Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4#include "e1000.h"
5#include <net/ip6_checksum.h>
6#include <linux/io.h>
7#include <linux/prefetch.h>
8#include <linux/bitops.h>
9#include <linux/if_vlan.h>
10
11char e1000_driver_name[] = "e1000";
12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
14
15/* e1000_pci_tbl - PCI Device ID Table
16 *
17 * Last entry must be all 0s
18 *
19 * Macro expands to...
20 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
21 */
22static const struct pci_device_id e1000_pci_tbl[] = {
23 INTEL_E1000_ETHERNET_DEVICE(0x1000),
24 INTEL_E1000_ETHERNET_DEVICE(0x1001),
25 INTEL_E1000_ETHERNET_DEVICE(0x1004),
26 INTEL_E1000_ETHERNET_DEVICE(0x1008),
27 INTEL_E1000_ETHERNET_DEVICE(0x1009),
28 INTEL_E1000_ETHERNET_DEVICE(0x100C),
29 INTEL_E1000_ETHERNET_DEVICE(0x100D),
30 INTEL_E1000_ETHERNET_DEVICE(0x100E),
31 INTEL_E1000_ETHERNET_DEVICE(0x100F),
32 INTEL_E1000_ETHERNET_DEVICE(0x1010),
33 INTEL_E1000_ETHERNET_DEVICE(0x1011),
34 INTEL_E1000_ETHERNET_DEVICE(0x1012),
35 INTEL_E1000_ETHERNET_DEVICE(0x1013),
36 INTEL_E1000_ETHERNET_DEVICE(0x1014),
37 INTEL_E1000_ETHERNET_DEVICE(0x1015),
38 INTEL_E1000_ETHERNET_DEVICE(0x1016),
39 INTEL_E1000_ETHERNET_DEVICE(0x1017),
40 INTEL_E1000_ETHERNET_DEVICE(0x1018),
41 INTEL_E1000_ETHERNET_DEVICE(0x1019),
42 INTEL_E1000_ETHERNET_DEVICE(0x101A),
43 INTEL_E1000_ETHERNET_DEVICE(0x101D),
44 INTEL_E1000_ETHERNET_DEVICE(0x101E),
45 INTEL_E1000_ETHERNET_DEVICE(0x1026),
46 INTEL_E1000_ETHERNET_DEVICE(0x1027),
47 INTEL_E1000_ETHERNET_DEVICE(0x1028),
48 INTEL_E1000_ETHERNET_DEVICE(0x1075),
49 INTEL_E1000_ETHERNET_DEVICE(0x1076),
50 INTEL_E1000_ETHERNET_DEVICE(0x1077),
51 INTEL_E1000_ETHERNET_DEVICE(0x1078),
52 INTEL_E1000_ETHERNET_DEVICE(0x1079),
53 INTEL_E1000_ETHERNET_DEVICE(0x107A),
54 INTEL_E1000_ETHERNET_DEVICE(0x107B),
55 INTEL_E1000_ETHERNET_DEVICE(0x107C),
56 INTEL_E1000_ETHERNET_DEVICE(0x108A),
57 INTEL_E1000_ETHERNET_DEVICE(0x1099),
58 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
59 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
60 /* required last entry */
61 {0,}
62};
63
64MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
65
66int e1000_up(struct e1000_adapter *adapter);
67void e1000_down(struct e1000_adapter *adapter);
68void e1000_reinit_locked(struct e1000_adapter *adapter);
69void e1000_reset(struct e1000_adapter *adapter);
70int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
71int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
72void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
73void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
74static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
75 struct e1000_tx_ring *txdr);
76static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
77 struct e1000_rx_ring *rxdr);
78static void e1000_free_tx_resources(struct e1000_adapter *adapter,
79 struct e1000_tx_ring *tx_ring);
80static void e1000_free_rx_resources(struct e1000_adapter *adapter,
81 struct e1000_rx_ring *rx_ring);
82void e1000_update_stats(struct e1000_adapter *adapter);
83
84static int e1000_init_module(void);
85static void e1000_exit_module(void);
86static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
87static void e1000_remove(struct pci_dev *pdev);
88static int e1000_alloc_queues(struct e1000_adapter *adapter);
89static int e1000_sw_init(struct e1000_adapter *adapter);
90int e1000_open(struct net_device *netdev);
91int e1000_close(struct net_device *netdev);
92static void e1000_configure_tx(struct e1000_adapter *adapter);
93static void e1000_configure_rx(struct e1000_adapter *adapter);
94static void e1000_setup_rctl(struct e1000_adapter *adapter);
95static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
96static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
97static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *tx_ring);
99static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rx_ring);
101static void e1000_set_rx_mode(struct net_device *netdev);
102static void e1000_update_phy_info_task(struct work_struct *work);
103static void e1000_watchdog(struct work_struct *work);
104static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
105static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
106 struct net_device *netdev);
107static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
108static int e1000_set_mac(struct net_device *netdev, void *p);
109static irqreturn_t e1000_intr(int irq, void *data);
110static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
111 struct e1000_tx_ring *tx_ring);
112static int e1000_clean(struct napi_struct *napi, int budget);
113static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
114 struct e1000_rx_ring *rx_ring,
115 int *work_done, int work_to_do);
116static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
117 struct e1000_rx_ring *rx_ring,
118 int *work_done, int work_to_do);
119static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
120 struct e1000_rx_ring *rx_ring,
121 int cleaned_count)
122{
123}
124static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
125 struct e1000_rx_ring *rx_ring,
126 int cleaned_count);
127static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rx_ring,
129 int cleaned_count);
130static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
131static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
132 int cmd);
133static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
134static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
135static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
136static void e1000_reset_task(struct work_struct *work);
137static void e1000_smartspeed(struct e1000_adapter *adapter);
138static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
139 struct sk_buff *skb);
140
141static bool e1000_vlan_used(struct e1000_adapter *adapter);
142static void e1000_vlan_mode(struct net_device *netdev,
143 netdev_features_t features);
144static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
145 bool filter_on);
146static int e1000_vlan_rx_add_vid(struct net_device *netdev,
147 __be16 proto, u16 vid);
148static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
149 __be16 proto, u16 vid);
150static void e1000_restore_vlan(struct e1000_adapter *adapter);
151
152static int __maybe_unused e1000_suspend(struct device *dev);
153static int __maybe_unused e1000_resume(struct device *dev);
154static void e1000_shutdown(struct pci_dev *pdev);
155
156#ifdef CONFIG_NET_POLL_CONTROLLER
157/* for netdump / net console */
158static void e1000_netpoll (struct net_device *netdev);
159#endif
160
161#define COPYBREAK_DEFAULT 256
162static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
163module_param(copybreak, uint, 0644);
164MODULE_PARM_DESC(copybreak,
165 "Maximum size of packet that is copied to a new buffer on receive");
166
167static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
168 pci_channel_state_t state);
169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
170static void e1000_io_resume(struct pci_dev *pdev);
171
172static const struct pci_error_handlers e1000_err_handler = {
173 .error_detected = e1000_io_error_detected,
174 .slot_reset = e1000_io_slot_reset,
175 .resume = e1000_io_resume,
176};
177
178static SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
179
180static struct pci_driver e1000_driver = {
181 .name = e1000_driver_name,
182 .id_table = e1000_pci_tbl,
183 .probe = e1000_probe,
184 .remove = e1000_remove,
185 .driver = {
186 .pm = &e1000_pm_ops,
187 },
188 .shutdown = e1000_shutdown,
189 .err_handler = &e1000_err_handler
190};
191
192MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
193MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
194MODULE_LICENSE("GPL v2");
195
196#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
197static int debug = -1;
198module_param(debug, int, 0);
199MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
200
201/**
202 * e1000_get_hw_dev - helper function for getting netdev
203 * @hw: pointer to HW struct
204 *
205 * return device used by hardware layer to print debugging information
206 *
207 **/
208struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
209{
210 struct e1000_adapter *adapter = hw->back;
211 return adapter->netdev;
212}
213
214/**
215 * e1000_init_module - Driver Registration Routine
216 *
217 * e1000_init_module is the first routine called when the driver is
218 * loaded. All it does is register with the PCI subsystem.
219 **/
220static int __init e1000_init_module(void)
221{
222 int ret;
223 pr_info("%s\n", e1000_driver_string);
224
225 pr_info("%s\n", e1000_copyright);
226
227 ret = pci_register_driver(&e1000_driver);
228 if (copybreak != COPYBREAK_DEFAULT) {
229 if (copybreak == 0)
230 pr_info("copybreak disabled\n");
231 else
232 pr_info("copybreak enabled for "
233 "packets <= %u bytes\n", copybreak);
234 }
235 return ret;
236}
237
238module_init(e1000_init_module);
239
240/**
241 * e1000_exit_module - Driver Exit Cleanup Routine
242 *
243 * e1000_exit_module is called just before the driver is removed
244 * from memory.
245 **/
246static void __exit e1000_exit_module(void)
247{
248 pci_unregister_driver(&e1000_driver);
249}
250
251module_exit(e1000_exit_module);
252
253static int e1000_request_irq(struct e1000_adapter *adapter)
254{
255 struct net_device *netdev = adapter->netdev;
256 irq_handler_t handler = e1000_intr;
257 int irq_flags = IRQF_SHARED;
258 int err;
259
260 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
261 netdev);
262 if (err) {
263 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
264 }
265
266 return err;
267}
268
269static void e1000_free_irq(struct e1000_adapter *adapter)
270{
271 struct net_device *netdev = adapter->netdev;
272
273 free_irq(adapter->pdev->irq, netdev);
274}
275
276/**
277 * e1000_irq_disable - Mask off interrupt generation on the NIC
278 * @adapter: board private structure
279 **/
280static void e1000_irq_disable(struct e1000_adapter *adapter)
281{
282 struct e1000_hw *hw = &adapter->hw;
283
284 ew32(IMC, ~0);
285 E1000_WRITE_FLUSH();
286 synchronize_irq(adapter->pdev->irq);
287}
288
289/**
290 * e1000_irq_enable - Enable default interrupt generation settings
291 * @adapter: board private structure
292 **/
293static void e1000_irq_enable(struct e1000_adapter *adapter)
294{
295 struct e1000_hw *hw = &adapter->hw;
296
297 ew32(IMS, IMS_ENABLE_MASK);
298 E1000_WRITE_FLUSH();
299}
300
301static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
302{
303 struct e1000_hw *hw = &adapter->hw;
304 struct net_device *netdev = adapter->netdev;
305 u16 vid = hw->mng_cookie.vlan_id;
306 u16 old_vid = adapter->mng_vlan_id;
307
308 if (!e1000_vlan_used(adapter))
309 return;
310
311 if (!test_bit(vid, adapter->active_vlans)) {
312 if (hw->mng_cookie.status &
313 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
314 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
315 adapter->mng_vlan_id = vid;
316 } else {
317 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
318 }
319 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
320 (vid != old_vid) &&
321 !test_bit(old_vid, adapter->active_vlans))
322 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
323 old_vid);
324 } else {
325 adapter->mng_vlan_id = vid;
326 }
327}
328
329static void e1000_init_manageability(struct e1000_adapter *adapter)
330{
331 struct e1000_hw *hw = &adapter->hw;
332
333 if (adapter->en_mng_pt) {
334 u32 manc = er32(MANC);
335
336 /* disable hardware interception of ARP */
337 manc &= ~(E1000_MANC_ARP_EN);
338
339 ew32(MANC, manc);
340 }
341}
342
343static void e1000_release_manageability(struct e1000_adapter *adapter)
344{
345 struct e1000_hw *hw = &adapter->hw;
346
347 if (adapter->en_mng_pt) {
348 u32 manc = er32(MANC);
349
350 /* re-enable hardware interception of ARP */
351 manc |= E1000_MANC_ARP_EN;
352
353 ew32(MANC, manc);
354 }
355}
356
357/**
358 * e1000_configure - configure the hardware for RX and TX
359 * @adapter: private board structure
360 **/
361static void e1000_configure(struct e1000_adapter *adapter)
362{
363 struct net_device *netdev = adapter->netdev;
364 int i;
365
366 e1000_set_rx_mode(netdev);
367
368 e1000_restore_vlan(adapter);
369 e1000_init_manageability(adapter);
370
371 e1000_configure_tx(adapter);
372 e1000_setup_rctl(adapter);
373 e1000_configure_rx(adapter);
374 /* call E1000_DESC_UNUSED which always leaves
375 * at least 1 descriptor unused to make sure
376 * next_to_use != next_to_clean
377 */
378 for (i = 0; i < adapter->num_rx_queues; i++) {
379 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
380 adapter->alloc_rx_buf(adapter, ring,
381 E1000_DESC_UNUSED(ring));
382 }
383}
384
385int e1000_up(struct e1000_adapter *adapter)
386{
387 struct e1000_hw *hw = &adapter->hw;
388
389 /* hardware has been reset, we need to reload some things */
390 e1000_configure(adapter);
391
392 clear_bit(__E1000_DOWN, &adapter->flags);
393
394 napi_enable(&adapter->napi);
395
396 e1000_irq_enable(adapter);
397
398 netif_wake_queue(adapter->netdev);
399
400 /* fire a link change interrupt to start the watchdog */
401 ew32(ICS, E1000_ICS_LSC);
402 return 0;
403}
404
405/**
406 * e1000_power_up_phy - restore link in case the phy was powered down
407 * @adapter: address of board private structure
408 *
409 * The phy may be powered down to save power and turn off link when the
410 * driver is unloaded and wake on lan is not enabled (among others)
411 * *** this routine MUST be followed by a call to e1000_reset ***
412 **/
413void e1000_power_up_phy(struct e1000_adapter *adapter)
414{
415 struct e1000_hw *hw = &adapter->hw;
416 u16 mii_reg = 0;
417
418 /* Just clear the power down bit to wake the phy back up */
419 if (hw->media_type == e1000_media_type_copper) {
420 /* according to the manual, the phy will retain its
421 * settings across a power-down/up cycle
422 */
423 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
424 mii_reg &= ~MII_CR_POWER_DOWN;
425 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
426 }
427}
428
429static void e1000_power_down_phy(struct e1000_adapter *adapter)
430{
431 struct e1000_hw *hw = &adapter->hw;
432
433 /* Power down the PHY so no link is implied when interface is down *
434 * The PHY cannot be powered down if any of the following is true *
435 * (a) WoL is enabled
436 * (b) AMT is active
437 * (c) SoL/IDER session is active
438 */
439 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
440 hw->media_type == e1000_media_type_copper) {
441 u16 mii_reg = 0;
442
443 switch (hw->mac_type) {
444 case e1000_82540:
445 case e1000_82545:
446 case e1000_82545_rev_3:
447 case e1000_82546:
448 case e1000_ce4100:
449 case e1000_82546_rev_3:
450 case e1000_82541:
451 case e1000_82541_rev_2:
452 case e1000_82547:
453 case e1000_82547_rev_2:
454 if (er32(MANC) & E1000_MANC_SMBUS_EN)
455 goto out;
456 break;
457 default:
458 goto out;
459 }
460 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
461 mii_reg |= MII_CR_POWER_DOWN;
462 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
463 msleep(1);
464 }
465out:
466 return;
467}
468
469static void e1000_down_and_stop(struct e1000_adapter *adapter)
470{
471 set_bit(__E1000_DOWN, &adapter->flags);
472
473 cancel_delayed_work_sync(&adapter->watchdog_task);
474
475 /*
476 * Since the watchdog task can reschedule other tasks, we should cancel
477 * it first, otherwise we can run into the situation when a work is
478 * still running after the adapter has been turned down.
479 */
480
481 cancel_delayed_work_sync(&adapter->phy_info_task);
482 cancel_delayed_work_sync(&adapter->fifo_stall_task);
483
484 /* Only kill reset task if adapter is not resetting */
485 if (!test_bit(__E1000_RESETTING, &adapter->flags))
486 cancel_work_sync(&adapter->reset_task);
487}
488
489void e1000_down(struct e1000_adapter *adapter)
490{
491 struct e1000_hw *hw = &adapter->hw;
492 struct net_device *netdev = adapter->netdev;
493 u32 rctl, tctl;
494
495 /* disable receives in the hardware */
496 rctl = er32(RCTL);
497 ew32(RCTL, rctl & ~E1000_RCTL_EN);
498 /* flush and sleep below */
499
500 netif_tx_disable(netdev);
501
502 /* disable transmits in the hardware */
503 tctl = er32(TCTL);
504 tctl &= ~E1000_TCTL_EN;
505 ew32(TCTL, tctl);
506 /* flush both disables and wait for them to finish */
507 E1000_WRITE_FLUSH();
508 msleep(10);
509
510 /* Set the carrier off after transmits have been disabled in the
511 * hardware, to avoid race conditions with e1000_watchdog() (which
512 * may be running concurrently to us, checking for the carrier
513 * bit to decide whether it should enable transmits again). Such
514 * a race condition would result into transmission being disabled
515 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
516 */
517 netif_carrier_off(netdev);
518
519 napi_disable(&adapter->napi);
520
521 e1000_irq_disable(adapter);
522
523 /* Setting DOWN must be after irq_disable to prevent
524 * a screaming interrupt. Setting DOWN also prevents
525 * tasks from rescheduling.
