struct *work)
2342{
2343 struct e1000_adapter *adapter = container_of(work,
2344 struct e1000_adapter,
2345 phy_info_task.work);
2346
2347 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2348}
2349
2350/**
2351 * e1000_82547_tx_fifo_stall_task - task to complete work
2352 * @work: work struct contained inside adapter struct
2353 **/
2354static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2355{
2356 struct e1000_adapter *adapter = container_of(work,
2357 struct e1000_adapter,
2358 fifo_stall_task.work);
2359 struct e1000_hw *hw = &adapter->hw;
2360 struct net_device *netdev = adapter->netdev;
2361 u32 tctl;
2362
2363 if (atomic_read(&adapter->tx_fifo_stall)) {
2364 if ((er32(TDT) == er32(TDH)) &&
2365 (er32(TDFT) == er32(TDFH)) &&
2366 (er32(TDFTS) == er32(TDFHS))) {
2367 tctl = er32(TCTL);
2368 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2369 ew32(TDFT, adapter->tx_head_addr);
2370 ew32(TDFH, adapter->tx_head_addr);
2371 ew32(TDFTS, adapter->tx_head_addr);
2372 ew32(TDFHS, adapter->tx_head_addr);
2373 ew32(TCTL, tctl);
2374 E1000_WRITE_FLUSH();
2375
2376 adapter->tx_fifo_head = 0;
2377 atomic_set(&adapter->tx_fifo_stall, 0);
2378 netif_wake_queue(netdev);
2379 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2380 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2381 }
2382 }
2383}
2384
2385bool e1000_has_link(struct e1000_adapter *adapter)
2386{
2387 struct e1000_hw *hw = &adapter->hw;
2388 bool link_active = false;
2389
2390 /* get_link_status is set on LSC (link status) interrupt or rx
2391 * sequence error interrupt (except on intel ce4100).
2392 * get_link_status will stay false until the
2393 * e1000_check_for_link establishes link for copper adapters
2394 * ONLY
2395 */
2396 switch (hw->media_type) {
2397 case e1000_media_type_copper:
2398 if (hw->mac_type == e1000_ce4100)
2399 hw->get_link_status = 1;
2400 if (hw->get_link_status) {
2401 e1000_check_for_link(hw);
2402 link_active = !hw->get_link_status;
2403 } else {
2404 link_active = true;
2405 }
2406 break;
2407 case e1000_media_type_fiber:
2408 e1000_check_for_link(hw);
2409 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2410 break;
2411 case e1000_media_type_internal_serdes:
2412 e1000_check_for_link(hw);
2413 link_active = hw->serdes_has_link;
2414 break;
2415 default:
2416 break;
2417 }
2418
2419 return link_active;
2420}
2421
2422/**
2423 * e1000_watchdog - work function
2424 * @work: work struct contained inside adapter struct
2425 **/
2426static void e1000_watchdog(struct work_struct *work)
2427{
2428 struct e1000_adapter *adapter = container_of(work,
2429 struct e1000_adapter,
2430 watchdog_task.work);
2431 struct e1000_hw *hw = &adapter->hw;
2432 struct net_device *netdev = adapter->netdev;
2433 struct e1000_tx_ring *txdr = adapter->tx_ring;
2434 u32 link, tctl;
2435
2436 link = e1000_has_link(adapter);
2437 if ((netif_carrier_ok(netdev)) && link)
2438 goto link_up;
2439
2440 if (link) {
2441 if (!netif_carrier_ok(netdev)) {
2442 u32 ctrl;
2443 /* update snapshot of PHY registers on LSC */
2444 e1000_get_speed_and_duplex(hw,
2445 &adapter->link_speed,
2446 &adapter->link_duplex);
2447
2448 ctrl = er32(CTRL);
2449 pr_info("%s NIC Link is Up %d Mbps %s, "
2450 "Flow Control: %s\n",
2451 netdev->name,
2452 adapter->link_speed,
2453 adapter->link_duplex == FULL_DUPLEX ?
2454 "Full Duplex" : "Half Duplex",
2455 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2456 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2457 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2458 E1000_CTRL_TFCE) ? "TX" : "None")));
2459
2460 /* adjust timeout factor according to speed/duplex */
2461 adapter->tx_timeout_factor = 1;
2462 switch (adapter->link_speed) {
2463 case SPEED_10:
2464 adapter->tx_timeout_factor = 16;
2465 break;
2466 case SPEED_100:
2467 /* maybe add some timeout factor ? */
2468 break;
2469 }
2470
2471 /* enable transmits in the hardware */
2472 tctl = er32(TCTL);
2473 tctl |= E1000_TCTL_EN;
2474 ew32(TCTL, tctl);
2475
2476 netif_carrier_on(netdev);
2477 if (!test_bit(__E1000_DOWN, &adapter->flags))
2478 schedule_delayed_work(&adapter->phy_info_task,
2479 2 * HZ);
2480 adapter->smartspeed = 0;
2481 }
2482 } else {
2483 if (netif_carrier_ok(netdev)) {
2484 adapter->link_speed = 0;
2485 adapter->link_duplex = 0;
2486 pr_info("%s NIC Link is Down\n",
2487 netdev->name);
2488 netif_carrier_off(netdev);
2489
2490 if (!test_bit(__E1000_DOWN, &adapter->flags))
2491 schedule_delayed_work(&adapter->phy_info_task,
2492 2 * HZ);
2493 }
2494
2495 e1000_smartspeed(adapter);
2496 }
2497
2498link_up:
2499 e1000_update_stats(adapter);
2500
2501 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2502 adapter->tpt_old = adapter->stats.tpt;
2503 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2504 adapter->colc_old = adapter->stats.colc;
2505
2506 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2507 adapter->gorcl_old = adapter->stats.gorcl;
2508 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2509 adapter->gotcl_old = adapter->stats.gotcl;
2510
2511 e1000_update_adaptive(hw);
2512
2513 if (!netif_carrier_ok(netdev)) {
2514 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2515 /* We've lost link, so the controller stops DMA,
2516 * but we've got queued Tx work that's never going
2517 * to get done, so reset controller to flush Tx.
2518 * (Do the reset outside of interrupt context).
2519 */
2520 adapter->tx_timeout_count++;
2521 schedule_work(&adapter->reset_task);
2522 /* exit immediately since reset is imminent */
2523 return;
2524 }
2525 }
2526
2527 /* Simple mode for Interrupt Throttle Rate (ITR) */
2528 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2529 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2530 * Total asymmetrical Tx or Rx gets ITR=8000;
2531 * everyone else is between 2000-8000.
2532 */
2533 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2534 u32 dif = (adapter->gotcl > adapter->gorcl ?
2535 adapter->gotcl - adapter->gorcl :
2536 adapter->gorcl - adapter->gotcl) / 10000;
2537 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2538
2539 ew32(ITR, 1000000000 / (itr * 256));
2540 }
2541
2542 /* Cause software interrupt to ensure rx ring is cleaned */
2543 ew32(ICS, E1000_ICS_RXDMT0);
2544
2545 /* Force detection of hung controller every watchdog period */
2546 adapter->detect_tx_hung = true;
2547
2548 /* Reschedule the task */
2549 if (!test_bit(__E1000_DOWN, &adapter->flags))
2550 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2551}
2552
2553enum latency_range {
2554 lowest_latency = 0,
2555 low_latency = 1,
2556 bulk_latency = 2,
2557 latency_invalid = 255
2558};
2559
2560/**
2561 * e1000_update_itr - update the dynamic ITR value based on statistics
2562 * @adapter: pointer to adapter
2563 * @itr_setting: current adapter->itr
2564 * @packets: the number of packets during this measurement interval
2565 * @bytes: the number of bytes during this measurement interval
2566 *
2567 * Stores a new ITR value based on packets and byte
2568 * counts during the last interrupt. The advantage of per interrupt
2569 * computation is faster updates and more accurate ITR for the current
2570 * traffic pattern. Constants in this function were computed
2571 * based on theoretical maximum wire speed and thresholds were set based
2572 * on testing data as well as attempting to minimize response time
2573 * while increasing bulk throughput.
2574 * this functionality is controlled by the InterruptThrottleRate module
2575 * parameter (see e1000_param.c)
2576 **/
2577static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2578 u16 itr_setting, int packets, int bytes)
2579{
2580 unsigned int retval = itr_setting;
2581 struct e1000_hw *hw = &adapter->hw;
2582
2583 if (unlikely(hw->mac_type < e1000_82540))
2584 goto update_itr_done;
2585
2586 if (packets == 0)
2587 goto update_itr_done;
2588
2589 switch (itr_setting) {
2590 case lowest_latency:
2591 /* jumbo frames get bulk treatment*/
2592 if (bytes/packets > 8000)
2593 retval = bulk_latency;
2594 else if ((packets < 5) && (bytes > 512))
2595 retval = low_latency;
2596 break;
2597 case low_latency: /* 50 usec aka 20000 ints/s */
2598 if (bytes > 10000) {
2599 /* jumbo frames need bulk latency setting */
2600 if (bytes/packets > 8000)
2601 retval = bulk_latency;
2602 else if ((packets < 10) || ((bytes/packets) > 1200))
2603 retval = bulk_latency;
2604 else if ((packets > 35))
2605 retval = lowest_latency;
2606 } else if (bytes/packets > 2000)
2607 retval = bulk_latency;
2608 else if (packets <= 2 && bytes < 512)
2609 retval = lowest_latency;
2610 break;
2611 case bulk_latency: /* 250 usec aka 4000 ints/s */
2612 if (bytes > 25000) {
2613 if (packets > 35)
2614 retval = low_latency;
2615 } else if (bytes < 6000) {
2616 retval = low_latency;
2617 }
2618 break;
2619 }
2620
2621update_itr_done:
2622 return retval;
2623}
2624
2625static void e1000_set_itr(struct e1000_adapter *adapter)
2626{
2627 struct e1000_hw *hw = &adapter->hw;
2628 u16 current_itr;
2629 u32 new_itr = adapter->itr;
2630
2631 if (unlikely(hw->mac_type < e1000_82540))
2632 return;
2633
2634 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2635 if (unlikely(adapter->link_speed != SPEED_1000)) {
2636 new_itr = 4000;
2637 goto set_itr_now;
2638 }
2639
2640 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2641 adapter->total_tx_packets,
2642 adapter->total_tx_bytes);
2643 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2644 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2645 adapter->tx_itr = low_latency;
2646
2647 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2648 adapter->total_rx_packets,
2649 adapter->total_rx_bytes);
2650 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2651 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2652 adapter->rx_itr = low_latency;
2653
2654 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2655
2656 switch (current_itr) {
2657 /* counts and packets in update_itr are dependent on these numbers */
2658 case lowest_latency:
2659 new_itr = 70000;
2660 break;
2661 case low_latency:
2662 new_itr = 20000; /* aka hwitr = ~200 */
2663 break;
2664 case bulk_latency:
2665 new_itr = 4000;
2666 break;
2667 default:
2668 break;
2669 }
2670
2671set_itr_now:
2672 if (new_itr != adapter->itr) {
2673 /* this attempts to bias the interrupt rate towards Bulk
2674 * by adding intermediate steps when interrupt rate is
2675 * increasing
2676 */
2677 new_itr = new_itr > adapter->itr ?
2678 min(adapter->itr + (new_itr >> 2), new_itr) :
2679 new_itr;
2680 adapter->itr = new_itr;
2681 ew32(ITR, 1000000000 / (new_itr * 256));
2682 }
2683}
2684
2685#define E1000_TX_FLAGS_CSUM 0x00000001
2686#define E1000_TX_FLAGS_VLAN 0x00000002
2687#define E1000_TX_FLAGS_TSO 0x00000004
2688#define E1000_TX_FLAGS_IPV4 0x00000008
2689#define E1000_TX_FLAGS_NO_FCS 0x00000010
2690#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2691#define E1000_TX_FLAGS_VLAN_SHIFT 16
2692
2693static int e1000_tso(struct e1000_adapter *adapter,
2694 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2695 __be16 protocol)
2696{
2697 struct e1000_context_desc *context_desc;
2698 struct e1000_tx_buffer *buffer_info;
2699 unsigned int i;
2700 u32 cmd_length = 0;
2701 u16 ipcse = 0, tucse, mss;
2702 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2703
2704 if (skb_is_gso(skb)) {
2705 int err;
2706
2707 err = skb_cow_head(skb, 0);
2708 if (err < 0)
2709 return err;
2710
2711 hdr_len = skb_tcp_all_headers(skb);
2712 mss = skb_shinfo(skb)->gso_size;
2713 if (protocol == htons(ETH_P_IP)) {
2714 struct iphdr *iph = ip_hdr(skb);
2715 iph->tot_len = 0;
2716 iph->check = 0;
2717 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2718 iph->daddr, 0,
2719 IPPROTO_TCP,
2720 0);
2721 cmd_length = E1000_TXD_CMD_IP;
2722 ipcse = skb_transport_offset(skb) - 1;
2723 } else if (skb_is_gso_v6(skb)) {
2724 tcp_v6_gso_csum_prep(skb);
2725 ipcse = 0;
2726 }
2727 ipcss = skb_network_offset(skb);
2728 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2729 tucss = skb_transport_offset(skb);
2730 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2731 tucse = 0;
2732
2733 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2734 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2735
2736 i = tx_ring->next_to_use;
2737 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2738 buffer_info = &tx_ring->buffer_info[i];
2739
2740 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2741 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2742 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2743 context_desc->upper_setup.tcp_fields.tucss = tucss;
2744 context_desc->upper_setup.tcp_fields.tucso = tucso;
2745 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2746 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2747 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2748 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2749
2750 buffer_info->time_stamp = jiffies;
2751 buffer_info->next_to_watch = i;
2752
2753 if (++i == tx_ring->count)
2754 i = 0;
2755
2756 tx_ring->next_to_use = i;
2757
2758 return true;
2759 }
2760 return false;
2761}
2762
2763static bool e1000_tx_csum(struct e1000_adapter *adapter,
2764 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2765 __be16 protocol)
2766{
2767 struct e1000_context_desc *context_desc;
2768 struct e1000_tx_buffer *buffer_info;
2769 unsigned int i;
2770 u8 css;
2771 u32 cmd_len = E1000_TXD_CMD_DEXT;
2772
2773 if (skb->ip_summed != CHECKSUM_PARTIAL)
2774 return false;
2775
2776 switch (protocol) {
2777 case cpu_to_be16(ETH_P_IP):
2778 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2779 cmd_len |= E1000_TXD_CMD_TCP;
2780 break;
2781 case cpu_to_be16(ETH_P_IPV6):
2782 /* XXX not handling all IPV6 headers */
2783 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2784 cmd_len |= E1000_TXD_CMD_TCP;
2785 break;
2786 default:
2787 if (unlikely(net_ratelimit()))
2788 e_warn(drv, "checksum_partial proto=%x!\n",
2789 skb->protocol);
2790 break;
2791 }
2792
2793 css = skb_checksum_start_offset(skb);
2794
2795 i = tx_ring->next_to_use;
2796 buffer_info = &tx_ring->buffer_info[i];
2797 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2798
2799 context_desc->lower_setup.ip_config = 0;
2800 context_desc->upper_setup.tcp_fields.tucss = css;
2801 context_desc->upper_setup.tcp_fields.tucso =
2802 css + skb->csum_offset;
2803 context_desc->upper_setup.tcp_fields.tucse = 0;
2804 context_desc->tcp_seg_setup.data = 0;
2805 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2806
2807 buffer_info->time_stamp = jiffies;
2808 buffer_info->next_to_watch = i;
2809
2810 if (unlikely(++i == tx_ring->count))
2811 i = 0;
2812
2813 tx_ring->next_to_use = i;
2814
2815 return true;
2816}
2817
2818#define E1000_MAX_TXD_PWR 12
2819#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2820
2821static int e1000_tx_map(struct e1000_adapter *adapter,
2822 struct e1000_tx_ring *tx_ring,
2823 struct sk_buff *skb, unsigned int first,
2824 unsigned int max_per_txd, unsigned int nr_frags,
2825 unsigned int mss)
2826{
2827 struct e1000_hw *hw = &adapter->hw;
2828 struct pci_dev *pdev = adapter->pdev;
2829 struct e1000_tx_buffer *buffer_info;
2830 unsigned int len = skb_headlen(skb);
2831 unsigned int offset = 0, size, count = 0, i;
2832 unsigned int f, bytecount, segs;
2833
2834 i = tx_ring->next_to_use;
2835
2836 while (len) {
2837 buffer_info = &tx_ring->buffer_info[i];
2838 size = min(len, max_per_txd);
2839 /* Workaround for Controller erratum --
2840 * descriptor for non-tso packet in a linear SKB that follows a
2841 * tso gets written back prematurely before the data is fully
2842 * DMA'd to the controller
2843 */
2844 if (!skb->data_len && tx_ring->last_tx_tso &&
2845 !skb_is_gso(skb)) {
2846 tx_ring->last_tx_tso = false;
2847 size -= 4;
2848 }
2849
2850 /* Workaround for premature desc write-backs
2851 * in TSO mode. Append 4-byte sentinel desc
2852 */
2853 if (unlikely(mss && !nr_frags && size == len && size > 8))
2854 size -= 4;
2855 /* work-around for errata 10 and it applies
2856 * to all controllers in PCI-X mode
2857 * The fix is to make sure that the first descriptor of a
2858 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2859 */
2860 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2861 (size > 2015) && count == 0))
2862 size = 2015;
2863
2864 /* Workaround for potential 82544 hang in PCI-X. Avoid
2865 * terminating buffers within evenly-aligned dwords.
2866 */
2867 if (unlikely(adapter->pcix_82544 &&
2868 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2869 size > 4))
2870 size -= 4;
2871
2872 buffer_info->length = size;
2873 /* set time_stamp *before* dma to help avoid a possible race */
2874 buffer_info->time_stamp = jiffies;
2875 buffer_info->mapped_as_page = false;
2876 buffer_info->dma = dma_map_single(&pdev->dev,
2877 skb->data + offset,
2878 size, DMA_TO_DEVICE);
2879 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2880 goto dma_error;
2881 buffer_info->next_to_watch = i;
2882
2883 len -= size;
2884 offset += size;
2885 count++;
2886 if (len) {
2887 i++;
2888 if (unlikely(i == tx_ring->count))
2889 i = 0;
2890 }
2891 }
2892
2893 for (f = 0; f < nr_frags; f++) {
2894 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2895
2896 len = skb_frag_size(frag);
2897 offset = 0;
2898
2899 while (len) {
2900 unsigned long bufend;
2901 i++;
2902 if (unlikely(i == tx_ring->count))
2903 i = 0;
2904
2905 buffer_info = &tx_ring->buffer_info[i];
2906 size = min(len, max_per_txd);
2907 /* Workaround for premature desc write-backs
2908 * in TSO mode. Append 4-byte sentinel desc
2909 */
2910 if (unlikely(mss && f == (nr_frags-1) &&
2911 size == len && size > 8))
2912 size -= 4;
2913 /* Workaround for potential 82544 hang in PCI-X.
2914 * Avoid terminating buffers within evenly-aligned
2915 * dwords.
2916 */
2917 bufend = (unsigned long)
2918 page_to_phys(skb_frag_page(frag));
2919 bufend += offset + size - 1;
2920 if (unlikely(adapter->pcix_82544 &&
2921 !(bufend & 4) &&
2922 size > 4))
2923 size -= 4;
2924
2925 buffer_info->length = size;
2926 buffer_info->time_stamp = jiffies;
2927 buffer_info->mapped_as_page = true;
2928 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2929 offset, size, DMA_TO_DEVICE);
2930 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2931 goto dma_error;
2932 buffer_info->next_to_watch = i;
2933
2934 len -= size;
2935 offset += size;
2936 count++;
2937 }
2938 }
2939
2940 segs = skb_shinfo(skb)->gso_segs ?: 1;
2941 /* multiply data chunks by size of headers */
2942 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2943
2944 tx_ring->buffer_info[i].skb = skb;
2945 tx_ring->buffer_info[i].segs = segs;
2946 tx_ring->buffer_info[i].bytecount = bytecount;
2947 tx_ring->buffer_info[first].next_to_watch = i;
2948
2949 return count;
2950
2951dma_error:
2952 dev_err(&pdev->dev, "TX DMA map failed\n");
2953 buffer_info->dma = 0;
2954 if (count)
2955 count--;
2956
2957 while (count--) {
2958 if (i == 0)
2959 i += tx_ring->count;
2960 i--;
2961 buffer_info = &tx_ring->buffer_info[i];
2962 e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
2963 }
2964
2965 return 0;
2966}
2967
2968static void e1000_tx_queue(struct e1000_adapter *adapter,
2969 struct e1000_tx_ring *tx_ring, int tx_flags,
2970 int count)
2971{
2972 struct e1000_tx_desc *tx_desc = NULL;
2973 struct e1000_tx_buffer *buffer_info;
2974 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2975 unsigned int i;
2976
2977 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2978 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2979 E1000_TXD_CMD_TSE;
2980 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2981
2982 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2983 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2984 }
2985
2986 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2987 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2988 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2989 }
2990
2991 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2992 txd_lower |= E1000_TXD_CMD_VLE;
2993 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2994 }
2995
2996 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2997 txd_lower &= ~(E1000_TXD_CMD_IFCS);
2998
2999 i = tx_ring->next_to_use;
3000
3001 while (count--) {
3002 buffer_info = &tx_ring->buffer_info[i];
3003 tx_desc = E1000_TX_DESC(*tx_ring, i);
3004 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3005 tx_desc->lower.data =
3006 cpu_to_le32(txd_lower | buffer_info->length);
3007 tx_desc->upper.data = cpu_to_le32(txd_upper);
3008 if (unlikely(++i == tx_ring->count))
3009 i = 0;
3010 }
3011
3012 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3013
3014 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3015 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3016 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3017
3018 /* Force memory writes to complete before letting h/w
3019 * know there are new descriptors to fetch. (Only
3020 * applicable for weak-ordered memory model archs,
3021 * such as IA-64).
3022 */
3023 dma_wmb();
3024
3025 tx_ring->next_to_use = i;
3026}
3027
3028/* 82547 workaround to avoid controller hang in half-duplex environment.
3029 * The workaround is to avoid queuing a large packet that would span
3030 * the internal Tx FIFO ring boundary by notifying the stack to resend
3031 * the packet at a later time. This gives the Tx FIFO an opportunity to
3032 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3033 * to the beginning of the Tx FIFO.
3034 */
3035
3036#define E1000_FIFO_HDR 0x10
3037#define E1000_82547_PAD_LEN 0x3E0
3038
3039static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3040 struct sk_buff *skb)
3041{
3042 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3043 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3044
3045 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3046
3047 if (adapter->link_duplex != HALF_DUPLEX)
3048 goto no_fifo_stall_required;
3049
3050 if (atomic_read(&adapter->tx_fifo_stall))
3051 return 1;
3052
3053 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3054 atomic_set(&adapter->tx_fifo_stall, 1);
3055 return 1;
3056 }
3057
3058no_fifo_stall_required:
3059 adapter->tx_fifo_head += skb_fifo_len;
3060 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3061 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3062 return 0;
3063}
3064
3065static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3066{
3067 struct e1000_adapter *adapter = netdev_priv(netdev);
3068 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3069
3070 netif_stop_queue(netdev);
3071 /* Herbert's original patch had:
3072 * smp_mb__after_netif_stop_queue();
3073 * but since that doesn't exist yet, just open code it.
3074 */
3075 smp_mb();
3076
3077 /* We need to check again in a case another CPU has just
3078 * made room available.
3079 */
3080 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3081 return -EBUSY;
3082
3083 /* A reprieve! */
3084 netif_start_queue(netdev);
3085 ++adapter->restart_queue;
3086 return 0;
3087}
3088
3089static int e1000_maybe_stop_tx(struct net_device *netdev,
3090 struct e1000_tx_ring *tx_ring, int size)
3091{
3092 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3093 return 0;
3094 return __e1000_maybe_stop_tx(netdev, size);
3095}
3096
3097#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3098static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3099 struct net_device *netdev)
3100{
3101 struct e1000_adapter *adapter = netdev_priv(netdev);
3102 struct e1000_hw *hw = &adapter->hw;
3103 struct e1000_tx_ring *tx_ring;
3104 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3105 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3106 unsigned int tx_flags = 0;
3107 unsigned int len = skb_headlen(skb);
3108 unsigned int nr_frags;
3109 unsigned int mss;
3110 int count = 0;
3111 int tso;
3112 unsigned int f;
3113 __be16 protocol = vlan_get_protocol(skb);
3114
3115 /* This goes back to the question of how to logically map a Tx queue
3116 * to a flow. Right now, performance is impacted slightly negatively
3117 * if using multiple Tx queues. If the stack breaks away from a
3118 * single qdisc implementation, we can look at this again.
3119 */
3120 tx_ring = adapter->tx_ring;
3121
3122 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3123 * packets may get corrupted during padding by HW.
3124 * To WA this issue, pad all small packets manually.
3125 */
3126 if (eth_skb_pad(skb))
3127 return NETDEV_TX_OK;
3128
3129 mss = skb_shinfo(skb)->gso_size;
3130 /* The controller does a simple calculation to
3131 * make sure there is enough room in the FIFO before
3132 * initiating the DMA for each buffer. The calc is:
3133 * 4 = ceil(buffer len/mss). To make sure we don't
3134 * overrun the FIFO, adjust the max buffer len if mss
3135 * drops.
3136 */
3137 if (mss) {
3138 u8 hdr_len;
3139 max_per_txd = min(mss << 2, max_per_txd);
3140 max_txd_pwr = fls(max_per_txd) - 1;
3141
3142 hdr_len = skb_tcp_all_headers(skb);
3143 if (skb->data_len && hdr_len == len) {
3144 switch (hw->mac_type) {
3145 case e1000_82544: {
3146 unsigned int pull_size;
3147
3148 /* Make sure we have room to chop off 4 bytes,
3149 * and that the end alignment will work out to
3150 * this hardware's requirements
3151 * NOTE: this is a TSO only workaround
3152 * if end byte alignment not correct move us
3153 * into the next dword
3154 */
3155 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3156 & 4)
3157 break;
3158 pull_size = min((unsigned int)4, skb->data_len);
3159 if (!__pskb_pull_tail(skb, pull_size)) {
3160 e_err(drv, "__pskb_pull_tail "
3161 "failed.\n");
3162 dev_kfree_skb_any(skb);
3163 return NETDEV_TX_OK;
3164 }
3165 len = skb_headlen(skb);
3166 break;
3167 }
3168 default:
3169 /* do nothing */
3170 break;
3171 }
3172 }
3173 }
3174
3175 /* reserve a descriptor for the offload context */
3176 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3177 count++;
3178 count++;
3179
3180 /* Controller Erratum workaround */
3181 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3182 count++;
3183
3184 count += TXD_USE_COUNT(len, max_txd_pwr);
3185
3186 if (adapter->pcix_82544)
3187 count++;
3188
3189 /* work-around for errata 10 and it applies to all controllers
3190 * in PCI-X mode, so add one more descriptor to the count
3191 */
3192 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3193 (len > 2015)))
3194 count++;
3195
3196 nr_frags = skb_shinfo(skb)->nr_frags;
3197 for (f = 0; f < nr_frags; f++)
3198 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3199 max_txd_pwr);
3200 if (adapter->pcix_82544)
3201 count += nr_frags;
3202
3203 /* need: count + 2 desc gap to keep tail from touching
3204 * head, otherwise try next time
3205 */
3206 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3207 return NETDEV_TX_BUSY;
3208
3209 if (unlikely((hw->mac_type == e1000_82547) &&
3210 (e1000_82547_fifo_workaround(adapter, skb)))) {
3211 netif_stop_queue(netdev);
3212 if (!test_bit(__E1000_DOWN, &adapter->flags))
3213 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3214 return NETDEV_TX_BUSY;
3215 }
3216
3217 if (skb_vlan_tag_present(skb)) {
3218 tx_flags |= E1000_TX_FLAGS_VLAN;
3219 tx_flags |= (skb_vlan_tag_get(skb) <<
3220 E1000_TX_FLAGS_VLAN_SHIFT);
3221 }
3222
3223 first = tx_ring->next_to_use;
3224
3225 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3226 if (tso < 0) {
3227 dev_kfree_skb_any(skb);
3228 return NETDEV_TX_OK;
3229 }
3230
3231 if (likely(tso)) {
3232 if (likely(hw->mac_type != e1000_82544))
3233 tx_ring->last_tx_tso = true;
3234 tx_flags |= E1000_TX_FLAGS_TSO;
3235 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3236 tx_flags |= E1000_TX_FLAGS_CSUM;
3237
3238 if (protocol == htons(ETH_P_IP))
3239 tx_flags |= E1000_TX_FLAGS_IPV4;
3240
3241 if (unlikely(skb->no_fcs))
3242 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3243
3244 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3245 nr_frags, mss);
3246
3247 if (count) {
3248 /* The descriptors needed is higher than other Intel drivers
3249 * due to a number of workarounds. The breakdown is below:
3250 * Data descriptors: MAX_SKB_FRAGS + 1
3251 * Context Descriptor: 1
3252 * Keep head from touching tail: 2
3253 * Workarounds: 3
3254 */
3255 int desc_needed = MAX_SKB_FRAGS + 7;
3256
3257 netdev_sent_queue(netdev, skb->len);
3258 skb_tx_timestamp(skb);
3259
3260 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3261
3262 /* 82544 potentially requires twice as many data descriptors
3263 * in order to guarantee buffers don't end on evenly-aligned
3264 * dwords
3265 */
3266 if (adapter->pcix_82544)
3267 desc_needed += MAX_SKB_FRAGS + 1;
3268
3269 /* Make sure there is space in the ring for the next send. */
3270 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3271
3272 if (!netdev_xmit_more() ||
3273 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3274 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3275 }
3276 } else {
3277 dev_kfree_skb_any(skb);
3278 tx_ring->buffer_info[first].time_stamp = 0;
3279 tx_ring->next_to_use = first;
3280 }
3281
3282 return NETDEV_TX_OK;
3283}
3284
3285#define NUM_REGS 38 /* 1 based count */
3286static void e1000_regdump(struct e1000_adapter *adapter)
3287{
3288 struct e1000_hw *hw = &adapter->hw;
3289 u32 regs[NUM_REGS];
3290 u32 *regs_buff = regs;
3291 int i = 0;
3292
3293 static const char * const reg_name[] = {
3294 "CTRL", "STATUS",
3295 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3296 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3297 "TIDV", "TXDCTL", "TADV", "TARC0",
3298 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3299 "TXDCTL1", "TARC1",
3300 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3301 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3302 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3303 };
3304
3305 regs_buff[0] = er32(CTRL);
3306 regs_buff[1] = er32(STATUS);
3307
3308 regs_buff[2] = er32(RCTL);
3309 regs_buff[3] = er32(RDLEN);
3310 regs_buff[4] = er32(RDH);
3311 regs_buff[5] = er32(RDT);
3312 regs_buff[6] = er32(RDTR);
3313
3314 regs_buff[7] = er32(TCTL);
3315 regs_buff[8] = er32(TDBAL);
3316 regs_buff[9] = er32(TDBAH);
3317 regs_buff[10] = er32(TDLEN);
3318 regs_buff[11] = er32(TDH);
3319 regs_buff[12] = er32(TDT);
3320 regs_buff[13] = er32(TIDV);
3321 regs_buff[14] = er32(TXDCTL);
3322 regs_buff[15] = er32(TADV);
3323 regs_buff[16] = er32(TARC0);
3324
3325 regs_buff[17] = er32(TDBAL1);
3326 regs_buff[18] = er32(TDBAH1);
3327 regs_buff[19] = er32(TDLEN1);
3328 regs_buff[20] = er32(TDH1);
3329 regs_buff[21] = er32(TDT1);
3330 regs_buff[22] = er32(TXDCTL1);
3331 regs_buff[23] = er32(TARC1);
3332 regs_buff[24] = er32(CTRL_EXT);
3333 regs_buff[25] = er32(ERT);
3334 regs_buff[26] = er32(RDBAL0);
3335 regs_buff[27] = er32(RDBAH0);
3336 regs_buff[28] = er32(TDFH);
3337 regs_buff[29] = er32(TDFT);
3338 regs_buff[30] = er32(TDFHS);
3339 regs_buff[31] = er32(TDFTS);
3340 regs_buff[32] = er32(TDFPC);
3341 regs_buff[33] = er32(RDFH);
3342 regs_buff[34] = er32(RDFT);
3343 regs_buff[35] = er32(RDFHS);
3344 regs_buff[36] = er32(RDFTS);
3345 regs_buff[37] = er32(RDFPC);
3346
3347 pr_info("Register dump\n");
3348 for (i = 0; i < NUM_REGS; i++)
3349 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3350}
3351
3352/*
3353 * e1000_dump: Print registers, tx ring and rx ring
3354 */
3355static void e1000_dump(struct e1000_adapter *adapter)
3356{
3357 /* this code doesn't handle multiple rings */
3358 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3359 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3360 int i;
3361
3362 if (!netif_msg_hw(adapter))
3363 return;
3364
3365 /* Print Registers */
3366 e1000_regdump(adapter);
3367
3368 /* transmit dump */
3369 pr_info("TX Desc ring0 dump\n");
3370
3371 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3372 *
3373 * Legacy Transmit Descriptor
3374 * +--------------------------------------------------------------+
3375 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3376 * +--------------------------------------------------------------+
3377 * 8 | Special | CSS | Status | CMD | CSO | Length |
3378 * +--------------------------------------------------------------+
3379 * 63 48 47 36 35 32 31 24 23 16 15 0
3380 *
3381 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3382 * 63 48 47 40 39 32 31 16 15 8 7 0
3383 * +----------------------------------------------------------------+
3384 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3385 * +----------------------------------------------------------------+
3386 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3387 * +----------------------------------------------------------------+
3388 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3389 *
3390 * Extended Data Descriptor (DTYP=0x1)
3391 * +----------------------------------------------------------------+
3392 * 0 | Buffer Address [63:0] |
3393 * +----------------------------------------------------------------+
3394 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3395 * +----------------------------------------------------------------+
3396 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3397 */
3398 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3399 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3400
3401 if (!netif_msg_tx_done(adapter))
3402 goto rx_ring_summary;
3403
3404 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3405 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3406 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3407 struct my_u { __le64 a; __le64 b; };
3408 struct my_u *u = (struct my_u *)tx_desc;
3409 const char *type;
3410
3411 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3412 type = "NTC/U";
3413 else if (i == tx_ring->next_to_use)
3414 type = "NTU";
3415 else if (i == tx_ring->next_to_clean)
3416 type = "NTC";
3417 else
3418 type = "";
3419
3420 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3421 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3422 le64_to_cpu(u->a), le64_to_cpu(u->b),
3423 (u64)buffer_info->dma, buffer_info->length,
3424 buffer_info->next_to_watch,
3425 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3426 }
3427
3428rx_ring_summary:
3429 /* receive dump */
3430 pr_info("\nRX Desc ring dump\n");
3431
3432 /* Legacy Receive Descriptor Format
3433 *
3434 * +-----------------------------------------------------+
3435 * | Buffer Address [63:0] |
3436 * +-----------------------------------------------------+
3437 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3438 * +-----------------------------------------------------+
3439 * 63 48 47 40 39 32 31 16 15 0
3440 */
3441 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3442
3443 if (!netif_msg_rx_status(adapter))
3444 goto exit;
3445
3446 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3447 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3448 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3449 struct my_u { __le64 a; __le64 b; };
3450 struct my_u *u = (struct my_u *)rx_desc;
3451 const char *type;
3452
3453 if (i == rx_ring->next_to_use)
3454 type = "NTU";
3455 else if (i == rx_ring->next_to_clean)
3456 type = "NTC";
3457 else
3458 type = "";
3459
3460 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3461 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3462 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3463 } /* for */
3464
3465 /* dump the descriptor caches */
3466 /* rx */
3467 pr_info("Rx descriptor cache in 64bit format\n");
3468 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3469 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3470 i,
3471 readl(adapter->hw.hw_addr + i+4),
3472 readl(adapter->hw.hw_addr + i),
3473 readl(adapter->hw.hw_addr + i+12),
3474 readl(adapter->hw.hw_addr + i+8));
3475 }
3476 /* tx */
3477 pr_info("Tx descriptor cache in 64bit format\n");
3478 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3479 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3480 i,
3481 readl(adapter->hw.hw_addr + i+4),
3482 readl(adapter->hw.hw_addr + i),
3483 readl(adapter->hw.hw_addr + i+12),
3484 readl(adapter->hw.hw_addr + i+8));
3485 }
3486exit:
3487 return;
3488}
3489
3490/**
3491 * e1000_tx_timeout - Respond to a Tx Hang
3492 * @netdev: network interface device structure
3493 * @txqueue: number of the Tx queue that hung (unused)
3494 **/
3495static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3496{
3497 struct e1000_adapter *adapter = netdev_priv(netdev);
3498
3499 /* Do the reset outside of interrupt context */
3500 adapter->tx_timeout_count++;
3501 schedule_work(&adapter->reset_task);
3502}
3503
3504static void e1000_reset_task(struct work_struct *work)
3505{
3506 struct e1000_adapter *adapter =
3507 container_of(work, struct e1000_adapter, reset_task);
3508
3509 e_err(drv, "Reset adapter\n");
3510 e1000_reinit_locked(adapter);
3511}
3512
3513/**
3514 * e1000_change_mtu - Change the Maximum Transfer Unit
3515 * @netdev: network interface device structure
3516 * @new_mtu: new value for maximum frame size
3517 *
3518 * Returns 0 on success, negative on failure
3519 **/
3520static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3521{
3522 struct e1000_adapter *adapter = netdev_priv(netdev);
3523 struct e1000_hw *hw = &adapter->hw;
3524 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3525
3526 /* Adapter-specific max frame size limits. */
3527 switch (hw->mac_type) {
3528 case e1000_undefined ... e1000_82542_rev2_1:
3529 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3530 e_err(probe, "Jumbo Frames not supported.\n");
3531 return -EINVAL;
3532 }
3533 break;
3534 default:
3535 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3536 break;
3537 }
3538
3539 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3540 msleep(1);
3541 /* e1000_down has a dependency on max_frame_size */
3542 hw->max_frame_size = max_frame;
3543 if (netif_running(netdev)) {
3544 /* prevent buffers from being reallocated */
3545 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3546 e1000_down(adapter);
3547 }
3548
3549 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3550 * means we reserve 2 more, this pushes us to allocate from the next
3551 * larger slab size.