526 */
527 e1000_down_and_stop(adapter);
528
529 adapter->link_speed = 0;
530 adapter->link_duplex = 0;
531
532 e1000_reset(adapter);
533 e1000_clean_all_tx_rings(adapter);
534 e1000_clean_all_rx_rings(adapter);
535}
536
537void e1000_reinit_locked(struct e1000_adapter *adapter)
538{
539 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
540 msleep(1);
541
542 /* only run the task if not already down */
543 if (!test_bit(__E1000_DOWN, &adapter->flags)) {
544 e1000_down(adapter);
545 e1000_up(adapter);
546 }
547
548 clear_bit(__E1000_RESETTING, &adapter->flags);
549}
550
551void e1000_reset(struct e1000_adapter *adapter)
552{
553 struct e1000_hw *hw = &adapter->hw;
554 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
555 bool legacy_pba_adjust = false;
556 u16 hwm;
557
558 /* Repartition Pba for greater than 9k mtu
559 * To take effect CTRL.RST is required.
560 */
561
562 switch (hw->mac_type) {
563 case e1000_82542_rev2_0:
564 case e1000_82542_rev2_1:
565 case e1000_82543:
566 case e1000_82544:
567 case e1000_82540:
568 case e1000_82541:
569 case e1000_82541_rev_2:
570 legacy_pba_adjust = true;
571 pba = E1000_PBA_48K;
572 break;
573 case e1000_82545:
574 case e1000_82545_rev_3:
575 case e1000_82546:
576 case e1000_ce4100:
577 case e1000_82546_rev_3:
578 pba = E1000_PBA_48K;
579 break;
580 case e1000_82547:
581 case e1000_82547_rev_2:
582 legacy_pba_adjust = true;
583 pba = E1000_PBA_30K;
584 break;
585 case e1000_undefined:
586 case e1000_num_macs:
587 break;
588 }
589
590 if (legacy_pba_adjust) {
591 if (hw->max_frame_size > E1000_RXBUFFER_8192)
592 pba -= 8; /* allocate more FIFO for Tx */
593
594 if (hw->mac_type == e1000_82547) {
595 adapter->tx_fifo_head = 0;
596 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
597 adapter->tx_fifo_size =
598 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
599 atomic_set(&adapter->tx_fifo_stall, 0);
600 }
601 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
602 /* adjust PBA for jumbo frames */
603 ew32(PBA, pba);
604
605 /* To maintain wire speed transmits, the Tx FIFO should be
606 * large enough to accommodate two full transmit packets,
607 * rounded up to the next 1KB and expressed in KB. Likewise,
608 * the Rx FIFO should be large enough to accommodate at least
609 * one full receive packet and is similarly rounded up and
610 * expressed in KB.
611 */
612 pba = er32(PBA);
613 /* upper 16 bits has Tx packet buffer allocation size in KB */
614 tx_space = pba >> 16;
615 /* lower 16 bits has Rx packet buffer allocation size in KB */
616 pba &= 0xffff;
617 /* the Tx fifo also stores 16 bytes of information about the Tx
618 * but don't include ethernet FCS because hardware appends it
619 */
620 min_tx_space = (hw->max_frame_size +
621 sizeof(struct e1000_tx_desc) -
622 ETH_FCS_LEN) * 2;
623 min_tx_space = ALIGN(min_tx_space, 1024);
624 min_tx_space >>= 10;
625 /* software strips receive CRC, so leave room for it */
626 min_rx_space = hw->max_frame_size;
627 min_rx_space = ALIGN(min_rx_space, 1024);
628 min_rx_space >>= 10;
629
630 /* If current Tx allocation is less than the min Tx FIFO size,
631 * and the min Tx FIFO size is less than the current Rx FIFO
632 * allocation, take space away from current Rx allocation
633 */
634 if (tx_space < min_tx_space &&
635 ((min_tx_space - tx_space) < pba)) {
636 pba = pba - (min_tx_space - tx_space);
637
638 /* PCI/PCIx hardware has PBA alignment constraints */
639 switch (hw->mac_type) {
640 case e1000_82545 ... e1000_82546_rev_3:
641 pba &= ~(E1000_PBA_8K - 1);
642 break;
643 default:
644 break;
645 }
646
647 /* if short on Rx space, Rx wins and must trump Tx
648 * adjustment or use Early Receive if available
649 */
650 if (pba < min_rx_space)
651 pba = min_rx_space;
652 }
653 }
654
655 ew32(PBA, pba);
656
657 /* flow control settings:
658 * The high water mark must be low enough to fit one full frame
659 * (or the size used for early receive) above it in the Rx FIFO.
660 * Set it to the lower of:
661 * - 90% of the Rx FIFO size, and
662 * - the full Rx FIFO size minus the early receive size (for parts
663 * with ERT support assuming ERT set to E1000_ERT_2048), or
664 * - the full Rx FIFO size minus one full frame
665 */
666 hwm = min(((pba << 10) * 9 / 10),
667 ((pba << 10) - hw->max_frame_size));
668
669 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
670 hw->fc_low_water = hw->fc_high_water - 8;
671 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
672 hw->fc_send_xon = 1;
673 hw->fc = hw->original_fc;
674
675 /* Allow time for pending master requests to run */
676 e1000_reset_hw(hw);
677 if (hw->mac_type >= e1000_82544)
678 ew32(WUC, 0);
679
680 if (e1000_init_hw(hw))
681 e_dev_err("Hardware Error\n");
682 e1000_update_mng_vlan(adapter);
683
684 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
685 if (hw->mac_type >= e1000_82544 &&
686 hw->autoneg == 1 &&
687 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
688 u32 ctrl = er32(CTRL);
689 /* clear phy power management bit if we are in gig only mode,
690 * which if enabled will attempt negotiation to 100Mb, which
691 * can cause a loss of link at power off or driver unload
692 */
693 ctrl &= ~E1000_CTRL_SWDPIN3;
694 ew32(CTRL, ctrl);
695 }
696
697 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
698 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
699
700 e1000_reset_adaptive(hw);
701 e1000_phy_get_info(hw, &adapter->phy_info);
702
703 e1000_release_manageability(adapter);
704}
705
706/* Dump the eeprom for users having checksum issues */
707static void e1000_dump_eeprom(struct e1000_adapter *adapter)
708{
709 struct net_device *netdev = adapter->netdev;
710 struct ethtool_eeprom eeprom;
711 const struct ethtool_ops *ops = netdev->ethtool_ops;
712 u8 *data;
713 int i;
714 u16 csum_old, csum_new = 0;
715
716 eeprom.len = ops->get_eeprom_len(netdev);
717 eeprom.offset = 0;
718
719 data = kmalloc(eeprom.len, GFP_KERNEL);
720 if (!data)
721 return;
722
723 ops->get_eeprom(netdev, &eeprom, data);
724
725 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
726 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
727 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
728 csum_new += data[i] + (data[i + 1] << 8);
729 csum_new = EEPROM_SUM - csum_new;
730
731 pr_err("/*********************/\n");
732 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
733 pr_err("Calculated : 0x%04x\n", csum_new);
734
735 pr_err("Offset Values\n");
736 pr_err("======== ======\n");
737 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
738
739 pr_err("Include this output when contacting your support provider.\n");
740 pr_err("This is not a software error! Something bad happened to\n");
741 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
742 pr_err("result in further problems, possibly loss of data,\n");
743 pr_err("corruption or system hangs!\n");
744 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
745 pr_err("which is invalid and requires you to set the proper MAC\n");
746 pr_err("address manually before continuing to enable this network\n");
747 pr_err("device. Please inspect the EEPROM dump and report the\n");
748 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
749 pr_err("/*********************/\n");
750
751 kfree(data);
752}
753
754/**
755 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
756 * @pdev: PCI device information struct
757 *
758 * Return true if an adapter needs ioport resources
759 **/
760static int e1000_is_need_ioport(struct pci_dev *pdev)
761{
762 switch (pdev->device) {
763 case E1000_DEV_ID_82540EM:
764 case E1000_DEV_ID_82540EM_LOM:
765 case E1000_DEV_ID_82540EP:
766 case E1000_DEV_ID_82540EP_LOM:
767 case E1000_DEV_ID_82540EP_LP:
768 case E1000_DEV_ID_82541EI:
769 case E1000_DEV_ID_82541EI_MOBILE:
770 case E1000_DEV_ID_82541ER:
771 case E1000_DEV_ID_82541ER_LOM:
772 case E1000_DEV_ID_82541GI:
773 case E1000_DEV_ID_82541GI_LF:
774 case E1000_DEV_ID_82541GI_MOBILE:
775 case E1000_DEV_ID_82544EI_COPPER:
776 case E1000_DEV_ID_82544EI_FIBER:
777 case E1000_DEV_ID_82544GC_COPPER:
778 case E1000_DEV_ID_82544GC_LOM:
779 case E1000_DEV_ID_82545EM_COPPER:
780 case E1000_DEV_ID_82545EM_FIBER:
781 case E1000_DEV_ID_82546EB_COPPER:
782 case E1000_DEV_ID_82546EB_FIBER:
783 case E1000_DEV_ID_82546EB_QUAD_COPPER:
784 return true;
785 default:
786 return false;
787 }
788}
789
790static netdev_features_t e1000_fix_features(struct net_device *netdev,
791 netdev_features_t features)
792{
793 /* Since there is no support for separate Rx/Tx vlan accel
794 * enable/disable make sure Tx flag is always in same state as Rx.
795 */
796 if (features & NETIF_F_HW_VLAN_CTAG_RX)
797 features |= NETIF_F_HW_VLAN_CTAG_TX;
798 else
799 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
800
801 return features;
802}
803
804static int e1000_set_features(struct net_device *netdev,
805 netdev_features_t features)
806{
807 struct e1000_adapter *adapter = netdev_priv(netdev);
808 netdev_features_t changed = features ^ netdev->features;
809
810 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
811 e1000_vlan_mode(netdev, features);
812
813 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
814 return 0;
815
816 netdev->features = features;
817 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
818
819 if (netif_running(netdev))
820 e1000_reinit_locked(adapter);
821 else
822 e1000_reset(adapter);
823
824 return 1;
825}
826
827static const struct net_device_ops e1000_netdev_ops = {
828 .ndo_open = e1000_open,
829 .ndo_stop = e1000_close,
830 .ndo_start_xmit = e1000_xmit_frame,
831 .ndo_set_rx_mode = e1000_set_rx_mode,
832 .ndo_set_mac_address = e1000_set_mac,
833 .ndo_tx_timeout = e1000_tx_timeout,
834 .ndo_change_mtu = e1000_change_mtu,
835 .ndo_eth_ioctl = e1000_ioctl,
836 .ndo_validate_addr = eth_validate_addr,
837 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
838 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
839#ifdef CONFIG_NET_POLL_CONTROLLER
840 .ndo_poll_controller = e1000_netpoll,
841#endif
842 .ndo_fix_features = e1000_fix_features,
843 .ndo_set_features = e1000_set_features,
844};
845
846/**
847 * e1000_init_hw_struct - initialize members of hw struct
848 * @adapter: board private struct
849 * @hw: structure used by e1000_hw.c
850 *
851 * Factors out initialization of the e1000_hw struct to its own function
852 * that can be called very early at init (just after struct allocation).
853 * Fields are initialized based on PCI device information and
854 * OS network device settings (MTU size).
855 * Returns negative error codes if MAC type setup fails.
856 */
857static int e1000_init_hw_struct(struct e1000_adapter *adapter,
858 struct e1000_hw *hw)
859{
860 struct pci_dev *pdev = adapter->pdev;
861
862 /* PCI config space info */
863 hw->vendor_id = pdev->vendor;
864 hw->device_id = pdev->device;
865 hw->subsystem_vendor_id = pdev->subsystem_vendor;
866 hw->subsystem_id = pdev->subsystem_device;
867 hw->revision_id = pdev->revision;
868
869 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
870
871 hw->max_frame_size = adapter->netdev->mtu +
872 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
873 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
874
875 /* identify the MAC */
876 if (e1000_set_mac_type(hw)) {
877 e_err(probe, "Unknown MAC Type\n");
878 return -EIO;
879 }
880
881 switch (hw->mac_type) {
882 default:
883 break;
884 case e1000_82541:
885 case e1000_82547:
886 case e1000_82541_rev_2:
887 case e1000_82547_rev_2:
888 hw->phy_init_script = 1;
889 break;
890 }
891
892 e1000_set_media_type(hw);
893 e1000_get_bus_info(hw);
894
895 hw->wait_autoneg_complete = false;
896 hw->tbi_compatibility_en = true;
897 hw->adaptive_ifs = true;
898
899 /* Copper options */
900
901 if (hw->media_type == e1000_media_type_copper) {
902 hw->mdix = AUTO_ALL_MODES;
903 hw->disable_polarity_correction = false;
904 hw->master_slave = E1000_MASTER_SLAVE;
905 }
906
907 return 0;
908}
909
910/**
911 * e1000_probe - Device Initialization Routine
912 * @pdev: PCI device information struct
913 * @ent: entry in e1000_pci_tbl
914 *
915 * Returns 0 on success, negative on failure
916 *
917 * e1000_probe initializes an adapter identified by a pci_dev structure.
918 * The OS initialization, configuring of the adapter private structure,
919 * and a hardware reset occur.
920 **/
921static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
922{
923 struct net_device *netdev;
924 struct e1000_adapter *adapter = NULL;
925 struct e1000_hw *hw;
926
927 static int cards_found;
928 static int global_quad_port_a; /* global ksp3 port a indication */
929 int i, err, pci_using_dac;
930 u16 eeprom_data = 0;
931 u16 tmp = 0;
932 u16 eeprom_apme_mask = E1000_EEPROM_APME;
933 int bars, need_ioport;
934 bool disable_dev = false;
935
936 /* do not allocate ioport bars when not needed */
937 need_ioport = e1000_is_need_ioport(pdev);
938 if (need_ioport) {
939 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
940 err = pci_enable_device(pdev);
941 } else {
942 bars = pci_select_bars(pdev, IORESOURCE_MEM);
943 err = pci_enable_device_mem(pdev);
944 }
945 if (err)
946 return err;
947
948 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
949 if (err)
950 goto err_pci_reg;
951
952 pci_set_master(pdev);
953 err = pci_save_state(pdev);
954 if (err)
955 goto err_alloc_etherdev;
956
957 err = -ENOMEM;
958 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
959 if (!netdev)
960 goto err_alloc_etherdev;
961
962 SET_NETDEV_DEV(netdev, &pdev->dev);
963
964 pci_set_drvdata(pdev, netdev);
965 adapter = netdev_priv(netdev);
966 adapter->netdev = netdev;
967 adapter->pdev = pdev;
968 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
969 adapter->bars = bars;
970 adapter->need_ioport = need_ioport;
971
972 hw = &adapter->hw;
973 hw->back = adapter;
974
975 err = -EIO;
976 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
977 if (!hw->hw_addr)
978 goto err_ioremap;
979
980 if (adapter->need_ioport) {
981 for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
982 if (pci_resource_len(pdev, i) == 0)
983 continue;
984 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
985 hw->io_base = pci_resource_start(pdev, i);
986 break;
987 }
988 }
989 }
990
991 /* make ready for any if (hw->...) below */
992 err = e1000_init_hw_struct(adapter, hw);
993 if (err)
994 goto err_sw_init;
995
996 /* there is a workaround being applied below that limits
997 * 64-bit DMA addresses to 64-bit hardware. There are some
998 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
999 */
1000 pci_using_dac = 0;
1001 if ((hw->bus_type == e1000_bus_type_pcix) &&
1002 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1003 pci_using_dac = 1;
1004 } else {
1005 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1006 if (err) {
1007 pr_err("No usable DMA config, aborting\n");
1008 goto err_dma;
1009 }
1010 }
1011
1012 netdev->netdev_ops = &e1000_netdev_ops;
1013 e1000_set_ethtool_ops(netdev);
1014 netdev->watchdog_timeo = 5 * HZ;
1015 netif_napi_add(netdev, &adapter->napi, e1000_clean);
1016
1017 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
1018
1019 adapter->bd_number = cards_found;
1020
1021 /* setup the private structure */
1022
1023 err = e1000_sw_init(adapter);
1024 if (err)
1025 goto err_sw_init;
1026
1027 err = -EIO;
1028 if (hw->mac_type == e1000_ce4100) {
1029 hw->ce4100_gbe_mdio_base_virt =
1030 ioremap(pci_resource_start(pdev, BAR_1),
1031 pci_resource_len(pdev, BAR_1));
1032
1033 if (!hw->ce4100_gbe_mdio_base_virt)
1034 goto err_mdio_ioremap;
1035 }
1036
1037 if (hw->mac_type >= e1000_82543) {
1038 netdev->hw_features = NETIF_F_SG |
1039 NETIF_F_HW_CSUM |
1040 NETIF_F_HW_VLAN_CTAG_RX;
1041 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1042 NETIF_F_HW_VLAN_CTAG_FILTER;
1043 }
1044
1045 if ((hw->mac_type >= e1000_82544) &&
1046 (hw->mac_type != e1000_82547))
1047 netdev->hw_features |= NETIF_F_TSO;
1048
1049 netdev->priv_flags |= IFF_SUPP_NOFCS;
1050
1051 netdev->features |= netdev->hw_features;
1052 netdev->hw_features |= (NETIF_F_RXCSUM |
1053 NETIF_F_RXALL |
1054 NETIF_F_RXFCS);
1055
1056 if (pci_using_dac) {
1057 netdev->features |= NETIF_F_HIGHDMA;
1058 netdev->vlan_features |= NETIF_F_HIGHDMA;
1059 }
1060
1061 netdev->vlan_features |= (NETIF_F_TSO |
1062 NETIF_F_HW_CSUM |
1063 NETIF_F_SG);
1064
1065 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1066 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1067 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1068 netdev->priv_flags |= IFF_UNICAST_FLT;
1069
1070 /* MTU range: 46 - 16110 */
1071 netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1072 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1073
1074 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1075
1076 /* initialize eeprom parameters */
1077 if (e1000_init_eeprom_params(hw)) {
1078 e_err(probe, "EEPROM initialization failed\n");
1079 goto err_eeprom;
1080 }
1081
1082 /* before reading the EEPROM, reset the controller to
1083 * put the device in a known good starting state
1084 */
1085
1086 e1000_reset_hw(hw);
1087
1088 /* make sure the EEPROM is good */
1089 if (e1000_validate_eeprom_checksum(hw) < 0) {
1090 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1091 e1000_dump_eeprom(adapter);
1092 /* set MAC address to all zeroes to invalidate and temporary
1093 * disable this device for the user. This blocks regular
1094 * traffic while still permitting ethtool ioctls from reaching
1095 * the hardware as well as allowing the user to run the
1096 * interface after manually setting a hw addr using
1097 * `ip set address`
1098 */
1099 memset(hw->mac_addr, 0, netdev->addr_len);
1100 } else {
1101 /* copy the MAC address out of the EEPROM */
1102 if (e1000_read_mac_addr(hw))
1103 e_err(probe, "EEPROM Read Error\n");
1104 }
1105 /* don't block initialization here due to bad MAC address */
1106 eth_hw_addr_set(netdev, hw->mac_addr);
1107
1108 if (!is_valid_ether_addr(netdev->dev_addr))
1109 e_err(probe, "Invalid MAC Address\n");
1110
1111
1112 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1113 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1114 e1000_82547_tx_fifo_stall_task);
1115 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1116 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1117
1118 e1000_check_options(adapter);
1119
1120 /* Initial Wake on LAN setting
1121 * If APM wake is enabled in the EEPROM,
1122 * enable the ACPI Magic Packet filter
1123 */
1124
1125 switch (hw->mac_type) {
1126 case e1000_82542_rev2_0:
1127 case e1000_82542_rev2_1:
1128 case e1000_82543:
1129 break;
1130 case e1000_82544:
1131 e1000_read_eeprom(hw,
1132 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1133 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1134 break;
1135 case e1000_82546:
1136 case e1000_82546_rev_3:
1137 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1138 e1000_read_eeprom(hw,
1139 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1140 break;
1141 }
1142 fallthrough;
1143 default:
1144 e1000_read_eeprom(hw,
1145 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1146 break;
1147 }
1148 if (eeprom_data & eeprom_apme_mask)
1149 adapter->eeprom_wol |= E1000_WUFC_MAG;
1150
1151 /* now that we have the eeprom settings, apply the special cases
1152 * where the eeprom may be wrong or the board simply won't support
1153 * wake on lan on a particular port
1154 */
1155 switch (pdev->device) {
1156 case E1000_DEV_ID_82546GB_PCIE:
1157 adapter->eeprom_wol = 0;
1158 break;
1159 case E1000_DEV_ID_82546EB_FIBER:
1160 case E1000_DEV_ID_82546GB_FIBER:
1161 /* Wake events only supported on port A for dual fiber
1162 * regardless of eeprom setting
1163 */
1164 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1165 adapter->eeprom_wol = 0;
1166 break;
1167 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1168 /* if quad port adapter, disable WoL on all but port A */
1169 if (global_quad_port_a != 0)
1170 adapter->eeprom_wol = 0;
1171 else
1172 adapter->quad_port_a = true;
1173 /* Reset for multiple quad port adapters */
1174 if (++global_quad_port_a == 4)
1175 global_quad_port_a = 0;
1176 break;
1177 }
1178
1179 /* initialize the wol settings based on the eeprom settings */
1180 adapter->wol = adapter->eeprom_wol;
1181 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1182
1183 /* Auto detect PHY address */
1184 if (hw->mac_type == e1000_ce4100) {
1185 for (i = 0; i < 32; i++) {
1186 hw->phy_addr = i;
1187 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1188
1189 if (tmp != 0 && tmp != 0xFF)
1190 break;
1191 }
1192
1193 if (i >= 32)
1194 goto err_eeprom;
1195 }
1196
1197 /* reset the hardware with the new settings */
1198 e1000_reset(adapter);
1199
1200 strcpy(netdev->name, "eth%d");
1201 err = register_netdev(netdev);
1202 if (err)
1203 goto err_register;
1204
1205 e1000_vlan_filter_on_off(adapter, false);
1206
1207 /* print bus type/speed/width info */
1208 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1209 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1210 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1211 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1212 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1213 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1214 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1215 netdev->dev_addr);
1216
1217 /* carrier off reporting is important to ethtool even BEFORE open */
1218 netif_carrier_off(netdev);
1219
1220 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1221
1222 cards_found++;
1223 return 0;
1224
1225err_register:
1226err_eeprom:
1227 e1000_phy_hw_reset(hw);
1228
1229 if (hw->flash_address)
1230 iounmap(hw->flash_address);
1231 kfree(adapter->tx_ring);
1232 kfree(adapter->rx_ring);
1233err_dma:
1234err_sw_init:
1235err_mdio_ioremap:
1236 iounmap(hw->ce4100_gbe_mdio_base_virt);
1237 iounmap(hw->hw_addr);
1238err_ioremap:
1239 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1240 free_netdev(netdev);
1241err_alloc_etherdev:
1242 pci_release_selected_regions(pdev, bars);
1243err_pci_reg:
1244 if (!adapter || disable_dev)
1245 pci_disable_device(pdev);
1246 return err;
1247}
1248
1249/**
1250 * e1000_remove - Device Removal Routine
1251 * @pdev: PCI device information struct
1252 *
1253 * e1000_remove is called by the PCI subsystem to alert the driver
1254 * that it should release a PCI device. That could be caused by a
1255 * Hot-Plug event, or because the driver is going to be removed from
1256 * memory.
1257 **/
1258static void e1000_remove(struct pci_dev *pdev)
1259{
1260 struct net_device *netdev = pci_get_drvdata(pdev);
1261 struct e1000_adapter *adapter = netdev_priv(netdev);
1262 struct e1000_hw *hw = &adapter->hw;
1263 bool disable_dev;
1264
1265 e1000_down_and_stop(adapter);
1266 e1000_release_manageability(adapter);
1267
1268 unregister_netdev(netdev);
1269
1270 e1000_phy_hw_reset(hw);
1271
1272 kfree(adapter->tx_ring);
1273 kfree(adapter->rx_ring);
1274
1275 if (hw->mac_type == e1000_ce4100)
1276 iounmap(hw->ce4100_gbe_mdio_base_virt);
1277 iounmap(hw->hw_addr);
1278 if (hw->flash_address)
1279 iounmap(hw->flash_address);
1280 pci_release_selected_regions(pdev, adapter->bars);
1281
1282 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1283 free_netdev(netdev);
1284
1285 if (disable_dev)
1286 pci_disable_device(pdev);
1287}
1288
1289/**
1290 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1291 * @adapter: board private structure to initialize
1292 *
1293 * e1000_sw_init initializes the Adapter private data structure.
1294 * e1000_init_hw_struct MUST be called before this function
1295 **/
1296static int e1000_sw_init(struct e1000_adapter *adapter)
1297{
1298 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1299
1300 adapter->num_tx_queues = 1;
1301 adapter->num_rx_queues = 1;
1302
1303 if (e1000_alloc_queues(adapter)) {
1304 e_err(probe, "Unable to allocate memory for queues\n");
1305 return -ENOMEM;
1306 }
1307
1308 /* Explicitly disable IRQ since the NIC can be in any state. */
1309 e1000_irq_disable(adapter);
1310
1311 spin_lock_init(&adapter->stats_lock);
1312
1313 set_bit(__E1000_DOWN, &adapter->flags);
1314
1315 return 0;
1316}
1317
1318/**
1319 * e1000_alloc_queues - Allocate memory for all rings
1320 * @adapter: board private structure to initialize
1321 *
1322 * We allocate one ring per queue at run-time since we don't know the
1323 * number of queues at compile-time.
1324 **/
1325static int e1000_alloc_queues(struct e1000_adapter *adapter)
1326{
1327 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1328 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1329 if (!adapter->tx_ring)
1330 return -ENOMEM;
1331
1332 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1333 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1334 if (!adapter->rx_ring) {
1335 kfree(adapter->tx_ring);
1336 return -ENOMEM;
1337 }
1338
1339 return E1000_SUCCESS;
1340}
1341
1342/**
1343 * e1000_open - Called when a network interface is made active
1344 * @netdev: network interface device structure
1345 *
1346 * Returns 0 on success, negative value on failure
1347 *
1348 * The open entry point is called when a network interface is made
1349 * active by the system (IFF_UP). At this point all resources needed
1350 * for transmit and receive operations are allocated, the interrupt
1351 * handler is registered with the OS, the watchdog task is started,
1352 * and the stack is notified that the interface is ready.
1353 **/
1354int e1000_open(struct net_device *netdev)
1355{
1356 struct e1000_adapter *adapter = netdev_priv(netdev);
1357 struct e1000_hw *hw = &adapter->hw;
1358 int err;
1359
1360 /* disallow open during test */
1361 if (test_bit(__E1000_TESTING, &adapter->flags))
1362 return -EBUSY;
1363
1364 netif_carrier_off(netdev);
1365
1366 /* allocate transmit descriptors */
1367 err = e1000_setup_all_tx_resources(adapter);
1368 if (err)
1369 goto err_setup_tx;
1370
1371 /* allocate receive descriptors */
1372 err = e1000_setup_all_rx_resources(adapter);
1373 if (err)
1374 goto err_setup_rx;
1375
1376 e1000_power_up_phy(adapter);
1377
1378 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1379 if ((hw->mng_cookie.status &
1380 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1381 e1000_update_mng_vlan(adapter);
1382 }
1383
1384 /* before we allocate an interrupt, we must be ready to handle it.
1385 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1386 * as soon as we call pci_request_irq, so we have to setup our
1387 * clean_rx handler before we do so.
1388 */
1389 e1000_configure(adapter);
1390
1391 err = e1000_request_irq(adapter);
1392 if (err)
1393 goto err_req_irq;
1394
1395 /* From here on the code is the same as e1000_up() */
1396 clear_bit(__E1000_DOWN, &adapter->flags);
1397
1398 napi_enable(&adapter->napi);
1399
1400 e1000_irq_enable(adapter);
1401
1402 netif_start_queue(netdev);
1403
1404 /* fire a link status change interrupt to start the watchdog */
1405 ew32(ICS, E1000_ICS_LSC);
1406
1407 return E1000_SUCCESS;
1408
1409err_req_irq:
1410 e1000_power_down_phy(adapter);
1411 e1000_free_all_rx_resources(adapter);
1412err_setup_rx:
1413 e1000_free_all_tx_resources(adapter);
1414err_setup_tx:
1415 e1000_reset(adapter);
1416
1417 return err;
1418}
1419
1420/**
1421 * e1000_close - Disables a network interface
1422 * @netdev: network interface device structure
1423 *
1424 * Returns 0, this is not allowed to fail
1425 *
1426 * The close entry point is called when an interface is de-activated
1427 * by the OS. The hardware is still under the drivers control, but
1428 * needs to be disabled. A global MAC reset is issued to stop the
1429 * hardware, and all transmit and receive resources are freed.
1430 **/
1431int e1000_close(struct net_device *netdev)
1432{
1433 struct e1000_adapter *adapter = netdev_priv(netdev);
1434 struct e1000_hw *hw = &adapter->hw;
1435 int count = E1000_CHECK_RESET_COUNT;
1436
1437 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1438 usleep_range(10000, 20000);
1439
1440 WARN_ON(count < 0);
1441
1442 /* signal that we're down so that the reset task will no longer run */
1443 set_bit(__E1000_DOWN, &adapter->flags);
1444 clear_bit(__E1000_RESETTING, &adapter->flags);
1445
1446 e1000_down(adapter);
1447 e1000_power_down_phy(adapter);
1448 e1000_free_irq(adapter);
1449
1450 e1000_free_all_tx_resources(adapter);
1451 e1000_free_all_rx_resources(adapter);
1452
1453 /* kill manageability vlan ID if supported, but not if a vlan with
1454 * the same ID is registered on the host OS (let 8021q kill it)
1455 */
1456 if ((hw->mng_cookie.status &
1457 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1458 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1459 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1460 adapter->mng_vlan_id);
1461 }
1462
1463 return 0;
1464}
1465
1466/**
1467 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1468 * @adapter: address of board private structure
1469 * @start: address of beginning of memory
1470 * @len: length of memory
1471 **/
1472static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1473 unsigned long len)
1474{
1475 struct e1000_hw *hw = &adapter->hw;
1476 unsigned long begin = (unsigned long)start;
1477 unsigned long end = begin + len;
1478
1479 /* First rev 82545 and 82546 need to not allow any memory
1480 * write location to cross 64k boundary due to errata 23
1481 */
1482 if (hw->mac_type == e1000_82545 ||
1483 hw->mac_type == e1000_ce4100 ||
1484 hw->mac_type == e1000_82546) {
1485 return ((begin ^ (end - 1)) >> 16) == 0;
1486 }
1487
1488 return true;
1489}
1490
1491/**
1492 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1493 * @adapter: board private structure
1494 * @txdr: tx descriptor ring (for a specific queue) to setup
1495 *
1496 * Return 0 on success, negative on failure
1497 **/
1498static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1499 struct e1000_tx_ring *txdr)
1500{
1501 struct pci_dev *pdev = adapter->pdev;
1502 int size;
1503
1504 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1505 txdr->buffer_info = vzalloc(size);
1506 if (!txdr->buffer_info)
1507 return -ENOMEM;
1508
1509 /* round up to nearest 4K */
1510
1511 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1512 txdr->size = ALIGN(txdr->size, 4096);
1513
1514 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1515 GFP_KERNEL);
1516 if (!txdr->desc) {
1517setup_tx_desc_die:
1518 vfree(txdr->buffer_info);
1519 return -ENOMEM;
1520 }
1521
1522 /* Fix for errata 23, can't cross 64kB boundary */
1523 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1524 void *olddesc = txdr->desc;
1525 dma_addr_t olddma = txdr->dma;
1526 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1527 txdr->size, txdr->desc);
1528 /* Try again, without freeing the previous */
1529 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1530 &txdr->dma, GFP_KERNEL);
1531 /* Failed allocation, critical failure */
1532 if (!txdr->desc) {
1533 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1534 olddma);
1535 goto setup_tx_desc_die;
1536 }
1537
1538 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1539 /* give up */
1540 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1541 txdr->dma);
1542 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1543 olddma);
1544 e_err(probe, "Unable to allocate aligned memory "
1545 "for the transmit descriptor ring\n");
1546 vfree(txdr->buffer_info);
1547 return -ENOMEM;
1548 } else {
1549 /* Free old allocation, new allocation was successful */
1550 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1551 olddma);
1552 }
1553 }
1554 memset(txdr->desc, 0, txdr->size);
1555
1556 txdr->next_to_use = 0;
1557 txdr->next_to_clean = 0;
1558
1559 return 0;
1560}
1561
1562/**
1563 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1564 * (Descriptors) for all queues
1565 * @adapter: board private structure
1566 *
1567 * Return 0 on success, negative on failure
1568 **/
1569int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1570{
1571 int i, err = 0;
1572
1573 for (i = 0; i < adapter->num_tx_queues; i++) {
1574 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1575 if (err) {
1576 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1577 for (i-- ; i >= 0; i--)
1578 e1000_free_tx_resources(adapter,
1579 &adapter->tx_ring[i]);
1580 break;
1581 }
1582 }
1583
1584 return err;
1585}
1586
1587/**
1588 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1589 * @adapter: board private structure
1590 *
1591 * Configure the Tx unit of the MAC after a reset.
1592 **/
1593static void e1000_configure_tx(struct e1000_adapter *adapter)
1594{
1595 u64 tdba;
1596 struct e1000_hw *hw = &adapter->hw;
1597 u32 tdlen, tctl, tipg;
1598 u32 ipgr1, ipgr2;
1599
1600 /* Setup the HW Tx Head and Tail descriptor pointers */
1601
1602 switch (adapter->num_tx_queues) {
1603 case 1:
1604 default:
1605 tdba = adapter->tx_ring[0].dma;
1606 tdlen = adapter->tx_ring[0].count *
1607 sizeof(struct e1000_tx_desc);
1608 ew32(TDLEN, tdlen);
1609 ew32(TDBAH, (tdba >> 32));
1610 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1611 ew32(TDT, 0);
1612 ew32(TDH, 0);
1613 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1614 E1000_TDH : E1000_82542_TDH);
1615 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1616 E1000_TDT : E1000_82542_TDT);
1617 break;
1618 }
1619
1620 /* Set the default values for the Tx Inter Packet Gap timer */
1621 if ((hw->media_type == e1000_media_type_fiber ||
1622 hw->media_type == e1000_media_type_internal_serdes))
1623 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1624 else
1625 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1626
1627 switch (hw->mac_type) {
1628 case e1000_82542_rev2_0:
1629 case e1000_82542_rev2_1:
1630 tipg = DEFAULT_82542_TIPG_IPGT;
1631 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1632 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1633 break;
1634 default:
1635 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1636 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1637 break;
1638 }
1639 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1640 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1641 ew32(TIPG, tipg);
1642
1643 /* Set the Tx Interrupt Delay register */
1644
1645 ew32(TIDV, adapter->tx_int_delay);
1646 if (hw->mac_type >= e1000_82540)
1647 ew32(TADV, adapter->tx_abs_int_delay);
1648
1649 /* Program the Transmit Control Register */
1650
1651 tctl = er32(TCTL);
1652 tctl &= ~E1000_TCTL_CT;
1653 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1654 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1655
1656 e1000_config_collision_dist(hw);
1657
1658 /* Setup Transmit Descriptor Settings for eop descriptor */
1659 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1660
1661 /* only set IDE if we are delaying interrupts using the timers */
1662 if (adapter->tx_int_delay)
1663 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1664
1665 if (hw->mac_type < e1000_82543)
1666 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1667 else
1668 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1669
1670 /* Cache if we're 82544 running in PCI-X because we'll
1671 * need this to apply a workaround later in the send path.