3552 * i.e. RXBUFFER_2048 --> size-4096 slab
3553 * however with the new *_jumbo_rx* routines, jumbo receives will use
3554 * fragmented skbs
3555 */
3556
3557 if (max_frame <= E1000_RXBUFFER_2048)
3558 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3559 else
3560#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3561 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3562#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3563 adapter->rx_buffer_len = PAGE_SIZE;
3564#endif
3565
3566 /* adjust allocation if LPE protects us, and we aren't using SBP */
3567 if (!hw->tbi_compatibility_on &&
3568 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3569 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3570 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3571
3572 netdev_dbg(netdev, "changing MTU from %d to %d\n",
3573 netdev->mtu, new_mtu);
3574 netdev->mtu = new_mtu;
3575
3576 if (netif_running(netdev))
3577 e1000_up(adapter);
3578 else
3579 e1000_reset(adapter);
3580
3581 clear_bit(__E1000_RESETTING, &adapter->flags);
3582
3583 return 0;
3584}
3585
3586/**
3587 * e1000_update_stats - Update the board statistics counters
3588 * @adapter: board private structure
3589 **/
3590void e1000_update_stats(struct e1000_adapter *adapter)
3591{
3592 struct net_device *netdev = adapter->netdev;
3593 struct e1000_hw *hw = &adapter->hw;
3594 struct pci_dev *pdev = adapter->pdev;
3595 unsigned long flags;
3596 u16 phy_tmp;
3597
3598#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3599
3600 /* Prevent stats update while adapter is being reset, or if the pci
3601 * connection is down.
3602 */
3603 if (adapter->link_speed == 0)
3604 return;
3605 if (pci_channel_offline(pdev))
3606 return;
3607
3608 spin_lock_irqsave(&adapter->stats_lock, flags);
3609
3610 /* these counters are modified from e1000_tbi_adjust_stats,
3611 * called from the interrupt context, so they must only
3612 * be written while holding adapter->stats_lock
3613 */
3614
3615 adapter->stats.crcerrs += er32(CRCERRS);
3616 adapter->stats.gprc += er32(GPRC);
3617 adapter->stats.gorcl += er32(GORCL);
3618 adapter->stats.gorch += er32(GORCH);
3619 adapter->stats.bprc += er32(BPRC);
3620 adapter->stats.mprc += er32(MPRC);
3621 adapter->stats.roc += er32(ROC);
3622
3623 adapter->stats.prc64 += er32(PRC64);
3624 adapter->stats.prc127 += er32(PRC127);
3625 adapter->stats.prc255 += er32(PRC255);
3626 adapter->stats.prc511 += er32(PRC511);
3627 adapter->stats.prc1023 += er32(PRC1023);
3628 adapter->stats.prc1522 += er32(PRC1522);
3629
3630 adapter->stats.symerrs += er32(SYMERRS);
3631 adapter->stats.mpc += er32(MPC);
3632 adapter->stats.scc += er32(SCC);
3633 adapter->stats.ecol += er32(ECOL);
3634 adapter->stats.mcc += er32(MCC);
3635 adapter->stats.latecol += er32(LATECOL);
3636 adapter->stats.dc += er32(DC);
3637 adapter->stats.sec += er32(SEC);
3638 adapter->stats.rlec += er32(RLEC);
3639 adapter->stats.xonrxc += er32(XONRXC);
3640 adapter->stats.xontxc += er32(XONTXC);
3641 adapter->stats.xoffrxc += er32(XOFFRXC);
3642 adapter->stats.xofftxc += er32(XOFFTXC);
3643 adapter->stats.fcruc += er32(FCRUC);
3644 adapter->stats.gptc += er32(GPTC);
3645 adapter->stats.gotcl += er32(GOTCL);
3646 adapter->stats.gotch += er32(GOTCH);
3647 adapter->stats.rnbc += er32(RNBC);
3648 adapter->stats.ruc += er32(RUC);
3649 adapter->stats.rfc += er32(RFC);
3650 adapter->stats.rjc += er32(RJC);
3651 adapter->stats.torl += er32(TORL);
3652 adapter->stats.torh += er32(TORH);
3653 adapter->stats.totl += er32(TOTL);
3654 adapter->stats.toth += er32(TOTH);
3655 adapter->stats.tpr += er32(TPR);
3656
3657 adapter->stats.ptc64 += er32(PTC64);
3658 adapter->stats.ptc127 += er32(PTC127);
3659 adapter->stats.ptc255 += er32(PTC255);
3660 adapter->stats.ptc511 += er32(PTC511);
3661 adapter->stats.ptc1023 += er32(PTC1023);
3662 adapter->stats.ptc1522 += er32(PTC1522);
3663
3664 adapter->stats.mptc += er32(MPTC);
3665 adapter->stats.bptc += er32(BPTC);
3666
3667 /* used for adaptive IFS */
3668
3669 hw->tx_packet_delta = er32(TPT);
3670 adapter->stats.tpt += hw->tx_packet_delta;
3671 hw->collision_delta = er32(COLC);
3672 adapter->stats.colc += hw->collision_delta;
3673
3674 if (hw->mac_type >= e1000_82543) {
3675 adapter->stats.algnerrc += er32(ALGNERRC);
3676 adapter->stats.rxerrc += er32(RXERRC);
3677 adapter->stats.tncrs += er32(TNCRS);
3678 adapter->stats.cexterr += er32(CEXTERR);
3679 adapter->stats.tsctc += er32(TSCTC);
3680 adapter->stats.tsctfc += er32(TSCTFC);
3681 }
3682
3683 /* Fill out the OS statistics structure */
3684 netdev->stats.multicast = adapter->stats.mprc;
3685 netdev->stats.collisions = adapter->stats.colc;
3686
3687 /* Rx Errors */
3688
3689 /* RLEC on some newer hardware can be incorrect so build
3690 * our own version based on RUC and ROC
3691 */
3692 netdev->stats.rx_errors = adapter->stats.rxerrc +
3693 adapter->stats.crcerrs + adapter->stats.algnerrc +
3694 adapter->stats.ruc + adapter->stats.roc +
3695 adapter->stats.cexterr;
3696 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3697 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3698 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3699 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3700 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3701
3702 /* Tx Errors */
3703 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3704 netdev->stats.tx_errors = adapter->stats.txerrc;
3705 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3706 netdev->stats.tx_window_errors = adapter->stats.latecol;
3707 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3708 if (hw->bad_tx_carr_stats_fd &&
3709 adapter->link_duplex == FULL_DUPLEX) {
3710 netdev->stats.tx_carrier_errors = 0;
3711 adapter->stats.tncrs = 0;
3712 }
3713
3714 /* Tx Dropped needs to be maintained elsewhere */
3715
3716 /* Phy Stats */
3717 if (hw->media_type == e1000_media_type_copper) {
3718 if ((adapter->link_speed == SPEED_1000) &&
3719 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3720 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3721 adapter->phy_stats.idle_errors += phy_tmp;
3722 }
3723
3724 if ((hw->mac_type <= e1000_82546) &&
3725 (hw->phy_type == e1000_phy_m88) &&
3726 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3727 adapter->phy_stats.receive_errors += phy_tmp;
3728 }
3729
3730 /* Management Stats */
3731 if (hw->has_smbus) {
3732 adapter->stats.mgptc += er32(MGTPTC);
3733 adapter->stats.mgprc += er32(MGTPRC);
3734 adapter->stats.mgpdc += er32(MGTPDC);
3735 }
3736
3737 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3738}
3739
3740/**
3741 * e1000_intr - Interrupt Handler
3742 * @irq: interrupt number
3743 * @data: pointer to a network interface device structure
3744 **/
3745static irqreturn_t e1000_intr(int irq, void *data)
3746{
3747 struct net_device *netdev = data;
3748 struct e1000_adapter *adapter = netdev_priv(netdev);
3749 struct e1000_hw *hw = &adapter->hw;
3750 u32 icr = er32(ICR);
3751
3752 if (unlikely((!icr)))
3753 return IRQ_NONE; /* Not our interrupt */
3754
3755 /* we might have caused the interrupt, but the above
3756 * read cleared it, and just in case the driver is
3757 * down there is nothing to do so return handled
3758 */
3759 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3760 return IRQ_HANDLED;
3761
3762 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3763 hw->get_link_status = 1;
3764 /* guard against interrupt when we're going down */
3765 if (!test_bit(__E1000_DOWN, &adapter->flags))
3766 schedule_delayed_work(&adapter->watchdog_task, 1);
3767 }
3768
3769 /* disable interrupts, without the synchronize_irq bit */
3770 ew32(IMC, ~0);
3771 E1000_WRITE_FLUSH();
3772
3773 if (likely(napi_schedule_prep(&adapter->napi))) {
3774 adapter->total_tx_bytes = 0;
3775 adapter->total_tx_packets = 0;
3776 adapter->total_rx_bytes = 0;
3777 adapter->total_rx_packets = 0;
3778 __napi_schedule(&adapter->napi);
3779 } else {
3780 /* this really should not happen! if it does it is basically a
3781 * bug, but not a hard error, so enable ints and continue
3782 */
3783 if (!test_bit(__E1000_DOWN, &adapter->flags))
3784 e1000_irq_enable(adapter);
3785 }
3786
3787 return IRQ_HANDLED;
3788}
3789
3790/**
3791 * e1000_clean - NAPI Rx polling callback
3792 * @napi: napi struct containing references to driver info
3793 * @budget: budget given to driver for receive packets
3794 **/
3795static int e1000_clean(struct napi_struct *napi, int budget)
3796{
3797 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3798 napi);
3799 int tx_clean_complete = 0, work_done = 0;
3800
3801 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3802
3803 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3804
3805 if (!tx_clean_complete || work_done == budget)
3806 return budget;
3807
3808 /* Exit the polling mode, but don't re-enable interrupts if stack might
3809 * poll us due to busy-polling
3810 */
3811 if (likely(napi_complete_done(napi, work_done))) {
3812 if (likely(adapter->itr_setting & 3))
3813 e1000_set_itr(adapter);
3814 if (!test_bit(__E1000_DOWN, &adapter->flags))
3815 e1000_irq_enable(adapter);
3816 }
3817
3818 return work_done;
3819}
3820
3821/**
3822 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3823 * @adapter: board private structure
3824 * @tx_ring: ring to clean
3825 **/
3826static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3827 struct e1000_tx_ring *tx_ring)
3828{
3829 struct e1000_hw *hw = &adapter->hw;
3830 struct net_device *netdev = adapter->netdev;
3831 struct e1000_tx_desc *tx_desc, *eop_desc;
3832 struct e1000_tx_buffer *buffer_info;
3833 unsigned int i, eop;
3834 unsigned int count = 0;
3835 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3836 unsigned int bytes_compl = 0, pkts_compl = 0;
3837
3838 i = tx_ring->next_to_clean;
3839 eop = tx_ring->buffer_info[i].next_to_watch;
3840 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3841
3842 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3843 (count < tx_ring->count)) {
3844 bool cleaned = false;
3845 dma_rmb(); /* read buffer_info after eop_desc */
3846 for ( ; !cleaned; count++) {
3847 tx_desc = E1000_TX_DESC(*tx_ring, i);
3848 buffer_info = &tx_ring->buffer_info[i];
3849 cleaned = (i == eop);
3850
3851 if (cleaned) {
3852 total_tx_packets += buffer_info->segs;
3853 total_tx_bytes += buffer_info->bytecount;
3854 if (buffer_info->skb) {
3855 bytes_compl += buffer_info->skb->len;
3856 pkts_compl++;
3857 }
3858
3859 }
3860 e1000_unmap_and_free_tx_resource(adapter, buffer_info,
3861 64);
3862 tx_desc->upper.data = 0;
3863
3864 if (unlikely(++i == tx_ring->count))
3865 i = 0;
3866 }
3867
3868 eop = tx_ring->buffer_info[i].next_to_watch;
3869 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3870 }
3871
3872 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3873 * which will reuse the cleaned buffers.
3874 */
3875 smp_store_release(&tx_ring->next_to_clean, i);
3876
3877 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3878
3879#define TX_WAKE_THRESHOLD 32
3880 if (unlikely(count && netif_carrier_ok(netdev) &&
3881 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3882 /* Make sure that anybody stopping the queue after this
3883 * sees the new next_to_clean.
3884 */
3885 smp_mb();
3886
3887 if (netif_queue_stopped(netdev) &&
3888 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3889 netif_wake_queue(netdev);
3890 ++adapter->restart_queue;
3891 }
3892 }
3893
3894 if (adapter->detect_tx_hung) {
3895 /* Detect a transmit hang in hardware, this serializes the
3896 * check with the clearing of time_stamp and movement of i
3897 */
3898 adapter->detect_tx_hung = false;
3899 if (tx_ring->buffer_info[eop].time_stamp &&
3900 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3901 (adapter->tx_timeout_factor * HZ)) &&
3902 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3903
3904 /* detected Tx unit hang */
3905 e_err(drv, "Detected Tx Unit Hang\n"
3906 " Tx Queue <%lu>\n"
3907 " TDH <%x>\n"
3908 " TDT <%x>\n"
3909 " next_to_use <%x>\n"
3910 " next_to_clean <%x>\n"
3911 "buffer_info[next_to_clean]\n"
3912 " time_stamp <%lx>\n"
3913 " next_to_watch <%x>\n"
3914 " jiffies <%lx>\n"
3915 " next_to_watch.status <%x>\n",
3916 (unsigned long)(tx_ring - adapter->tx_ring),
3917 readl(hw->hw_addr + tx_ring->tdh),
3918 readl(hw->hw_addr + tx_ring->tdt),
3919 tx_ring->next_to_use,
3920 tx_ring->next_to_clean,
3921 tx_ring->buffer_info[eop].time_stamp,
3922 eop,
3923 jiffies,
3924 eop_desc->upper.fields.status);
3925 e1000_dump(adapter);
3926 netif_stop_queue(netdev);
3927 }
3928 }
3929 adapter->total_tx_bytes += total_tx_bytes;
3930 adapter->total_tx_packets += total_tx_packets;
3931 netdev->stats.tx_bytes += total_tx_bytes;
3932 netdev->stats.tx_packets += total_tx_packets;
3933 return count < tx_ring->count;
3934}
3935
3936/**
3937 * e1000_rx_checksum - Receive Checksum Offload for 82543
3938 * @adapter: board private structure
3939 * @status_err: receive descriptor status and error fields
3940 * @csum: receive descriptor csum field
3941 * @skb: socket buffer with received data
3942 **/
3943static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3944 u32 csum, struct sk_buff *skb)
3945{
3946 struct e1000_hw *hw = &adapter->hw;
3947 u16 status = (u16)status_err;
3948 u8 errors = (u8)(status_err >> 24);
3949
3950 skb_checksum_none_assert(skb);
3951
3952 /* 82543 or newer only */
3953 if (unlikely(hw->mac_type < e1000_82543))
3954 return;
3955 /* Ignore Checksum bit is set */
3956 if (unlikely(status & E1000_RXD_STAT_IXSM))
3957 return;
3958 /* TCP/UDP checksum error bit is set */
3959 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3960 /* let the stack verify checksum errors */
3961 adapter->hw_csum_err++;
3962 return;
3963 }
3964 /* TCP/UDP Checksum has not been calculated */
3965 if (!(status & E1000_RXD_STAT_TCPCS))
3966 return;
3967
3968 /* It must be a TCP or UDP packet with a valid checksum */
3969 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3970 /* TCP checksum is good */
3971 skb->ip_summed = CHECKSUM_UNNECESSARY;
3972 }
3973 adapter->hw_csum_good++;
3974}
3975
3976/**
3977 * e1000_consume_page - helper function for jumbo Rx path
3978 * @bi: software descriptor shadow data
3979 * @skb: skb being modified
3980 * @length: length of data being added
3981 **/
3982static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3983 u16 length)
3984{
3985 bi->rxbuf.page = NULL;
3986 skb->len += length;
3987 skb->data_len += length;
3988 skb->truesize += PAGE_SIZE;
3989}
3990
3991/**
3992 * e1000_receive_skb - helper function to handle rx indications
3993 * @adapter: board private structure
3994 * @status: descriptor status field as written by hardware
3995 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3996 * @skb: pointer to sk_buff to be indicated to stack
3997 */
3998static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3999 __le16 vlan, struct sk_buff *skb)
4000{
4001 skb->protocol = eth_type_trans(skb, adapter->netdev);
4002
4003 if (status & E1000_RXD_STAT_VP) {
4004 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4005
4006 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4007 }
4008 napi_gro_receive(&adapter->napi, skb);
4009}
4010
4011/**
4012 * e1000_tbi_adjust_stats
4013 * @hw: Struct containing variables accessed by shared code
4014 * @stats: point to stats struct
4015 * @frame_len: The length of the frame in question
4016 * @mac_addr: The Ethernet destination address of the frame in question
4017 *
4018 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4019 */
4020static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4021 struct e1000_hw_stats *stats,
4022 u32 frame_len, const u8 *mac_addr)
4023{
4024 u64 carry_bit;
4025
4026 /* First adjust the frame length. */
4027 frame_len--;
4028 /* We need to adjust the statistics counters, since the hardware
4029 * counters overcount this packet as a CRC error and undercount
4030 * the packet as a good packet
4031 */
4032 /* This packet should not be counted as a CRC error. */
4033 stats->crcerrs--;
4034 /* This packet does count as a Good Packet Received. */
4035 stats->gprc++;
4036
4037 /* Adjust the Good Octets received counters */
4038 carry_bit = 0x80000000 & stats->gorcl;
4039 stats->gorcl += frame_len;
4040 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4041 * Received Count) was one before the addition,
4042 * AND it is zero after, then we lost the carry out,
4043 * need to add one to Gorch (Good Octets Received Count High).
4044 * This could be simplified if all environments supported
4045 * 64-bit integers.
4046 */
4047 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4048 stats->gorch++;
4049 /* Is this a broadcast or multicast? Check broadcast first,
4050 * since the test for a multicast frame will test positive on
4051 * a broadcast frame.
4052 */
4053 if (is_broadcast_ether_addr(mac_addr))
4054 stats->bprc++;
4055 else if (is_multicast_ether_addr(mac_addr))
4056 stats->mprc++;
4057
4058 if (frame_len == hw->max_frame_size) {
4059 /* In this case, the hardware has overcounted the number of
4060 * oversize frames.
4061 */
4062 if (stats->roc > 0)
4063 stats->roc--;
4064 }
4065
4066 /* Adjust the bin counters when the extra byte put the frame in the
4067 * wrong bin. Remember that the frame_len was adjusted above.
4068 */
4069 if (frame_len == 64) {
4070 stats->prc64++;
4071 stats->prc127--;
4072 } else if (frame_len == 127) {
4073 stats->prc127++;
4074 stats->prc255--;
4075 } else if (frame_len == 255) {
4076 stats->prc255++;
4077 stats->prc511--;
4078 } else if (frame_len == 511) {
4079 stats->prc511++;
4080 stats->prc1023--;
4081 } else if (frame_len == 1023) {
4082 stats->prc1023++;
4083 stats->prc1522--;
4084 } else if (frame_len == 1522) {
4085 stats->prc1522++;
4086 }
4087}
4088
4089static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4090 u8 status, u8 errors,
4091 u32 length, const u8 *data)
4092{
4093 struct e1000_hw *hw = &adapter->hw;
4094 u8 last_byte = *(data + length - 1);
4095
4096 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4097 unsigned long irq_flags;
4098
4099 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4100 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4101 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4102
4103 return true;
4104 }
4105
4106 return false;
4107}
4108
4109static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4110 unsigned int bufsz)
4111{
4112 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4113
4114 if (unlikely(!skb))
4115 adapter->alloc_rx_buff_failed++;
4116 return skb;
4117}
4118
4119/**
4120 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4121 * @adapter: board private structure
4122 * @rx_ring: ring to clean
4123 * @work_done: amount of napi work completed this call
4124 * @work_to_do: max amount of work allowed for this call to do
4125 *
4126 * the return value indicates whether actual cleaning was done, there
4127 * is no guarantee that everything was cleaned
4128 */
4129static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4130 struct e1000_rx_ring *rx_ring,
4131 int *work_done, int work_to_do)
4132{
4133 struct net_device *netdev = adapter->netdev;
4134 struct pci_dev *pdev = adapter->pdev;
4135 struct e1000_rx_desc *rx_desc, *next_rxd;
4136 struct e1000_rx_buffer *buffer_info, *next_buffer;
4137 u32 length;
4138 unsigned int i;
4139 int cleaned_count = 0;
4140 bool cleaned = false;
4141 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4142
4143 i = rx_ring->next_to_clean;
4144 rx_desc = E1000_RX_DESC(*rx_ring, i);
4145 buffer_info = &rx_ring->buffer_info[i];
4146
4147 while (rx_desc->status & E1000_RXD_STAT_DD) {
4148 struct sk_buff *skb;
4149 u8 status;
4150
4151 if (*work_done >= work_to_do)
4152 break;
4153 (*work_done)++;
4154 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4155
4156 status = rx_desc->status;
4157
4158 if (++i == rx_ring->count)
4159 i = 0;
4160
4161 next_rxd = E1000_RX_DESC(*rx_ring, i);
4162 prefetch(next_rxd);
4163
4164 next_buffer = &rx_ring->buffer_info[i];
4165
4166 cleaned = true;
4167 cleaned_count++;
4168 dma_unmap_page(&pdev->dev, buffer_info->dma,
4169 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4170 buffer_info->dma = 0;
4171
4172 length = le16_to_cpu(rx_desc->length);
4173
4174 /* errors is only valid for DD + EOP descriptors */
4175 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4176 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4177 u8 *mapped = page_address(buffer_info->rxbuf.page);
4178
4179 if (e1000_tbi_should_accept(adapter, status,
4180 rx_desc->errors,
4181 length, mapped)) {
4182 length--;
4183 } else if (netdev->features & NETIF_F_RXALL) {
4184 goto process_skb;
4185 } else {
4186 /* an error means any chain goes out the window
4187 * too
4188 */
4189 dev_kfree_skb(rx_ring->rx_skb_top);
4190 rx_ring->rx_skb_top = NULL;
4191 goto next_desc;
4192 }
4193 }
4194
4195#define rxtop rx_ring->rx_skb_top
4196process_skb:
4197 if (!(status & E1000_RXD_STAT_EOP)) {
4198 /* this descriptor is only the beginning (or middle) */
4199 if (!rxtop) {
4200 /* this is the beginning of a chain */
4201 rxtop = napi_get_frags(&adapter->napi);
4202 if (!rxtop)
4203 break;
4204
4205 skb_fill_page_desc(rxtop, 0,
4206 buffer_info->rxbuf.page,
4207 0, length);
4208 } else {
4209 /* this is the middle of a chain */
4210 skb_fill_page_desc(rxtop,
4211 skb_shinfo(rxtop)->nr_frags,
4212 buffer_info->rxbuf.page, 0, length);
4213 }
4214 e1000_consume_page(buffer_info, rxtop, length);
4215 goto next_desc;
4216 } else {
4217 if (rxtop) {
4218 /* end of the chain */
4219 skb_fill_page_desc(rxtop,
4220 skb_shinfo(rxtop)->nr_frags,
4221 buffer_info->rxbuf.page, 0, length);
4222 skb = rxtop;
4223 rxtop = NULL;
4224 e1000_consume_page(buffer_info, skb, length);
4225 } else {
4226 struct page *p;
4227 /* no chain, got EOP, this buf is the packet
4228 * copybreak to save the put_page/alloc_page
4229 */
4230 p = buffer_info->rxbuf.page;
4231 if (length <= copybreak) {
4232 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4233 length -= 4;
4234 skb = e1000_alloc_rx_skb(adapter,
4235 length);
4236 if (!skb)
4237 break;
4238
4239 memcpy(skb_tail_pointer(skb),
4240 page_address(p), length);
4241
4242 /* re-use the page, so don't erase
4243 * buffer_info->rxbuf.page
4244 */
4245 skb_put(skb, length);
4246 e1000_rx_checksum(adapter,
4247 status | rx_desc->errors << 24,
4248 le16_to_cpu(rx_desc->csum), skb);
4249
4250 total_rx_bytes += skb->len;
4251 total_rx_packets++;
4252
4253 e1000_receive_skb(adapter, status,
4254 rx_desc->special, skb);
4255 goto next_desc;
4256 } else {
4257 skb = napi_get_frags(&adapter->napi);
4258 if (!skb) {
4259 adapter->alloc_rx_buff_failed++;
4260 break;
4261 }
4262 skb_fill_page_desc(skb, 0, p, 0,
4263 length);
4264 e1000_consume_page(buffer_info, skb,
4265 length);
4266 }
4267 }
4268 }
4269
4270 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4271 e1000_rx_checksum(adapter,
4272 (u32)(status) |
4273 ((u32)(rx_desc->errors) << 24),
4274 le16_to_cpu(rx_desc->csum), skb);
4275
4276 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4277 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4278 pskb_trim(skb, skb->len - 4);
4279 total_rx_packets++;
4280
4281 if (status & E1000_RXD_STAT_VP) {
4282 __le16 vlan = rx_desc->special;
4283 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4284
4285 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4286 }
4287
4288 napi_gro_frags(&adapter->napi);
4289
4290next_desc:
4291 rx_desc->status = 0;
4292
4293 /* return some buffers to hardware, one at a time is too slow */
4294 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4295 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4296 cleaned_count = 0;
4297 }
4298
4299 /* use prefetched values */
4300 rx_desc = next_rxd;
4301 buffer_info = next_buffer;
4302 }
4303 rx_ring->next_to_clean = i;
4304
4305 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4306 if (cleaned_count)
4307 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4308
4309 adapter->total_rx_packets += total_rx_packets;
4310 adapter->total_rx_bytes += total_rx_bytes;
4311 netdev->stats.rx_bytes += total_rx_bytes;
4312 netdev->stats.rx_packets += total_rx_packets;
4313 return cleaned;
4314}
4315
4316/* this should improve performance for small packets with large amounts
4317 * of reassembly being done in the stack
4318 */
4319static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4320 struct e1000_rx_buffer *buffer_info,
4321 u32 length, const void *data)
4322{
4323 struct sk_buff *skb;
4324
4325 if (length > copybreak)
4326 return NULL;
4327
4328 skb = e1000_alloc_rx_skb(adapter, length);
4329 if (!skb)
4330 return NULL;
4331
4332 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4333 length, DMA_FROM_DEVICE);
4334
4335 skb_put_data(skb, data, length);
4336
4337 return skb;
4338}
4339
4340/**
4341 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4342 * @adapter: board private structure
4343 * @rx_ring: ring to clean
4344 * @work_done: amount of napi work completed this call
4345 * @work_to_do: max amount of work allowed for this call to do
4346 */
4347static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4348 struct e1000_rx_ring *rx_ring,
4349 int *work_done, int work_to_do)
4350{
4351 struct net_device *netdev = adapter->netdev;
4352 struct pci_dev *pdev = adapter->pdev;
4353 struct e1000_rx_desc *rx_desc, *next_rxd;
4354 struct e1000_rx_buffer *buffer_info, *next_buffer;
4355 u32 length;
4356 unsigned int i;
4357 int cleaned_count = 0;
4358 bool cleaned = false;
4359 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4360
4361 i = rx_ring->next_to_clean;
4362 rx_desc = E1000_RX_DESC(*rx_ring, i);
4363 buffer_info = &rx_ring->buffer_info[i];
4364
4365 while (rx_desc->status & E1000_RXD_STAT_DD) {
4366 struct sk_buff *skb;
4367 u8 *data;
4368 u8 status;
4369
4370 if (*work_done >= work_to_do)
4371 break;
4372 (*work_done)++;
4373 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4374
4375 status = rx_desc->status;
4376 length = le16_to_cpu(rx_desc->length);
4377
4378 data = buffer_info->rxbuf.data;
4379 prefetch(data);
4380 skb = e1000_copybreak(adapter, buffer_info, length, data);
4381 if (!skb) {
4382 unsigned int frag_len = e1000_frag_len(adapter);
4383
4384 skb = napi_build_skb(data - E1000_HEADROOM, frag_len);
4385 if (!skb) {
4386 adapter->alloc_rx_buff_failed++;
4387 break;
4388 }
4389
4390 skb_reserve(skb, E1000_HEADROOM);
4391 dma_unmap_single(&pdev->dev, buffer_info->dma,
4392 adapter->rx_buffer_len,
4393 DMA_FROM_DEVICE);
4394 buffer_info->dma = 0;
4395 buffer_info->rxbuf.data = NULL;
4396 }
4397
4398 if (++i == rx_ring->count)
4399 i = 0;
4400
4401 next_rxd = E1000_RX_DESC(*rx_ring, i);
4402 prefetch(next_rxd);
4403
4404 next_buffer = &rx_ring->buffer_info[i];
4405
4406 cleaned = true;
4407 cleaned_count++;
4408
4409 /* !EOP means multiple descriptors were used to store a single
4410 * packet, if thats the case we need to toss it. In fact, we
4411 * to toss every packet with the EOP bit clear and the next
4412 * frame that _does_ have the EOP bit set, as it is by
4413 * definition only a frame fragment
4414 */
4415 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4416 adapter->discarding = true;
4417
4418 if (adapter->discarding) {
4419 /* All receives must fit into a single buffer */
4420 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4421 dev_kfree_skb(skb);
4422 if (status & E1000_RXD_STAT_EOP)
4423 adapter->discarding = false;
4424 goto next_desc;
4425 }
4426
4427 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4428 if (e1000_tbi_should_accept(adapter, status,
4429 rx_desc->errors,
4430 length, data)) {
4431 length--;
4432 } else if (netdev->features & NETIF_F_RXALL) {
4433 goto process_skb;
4434 } else {
4435 dev_kfree_skb(skb);
4436 goto next_desc;
4437 }
4438 }
4439
4440process_skb:
4441 total_rx_bytes += (length - 4); /* don't count FCS */
4442 total_rx_packets++;
4443
4444 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4445 /* adjust length to remove Ethernet CRC, this must be
4446 * done after the TBI_ACCEPT workaround above
4447 */
4448 length -= 4;
4449
4450 if (buffer_info->rxbuf.data == NULL)
4451 skb_put(skb, length);
4452 else /* copybreak skb */
4453 skb_trim(skb, length);
4454
4455 /* Receive Checksum Offload */
4456 e1000_rx_checksum(adapter,
4457 (u32)(status) |
4458 ((u32)(rx_desc->errors) << 24),
4459 le16_to_cpu(rx_desc->csum), skb);
4460
4461 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4462
4463next_desc:
4464 rx_desc->status = 0;
4465
4466 /* return some buffers to hardware, one at a time is too slow */
4467 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4468 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4469 cleaned_count = 0;
4470 }
4471
4472 /* use prefetched values */
4473 rx_desc = next_rxd;
4474 buffer_info = next_buffer;
4475 }
4476 rx_ring->next_to_clean = i;
4477
4478 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4479 if (cleaned_count)
4480 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4481
4482 adapter->total_rx_packets += total_rx_packets;
4483 adapter->total_rx_bytes += total_rx_bytes;
4484 netdev->stats.rx_bytes += total_rx_bytes;
4485 netdev->stats.rx_packets += total_rx_packets;
4486 return cleaned;
4487}
4488
4489/**
4490 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4491 * @adapter: address of board private structure
4492 * @rx_ring: pointer to receive ring structure
4493 * @cleaned_count: number of buffers to allocate this pass
4494 **/
4495static void
4496e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4497 struct e1000_rx_ring *rx_ring, int cleaned_count)
4498{
4499 struct pci_dev *pdev = adapter->pdev;
4500 struct e1000_rx_desc *rx_desc;
4501 struct e1000_rx_buffer *buffer_info;
4502 unsigned int i;
4503
4504 i = rx_ring->next_to_use;
4505 buffer_info = &rx_ring->buffer_info[i];
4506
4507 while (cleaned_count--) {
4508 /* allocate a new page if necessary */
4509 if (!buffer_info->rxbuf.page) {
4510 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4511 if (unlikely(!buffer_info->rxbuf.page)) {
4512 adapter->alloc_rx_buff_failed++;
4513 break;
4514 }
4515 }
4516
4517 if (!buffer_info->dma) {
4518 buffer_info->dma = dma_map_page(&pdev->dev,
4519 buffer_info->rxbuf.page, 0,
4520 adapter->rx_buffer_len,
4521 DMA_FROM_DEVICE);
4522 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4523 put_page(buffer_info->rxbuf.page);
4524 buffer_info->rxbuf.page = NULL;
4525 buffer_info->dma = 0;
4526 adapter->alloc_rx_buff_failed++;
4527 break;
4528 }
4529 }
4530
4531 rx_desc = E1000_RX_DESC(*rx_ring, i);
4532 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4533
4534 if (unlikely(++i == rx_ring->count))
4535 i = 0;
4536 buffer_info = &rx_ring->buffer_info[i];
4537 }
4538
4539 if (likely(rx_ring->next_to_use != i)) {
4540 rx_ring->next_to_use = i;
4541 if (unlikely(i-- == 0))
4542 i = (rx_ring->count - 1);
4543
4544 /* Force memory writes to complete before letting h/w
4545 * know there are new descriptors to fetch. (Only
4546 * applicable for weak-ordered memory model archs,
4547 * such as IA-64).