1672 */
1673 if (hw->mac_type == e1000_82544 &&
1674 hw->bus_type == e1000_bus_type_pcix)
1675 adapter->pcix_82544 = true;
1676
1677 ew32(TCTL, tctl);
1678
1679}
1680
1681/**
1682 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1683 * @adapter: board private structure
1684 * @rxdr: rx descriptor ring (for a specific queue) to setup
1685 *
1686 * Returns 0 on success, negative on failure
1687 **/
1688static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1689 struct e1000_rx_ring *rxdr)
1690{
1691 struct pci_dev *pdev = adapter->pdev;
1692 int size, desc_len;
1693
1694 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1695 rxdr->buffer_info = vzalloc(size);
1696 if (!rxdr->buffer_info)
1697 return -ENOMEM;
1698
1699 desc_len = sizeof(struct e1000_rx_desc);
1700
1701 /* Round up to nearest 4K */
1702
1703 rxdr->size = rxdr->count * desc_len;
1704 rxdr->size = ALIGN(rxdr->size, 4096);
1705
1706 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1707 GFP_KERNEL);
1708 if (!rxdr->desc) {
1709setup_rx_desc_die:
1710 vfree(rxdr->buffer_info);
1711 return -ENOMEM;
1712 }
1713
1714 /* Fix for errata 23, can't cross 64kB boundary */
1715 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1716 void *olddesc = rxdr->desc;
1717 dma_addr_t olddma = rxdr->dma;
1718 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1719 rxdr->size, rxdr->desc);
1720 /* Try again, without freeing the previous */
1721 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1722 &rxdr->dma, GFP_KERNEL);
1723 /* Failed allocation, critical failure */
1724 if (!rxdr->desc) {
1725 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1726 olddma);
1727 goto setup_rx_desc_die;
1728 }
1729
1730 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1731 /* give up */
1732 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1733 rxdr->dma);
1734 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1735 olddma);
1736 e_err(probe, "Unable to allocate aligned memory for "
1737 "the Rx descriptor ring\n");
1738 goto setup_rx_desc_die;
1739 } else {
1740 /* Free old allocation, new allocation was successful */
1741 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1742 olddma);
1743 }
1744 }
1745 memset(rxdr->desc, 0, rxdr->size);
1746
1747 rxdr->next_to_clean = 0;
1748 rxdr->next_to_use = 0;
1749 rxdr->rx_skb_top = NULL;
1750
1751 return 0;
1752}
1753
1754/**
1755 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1756 * (Descriptors) for all queues
1757 * @adapter: board private structure
1758 *
1759 * Return 0 on success, negative on failure
1760 **/
1761int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1762{
1763 int i, err = 0;
1764
1765 for (i = 0; i < adapter->num_rx_queues; i++) {
1766 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1767 if (err) {
1768 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1769 for (i-- ; i >= 0; i--)
1770 e1000_free_rx_resources(adapter,
1771 &adapter->rx_ring[i]);
1772 break;
1773 }
1774 }
1775
1776 return err;
1777}
1778
1779/**
1780 * e1000_setup_rctl - configure the receive control registers
1781 * @adapter: Board private structure
1782 **/
1783static void e1000_setup_rctl(struct e1000_adapter *adapter)
1784{
1785 struct e1000_hw *hw = &adapter->hw;
1786 u32 rctl;
1787
1788 rctl = er32(RCTL);
1789
1790 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1791
1792 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1793 E1000_RCTL_RDMTS_HALF |
1794 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1795
1796 if (hw->tbi_compatibility_on == 1)
1797 rctl |= E1000_RCTL_SBP;
1798 else
1799 rctl &= ~E1000_RCTL_SBP;
1800
1801 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1802 rctl &= ~E1000_RCTL_LPE;
1803 else
1804 rctl |= E1000_RCTL_LPE;
1805
1806 /* Setup buffer sizes */
1807 rctl &= ~E1000_RCTL_SZ_4096;
1808 rctl |= E1000_RCTL_BSEX;
1809 switch (adapter->rx_buffer_len) {
1810 case E1000_RXBUFFER_2048:
1811 default:
1812 rctl |= E1000_RCTL_SZ_2048;
1813 rctl &= ~E1000_RCTL_BSEX;
1814 break;
1815 case E1000_RXBUFFER_4096:
1816 rctl |= E1000_RCTL_SZ_4096;
1817 break;
1818 case E1000_RXBUFFER_8192:
1819 rctl |= E1000_RCTL_SZ_8192;
1820 break;
1821 case E1000_RXBUFFER_16384:
1822 rctl |= E1000_RCTL_SZ_16384;
1823 break;
1824 }
1825
1826 /* This is useful for sniffing bad packets. */
1827 if (adapter->netdev->features & NETIF_F_RXALL) {
1828 /* UPE and MPE will be handled by normal PROMISC logic
1829 * in e1000e_set_rx_mode
1830 */
1831 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1832 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1833 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1834
1835 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1836 E1000_RCTL_DPF | /* Allow filtered pause */
1837 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1838 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1839 * and that breaks VLANs.
1840 */
1841 }
1842
1843 ew32(RCTL, rctl);
1844}
1845
1846/**
1847 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1848 * @adapter: board private structure
1849 *
1850 * Configure the Rx unit of the MAC after a reset.
1851 **/
1852static void e1000_configure_rx(struct e1000_adapter *adapter)
1853{
1854 u64 rdba;
1855 struct e1000_hw *hw = &adapter->hw;
1856 u32 rdlen, rctl, rxcsum;
1857
1858 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1859 rdlen = adapter->rx_ring[0].count *
1860 sizeof(struct e1000_rx_desc);
1861 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1862 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1863 } else {
1864 rdlen = adapter->rx_ring[0].count *
1865 sizeof(struct e1000_rx_desc);
1866 adapter->clean_rx = e1000_clean_rx_irq;
1867 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1868 }
1869
1870 /* disable receives while setting up the descriptors */
1871 rctl = er32(RCTL);
1872 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1873
1874 /* set the Receive Delay Timer Register */
1875 ew32(RDTR, adapter->rx_int_delay);
1876
1877 if (hw->mac_type >= e1000_82540) {
1878 ew32(RADV, adapter->rx_abs_int_delay);
1879 if (adapter->itr_setting != 0)
1880 ew32(ITR, 1000000000 / (adapter->itr * 256));
1881 }
1882
1883 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1884 * the Base and Length of the Rx Descriptor Ring
1885 */
1886 switch (adapter->num_rx_queues) {
1887 case 1:
1888 default:
1889 rdba = adapter->rx_ring[0].dma;
1890 ew32(RDLEN, rdlen);
1891 ew32(RDBAH, (rdba >> 32));
1892 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1893 ew32(RDT, 0);
1894 ew32(RDH, 0);
1895 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1896 E1000_RDH : E1000_82542_RDH);
1897 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1898 E1000_RDT : E1000_82542_RDT);
1899 break;
1900 }
1901
1902 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1903 if (hw->mac_type >= e1000_82543) {
1904 rxcsum = er32(RXCSUM);
1905 if (adapter->rx_csum)
1906 rxcsum |= E1000_RXCSUM_TUOFL;
1907 else
1908 /* don't need to clear IPPCSE as it defaults to 0 */
1909 rxcsum &= ~E1000_RXCSUM_TUOFL;
1910 ew32(RXCSUM, rxcsum);
1911 }
1912
1913 /* Enable Receives */
1914 ew32(RCTL, rctl | E1000_RCTL_EN);
1915}
1916
1917/**
1918 * e1000_free_tx_resources - Free Tx Resources per Queue
1919 * @adapter: board private structure
1920 * @tx_ring: Tx descriptor ring for a specific queue
1921 *
1922 * Free all transmit software resources
1923 **/
1924static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1925 struct e1000_tx_ring *tx_ring)
1926{
1927 struct pci_dev *pdev = adapter->pdev;
1928
1929 e1000_clean_tx_ring(adapter, tx_ring);
1930
1931 vfree(tx_ring->buffer_info);
1932 tx_ring->buffer_info = NULL;
1933
1934 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1935 tx_ring->dma);
1936
1937 tx_ring->desc = NULL;
1938}
1939
1940/**
1941 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1942 * @adapter: board private structure
1943 *
1944 * Free all transmit software resources
1945 **/
1946void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1947{
1948 int i;
1949
1950 for (i = 0; i < adapter->num_tx_queues; i++)
1951 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1952}
1953
1954static void
1955e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1956 struct e1000_tx_buffer *buffer_info,
1957 int budget)
1958{
1959 if (buffer_info->dma) {
1960 if (buffer_info->mapped_as_page)
1961 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1962 buffer_info->length, DMA_TO_DEVICE);
1963 else
1964 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1965 buffer_info->length,
1966 DMA_TO_DEVICE);
1967 buffer_info->dma = 0;
1968 }
1969 if (buffer_info->skb) {
1970 napi_consume_skb(buffer_info->skb, budget);
1971 buffer_info->skb = NULL;
1972 }
1973 buffer_info->time_stamp = 0;
1974 /* buffer_info must be completely set up in the transmit path */
1975}
1976
1977/**
1978 * e1000_clean_tx_ring - Free Tx Buffers
1979 * @adapter: board private structure
1980 * @tx_ring: ring to be cleaned
1981 **/
1982static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1983 struct e1000_tx_ring *tx_ring)
1984{
1985 struct e1000_hw *hw = &adapter->hw;
1986 struct e1000_tx_buffer *buffer_info;
1987 unsigned long size;
1988 unsigned int i;
1989
1990 /* Free all the Tx ring sk_buffs */
1991
1992 for (i = 0; i < tx_ring->count; i++) {
1993 buffer_info = &tx_ring->buffer_info[i];
1994 e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
1995 }
1996
1997 netdev_reset_queue(adapter->netdev);
1998 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
1999 memset(tx_ring->buffer_info, 0, size);
2000
2001 /* Zero out the descriptor ring */
2002
2003 memset(tx_ring->desc, 0, tx_ring->size);
2004
2005 tx_ring->next_to_use = 0;
2006 tx_ring->next_to_clean = 0;
2007 tx_ring->last_tx_tso = false;
2008
2009 writel(0, hw->hw_addr + tx_ring->tdh);
2010 writel(0, hw->hw_addr + tx_ring->tdt);
2011}
2012
2013/**
2014 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2015 * @adapter: board private structure
2016 **/
2017static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2018{
2019 int i;
2020
2021 for (i = 0; i < adapter->num_tx_queues; i++)
2022 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2023}
2024
2025/**
2026 * e1000_free_rx_resources - Free Rx Resources
2027 * @adapter: board private structure
2028 * @rx_ring: ring to clean the resources from
2029 *
2030 * Free all receive software resources
2031 **/
2032static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2033 struct e1000_rx_ring *rx_ring)
2034{
2035 struct pci_dev *pdev = adapter->pdev;
2036
2037 e1000_clean_rx_ring(adapter, rx_ring);
2038
2039 vfree(rx_ring->buffer_info);
2040 rx_ring->buffer_info = NULL;
2041
2042 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2043 rx_ring->dma);
2044
2045 rx_ring->desc = NULL;
2046}
2047
2048/**
2049 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2050 * @adapter: board private structure
2051 *
2052 * Free all receive software resources
2053 **/
2054void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2055{
2056 int i;
2057
2058 for (i = 0; i < adapter->num_rx_queues; i++)
2059 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2060}
2061
2062#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2063static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2064{
2065 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2066 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2067}
2068
2069static void *e1000_alloc_frag(const struct e1000_adapter *a)
2070{
2071 unsigned int len = e1000_frag_len(a);
2072 u8 *data = netdev_alloc_frag(len);
2073
2074 if (likely(data))
2075 data += E1000_HEADROOM;
2076 return data;
2077}
2078
2079/**
2080 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2081 * @adapter: board private structure
2082 * @rx_ring: ring to free buffers from
2083 **/
2084static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2085 struct e1000_rx_ring *rx_ring)
2086{
2087 struct e1000_hw *hw = &adapter->hw;
2088 struct e1000_rx_buffer *buffer_info;
2089 struct pci_dev *pdev = adapter->pdev;
2090 unsigned long size;
2091 unsigned int i;
2092
2093 /* Free all the Rx netfrags */
2094 for (i = 0; i < rx_ring->count; i++) {
2095 buffer_info = &rx_ring->buffer_info[i];
2096 if (adapter->clean_rx == e1000_clean_rx_irq) {
2097 if (buffer_info->dma)
2098 dma_unmap_single(&pdev->dev, buffer_info->dma,
2099 adapter->rx_buffer_len,
2100 DMA_FROM_DEVICE);
2101 if (buffer_info->rxbuf.data) {
2102 skb_free_frag(buffer_info->rxbuf.data);
2103 buffer_info->rxbuf.data = NULL;
2104 }
2105 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2106 if (buffer_info->dma)
2107 dma_unmap_page(&pdev->dev, buffer_info->dma,
2108 adapter->rx_buffer_len,
2109 DMA_FROM_DEVICE);
2110 if (buffer_info->rxbuf.page) {
2111 put_page(buffer_info->rxbuf.page);
2112 buffer_info->rxbuf.page = NULL;
2113 }
2114 }
2115
2116 buffer_info->dma = 0;
2117 }
2118
2119 /* there also may be some cached data from a chained receive */
2120 napi_free_frags(&adapter->napi);
2121 rx_ring->rx_skb_top = NULL;
2122
2123 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2124 memset(rx_ring->buffer_info, 0, size);
2125
2126 /* Zero out the descriptor ring */
2127 memset(rx_ring->desc, 0, rx_ring->size);
2128
2129 rx_ring->next_to_clean = 0;
2130 rx_ring->next_to_use = 0;
2131
2132 writel(0, hw->hw_addr + rx_ring->rdh);
2133 writel(0, hw->hw_addr + rx_ring->rdt);
2134}
2135
2136/**
2137 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2138 * @adapter: board private structure
2139 **/
2140static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2141{
2142 int i;
2143
2144 for (i = 0; i < adapter->num_rx_queues; i++)
2145 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2146}
2147
2148/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2149 * and memory write and invalidate disabled for certain operations
2150 */
2151static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2152{
2153 struct e1000_hw *hw = &adapter->hw;
2154 struct net_device *netdev = adapter->netdev;
2155 u32 rctl;
2156
2157 e1000_pci_clear_mwi(hw);
2158
2159 rctl = er32(RCTL);
2160 rctl |= E1000_RCTL_RST;
2161 ew32(RCTL, rctl);
2162 E1000_WRITE_FLUSH();
2163 mdelay(5);
2164
2165 if (netif_running(netdev))
2166 e1000_clean_all_rx_rings(adapter);
2167}
2168
2169static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2170{
2171 struct e1000_hw *hw = &adapter->hw;
2172 struct net_device *netdev = adapter->netdev;
2173 u32 rctl;
2174
2175 rctl = er32(RCTL);
2176 rctl &= ~E1000_RCTL_RST;
2177 ew32(RCTL, rctl);
2178 E1000_WRITE_FLUSH();
2179 mdelay(5);
2180
2181 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2182 e1000_pci_set_mwi(hw);
2183
2184 if (netif_running(netdev)) {
2185 /* No need to loop, because 82542 supports only 1 queue */
2186 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2187 e1000_configure_rx(adapter);
2188 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2189 }
2190}
2191
2192/**
2193 * e1000_set_mac - Change the Ethernet Address of the NIC
2194 * @netdev: network interface device structure
2195 * @p: pointer to an address structure
2196 *
2197 * Returns 0 on success, negative on failure
2198 **/
2199static int e1000_set_mac(struct net_device *netdev, void *p)
2200{
2201 struct e1000_adapter *adapter = netdev_priv(netdev);
2202 struct e1000_hw *hw = &adapter->hw;
2203 struct sockaddr *addr = p;
2204
2205 if (!is_valid_ether_addr(addr->sa_data))
2206 return -EADDRNOTAVAIL;
2207
2208 /* 82542 2.0 needs to be in reset to write receive address registers */
2209
2210 if (hw->mac_type == e1000_82542_rev2_0)
2211 e1000_enter_82542_rst(adapter);
2212
2213 eth_hw_addr_set(netdev, addr->sa_data);
2214 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2215
2216 e1000_rar_set(hw, hw->mac_addr, 0);
2217
2218 if (hw->mac_type == e1000_82542_rev2_0)
2219 e1000_leave_82542_rst(adapter);
2220
2221 return 0;
2222}
2223
2224/**
2225 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2226 * @netdev: network interface device structure
2227 *
2228 * The set_rx_mode entry point is called whenever the unicast or multicast
2229 * address lists or the network interface flags are updated. This routine is
2230 * responsible for configuring the hardware for proper unicast, multicast,
2231 * promiscuous mode, and all-multi behavior.
2232 **/
2233static void e1000_set_rx_mode(struct net_device *netdev)
2234{
2235 struct e1000_adapter *adapter = netdev_priv(netdev);
2236 struct e1000_hw *hw = &adapter->hw;
2237 struct netdev_hw_addr *ha;
2238 bool use_uc = false;
2239 u32 rctl;
2240 u32 hash_value;
2241 int i, rar_entries = E1000_RAR_ENTRIES;
2242 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2243 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2244
2245 if (!mcarray)
2246 return;
2247
2248 /* Check for Promiscuous and All Multicast modes */
2249
2250 rctl = er32(RCTL);
2251
2252 if (netdev->flags & IFF_PROMISC) {
2253 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2254 rctl &= ~E1000_RCTL_VFE;
2255 } else {
2256 if (netdev->flags & IFF_ALLMULTI)
2257 rctl |= E1000_RCTL_MPE;
2258 else
2259 rctl &= ~E1000_RCTL_MPE;
2260 /* Enable VLAN filter if there is a VLAN */
2261 if (e1000_vlan_used(adapter))
2262 rctl |= E1000_RCTL_VFE;
2263 }
2264
2265 if (netdev_uc_count(netdev) > rar_entries - 1) {
2266 rctl |= E1000_RCTL_UPE;
2267 } else if (!(netdev->flags & IFF_PROMISC)) {
2268 rctl &= ~E1000_RCTL_UPE;
2269 use_uc = true;
2270 }
2271
2272 ew32(RCTL, rctl);
2273
2274 /* 82542 2.0 needs to be in reset to write receive address registers */
2275
2276 if (hw->mac_type == e1000_82542_rev2_0)
2277 e1000_enter_82542_rst(adapter);
2278
2279 /* load the first 14 addresses into the exact filters 1-14. Unicast
2280 * addresses take precedence to avoid disabling unicast filtering
2281 * when possible.
2282 *
2283 * RAR 0 is used for the station MAC address
2284 * if there are not 14 addresses, go ahead and clear the filters
2285 */
2286 i = 1;
2287 if (use_uc)
2288 netdev_for_each_uc_addr(ha, netdev) {
2289 if (i == rar_entries)
2290 break;
2291 e1000_rar_set(hw, ha->addr, i++);
2292 }
2293
2294 netdev_for_each_mc_addr(ha, netdev) {
2295 if (i == rar_entries) {
2296 /* load any remaining addresses into the hash table */
2297 u32 hash_reg, hash_bit, mta;
2298 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2299 hash_reg = (hash_value >> 5) & 0x7F;
2300 hash_bit = hash_value & 0x1F;
2301 mta = (1 << hash_bit);
2302 mcarray[hash_reg] |= mta;
2303 } else {
2304 e1000_rar_set(hw, ha->addr, i++);
2305 }
2306 }
2307
2308 for (; i < rar_entries; i++) {
2309 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2310 E1000_WRITE_FLUSH();
2311 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2312 E1000_WRITE_FLUSH();
2313 }
2314
2315 /* write the hash table completely, write from bottom to avoid
2316 * both stupid write combining chipsets, and flushing each write
2317 */
2318 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2319 /* If we are on an 82544 has an errata where writing odd
2320 * offsets overwrites the previous even offset, but writing
2321 * backwards over the range solves the issue by always
2322 * writing the odd offset first
2323 */
2324 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2325 }
2326 E1000_WRITE_FLUSH();
2327
2328 if (hw->mac_type == e1000_82542_rev2_0)
2329 e1000_leave_82542_rst(adapter);
2330
2331 kfree(mcarray);
2332}
2333
2334/**
2335 * e1000_update_phy_info_task - get phy info
2336 * @work: work struct contained inside adapter struct
2337 *
2338 * Need to wait a few seconds after link up to get diagnostic information from
2339 * the phy
2340 */
2341static void e1000_update_phy_info_task(struct work_struct *work)
2342{
2343 struct e1000_adapter *adapter = container_of(work,
2344 struct e1000_adapter,
2345 phy_info_task.work);
2346
2347 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2348}
2349
2350/**
2351 * e1000_82547_tx_fifo_stall_task - task to complete work
2352 * @work: work struct contained inside adapter struct
2353 **/
2354static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2355{
2356 struct e1000_adapter *adapter = container_of(work,
2357 struct e1000_adapter,
2358 fifo_stall_task.work);
2359 struct e1000_hw *hw = &adapter->hw;
2360 struct net_device *netdev = adapter->netdev;
2361 u32 tctl;
2362
2363 if (atomic_read(&adapter->tx_fifo_stall)) {
2364 if ((er32(TDT) == er32(TDH)) &&
2365 (er32(TDFT) == er32(TDFH)) &&
2366 (er32(TDFTS) == er32(TDFHS))) {
2367 tctl = er32(TCTL);
2368 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2369 ew32(TDFT, adapter->tx_head_addr);
2370 ew32(TDFH, adapter->tx_head_addr);
2371 ew32(TDFTS, adapter->tx_head_addr);
2372 ew32(TDFHS, adapter->tx_head_addr);
2373 ew32(TCTL, tctl);
2374 E1000_WRITE_FLUSH();
2375
2376 adapter->tx_fifo_head = 0;
2377 atomic_set(&adapter->tx_fifo_stall, 0);
2378 netif_wake_queue(netdev);
2379 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2380 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2381 }
2382 }
2383}
2384
2385bool e1000_has_link(struct e1000_adapter *adapter)
2386{
2387 struct e1000_hw *hw = &adapter->hw;
2388 bool link_active = false;
2389
2390 /* get_link_status is set on LSC (link status) interrupt or rx
2391 * sequence error interrupt (except on intel ce4100).
2392 * get_link_status will stay false until the
2393 * e1000_check_for_link establishes link for copper adapters
2394 * ONLY
2395 */
2396 switch (hw->media_type) {
2397 case e1000_media_type_copper:
2398 if (hw->mac_type == e1000_ce4100)
2399 hw->get_link_status = 1;
2400 if (hw->get_link_status) {
2401 e1000_check_for_link(hw);
2402 link_active = !hw->get_link_status;
2403 } else {
2404 link_active = true;
2405 }
2406 break;
2407 case e1000_media_type_fiber:
2408 e1000_check_for_link(hw);
2409 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2410 break;
2411 case e1000_media_type_internal_serdes:
2412 e1000_check_for_link(hw);
2413 link_active = hw->serdes_has_link;
2414 break;
2415 default:
2416 break;
2417 }
2418
2419 return link_active;
2420}
2421
2422/**
2423 * e1000_watchdog - work function
2424 * @work: work struct contained inside adapter struct
2425 **/
2426static void e1000_watchdog(struct work_struct *work)
2427{
2428 struct e1000_adapter *adapter = container_of(work,
2429 struct e1000_adapter,
2430 watchdog_task.work);
2431 struct e1000_hw *hw = &adapter->hw;
2432 struct net_device *netdev = adapter->netdev;
2433 struct e1000_tx_ring *txdr = adapter->tx_ring;
2434 u32 link, tctl;
2435
2436 link = e1000_has_link(adapter);
2437 if ((netif_carrier_ok(netdev)) && link)
2438 goto link_up;
2439
2440 if (link) {
2441 if (!netif_carrier_ok(netdev)) {
2442 u32 ctrl;
2443 /* update snapshot of PHY registers on LSC */
2444 e1000_get_speed_and_duplex(hw,
2445 &adapter->link_speed,
2446 &adapter->link_duplex);
2447
2448 ctrl = er32(CTRL);
2449 pr_info("%s NIC Link is Up %d Mbps %s, "
2450 "Flow Control: %s\n",
2451 netdev->name,
2452 adapter->link_speed,
2453 adapter->link_duplex == FULL_DUPLEX ?
2454 "Full Duplex" : "Half Duplex",
2455 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2456 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2457 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2458 E1000_CTRL_TFCE) ? "TX" : "None")));
2459
2460 /* adjust timeout factor according to speed/duplex */
2461 adapter->tx_timeout_factor = 1;
2462 switch (adapter->link_speed) {
2463 case SPEED_10:
2464 adapter->tx_timeout_factor = 16;
2465 break;
2466 case SPEED_100:
2467 /* maybe add some timeout factor ? */
2468 break;
2469 }
2470
2471 /* enable transmits in the hardware */
2472 tctl = er32(TCTL);
2473 tctl |= E1000_TCTL_EN;
2474 ew32(TCTL, tctl);
2475
2476 netif_carrier_on(netdev);
2477 if (!test_bit(__E1000_DOWN, &adapter->flags))
2478 schedule_delayed_work(&adapter->phy_info_task,
2479 2 * HZ);
2480 adapter->smartspeed = 0;
2481 }
2482 } else {
2483 if (netif_carrier_ok(netdev)) {
2484 adapter->link_speed = 0;
2485 adapter->link_duplex = 0;
2486 pr_info("%s NIC Link is Down\n",
2487 netdev->name);
2488 netif_carrier_off(netdev);
2489
2490 if (!test_bit(__E1000_DOWN, &adapter->flags))
2491 schedule_delayed_work(&adapter->phy_info_task,
2492 2 * HZ);
2493 }
2494
2495 e1000_smartspeed(adapter);
2496 }
2497
2498link_up:
2499 e1000_update_stats(adapter);
2500
2501 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2502 adapter->tpt_old = adapter->stats.tpt;
2503 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2504 adapter->colc_old = adapter->stats.colc;
2505
2506 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2507 adapter->gorcl_old = adapter->stats.gorcl;
2508 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2509 adapter->gotcl_old = adapter->stats.gotcl;
2510
2511 e1000_update_adaptive(hw);
2512
2513 if (!netif_carrier_ok(netdev)) {
2514 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2515 /* We've lost link, so the controller stops DMA,
2516 * but we've got queued Tx work that's never going
2517 * to get done, so reset controller to flush Tx.
2518 * (Do the reset outside of interrupt context).
2519 */
2520 adapter->tx_timeout_count++;
2521 schedule_work(&adapter->reset_task);
2522 /* exit immediately since reset is imminent */
2523 return;
2524 }
2525 }
2526
2527 /* Simple mode for Interrupt Throttle Rate (ITR) */
2528 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2529 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2530 * Total asymmetrical Tx or Rx gets ITR=8000;
2531 * everyone else is between 2000-8000.
2532 */
2533 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2534 u32 dif = (adapter->gotcl > adapter->gorcl ?
2535 adapter->gotcl - adapter->gorcl :
2536 adapter->gorcl - adapter->gotcl) / 10000;
2537 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2538
2539 ew32(ITR, 1000000000 / (itr * 256));
2540 }
2541
2542 /* Cause software interrupt to ensure rx ring is cleaned */
2543 ew32(ICS, E1000_ICS_RXDMT0);
2544
2545 /* Force detection of hung controller every watchdog period */
2546 adapter->detect_tx_hung = true;
2547
2548 /* Reschedule the task */
2549 if (!test_bit(__E1000_DOWN, &adapter->flags))
2550 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2551}
2552
2553enum latency_range {
2554 lowest_latency = 0,
2555 low_latency = 1,
2556 bulk_latency = 2,
2557 latency_invalid = 255
2558};
2559
2560/**
2561 * e1000_update_itr - update the dynamic ITR value based on statistics
2562 * @adapter: pointer to adapter
2563 * @itr_setting: current adapter->itr
2564 * @packets: the number of packets during this measurement interval
2565 * @bytes: the number of bytes during this measurement interval
2566 *
2567 * Stores a new ITR value based on packets and byte
2568 * counts during the last interrupt. The advantage of per interrupt
2569 * computation is faster updates and more accurate ITR for the current
2570 * traffic pattern. Constants in this function were computed
2571 * based on theoretical maximum wire speed and thresholds were set based
2572 * on testing data as well as attempting to minimize response time
2573 * while increasing bulk throughput.
2574 * this functionality is controlled by the InterruptThrottleRate module
2575 * parameter (see e1000_param.c)
2576 **/
2577static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2578 u16 itr_setting, int packets, int bytes)
2579{
2580 unsigned int retval = itr_setting;
2581 struct e1000_hw *hw = &adapter->hw;
2582
2583 if (unlikely(hw->mac_type < e1000_82540))
2584 goto update_itr_done;
2585
2586 if (packets == 0)
2587 goto update_itr_done;
2588
2589 switch (itr_setting) {
2590 case lowest_latency:
2591 /* jumbo frames get bulk treatment*/
2592 if (bytes/packets > 8000)
2593 retval = bulk_latency;
2594 else if ((packets < 5) && (bytes > 512))
2595 retval = low_latency;
2596 break;
2597 case low_latency: /* 50 usec aka 20000 ints/s */
2598 if (bytes > 10000) {
2599 /* jumbo frames need bulk latency setting */
2600 if (bytes/packets > 8000)
2601 retval = bulk_latency;
2602 else if ((packets < 10) || ((bytes/packets) > 1200))
2603 retval = bulk_latency;
2604 else if ((packets > 35))
2605 retval = lowest_latency;
2606 } else if (bytes/packets > 2000)
2607 retval = bulk_latency;
2608 else if (packets <= 2 && bytes < 512)
2609 retval = lowest_latency;
2610 break;
2611 case bulk_latency: /* 250 usec aka 4000 ints/s */
2612 if (bytes > 25000) {
2613 if (packets > 35)
2614 retval = low_latency;
2615 } else if (bytes < 6000) {
2616 retval = low_latency;
2617 }
2618 break;
2619 }
2620
2621update_itr_done:
2622 return retval;
2623}
2624
2625static void e1000_set_itr(struct e1000_adapter *adapter)
2626{
2627 struct e1000_hw *hw = &adapter->hw;
2628 u16 current_itr;
2629 u32 new_itr = adapter->itr;
2630
2631 if (unlikely(hw->mac_type < e1000_82540))
2632 return;
2633
2634 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2635 if (unlikely(adapter->link_speed != SPEED_1000)) {
2636 new_itr = 4000;
2637 goto set_itr_now;
2638 }
2639
2640 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2641 adapter->total_tx_packets,
2642 adapter->total_tx_bytes);
2643 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2644 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2645 adapter->tx_itr = low_latency;
2646
2647 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2648 adapter->total_rx_packets,
2649 adapter->total_rx_bytes);
2650 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2651 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2652 adapter->rx_itr = low_latency;
2653
2654 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2655
2656 switch (current_itr) {
2657 /* counts and packets in update_itr are dependent on these numbers */
2658 case lowest_latency:
2659 new_itr = 70000;
2660 break;
2661 case low_latency:
2662 new_itr = 20000; /* aka hwitr = ~200 */
2663 break;
2664 case bulk_latency:
2665 new_itr = 4000;
2666 break;
2667 default:
2668 break;
2669 }
2670
2671set_itr_now:
2672 if (new_itr != adapter->itr) {
2673 /* this attempts to bias the interrupt rate towards Bulk
2674 * by adding intermediate steps when interrupt rate is
2675 * increasing
2676 */
2677 new_itr = new_itr > adapter->itr ?