4548 */
4549 dma_wmb();
4550 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4551 }
4552}
4553
4554/**
4555 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4556 * @adapter: address of board private structure
4557 * @rx_ring: pointer to ring struct
4558 * @cleaned_count: number of new Rx buffers to try to allocate
4559 **/
4560static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4561 struct e1000_rx_ring *rx_ring,
4562 int cleaned_count)
4563{
4564 struct e1000_hw *hw = &adapter->hw;
4565 struct pci_dev *pdev = adapter->pdev;
4566 struct e1000_rx_desc *rx_desc;
4567 struct e1000_rx_buffer *buffer_info;
4568 unsigned int i;
4569 unsigned int bufsz = adapter->rx_buffer_len;
4570
4571 i = rx_ring->next_to_use;
4572 buffer_info = &rx_ring->buffer_info[i];
4573
4574 while (cleaned_count--) {
4575 void *data;
4576
4577 if (buffer_info->rxbuf.data)
4578 goto skip;
4579
4580 data = e1000_alloc_frag(adapter);
4581 if (!data) {
4582 /* Better luck next round */
4583 adapter->alloc_rx_buff_failed++;
4584 break;
4585 }
4586
4587 /* Fix for errata 23, can't cross 64kB boundary */
4588 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4589 void *olddata = data;
4590 e_err(rx_err, "skb align check failed: %u bytes at "
4591 "%p\n", bufsz, data);
4592 /* Try again, without freeing the previous */
4593 data = e1000_alloc_frag(adapter);
4594 /* Failed allocation, critical failure */
4595 if (!data) {
4596 skb_free_frag(olddata);
4597 adapter->alloc_rx_buff_failed++;
4598 break;
4599 }
4600
4601 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4602 /* give up */
4603 skb_free_frag(data);
4604 skb_free_frag(olddata);
4605 adapter->alloc_rx_buff_failed++;
4606 break;
4607 }
4608
4609 /* Use new allocation */
4610 skb_free_frag(olddata);
4611 }
4612 buffer_info->dma = dma_map_single(&pdev->dev,
4613 data,
4614 adapter->rx_buffer_len,
4615 DMA_FROM_DEVICE);
4616 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4617 skb_free_frag(data);
4618 buffer_info->dma = 0;
4619 adapter->alloc_rx_buff_failed++;
4620 break;
4621 }
4622
4623 /* XXX if it was allocated cleanly it will never map to a
4624 * boundary crossing
4625 */
4626
4627 /* Fix for errata 23, can't cross 64kB boundary */
4628 if (!e1000_check_64k_bound(adapter,
4629 (void *)(unsigned long)buffer_info->dma,
4630 adapter->rx_buffer_len)) {
4631 e_err(rx_err, "dma align check failed: %u bytes at "
4632 "%p\n", adapter->rx_buffer_len,
4633 (void *)(unsigned long)buffer_info->dma);
4634
4635 dma_unmap_single(&pdev->dev, buffer_info->dma,
4636 adapter->rx_buffer_len,
4637 DMA_FROM_DEVICE);
4638
4639 skb_free_frag(data);
4640 buffer_info->rxbuf.data = NULL;
4641 buffer_info->dma = 0;
4642
4643 adapter->alloc_rx_buff_failed++;
4644 break;
4645 }
4646 buffer_info->rxbuf.data = data;
4647 skip:
4648 rx_desc = E1000_RX_DESC(*rx_ring, i);
4649 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4650
4651 if (unlikely(++i == rx_ring->count))
4652 i = 0;
4653 buffer_info = &rx_ring->buffer_info[i];
4654 }
4655
4656 if (likely(rx_ring->next_to_use != i)) {
4657 rx_ring->next_to_use = i;
4658 if (unlikely(i-- == 0))
4659 i = (rx_ring->count - 1);
4660
4661 /* Force memory writes to complete before letting h/w
4662 * know there are new descriptors to fetch. (Only
4663 * applicable for weak-ordered memory model archs,
4664 * such as IA-64).
4665 */
4666 dma_wmb();
4667 writel(i, hw->hw_addr + rx_ring->rdt);
4668 }
4669}
4670
4671/**
4672 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4673 * @adapter: address of board private structure
4674 **/
4675static void e1000_smartspeed(struct e1000_adapter *adapter)
4676{
4677 struct e1000_hw *hw = &adapter->hw;
4678 u16 phy_status;
4679 u16 phy_ctrl;
4680
4681 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4682 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4683 return;
4684
4685 if (adapter->smartspeed == 0) {
4686 /* If Master/Slave config fault is asserted twice,
4687 * we assume back-to-back
4688 */
4689 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4690 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4691 return;
4692 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4693 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4694 return;
4695 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4696 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4697 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4698 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4699 phy_ctrl);
4700 adapter->smartspeed++;
4701 if (!e1000_phy_setup_autoneg(hw) &&
4702 !e1000_read_phy_reg(hw, PHY_CTRL,
4703 &phy_ctrl)) {
4704 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4705 MII_CR_RESTART_AUTO_NEG);
4706 e1000_write_phy_reg(hw, PHY_CTRL,
4707 phy_ctrl);
4708 }
4709 }
4710 return;
4711 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4712 /* If still no link, perhaps using 2/3 pair cable */
4713 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4714 phy_ctrl |= CR_1000T_MS_ENABLE;
4715 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4716 if (!e1000_phy_setup_autoneg(hw) &&
4717 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4718 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4719 MII_CR_RESTART_AUTO_NEG);
4720 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4721 }
4722 }
4723 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4724 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4725 adapter->smartspeed = 0;
4726}
4727
4728/**
4729 * e1000_ioctl - handle ioctl calls
4730 * @netdev: pointer to our netdev
4731 * @ifr: pointer to interface request structure
4732 * @cmd: ioctl data
4733 **/
4734static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4735{
4736 switch (cmd) {
4737 case SIOCGMIIPHY:
4738 case SIOCGMIIREG:
4739 case SIOCSMIIREG:
4740 return e1000_mii_ioctl(netdev, ifr, cmd);
4741 default:
4742 return -EOPNOTSUPP;
4743 }
4744}
4745
4746/**
4747 * e1000_mii_ioctl -
4748 * @netdev: pointer to our netdev
4749 * @ifr: pointer to interface request structure
4750 * @cmd: ioctl data
4751 **/
4752static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4753 int cmd)
4754{
4755 struct e1000_adapter *adapter = netdev_priv(netdev);
4756 struct e1000_hw *hw = &adapter->hw;
4757 struct mii_ioctl_data *data = if_mii(ifr);
4758 int retval;
4759 u16 mii_reg;
4760 unsigned long flags;
4761
4762 if (hw->media_type != e1000_media_type_copper)
4763 return -EOPNOTSUPP;
4764
4765 switch (cmd) {
4766 case SIOCGMIIPHY:
4767 data->phy_id = hw->phy_addr;
4768 break;
4769 case SIOCGMIIREG:
4770 spin_lock_irqsave(&adapter->stats_lock, flags);
4771 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4772 &data->val_out)) {
4773 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4774 return -EIO;
4775 }
4776 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4777 break;
4778 case SIOCSMIIREG:
4779 if (data->reg_num & ~(0x1F))
4780 return -EFAULT;
4781 mii_reg = data->val_in;
4782 spin_lock_irqsave(&adapter->stats_lock, flags);
4783 if (e1000_write_phy_reg(hw, data->reg_num,
4784 mii_reg)) {
4785 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4786 return -EIO;
4787 }
4788 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4789 if (hw->media_type == e1000_media_type_copper) {
4790 switch (data->reg_num) {
4791 case PHY_CTRL:
4792 if (mii_reg & MII_CR_POWER_DOWN)
4793 break;
4794 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4795 hw->autoneg = 1;
4796 hw->autoneg_advertised = 0x2F;
4797 } else {
4798 u32 speed;
4799 if (mii_reg & 0x40)
4800 speed = SPEED_1000;
4801 else if (mii_reg & 0x2000)
4802 speed = SPEED_100;
4803 else
4804 speed = SPEED_10;
4805 retval = e1000_set_spd_dplx(
4806 adapter, speed,
4807 ((mii_reg & 0x100)
4808 ? DUPLEX_FULL :
4809 DUPLEX_HALF));
4810 if (retval)
4811 return retval;
4812 }
4813 if (netif_running(adapter->netdev))
4814 e1000_reinit_locked(adapter);
4815 else
4816 e1000_reset(adapter);
4817 break;
4818 case M88E1000_PHY_SPEC_CTRL:
4819 case M88E1000_EXT_PHY_SPEC_CTRL:
4820 if (e1000_phy_reset(hw))
4821 return -EIO;
4822 break;
4823 }
4824 } else {
4825 switch (data->reg_num) {
4826 case PHY_CTRL:
4827 if (mii_reg & MII_CR_POWER_DOWN)
4828 break;
4829 if (netif_running(adapter->netdev))
4830 e1000_reinit_locked(adapter);
4831 else
4832 e1000_reset(adapter);
4833 break;
4834 }
4835 }
4836 break;
4837 default:
4838 return -EOPNOTSUPP;
4839 }
4840 return E1000_SUCCESS;
4841}
4842
4843void e1000_pci_set_mwi(struct e1000_hw *hw)
4844{
4845 struct e1000_adapter *adapter = hw->back;
4846 int ret_val = pci_set_mwi(adapter->pdev);
4847
4848 if (ret_val)
4849 e_err(probe, "Error in setting MWI\n");
4850}
4851
4852void e1000_pci_clear_mwi(struct e1000_hw *hw)
4853{
4854 struct e1000_adapter *adapter = hw->back;
4855
4856 pci_clear_mwi(adapter->pdev);
4857}
4858
4859int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4860{
4861 struct e1000_adapter *adapter = hw->back;
4862 return pcix_get_mmrbc(adapter->pdev);
4863}
4864
4865void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4866{
4867 struct e1000_adapter *adapter = hw->back;
4868 pcix_set_mmrbc(adapter->pdev, mmrbc);
4869}
4870
4871void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4872{
4873 outl(value, port);
4874}
4875
4876static bool e1000_vlan_used(struct e1000_adapter *adapter)
4877{
4878 u16 vid;
4879
4880 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4881 return true;
4882 return false;
4883}
4884
4885static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4886 netdev_features_t features)
4887{
4888 struct e1000_hw *hw = &adapter->hw;
4889 u32 ctrl;
4890
4891 ctrl = er32(CTRL);
4892 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4893 /* enable VLAN tag insert/strip */
4894 ctrl |= E1000_CTRL_VME;
4895 } else {
4896 /* disable VLAN tag insert/strip */
4897 ctrl &= ~E1000_CTRL_VME;
4898 }
4899 ew32(CTRL, ctrl);
4900}
4901static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4902 bool filter_on)
4903{
4904 struct e1000_hw *hw = &adapter->hw;
4905 u32 rctl;
4906
4907 if (!test_bit(__E1000_DOWN, &adapter->flags))
4908 e1000_irq_disable(adapter);
4909
4910 __e1000_vlan_mode(adapter, adapter->netdev->features);
4911 if (filter_on) {
4912 /* enable VLAN receive filtering */
4913 rctl = er32(RCTL);
4914 rctl &= ~E1000_RCTL_CFIEN;
4915 if (!(adapter->netdev->flags & IFF_PROMISC))
4916 rctl |= E1000_RCTL_VFE;
4917 ew32(RCTL, rctl);
4918 e1000_update_mng_vlan(adapter);
4919 } else {
4920 /* disable VLAN receive filtering */
4921 rctl = er32(RCTL);
4922 rctl &= ~E1000_RCTL_VFE;
4923 ew32(RCTL, rctl);
4924 }
4925
4926 if (!test_bit(__E1000_DOWN, &adapter->flags))
4927 e1000_irq_enable(adapter);
4928}
4929
4930static void e1000_vlan_mode(struct net_device *netdev,
4931 netdev_features_t features)
4932{
4933 struct e1000_adapter *adapter = netdev_priv(netdev);
4934
4935 if (!test_bit(__E1000_DOWN, &adapter->flags))
4936 e1000_irq_disable(adapter);
4937
4938 __e1000_vlan_mode(adapter, features);
4939
4940 if (!test_bit(__E1000_DOWN, &adapter->flags))
4941 e1000_irq_enable(adapter);
4942}
4943
4944static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4945 __be16 proto, u16 vid)
4946{
4947 struct e1000_adapter *adapter = netdev_priv(netdev);
4948 struct e1000_hw *hw = &adapter->hw;
4949 u32 vfta, index;
4950
4951 if ((hw->mng_cookie.status &
4952 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4953 (vid == adapter->mng_vlan_id))
4954 return 0;
4955
4956 if (!e1000_vlan_used(adapter))
4957 e1000_vlan_filter_on_off(adapter, true);
4958
4959 /* add VID to filter table */
4960 index = (vid >> 5) & 0x7F;
4961 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4962 vfta |= (1 << (vid & 0x1F));
4963 e1000_write_vfta(hw, index, vfta);
4964
4965 set_bit(vid, adapter->active_vlans);
4966
4967 return 0;
4968}
4969
4970static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4971 __be16 proto, u16 vid)
4972{
4973 struct e1000_adapter *adapter = netdev_priv(netdev);
4974 struct e1000_hw *hw = &adapter->hw;
4975 u32 vfta, index;
4976
4977 if (!test_bit(__E1000_DOWN, &adapter->flags))
4978 e1000_irq_disable(adapter);
4979 if (!test_bit(__E1000_DOWN, &adapter->flags))
4980 e1000_irq_enable(adapter);
4981
4982 /* remove VID from filter table */
4983 index = (vid >> 5) & 0x7F;
4984 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4985 vfta &= ~(1 << (vid & 0x1F));
4986 e1000_write_vfta(hw, index, vfta);
4987
4988 clear_bit(vid, adapter->active_vlans);
4989
4990 if (!e1000_vlan_used(adapter))
4991 e1000_vlan_filter_on_off(adapter, false);
4992
4993 return 0;
4994}
4995
4996static void e1000_restore_vlan(struct e1000_adapter *adapter)
4997{
4998 u16 vid;
4999
5000 if (!e1000_vlan_used(adapter))
5001 return;
5002
5003 e1000_vlan_filter_on_off(adapter, true);
5004 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5005 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5006}
5007
5008int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5009{
5010 struct e1000_hw *hw = &adapter->hw;
5011
5012 hw->autoneg = 0;
5013
5014 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5015 * for the switch() below to work
5016 */
5017 if ((spd & 1) || (dplx & ~1))
5018 goto err_inval;
5019
5020 /* Fiber NICs only allow 1000 gbps Full duplex */
5021 if ((hw->media_type == e1000_media_type_fiber) &&
5022 spd != SPEED_1000 &&
5023 dplx != DUPLEX_FULL)
5024 goto err_inval;
5025
5026 switch (spd + dplx) {
5027 case SPEED_10 + DUPLEX_HALF:
5028 hw->forced_speed_duplex = e1000_10_half;
5029 break;
5030 case SPEED_10 + DUPLEX_FULL:
5031 hw->forced_speed_duplex = e1000_10_full;
5032 break;
5033 case SPEED_100 + DUPLEX_HALF:
5034 hw->forced_speed_duplex = e1000_100_half;
5035 break;
5036 case SPEED_100 + DUPLEX_FULL:
5037 hw->forced_speed_duplex = e1000_100_full;
5038 break;
5039 case SPEED_1000 + DUPLEX_FULL:
5040 hw->autoneg = 1;
5041 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5042 break;
5043 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5044 default:
5045 goto err_inval;
5046 }
5047
5048 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5049 hw->mdix = AUTO_ALL_MODES;
5050
5051 return 0;
5052
5053err_inval:
5054 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5055 return -EINVAL;
5056}
5057
5058static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5059{
5060 struct net_device *netdev = pci_get_drvdata(pdev);
5061 struct e1000_adapter *adapter = netdev_priv(netdev);
5062 struct e1000_hw *hw = &adapter->hw;
5063 u32 ctrl, ctrl_ext, rctl, status;
5064 u32 wufc = adapter->wol;
5065
5066 netif_device_detach(netdev);
5067
5068 if (netif_running(netdev)) {
5069 int count = E1000_CHECK_RESET_COUNT;
5070
5071 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5072 usleep_range(10000, 20000);
5073
5074 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5075 e1000_down(adapter);
5076 }
5077
5078 status = er32(STATUS);
5079 if (status & E1000_STATUS_LU)
5080 wufc &= ~E1000_WUFC_LNKC;
5081
5082 if (wufc) {
5083 e1000_setup_rctl(adapter);
5084 e1000_set_rx_mode(netdev);
5085
5086 rctl = er32(RCTL);
5087
5088 /* turn on all-multi mode if wake on multicast is enabled */
5089 if (wufc & E1000_WUFC_MC)
5090 rctl |= E1000_RCTL_MPE;
5091
5092 /* enable receives in the hardware */
5093 ew32(RCTL, rctl | E1000_RCTL_EN);
5094
5095 if (hw->mac_type >= e1000_82540) {
5096 ctrl = er32(CTRL);
5097 /* advertise wake from D3Cold */
5098 #define E1000_CTRL_ADVD3WUC 0x00100000
5099 /* phy power management enable */
5100 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5101 ctrl |= E1000_CTRL_ADVD3WUC |
5102 E1000_CTRL_EN_PHY_PWR_MGMT;
5103 ew32(CTRL, ctrl);
5104 }
5105
5106 if (hw->media_type == e1000_media_type_fiber ||
5107 hw->media_type == e1000_media_type_internal_serdes) {
5108 /* keep the laser running in D3 */
5109 ctrl_ext = er32(CTRL_EXT);
5110 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5111 ew32(CTRL_EXT, ctrl_ext);
5112 }
5113
5114 ew32(WUC, E1000_WUC_PME_EN);
5115 ew32(WUFC, wufc);
5116 } else {
5117 ew32(WUC, 0);
5118 ew32(WUFC, 0);
5119 }
5120
5121 e1000_release_manageability(adapter);
5122
5123 *enable_wake = !!wufc;
5124
5125 /* make sure adapter isn't asleep if manageability is enabled */
5126 if (adapter->en_mng_pt)
5127 *enable_wake = true;
5128
5129 if (netif_running(netdev))
5130 e1000_free_irq(adapter);
5131
5132 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5133 pci_disable_device(pdev);
5134
5135 return 0;
5136}
5137
5138static int __maybe_unused e1000_suspend(struct device *dev)
5139{
5140 int retval;
5141 struct pci_dev *pdev = to_pci_dev(dev);
5142 bool wake;
5143
5144 retval = __e1000_shutdown(pdev, &wake);
5145 device_set_wakeup_enable(dev, wake);
5146
5147 return retval;
5148}
5149
5150static int __maybe_unused e1000_resume(struct device *dev)
5151{
5152 struct pci_dev *pdev = to_pci_dev(dev);
5153 struct net_device *netdev = pci_get_drvdata(pdev);
5154 struct e1000_adapter *adapter = netdev_priv(netdev);
5155 struct e1000_hw *hw = &adapter->hw;
5156 u32 err;
5157
5158 if (adapter->need_ioport)
5159 err = pci_enable_device(pdev);
5160 else
5161 err = pci_enable_device_mem(pdev);
5162 if (err) {
5163 pr_err("Cannot enable PCI device from suspend\n");
5164 return err;
5165 }
5166
5167 /* flush memory to make sure state is correct */
5168 smp_mb__before_atomic();
5169 clear_bit(__E1000_DISABLED, &adapter->flags);
5170 pci_set_master(pdev);
5171
5172 pci_enable_wake(pdev, PCI_D3hot, 0);
5173 pci_enable_wake(pdev, PCI_D3cold, 0);
5174
5175 if (netif_running(netdev)) {
5176 err = e1000_request_irq(adapter);
5177 if (err)
5178 return err;
5179 }
5180
5181 e1000_power_up_phy(adapter);
5182 e1000_reset(adapter);
5183 ew32(WUS, ~0);
5184
5185 e1000_init_manageability(adapter);
5186
5187 if (netif_running(netdev))
5188 e1000_up(adapter);
5189
5190 netif_device_attach(netdev);
5191
5192 return 0;
5193}
5194
5195static void e1000_shutdown(struct pci_dev *pdev)
5196{
5197 bool wake;
5198
5199 __e1000_shutdown(pdev, &wake);
5200
5201 if (system_state == SYSTEM_POWER_OFF) {
5202 pci_wake_from_d3(pdev, wake);
5203 pci_set_power_state(pdev, PCI_D3hot);
5204 }
5205}
5206
5207#ifdef CONFIG_NET_POLL_CONTROLLER
5208/* Polling 'interrupt' - used by things like netconsole to send skbs
5209 * without having to re-enable interrupts. It's not called while
5210 * the interrupt routine is executing.
5211 */
5212static void e1000_netpoll(struct net_device *netdev)
5213{
5214 struct e1000_adapter *adapter = netdev_priv(netdev);
5215
5216 if (disable_hardirq(adapter->pdev->irq))
5217 e1000_intr(adapter->pdev->irq, netdev);
5218 enable_irq(adapter->pdev->irq);
5219}
5220#endif
5221
5222/**
5223 * e1000_io_error_detected - called when PCI error is detected
5224 * @pdev: Pointer to PCI device
5225 * @state: The current pci connection state
5226 *
5227 * This function is called after a PCI bus error affecting
5228 * this device has been detected.
5229 */
5230static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5231 pci_channel_state_t state)
5232{
5233 struct net_device *netdev = pci_get_drvdata(pdev);
5234 struct e1000_adapter *adapter = netdev_priv(netdev);
5235
5236 netif_device_detach(netdev);
5237
5238 if (state == pci_channel_io_perm_failure)
5239 return PCI_ERS_RESULT_DISCONNECT;
5240
5241 if (netif_running(netdev))
5242 e1000_down(adapter);
5243
5244 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5245 pci_disable_device(pdev);
5246
5247 /* Request a slot reset. */
5248 return PCI_ERS_RESULT_NEED_RESET;
5249}
5250
5251/**
5252 * e1000_io_slot_reset - called after the pci bus has been reset.
5253 * @pdev: Pointer to PCI device
5254 *
5255 * Restart the card from scratch, as if from a cold-boot. Implementation
5256 * resembles the first-half of the e1000_resume routine.
5257 */
5258static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5259{
5260 struct net_device *netdev = pci_get_drvdata(pdev);
5261 struct e1000_adapter *adapter = netdev_priv(netdev);
5262 struct e1000_hw *hw = &adapter->hw;
5263 int err;
5264
5265 if (adapter->need_ioport)
5266 err = pci_enable_device(pdev);
5267 else
5268 err = pci_enable_device_mem(pdev);
5269 if (err) {
5270 pr_err("Cannot re-enable PCI device after reset.\n");
5271 return PCI_ERS_RESULT_DISCONNECT;
5272 }
5273
5274 /* flush memory to make sure state is correct */
5275 smp_mb__before_atomic();
5276 clear_bit(__E1000_DISABLED, &adapter->flags);
5277 pci_set_master(pdev);
5278
5279 pci_enable_wake(pdev, PCI_D3hot, 0);
5280 pci_enable_wake(pdev, PCI_D3cold, 0);
5281
5282 e1000_reset(adapter);
5283 ew32(WUS, ~0);
5284
5285 return PCI_ERS_RESULT_RECOVERED;
5286}
5287
5288/**
5289 * e1000_io_resume - called when traffic can start flowing again.
5290 * @pdev: Pointer to PCI device
5291 *
5292 * This callback is called when the error recovery driver tells us that
5293 * its OK to resume normal operation. Implementation resembles the
5294 * second-half of the e1000_resume routine.
5295 */
5296static void e1000_io_resume(struct pci_dev *pdev)
5297{
5298 struct net_device *netdev = pci_get_drvdata(pdev);
5299 struct e1000_adapter *adapter = netdev_priv(netdev);
5300
5301 e1000_init_manageability(adapter);
5302
5303 if (netif_running(netdev)) {
5304 if (e1000_up(adapter)) {
5305 pr_info("can't bring device back up after reset\n");
5306 return;
5307 }
5308 }
5309
5310 netif_device_attach(netdev);
5311}
5312
5313/* e1000_main.c */
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30#include <net/ip6_checksum.h>
31#include <linux/io.h>
32#include <linux/prefetch.h>
33#include <linux/bitops.h>
34#include <linux/if_vlan.h>
35
36char e1000_driver_name[] = "e1000";
37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38#define DRV_VERSION "7.3.21-k8-NAPI"
39const char e1000_driver_version[] = DRV_VERSION;
40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42/* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
49static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
88 {0,}
89};
90
91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93int e1000_up(struct e1000_adapter *adapter);
94void e1000_down(struct e1000_adapter *adapter);
95void e1000_reinit_locked(struct e1000_adapter *adapter);
96void e1000_reset(struct e1000_adapter *adapter);
97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *txdr);
103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rxdr);
105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 struct e1000_tx_ring *tx_ring);
107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 struct e1000_rx_ring *rx_ring);
109void e1000_update_stats(struct e1000_adapter *adapter);
110
111static int e1000_init_module(void);
112static void e1000_exit_module(void);
113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114static void __devexit e1000_remove(struct pci_dev *pdev);
115static int e1000_alloc_queues(struct e1000_adapter *adapter);
116static int e1000_sw_init(struct e1000_adapter *adapter);
117static int e1000_open(struct net_device *netdev);
118static int e1000_close(struct net_device *netdev);
119static void e1000_configure_tx(struct e1000_adapter *adapter);
120static void e1000_configure_rx(struct e1000_adapter *adapter);
121static void e1000_setup_rctl(struct e1000_adapter *adapter);
122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 struct e1000_tx_ring *tx_ring);
126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring);
128static void e1000_set_rx_mode(struct net_device *netdev);
129static void e1000_update_phy_info_task(struct work_struct *work);
130static void e1000_watchdog(struct work_struct *work);
131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
134static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136static int e1000_set_mac(struct net_device *netdev, void *p);
137static irqreturn_t e1000_intr(int irq, void *data);
138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140static int e1000_clean(struct napi_struct *napi, int budget);
141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count);
150static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151 struct e1000_rx_ring *rx_ring,
152 int cleaned_count);
153static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155 int cmd);
156static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158static void e1000_tx_timeout(struct net_device *dev);
159static void e1000_reset_task(struct work_struct *work);
160static void e1000_smartspeed(struct e1000_adapter *adapter);
161static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162 struct sk_buff *skb);
163
164static bool e1000_vlan_used(struct e1000_adapter *adapter);
165static void e1000_vlan_mode(struct net_device *netdev,
166 netdev_features_t features);
167static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168 bool filter_on);
169static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
170static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
171static void e1000_restore_vlan(struct e1000_adapter *adapter);
172
173#ifdef CONFIG_PM
174static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
175static int e1000_resume(struct pci_dev *pdev);
176#endif
177static void e1000_shutdown(struct pci_dev *pdev);
178
179#ifdef CONFIG_NET_POLL_CONTROLLER
180/* for netdump / net console */
181static void e1000_netpoll (struct net_device *netdev);
182#endif
183
184#define COPYBREAK_DEFAULT 256
185static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
186module_param(copybreak, uint, 0644);
187MODULE_PARM_DESC(copybreak,
188 "Maximum size of packet that is copied to a new buffer on receive");
189
190static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
191 pci_channel_state_t state);
192static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
193static void e1000_io_resume(struct pci_dev *pdev);
194
195static struct pci_error_handlers e1000_err_handler = {
196 .error_detected = e1000_io_error_detected,
197 .slot_reset = e1000_io_slot_reset,
198 .resume = e1000_io_resume,
199};
200
201static struct pci_driver e1000_driver = {
202 .name = e1000_driver_name,
203 .id_table = e1000_pci_tbl,
204 .probe = e1000_probe,
205 .remove = __devexit_p(e1000_remove),
206#ifdef CONFIG_PM
207 /* Power Management Hooks */
208 .suspend = e1000_suspend,
209 .resume = e1000_resume,
210#endif
211 .shutdown = e1000_shutdown,
212 .err_handler = &e1000_err_handler
213};
214
215MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
216MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
217MODULE_LICENSE("GPL");
218MODULE_VERSION(DRV_VERSION);
219
220#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
221static int debug = -1;
222module_param(debug, int, 0);
223MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
224
225/**
226 * e1000_get_hw_dev - return device
227 * used by hardware layer to print debugging information
228 *
229 **/
230struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
231{
232 struct e1000_adapter *adapter = hw->back;
233 return adapter->netdev;
234}
235
236/**
237 * e1000_init_module - Driver Registration Routine
238 *
239 * e1000_init_module is the first routine called when the driver is
240 * loaded. All it does is register with the PCI subsystem.
241 **/
242
243static int __init e1000_init_module(void)
244{
245 int ret;
246 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
247
248 pr_info("%s\n", e1000_copyright);
249
250 ret = pci_register_driver(&e1000_driver);
251 if (copybreak != COPYBREAK_DEFAULT) {
252 if (copybreak == 0)
253 pr_info("copybreak disabled\n");
254 else
255 pr_info("copybreak enabled for "
256 "packets <= %u bytes\n", copybreak);
257 }
258 return ret;
259}
260
261module_init(e1000_init_module);
262
263/**
264 * e1000_exit_module - Driver Exit Cleanup Routine
265 *
266 * e1000_exit_module is called just before the driver is removed
267 * from memory.
268 **/
269
270static void __exit e1000_exit_module(void)
271{
272 pci_unregister_driver(&e1000_driver);
273}
274
275module_exit(e1000_exit_module);
276
277static int e1000_request_irq(struct e1000_adapter *adapter)
278{
279 struct net_device *netdev = adapter->netdev;
280 irq_handler_t handler = e1000_intr;
281 int irq_flags = IRQF_SHARED;
282 int err;
283
284 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
285 netdev);
286 if (err) {
287 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
288 }
289
290 return err;
291}
292
293static void e1000_free_irq(struct e1000_adapter *adapter)
294{
295 struct net_device *netdev = adapter->netdev;
296
297 free_irq(adapter->pdev->irq, netdev);
298}
299
300/**
301 * e1000_irq_disable - Mask off interrupt generation on the NIC
302 * @adapter: board private structure
303 **/
304
305static void e1000_irq_disable(struct e1000_adapter *adapter)
306{
307 struct e1000_hw *hw = &adapter->hw;
308
309 ew32(IMC, ~0);
310 E1000_WRITE_FLUSH();
311 synchronize_irq(adapter->pdev->irq);
312}
313
314/**
315 * e1000_irq_enable - Enable default interrupt generation settings
316 * @adapter: board private structure
317 **/
318
319static void e1000_irq_enable(struct e1000_adapter *adapter)
320{
321 struct e1000_hw *hw = &adapter->hw;
322
323 ew32(IMS, IMS_ENABLE_MASK);
324 E1000_WRITE_FLUSH();
325}
326
327static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
328{
329 struct e1000_hw *hw = &adapter->hw;
330 struct net_device *netdev = adapter->netdev;
331 u16 vid = hw->mng_cookie.vlan_id;
332 u16 old_vid = adapter->mng_vlan_id;
333
334 if (!e1000_vlan_used(adapter))
335 return;
336
337 if (!test_bit(vid, adapter->active_vlans)) {
338 if (hw->mng_cookie.status &
339 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
340 e1000_vlan_rx_add_vid(netdev, vid);
341 adapter->mng_vlan_id = vid;
342 } else {
343 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
344 }
345 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
346 (vid != old_vid) &&
347 !test_bit(old_vid, adapter->active_vlans))
348 e1000_vlan_rx_kill_vid(netdev, old_vid);
349 } else {
350 adapter->mng_vlan_id = vid;
351 }
352}
353
354static void e1000_init_manageability(struct e1000_adapter *adapter)
355{
356 struct e1000_hw *hw = &adapter->hw;
357
358 if (adapter->en_mng_pt) {
359 u32 manc = er32(MANC);
360
361 /* disable hardware interception of ARP */
362 manc &= ~(E1000_MANC_ARP_EN);
363
364 ew32(MANC, manc);
365 }
366}
367
368static void e1000_release_manageability(struct e1000_adapter *adapter)
369{
370 struct e1000_hw *hw = &adapter->hw;
371
372 if (adapter->en_mng_pt) {
373 u32 manc = er32(MANC);
374
375 /* re-enable hardware interception of ARP */
376 manc |= E1000_MANC_ARP_EN;
377
378 ew32(MANC, manc);
379 }
380}
381
382/**
383 * e1000_configure - configure the hardware for RX and TX
384 * @adapter = private board structure
385 **/
386static void e1000_configure(struct e1000_adapter *adapter)
387{
388 struct net_device *netdev = adapter->netdev;
389 int i;
390
391 e1000_set_rx_mode(netdev);
392
393 e1000_restore_vlan(adapter);
394 e1000_init_manageability(adapter);
395
396 e1000_configure_tx(adapter);
397 e1000_setup_rctl(adapter);
398 e1000_configure_rx(adapter);
399 /* call E1000_DESC_UNUSED which always leaves
400 * at least 1 descriptor unused to make sure
401 * next_to_use != next_to_clean */
402 for (i = 0; i < adapter->num_rx_queues; i++) {
403 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
404 adapter->alloc_rx_buf(adapter, ring,
405 E1000_DESC_UNUSED(ring));
406 }
407}
408
409int e1000_up(struct e1000_adapter *adapter)
410{
411 struct e1000_hw *hw = &adapter->hw;
412
413 /* hardware has been reset, we need to reload some things */
414 e1000_configure(adapter);
415
416 clear_bit(__E1000_DOWN, &adapter->flags);
417
418 napi_enable(&adapter->napi);
419
420 e1000_irq_enable(adapter);
421
422 netif_wake_queue(adapter->netdev);
423
424 /* fire a link change interrupt to start the watchdog */
425 ew32(ICS, E1000_ICS_LSC);
426 return 0;
427}
428
429/**
430 * e1000_power_up_phy - restore link in case the phy was powered down
431 * @adapter: address of board private structure
432 *
433 * The phy may be powered down to save power and turn off link when the
434 * driver is unloaded and wake on lan is not enabled (among others)
435 * *** this routine MUST be followed by a call to e1000_reset ***
436 *
437 **/
438
439void e1000_power_up_phy(struct e1000_adapter *adapter)
440{
441 struct e1000_hw *hw = &adapter->hw;
442 u16 mii_reg = 0;
443
444 /* Just clear the power down bit to wake the phy back up */
445 if (hw->media_type == e1000_media_type_copper) {
446 /* according to the manual, the phy will retain its
447 * settings across a power-down/up cycle */
448 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
449 mii_reg &= ~MII_CR_POWER_DOWN;
450 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
451 }
452}
453
454static void e1000_power_down_phy(struct e1000_adapter *adapter)
455{
456 struct e1000_hw *hw = &adapter->hw;
457
458 /* Power down the PHY so no link is implied when interface is down *
459 * The PHY cannot be powered down if any of the following is true *
460 * (a) WoL is enabled
461 * (b) AMT is active
462 * (c) SoL/IDER session is active */
463 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
464 hw->media_type == e1000_media_type_copper) {
465 u16 mii_reg = 0;
466
467 switch (hw->mac_type) {
468 case e1000_82540:
469 case e1000_82545:
470 case e1000_82545_rev_3:
471 case e1000_82546:
472 case e1000_ce4100:
473 case e1000_82546_rev_3:
474 case e1000_82541:
475 case e1000_82541_rev_2:
476 case e1000_82547:
477 case e1000_82547_rev_2:
478 if (er32(MANC) & E1000_MANC_SMBUS_EN)
479 goto out;
480 break;
481 default:
482 goto out;
483 }
484 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
485 mii_reg |= MII_CR_POWER_DOWN;
486 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
487 msleep(1);
488 }
489out:
490 return;
491}
492
493static void e1000_down_and_stop(struct e1000_adapter *adapter)
494{
495 set_bit(__E1000_DOWN, &adapter->flags);
496
497 /* Only kill reset task if adapter is not resetting */
498 if (!test_bit(__E1000_RESETTING, &adapter->flags))
499 cancel_work_sync(&adapter->reset_task);
500
501 cancel_delayed_work_sync(&adapter->watchdog_task);
502 cancel_delayed_work_sync(&adapter->phy_info_task);
503 cancel_delayed_work_sync(&adapter->fifo_stall_task);
504}
505
506void e1000_down(struct e1000_adapter *adapter)
507{
508 struct e1000_hw *hw = &adapter->hw;
509 struct net_device *netdev = adapter->netdev;
510 u32 rctl, tctl;
511
512
513 /* disable receives in the hardware */
514 rctl = er32(RCTL);
515 ew32(RCTL, rctl & ~E1000_RCTL_EN);
516 /* flush and sleep below */
517
518 netif_tx_disable(netdev);
519
520 /* disable transmits in the hardware */
521 tctl = er32(TCTL);
522 tctl &= ~E1000_TCTL_EN;
523 ew32(TCTL, tctl);
524 /* flush both disables and wait for them to finish */
525 E1000_WRITE_FLUSH();
526 msleep(10);
527
528 napi_disable(&adapter->napi);
529
530 e1000_irq_disable(adapter);
531
532 /*
533 * Setting DOWN must be after irq_disable to prevent
534 * a screaming interrupt. Setting DOWN also prevents
535 * tasks from rescheduling.
536 */
537 e1000_down_and_stop(adapter);
538
539 adapter->link_speed = 0;
540 adapter->link_duplex = 0;
541 netif_carrier_off(netdev);
542
543 e1000_reset(adapter);
544 e1000_clean_all_tx_rings(adapter);
545 e1000_clean_all_rx_rings(adapter);
546}
547
548static void e1000_reinit_safe(struct e1000_adapter *adapter)
549{
550 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
551 msleep(1);
552 mutex_lock(&adapter->mutex);
553 e1000_down(adapter);
554 e1000_up(adapter);
555 mutex_unlock(&adapter->mutex);
556 clear_bit(__E1000_RESETTING, &adapter->flags);
557}
558
559void e1000_reinit_locked(struct e1000_adapter *adapter)
560{
561 /* if rtnl_lock is not held the call path is bogus */
562 ASSERT_RTNL();
563 WARN_ON(in_interrupt());
564 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
565 msleep(1);
566 e1000_down(adapter);
567 e1000_up(adapter);
568 clear_bit(__E1000_RESETTING, &adapter->flags);
569}
570
571void e1000_reset(struct e1000_adapter *adapter)
572{
573 struct e1000_hw *hw = &adapter->hw;
574 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
575 bool legacy_pba_adjust = false;
576 u16 hwm;
577
578 /* Repartition Pba for greater than 9k mtu
579 * To take effect CTRL.RST is required.
580 */
581
582 switch (hw->mac_type) {
583 case e1000_82542_rev2_0:
584 case e1000_82542_rev2_1:
585 case e1000_82543:
586 case e1000_82544:
587 case e1000_82540:
588 case e1000_82541:
589 case e1000_82541_rev_2:
590 legacy_pba_adjust = true;
591 pba = E1000_PBA_48K;
592 break;
593 case e1000_82545:
594 case e1000_82545_rev_3:
595 case e1000_82546:
596 case e1000_ce4100:
597 case e1000_82546_rev_3:
598 pba = E1000_PBA_48K;
599 break;
600 case e1000_82547:
601 case e1000_82547_rev_2:
602 legacy_pba_adjust = true;
603 pba = E1000_PBA_30K;
604 break;
605 case e1000_undefined:
606 case e1000_num_macs:
607 break;
608 }
609
610 if (legacy_pba_adjust) {
611 if (hw->max_frame_size > E1000_RXBUFFER_8192)
612 pba -= 8; /* allocate more FIFO for Tx */
613
614 if (hw->mac_type == e1000_82547) {
615 adapter->tx_fifo_head = 0;
616 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
617 adapter->tx_fifo_size =
618 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
619 atomic_set(&adapter->tx_fifo_stall, 0);
620 }
621 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
622 /* adjust PBA for jumbo frames */
623 ew32(PBA, pba);
624
625 /* To maintain wire speed transmits, the Tx FIFO should be
626 * large enough to accommodate two full transmit packets,
627 * rounded up to the next 1KB and expressed in KB. Likewise,
628 * the Rx FIFO should be large enough to accommodate at least
629 * one full receive packet and is similarly rounded up and
630 * expressed in KB. */
631 pba = er32(PBA);
632 /* upper 16 bits has Tx packet buffer allocation size in KB */
633 tx_space = pba >> 16;
634 /* lower 16 bits has Rx packet buffer allocation size in KB */
635 pba &= 0xffff;
636 /*
637 * the tx fifo also stores 16 bytes of information about the tx
638 * but don't include ethernet FCS because hardware appends it
639 */
640 min_tx_space = (hw->max_frame_size +
641 sizeof(struct e1000_tx_desc) -
642 ETH_FCS_LEN) * 2;
643 min_tx_space = ALIGN(min_tx_space, 1024);
644 min_tx_space >>= 10;
645 /* software strips receive CRC, so leave room for it */
646 min_rx_space = hw->max_frame_size;
647 min_rx_space = ALIGN(min_rx_space, 1024);
648 min_rx_space >>= 10;
649
650 /* If current Tx allocation is less than the min Tx FIFO size,
651 * and the min Tx FIFO size is less than the current Rx FIFO
652 * allocation, take space away from current Rx allocation */
653 if (tx_space < min_tx_space &&
654 ((min_tx_space - tx_space) < pba)) {
655 pba = pba - (min_tx_space - tx_space);
656
657 /* PCI/PCIx hardware has PBA alignment constraints */
658 switch (hw->mac_type) {
659 case e1000_82545 ... e1000_82546_rev_3:
660 pba &= ~(E1000_PBA_8K - 1);
661 break;
662 default:
663 break;
664 }
665
666 /* if short on rx space, rx wins and must trump tx
667 * adjustment or use Early Receive if available */
668 if (pba < min_rx_space)
669 pba = min_rx_space;
670 }
671 }
672
673 ew32(PBA, pba);
674
675 /*
676 * flow control settings:
677 * The high water mark must be low enough to fit one full frame
678 * (or the size used for early receive) above it in the Rx FIFO.
679 * Set it to the lower of:
680 * - 90% of the Rx FIFO size, and
681 * - the full Rx FIFO size minus the early receive size (for parts
682 * with ERT support assuming ERT set to E1000_ERT_2048), or
683 * - the full Rx FIFO size minus one full frame
684 */
685 hwm = min(((pba << 10) * 9 / 10),
686 ((pba << 10) - hw->max_frame_size));
687
688 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
689 hw->fc_low_water = hw->fc_high_water - 8;
690 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
691 hw->fc_send_xon = 1;
692 hw->fc = hw->original_fc;
693
694 /* Allow time for pending master requests to run */
695 e1000_reset_hw(hw);
696 if (hw->mac_type >= e1000_82544)
697 ew32(WUC, 0);
698
699 if (e1000_init_hw(hw))
700 e_dev_err("Hardware Error\n");
701 e1000_update_mng_vlan(adapter);
702
703 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
704 if (hw->mac_type >= e1000_82544 &&
705 hw->autoneg == 1 &&
706 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
707 u32 ctrl = er32(CTRL);
708 /* clear phy power management bit if we are in gig only mode,
709 * which if enabled will attempt negotiation to 100Mb, which
710 * can cause a loss of link at power off or driver unload */
711 ctrl &= ~E1000_CTRL_SWDPIN3;
712 ew32(CTRL, ctrl);
713 }
714
715 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
717
718 e1000_reset_adaptive(hw);
719 e1000_phy_get_info(hw, &adapter->phy_info);
720
721 e1000_release_manageability(adapter);
722}
723
724/**
725 * Dump the eeprom for users having checksum issues
726 **/
727static void e1000_dump_eeprom(struct e1000_adapter *adapter)
728{
729 struct net_device *netdev = adapter->netdev;
730 struct ethtool_eeprom eeprom;
731 const struct ethtool_ops *ops = netdev->ethtool_ops;
732 u8 *data;
733 int i;
734 u16 csum_old, csum_new = 0;
735
736 eeprom.len = ops->get_eeprom_len(netdev);
737 eeprom.offset = 0;
738
739 data = kmalloc(eeprom.len, GFP_KERNEL);
740 if (!data)
741 return;
742
743 ops->get_eeprom(netdev, &eeprom, data);
744
745 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
746 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
747 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
748 csum_new += data[i] + (data[i + 1] << 8);
749 csum_new = EEPROM_SUM - csum_new;
750
751 pr_err("/*********************/\n");
752 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
753 pr_err("Calculated : 0x%04x\n", csum_new);
754
755 pr_err("Offset Values\n");
756 pr_err("======== ======\n");
757 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
758
759 pr_err("Include this output when contacting your support provider.\n");
760 pr_err("This is not a software error! Something bad happened to\n");
761 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
762 pr_err("result in further problems, possibly loss of data,\n");
763 pr_err("corruption or system hangs!\n");
764 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
765 pr_err("which is invalid and requires you to set the proper MAC\n");
766 pr_err("address manually before continuing to enable this network\n");
767 pr_err("device. Please inspect the EEPROM dump and report the\n");
768 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
769 pr_err("/*********************/\n");
770
771 kfree(data);
772}
773
774/**
775 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
776 * @pdev: PCI device information struct
777 *
778 * Return true if an adapter needs ioport resources
779 **/
780static int e1000_is_need_ioport(struct pci_dev *pdev)
781{
782 switch (pdev->device) {
783 case E1000_DEV_ID_82540EM:
784 case E1000_DEV_ID_82540EM_LOM:
785 case E1000_DEV_ID_82540EP:
786 case E1000_DEV_ID_82540EP_LOM:
787 case E1000_DEV_ID_82540EP_LP:
788 case E1000_DEV_ID_82541EI:
789 case E1000_DEV_ID_82541EI_MOBILE:
790 case E1000_DEV_ID_82541ER:
791 case E1000_DEV_ID_82541ER_LOM:
792 case E1000_DEV_ID_82541GI:
793 case E1000_DEV_ID_82541GI_LF:
794 case E1000_DEV_ID_82541GI_MOBILE:
795 case E1000_DEV_ID_82544EI_COPPER:
796 case E1000_DEV_ID_82544EI_FIBER:
797 case E1000_DEV_ID_82544GC_COPPER:
798 case E1000_DEV_ID_82544GC_LOM:
799 case E1000_DEV_ID_82545EM_COPPER:
800 case E1000_DEV_ID_82545EM_FIBER:
801 case E1000_DEV_ID_82546EB_COPPER:
802 case E1000_DEV_ID_82546EB_FIBER:
803 case E1000_DEV_ID_82546EB_QUAD_COPPER:
804 return true;
805 default:
806 return false;
807 }
808}
809
810static netdev_features_t e1000_fix_features(struct net_device *netdev,
811 netdev_features_t features)
812{
813 /*
814 * Since there is no support for separate rx/tx vlan accel
815 * enable/disable make sure tx flag is always in same state as rx.
816 */
817 if (features & NETIF_F_HW_VLAN_RX)
818 features |= NETIF_F_HW_VLAN_TX;
819 else
820 features &= ~NETIF_F_HW_VLAN_TX;
821
822 return features;
823}
824
825static int e1000_set_features(struct net_device *netdev,
826 netdev_features_t features)
827{
828 struct e1000_adapter *adapter = netdev_priv(netdev);
829 netdev_features_t changed = features ^ netdev->features;
830
831 if (changed & NETIF_F_HW_VLAN_RX)
832 e1000_vlan_mode(netdev, features);
833
834 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
835 return 0;
836
837 netdev->features = features;
838 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
839
840 if (netif_running(netdev))
841 e1000_reinit_locked(adapter);
842 else
843 e1000_reset(adapter);
844
845 return 0;
846}
847
848static const struct net_device_ops e1000_netdev_ops = {
849 .ndo_open = e1000_open,
850 .ndo_stop = e1000_close,
851 .ndo_start_xmit = e1000_xmit_frame,
852 .ndo_get_stats = e1000_get_stats,
853 .ndo_set_rx_mode = e1000_set_rx_mode,
854 .ndo_set_mac_address = e1000_set_mac,
855 .ndo_tx_timeout = e1000_tx_timeout,
856 .ndo_change_mtu = e1000_change_mtu,
857 .ndo_do_ioctl = e1000_ioctl,
858 .ndo_validate_addr = eth_validate_addr,
859 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
860 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
861#ifdef CONFIG_NET_POLL_CONTROLLER
862 .ndo_poll_controller = e1000_netpoll,
863#endif
864 .ndo_fix_features = e1000_fix_features,
865 .ndo_set_features = e1000_set_features,
866};
867
868/**
869 * e1000_init_hw_struct - initialize members of hw struct
870 * @adapter: board private struct
871 * @hw: structure used by e1000_hw.c
872 *
873 * Factors out initialization of the e1000_hw struct to its own function
874 * that can be called very early at init (just after struct allocation).
875 * Fields are initialized based on PCI device information and
876 * OS network device settings (MTU size).
877 * Returns negative error codes if MAC type setup fails.
878 */
879static int e1000_init_hw_struct(struct e1000_adapter *adapter,
880 struct e1000_hw *hw)
881{
882 struct pci_dev *pdev = adapter->pdev;
883
884 /* PCI config space info */
885 hw->vendor_id = pdev->vendor;
886 hw->device_id = pdev->device;
887 hw->subsystem_vendor_id = pdev->subsystem_vendor;
888 hw->subsystem_id = pdev->subsystem_device;
889 hw->revision_id = pdev->revision;
890
891 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
892
893 hw->max_frame_size = adapter->netdev->mtu +
894 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
895 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
896
897 /* identify the MAC */
898 if (e1000_set_mac_type(hw)) {
899 e_err(probe, "Unknown MAC Type\n");
900 return -EIO;
901 }
902
903 switch (hw->mac_type) {
904 default:
905 break;
906 case e1000_82541:
907 case e1000_82547:
908 case e1000_82541_rev_2:
909 case e1000_82547_rev_2:
910 hw->phy_init_script = 1;
911 break;
912 }
913
914 e1000_set_media_type(hw);
915 e1000_get_bus_info(hw);
916
917 hw->wait_autoneg_complete = false;
918 hw->tbi_compatibility_en = true;
919 hw->adaptive_ifs = true;
920
921 /* Copper options */
922
923 if (hw->media_type == e1000_media_type_copper) {
924 hw->mdix = AUTO_ALL_MODES;
925 hw->disable_polarity_correction = false;
926 hw->master_slave = E1000_MASTER_SLAVE;
927 }
928
929 return 0;
930}
931
932/**
933 * e1000_probe - Device Initialization Routine
934 * @pdev: PCI device information struct
935 * @ent: entry in e1000_pci_tbl
936 *
937 * Returns 0 on success, negative on failure
938 *
939 * e1000_probe initializes an adapter identified by a pci_dev structure.
940 * The OS initialization, configuring of the adapter private structure,
941 * and a hardware reset occur.
942 **/
943static int __devinit e1000_probe(struct pci_dev *pdev,
944 const struct pci_device_id *ent)
945{
946 struct net_device *netdev;
947 struct e1000_adapter *adapter;
948 struct e1000_hw *hw;
949
950 static int cards_found = 0;
951 static int global_quad_port_a = 0; /* global ksp3 port a indication */
952 int i, err, pci_using_dac;
953 u16 eeprom_data = 0;
954 u16 tmp = 0;
955 u16 eeprom_apme_mask = E1000_EEPROM_APME;
956 int bars, need_ioport;
957
958 /* do not allocate ioport bars when not needed */
959 need_ioport = e1000_is_need_ioport(pdev);
960 if (need_ioport) {
961 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
962 err = pci_enable_device(pdev);
963 } else {
964 bars = pci_select_bars(pdev, IORESOURCE_MEM);
965 err = pci_enable_device_mem(pdev);
966 }
967 if (err)
968 return err;
969
970 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
971 if (err)
972 goto err_pci_reg;
973
974 pci_set_master(pdev);
975 err = pci_save_state(pdev);
976 if (err)
977 goto err_alloc_etherdev;
978
979 err = -ENOMEM;
980 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
981 if (!netdev)
982 goto err_alloc_etherdev;
983
984 SET_NETDEV_DEV(netdev, &pdev->dev);
985
986 pci_set_drvdata(pdev, netdev);
987 adapter = netdev_priv(netdev);
988 adapter->netdev = netdev;
989 adapter->pdev = pdev;
990 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
991 adapter->bars = bars;
992 adapter->need_ioport = need_ioport;
993
994 hw = &adapter->hw;
995 hw->back = adapter;
996
997 err = -EIO;
998 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
999 if (!hw->hw_addr)
1000 goto err_ioremap;
1001
1002 if (adapter->need_ioport) {
1003 for (i = BAR_1; i <= BAR_5; i++) {
1004 if (pci_resource_len(pdev, i) == 0)
1005 continue;
1006 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1007 hw->io_base = pci_resource_start(pdev, i);
1008 break;
1009 }
1010 }
1011 }
1012
1013 /* make ready for any if (hw->...) below */
1014 err = e1000_init_hw_struct(adapter, hw);
1015 if (err)
1016 goto err_sw_init;
1017
1018 /*
1019 * there is a workaround being applied below that limits
1020 * 64-bit DMA addresses to 64-bit hardware. There are some
1021 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1022 */
1023 pci_using_dac = 0;
1024 if ((hw->bus_type == e1000_bus_type_pcix) &&
1025 !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1026 /*
1027 * according to DMA-API-HOWTO, coherent calls will always
1028 * succeed if the set call did
1029 */
1030 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1031 pci_using_dac = 1;
1032 } else {
1033 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1034 if (err) {
1035 pr_err("No usable DMA config, aborting\n");
1036 goto err_dma;
1037 }
1038 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1039 }
1040
1041 netdev->netdev_ops = &e1000_netdev_ops;
1042 e1000_set_ethtool_ops(netdev);
1043 netdev->watchdog_timeo = 5 * HZ;
1044 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1045
1046 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1047
1048 adapter->bd_number = cards_found;
1049
1050 /* setup the private structure */
1051
1052 err = e1000_sw_init(adapter);
1053 if (err)
1054 goto err_sw_init;
1055
1056 err = -EIO;
1057 if (hw->mac_type == e1000_ce4100) {
1058 hw->ce4100_gbe_mdio_base_virt =
1059 ioremap(pci_resource_start(pdev, BAR_1),
1060 pci_resource_len(pdev, BAR_1));
1061
1062 if (!hw->ce4100_gbe_mdio_base_virt)
1063 goto err_mdio_ioremap;
1064 }
1065
1066 if (hw->mac_type >= e1000_82543) {
1067 netdev->hw_features = NETIF_F_SG |
1068 NETIF_F_HW_CSUM |
1069 NETIF_F_HW_VLAN_RX;
1070 netdev->features = NETIF_F_HW_VLAN_TX |
1071 NETIF_F_HW_VLAN_FILTER;
1072 }
1073
1074 if ((hw->mac_type >= e1000_82544) &&
1075 (hw->mac_type != e1000_82547))
1076 netdev->hw_features |= NETIF_F_TSO;
1077
1078 netdev->priv_flags |= IFF_SUPP_NOFCS;
1079
1080 netdev->features |= netdev->hw_features;
1081 netdev->hw_features |= NETIF_F_RXCSUM;
1082 netdev->hw_features |= NETIF_F_RXALL;
1083 netdev->hw_features |= NETIF_F_RXFCS;
1084
1085 if (pci_using_dac) {
1086 netdev->features |= NETIF_F_HIGHDMA;
1087 netdev->vlan_features |= NETIF_F_HIGHDMA;
1088 }
1089
1090 netdev->vlan_features |= NETIF_F_TSO;
1091 netdev->vlan_features |= NETIF_F_HW_CSUM;
1092 netdev->vlan_features |= NETIF_F_SG;
1093
1094 netdev->priv_flags |= IFF_UNICAST_FLT;
1095
1096 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1097
1098 /* initialize eeprom parameters */
1099 if (e1000_init_eeprom_params(hw)) {
1100 e_err(probe, "EEPROM initialization failed\n");
1101 goto err_eeprom;
1102 }
1103
1104 /* before reading the EEPROM, reset the controller to
1105 * put the device in a known good starting state */
1106
1107 e1000_reset_hw(hw);
1108
1109 /* make sure the EEPROM is good */
1110 if (e1000_validate_eeprom_checksum(hw) < 0) {
1111 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1112 e1000_dump_eeprom(adapter);
1113 /*
1114 * set MAC address to all zeroes to invalidate and temporary
1115 * disable this device for the user. This blocks regular
1116 * traffic while still permitting ethtool ioctls from reaching
1117 * the hardware as well as allowing the user to run the
1118 * interface after manually setting a hw addr using
1119 * `ip set address`
1120 */
1121 memset(hw->mac_addr, 0, netdev->addr_len);
1122 } else {
1123 /* copy the MAC address out of the EEPROM */
1124 if (e1000_read_mac_addr(hw))
1125 e_err(probe, "EEPROM Read Error\n");
1126 }
1127 /* don't block initalization here due to bad MAC address */
1128 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1129 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1130
1131 if (!is_valid_ether_addr(netdev->perm_addr))
1132 e_err(probe, "Invalid MAC Address\n");
1133
1134
1135 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1136 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1137 e1000_82547_tx_fifo_stall_task);
1138 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1139 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1140
1141 e1000_check_options(adapter);
1142
1143 /* Initial Wake on LAN setting
1144 * If APM wake is enabled in the EEPROM,
1145 * enable the ACPI Magic Packet filter
1146 */
1147
1148 switch (hw->mac_type) {
1149 case e1000_82542_rev2_0:
1150 case e1000_82542_rev2_1:
1151 case e1000_82543:
1152 break;
1153 case e1000_82544:
1154 e1000_read_eeprom(hw,
1155 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1156 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1157 break;
1158 case e1000_82546:
1159 case e1000_82546_rev_3:
1160 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1161 e1000_read_eeprom(hw,
1162 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1163 break;
1164 }
1165 /* Fall Through */
1166 default:
1167 e1000_read_eeprom(hw,
1168 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1169 break;
1170 }
1171 if (eeprom_data & eeprom_apme_mask)
1172 adapter->eeprom_wol |= E1000_WUFC_MAG;
1173
1174 /* now that we have the eeprom settings, apply the special cases
1175 * where the eeprom may be wrong or the board simply won't support
1176 * wake on lan on a particular port */
1177 switch (pdev->device) {
1178 case E1000_DEV_ID_82546GB_PCIE:
1179 adapter->eeprom_wol = 0;
1180 break;
1181 case E1000_DEV_ID_82546EB_FIBER:
1182 case E1000_DEV_ID_82546GB_FIBER:
1183 /* Wake events only supported on port A for dual fiber
1184 * regardless of eeprom setting */
1185 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1186 adapter->eeprom_wol = 0;
1187 break;
1188 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1189 /* if quad port adapter, disable WoL on all but port A */
1190 if (global_quad_port_a != 0)
1191 adapter->eeprom_wol = 0;
1192 else
1193 adapter->quad_port_a = true;
1194 /* Reset for multiple quad port adapters */
1195 if (++global_quad_port_a == 4)
1196 global_quad_port_a = 0;
1197 break;
1198 }
1199
1200 /* initialize the wol settings based on the eeprom settings */
1201 adapter->wol = adapter->eeprom_wol;
1202 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1203
1204 /* Auto detect PHY address */
1205 if (hw->mac_type == e1000_ce4100) {
1206 for (i = 0; i < 32; i++) {
1207 hw->phy_addr = i;
1208 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1209 if (tmp == 0 || tmp == 0xFF) {
1210 if (i == 31)
1211 goto err_eeprom;
1212 continue;
1213 } else
1214 break;
1215 }
1216 }
1217
1218 /* reset the hardware with the new settings */
1219 e1000_reset(adapter);
1220
1221 strcpy(netdev->name, "eth%d");
1222 err = register_netdev(netdev);
1223 if (err)
1224 goto err_register;
1225
1226 e1000_vlan_filter_on_off(adapter, false);
1227
1228 /* print bus type/speed/width info */
1229 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1230 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1231 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1232 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1233 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1234 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1235 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1236 netdev->dev_addr);
1237
1238 /* carrier off reporting is important to ethtool even BEFORE open */
1239 netif_carrier_off(netdev);
1240
1241 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1242
1243 cards_found++;
1244 return 0;
1245
1246err_register:
1247err_eeprom:
1248 e1000_phy_hw_reset(hw);
1249
1250 if (hw->flash_address)
1251 iounmap(hw->flash_address);
1252 kfree(adapter->tx_ring);
1253 kfree(adapter->rx_ring);
1254err_dma:
1255err_sw_init:
1256err_mdio_ioremap:
1257 iounmap(hw->ce4100_gbe_mdio_base_virt);
1258 iounmap(hw->hw_addr);
1259err_ioremap:
1260 free_netdev(netdev);
1261err_alloc_etherdev:
1262 pci_release_selected_regions(pdev, bars);
1263err_pci_reg:
1264 pci_disable_device(pdev);
1265 return err;
1266}
1267
1268/**
1269 * e1000_remove - Device Removal Routine
1270 * @pdev: PCI device information struct
1271 *
1272 * e1000_remove is called by the PCI subsystem to alert the driver
1273 * that it should release a PCI device. The could be caused by a
1274 * Hot-Plug event, or because the driver is going to be removed from
1275 * memory.