2678 min(adapter->itr + (new_itr >> 2), new_itr) :
2679 new_itr;
2680 adapter->itr = new_itr;
2681 ew32(ITR, 1000000000 / (new_itr * 256));
2682 }
2683}
2684
2685#define E1000_TX_FLAGS_CSUM 0x00000001
2686#define E1000_TX_FLAGS_VLAN 0x00000002
2687#define E1000_TX_FLAGS_TSO 0x00000004
2688#define E1000_TX_FLAGS_IPV4 0x00000008
2689#define E1000_TX_FLAGS_NO_FCS 0x00000010
2690#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2691#define E1000_TX_FLAGS_VLAN_SHIFT 16
2692
2693static int e1000_tso(struct e1000_adapter *adapter,
2694 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2695 __be16 protocol)
2696{
2697 struct e1000_context_desc *context_desc;
2698 struct e1000_tx_buffer *buffer_info;
2699 unsigned int i;
2700 u32 cmd_length = 0;
2701 u16 ipcse = 0, tucse, mss;
2702 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2703
2704 if (skb_is_gso(skb)) {
2705 int err;
2706
2707 err = skb_cow_head(skb, 0);
2708 if (err < 0)
2709 return err;
2710
2711 hdr_len = skb_tcp_all_headers(skb);
2712 mss = skb_shinfo(skb)->gso_size;
2713 if (protocol == htons(ETH_P_IP)) {
2714 struct iphdr *iph = ip_hdr(skb);
2715 iph->tot_len = 0;
2716 iph->check = 0;
2717 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2718 iph->daddr, 0,
2719 IPPROTO_TCP,
2720 0);
2721 cmd_length = E1000_TXD_CMD_IP;
2722 ipcse = skb_transport_offset(skb) - 1;
2723 } else if (skb_is_gso_v6(skb)) {
2724 tcp_v6_gso_csum_prep(skb);
2725 ipcse = 0;
2726 }
2727 ipcss = skb_network_offset(skb);
2728 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2729 tucss = skb_transport_offset(skb);
2730 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2731 tucse = 0;
2732
2733 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2734 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2735
2736 i = tx_ring->next_to_use;
2737 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2738 buffer_info = &tx_ring->buffer_info[i];
2739
2740 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2741 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2742 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2743 context_desc->upper_setup.tcp_fields.tucss = tucss;
2744 context_desc->upper_setup.tcp_fields.tucso = tucso;
2745 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2746 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2747 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2748 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2749
2750 buffer_info->time_stamp = jiffies;
2751 buffer_info->next_to_watch = i;
2752
2753 if (++i == tx_ring->count)
2754 i = 0;
2755
2756 tx_ring->next_to_use = i;
2757
2758 return true;
2759 }
2760 return false;
2761}
2762
2763static bool e1000_tx_csum(struct e1000_adapter *adapter,
2764 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2765 __be16 protocol)
2766{
2767 struct e1000_context_desc *context_desc;
2768 struct e1000_tx_buffer *buffer_info;
2769 unsigned int i;
2770 u8 css;
2771 u32 cmd_len = E1000_TXD_CMD_DEXT;
2772
2773 if (skb->ip_summed != CHECKSUM_PARTIAL)
2774 return false;
2775
2776 switch (protocol) {
2777 case cpu_to_be16(ETH_P_IP):
2778 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2779 cmd_len |= E1000_TXD_CMD_TCP;
2780 break;
2781 case cpu_to_be16(ETH_P_IPV6):
2782 /* XXX not handling all IPV6 headers */
2783 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2784 cmd_len |= E1000_TXD_CMD_TCP;
2785 break;
2786 default:
2787 if (unlikely(net_ratelimit()))
2788 e_warn(drv, "checksum_partial proto=%x!\n",
2789 skb->protocol);
2790 break;
2791 }
2792
2793 css = skb_checksum_start_offset(skb);
2794
2795 i = tx_ring->next_to_use;
2796 buffer_info = &tx_ring->buffer_info[i];
2797 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2798
2799 context_desc->lower_setup.ip_config = 0;
2800 context_desc->upper_setup.tcp_fields.tucss = css;
2801 context_desc->upper_setup.tcp_fields.tucso =
2802 css + skb->csum_offset;
2803 context_desc->upper_setup.tcp_fields.tucse = 0;
2804 context_desc->tcp_seg_setup.data = 0;
2805 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2806
2807 buffer_info->time_stamp = jiffies;
2808 buffer_info->next_to_watch = i;
2809
2810 if (unlikely(++i == tx_ring->count))
2811 i = 0;
2812
2813 tx_ring->next_to_use = i;
2814
2815 return true;
2816}
2817
2818#define E1000_MAX_TXD_PWR 12
2819#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2820
2821static int e1000_tx_map(struct e1000_adapter *adapter,
2822 struct e1000_tx_ring *tx_ring,
2823 struct sk_buff *skb, unsigned int first,
2824 unsigned int max_per_txd, unsigned int nr_frags,
2825 unsigned int mss)
2826{
2827 struct e1000_hw *hw = &adapter->hw;
2828 struct pci_dev *pdev = adapter->pdev;
2829 struct e1000_tx_buffer *buffer_info;
2830 unsigned int len = skb_headlen(skb);
2831 unsigned int offset = 0, size, count = 0, i;
2832 unsigned int f, bytecount, segs;
2833
2834 i = tx_ring->next_to_use;
2835
2836 while (len) {
2837 buffer_info = &tx_ring->buffer_info[i];
2838 size = min(len, max_per_txd);
2839 /* Workaround for Controller erratum --
2840 * descriptor for non-tso packet in a linear SKB that follows a
2841 * tso gets written back prematurely before the data is fully
2842 * DMA'd to the controller
2843 */
2844 if (!skb->data_len && tx_ring->last_tx_tso &&
2845 !skb_is_gso(skb)) {
2846 tx_ring->last_tx_tso = false;
2847 size -= 4;
2848 }
2849
2850 /* Workaround for premature desc write-backs
2851 * in TSO mode. Append 4-byte sentinel desc
2852 */
2853 if (unlikely(mss && !nr_frags && size == len && size > 8))
2854 size -= 4;
2855 /* work-around for errata 10 and it applies
2856 * to all controllers in PCI-X mode
2857 * The fix is to make sure that the first descriptor of a
2858 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2859 */
2860 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2861 (size > 2015) && count == 0))
2862 size = 2015;
2863
2864 /* Workaround for potential 82544 hang in PCI-X. Avoid
2865 * terminating buffers within evenly-aligned dwords.
2866 */
2867 if (unlikely(adapter->pcix_82544 &&
2868 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2869 size > 4))
2870 size -= 4;
2871
2872 buffer_info->length = size;
2873 /* set time_stamp *before* dma to help avoid a possible race */
2874 buffer_info->time_stamp = jiffies;
2875 buffer_info->mapped_as_page = false;
2876 buffer_info->dma = dma_map_single(&pdev->dev,
2877 skb->data + offset,
2878 size, DMA_TO_DEVICE);
2879 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2880 goto dma_error;
2881 buffer_info->next_to_watch = i;
2882
2883 len -= size;
2884 offset += size;
2885 count++;
2886 if (len) {
2887 i++;
2888 if (unlikely(i == tx_ring->count))
2889 i = 0;
2890 }
2891 }
2892
2893 for (f = 0; f < nr_frags; f++) {
2894 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2895
2896 len = skb_frag_size(frag);
2897 offset = 0;
2898
2899 while (len) {
2900 unsigned long bufend;
2901 i++;
2902 if (unlikely(i == tx_ring->count))
2903 i = 0;
2904
2905 buffer_info = &tx_ring->buffer_info[i];
2906 size = min(len, max_per_txd);
2907 /* Workaround for premature desc write-backs
2908 * in TSO mode. Append 4-byte sentinel desc
2909 */
2910 if (unlikely(mss && f == (nr_frags-1) &&
2911 size == len && size > 8))
2912 size -= 4;
2913 /* Workaround for potential 82544 hang in PCI-X.
2914 * Avoid terminating buffers within evenly-aligned
2915 * dwords.
2916 */
2917 bufend = (unsigned long)
2918 page_to_phys(skb_frag_page(frag));
2919 bufend += offset + size - 1;
2920 if (unlikely(adapter->pcix_82544 &&
2921 !(bufend & 4) &&
2922 size > 4))
2923 size -= 4;
2924
2925 buffer_info->length = size;
2926 buffer_info->time_stamp = jiffies;
2927 buffer_info->mapped_as_page = true;
2928 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2929 offset, size, DMA_TO_DEVICE);
2930 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2931 goto dma_error;
2932 buffer_info->next_to_watch = i;
2933
2934 len -= size;
2935 offset += size;
2936 count++;
2937 }
2938 }
2939
2940 segs = skb_shinfo(skb)->gso_segs ?: 1;
2941 /* multiply data chunks by size of headers */
2942 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2943
2944 tx_ring->buffer_info[i].skb = skb;
2945 tx_ring->buffer_info[i].segs = segs;
2946 tx_ring->buffer_info[i].bytecount = bytecount;
2947 tx_ring->buffer_info[first].next_to_watch = i;
2948
2949 return count;
2950
2951dma_error:
2952 dev_err(&pdev->dev, "TX DMA map failed\n");
2953 buffer_info->dma = 0;
2954 if (count)
2955 count--;
2956
2957 while (count--) {
2958 if (i == 0)
2959 i += tx_ring->count;
2960 i--;
2961 buffer_info = &tx_ring->buffer_info[i];
2962 e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
2963 }
2964
2965 return 0;
2966}
2967
2968static void e1000_tx_queue(struct e1000_adapter *adapter,
2969 struct e1000_tx_ring *tx_ring, int tx_flags,
2970 int count)
2971{
2972 struct e1000_tx_desc *tx_desc = NULL;
2973 struct e1000_tx_buffer *buffer_info;
2974 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2975 unsigned int i;
2976
2977 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2978 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2979 E1000_TXD_CMD_TSE;
2980 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2981
2982 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2983 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2984 }
2985
2986 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2987 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2988 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2989 }
2990
2991 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2992 txd_lower |= E1000_TXD_CMD_VLE;
2993 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2994 }
2995
2996 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2997 txd_lower &= ~(E1000_TXD_CMD_IFCS);
2998
2999 i = tx_ring->next_to_use;
3000
3001 while (count--) {
3002 buffer_info = &tx_ring->buffer_info[i];
3003 tx_desc = E1000_TX_DESC(*tx_ring, i);
3004 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3005 tx_desc->lower.data =
3006 cpu_to_le32(txd_lower | buffer_info->length);
3007 tx_desc->upper.data = cpu_to_le32(txd_upper);
3008 if (unlikely(++i == tx_ring->count))
3009 i = 0;
3010 }
3011
3012 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3013
3014 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3015 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3016 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3017
3018 /* Force memory writes to complete before letting h/w
3019 * know there are new descriptors to fetch. (Only
3020 * applicable for weak-ordered memory model archs,
3021 * such as IA-64).
3022 */
3023 dma_wmb();
3024
3025 tx_ring->next_to_use = i;
3026}
3027
3028/* 82547 workaround to avoid controller hang in half-duplex environment.
3029 * The workaround is to avoid queuing a large packet that would span
3030 * the internal Tx FIFO ring boundary by notifying the stack to resend
3031 * the packet at a later time. This gives the Tx FIFO an opportunity to
3032 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3033 * to the beginning of the Tx FIFO.
3034 */
3035
3036#define E1000_FIFO_HDR 0x10
3037#define E1000_82547_PAD_LEN 0x3E0
3038
3039static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3040 struct sk_buff *skb)
3041{
3042 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3043 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3044
3045 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3046
3047 if (adapter->link_duplex != HALF_DUPLEX)
3048 goto no_fifo_stall_required;
3049
3050 if (atomic_read(&adapter->tx_fifo_stall))
3051 return 1;
3052
3053 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3054 atomic_set(&adapter->tx_fifo_stall, 1);
3055 return 1;
3056 }
3057
3058no_fifo_stall_required:
3059 adapter->tx_fifo_head += skb_fifo_len;
3060 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3061 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3062 return 0;
3063}
3064
3065static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3066{
3067 struct e1000_adapter *adapter = netdev_priv(netdev);
3068 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3069
3070 netif_stop_queue(netdev);
3071 /* Herbert's original patch had:
3072 * smp_mb__after_netif_stop_queue();
3073 * but since that doesn't exist yet, just open code it.
3074 */
3075 smp_mb();
3076
3077 /* We need to check again in a case another CPU has just
3078 * made room available.
3079 */
3080 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3081 return -EBUSY;
3082
3083 /* A reprieve! */
3084 netif_start_queue(netdev);
3085 ++adapter->restart_queue;
3086 return 0;
3087}
3088
3089static int e1000_maybe_stop_tx(struct net_device *netdev,
3090 struct e1000_tx_ring *tx_ring, int size)
3091{
3092 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3093 return 0;
3094 return __e1000_maybe_stop_tx(netdev, size);
3095}
3096
3097#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3098static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3099 struct net_device *netdev)
3100{
3101 struct e1000_adapter *adapter = netdev_priv(netdev);
3102 struct e1000_hw *hw = &adapter->hw;
3103 struct e1000_tx_ring *tx_ring;
3104 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3105 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3106 unsigned int tx_flags = 0;
3107 unsigned int len = skb_headlen(skb);
3108 unsigned int nr_frags;
3109 unsigned int mss;
3110 int count = 0;
3111 int tso;
3112 unsigned int f;
3113 __be16 protocol = vlan_get_protocol(skb);
3114
3115 /* This goes back to the question of how to logically map a Tx queue
3116 * to a flow. Right now, performance is impacted slightly negatively
3117 * if using multiple Tx queues. If the stack breaks away from a
3118 * single qdisc implementation, we can look at this again.
3119 */
3120 tx_ring = adapter->tx_ring;
3121
3122 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3123 * packets may get corrupted during padding by HW.
3124 * To WA this issue, pad all small packets manually.
3125 */
3126 if (eth_skb_pad(skb))
3127 return NETDEV_TX_OK;
3128
3129 mss = skb_shinfo(skb)->gso_size;
3130 /* The controller does a simple calculation to
3131 * make sure there is enough room in the FIFO before
3132 * initiating the DMA for each buffer. The calc is:
3133 * 4 = ceil(buffer len/mss). To make sure we don't
3134 * overrun the FIFO, adjust the max buffer len if mss
3135 * drops.