1276 **/
1277
1278static void __devexit e1000_remove(struct pci_dev *pdev)
1279{
1280 struct net_device *netdev = pci_get_drvdata(pdev);
1281 struct e1000_adapter *adapter = netdev_priv(netdev);
1282 struct e1000_hw *hw = &adapter->hw;
1283
1284 e1000_down_and_stop(adapter);
1285 e1000_release_manageability(adapter);
1286
1287 unregister_netdev(netdev);
1288
1289 e1000_phy_hw_reset(hw);
1290
1291 kfree(adapter->tx_ring);
1292 kfree(adapter->rx_ring);
1293
1294 if (hw->mac_type == e1000_ce4100)
1295 iounmap(hw->ce4100_gbe_mdio_base_virt);
1296 iounmap(hw->hw_addr);
1297 if (hw->flash_address)
1298 iounmap(hw->flash_address);
1299 pci_release_selected_regions(pdev, adapter->bars);
1300
1301 free_netdev(netdev);
1302
1303 pci_disable_device(pdev);
1304}
1305
1306/**
1307 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1308 * @adapter: board private structure to initialize
1309 *
1310 * e1000_sw_init initializes the Adapter private data structure.
1311 * e1000_init_hw_struct MUST be called before this function
1312 **/
1313
1314static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1315{
1316 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1317
1318 adapter->num_tx_queues = 1;
1319 adapter->num_rx_queues = 1;
1320
1321 if (e1000_alloc_queues(adapter)) {
1322 e_err(probe, "Unable to allocate memory for queues\n");
1323 return -ENOMEM;
1324 }
1325
1326 /* Explicitly disable IRQ since the NIC can be in any state. */
1327 e1000_irq_disable(adapter);
1328
1329 spin_lock_init(&adapter->stats_lock);
1330 mutex_init(&adapter->mutex);
1331
1332 set_bit(__E1000_DOWN, &adapter->flags);
1333
1334 return 0;
1335}
1336
1337/**
1338 * e1000_alloc_queues - Allocate memory for all rings
1339 * @adapter: board private structure to initialize
1340 *
1341 * We allocate one ring per queue at run-time since we don't know the
1342 * number of queues at compile-time.
1343 **/
1344
1345static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1346{
1347 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1348 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1349 if (!adapter->tx_ring)
1350 return -ENOMEM;
1351
1352 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1353 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1354 if (!adapter->rx_ring) {
1355 kfree(adapter->tx_ring);
1356 return -ENOMEM;
1357 }
1358
1359 return E1000_SUCCESS;
1360}
1361
1362/**
1363 * e1000_open - Called when a network interface is made active
1364 * @netdev: network interface device structure
1365 *
1366 * Returns 0 on success, negative value on failure
1367 *
1368 * The open entry point is called when a network interface is made
1369 * active by the system (IFF_UP). At this point all resources needed
1370 * for transmit and receive operations are allocated, the interrupt
1371 * handler is registered with the OS, the watchdog task is started,
1372 * and the stack is notified that the interface is ready.
1373 **/
1374
1375static int e1000_open(struct net_device *netdev)
1376{
1377 struct e1000_adapter *adapter = netdev_priv(netdev);
1378 struct e1000_hw *hw = &adapter->hw;
1379 int err;
1380
1381 /* disallow open during test */
1382 if (test_bit(__E1000_TESTING, &adapter->flags))
1383 return -EBUSY;
1384
1385 netif_carrier_off(netdev);
1386
1387 /* allocate transmit descriptors */
1388 err = e1000_setup_all_tx_resources(adapter);
1389 if (err)
1390 goto err_setup_tx;
1391
1392 /* allocate receive descriptors */
1393 err = e1000_setup_all_rx_resources(adapter);
1394 if (err)
1395 goto err_setup_rx;
1396
1397 e1000_power_up_phy(adapter);
1398
1399 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1400 if ((hw->mng_cookie.status &
1401 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1402 e1000_update_mng_vlan(adapter);
1403 }
1404
1405 /* before we allocate an interrupt, we must be ready to handle it.
1406 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1407 * as soon as we call pci_request_irq, so we have to setup our
1408 * clean_rx handler before we do so. */
1409 e1000_configure(adapter);
1410
1411 err = e1000_request_irq(adapter);
1412 if (err)
1413 goto err_req_irq;
1414
1415 /* From here on the code is the same as e1000_up() */
1416 clear_bit(__E1000_DOWN, &adapter->flags);
1417
1418 napi_enable(&adapter->napi);
1419
1420 e1000_irq_enable(adapter);
1421
1422 netif_start_queue(netdev);
1423
1424 /* fire a link status change interrupt to start the watchdog */
1425 ew32(ICS, E1000_ICS_LSC);
1426
1427 return E1000_SUCCESS;
1428
1429err_req_irq:
1430 e1000_power_down_phy(adapter);
1431 e1000_free_all_rx_resources(adapter);
1432err_setup_rx:
1433 e1000_free_all_tx_resources(adapter);
1434err_setup_tx:
1435 e1000_reset(adapter);
1436
1437 return err;
1438}
1439
1440/**
1441 * e1000_close - Disables a network interface
1442 * @netdev: network interface device structure
1443 *
1444 * Returns 0, this is not allowed to fail
1445 *
1446 * The close entry point is called when an interface is de-activated
1447 * by the OS. The hardware is still under the drivers control, but
1448 * needs to be disabled. A global MAC reset is issued to stop the
1449 * hardware, and all transmit and receive resources are freed.
1450 **/
1451
1452static int e1000_close(struct net_device *netdev)
1453{
1454 struct e1000_adapter *adapter = netdev_priv(netdev);
1455 struct e1000_hw *hw = &adapter->hw;
1456
1457 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1458 e1000_down(adapter);
1459 e1000_power_down_phy(adapter);
1460 e1000_free_irq(adapter);
1461
1462 e1000_free_all_tx_resources(adapter);
1463 e1000_free_all_rx_resources(adapter);
1464
1465 /* kill manageability vlan ID if supported, but not if a vlan with
1466 * the same ID is registered on the host OS (let 8021q kill it) */
1467 if ((hw->mng_cookie.status &
1468 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1469 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1470 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1471 }
1472
1473 return 0;
1474}
1475
1476/**
1477 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1478 * @adapter: address of board private structure
1479 * @start: address of beginning of memory
1480 * @len: length of memory
1481 **/
1482static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1483 unsigned long len)
1484{
1485 struct e1000_hw *hw = &adapter->hw;
1486 unsigned long begin = (unsigned long)start;
1487 unsigned long end = begin + len;
1488
1489 /* First rev 82545 and 82546 need to not allow any memory
1490 * write location to cross 64k boundary due to errata 23 */
1491 if (hw->mac_type == e1000_82545 ||
1492 hw->mac_type == e1000_ce4100 ||
1493 hw->mac_type == e1000_82546) {
1494 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1495 }
1496
1497 return true;
1498}
1499
1500/**
1501 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1502 * @adapter: board private structure
1503 * @txdr: tx descriptor ring (for a specific queue) to setup
1504 *
1505 * Return 0 on success, negative on failure
1506 **/
1507
1508static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1509 struct e1000_tx_ring *txdr)
1510{
1511 struct pci_dev *pdev = adapter->pdev;
1512 int size;
1513
1514 size = sizeof(struct e1000_buffer) * txdr->count;
1515 txdr->buffer_info = vzalloc(size);
1516 if (!txdr->buffer_info) {
1517 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1518 "ring\n");
1519 return -ENOMEM;
1520 }
1521
1522 /* round up to nearest 4K */
1523
1524 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1525 txdr->size = ALIGN(txdr->size, 4096);
1526
1527 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1528 GFP_KERNEL);
1529 if (!txdr->desc) {
1530setup_tx_desc_die:
1531 vfree(txdr->buffer_info);
1532 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1533 "ring\n");
1534 return -ENOMEM;
1535 }
1536
1537 /* Fix for errata 23, can't cross 64kB boundary */
1538 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1539 void *olddesc = txdr->desc;
1540 dma_addr_t olddma = txdr->dma;
1541 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1542 txdr->size, txdr->desc);
1543 /* Try again, without freeing the previous */
1544 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1545 &txdr->dma, GFP_KERNEL);
1546 /* Failed allocation, critical failure */
1547 if (!txdr->desc) {
1548 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1549 olddma);
1550 goto setup_tx_desc_die;
1551 }
1552
1553 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1554 /* give up */
1555 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1556 txdr->dma);
1557 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1558 olddma);
1559 e_err(probe, "Unable to allocate aligned memory "
1560 "for the transmit descriptor ring\n");
1561 vfree(txdr->buffer_info);
1562 return -ENOMEM;
1563 } else {
1564 /* Free old allocation, new allocation was successful */
1565 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1566 olddma);
1567 }
1568 }
1569 memset(txdr->desc, 0, txdr->size);
1570
1571 txdr->next_to_use = 0;
1572 txdr->next_to_clean = 0;
1573
1574 return 0;
1575}
1576
1577/**
1578 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1579 * (Descriptors) for all queues
1580 * @adapter: board private structure
1581 *
1582 * Return 0 on success, negative on failure
1583 **/
1584
1585int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1586{
1587 int i, err = 0;
1588
1589 for (i = 0; i < adapter->num_tx_queues; i++) {
1590 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1591 if (err) {
1592 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1593 for (i-- ; i >= 0; i--)
1594 e1000_free_tx_resources(adapter,
1595 &adapter->tx_ring[i]);
1596 break;
1597 }
1598 }
1599
1600 return err;
1601}
1602
1603/**
1604 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1605 * @adapter: board private structure
1606 *
1607 * Configure the Tx unit of the MAC after a reset.
1608 **/
1609
1610static void e1000_configure_tx(struct e1000_adapter *adapter)
1611{
1612 u64 tdba;
1613 struct e1000_hw *hw = &adapter->hw;
1614 u32 tdlen, tctl, tipg;
1615 u32 ipgr1, ipgr2;
1616
1617 /* Setup the HW Tx Head and Tail descriptor pointers */
1618
1619 switch (adapter->num_tx_queues) {
1620 case 1:
1621 default:
1622 tdba = adapter->tx_ring[0].dma;
1623 tdlen = adapter->tx_ring[0].count *
1624 sizeof(struct e1000_tx_desc);
1625 ew32(TDLEN, tdlen);
1626 ew32(TDBAH, (tdba >> 32));
1627 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1628 ew32(TDT, 0);
1629 ew32(TDH, 0);
1630 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1631 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1632 break;
1633 }
1634
1635 /* Set the default values for the Tx Inter Packet Gap timer */
1636 if ((hw->media_type == e1000_media_type_fiber ||
1637 hw->media_type == e1000_media_type_internal_serdes))
1638 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1639 else
1640 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1641
1642 switch (hw->mac_type) {
1643 case e1000_82542_rev2_0:
1644 case e1000_82542_rev2_1:
1645 tipg = DEFAULT_82542_TIPG_IPGT;
1646 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1647 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1648 break;
1649 default:
1650 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1651 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1652 break;
1653 }
1654 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1655 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1656 ew32(TIPG, tipg);
1657
1658 /* Set the Tx Interrupt Delay register */
1659
1660 ew32(TIDV, adapter->tx_int_delay);
1661 if (hw->mac_type >= e1000_82540)
1662 ew32(TADV, adapter->tx_abs_int_delay);
1663
1664 /* Program the Transmit Control Register */
1665
1666 tctl = er32(TCTL);
1667 tctl &= ~E1000_TCTL_CT;
1668 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1669 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1670
1671 e1000_config_collision_dist(hw);
1672
1673 /* Setup Transmit Descriptor Settings for eop descriptor */
1674 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1675
1676 /* only set IDE if we are delaying interrupts using the timers */
1677 if (adapter->tx_int_delay)
1678 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1679
1680 if (hw->mac_type < e1000_82543)
1681 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1682 else
1683 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1684
1685 /* Cache if we're 82544 running in PCI-X because we'll
1686 * need this to apply a workaround later in the send path. */
1687 if (hw->mac_type == e1000_82544 &&
1688 hw->bus_type == e1000_bus_type_pcix)
1689 adapter->pcix_82544 = true;
1690
1691 ew32(TCTL, tctl);
1692
1693}
1694
1695/**
1696 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1697 * @adapter: board private structure
1698 * @rxdr: rx descriptor ring (for a specific queue) to setup
1699 *
1700 * Returns 0 on success, negative on failure
1701 **/
1702
1703static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1704 struct e1000_rx_ring *rxdr)
1705{
1706 struct pci_dev *pdev = adapter->pdev;
1707 int size, desc_len;
1708
1709 size = sizeof(struct e1000_buffer) * rxdr->count;
1710 rxdr->buffer_info = vzalloc(size);
1711 if (!rxdr->buffer_info) {
1712 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1713 "ring\n");
1714 return -ENOMEM;
1715 }
1716
1717 desc_len = sizeof(struct e1000_rx_desc);
1718
1719 /* Round up to nearest 4K */
1720
1721 rxdr->size = rxdr->count * desc_len;
1722 rxdr->size = ALIGN(rxdr->size, 4096);
1723
1724 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1725 GFP_KERNEL);
1726
1727 if (!rxdr->desc) {
1728 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1729 "ring\n");
1730setup_rx_desc_die:
1731 vfree(rxdr->buffer_info);
1732 return -ENOMEM;
1733 }
1734
1735 /* Fix for errata 23, can't cross 64kB boundary */
1736 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1737 void *olddesc = rxdr->desc;
1738 dma_addr_t olddma = rxdr->dma;
1739 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1740 rxdr->size, rxdr->desc);
1741 /* Try again, without freeing the previous */
1742 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1743 &rxdr->dma, GFP_KERNEL);
1744 /* Failed allocation, critical failure */
1745 if (!rxdr->desc) {
1746 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1747 olddma);
1748 e_err(probe, "Unable to allocate memory for the Rx "
1749 "descriptor ring\n");
1750 goto setup_rx_desc_die;
1751 }
1752
1753 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1754 /* give up */
1755 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1756 rxdr->dma);
1757 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1758 olddma);
1759 e_err(probe, "Unable to allocate aligned memory for "
1760 "the Rx descriptor ring\n");
1761 goto setup_rx_desc_die;
1762 } else {
1763 /* Free old allocation, new allocation was successful */
1764 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1765 olddma);
1766 }
1767 }
1768 memset(rxdr->desc, 0, rxdr->size);
1769
1770 rxdr->next_to_clean = 0;
1771 rxdr->next_to_use = 0;
1772 rxdr->rx_skb_top = NULL;
1773
1774 return 0;
1775}
1776
1777/**
1778 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1779 * (Descriptors) for all queues
1780 * @adapter: board private structure
1781 *
1782 * Return 0 on success, negative on failure
1783 **/
1784
1785int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1786{
1787 int i, err = 0;
1788
1789 for (i = 0; i < adapter->num_rx_queues; i++) {
1790 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1791 if (err) {
1792 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1793 for (i-- ; i >= 0; i--)
1794 e1000_free_rx_resources(adapter,
1795 &adapter->rx_ring[i]);
1796 break;
1797 }
1798 }
1799
1800 return err;
1801}
1802
1803/**
1804 * e1000_setup_rctl - configure the receive control registers
1805 * @adapter: Board private structure
1806 **/
1807static void e1000_setup_rctl(struct e1000_adapter *adapter)
1808{
1809 struct e1000_hw *hw = &adapter->hw;
1810 u32 rctl;
1811
1812 rctl = er32(RCTL);
1813
1814 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1815
1816 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1817 E1000_RCTL_RDMTS_HALF |
1818 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1819
1820 if (hw->tbi_compatibility_on == 1)
1821 rctl |= E1000_RCTL_SBP;
1822 else
1823 rctl &= ~E1000_RCTL_SBP;
1824
1825 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1826 rctl &= ~E1000_RCTL_LPE;
1827 else
1828 rctl |= E1000_RCTL_LPE;
1829
1830 /* Setup buffer sizes */
1831 rctl &= ~E1000_RCTL_SZ_4096;
1832 rctl |= E1000_RCTL_BSEX;
1833 switch (adapter->rx_buffer_len) {
1834 case E1000_RXBUFFER_2048:
1835 default:
1836 rctl |= E1000_RCTL_SZ_2048;
1837 rctl &= ~E1000_RCTL_BSEX;
1838 break;
1839 case E1000_RXBUFFER_4096:
1840 rctl |= E1000_RCTL_SZ_4096;
1841 break;
1842 case E1000_RXBUFFER_8192:
1843 rctl |= E1000_RCTL_SZ_8192;
1844 break;
1845 case E1000_RXBUFFER_16384:
1846 rctl |= E1000_RCTL_SZ_16384;
1847 break;
1848 }
1849
1850 /* This is useful for sniffing bad packets. */
1851 if (adapter->netdev->features & NETIF_F_RXALL) {
1852 /* UPE and MPE will be handled by normal PROMISC logic
1853 * in e1000e_set_rx_mode */
1854 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1855 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1856 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1857
1858 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1859 E1000_RCTL_DPF | /* Allow filtered pause */
1860 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1861 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1862 * and that breaks VLANs.
1863 */
1864 }
1865
1866 ew32(RCTL, rctl);
1867}
1868
1869/**
1870 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1871 * @adapter: board private structure
1872 *
1873 * Configure the Rx unit of the MAC after a reset.
1874 **/
1875
1876static void e1000_configure_rx(struct e1000_adapter *adapter)
1877{
1878 u64 rdba;
1879 struct e1000_hw *hw = &adapter->hw;
1880 u32 rdlen, rctl, rxcsum;
1881
1882 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1883 rdlen = adapter->rx_ring[0].count *
1884 sizeof(struct e1000_rx_desc);
1885 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1886 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1887 } else {
1888 rdlen = adapter->rx_ring[0].count *
1889 sizeof(struct e1000_rx_desc);
1890 adapter->clean_rx = e1000_clean_rx_irq;
1891 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1892 }
1893
1894 /* disable receives while setting up the descriptors */
1895 rctl = er32(RCTL);
1896 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1897
1898 /* set the Receive Delay Timer Register */
1899 ew32(RDTR, adapter->rx_int_delay);
1900
1901 if (hw->mac_type >= e1000_82540) {
1902 ew32(RADV, adapter->rx_abs_int_delay);
1903 if (adapter->itr_setting != 0)
1904 ew32(ITR, 1000000000 / (adapter->itr * 256));
1905 }
1906
1907 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1908 * the Base and Length of the Rx Descriptor Ring */
1909 switch (adapter->num_rx_queues) {
1910 case 1:
1911 default:
1912 rdba = adapter->rx_ring[0].dma;
1913 ew32(RDLEN, rdlen);
1914 ew32(RDBAH, (rdba >> 32));
1915 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1916 ew32(RDT, 0);
1917 ew32(RDH, 0);
1918 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1919 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1920 break;
1921 }
1922
1923 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1924 if (hw->mac_type >= e1000_82543) {
1925 rxcsum = er32(RXCSUM);
1926 if (adapter->rx_csum)
1927 rxcsum |= E1000_RXCSUM_TUOFL;
1928 else
1929 /* don't need to clear IPPCSE as it defaults to 0 */
1930 rxcsum &= ~E1000_RXCSUM_TUOFL;
1931 ew32(RXCSUM, rxcsum);
1932 }
1933
1934 /* Enable Receives */
1935 ew32(RCTL, rctl | E1000_RCTL_EN);
1936}
1937
1938/**
1939 * e1000_free_tx_resources - Free Tx Resources per Queue
1940 * @adapter: board private structure
1941 * @tx_ring: Tx descriptor ring for a specific queue
1942 *
1943 * Free all transmit software resources
1944 **/
1945
1946static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1947 struct e1000_tx_ring *tx_ring)
1948{
1949 struct pci_dev *pdev = adapter->pdev;
1950
1951 e1000_clean_tx_ring(adapter, tx_ring);
1952
1953 vfree(tx_ring->buffer_info);
1954 tx_ring->buffer_info = NULL;
1955
1956 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1957 tx_ring->dma);
1958
1959 tx_ring->desc = NULL;
1960}
1961
1962/**
1963 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1964 * @adapter: board private structure
1965 *
1966 * Free all transmit software resources
1967 **/
1968
1969void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1970{
1971 int i;
1972
1973 for (i = 0; i < adapter->num_tx_queues; i++)
1974 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1975}
1976
1977static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1978 struct e1000_buffer *buffer_info)
1979{
1980 if (buffer_info->dma) {
1981 if (buffer_info->mapped_as_page)
1982 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1983 buffer_info->length, DMA_TO_DEVICE);
1984 else
1985 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1986 buffer_info->length,
1987 DMA_TO_DEVICE);
1988 buffer_info->dma = 0;
1989 }
1990 if (buffer_info->skb) {
1991 dev_kfree_skb_any(buffer_info->skb);
1992 buffer_info->skb = NULL;
1993 }
1994 buffer_info->time_stamp = 0;
1995 /* buffer_info must be completely set up in the transmit path */
1996}
1997
1998/**
1999 * e1000_clean_tx_ring - Free Tx Buffers
2000 * @adapter: board private structure
2001 * @tx_ring: ring to be cleaned
2002 **/
2003
2004static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2005 struct e1000_tx_ring *tx_ring)
2006{
2007 struct e1000_hw *hw = &adapter->hw;
2008 struct e1000_buffer *buffer_info;
2009 unsigned long size;
2010 unsigned int i;
2011
2012 /* Free all the Tx ring sk_buffs */
2013
2014 for (i = 0; i < tx_ring->count; i++) {
2015 buffer_info = &tx_ring->buffer_info[i];
2016 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2017 }
2018
2019 size = sizeof(struct e1000_buffer) * tx_ring->count;
2020 memset(tx_ring->buffer_info, 0, size);
2021
2022 /* Zero out the descriptor ring */
2023
2024 memset(tx_ring->desc, 0, tx_ring->size);
2025
2026 tx_ring->next_to_use = 0;
2027 tx_ring->next_to_clean = 0;
2028 tx_ring->last_tx_tso = false;
2029
2030 writel(0, hw->hw_addr + tx_ring->tdh);
2031 writel(0, hw->hw_addr + tx_ring->tdt);
2032}
2033
2034/**
2035 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2036 * @adapter: board private structure
2037 **/
2038
2039static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2040{
2041 int i;
2042
2043 for (i = 0; i < adapter->num_tx_queues; i++)
2044 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2045}
2046
2047/**
2048 * e1000_free_rx_resources - Free Rx Resources
2049 * @adapter: board private structure
2050 * @rx_ring: ring to clean the resources from
2051 *
2052 * Free all receive software resources
2053 **/
2054
2055static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2056 struct e1000_rx_ring *rx_ring)
2057{
2058 struct pci_dev *pdev = adapter->pdev;
2059
2060 e1000_clean_rx_ring(adapter, rx_ring);
2061
2062 vfree(rx_ring->buffer_info);
2063 rx_ring->buffer_info = NULL;
2064
2065 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2066 rx_ring->dma);
2067
2068 rx_ring->desc = NULL;
2069}
2070
2071/**
2072 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2073 * @adapter: board private structure
2074 *
2075 * Free all receive software resources
2076 **/
2077
2078void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2079{
2080 int i;
2081
2082 for (i = 0; i < adapter->num_rx_queues; i++)
2083 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2084}
2085
2086/**
2087 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2088 * @adapter: board private structure
2089 * @rx_ring: ring to free buffers from
2090 **/
2091
2092static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2093 struct e1000_rx_ring *rx_ring)
2094{
2095 struct e1000_hw *hw = &adapter->hw;
2096 struct e1000_buffer *buffer_info;
2097 struct pci_dev *pdev = adapter->pdev;
2098 unsigned long size;
2099 unsigned int i;
2100
2101 /* Free all the Rx ring sk_buffs */
2102 for (i = 0; i < rx_ring->count; i++) {
2103 buffer_info = &rx_ring->buffer_info[i];
2104 if (buffer_info->dma &&
2105 adapter->clean_rx == e1000_clean_rx_irq) {
2106 dma_unmap_single(&pdev->dev, buffer_info->dma,
2107 buffer_info->length,
2108 DMA_FROM_DEVICE);
2109 } else if (buffer_info->dma &&
2110 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2111 dma_unmap_page(&pdev->dev, buffer_info->dma,
2112 buffer_info->length,
2113 DMA_FROM_DEVICE);
2114 }
2115
2116 buffer_info->dma = 0;
2117 if (buffer_info->page) {
2118 put_page(buffer_info->page);
2119 buffer_info->page = NULL;
2120 }
2121 if (buffer_info->skb) {
2122 dev_kfree_skb(buffer_info->skb);
2123 buffer_info->skb = NULL;
2124 }
2125 }
2126
2127 /* there also may be some cached data from a chained receive */
2128 if (rx_ring->rx_skb_top) {
2129 dev_kfree_skb(rx_ring->rx_skb_top);
2130 rx_ring->rx_skb_top = NULL;
2131 }
2132
2133 size = sizeof(struct e1000_buffer) * rx_ring->count;
2134 memset(rx_ring->buffer_info, 0, size);
2135
2136 /* Zero out the descriptor ring */
2137 memset(rx_ring->desc, 0, rx_ring->size);
2138
2139 rx_ring->next_to_clean = 0;
2140 rx_ring->next_to_use = 0;
2141
2142 writel(0, hw->hw_addr + rx_ring->rdh);
2143 writel(0, hw->hw_addr + rx_ring->rdt);
2144}
2145
2146/**
2147 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2148 * @adapter: board private structure
2149 **/
2150
2151static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2152{
2153 int i;
2154
2155 for (i = 0; i < adapter->num_rx_queues; i++)
2156 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2157}
2158
2159/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2160 * and memory write and invalidate disabled for certain operations
2161 */
2162static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2163{
2164 struct e1000_hw *hw = &adapter->hw;
2165 struct net_device *netdev = adapter->netdev;
2166 u32 rctl;
2167
2168 e1000_pci_clear_mwi(hw);
2169
2170 rctl = er32(RCTL);
2171 rctl |= E1000_RCTL_RST;
2172 ew32(RCTL, rctl);
2173 E1000_WRITE_FLUSH();
2174 mdelay(5);
2175
2176 if (netif_running(netdev))
2177 e1000_clean_all_rx_rings(adapter);
2178}
2179
2180static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2181{
2182 struct e1000_hw *hw = &adapter->hw;
2183 struct net_device *netdev = adapter->netdev;
2184 u32 rctl;
2185
2186 rctl = er32(RCTL);
2187 rctl &= ~E1000_RCTL_RST;
2188 ew32(RCTL, rctl);
2189 E1000_WRITE_FLUSH();
2190 mdelay(5);
2191
2192 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2193 e1000_pci_set_mwi(hw);
2194
2195 if (netif_running(netdev)) {
2196 /* No need to loop, because 82542 supports only 1 queue */
2197 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2198 e1000_configure_rx(adapter);
2199 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2200 }
2201}
2202
2203/**
2204 * e1000_set_mac - Change the Ethernet Address of the NIC
2205 * @netdev: network interface device structure
2206 * @p: pointer to an address structure
2207 *
2208 * Returns 0 on success, negative on failure
2209 **/
2210
2211static int e1000_set_mac(struct net_device *netdev, void *p)
2212{
2213 struct e1000_adapter *adapter = netdev_priv(netdev);
2214 struct e1000_hw *hw = &adapter->hw;
2215 struct sockaddr *addr = p;
2216
2217 if (!is_valid_ether_addr(addr->sa_data))
2218 return -EADDRNOTAVAIL;
2219
2220 /* 82542 2.0 needs to be in reset to write receive address registers */
2221
2222 if (hw->mac_type == e1000_82542_rev2_0)
2223 e1000_enter_82542_rst(adapter);
2224
2225 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2226 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2227
2228 e1000_rar_set(hw, hw->mac_addr, 0);
2229
2230 if (hw->mac_type == e1000_82542_rev2_0)
2231 e1000_leave_82542_rst(adapter);
2232
2233 return 0;
2234}
2235
2236/**
2237 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2238 * @netdev: network interface device structure
2239 *
2240 * The set_rx_mode entry point is called whenever the unicast or multicast
2241 * address lists or the network interface flags are updated. This routine is
2242 * responsible for configuring the hardware for proper unicast, multicast,
2243 * promiscuous mode, and all-multi behavior.
2244 **/
2245
2246static void e1000_set_rx_mode(struct net_device *netdev)
2247{
2248 struct e1000_adapter *adapter = netdev_priv(netdev);
2249 struct e1000_hw *hw = &adapter->hw;
2250 struct netdev_hw_addr *ha;
2251 bool use_uc = false;
2252 u32 rctl;
2253 u32 hash_value;
2254 int i, rar_entries = E1000_RAR_ENTRIES;
2255 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2256 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2257
2258 if (!mcarray) {
2259 e_err(probe, "memory allocation failed\n");
2260 return;
2261 }
2262
2263 /* Check for Promiscuous and All Multicast modes */
2264
2265 rctl = er32(RCTL);
2266
2267 if (netdev->flags & IFF_PROMISC) {
2268 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2269 rctl &= ~E1000_RCTL_VFE;
2270 } else {
2271 if (netdev->flags & IFF_ALLMULTI)
2272 rctl |= E1000_RCTL_MPE;
2273 else
2274 rctl &= ~E1000_RCTL_MPE;
2275 /* Enable VLAN filter if there is a VLAN */
2276 if (e1000_vlan_used(adapter))
2277 rctl |= E1000_RCTL_VFE;
2278 }
2279
2280 if (netdev_uc_count(netdev) > rar_entries - 1) {
2281 rctl |= E1000_RCTL_UPE;
2282 } else if (!(netdev->flags & IFF_PROMISC)) {
2283 rctl &= ~E1000_RCTL_UPE;
2284 use_uc = true;
2285 }
2286
2287 ew32(RCTL, rctl);
2288
2289 /* 82542 2.0 needs to be in reset to write receive address registers */
2290
2291 if (hw->mac_type == e1000_82542_rev2_0)
2292 e1000_enter_82542_rst(adapter);
2293
2294 /* load the first 14 addresses into the exact filters 1-14. Unicast
2295 * addresses take precedence to avoid disabling unicast filtering
2296 * when possible.
2297 *
2298 * RAR 0 is used for the station MAC address
2299 * if there are not 14 addresses, go ahead and clear the filters
2300 */
2301 i = 1;
2302 if (use_uc)
2303 netdev_for_each_uc_addr(ha, netdev) {
2304 if (i == rar_entries)
2305 break;
2306 e1000_rar_set(hw, ha->addr, i++);
2307 }
2308
2309 netdev_for_each_mc_addr(ha, netdev) {
2310 if (i == rar_entries) {
2311 /* load any remaining addresses into the hash table */
2312 u32 hash_reg, hash_bit, mta;
2313 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2314 hash_reg = (hash_value >> 5) & 0x7F;
2315 hash_bit = hash_value & 0x1F;
2316 mta = (1 << hash_bit);
2317 mcarray[hash_reg] |= mta;
2318 } else {
2319 e1000_rar_set(hw, ha->addr, i++);
2320 }
2321 }
2322
2323 for (; i < rar_entries; i++) {
2324 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2325 E1000_WRITE_FLUSH();
2326 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2327 E1000_WRITE_FLUSH();
2328 }
2329
2330 /* write the hash table completely, write from bottom to avoid
2331 * both stupid write combining chipsets, and flushing each write */
2332 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2333 /*
2334 * If we are on an 82544 has an errata where writing odd
2335 * offsets overwrites the previous even offset, but writing
2336 * backwards over the range solves the issue by always
2337 * writing the odd offset first
2338 */
2339 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2340 }
2341 E1000_WRITE_FLUSH();
2342
2343 if (hw->mac_type == e1000_82542_rev2_0)
2344 e1000_leave_82542_rst(adapter);
2345
2346 kfree(mcarray);
2347}
2348
2349/**
2350 * e1000_update_phy_info_task - get phy info
2351 * @work: work struct contained inside adapter struct
2352 *
2353 * Need to wait a few seconds after link up to get diagnostic information from
2354 * the phy
2355 */
2356static void e1000_update_phy_info_task(struct work_struct *work)
2357{
2358 struct e1000_adapter *adapter = container_of(work,
2359 struct e1000_adapter,
2360 phy_info_task.work);
2361 if (test_bit(__E1000_DOWN, &adapter->flags))
2362 return;
2363 mutex_lock(&adapter->mutex);
2364 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2365 mutex_unlock(&adapter->mutex);
2366}
2367
2368/**
2369 * e1000_82547_tx_fifo_stall_task - task to complete work
2370 * @work: work struct contained inside adapter struct
2371 **/
2372static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2373{
2374 struct e1000_adapter *adapter = container_of(work,
2375 struct e1000_adapter,
2376 fifo_stall_task.work);
2377 struct e1000_hw *hw = &adapter->hw;
2378 struct net_device *netdev = adapter->netdev;
2379 u32 tctl;
2380
2381 if (test_bit(__E1000_DOWN, &adapter->flags))
2382 return;
2383 mutex_lock(&adapter->mutex);
2384 if (atomic_read(&adapter->tx_fifo_stall)) {
2385 if ((er32(TDT) == er32(TDH)) &&
2386 (er32(TDFT) == er32(TDFH)) &&
2387 (er32(TDFTS) == er32(TDFHS))) {
2388 tctl = er32(TCTL);
2389 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2390 ew32(TDFT, adapter->tx_head_addr);
2391 ew32(TDFH, adapter->tx_head_addr);
2392 ew32(TDFTS, adapter->tx_head_addr);
2393 ew32(TDFHS, adapter->tx_head_addr);
2394 ew32(TCTL, tctl);
2395 E1000_WRITE_FLUSH();
2396
2397 adapter->tx_fifo_head = 0;
2398 atomic_set(&adapter->tx_fifo_stall, 0);
2399 netif_wake_queue(netdev);
2400 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2401 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2402 }
2403 }
2404 mutex_unlock(&adapter->mutex);
2405}
2406
2407bool e1000_has_link(struct e1000_adapter *adapter)
2408{
2409 struct e1000_hw *hw = &adapter->hw;
2410 bool link_active = false;
2411
2412 /* get_link_status is set on LSC (link status) interrupt or rx
2413 * sequence error interrupt (except on intel ce4100).
2414 * get_link_status will stay false until the
2415 * e1000_check_for_link establishes link for copper adapters
2416 * ONLY
2417 */
2418 switch (hw->media_type) {
2419 case e1000_media_type_copper:
2420 if (hw->mac_type == e1000_ce4100)
2421 hw->get_link_status = 1;
2422 if (hw->get_link_status) {
2423 e1000_check_for_link(hw);
2424 link_active = !hw->get_link_status;
2425 } else {
2426 link_active = true;
2427 }
2428 break;
2429 case e1000_media_type_fiber:
2430 e1000_check_for_link(hw);
2431 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2432 break;
2433 case e1000_media_type_internal_serdes:
2434 e1000_check_for_link(hw);
2435 link_active = hw->serdes_has_link;
2436 break;
2437 default:
2438 break;
2439 }
2440
2441 return link_active;
2442}
2443
2444/**
2445 * e1000_watchdog - work function
2446 * @work: work struct contained inside adapter struct
2447 **/
2448static void e1000_watchdog(struct work_struct *work)
2449{
2450 struct e1000_adapter *adapter = container_of(work,
2451 struct e1000_adapter,
2452 watchdog_task.work);
2453 struct e1000_hw *hw = &adapter->hw;
2454 struct net_device *netdev = adapter->netdev;
2455 struct e1000_tx_ring *txdr = adapter->tx_ring;
2456 u32 link, tctl;
2457
2458 if (test_bit(__E1000_DOWN, &adapter->flags))
2459 return;
2460
2461 mutex_lock(&adapter->mutex);
2462 link = e1000_has_link(adapter);
2463 if ((netif_carrier_ok(netdev)) && link)
2464 goto link_up;
2465
2466 if (link) {
2467 if (!netif_carrier_ok(netdev)) {
2468 u32 ctrl;
2469 bool txb2b = true;
2470 /* update snapshot of PHY registers on LSC */
2471 e1000_get_speed_and_duplex(hw,
2472 &adapter->link_speed,
2473 &adapter->link_duplex);
2474
2475 ctrl = er32(CTRL);
2476 pr_info("%s NIC Link is Up %d Mbps %s, "
2477 "Flow Control: %s\n",
2478 netdev->name,
2479 adapter->link_speed,
2480 adapter->link_duplex == FULL_DUPLEX ?
2481 "Full Duplex" : "Half Duplex",
2482 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2483 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2484 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2485 E1000_CTRL_TFCE) ? "TX" : "None")));
2486
2487 /* adjust timeout factor according to speed/duplex */
2488 adapter->tx_timeout_factor = 1;
2489 switch (adapter->link_speed) {
2490 case SPEED_10:
2491 txb2b = false;
2492 adapter->tx_timeout_factor = 16;
2493 break;
2494 case SPEED_100:
2495 txb2b = false;
2496 /* maybe add some timeout factor ? */
2497 break;
2498 }
2499
2500 /* enable transmits in the hardware */
2501 tctl = er32(TCTL);
2502 tctl |= E1000_TCTL_EN;
2503 ew32(TCTL, tctl);
2504
2505 netif_carrier_on(netdev);
2506 if (!test_bit(__E1000_DOWN, &adapter->flags))
2507 schedule_delayed_work(&adapter->phy_info_task,
2508 2 * HZ);
2509 adapter->smartspeed = 0;
2510 }
2511 } else {
2512 if (netif_carrier_ok(netdev)) {
2513 adapter->link_speed = 0;
2514 adapter->link_duplex = 0;
2515 pr_info("%s NIC Link is Down\n",
2516 netdev->name);
2517 netif_carrier_off(netdev);
2518
2519 if (!test_bit(__E1000_DOWN, &adapter->flags))
2520 schedule_delayed_work(&adapter->phy_info_task,
2521 2 * HZ);
2522 }
2523
2524 e1000_smartspeed(adapter);
2525 }
2526
2527link_up:
2528 e1000_update_stats(adapter);
2529
2530 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2531 adapter->tpt_old = adapter->stats.tpt;
2532 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2533 adapter->colc_old = adapter->stats.colc;
2534
2535 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2536 adapter->gorcl_old = adapter->stats.gorcl;
2537 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2538 adapter->gotcl_old = adapter->stats.gotcl;
2539
2540 e1000_update_adaptive(hw);
2541
2542 if (!netif_carrier_ok(netdev)) {
2543 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2544 /* We've lost link, so the controller stops DMA,
2545 * but we've got queued Tx work that's never going
2546 * to get done, so reset controller to flush Tx.
2547 * (Do the reset outside of interrupt context). */
2548 adapter->tx_timeout_count++;
2549 schedule_work(&adapter->reset_task);
2550 /* exit immediately since reset is imminent */
2551 goto unlock;
2552 }
2553 }
2554
2555 /* Simple mode for Interrupt Throttle Rate (ITR) */
2556 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2557 /*
2558 * Symmetric Tx/Rx gets a reduced ITR=2000;
2559 * Total asymmetrical Tx or Rx gets ITR=8000;
2560 * everyone else is between 2000-8000.
2561 */
2562 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2563 u32 dif = (adapter->gotcl > adapter->gorcl ?
2564 adapter->gotcl - adapter->gorcl :
2565 adapter->gorcl - adapter->gotcl) / 10000;
2566 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2567
2568 ew32(ITR, 1000000000 / (itr * 256));
2569 }
2570
2571 /* Cause software interrupt to ensure rx ring is cleaned */
2572 ew32(ICS, E1000_ICS_RXDMT0);
2573
2574 /* Force detection of hung controller every watchdog period */
2575 adapter->detect_tx_hung = true;
2576
2577 /* Reschedule the task */
2578 if (!test_bit(__E1000_DOWN, &adapter->flags))
2579 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2580
2581unlock:
2582 mutex_unlock(&adapter->mutex);
2583}
2584
2585enum latency_range {
2586 lowest_latency = 0,
2587 low_latency = 1,
2588 bulk_latency = 2,
2589 latency_invalid = 255
2590};
2591
2592/**
2593 * e1000_update_itr - update the dynamic ITR value based on statistics
2594 * @adapter: pointer to adapter
2595 * @itr_setting: current adapter->itr
2596 * @packets: the number of packets during this measurement interval
2597 * @bytes: the number of bytes during this measurement interval
2598 *
2599 * Stores a new ITR value based on packets and byte
2600 * counts during the last interrupt. The advantage of per interrupt
2601 * computation is faster updates and more accurate ITR for the current
2602 * traffic pattern. Constants in this function were computed
2603 * based on theoretical maximum wire speed and thresholds were set based
2604 * on testing data as well as attempting to minimize response time
2605 * while increasing bulk throughput.
2606 * this functionality is controlled by the InterruptThrottleRate module
2607 * parameter (see e1000_param.c)
2608 **/
2609static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2610 u16 itr_setting, int packets, int bytes)
2611{
2612 unsigned int retval = itr_setting;
2613 struct e1000_hw *hw = &adapter->hw;
2614
2615 if (unlikely(hw->mac_type < e1000_82540))
2616 goto update_itr_done;
2617
2618 if (packets == 0)
2619 goto update_itr_done;
2620
2621 switch (itr_setting) {
2622 case lowest_latency:
2623 /* jumbo frames get bulk treatment*/
2624 if (bytes/packets > 8000)
2625 retval = bulk_latency;
2626 else if ((packets < 5) && (bytes > 512))
2627 retval = low_latency;
2628 break;
2629 case low_latency: /* 50 usec aka 20000 ints/s */
2630 if (bytes > 10000) {
2631 /* jumbo frames need bulk latency setting */
2632 if (bytes/packets > 8000)
2633 retval = bulk_latency;
2634 else if ((packets < 10) || ((bytes/packets) > 1200))
2635 retval = bulk_latency;
2636 else if ((packets > 35))
2637 retval = lowest_latency;
2638 } else if (bytes/packets > 2000)
2639 retval = bulk_latency;
2640 else if (packets <= 2 && bytes < 512)
2641 retval = lowest_latency;
2642 break;
2643 case bulk_latency: /* 250 usec aka 4000 ints/s */
2644 if (bytes > 25000) {
2645 if (packets > 35)
2646 retval = low_latency;
2647 } else if (bytes < 6000) {
2648 retval = low_latency;
2649 }
2650 break;
2651 }
2652
2653update_itr_done:
2654 return retval;
2655}
2656
2657static void e1000_set_itr(struct e1000_adapter *adapter)
2658{
2659 struct e1000_hw *hw = &adapter->hw;
2660 u16 current_itr;
2661 u32 new_itr = adapter->itr;
2662
2663 if (unlikely(hw->mac_type < e1000_82540))
2664 return;
2665
2666 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2667 if (unlikely(adapter->link_speed != SPEED_1000)) {
2668 current_itr = 0;
2669 new_itr = 4000;
2670 goto set_itr_now;
2671 }
2672
2673 adapter->tx_itr = e1000_update_itr(adapter,
2674 adapter->tx_itr,
2675 adapter->total_tx_packets,
2676 adapter->total_tx_bytes);
2677 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2678 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2679 adapter->tx_itr = low_latency;
2680
2681 adapter->rx_itr = e1000_update_itr(adapter,
2682 adapter->rx_itr,
2683 adapter->total_rx_packets,
2684 adapter->total_rx_bytes);
2685 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2686 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2687 adapter->rx_itr = low_latency;
2688
2689 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2690
2691 switch (current_itr) {
2692 /* counts and packets in update_itr are dependent on these numbers */
2693 case lowest_latency:
2694 new_itr = 70000;
2695 break;
2696 case low_latency:
2697 new_itr = 20000; /* aka hwitr = ~200 */
2698 break;
2699 case bulk_latency:
2700 new_itr = 4000;
2701 break;
2702 default:
2703 break;
2704 }
2705
2706set_itr_now:
2707 if (new_itr != adapter->itr) {
2708 /* this attempts to bias the interrupt rate towards Bulk
2709 * by adding intermediate steps when interrupt rate is
2710 * increasing */
2711 new_itr = new_itr > adapter->itr ?
2712 min(adapter->itr + (new_itr >> 2), new_itr) :
2713 new_itr;
2714 adapter->itr = new_itr;
2715 ew32(ITR, 1000000000 / (new_itr * 256));
2716 }
2717}
2718
2719#define E1000_TX_FLAGS_CSUM 0x00000001
2720#define E1000_TX_FLAGS_VLAN 0x00000002
2721#define E1000_TX_FLAGS_TSO 0x00000004
2722#define E1000_TX_FLAGS_IPV4 0x00000008
2723#define E1000_TX_FLAGS_NO_FCS 0x00000010
2724#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2725#define E1000_TX_FLAGS_VLAN_SHIFT 16
2726
2727static int e1000_tso(struct e1000_adapter *adapter,
2728 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2729{
2730 struct e1000_context_desc *context_desc;
2731 struct e1000_buffer *buffer_info;
2732 unsigned int i;
2733 u32 cmd_length = 0;
2734 u16 ipcse = 0, tucse, mss;
2735 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2736 int err;
2737
2738 if (skb_is_gso(skb)) {
2739 if (skb_header_cloned(skb)) {
2740 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2741 if (err)
2742 return err;
2743 }
2744
2745 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2746 mss = skb_shinfo(skb)->gso_size;
2747 if (skb->protocol == htons(ETH_P_IP)) {
2748 struct iphdr *iph = ip_hdr(skb);
2749 iph->tot_len = 0;
2750 iph->check = 0;
2751 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2752 iph->daddr, 0,
2753 IPPROTO_TCP,
2754 0);
2755 cmd_length = E1000_TXD_CMD_IP;
2756 ipcse = skb_transport_offset(skb) - 1;
2757 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2758 ipv6_hdr(skb)->payload_len = 0;
2759 tcp_hdr(skb)->check =
2760 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2761 &ipv6_hdr(skb)->daddr,
2762 0, IPPROTO_TCP, 0);
2763 ipcse = 0;
2764 }
2765 ipcss = skb_network_offset(skb);
2766 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2767 tucss = skb_transport_offset(skb);
2768 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2769 tucse = 0;
2770
2771 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2772 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2773
2774 i = tx_ring->next_to_use;
2775 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2776 buffer_info = &tx_ring->buffer_info[i];
2777
2778 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2779 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2780 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2781 context_desc->upper_setup.tcp_fields.tucss = tucss;
2782 context_desc->upper_setup.tcp_fields.tucso = tucso;
2783 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2784 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2785 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2786 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2787
2788 buffer_info->time_stamp = jiffies;
2789 buffer_info->next_to_watch = i;
2790
2791 if (++i == tx_ring->count) i = 0;
2792 tx_ring->next_to_use = i;
2793
2794 return true;
2795 }
2796 return false;
2797}
2798
2799static bool e1000_tx_csum(struct e1000_adapter *adapter,
2800 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2801{
2802 struct e1000_context_desc *context_desc;
2803 struct e1000_buffer *buffer_info;
2804 unsigned int i;
2805 u8 css;
2806 u32 cmd_len = E1000_TXD_CMD_DEXT;
2807
2808 if (skb->ip_summed != CHECKSUM_PARTIAL)
2809 return false;
2810
2811 switch (skb->protocol) {
2812 case cpu_to_be16(ETH_P_IP):
2813 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2814 cmd_len |= E1000_TXD_CMD_TCP;
2815 break;
2816 case cpu_to_be16(ETH_P_IPV6):
2817 /* XXX not handling all IPV6 headers */
2818 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2819 cmd_len |= E1000_TXD_CMD_TCP;
2820 break;
2821 default:
2822 if (unlikely(net_ratelimit()))
2823 e_warn(drv, "checksum_partial proto=%x!\n",
2824 skb->protocol);
2825 break;
2826 }
2827
2828 css = skb_checksum_start_offset(skb);
2829
2830 i = tx_ring->next_to_use;
2831 buffer_info = &tx_ring->buffer_info[i];
2832 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2833
2834 context_desc->lower_setup.ip_config = 0;
2835 context_desc->upper_setup.tcp_fields.tucss = css;
2836 context_desc->upper_setup.tcp_fields.tucso =
2837 css + skb->csum_offset;
2838 context_desc->upper_setup.tcp_fields.tucse = 0;
2839 context_desc->tcp_seg_setup.data = 0;
2840 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2841
2842 buffer_info->time_stamp = jiffies;
2843 buffer_info->next_to_watch = i;
2844
2845 if (unlikely(++i == tx_ring->count)) i = 0;
2846 tx_ring->next_to_use = i;
2847
2848 return true;
2849}
2850
2851#define E1000_MAX_TXD_PWR 12
2852#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2853
2854static int e1000_tx_map(struct e1000_adapter *adapter,
2855 struct e1000_tx_ring *tx_ring,
2856 struct sk_buff *skb, unsigned int first,
2857 unsigned int max_per_txd, unsigned int nr_frags,
2858 unsigned int mss)
2859{
2860 struct e1000_hw *hw = &adapter->hw;
2861 struct pci_dev *pdev = adapter->pdev;
2862 struct e1000_buffer *buffer_info;
2863 unsigned int len = skb_headlen(skb);
2864 unsigned int offset = 0, size, count = 0, i;
2865 unsigned int f, bytecount, segs;
2866
2867 i = tx_ring->next_to_use;
2868
2869 while (len) {
2870 buffer_info = &tx_ring->buffer_info[i];
2871 size = min(len, max_per_txd);
2872 /* Workaround for Controller erratum --
2873 * descriptor for non-tso packet in a linear SKB that follows a
2874 * tso gets written back prematurely before the data is fully
2875 * DMA'd to the controller */
2876 if (!skb->data_len && tx_ring->last_tx_tso &&
2877 !skb_is_gso(skb)) {
2878 tx_ring->last_tx_tso = false;
2879 size -= 4;
2880 }
2881
2882 /* Workaround for premature desc write-backs
2883 * in TSO mode. Append 4-byte sentinel desc */
2884 if (unlikely(mss && !nr_frags && size == len && size > 8))
2885 size -= 4;
2886 /* work-around for errata 10 and it applies
2887 * to all controllers in PCI-X mode
2888 * The fix is to make sure that the first descriptor of a
2889 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2890 */
2891 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2892 (size > 2015) && count == 0))
2893 size = 2015;
2894
2895 /* Workaround for potential 82544 hang in PCI-X. Avoid
2896 * terminating buffers within evenly-aligned dwords. */
2897 if (unlikely(adapter->pcix_82544 &&
2898 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2899 size > 4))
2900 size -= 4;
2901
2902 buffer_info->length = size;
2903 /* set time_stamp *before* dma to help avoid a possible race */
2904 buffer_info->time_stamp = jiffies;
2905 buffer_info->mapped_as_page = false;
2906 buffer_info->dma = dma_map_single(&pdev->dev,
2907 skb->data + offset,
2908 size, DMA_TO_DEVICE);
2909 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2910 goto dma_error;
2911 buffer_info->next_to_watch = i;
2912
2913 len -= size;
2914 offset += size;
2915 count++;
2916 if (len) {
2917 i++;
2918 if (unlikely(i == tx_ring->count))
2919 i = 0;
2920 }
2921 }
2922
2923 for (f = 0; f < nr_frags; f++) {
2924 const struct skb_frag_struct *frag;
2925
2926 frag = &skb_shinfo(skb)->frags[f];
2927 len = skb_frag_size(frag);
2928 offset = 0;
2929
2930 while (len) {
2931 unsigned long bufend;
2932 i++;
2933 if (unlikely(i == tx_ring->count))
2934 i = 0;
2935
2936 buffer_info = &tx_ring->buffer_info[i];
2937 size = min(len, max_per_txd);
2938 /* Workaround for premature desc write-backs
2939 * in TSO mode. Append 4-byte sentinel desc */
2940 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2941 size -= 4;
2942 /* Workaround for potential 82544 hang in PCI-X.
2943 * Avoid terminating buffers within evenly-aligned
2944 * dwords. */
2945 bufend = (unsigned long)
2946 page_to_phys(skb_frag_page(frag));
2947 bufend += offset + size - 1;
2948 if (unlikely(adapter->pcix_82544 &&
2949 !(bufend & 4) &&
2950 size > 4))
2951 size -= 4;
2952
2953 buffer_info->length = size;
2954 buffer_info->time_stamp = jiffies;
2955 buffer_info->mapped_as_page = true;
2956 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2957 offset, size, DMA_TO_DEVICE);
2958 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2959 goto dma_error;
2960 buffer_info->next_to_watch = i;
2961
2962 len -= size;
2963 offset += size;
2964 count++;
2965 }
2966 }
2967
2968 segs = skb_shinfo(skb)->gso_segs ?: 1;
2969 /* multiply data chunks by size of headers */
2970 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2971
2972 tx_ring->buffer_info[i].skb = skb;
2973 tx_ring->buffer_info[i].segs = segs;
2974 tx_ring->buffer_info[i].bytecount = bytecount;
2975 tx_ring->buffer_info[first].next_to_watch = i;
2976
2977 return count;
2978
2979dma_error:
2980 dev_err(&pdev->dev, "TX DMA map failed\n");
2981 buffer_info->dma = 0;
2982 if (count)
2983 count--;
2984
2985 while (count--) {
2986 if (i==0)
2987 i += tx_ring->count;
2988 i--;
2989 buffer_info = &tx_ring->buffer_info[i];
2990 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2991 }
2992
2993 return 0;
2994}
2995
2996static void e1000_tx_queue(struct e1000_adapter *adapter,
2997 struct e1000_tx_ring *tx_ring, int tx_flags,
2998 int count)
2999{
3000 struct e1000_hw *hw = &adapter->hw;
3001 struct e1000_tx_desc *tx_desc = NULL;
3002 struct e1000_buffer *buffer_info;
3003 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3004 unsigned int i;
3005
3006 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3007 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3008 E1000_TXD_CMD_TSE;
3009 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3010
3011 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3012 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3013 }
3014
3015 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3016 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3017 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3018 }
3019
3020 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3021 txd_lower |= E1000_TXD_CMD_VLE;
3022 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3023 }
3024
3025 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3026 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3027
3028 i = tx_ring->next_to_use;
3029
3030 while (count--) {
3031 buffer_info = &tx_ring->buffer_info[i];
3032 tx_desc = E1000_TX_DESC(*tx_ring, i);
3033 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3034 tx_desc->lower.data =
3035 cpu_to_le32(txd_lower | buffer_info->length);
3036 tx_desc->upper.data = cpu_to_le32(txd_upper);
3037 if (unlikely(++i == tx_ring->count)) i = 0;
3038 }
3039
3040 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3041
3042 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3043 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3044 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3045
3046 /* Force memory writes to complete before letting h/w
3047 * know there are new descriptors to fetch. (Only
3048 * applicable for weak-ordered memory model archs,
3049 * such as IA-64). */
3050 wmb();
3051
3052 tx_ring->next_to_use = i;
3053 writel(i, hw->hw_addr + tx_ring->tdt);
3054 /* we need this if more than one processor can write to our tail
3055 * at a time, it syncronizes IO on IA64/Altix systems */
3056 mmiowb();
3057}
3058
3059/**
3060 * 82547 workaround to avoid controller hang in half-duplex environment.
3061 * The workaround is to avoid queuing a large packet that would span
3062 * the internal Tx FIFO ring boundary by notifying the stack to resend
3063 * the packet at a later time. This gives the Tx FIFO an opportunity to
3064 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3065 * to the beginning of the Tx FIFO.