3136 */
3137 if (mss) {
3138 u8 hdr_len;
3139 max_per_txd = min(mss << 2, max_per_txd);
3140 max_txd_pwr = fls(max_per_txd) - 1;
3141
3142 hdr_len = skb_tcp_all_headers(skb);
3143 if (skb->data_len && hdr_len == len) {
3144 switch (hw->mac_type) {
3145 case e1000_82544: {
3146 unsigned int pull_size;
3147
3148 /* Make sure we have room to chop off 4 bytes,
3149 * and that the end alignment will work out to
3150 * this hardware's requirements
3151 * NOTE: this is a TSO only workaround
3152 * if end byte alignment not correct move us
3153 * into the next dword
3154 */
3155 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3156 & 4)
3157 break;
3158 pull_size = min((unsigned int)4, skb->data_len);
3159 if (!__pskb_pull_tail(skb, pull_size)) {
3160 e_err(drv, "__pskb_pull_tail "
3161 "failed.\n");
3162 dev_kfree_skb_any(skb);
3163 return NETDEV_TX_OK;
3164 }
3165 len = skb_headlen(skb);
3166 break;
3167 }
3168 default:
3169 /* do nothing */
3170 break;
3171 }
3172 }
3173 }
3174
3175 /* reserve a descriptor for the offload context */
3176 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3177 count++;
3178 count++;
3179
3180 /* Controller Erratum workaround */
3181 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3182 count++;
3183
3184 count += TXD_USE_COUNT(len, max_txd_pwr);
3185
3186 if (adapter->pcix_82544)
3187 count++;
3188
3189 /* work-around for errata 10 and it applies to all controllers
3190 * in PCI-X mode, so add one more descriptor to the count
3191 */
3192 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3193 (len > 2015)))
3194 count++;
3195
3196 nr_frags = skb_shinfo(skb)->nr_frags;
3197 for (f = 0; f < nr_frags; f++)
3198 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3199 max_txd_pwr);
3200 if (adapter->pcix_82544)
3201 count += nr_frags;
3202
3203 /* need: count + 2 desc gap to keep tail from touching
3204 * head, otherwise try next time
3205 */
3206 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3207 return NETDEV_TX_BUSY;
3208
3209 if (unlikely((hw->mac_type == e1000_82547) &&
3210 (e1000_82547_fifo_workaround(adapter, skb)))) {
3211 netif_stop_queue(netdev);
3212 if (!test_bit(__E1000_DOWN, &adapter->flags))
3213 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3214 return NETDEV_TX_BUSY;
3215 }
3216
3217 if (skb_vlan_tag_present(skb)) {
3218 tx_flags |= E1000_TX_FLAGS_VLAN;
3219 tx_flags |= (skb_vlan_tag_get(skb) <<
3220 E1000_TX_FLAGS_VLAN_SHIFT);
3221 }
3222
3223 first = tx_ring->next_to_use;
3224
3225 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3226 if (tso < 0) {
3227 dev_kfree_skb_any(skb);
3228 return NETDEV_TX_OK;
3229 }
3230
3231 if (likely(tso)) {
3232 if (likely(hw->mac_type != e1000_82544))
3233 tx_ring->last_tx_tso = true;
3234 tx_flags |= E1000_TX_FLAGS_TSO;
3235 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3236 tx_flags |= E1000_TX_FLAGS_CSUM;
3237
3238 if (protocol == htons(ETH_P_IP))
3239 tx_flags |= E1000_TX_FLAGS_IPV4;
3240
3241 if (unlikely(skb->no_fcs))
3242 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3243
3244 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3245 nr_frags, mss);
3246
3247 if (count) {
3248 /* The descriptors needed is higher than other Intel drivers
3249 * due to a number of workarounds. The breakdown is below:
3250 * Data descriptors: MAX_SKB_FRAGS + 1
3251 * Context Descriptor: 1
3252 * Keep head from touching tail: 2
3253 * Workarounds: 3
3254 */
3255 int desc_needed = MAX_SKB_FRAGS + 7;
3256
3257 netdev_sent_queue(netdev, skb->len);
3258 skb_tx_timestamp(skb);
3259
3260 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3261
3262 /* 82544 potentially requires twice as many data descriptors
3263 * in order to guarantee buffers don't end on evenly-aligned
3264 * dwords
3265 */
3266 if (adapter->pcix_82544)
3267 desc_needed += MAX_SKB_FRAGS + 1;
3268
3269 /* Make sure there is space in the ring for the next send. */
3270 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3271
3272 if (!netdev_xmit_more() ||
3273 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3274 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3275 }
3276 } else {
3277 dev_kfree_skb_any(skb);
3278 tx_ring->buffer_info[first].time_stamp = 0;
3279 tx_ring->next_to_use = first;
3280 }
3281
3282 return NETDEV_TX_OK;
3283}
3284
3285#define NUM_REGS 38 /* 1 based count */
3286static void e1000_regdump(struct e1000_adapter *adapter)
3287{
3288 struct e1000_hw *hw = &adapter->hw;
3289 u32 regs[NUM_REGS];
3290 u32 *regs_buff = regs;
3291 int i = 0;
3292
3293 static const char * const reg_name[] = {
3294 "CTRL", "STATUS",
3295 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3296 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3297 "TIDV", "TXDCTL", "TADV", "TARC0",
3298 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3299 "TXDCTL1", "TARC1",
3300 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3301 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3302 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3303 };
3304
3305 regs_buff[0] = er32(CTRL);
3306 regs_buff[1] = er32(STATUS);
3307
3308 regs_buff[2] = er32(RCTL);
3309 regs_buff[3] = er32(RDLEN);
3310 regs_buff[4] = er32(RDH);
3311 regs_buff[5] = er32(RDT);
3312 regs_buff[6] = er32(RDTR);
3313
3314 regs_buff[7] = er32(TCTL);
3315 regs_buff[8] = er32(TDBAL);
3316 regs_buff[9] = er32(TDBAH);
3317 regs_buff[10] = er32(TDLEN);
3318 regs_buff[11] = er32(TDH);
3319 regs_buff[12] = er32(TDT);
3320 regs_buff[13] = er32(TIDV);
3321 regs_buff[14] = er32(TXDCTL);
3322 regs_buff[15] = er32(TADV);
3323 regs_buff[16] = er32(TARC0);
3324
3325 regs_buff[17] = er32(TDBAL1);
3326 regs_buff[18] = er32(TDBAH1);
3327 regs_buff[19] = er32(TDLEN1);
3328 regs_buff[20] = er32(TDH1);
3329 regs_buff[21] = er32(TDT1);
3330 regs_buff[22] = er32(TXDCTL1);
3331 regs_buff[23] = er32(TARC1);
3332 regs_buff[24] = er32(CTRL_EXT);
3333 regs_buff[25] = er32(ERT);
3334 regs_buff[26] = er32(RDBAL0);
3335 regs_buff[27] = er32(RDBAH0);
3336 regs_buff[28] = er32(TDFH);
3337 regs_buff[29] = er32(TDFT);
3338 regs_buff[30] = er32(TDFHS);
3339 regs_buff[31] = er32(TDFTS);
3340 regs_buff[32] = er32(TDFPC);
3341 regs_buff[33] = er32(RDFH);
3342 regs_buff[34] = er32(RDFT);
3343 regs_buff[35] = er32(RDFHS);
3344 regs_buff[36] = er32(RDFTS);
3345 regs_buff[37] = er32(RDFPC);
3346
3347 pr_info("Register dump\n");
3348 for (i = 0; i < NUM_REGS; i++)
3349 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3350}
3351
3352/*
3353 * e1000_dump: Print registers, tx ring and rx ring
3354 */
3355static void e1000_dump(struct e1000_adapter *adapter)
3356{
3357 /* this code doesn't handle multiple rings */
3358 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3359 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3360 int i;
3361
3362 if (!netif_msg_hw(adapter))
3363 return;
3364
3365 /* Print Registers */
3366 e1000_regdump(adapter);
3367
3368 /* transmit dump */
3369 pr_info("TX Desc ring0 dump\n");
3370
3371 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3372 *
3373 * Legacy Transmit Descriptor
3374 * +--------------------------------------------------------------+
3375 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3376 * +--------------------------------------------------------------+
3377 * 8 | Special | CSS | Status | CMD | CSO | Length |
3378 * +--------------------------------------------------------------+
3379 * 63 48 47 36 35 32 31 24 23 16 15 0
3380 *
3381 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3382 * 63 48 47 40 39 32 31 16 15 8 7 0
3383 * +----------------------------------------------------------------+
3384 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3385 * +----------------------------------------------------------------+
3386 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3387 * +----------------------------------------------------------------+
3388 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3389 *
3390 * Extended Data Descriptor (DTYP=0x1)
3391 * +----------------------------------------------------------------+
3392 * 0 | Buffer Address [63:0] |
3393 * +----------------------------------------------------------------+
3394 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3395 * +----------------------------------------------------------------+
3396 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3397 */
3398 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3399 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3400
3401 if (!netif_msg_tx_done(adapter))
3402 goto rx_ring_summary;
3403
3404 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3405 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3406 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3407 struct my_u { __le64 a; __le64 b; };
3408 struct my_u *u = (struct my_u *)tx_desc;
3409 const char *type;
3410
3411 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3412 type = "NTC/U";
3413 else if (i == tx_ring->next_to_use)
3414 type = "NTU";
3415 else if (i == tx_ring->next_to_clean)
3416 type = "NTC";
3417 else
3418 type = "";
3419
3420 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3421 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3422 le64_to_cpu(u->a), le64_to_cpu(u->b),
3423 (u64)buffer_info->dma, buffer_info->length,
3424 buffer_info->next_to_watch,
3425 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3426 }
3427
3428rx_ring_summary:
3429 /* receive dump */
3430 pr_info("\nRX Desc ring dump\n");
3431
3432 /* Legacy Receive Descriptor Format
3433 *
3434 * +-----------------------------------------------------+
3435 * | Buffer Address [63:0] |
3436 * +-----------------------------------------------------+
3437 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3438 * +-----------------------------------------------------+
3439 * 63 48 47 40 39 32 31 16 15 0
3440 */
3441 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3442
3443 if (!netif_msg_rx_status(adapter))
3444 goto exit;
3445
3446 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3447 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3448 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3449 struct my_u { __le64 a; __le64 b; };
3450 struct my_u *u = (struct my_u *)rx_desc;
3451 const char *type;
3452
3453 if (i == rx_ring->next_to_use)
3454 type = "NTU";
3455 else if (i == rx_ring->next_to_clean)
3456 type = "NTC";
3457 else
3458 type = "";
3459
3460 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3461 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3462 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3463 } /* for */
3464
3465 /* dump the descriptor caches */
3466 /* rx */
3467 pr_info("Rx descriptor cache in 64bit format\n");
3468 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3469 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3470 i,
3471 readl(adapter->hw.hw_addr + i+4),
3472 readl(adapter->hw.hw_addr + i),
3473 readl(adapter->hw.hw_addr + i+12),
3474 readl(adapter->hw.hw_addr + i+8));
3475 }
3476 /* tx */
3477 pr_info("Tx descriptor cache in 64bit format\n");
3478 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3479 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3480 i,
3481 readl(adapter->hw.hw_addr + i+4),
3482 readl(adapter->hw.hw_addr + i),
3483 readl(adapter->hw.hw_addr + i+12),
3484 readl(adapter->hw.hw_addr + i+8));
3485 }
3486exit:
3487 return;
3488}
3489
3490/**
3491 * e1000_tx_timeout - Respond to a Tx Hang
3492 * @netdev: network interface device structure
3493 * @txqueue: number of the Tx queue that hung (unused)
3494 **/
3495static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3496{
3497 struct e1000_adapter *adapter = netdev_priv(netdev);
3498
3499 /* Do the reset outside of interrupt context */
3500 adapter->tx_timeout_count++;
3501 schedule_work(&adapter->reset_task);
3502}
3503
3504static void e1000_reset_task(struct work_struct *work)
3505{
3506 struct e1000_adapter *adapter =
3507 container_of(work, struct e1000_adapter, reset_task);
3508
3509 e_err(drv, "Reset adapter\n");
3510 e1000_reinit_locked(adapter);
3511}
3512
3513/**
3514 * e1000_change_mtu - Change the Maximum Transfer Unit
3515 * @netdev: network interface device structure
3516 * @new_mtu: new value for maximum frame size
3517 *
3518 * Returns 0 on success, negative on failure
3519 **/
3520static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3521{
3522 struct e1000_adapter *adapter = netdev_priv(netdev);
3523 struct e1000_hw *hw = &adapter->hw;
3524 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3525
3526 /* Adapter-specific max frame size limits. */
3527 switch (hw->mac_type) {
3528 case e1000_undefined ... e1000_82542_rev2_1:
3529 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3530 e_err(probe, "Jumbo Frames not supported.\n");
3531 return -EINVAL;
3532 }
3533 break;
3534 default:
3535 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3536 break;
3537 }
3538
3539 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3540 msleep(1);
3541 /* e1000_down has a dependency on max_frame_size */
3542 hw->max_frame_size = max_frame;
3543 if (netif_running(netdev)) {
3544 /* prevent buffers from being reallocated */
3545 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3546 e1000_down(adapter);
3547 }
3548
3549 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3550 * means we reserve 2 more, this pushes us to allocate from the next
3551 * larger slab size.
3552 * i.e. RXBUFFER_2048 --> size-4096 slab
3553 * however with the new *_jumbo_rx* routines, jumbo receives will use
3554 * fragmented skbs
3555 */
3556
3557 if (max_frame <= E1000_RXBUFFER_2048)
3558 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3559 else
3560#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3561 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3562#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3563 adapter->rx_buffer_len = PAGE_SIZE;
3564#endif
3565
3566 /* adjust allocation if LPE protects us, and we aren't using SBP */
3567 if (!hw->tbi_compatibility_on &&
3568 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3569 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3570 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3571
3572 netdev_dbg(netdev, "changing MTU from %d to %d\n",
3573 netdev->mtu, new_mtu);
3574 netdev->mtu = new_mtu;
3575
3576 if (netif_running(netdev))
3577 e1000_up(adapter);
3578 else
3579 e1000_reset(adapter);
3580
3581 clear_bit(__E1000_RESETTING, &adapter->flags);
3582
3583 return 0;
3584}
3585
3586/**
3587 * e1000_update_stats - Update the board statistics counters
3588 * @adapter: board private structure
3589 **/
3590void e1000_update_stats(struct e1000_adapter *adapter)
3591{
3592 struct net_device *netdev = adapter->netdev;
3593 struct e1000_hw *hw = &adapter->hw;
3594 struct pci_dev *pdev = adapter->pdev;
3595 unsigned long flags;
3596 u16 phy_tmp;
3597
3598#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3599
3600 /* Prevent stats update while adapter is being reset, or if the pci
3601 * connection is down.
3602 */
3603 if (adapter->link_speed == 0)
3604 return;
3605 if (pci_channel_offline(pdev))
3606 return;
3607
3608 spin_lock_irqsave(&adapter->stats_lock, flags);
3609
3610 /* these counters are modified from e1000_tbi_adjust_stats,
3611 * called from the interrupt context, so they must only
3612 * be written while holding adapter->stats_lock
3613 */
3614
3615 adapter->stats.crcerrs += er32(CRCERRS);
3616 adapter->stats.gprc += er32(GPRC);
3617 adapter->stats.gorcl += er32(GORCL);
3618 adapter->stats.gorch += er32(GORCH);
3619 adapter->stats.bprc += er32(BPRC);
3620 adapter->stats.mprc += er32(MPRC);
3621 adapter->stats.roc += er32(ROC);
3622
3623 adapter->stats.prc64 += er32(PRC64);
3624 adapter->stats.prc127 += er32(PRC127);
3625 adapter->stats.prc255 += er32(PRC255);
3626 adapter->stats.prc511 += er32(PRC511);
3627 adapter->stats.prc1023 += er32(PRC1023);
3628 adapter->stats.prc1522 += er32(PRC1522);
3629
3630 adapter->stats.symerrs += er32(SYMERRS);
3631 adapter->stats.mpc += er32(MPC);
3632 adapter->stats.scc += er32(SCC);
3633 adapter->stats.ecol += er32(ECOL);
3634 adapter->stats.mcc += er32(MCC);
3635 adapter->stats.latecol += er32(LATECOL);
3636 adapter->stats.dc += er32(DC);
3637 adapter->stats.sec += er32(SEC);
3638 adapter->stats.rlec += er32(RLEC);
3639 adapter->stats.xonrxc += er32(XONRXC);
3640 adapter->stats.xontxc += er32(XONTXC);
3641 adapter->stats.xoffrxc += er32(XOFFRXC);
3642 adapter->stats.xofftxc += er32(XOFFTXC);
3643 adapter->stats.fcruc += er32(FCRUC);
3644 adapter->stats.gptc += er32(GPTC);
3645 adapter->stats.gotcl += er32(GOTCL);
3646 adapter->stats.gotch += er32(GOTCH);
3647 adapter->stats.rnbc += er32(RNBC);
3648 adapter->stats.ruc += er32(RUC);
3649 adapter->stats.rfc += er32(RFC);
3650 adapter->stats.rjc += er32(RJC);
3651 adapter->stats.torl += er32(TORL);
3652 adapter->stats.torh += er32(TORH);
3653 adapter->stats.totl += er32(TOTL);
3654 adapter->stats.toth += er32(TOTH);
3655 adapter->stats.tpr += er32(TPR);
3656
3657 adapter->stats.ptc64 += er32(PTC64);
3658 adapter->stats.ptc127 += er32(PTC127);
3659 adapter->stats.ptc255 += er32(PTC255);
3660 adapter->stats.ptc511 += er32(PTC511);
3661 adapter->stats.ptc1023 += er32(PTC1023);
3662 adapter->stats.ptc1522 += er32(PTC1522);
3663
3664 adapter->stats.mptc += er32(MPTC);
3665 adapter->stats.bptc += er32(BPTC);
3666
3667 /* used for adaptive IFS */
3668
3669 hw->tx_packet_delta = er32(TPT);
3670 adapter->stats.tpt += hw->tx_packet_delta;
3671 hw->collision_delta = er32(COLC);
3672 adapter->stats.colc += hw->collision_delta;
3673
3674 if (hw->mac_type >= e1000_82543) {
3675 adapter->stats.algnerrc += er32(ALGNERRC);
3676 adapter->stats.rxerrc += er32(RXERRC);
3677 adapter->stats.tncrs += er32(TNCRS);
3678 adapter->stats.cexterr += er32(CEXTERR);
3679 adapter->stats.tsctc += er32(TSCTC);
3680 adapter->stats.tsctfc += er32(TSCTFC);
3681 }
3682
3683 /* Fill out the OS statistics structure */
3684 netdev->stats.multicast = adapter->stats.mprc;
3685 netdev->stats.collisions = adapter->stats.colc;
3686
3687 /* Rx Errors */
3688
3689 /* RLEC on some newer hardware can be incorrect so build
3690 * our own version based on RUC and ROC
3691 */
3692 netdev->stats.rx_errors = adapter->stats.rxerrc +
3693 adapter->stats.crcerrs + adapter->stats.algnerrc +
3694 adapter->stats.ruc + adapter->stats.roc +
3695 adapter->stats.cexterr;
3696 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3697 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3698 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3699 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3700 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3701
3702 /* Tx Errors */
3703 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3704 netdev->stats.tx_errors = adapter->stats.txerrc;
3705 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3706 netdev->stats.tx_window_errors = adapter->stats.latecol;
3707 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3708 if (hw->bad_tx_carr_stats_fd &&
3709 adapter->link_duplex == FULL_DUPLEX) {
3710 netdev->stats.tx_carrier_errors = 0;
3711 adapter->stats.tncrs = 0;
3712 }
3713
3714 /* Tx Dropped needs to be maintained elsewhere */
3715
3716 /* Phy Stats */
3717 if (hw->media_type == e1000_media_type_copper) {
3718 if ((adapter->link_speed == SPEED_1000) &&
3719 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3720 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3721 adapter->phy_stats.idle_errors += phy_tmp;
3722 }
3723
3724 if ((hw->mac_type <= e1000_82546) &&
3725 (hw->phy_type == e1000_phy_m88) &&
3726 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3727 adapter->phy_stats.receive_errors += phy_tmp;
3728 }
3729
3730 /* Management Stats */
3731 if (hw->has_smbus) {
3732 adapter->stats.mgptc += er32(MGTPTC);
3733 adapter->stats.mgprc += er32(MGTPRC);
3734 adapter->stats.mgpdc += er32(MGTPDC);
3735 }
3736
3737 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3738}
3739
3740/**
3741 * e1000_intr - Interrupt Handler
3742 * @irq: interrupt number
3743 * @data: pointer to a network interface device structure
3744 **/
3745static irqreturn_t e1000_intr(int irq, void *data)
3746{
3747 struct net_device *netdev = data;
3748 struct e1000_adapter *adapter = netdev_priv(netdev);
3749 struct e1000_hw *hw = &adapter->hw;
3750 u32 icr = er32(ICR);
3751
3752 if (unlikely((!icr)))
3753 return IRQ_NONE; /* Not our interrupt */
3754
3755 /* we might have caused the interrupt, but the above
3756 * read cleared it, and just in case the driver is
3757 * down there is nothing to do so return handled
3758 */
3759 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3760 return IRQ_HANDLED;
3761
3762 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3763 hw->get_link_status = 1;
3764 /* guard against interrupt when we're going down */
3765 if (!test_bit(__E1000_DOWN, &adapter->flags))
3766 schedule_delayed_work(&adapter->watchdog_task, 1);
3767 }
3768
3769 /* disable interrupts, without the synchronize_irq bit */
3770 ew32(IMC, ~0);
3771 E1000_WRITE_FLUSH();
3772
3773 if (likely(napi_schedule_prep(&adapter->napi))) {
3774 adapter->total_tx_bytes = 0;
3775 adapter->total_tx_packets = 0;
3776 adapter->total_rx_bytes = 0;
3777 adapter->total_rx_packets = 0;
3778 __napi_schedule(&adapter->napi);
3779 } else {
3780 /* this really should not happen! if it does it is basically a
3781 * bug, but not a hard error, so enable ints and continue
3782 */
3783 if (!test_bit(__E1000_DOWN, &adapter->flags))
3784 e1000_irq_enable(adapter);
3785 }
3786
3787 return IRQ_HANDLED;
3788}
3789
3790/**
3791 * e1000_clean - NAPI Rx polling callback
3792 * @napi: napi struct containing references to driver info
3793 * @budget: budget given to driver for receive packets
3794 **/
3795static int e1000_clean(struct napi_struct *napi, int budget)
3796{
3797 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3798 napi);
3799 int tx_clean_complete = 0, work_done = 0;
3800
3801 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3802
3803 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3804
3805 if (!tx_clean_complete || work_done == budget)
3806 return budget;
3807
3808 /* Exit the polling mode, but don't re-enable interrupts if stack might
3809 * poll us due to busy-polling
3810 */
3811 if (likely(napi_complete_done(napi, work_done))) {
3812 if (likely(adapter->itr_setting & 3))
3813 e1000_set_itr(adapter);
3814 if (!test_bit(__E1000_DOWN, &adapter->flags))
3815 e1000_irq_enable(adapter);
3816 }
3817
3818 return work_done;
3819}
3820
3821/**
3822 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3823 * @adapter: board private structure
3824 * @tx_ring: ring to clean
3825 **/
3826static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3827 struct e1000_tx_ring *tx_ring)
3828{
3829 struct e1000_hw *hw = &adapter->hw;
3830 struct net_device *netdev = adapter->netdev;
3831 struct e1000_tx_desc *tx_desc, *eop_desc;
3832 struct e1000_tx_buffer *buffer_info;
3833 unsigned int i, eop;
3834 unsigned int count = 0;
3835 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3836 unsigned int bytes_compl = 0, pkts_compl = 0;
3837
3838 i = tx_ring->next_to_clean;
3839 eop = tx_ring->buffer_info[i].next_to_watch;
3840 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3841
3842 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3843 (count < tx_ring->count)) {
3844 bool cleaned = false;
3845 dma_rmb(); /* read buffer_info after eop_desc */
3846 for ( ; !cleaned; count++) {
3847 tx_desc = E1000_TX_DESC(*tx_ring, i);
3848 buffer_info = &tx_ring->buffer_info[i];
3849 cleaned = (i == eop);
3850
3851 if (cleaned) {
3852 total_tx_packets += buffer_info->segs;
3853 total_tx_bytes += buffer_info->bytecount;
3854 if (buffer_info->skb) {
3855 bytes_compl += buffer_info->skb->len;
3856 pkts_compl++;
3857 }
3858
3859 }
3860 e1000_unmap_and_free_tx_resource(adapter, buffer_info,
3861 64);
3862 tx_desc->upper.data = 0;
3863
3864 if (unlikely(++i == tx_ring->count))
3865 i = 0;
3866 }
3867
3868 eop = tx_ring->buffer_info[i].next_to_watch;
3869 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3870 }
3871
3872 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3873 * which will reuse the cleaned buffers.