3066 **/
3067
3068#define E1000_FIFO_HDR 0x10
3069#define E1000_82547_PAD_LEN 0x3E0
3070
3071static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3072 struct sk_buff *skb)
3073{
3074 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3075 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3076
3077 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3078
3079 if (adapter->link_duplex != HALF_DUPLEX)
3080 goto no_fifo_stall_required;
3081
3082 if (atomic_read(&adapter->tx_fifo_stall))
3083 return 1;
3084
3085 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3086 atomic_set(&adapter->tx_fifo_stall, 1);
3087 return 1;
3088 }
3089
3090no_fifo_stall_required:
3091 adapter->tx_fifo_head += skb_fifo_len;
3092 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3093 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3094 return 0;
3095}
3096
3097static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3098{
3099 struct e1000_adapter *adapter = netdev_priv(netdev);
3100 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3101
3102 netif_stop_queue(netdev);
3103 /* Herbert's original patch had:
3104 * smp_mb__after_netif_stop_queue();
3105 * but since that doesn't exist yet, just open code it. */
3106 smp_mb();
3107
3108 /* We need to check again in a case another CPU has just
3109 * made room available. */
3110 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3111 return -EBUSY;
3112
3113 /* A reprieve! */
3114 netif_start_queue(netdev);
3115 ++adapter->restart_queue;
3116 return 0;
3117}
3118
3119static int e1000_maybe_stop_tx(struct net_device *netdev,
3120 struct e1000_tx_ring *tx_ring, int size)
3121{
3122 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3123 return 0;
3124 return __e1000_maybe_stop_tx(netdev, size);
3125}
3126
3127#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3128static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3129 struct net_device *netdev)
3130{
3131 struct e1000_adapter *adapter = netdev_priv(netdev);
3132 struct e1000_hw *hw = &adapter->hw;
3133 struct e1000_tx_ring *tx_ring;
3134 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3135 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3136 unsigned int tx_flags = 0;
3137 unsigned int len = skb_headlen(skb);
3138 unsigned int nr_frags;
3139 unsigned int mss;
3140 int count = 0;
3141 int tso;
3142 unsigned int f;
3143
3144 /* This goes back to the question of how to logically map a tx queue
3145 * to a flow. Right now, performance is impacted slightly negatively
3146 * if using multiple tx queues. If the stack breaks away from a
3147 * single qdisc implementation, we can look at this again. */
3148 tx_ring = adapter->tx_ring;
3149
3150 if (unlikely(skb->len <= 0)) {
3151 dev_kfree_skb_any(skb);
3152 return NETDEV_TX_OK;
3153 }
3154
3155 mss = skb_shinfo(skb)->gso_size;
3156 /* The controller does a simple calculation to
3157 * make sure there is enough room in the FIFO before
3158 * initiating the DMA for each buffer. The calc is:
3159 * 4 = ceil(buffer len/mss). To make sure we don't
3160 * overrun the FIFO, adjust the max buffer len if mss
3161 * drops. */
3162 if (mss) {
3163 u8 hdr_len;
3164 max_per_txd = min(mss << 2, max_per_txd);
3165 max_txd_pwr = fls(max_per_txd) - 1;
3166
3167 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3168 if (skb->data_len && hdr_len == len) {
3169 switch (hw->mac_type) {
3170 unsigned int pull_size;
3171 case e1000_82544:
3172 /* Make sure we have room to chop off 4 bytes,
3173 * and that the end alignment will work out to
3174 * this hardware's requirements
3175 * NOTE: this is a TSO only workaround
3176 * if end byte alignment not correct move us
3177 * into the next dword */
3178 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3179 break;
3180 /* fall through */
3181 pull_size = min((unsigned int)4, skb->data_len);
3182 if (!__pskb_pull_tail(skb, pull_size)) {
3183 e_err(drv, "__pskb_pull_tail "
3184 "failed.\n");
3185 dev_kfree_skb_any(skb);
3186 return NETDEV_TX_OK;
3187 }
3188 len = skb_headlen(skb);
3189 break;
3190 default:
3191 /* do nothing */
3192 break;
3193 }
3194 }
3195 }
3196
3197 /* reserve a descriptor for the offload context */
3198 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3199 count++;
3200 count++;
3201
3202 /* Controller Erratum workaround */
3203 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3204 count++;
3205
3206 count += TXD_USE_COUNT(len, max_txd_pwr);
3207
3208 if (adapter->pcix_82544)
3209 count++;
3210
3211 /* work-around for errata 10 and it applies to all controllers
3212 * in PCI-X mode, so add one more descriptor to the count
3213 */
3214 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3215 (len > 2015)))
3216 count++;
3217
3218 nr_frags = skb_shinfo(skb)->nr_frags;
3219 for (f = 0; f < nr_frags; f++)
3220 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3221 max_txd_pwr);
3222 if (adapter->pcix_82544)
3223 count += nr_frags;
3224
3225 /* need: count + 2 desc gap to keep tail from touching
3226 * head, otherwise try next time */
3227 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3228 return NETDEV_TX_BUSY;
3229
3230 if (unlikely((hw->mac_type == e1000_82547) &&
3231 (e1000_82547_fifo_workaround(adapter, skb)))) {
3232 netif_stop_queue(netdev);
3233 if (!test_bit(__E1000_DOWN, &adapter->flags))
3234 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3235 return NETDEV_TX_BUSY;
3236 }
3237
3238 if (vlan_tx_tag_present(skb)) {
3239 tx_flags |= E1000_TX_FLAGS_VLAN;
3240 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3241 }
3242
3243 first = tx_ring->next_to_use;
3244
3245 tso = e1000_tso(adapter, tx_ring, skb);
3246 if (tso < 0) {
3247 dev_kfree_skb_any(skb);
3248 return NETDEV_TX_OK;
3249 }
3250
3251 if (likely(tso)) {
3252 if (likely(hw->mac_type != e1000_82544))
3253 tx_ring->last_tx_tso = true;
3254 tx_flags |= E1000_TX_FLAGS_TSO;
3255 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3256 tx_flags |= E1000_TX_FLAGS_CSUM;
3257
3258 if (likely(skb->protocol == htons(ETH_P_IP)))
3259 tx_flags |= E1000_TX_FLAGS_IPV4;
3260
3261 if (unlikely(skb->no_fcs))
3262 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3263
3264 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3265 nr_frags, mss);
3266
3267 if (count) {
3268 skb_tx_timestamp(skb);
3269
3270 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3271 /* Make sure there is space in the ring for the next send. */
3272 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3273
3274 } else {
3275 dev_kfree_skb_any(skb);
3276 tx_ring->buffer_info[first].time_stamp = 0;
3277 tx_ring->next_to_use = first;
3278 }
3279
3280 return NETDEV_TX_OK;
3281}
3282
3283#define NUM_REGS 38 /* 1 based count */
3284static void e1000_regdump(struct e1000_adapter *adapter)
3285{
3286 struct e1000_hw *hw = &adapter->hw;
3287 u32 regs[NUM_REGS];
3288 u32 *regs_buff = regs;
3289 int i = 0;
3290
3291 static const char * const reg_name[] = {
3292 "CTRL", "STATUS",
3293 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3294 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3295 "TIDV", "TXDCTL", "TADV", "TARC0",
3296 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3297 "TXDCTL1", "TARC1",
3298 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3299 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3300 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3301 };
3302
3303 regs_buff[0] = er32(CTRL);
3304 regs_buff[1] = er32(STATUS);
3305
3306 regs_buff[2] = er32(RCTL);
3307 regs_buff[3] = er32(RDLEN);
3308 regs_buff[4] = er32(RDH);
3309 regs_buff[5] = er32(RDT);
3310 regs_buff[6] = er32(RDTR);
3311
3312 regs_buff[7] = er32(TCTL);
3313 regs_buff[8] = er32(TDBAL);
3314 regs_buff[9] = er32(TDBAH);
3315 regs_buff[10] = er32(TDLEN);
3316 regs_buff[11] = er32(TDH);
3317 regs_buff[12] = er32(TDT);
3318 regs_buff[13] = er32(TIDV);
3319 regs_buff[14] = er32(TXDCTL);
3320 regs_buff[15] = er32(TADV);
3321 regs_buff[16] = er32(TARC0);
3322
3323 regs_buff[17] = er32(TDBAL1);
3324 regs_buff[18] = er32(TDBAH1);
3325 regs_buff[19] = er32(TDLEN1);
3326 regs_buff[20] = er32(TDH1);
3327 regs_buff[21] = er32(TDT1);
3328 regs_buff[22] = er32(TXDCTL1);
3329 regs_buff[23] = er32(TARC1);
3330 regs_buff[24] = er32(CTRL_EXT);
3331 regs_buff[25] = er32(ERT);
3332 regs_buff[26] = er32(RDBAL0);
3333 regs_buff[27] = er32(RDBAH0);
3334 regs_buff[28] = er32(TDFH);
3335 regs_buff[29] = er32(TDFT);
3336 regs_buff[30] = er32(TDFHS);
3337 regs_buff[31] = er32(TDFTS);
3338 regs_buff[32] = er32(TDFPC);
3339 regs_buff[33] = er32(RDFH);
3340 regs_buff[34] = er32(RDFT);
3341 regs_buff[35] = er32(RDFHS);
3342 regs_buff[36] = er32(RDFTS);
3343 regs_buff[37] = er32(RDFPC);
3344
3345 pr_info("Register dump\n");
3346 for (i = 0; i < NUM_REGS; i++)
3347 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3348}
3349
3350/*
3351 * e1000_dump: Print registers, tx ring and rx ring
3352 */
3353static void e1000_dump(struct e1000_adapter *adapter)
3354{
3355 /* this code doesn't handle multiple rings */
3356 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3357 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3358 int i;
3359
3360 if (!netif_msg_hw(adapter))
3361 return;
3362
3363 /* Print Registers */
3364 e1000_regdump(adapter);
3365
3366 /*
3367 * transmit dump
3368 */
3369 pr_info("TX Desc ring0 dump\n");
3370
3371 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3372 *
3373 * Legacy Transmit Descriptor
3374 * +--------------------------------------------------------------+
3375 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3376 * +--------------------------------------------------------------+
3377 * 8 | Special | CSS | Status | CMD | CSO | Length |
3378 * +--------------------------------------------------------------+
3379 * 63 48 47 36 35 32 31 24 23 16 15 0
3380 *
3381 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3382 * 63 48 47 40 39 32 31 16 15 8 7 0
3383 * +----------------------------------------------------------------+
3384 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3385 * +----------------------------------------------------------------+
3386 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3387 * +----------------------------------------------------------------+
3388 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3389 *
3390 * Extended Data Descriptor (DTYP=0x1)
3391 * +----------------------------------------------------------------+
3392 * 0 | Buffer Address [63:0] |
3393 * +----------------------------------------------------------------+
3394 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3395 * +----------------------------------------------------------------+
3396 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3397 */
3398 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3399 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3400
3401 if (!netif_msg_tx_done(adapter))
3402 goto rx_ring_summary;
3403
3404 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3405 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3406 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3407 struct my_u { __le64 a; __le64 b; };
3408 struct my_u *u = (struct my_u *)tx_desc;
3409 const char *type;
3410
3411 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3412 type = "NTC/U";
3413 else if (i == tx_ring->next_to_use)
3414 type = "NTU";
3415 else if (i == tx_ring->next_to_clean)
3416 type = "NTC";
3417 else
3418 type = "";
3419
3420 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3421 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3422 le64_to_cpu(u->a), le64_to_cpu(u->b),
3423 (u64)buffer_info->dma, buffer_info->length,
3424 buffer_info->next_to_watch,
3425 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3426 }
3427
3428rx_ring_summary:
3429 /*
3430 * receive dump
3431 */
3432 pr_info("\nRX Desc ring dump\n");
3433
3434 /* Legacy Receive Descriptor Format
3435 *
3436 * +-----------------------------------------------------+
3437 * | Buffer Address [63:0] |
3438 * +-----------------------------------------------------+
3439 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3440 * +-----------------------------------------------------+
3441 * 63 48 47 40 39 32 31 16 15 0
3442 */
3443 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3444
3445 if (!netif_msg_rx_status(adapter))
3446 goto exit;
3447
3448 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3449 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3450 struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3451 struct my_u { __le64 a; __le64 b; };
3452 struct my_u *u = (struct my_u *)rx_desc;
3453 const char *type;
3454
3455 if (i == rx_ring->next_to_use)
3456 type = "NTU";
3457 else if (i == rx_ring->next_to_clean)
3458 type = "NTC";
3459 else
3460 type = "";
3461
3462 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3463 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3464 (u64)buffer_info->dma, buffer_info->skb, type);
3465 } /* for */
3466
3467 /* dump the descriptor caches */
3468 /* rx */
3469 pr_info("Rx descriptor cache in 64bit format\n");
3470 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3471 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3472 i,
3473 readl(adapter->hw.hw_addr + i+4),
3474 readl(adapter->hw.hw_addr + i),
3475 readl(adapter->hw.hw_addr + i+12),
3476 readl(adapter->hw.hw_addr + i+8));
3477 }
3478 /* tx */
3479 pr_info("Tx descriptor cache in 64bit format\n");
3480 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3481 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3482 i,
3483 readl(adapter->hw.hw_addr + i+4),
3484 readl(adapter->hw.hw_addr + i),
3485 readl(adapter->hw.hw_addr + i+12),
3486 readl(adapter->hw.hw_addr + i+8));
3487 }
3488exit:
3489 return;
3490}
3491
3492/**
3493 * e1000_tx_timeout - Respond to a Tx Hang
3494 * @netdev: network interface device structure
3495 **/
3496
3497static void e1000_tx_timeout(struct net_device *netdev)
3498{
3499 struct e1000_adapter *adapter = netdev_priv(netdev);
3500
3501 /* Do the reset outside of interrupt context */
3502 adapter->tx_timeout_count++;
3503 schedule_work(&adapter->reset_task);
3504}
3505
3506static void e1000_reset_task(struct work_struct *work)
3507{
3508 struct e1000_adapter *adapter =
3509 container_of(work, struct e1000_adapter, reset_task);
3510
3511 if (test_bit(__E1000_DOWN, &adapter->flags))
3512 return;
3513 e_err(drv, "Reset adapter\n");
3514 e1000_reinit_safe(adapter);
3515}
3516
3517/**
3518 * e1000_get_stats - Get System Network Statistics
3519 * @netdev: network interface device structure
3520 *
3521 * Returns the address of the device statistics structure.
3522 * The statistics are actually updated from the watchdog.
3523 **/
3524
3525static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3526{
3527 /* only return the current stats */
3528 return &netdev->stats;
3529}
3530
3531/**
3532 * e1000_change_mtu - Change the Maximum Transfer Unit
3533 * @netdev: network interface device structure
3534 * @new_mtu: new value for maximum frame size
3535 *
3536 * Returns 0 on success, negative on failure
3537 **/
3538
3539static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3540{
3541 struct e1000_adapter *adapter = netdev_priv(netdev);
3542 struct e1000_hw *hw = &adapter->hw;
3543 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3544
3545 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3546 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3547 e_err(probe, "Invalid MTU setting\n");
3548 return -EINVAL;
3549 }
3550
3551 /* Adapter-specific max frame size limits. */
3552 switch (hw->mac_type) {
3553 case e1000_undefined ... e1000_82542_rev2_1:
3554 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3555 e_err(probe, "Jumbo Frames not supported.\n");
3556 return -EINVAL;
3557 }
3558 break;
3559 default:
3560 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3561 break;
3562 }
3563
3564 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3565 msleep(1);
3566 /* e1000_down has a dependency on max_frame_size */
3567 hw->max_frame_size = max_frame;
3568 if (netif_running(netdev))
3569 e1000_down(adapter);
3570
3571 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3572 * means we reserve 2 more, this pushes us to allocate from the next
3573 * larger slab size.
3574 * i.e. RXBUFFER_2048 --> size-4096 slab
3575 * however with the new *_jumbo_rx* routines, jumbo receives will use
3576 * fragmented skbs */
3577
3578 if (max_frame <= E1000_RXBUFFER_2048)
3579 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3580 else
3581#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3582 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3583#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3584 adapter->rx_buffer_len = PAGE_SIZE;
3585#endif
3586
3587 /* adjust allocation if LPE protects us, and we aren't using SBP */
3588 if (!hw->tbi_compatibility_on &&
3589 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3590 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3591 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3592
3593 pr_info("%s changing MTU from %d to %d\n",
3594 netdev->name, netdev->mtu, new_mtu);
3595 netdev->mtu = new_mtu;
3596
3597 if (netif_running(netdev))
3598 e1000_up(adapter);
3599 else
3600 e1000_reset(adapter);
3601
3602 clear_bit(__E1000_RESETTING, &adapter->flags);
3603
3604 return 0;
3605}
3606
3607/**
3608 * e1000_update_stats - Update the board statistics counters
3609 * @adapter: board private structure
3610 **/
3611
3612void e1000_update_stats(struct e1000_adapter *adapter)
3613{
3614 struct net_device *netdev = adapter->netdev;
3615 struct e1000_hw *hw = &adapter->hw;
3616 struct pci_dev *pdev = adapter->pdev;
3617 unsigned long flags;
3618 u16 phy_tmp;
3619
3620#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3621
3622 /*
3623 * Prevent stats update while adapter is being reset, or if the pci
3624 * connection is down.
3625 */
3626 if (adapter->link_speed == 0)
3627 return;
3628 if (pci_channel_offline(pdev))
3629 return;
3630
3631 spin_lock_irqsave(&adapter->stats_lock, flags);
3632
3633 /* these counters are modified from e1000_tbi_adjust_stats,
3634 * called from the interrupt context, so they must only
3635 * be written while holding adapter->stats_lock
3636 */
3637
3638 adapter->stats.crcerrs += er32(CRCERRS);
3639 adapter->stats.gprc += er32(GPRC);
3640 adapter->stats.gorcl += er32(GORCL);
3641 adapter->stats.gorch += er32(GORCH);
3642 adapter->stats.bprc += er32(BPRC);
3643 adapter->stats.mprc += er32(MPRC);
3644 adapter->stats.roc += er32(ROC);
3645
3646 adapter->stats.prc64 += er32(PRC64);
3647 adapter->stats.prc127 += er32(PRC127);
3648 adapter->stats.prc255 += er32(PRC255);
3649 adapter->stats.prc511 += er32(PRC511);
3650 adapter->stats.prc1023 += er32(PRC1023);
3651 adapter->stats.prc1522 += er32(PRC1522);
3652
3653 adapter->stats.symerrs += er32(SYMERRS);
3654 adapter->stats.mpc += er32(MPC);
3655 adapter->stats.scc += er32(SCC);
3656 adapter->stats.ecol += er32(ECOL);
3657 adapter->stats.mcc += er32(MCC);
3658 adapter->stats.latecol += er32(LATECOL);
3659 adapter->stats.dc += er32(DC);
3660 adapter->stats.sec += er32(SEC);
3661 adapter->stats.rlec += er32(RLEC);
3662 adapter->stats.xonrxc += er32(XONRXC);
3663 adapter->stats.xontxc += er32(XONTXC);
3664 adapter->stats.xoffrxc += er32(XOFFRXC);
3665 adapter->stats.xofftxc += er32(XOFFTXC);
3666 adapter->stats.fcruc += er32(FCRUC);
3667 adapter->stats.gptc += er32(GPTC);
3668 adapter->stats.gotcl += er32(GOTCL);
3669 adapter->stats.gotch += er32(GOTCH);
3670 adapter->stats.rnbc += er32(RNBC);
3671 adapter->stats.ruc += er32(RUC);
3672 adapter->stats.rfc += er32(RFC);
3673 adapter->stats.rjc += er32(RJC);
3674 adapter->stats.torl += er32(TORL);
3675 adapter->stats.torh += er32(TORH);
3676 adapter->stats.totl += er32(TOTL);
3677 adapter->stats.toth += er32(TOTH);
3678 adapter->stats.tpr += er32(TPR);
3679
3680 adapter->stats.ptc64 += er32(PTC64);
3681 adapter->stats.ptc127 += er32(PTC127);
3682 adapter->stats.ptc255 += er32(PTC255);
3683 adapter->stats.ptc511 += er32(PTC511);
3684 adapter->stats.ptc1023 += er32(PTC1023);
3685 adapter->stats.ptc1522 += er32(PTC1522);
3686
3687 adapter->stats.mptc += er32(MPTC);
3688 adapter->stats.bptc += er32(BPTC);
3689
3690 /* used for adaptive IFS */
3691
3692 hw->tx_packet_delta = er32(TPT);
3693 adapter->stats.tpt += hw->tx_packet_delta;
3694 hw->collision_delta = er32(COLC);
3695 adapter->stats.colc += hw->collision_delta;
3696
3697 if (hw->mac_type >= e1000_82543) {
3698 adapter->stats.algnerrc += er32(ALGNERRC);
3699 adapter->stats.rxerrc += er32(RXERRC);
3700 adapter->stats.tncrs += er32(TNCRS);
3701 adapter->stats.cexterr += er32(CEXTERR);
3702 adapter->stats.tsctc += er32(TSCTC);
3703 adapter->stats.tsctfc += er32(TSCTFC);
3704 }
3705
3706 /* Fill out the OS statistics structure */
3707 netdev->stats.multicast = adapter->stats.mprc;
3708 netdev->stats.collisions = adapter->stats.colc;
3709
3710 /* Rx Errors */
3711
3712 /* RLEC on some newer hardware can be incorrect so build
3713 * our own version based on RUC and ROC */
3714 netdev->stats.rx_errors = adapter->stats.rxerrc +
3715 adapter->stats.crcerrs + adapter->stats.algnerrc +
3716 adapter->stats.ruc + adapter->stats.roc +
3717 adapter->stats.cexterr;
3718 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3719 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3720 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3721 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3722 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3723
3724 /* Tx Errors */
3725 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3726 netdev->stats.tx_errors = adapter->stats.txerrc;
3727 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3728 netdev->stats.tx_window_errors = adapter->stats.latecol;
3729 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3730 if (hw->bad_tx_carr_stats_fd &&
3731 adapter->link_duplex == FULL_DUPLEX) {
3732 netdev->stats.tx_carrier_errors = 0;
3733 adapter->stats.tncrs = 0;
3734 }
3735
3736 /* Tx Dropped needs to be maintained elsewhere */
3737
3738 /* Phy Stats */
3739 if (hw->media_type == e1000_media_type_copper) {
3740 if ((adapter->link_speed == SPEED_1000) &&
3741 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3742 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3743 adapter->phy_stats.idle_errors += phy_tmp;
3744 }
3745
3746 if ((hw->mac_type <= e1000_82546) &&
3747 (hw->phy_type == e1000_phy_m88) &&
3748 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3749 adapter->phy_stats.receive_errors += phy_tmp;
3750 }
3751
3752 /* Management Stats */
3753 if (hw->has_smbus) {
3754 adapter->stats.mgptc += er32(MGTPTC);
3755 adapter->stats.mgprc += er32(MGTPRC);
3756 adapter->stats.mgpdc += er32(MGTPDC);
3757 }
3758
3759 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3760}
3761
3762/**
3763 * e1000_intr - Interrupt Handler
3764 * @irq: interrupt number
3765 * @data: pointer to a network interface device structure
3766 **/
3767
3768static irqreturn_t e1000_intr(int irq, void *data)
3769{
3770 struct net_device *netdev = data;
3771 struct e1000_adapter *adapter = netdev_priv(netdev);
3772 struct e1000_hw *hw = &adapter->hw;
3773 u32 icr = er32(ICR);
3774
3775 if (unlikely((!icr)))
3776 return IRQ_NONE; /* Not our interrupt */
3777
3778 /*
3779 * we might have caused the interrupt, but the above
3780 * read cleared it, and just in case the driver is
3781 * down there is nothing to do so return handled
3782 */
3783 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3784 return IRQ_HANDLED;
3785
3786 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3787 hw->get_link_status = 1;
3788 /* guard against interrupt when we're going down */
3789 if (!test_bit(__E1000_DOWN, &adapter->flags))
3790 schedule_delayed_work(&adapter->watchdog_task, 1);
3791 }
3792
3793 /* disable interrupts, without the synchronize_irq bit */
3794 ew32(IMC, ~0);
3795 E1000_WRITE_FLUSH();
3796
3797 if (likely(napi_schedule_prep(&adapter->napi))) {
3798 adapter->total_tx_bytes = 0;
3799 adapter->total_tx_packets = 0;
3800 adapter->total_rx_bytes = 0;
3801 adapter->total_rx_packets = 0;
3802 __napi_schedule(&adapter->napi);
3803 } else {
3804 /* this really should not happen! if it does it is basically a
3805 * bug, but not a hard error, so enable ints and continue */
3806 if (!test_bit(__E1000_DOWN, &adapter->flags))
3807 e1000_irq_enable(adapter);
3808 }
3809
3810 return IRQ_HANDLED;
3811}
3812
3813/**
3814 * e1000_clean - NAPI Rx polling callback
3815 * @adapter: board private structure
3816 **/
3817static int e1000_clean(struct napi_struct *napi, int budget)
3818{
3819 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3820 int tx_clean_complete = 0, work_done = 0;
3821
3822 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3823
3824 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3825
3826 if (!tx_clean_complete)
3827 work_done = budget;
3828
3829 /* If budget not fully consumed, exit the polling mode */
3830 if (work_done < budget) {
3831 if (likely(adapter->itr_setting & 3))
3832 e1000_set_itr(adapter);
3833 napi_complete(napi);
3834 if (!test_bit(__E1000_DOWN, &adapter->flags))
3835 e1000_irq_enable(adapter);
3836 }
3837
3838 return work_done;
3839}
3840
3841/**
3842 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3843 * @adapter: board private structure
3844 **/
3845static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3846 struct e1000_tx_ring *tx_ring)
3847{
3848 struct e1000_hw *hw = &adapter->hw;
3849 struct net_device *netdev = adapter->netdev;
3850 struct e1000_tx_desc *tx_desc, *eop_desc;
3851 struct e1000_buffer *buffer_info;
3852 unsigned int i, eop;
3853 unsigned int count = 0;
3854 unsigned int total_tx_bytes=0, total_tx_packets=0;
3855
3856 i = tx_ring->next_to_clean;
3857 eop = tx_ring->buffer_info[i].next_to_watch;
3858 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3859
3860 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3861 (count < tx_ring->count)) {
3862 bool cleaned = false;
3863 rmb(); /* read buffer_info after eop_desc */
3864 for ( ; !cleaned; count++) {
3865 tx_desc = E1000_TX_DESC(*tx_ring, i);
3866 buffer_info = &tx_ring->buffer_info[i];
3867 cleaned = (i == eop);
3868
3869 if (cleaned) {
3870 total_tx_packets += buffer_info->segs;
3871 total_tx_bytes += buffer_info->bytecount;
3872 }
3873 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3874 tx_desc->upper.data = 0;
3875
3876 if (unlikely(++i == tx_ring->count)) i = 0;
3877 }
3878
3879 eop = tx_ring->buffer_info[i].next_to_watch;
3880 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3881 }
3882
3883 tx_ring->next_to_clean = i;
3884
3885#define TX_WAKE_THRESHOLD 32
3886 if (unlikely(count && netif_carrier_ok(netdev) &&
3887 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3888 /* Make sure that anybody stopping the queue after this
3889 * sees the new next_to_clean.
3890 */
3891 smp_mb();
3892
3893 if (netif_queue_stopped(netdev) &&
3894 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3895 netif_wake_queue(netdev);
3896 ++adapter->restart_queue;
3897 }
3898 }
3899
3900 if (adapter->detect_tx_hung) {
3901 /* Detect a transmit hang in hardware, this serializes the
3902 * check with the clearing of time_stamp and movement of i */
3903 adapter->detect_tx_hung = false;
3904 if (tx_ring->buffer_info[eop].time_stamp &&
3905 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3906 (adapter->tx_timeout_factor * HZ)) &&
3907 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3908
3909 /* detected Tx unit hang */
3910 e_err(drv, "Detected Tx Unit Hang\n"
3911 " Tx Queue <%lu>\n"
3912 " TDH <%x>\n"
3913 " TDT <%x>\n"
3914 " next_to_use <%x>\n"
3915 " next_to_clean <%x>\n"
3916 "buffer_info[next_to_clean]\n"
3917 " time_stamp <%lx>\n"
3918 " next_to_watch <%x>\n"
3919 " jiffies <%lx>\n"
3920 " next_to_watch.status <%x>\n",
3921 (unsigned long)((tx_ring - adapter->tx_ring) /
3922 sizeof(struct e1000_tx_ring)),
3923 readl(hw->hw_addr + tx_ring->tdh),
3924 readl(hw->hw_addr + tx_ring->tdt),
3925 tx_ring->next_to_use,
3926 tx_ring->next_to_clean,
3927 tx_ring->buffer_info[eop].time_stamp,
3928 eop,
3929 jiffies,
3930 eop_desc->upper.fields.status);
3931 e1000_dump(adapter);
3932 netif_stop_queue(netdev);
3933 }
3934 }
3935 adapter->total_tx_bytes += total_tx_bytes;
3936 adapter->total_tx_packets += total_tx_packets;
3937 netdev->stats.tx_bytes += total_tx_bytes;
3938 netdev->stats.tx_packets += total_tx_packets;
3939 return count < tx_ring->count;
3940}
3941
3942/**
3943 * e1000_rx_checksum - Receive Checksum Offload for 82543
3944 * @adapter: board private structure
3945 * @status_err: receive descriptor status and error fields
3946 * @csum: receive descriptor csum field
3947 * @sk_buff: socket buffer with received data
3948 **/
3949
3950static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3951 u32 csum, struct sk_buff *skb)
3952{
3953 struct e1000_hw *hw = &adapter->hw;
3954 u16 status = (u16)status_err;
3955 u8 errors = (u8)(status_err >> 24);
3956
3957 skb_checksum_none_assert(skb);
3958
3959 /* 82543 or newer only */
3960 if (unlikely(hw->mac_type < e1000_82543)) return;
3961 /* Ignore Checksum bit is set */
3962 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3963 /* TCP/UDP checksum error bit is set */
3964 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3965 /* let the stack verify checksum errors */
3966 adapter->hw_csum_err++;
3967 return;
3968 }
3969 /* TCP/UDP Checksum has not been calculated */
3970 if (!(status & E1000_RXD_STAT_TCPCS))
3971 return;
3972
3973 /* It must be a TCP or UDP packet with a valid checksum */
3974 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3975 /* TCP checksum is good */
3976 skb->ip_summed = CHECKSUM_UNNECESSARY;
3977 }
3978 adapter->hw_csum_good++;
3979}
3980
3981/**
3982 * e1000_consume_page - helper function
3983 **/
3984static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3985 u16 length)
3986{
3987 bi->page = NULL;
3988 skb->len += length;
3989 skb->data_len += length;
3990 skb->truesize += PAGE_SIZE;
3991}
3992
3993/**
3994 * e1000_receive_skb - helper function to handle rx indications
3995 * @adapter: board private structure
3996 * @status: descriptor status field as written by hardware
3997 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3998 * @skb: pointer to sk_buff to be indicated to stack
3999 */
4000static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4001 __le16 vlan, struct sk_buff *skb)
4002{
4003 skb->protocol = eth_type_trans(skb, adapter->netdev);
4004
4005 if (status & E1000_RXD_STAT_VP) {
4006 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4007
4008 __vlan_hwaccel_put_tag(skb, vid);
4009 }
4010 napi_gro_receive(&adapter->napi, skb);
4011}
4012
4013/**
4014 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4015 * @adapter: board private structure
4016 * @rx_ring: ring to clean
4017 * @work_done: amount of napi work completed this call
4018 * @work_to_do: max amount of work allowed for this call to do
4019 *
4020 * the return value indicates whether actual cleaning was done, there
4021 * is no guarantee that everything was cleaned
4022 */
4023static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4024 struct e1000_rx_ring *rx_ring,
4025 int *work_done, int work_to_do)
4026{
4027 struct e1000_hw *hw = &adapter->hw;
4028 struct net_device *netdev = adapter->netdev;
4029 struct pci_dev *pdev = adapter->pdev;
4030 struct e1000_rx_desc *rx_desc, *next_rxd;
4031 struct e1000_buffer *buffer_info, *next_buffer;
4032 unsigned long irq_flags;
4033 u32 length;
4034 unsigned int i;
4035 int cleaned_count = 0;
4036 bool cleaned = false;
4037 unsigned int total_rx_bytes=0, total_rx_packets=0;
4038
4039 i = rx_ring->next_to_clean;
4040 rx_desc = E1000_RX_DESC(*rx_ring, i);
4041 buffer_info = &rx_ring->buffer_info[i];
4042
4043 while (rx_desc->status & E1000_RXD_STAT_DD) {
4044 struct sk_buff *skb;
4045 u8 status;
4046
4047 if (*work_done >= work_to_do)
4048 break;
4049 (*work_done)++;
4050 rmb(); /* read descriptor and rx_buffer_info after status DD */
4051
4052 status = rx_desc->status;
4053 skb = buffer_info->skb;
4054 buffer_info->skb = NULL;
4055
4056 if (++i == rx_ring->count) i = 0;
4057 next_rxd = E1000_RX_DESC(*rx_ring, i);
4058 prefetch(next_rxd);
4059
4060 next_buffer = &rx_ring->buffer_info[i];
4061
4062 cleaned = true;
4063 cleaned_count++;
4064 dma_unmap_page(&pdev->dev, buffer_info->dma,
4065 buffer_info->length, DMA_FROM_DEVICE);
4066 buffer_info->dma = 0;
4067
4068 length = le16_to_cpu(rx_desc->length);
4069
4070 /* errors is only valid for DD + EOP descriptors */
4071 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4072 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4073 u8 *mapped;
4074 u8 last_byte;
4075
4076 mapped = page_address(buffer_info->page);
4077 last_byte = *(mapped + length - 1);
4078 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4079 last_byte)) {
4080 spin_lock_irqsave(&adapter->stats_lock,
4081 irq_flags);
4082 e1000_tbi_adjust_stats(hw, &adapter->stats,
4083 length, mapped);
4084 spin_unlock_irqrestore(&adapter->stats_lock,
4085 irq_flags);
4086 length--;
4087 } else {
4088 if (netdev->features & NETIF_F_RXALL)
4089 goto process_skb;
4090 /* recycle both page and skb */
4091 buffer_info->skb = skb;
4092 /* an error means any chain goes out the window
4093 * too */
4094 if (rx_ring->rx_skb_top)
4095 dev_kfree_skb(rx_ring->rx_skb_top);
4096 rx_ring->rx_skb_top = NULL;
4097 goto next_desc;
4098 }
4099 }
4100
4101#define rxtop rx_ring->rx_skb_top
4102process_skb:
4103 if (!(status & E1000_RXD_STAT_EOP)) {
4104 /* this descriptor is only the beginning (or middle) */
4105 if (!rxtop) {
4106 /* this is the beginning of a chain */
4107 rxtop = skb;
4108 skb_fill_page_desc(rxtop, 0, buffer_info->page,
4109 0, length);
4110 } else {
4111 /* this is the middle of a chain */
4112 skb_fill_page_desc(rxtop,
4113 skb_shinfo(rxtop)->nr_frags,
4114 buffer_info->page, 0, length);
4115 /* re-use the skb, only consumed the page */
4116 buffer_info->skb = skb;
4117 }
4118 e1000_consume_page(buffer_info, rxtop, length);
4119 goto next_desc;
4120 } else {
4121 if (rxtop) {
4122 /* end of the chain */
4123 skb_fill_page_desc(rxtop,
4124 skb_shinfo(rxtop)->nr_frags,
4125 buffer_info->page, 0, length);
4126 /* re-use the current skb, we only consumed the
4127 * page */
4128 buffer_info->skb = skb;
4129 skb = rxtop;
4130 rxtop = NULL;
4131 e1000_consume_page(buffer_info, skb, length);
4132 } else {
4133 /* no chain, got EOP, this buf is the packet
4134 * copybreak to save the put_page/alloc_page */
4135 if (length <= copybreak &&
4136 skb_tailroom(skb) >= length) {
4137 u8 *vaddr;
4138 vaddr = kmap_atomic(buffer_info->page);
4139 memcpy(skb_tail_pointer(skb), vaddr, length);
4140 kunmap_atomic(vaddr);
4141 /* re-use the page, so don't erase
4142 * buffer_info->page */
4143 skb_put(skb, length);
4144 } else {
4145 skb_fill_page_desc(skb, 0,
4146 buffer_info->page, 0,
4147 length);
4148 e1000_consume_page(buffer_info, skb,
4149 length);
4150 }
4151 }
4152 }
4153
4154 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4155 e1000_rx_checksum(adapter,
4156 (u32)(status) |
4157 ((u32)(rx_desc->errors) << 24),
4158 le16_to_cpu(rx_desc->csum), skb);
4159
4160 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4161 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4162 pskb_trim(skb, skb->len - 4);
4163 total_rx_packets++;
4164
4165 /* eth type trans needs skb->data to point to something */
4166 if (!pskb_may_pull(skb, ETH_HLEN)) {
4167 e_err(drv, "pskb_may_pull failed.\n");
4168 dev_kfree_skb(skb);
4169 goto next_desc;
4170 }
4171
4172 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4173
4174next_desc:
4175 rx_desc->status = 0;
4176
4177 /* return some buffers to hardware, one at a time is too slow */
4178 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4179 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4180 cleaned_count = 0;
4181 }
4182
4183 /* use prefetched values */
4184 rx_desc = next_rxd;
4185 buffer_info = next_buffer;
4186 }
4187 rx_ring->next_to_clean = i;
4188
4189 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4190 if (cleaned_count)
4191 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4192
4193 adapter->total_rx_packets += total_rx_packets;
4194 adapter->total_rx_bytes += total_rx_bytes;
4195 netdev->stats.rx_bytes += total_rx_bytes;
4196 netdev->stats.rx_packets += total_rx_packets;
4197 return cleaned;
4198}
4199
4200/*
4201 * this should improve performance for small packets with large amounts
4202 * of reassembly being done in the stack
4203 */
4204static void e1000_check_copybreak(struct net_device *netdev,
4205 struct e1000_buffer *buffer_info,
4206 u32 length, struct sk_buff **skb)
4207{
4208 struct sk_buff *new_skb;
4209
4210 if (length > copybreak)
4211 return;
4212
4213 new_skb = netdev_alloc_skb_ip_align(netdev, length);
4214 if (!new_skb)
4215 return;
4216
4217 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4218 (*skb)->data - NET_IP_ALIGN,
4219 length + NET_IP_ALIGN);
4220 /* save the skb in buffer_info as good */
4221 buffer_info->skb = *skb;
4222 *skb = new_skb;
4223}
4224
4225/**
4226 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4227 * @adapter: board private structure
4228 * @rx_ring: ring to clean
4229 * @work_done: amount of napi work completed this call
4230 * @work_to_do: max amount of work allowed for this call to do
4231 */
4232static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4233 struct e1000_rx_ring *rx_ring,
4234 int *work_done, int work_to_do)
4235{
4236 struct e1000_hw *hw = &adapter->hw;
4237 struct net_device *netdev = adapter->netdev;
4238 struct pci_dev *pdev = adapter->pdev;
4239 struct e1000_rx_desc *rx_desc, *next_rxd;
4240 struct e1000_buffer *buffer_info, *next_buffer;
4241 unsigned long flags;
4242 u32 length;
4243 unsigned int i;
4244 int cleaned_count = 0;
4245 bool cleaned = false;
4246 unsigned int total_rx_bytes=0, total_rx_packets=0;
4247
4248 i = rx_ring->next_to_clean;
4249 rx_desc = E1000_RX_DESC(*rx_ring, i);
4250 buffer_info = &rx_ring->buffer_info[i];
4251
4252 while (rx_desc->status & E1000_RXD_STAT_DD) {
4253 struct sk_buff *skb;
4254 u8 status;
4255
4256 if (*work_done >= work_to_do)
4257 break;
4258 (*work_done)++;
4259 rmb(); /* read descriptor and rx_buffer_info after status DD */
4260
4261 status = rx_desc->status;
4262 skb = buffer_info->skb;
4263 buffer_info->skb = NULL;
4264
4265 prefetch(skb->data - NET_IP_ALIGN);
4266
4267 if (++i == rx_ring->count) i = 0;
4268 next_rxd = E1000_RX_DESC(*rx_ring, i);
4269 prefetch(next_rxd);
4270
4271 next_buffer = &rx_ring->buffer_info[i];
4272
4273 cleaned = true;
4274 cleaned_count++;
4275 dma_unmap_single(&pdev->dev, buffer_info->dma,
4276 buffer_info->length, DMA_FROM_DEVICE);
4277 buffer_info->dma = 0;
4278
4279 length = le16_to_cpu(rx_desc->length);
4280 /* !EOP means multiple descriptors were used to store a single
4281 * packet, if thats the case we need to toss it. In fact, we
4282 * to toss every packet with the EOP bit clear and the next
4283 * frame that _does_ have the EOP bit set, as it is by
4284 * definition only a frame fragment
4285 */
4286 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4287 adapter->discarding = true;
4288
4289 if (adapter->discarding) {
4290 /* All receives must fit into a single buffer */
4291 e_dbg("Receive packet consumed multiple buffers\n");
4292 /* recycle */
4293 buffer_info->skb = skb;
4294 if (status & E1000_RXD_STAT_EOP)
4295 adapter->discarding = false;
4296 goto next_desc;
4297 }
4298
4299 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4300 u8 last_byte = *(skb->data + length - 1);
4301 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4302 last_byte)) {
4303 spin_lock_irqsave(&adapter->stats_lock, flags);
4304 e1000_tbi_adjust_stats(hw, &adapter->stats,
4305 length, skb->data);
4306 spin_unlock_irqrestore(&adapter->stats_lock,
4307 flags);
4308 length--;
4309 } else {
4310 if (netdev->features & NETIF_F_RXALL)
4311 goto process_skb;
4312 /* recycle */
4313 buffer_info->skb = skb;
4314 goto next_desc;
4315 }
4316 }
4317
4318process_skb:
4319 total_rx_bytes += (length - 4); /* don't count FCS */
4320 total_rx_packets++;
4321
4322 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4323 /* adjust length to remove Ethernet CRC, this must be
4324 * done after the TBI_ACCEPT workaround above
4325 */
4326 length -= 4;
4327
4328 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4329
4330 skb_put(skb, length);
4331
4332 /* Receive Checksum Offload */
4333 e1000_rx_checksum(adapter,
4334 (u32)(status) |
4335 ((u32)(rx_desc->errors) << 24),
4336 le16_to_cpu(rx_desc->csum), skb);
4337
4338 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4339
4340next_desc:
4341 rx_desc->status = 0;
4342
4343 /* return some buffers to hardware, one at a time is too slow */
4344 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4345 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4346 cleaned_count = 0;
4347 }
4348
4349 /* use prefetched values */
4350 rx_desc = next_rxd;
4351 buffer_info = next_buffer;
4352 }
4353 rx_ring->next_to_clean = i;
4354
4355 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4356 if (cleaned_count)
4357 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4358
4359 adapter->total_rx_packets += total_rx_packets;
4360 adapter->total_rx_bytes += total_rx_bytes;
4361 netdev->stats.rx_bytes += total_rx_bytes;
4362 netdev->stats.rx_packets += total_rx_packets;
4363 return cleaned;
4364}
4365
4366/**
4367 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4368 * @adapter: address of board private structure
4369 * @rx_ring: pointer to receive ring structure
4370 * @cleaned_count: number of buffers to allocate this pass
4371 **/
4372
4373static void
4374e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4375 struct e1000_rx_ring *rx_ring, int cleaned_count)
4376{
4377 struct net_device *netdev = adapter->netdev;
4378 struct pci_dev *pdev = adapter->pdev;
4379 struct e1000_rx_desc *rx_desc;
4380 struct e1000_buffer *buffer_info;
4381 struct sk_buff *skb;
4382 unsigned int i;
4383 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4384
4385 i = rx_ring->next_to_use;
4386 buffer_info = &rx_ring->buffer_info[i];
4387
4388 while (cleaned_count--) {
4389 skb = buffer_info->skb;
4390 if (skb) {
4391 skb_trim(skb, 0);
4392 goto check_page;
4393 }
4394
4395 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4396 if (unlikely(!skb)) {
4397 /* Better luck next round */
4398 adapter->alloc_rx_buff_failed++;
4399 break;
4400 }
4401
4402 buffer_info->skb = skb;
4403 buffer_info->length = adapter->rx_buffer_len;
4404check_page:
4405 /* allocate a new page if necessary */
4406 if (!buffer_info->page) {
4407 buffer_info->page = alloc_page(GFP_ATOMIC);
4408 if (unlikely(!buffer_info->page)) {
4409 adapter->alloc_rx_buff_failed++;
4410 break;
4411 }
4412 }
4413
4414 if (!buffer_info->dma) {
4415 buffer_info->dma = dma_map_page(&pdev->dev,
4416 buffer_info->page, 0,
4417 buffer_info->length,
4418 DMA_FROM_DEVICE);
4419 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4420 put_page(buffer_info->page);
4421 dev_kfree_skb(skb);
4422 buffer_info->page = NULL;
4423 buffer_info->skb = NULL;
4424 buffer_info->dma = 0;
4425 adapter->alloc_rx_buff_failed++;
4426 break; /* while !buffer_info->skb */
4427 }
4428 }
4429
4430 rx_desc = E1000_RX_DESC(*rx_ring, i);
4431 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4432
4433 if (unlikely(++i == rx_ring->count))
4434 i = 0;
4435 buffer_info = &rx_ring->buffer_info[i];
4436 }
4437
4438 if (likely(rx_ring->next_to_use != i)) {
4439 rx_ring->next_to_use = i;
4440 if (unlikely(i-- == 0))
4441 i = (rx_ring->count - 1);
4442
4443 /* Force memory writes to complete before letting h/w
4444 * know there are new descriptors to fetch. (Only
4445 * applicable for weak-ordered memory model archs,
4446 * such as IA-64). */
4447 wmb();
4448 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4449 }
4450}
4451
4452/**
4453 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4454 * @adapter: address of board private structure
4455 **/
4456
4457static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4458 struct e1000_rx_ring *rx_ring,
4459 int cleaned_count)
4460{
4461 struct e1000_hw *hw = &adapter->hw;
4462 struct net_device *netdev = adapter->netdev;
4463 struct pci_dev *pdev = adapter->pdev;
4464 struct e1000_rx_desc *rx_desc;
4465 struct e1000_buffer *buffer_info;
4466 struct sk_buff *skb;
4467 unsigned int i;
4468 unsigned int bufsz = adapter->rx_buffer_len;
4469
4470 i = rx_ring->next_to_use;
4471 buffer_info = &rx_ring->buffer_info[i];
4472
4473 while (cleaned_count--) {
4474 skb = buffer_info->skb;
4475 if (skb) {
4476 skb_trim(skb, 0);
4477 goto map_skb;
4478 }
4479
4480 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4481 if (unlikely(!skb)) {
4482 /* Better luck next round */
4483 adapter->alloc_rx_buff_failed++;
4484 break;
4485 }
4486
4487 /* Fix for errata 23, can't cross 64kB boundary */
4488 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4489 struct sk_buff *oldskb = skb;
4490 e_err(rx_err, "skb align check failed: %u bytes at "
4491 "%p\n", bufsz, skb->data);
4492 /* Try again, without freeing the previous */
4493 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4494 /* Failed allocation, critical failure */
4495 if (!skb) {
4496 dev_kfree_skb(oldskb);
4497 adapter->alloc_rx_buff_failed++;
4498 break;
4499 }
4500
4501 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4502 /* give up */
4503 dev_kfree_skb(skb);
4504 dev_kfree_skb(oldskb);
4505 adapter->alloc_rx_buff_failed++;
4506 break; /* while !buffer_info->skb */
4507 }
4508
4509 /* Use new allocation */
4510 dev_kfree_skb(oldskb);
4511 }
4512 buffer_info->skb = skb;
4513 buffer_info->length = adapter->rx_buffer_len;
4514map_skb:
4515 buffer_info->dma = dma_map_single(&pdev->dev,
4516 skb->data,
4517 buffer_info->length,
4518 DMA_FROM_DEVICE);
4519 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4520 dev_kfree_skb(skb);
4521 buffer_info->skb = NULL;
4522 buffer_info->dma = 0;
4523 adapter->alloc_rx_buff_failed++;
4524 break; /* while !buffer_info->skb */
4525 }
4526
4527 /*
4528 * XXX if it was allocated cleanly it will never map to a
4529 * boundary crossing
4530 */
4531
4532 /* Fix for errata 23, can't cross 64kB boundary */
4533 if (!e1000_check_64k_bound(adapter,
4534 (void *)(unsigned long)buffer_info->dma,
4535 adapter->rx_buffer_len)) {
4536 e_err(rx_err, "dma align check failed: %u bytes at "
4537 "%p\n", adapter->rx_buffer_len,
4538 (void *)(unsigned long)buffer_info->dma);
4539 dev_kfree_skb(skb);
4540 buffer_info->skb = NULL;
4541
4542 dma_unmap_single(&pdev->dev, buffer_info->dma,
4543 adapter->rx_buffer_len,
4544 DMA_FROM_DEVICE);
4545 buffer_info->dma = 0;
4546
4547 adapter->alloc_rx_buff_failed++;
4548 break; /* while !buffer_info->skb */
4549 }
4550 rx_desc = E1000_RX_DESC(*rx_ring, i);
4551 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4552
4553 if (unlikely(++i == rx_ring->count))
4554 i = 0;
4555 buffer_info = &rx_ring->buffer_info[i];
4556 }
4557
4558 if (likely(rx_ring->next_to_use != i)) {
4559 rx_ring->next_to_use = i;
4560 if (unlikely(i-- == 0))
4561 i = (rx_ring->count - 1);
4562
4563 /* Force memory writes to complete before letting h/w
4564 * know there are new descriptors to fetch. (Only
4565 * applicable for weak-ordered memory model archs,
4566 * such as IA-64). */
4567 wmb();
4568 writel(i, hw->hw_addr + rx_ring->rdt);
4569 }
4570}
4571
4572/**
4573 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4574 * @adapter:
4575 **/
4576
4577static void e1000_smartspeed(struct e1000_adapter *adapter)
4578{
4579 struct e1000_hw *hw = &adapter->hw;
4580 u16 phy_status;
4581 u16 phy_ctrl;
4582
4583 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4584 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4585 return;
4586
4587 if (adapter->smartspeed == 0) {
4588 /* If Master/Slave config fault is asserted twice,
4589 * we assume back-to-back */
4590 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4591 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4592 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4593 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4594 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4595 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4596 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4597 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4598 phy_ctrl);
4599 adapter->smartspeed++;
4600 if (!e1000_phy_setup_autoneg(hw) &&
4601 !e1000_read_phy_reg(hw, PHY_CTRL,
4602 &phy_ctrl)) {
4603 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4604 MII_CR_RESTART_AUTO_NEG);
4605 e1000_write_phy_reg(hw, PHY_CTRL,
4606 phy_ctrl);
4607 }
4608 }
4609 return;
4610 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4611 /* If still no link, perhaps using 2/3 pair cable */
4612 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4613 phy_ctrl |= CR_1000T_MS_ENABLE;
4614 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4615 if (!e1000_phy_setup_autoneg(hw) &&
4616 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4617 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4618 MII_CR_RESTART_AUTO_NEG);
4619 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4620 }
4621 }
4622 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4623 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4624 adapter->smartspeed = 0;
4625}
4626
4627/**
4628 * e1000_ioctl -
4629 * @netdev:
4630 * @ifreq:
4631 * @cmd:
4632 **/
4633
4634static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4635{
4636 switch (cmd) {
4637 case SIOCGMIIPHY:
4638 case SIOCGMIIREG:
4639 case SIOCSMIIREG:
4640 return e1000_mii_ioctl(netdev, ifr, cmd);
4641 default:
4642 return -EOPNOTSUPP;
4643 }
4644}
4645
4646/**
4647 * e1000_mii_ioctl -
4648 * @netdev:
4649 * @ifreq:
4650 * @cmd:
4651 **/
4652
4653static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4654 int cmd)
4655{
4656 struct e1000_adapter *adapter = netdev_priv(netdev);
4657 struct e1000_hw *hw = &adapter->hw;
4658 struct mii_ioctl_data *data = if_mii(ifr);
4659 int retval;
4660 u16 mii_reg;
4661 unsigned long flags;
4662
4663 if (hw->media_type != e1000_media_type_copper)
4664 return -EOPNOTSUPP;
4665
4666 switch (cmd) {
4667 case SIOCGMIIPHY:
4668 data->phy_id = hw->phy_addr;
4669 break;
4670 case SIOCGMIIREG:
4671 spin_lock_irqsave(&adapter->stats_lock, flags);
4672 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4673 &data->val_out)) {
4674 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4675 return -EIO;
4676 }
4677 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4678 break;
4679 case SIOCSMIIREG:
4680 if (data->reg_num & ~(0x1F))
4681 return -EFAULT;
4682 mii_reg = data->val_in;
4683 spin_lock_irqsave(&adapter->stats_lock, flags);
4684 if (e1000_write_phy_reg(hw, data->reg_num,
4685 mii_reg)) {
4686 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4687 return -EIO;
4688 }
4689 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4690 if (hw->media_type == e1000_media_type_copper) {
4691 switch (data->reg_num) {
4692 case PHY_CTRL:
4693 if (mii_reg & MII_CR_POWER_DOWN)
4694 break;
4695 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4696 hw->autoneg = 1;
4697 hw->autoneg_advertised = 0x2F;
4698 } else {
4699 u32 speed;
4700 if (mii_reg & 0x40)
4701 speed = SPEED_1000;
4702 else if (mii_reg & 0x2000)
4703 speed = SPEED_100;
4704 else
4705 speed = SPEED_10;
4706 retval = e1000_set_spd_dplx(
4707 adapter, speed,
4708 ((mii_reg & 0x100)
4709 ? DUPLEX_FULL :
4710 DUPLEX_HALF));
4711 if (retval)
4712 return retval;
4713 }
4714 if (netif_running(adapter->netdev))
4715 e1000_reinit_locked(adapter);
4716 else
4717 e1000_reset(adapter);
4718 break;
4719 case M88E1000_PHY_SPEC_CTRL:
4720 case M88E1000_EXT_PHY_SPEC_CTRL:
4721 if (e1000_phy_reset(hw))
4722 return -EIO;
4723 break;
4724 }
4725 } else {
4726 switch (data->reg_num) {
4727 case PHY_CTRL:
4728 if (mii_reg & MII_CR_POWER_DOWN)
4729 break;
4730 if (netif_running(adapter->netdev))
4731 e1000_reinit_locked(adapter);
4732 else
4733 e1000_reset(adapter);
4734 break;
4735 }
4736 }
4737 break;
4738 default:
4739 return -EOPNOTSUPP;
4740 }
4741 return E1000_SUCCESS;
4742}
4743
4744void e1000_pci_set_mwi(struct e1000_hw *hw)
4745{
4746 struct e1000_adapter *adapter = hw->back;
4747 int ret_val = pci_set_mwi(adapter->pdev);
4748
4749 if (ret_val)
4750 e_err(probe, "Error in setting MWI\n");
4751}
4752
4753void e1000_pci_clear_mwi(struct e1000_hw *hw)
4754{
4755 struct e1000_adapter *adapter = hw->back;
4756
4757 pci_clear_mwi(adapter->pdev);
4758}
4759
4760int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4761{
4762 struct e1000_adapter *adapter = hw->back;
4763 return pcix_get_mmrbc(adapter->pdev);
4764}
4765
4766void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4767{
4768 struct e1000_adapter *adapter = hw->back;
4769 pcix_set_mmrbc(adapter->pdev, mmrbc);
4770}
4771
4772void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4773{
4774 outl(value, port);
4775}
4776
4777static bool e1000_vlan_used(struct e1000_adapter *adapter)
4778{
4779 u16 vid;
4780
4781 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4782 return true;
4783 return false;
4784}
4785
4786static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4787 netdev_features_t features)
4788{
4789 struct e1000_hw *hw = &adapter->hw;
4790 u32 ctrl;
4791
4792 ctrl = er32(CTRL);
4793 if (features & NETIF_F_HW_VLAN_RX) {
4794 /* enable VLAN tag insert/strip */
4795 ctrl |= E1000_CTRL_VME;
4796 } else {
4797 /* disable VLAN tag insert/strip */
4798 ctrl &= ~E1000_CTRL_VME;
4799 }
4800 ew32(CTRL, ctrl);
4801}
4802static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4803 bool filter_on)
4804{
4805 struct e1000_hw *hw = &adapter->hw;
4806 u32 rctl;
4807
4808 if (!test_bit(__E1000_DOWN, &adapter->flags))
4809 e1000_irq_disable(adapter);
4810
4811 __e1000_vlan_mode(adapter, adapter->netdev->features);
4812 if (filter_on) {
4813 /* enable VLAN receive filtering */
4814 rctl = er32(RCTL);
4815 rctl &= ~E1000_RCTL_CFIEN;
4816 if (!(adapter->netdev->flags & IFF_PROMISC))
4817 rctl |= E1000_RCTL_VFE;
4818 ew32(RCTL, rctl);
4819 e1000_update_mng_vlan(adapter);
4820 } else {
4821 /* disable VLAN receive filtering */
4822 rctl = er32(RCTL);
4823 rctl &= ~E1000_RCTL_VFE;
4824 ew32(RCTL, rctl);
4825 }
4826
4827 if (!test_bit(__E1000_DOWN, &adapter->flags))
4828 e1000_irq_enable(adapter);
4829}
4830
4831static void e1000_vlan_mode(struct net_device *netdev,
4832 netdev_features_t features)
4833{
4834 struct e1000_adapter *adapter = netdev_priv(netdev);
4835
4836 if (!test_bit(__E1000_DOWN, &adapter->flags))
4837 e1000_irq_disable(adapter);
4838
4839 __e1000_vlan_mode(adapter, features);
4840
4841 if (!test_bit(__E1000_DOWN, &adapter->flags))
4842 e1000_irq_enable(adapter);
4843}
4844
4845static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4846{
4847 struct e1000_adapter *adapter = netdev_priv(netdev);
4848 struct e1000_hw *hw = &adapter->hw;
4849 u32 vfta, index;
4850
4851 if ((hw->mng_cookie.status &
4852 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4853 (vid == adapter->mng_vlan_id))
4854 return 0;
4855
4856 if (!e1000_vlan_used(adapter))
4857 e1000_vlan_filter_on_off(adapter, true);
4858
4859 /* add VID to filter table */
4860 index = (vid >> 5) & 0x7F;
4861 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4862 vfta |= (1 << (vid & 0x1F));
4863 e1000_write_vfta(hw, index, vfta);
4864
4865 set_bit(vid, adapter->active_vlans);
4866
4867 return 0;
4868}
4869
4870static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4871{
4872 struct e1000_adapter *adapter = netdev_priv(netdev);
4873 struct e1000_hw *hw = &adapter->hw;
4874 u32 vfta, index;
4875
4876 if (!test_bit(__E1000_DOWN, &adapter->flags))
4877 e1000_irq_disable(adapter);
4878 if (!test_bit(__E1000_DOWN, &adapter->flags))
4879 e1000_irq_enable(adapter);
4880
4881 /* remove VID from filter table */
4882 index = (vid >> 5) & 0x7F;
4883 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4884 vfta &= ~(1 << (vid & 0x1F));
4885 e1000_write_vfta(hw, index, vfta);
4886
4887 clear_bit(vid, adapter->active_vlans);
4888
4889 if (!e1000_vlan_used(adapter))
4890 e1000_vlan_filter_on_off(adapter, false);
4891
4892 return 0;
4893}
4894
4895static void e1000_restore_vlan(struct e1000_adapter *adapter)
4896{
4897 u16 vid;
4898
4899 if (!e1000_vlan_used(adapter))
4900 return;
4901
4902 e1000_vlan_filter_on_off(adapter, true);
4903 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4904 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4905}
4906
4907int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4908{
4909 struct e1000_hw *hw = &adapter->hw;
4910
4911 hw->autoneg = 0;
4912
4913 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4914 * for the switch() below to work */
4915 if ((spd & 1) || (dplx & ~1))
4916 goto err_inval;
4917
4918 /* Fiber NICs only allow 1000 gbps Full duplex */
4919 if ((hw->media_type == e1000_media_type_fiber) &&
4920 spd != SPEED_1000 &&
4921 dplx != DUPLEX_FULL)
4922 goto err_inval;
4923
4924 switch (spd + dplx) {
4925 case SPEED_10 + DUPLEX_HALF:
4926 hw->forced_speed_duplex = e1000_10_half;
4927 break;
4928 case SPEED_10 + DUPLEX_FULL:
4929 hw->forced_speed_duplex = e1000_10_full;
4930 break;
4931 case SPEED_100 + DUPLEX_HALF:
4932 hw->forced_speed_duplex = e1000_100_half;
4933 break;
4934 case SPEED_100 + DUPLEX_FULL:
4935 hw->forced_speed_duplex = e1000_100_full;
4936 break;
4937 case SPEED_1000 + DUPLEX_FULL:
4938 hw->autoneg = 1;
4939 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4940 break;
4941 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4942 default:
4943 goto err_inval;
4944 }
4945 return 0;
4946
4947err_inval:
4948 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4949 return -EINVAL;
4950}
4951
4952static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4953{
4954 struct net_device *netdev = pci_get_drvdata(pdev);
4955 struct e1000_adapter *adapter = netdev_priv(netdev);
4956 struct e1000_hw *hw = &adapter->hw;
4957 u32 ctrl, ctrl_ext, rctl, status;
4958 u32 wufc = adapter->wol;
4959#ifdef CONFIG_PM
4960 int retval = 0;
4961#endif
4962
4963 netif_device_detach(netdev);
4964
4965 if (netif_running(netdev)) {
4966 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4967 e1000_down(adapter);
4968 }
4969
4970#ifdef CONFIG_PM
4971 retval = pci_save_state(pdev);
4972 if (retval)
4973 return retval;
4974#endif
4975
4976 status = er32(STATUS);
4977 if (status & E1000_STATUS_LU)
4978 wufc &= ~E1000_WUFC_LNKC;
4979
4980 if (wufc) {
4981 e1000_setup_rctl(adapter);
4982 e1000_set_rx_mode(netdev);
4983
4984 rctl = er32(RCTL);
4985
4986 /* turn on all-multi mode if wake on multicast is enabled */
4987 if (wufc & E1000_WUFC_MC)
4988 rctl |= E1000_RCTL_MPE;
4989
4990 /* enable receives in the hardware */
4991 ew32(RCTL, rctl | E1000_RCTL_EN);
4992
4993 if (hw->mac_type >= e1000_82540) {
4994 ctrl = er32(CTRL);
4995 /* advertise wake from D3Cold */
4996 #define E1000_CTRL_ADVD3WUC 0x00100000
4997 /* phy power management enable */
4998 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4999 ctrl |= E1000_CTRL_ADVD3WUC |
5000 E1000_CTRL_EN_PHY_PWR_MGMT;
5001 ew32(CTRL, ctrl);
5002 }
5003
5004 if (hw->media_type == e1000_media_type_fiber ||
5005 hw->media_type == e1000_media_type_internal_serdes) {
5006 /* keep the laser running in D3 */
5007 ctrl_ext = er32(CTRL_EXT);
5008 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5009 ew32(CTRL_EXT, ctrl_ext);
5010 }
5011
5012 ew32(WUC, E1000_WUC_PME_EN);
5013 ew32(WUFC, wufc);
5014 } else {
5015 ew32(WUC, 0);
5016 ew32(WUFC, 0);
5017 }
5018
5019 e1000_release_manageability(adapter);
5020
5021 *enable_wake = !!wufc;
5022
5023 /* make sure adapter isn't asleep if manageability is enabled */
5024 if (adapter->en_mng_pt)
5025 *enable_wake = true;
5026
5027 if (netif_running(netdev))
5028 e1000_free_irq(adapter);
5029
5030 pci_disable_device(pdev);
5031
5032 return 0;
5033}
5034
5035#ifdef CONFIG_PM
5036static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5037{
5038 int retval;
5039 bool wake;
5040
5041 retval = __e1000_shutdown(pdev, &wake);
5042 if (retval)
5043 return retval;
5044
5045 if (wake) {
5046 pci_prepare_to_sleep(pdev);
5047 } else {
5048 pci_wake_from_d3(pdev, false);
5049 pci_set_power_state(pdev, PCI_D3hot);
5050 }
5051
5052 return 0;
5053}
5054
5055static int e1000_resume(struct pci_dev *pdev)
5056{
5057 struct net_device *netdev = pci_get_drvdata(pdev);
5058 struct e1000_adapter *adapter = netdev_priv(netdev);
5059 struct e1000_hw *hw = &adapter->hw;
5060 u32 err;
5061
5062 pci_set_power_state(pdev, PCI_D0);
5063 pci_restore_state(pdev);
5064 pci_save_state(pdev);
5065
5066 if (adapter->need_ioport)
5067 err = pci_enable_device(pdev);
5068 else
5069 err = pci_enable_device_mem(pdev);
5070 if (err) {
5071 pr_err("Cannot enable PCI device from suspend\n");
5072 return err;
5073 }
5074 pci_set_master(pdev);
5075
5076 pci_enable_wake(pdev, PCI_D3hot, 0);
5077 pci_enable_wake(pdev, PCI_D3cold, 0);
5078
5079 if (netif_running(netdev)) {
5080 err = e1000_request_irq(adapter);
5081 if (err)
5082 return err;
5083 }
5084
5085 e1000_power_up_phy(adapter);
5086 e1000_reset(adapter);
5087 ew32(WUS, ~0);
5088
5089 e1000_init_manageability(adapter);
5090
5091 if (netif_running(netdev))
5092 e1000_up(adapter);
5093
5094 netif_device_attach(netdev);
5095
5096 return 0;
5097}
5098#endif
5099
5100static void e1000_shutdown(struct pci_dev *pdev)
5101{
5102 bool wake;
5103
5104 __e1000_shutdown(pdev, &wake);
5105
5106 if (system_state == SYSTEM_POWER_OFF) {
5107 pci_wake_from_d3(pdev, wake);
5108 pci_set_power_state(pdev, PCI_D3hot);
5109 }
5110}
5111
5112#ifdef CONFIG_NET_POLL_CONTROLLER
5113/*
5114 * Polling 'interrupt' - used by things like netconsole to send skbs
5115 * without having to re-enable interrupts. It's not called while
5116 * the interrupt routine is executing.
5117 */
5118static void e1000_netpoll(struct net_device *netdev)
5119{
5120 struct e1000_adapter *adapter = netdev_priv(netdev);
5121
5122 disable_irq(adapter->pdev->irq);
5123 e1000_intr(adapter->pdev->irq, netdev);
5124 enable_irq(adapter->pdev->irq);
5125}
5126#endif
5127
5128/**
5129 * e1000_io_error_detected - called when PCI error is detected
5130 * @pdev: Pointer to PCI device
5131 * @state: The current pci connection state
5132 *
5133 * This function is called after a PCI bus error affecting
5134 * this device has been detected.
5135 */
5136static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5137 pci_channel_state_t state)
5138{
5139 struct net_device *netdev = pci_get_drvdata(pdev);
5140 struct e1000_adapter *adapter = netdev_priv(netdev);
5141
5142 netif_device_detach(netdev);
5143
5144 if (state == pci_channel_io_perm_failure)
5145 return PCI_ERS_RESULT_DISCONNECT;
5146
5147 if (netif_running(netdev))
5148 e1000_down(adapter);
5149 pci_disable_device(pdev);
5150
5151 /* Request a slot slot reset. */
5152 return PCI_ERS_RESULT_NEED_RESET;
5153}
5154
5155/**
5156 * e1000_io_slot_reset - called after the pci bus has been reset.
5157 * @pdev: Pointer to PCI device
5158 *
5159 * Restart the card from scratch, as if from a cold-boot. Implementation
5160 * resembles the first-half of the e1000_resume routine.
5161 */
5162static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5163{
5164 struct net_device *netdev = pci_get_drvdata(pdev);
5165 struct e1000_adapter *adapter = netdev_priv(netdev);
5166 struct e1000_hw *hw = &adapter->hw;
5167 int err;
5168
5169 if (adapter->need_ioport)
5170 err = pci_enable_device(pdev);
5171 else
5172 err = pci_enable_device_mem(pdev);
5173 if (err) {
5174 pr_err("Cannot re-enable PCI device after reset.\n");
5175 return PCI_ERS_RESULT_DISCONNECT;
5176 }
5177 pci_set_master(pdev);
5178
5179 pci_enable_wake(pdev, PCI_D3hot, 0);
5180 pci_enable_wake(pdev, PCI_D3cold, 0);
5181
5182 e1000_reset(adapter);
5183 ew32(WUS, ~0);
5184
5185 return PCI_ERS_RESULT_RECOVERED;
5186}
5187
5188/**
5189 * e1000_io_resume - called when traffic can start flowing again.
5190 * @pdev: Pointer to PCI device
5191 *
5192 * This callback is called when the error recovery driver tells us that
5193 * its OK to resume normal operation. Implementation resembles the
5194 * second-half of the e1000_resume routine.
5195 */
5196static void e1000_io_resume(struct pci_dev *pdev)
5197{
5198 struct net_device *netdev = pci_get_drvdata(pdev);
5199 struct e1000_adapter *adapter = netdev_priv(netdev);
5200
5201 e1000_init_manageability(adapter);
5202
5203 if (netif_running(netdev)) {
5204 if (e1000_up(adapter)) {
5205 pr_info("can't bring device back up after reset\n");
5206 return;
5207 }
5208 }
5209
5210 netif_device_attach(netdev);
5211}
5212
5213/* e1000_main.c */