3874 */
3875 smp_store_release(&tx_ring->next_to_clean, i);
3876
3877 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3878
3879#define TX_WAKE_THRESHOLD 32
3880 if (unlikely(count && netif_carrier_ok(netdev) &&
3881 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3882 /* Make sure that anybody stopping the queue after this
3883 * sees the new next_to_clean.
3884 */
3885 smp_mb();
3886
3887 if (netif_queue_stopped(netdev) &&
3888 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3889 netif_wake_queue(netdev);
3890 ++adapter->restart_queue;
3891 }
3892 }
3893
3894 if (adapter->detect_tx_hung) {
3895 /* Detect a transmit hang in hardware, this serializes the
3896 * check with the clearing of time_stamp and movement of i
3897 */
3898 adapter->detect_tx_hung = false;
3899 if (tx_ring->buffer_info[eop].time_stamp &&
3900 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3901 (adapter->tx_timeout_factor * HZ)) &&
3902 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3903
3904 /* detected Tx unit hang */
3905 e_err(drv, "Detected Tx Unit Hang\n"
3906 " Tx Queue <%lu>\n"
3907 " TDH <%x>\n"
3908 " TDT <%x>\n"
3909 " next_to_use <%x>\n"
3910 " next_to_clean <%x>\n"
3911 "buffer_info[next_to_clean]\n"
3912 " time_stamp <%lx>\n"
3913 " next_to_watch <%x>\n"
3914 " jiffies <%lx>\n"
3915 " next_to_watch.status <%x>\n",
3916 (unsigned long)(tx_ring - adapter->tx_ring),
3917 readl(hw->hw_addr + tx_ring->tdh),
3918 readl(hw->hw_addr + tx_ring->tdt),
3919 tx_ring->next_to_use,
3920 tx_ring->next_to_clean,
3921 tx_ring->buffer_info[eop].time_stamp,
3922 eop,
3923 jiffies,
3924 eop_desc->upper.fields.status);
3925 e1000_dump(adapter);
3926 netif_stop_queue(netdev);
3927 }
3928 }
3929 adapter->total_tx_bytes += total_tx_bytes;
3930 adapter->total_tx_packets += total_tx_packets;
3931 netdev->stats.tx_bytes += total_tx_bytes;
3932 netdev->stats.tx_packets += total_tx_packets;
3933 return count < tx_ring->count;
3934}
3935
3936/**
3937 * e1000_rx_checksum - Receive Checksum Offload for 82543
3938 * @adapter: board private structure
3939 * @status_err: receive descriptor status and error fields
3940 * @csum: receive descriptor csum field
3941 * @skb: socket buffer with received data
3942 **/
3943static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3944 u32 csum, struct sk_buff *skb)
3945{
3946 struct e1000_hw *hw = &adapter->hw;
3947 u16 status = (u16)status_err;
3948 u8 errors = (u8)(status_err >> 24);
3949
3950 skb_checksum_none_assert(skb);
3951
3952 /* 82543 or newer only */
3953 if (unlikely(hw->mac_type < e1000_82543))
3954 return;
3955 /* Ignore Checksum bit is set */
3956 if (unlikely(status & E1000_RXD_STAT_IXSM))
3957 return;
3958 /* TCP/UDP checksum error bit is set */
3959 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3960 /* let the stack verify checksum errors */
3961 adapter->hw_csum_err++;
3962 return;
3963 }
3964 /* TCP/UDP Checksum has not been calculated */
3965 if (!(status & E1000_RXD_STAT_TCPCS))
3966 return;
3967
3968 /* It must be a TCP or UDP packet with a valid checksum */
3969 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3970 /* TCP checksum is good */
3971 skb->ip_summed = CHECKSUM_UNNECESSARY;
3972 }
3973 adapter->hw_csum_good++;
3974}
3975
3976/**
3977 * e1000_consume_page - helper function for jumbo Rx path
3978 * @bi: software descriptor shadow data
3979 * @skb: skb being modified
3980 * @length: length of data being added
3981 **/
3982static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3983 u16 length)
3984{
3985 bi->rxbuf.page = NULL;
3986 skb->len += length;
3987 skb->data_len += length;
3988 skb->truesize += PAGE_SIZE;
3989}
3990
3991/**
3992 * e1000_receive_skb - helper function to handle rx indications
3993 * @adapter: board private structure
3994 * @status: descriptor status field as written by hardware
3995 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3996 * @skb: pointer to sk_buff to be indicated to stack
3997 */
3998static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3999 __le16 vlan, struct sk_buff *skb)
4000{
4001 skb->protocol = eth_type_trans(skb, adapter->netdev);
4002
4003 if (status & E1000_RXD_STAT_VP) {
4004 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4005
4006 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4007 }
4008 napi_gro_receive(&adapter->napi, skb);
4009}
4010
4011/**
4012 * e1000_tbi_adjust_stats
4013 * @hw: Struct containing variables accessed by shared code
4014 * @stats: point to stats struct
4015 * @frame_len: The length of the frame in question
4016 * @mac_addr: The Ethernet destination address of the frame in question
4017 *
4018 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4019 */
4020static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4021 struct e1000_hw_stats *stats,
4022 u32 frame_len, const u8 *mac_addr)
4023{
4024 u64 carry_bit;
4025
4026 /* First adjust the frame length. */
4027 frame_len--;
4028 /* We need to adjust the statistics counters, since the hardware
4029 * counters overcount this packet as a CRC error and undercount
4030 * the packet as a good packet
4031 */
4032 /* This packet should not be counted as a CRC error. */
4033 stats->crcerrs--;
4034 /* This packet does count as a Good Packet Received. */
4035 stats->gprc++;
4036
4037 /* Adjust the Good Octets received counters */
4038 carry_bit = 0x80000000 & stats->gorcl;
4039 stats->gorcl += frame_len;
4040 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4041 * Received Count) was one before the addition,
4042 * AND it is zero after, then we lost the carry out,
4043 * need to add one to Gorch (Good Octets Received Count High).
4044 * This could be simplified if all environments supported
4045 * 64-bit integers.
4046 */
4047 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4048 stats->gorch++;
4049 /* Is this a broadcast or multicast? Check broadcast first,
4050 * since the test for a multicast frame will test positive on
4051 * a broadcast frame.
4052 */
4053 if (is_broadcast_ether_addr(mac_addr))
4054 stats->bprc++;
4055 else if (is_multicast_ether_addr(mac_addr))
4056 stats->mprc++;
4057
4058 if (frame_len == hw->max_frame_size) {
4059 /* In this case, the hardware has overcounted the number of
4060 * oversize frames.
4061 */
4062 if (stats->roc > 0)
4063 stats->roc--;
4064 }
4065
4066 /* Adjust the bin counters when the extra byte put the frame in the
4067 * wrong bin. Remember that the frame_len was adjusted above.
4068 */
4069 if (frame_len == 64) {
4070 stats->prc64++;
4071 stats->prc127--;
4072 } else if (frame_len == 127) {
4073 stats->prc127++;
4074 stats->prc255--;
4075 } else if (frame_len == 255) {
4076 stats->prc255++;
4077 stats->prc511--;
4078 } else if (frame_len == 511) {
4079 stats->prc511++;
4080 stats->prc1023--;
4081 } else if (frame_len == 1023) {
4082 stats->prc1023++;
4083 stats->prc1522--;
4084 } else if (frame_len == 1522) {
4085 stats->prc1522++;
4086 }
4087}
4088
4089static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4090 u8 status, u8 errors,
4091 u32 length, const u8 *data)
4092{
4093 struct e1000_hw *hw = &adapter->hw;
4094 u8 last_byte = *(data + length - 1);
4095
4096 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4097 unsigned long irq_flags;
4098
4099 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4100 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4101 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4102
4103 return true;
4104 }
4105
4106 return false;
4107}
4108
4109static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4110 unsigned int bufsz)
4111{
4112 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4113
4114 if (unlikely(!skb))
4115 adapter->alloc_rx_buff_failed++;
4116 return skb;
4117}
4118
4119/**
4120 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4121 * @adapter: board private structure
4122 * @rx_ring: ring to clean
4123 * @work_done: amount of napi work completed this call
4124 * @work_to_do: max amount of work allowed for this call to do
4125 *
4126 * the return value indicates whether actual cleaning was done, there
4127 * is no guarantee that everything was cleaned
4128 */
4129static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4130 struct e1000_rx_ring *rx_ring,
4131 int *work_done, int work_to_do)
4132{
4133 struct net_device *netdev = adapter->netdev;
4134 struct pci_dev *pdev = adapter->pdev;
4135 struct e1000_rx_desc *rx_desc, *next_rxd;
4136 struct e1000_rx_buffer *buffer_info, *next_buffer;
4137 u32 length;
4138 unsigned int i;
4139 int cleaned_count = 0;
4140 bool cleaned = false;
4141 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4142
4143 i = rx_ring->next_to_clean;
4144 rx_desc = E1000_RX_DESC(*rx_ring, i);
4145 buffer_info = &rx_ring->buffer_info[i];
4146
4147 while (rx_desc->status & E1000_RXD_STAT_DD) {
4148 struct sk_buff *skb;
4149 u8 status;
4150
4151 if (*work_done >= work_to_do)
4152 break;
4153 (*work_done)++;
4154 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4155
4156 status = rx_desc->status;
4157
4158 if (++i == rx_ring->count)
4159 i = 0;
4160
4161 next_rxd = E1000_RX_DESC(*rx_ring, i);
4162 prefetch(next_rxd);
4163
4164 next_buffer = &rx_ring->buffer_info[i];
4165
4166 cleaned = true;
4167 cleaned_count++;
4168 dma_unmap_page(&pdev->dev, buffer_info->dma,
4169 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4170 buffer_info->dma = 0;
4171
4172 length = le16_to_cpu(rx_desc->length);
4173
4174 /* errors is only valid for DD + EOP descriptors */
4175 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4176 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4177 u8 *mapped = page_address(buffer_info->rxbuf.page);
4178
4179 if (e1000_tbi_should_accept(adapter, status,
4180 rx_desc->errors,
4181 length, mapped)) {
4182 length--;
4183 } else if (netdev->features & NETIF_F_RXALL) {
4184 goto process_skb;
4185 } else {
4186 /* an error means any chain goes out the window
4187 * too
4188 */
4189 dev_kfree_skb(rx_ring->rx_skb_top);
4190 rx_ring->rx_skb_top = NULL;
4191 goto next_desc;
4192 }
4193 }
4194
4195#define rxtop rx_ring->rx_skb_top
4196process_skb:
4197 if (!(status & E1000_RXD_STAT_EOP)) {
4198 /* this descriptor is only the beginning (or middle) */
4199 if (!rxtop) {
4200 /* this is the beginning of a chain */
4201 rxtop = napi_get_frags(&adapter->napi);
4202 if (!rxtop)
4203 break;
4204
4205 skb_fill_page_desc(rxtop, 0,
4206 buffer_info->rxbuf.page,
4207 0, length);
4208 } else {
4209 /* this is the middle of a chain */
4210 skb_fill_page_desc(rxtop,
4211 skb_shinfo(rxtop)->nr_frags,
4212 buffer_info->rxbuf.page, 0, length);
4213 }
4214 e1000_consume_page(buffer_info, rxtop, length);
4215 goto next_desc;
4216 } else {
4217 if (rxtop) {
4218 /* end of the chain */
4219 skb_fill_page_desc(rxtop,
4220 skb_shinfo(rxtop)->nr_frags,
4221 buffer_info->rxbuf.page, 0, length);
4222 skb = rxtop;
4223 rxtop = NULL;
4224 e1000_consume_page(buffer_info, skb, length);
4225 } else {
4226 struct page *p;
4227 /* no chain, got EOP, this buf is the packet
4228 * copybreak to save the put_page/alloc_page
4229 */
4230 p = buffer_info->rxbuf.page;
4231 if (length <= copybreak) {
4232 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4233 length -= 4;
4234 skb = e1000_alloc_rx_skb(adapter,
4235 length);
4236 if (!skb)
4237 break;
4238
4239 memcpy(skb_tail_pointer(skb),
4240 page_address(p), length);
4241
4242 /* re-use the page, so don't erase
4243 * buffer_info->rxbuf.page
4244 */
4245 skb_put(skb, length);
4246 e1000_rx_checksum(adapter,
4247 status | rx_desc->errors << 24,
4248 le16_to_cpu(rx_desc->csum), skb);
4249
4250 total_rx_bytes += skb->len;
4251 total_rx_packets++;
4252
4253 e1000_receive_skb(adapter, status,
4254 rx_desc->special, skb);
4255 goto next_desc;
4256 } else {
4257 skb = napi_get_frags(&adapter->napi);
4258 if (!skb) {
4259 adapter->alloc_rx_buff_failed++;
4260 break;
4261 }
4262 skb_fill_page_desc(skb, 0, p, 0,
4263 length);
4264 e1000_consume_page(buffer_info, skb,
4265 length);
4266 }
4267 }
4268 }
4269
4270 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4271 e1000_rx_checksum(adapter,
4272 (u32)(status) |
4273 ((u32)(rx_desc->errors) << 24),
4274 le16_to_cpu(rx_desc->csum), skb);
4275
4276 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4277 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4278 pskb_trim(skb, skb->len - 4);
4279 total_rx_packets++;
4280
4281 if (status & E1000_RXD_STAT_VP) {
4282 __le16 vlan = rx_desc->special;
4283 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4284
4285 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4286 }
4287
4288 napi_gro_frags(&adapter->napi);
4289
4290next_desc:
4291 rx_desc->status = 0;
4292
4293 /* return some buffers to hardware, one at a time is too slow */
4294 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4295 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4296 cleaned_count = 0;
4297 }
4298
4299 /* use prefetched values */
4300 rx_desc = next_rxd;
4301 buffer_info = next_buffer;
4302 }
4303 rx_ring->next_to_clean = i;
4304
4305 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4306 if (cleaned_count)
4307 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4308
4309 adapter->total_rx_packets += total_rx_packets;
4310 adapter->total_rx_bytes += total_rx_bytes;
4311 netdev->stats.rx_bytes += total_rx_bytes;
4312 netdev->stats.rx_packets += total_rx_packets;
4313 return cleaned;
4314}
4315
4316/* this should improve performance for small packets with large amounts
4317 * of reassembly being done in the stack
4318 */
4319static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4320 struct e1000_rx_buffer *buffer_info,
4321 u32 length, const void *data)
4322{
4323 struct sk_buff *skb;
4324
4325 if (length > copybreak)
4326 return NULL;
4327
4328 skb = e1000_alloc_rx_skb(adapter, length);
4329 if (!skb)
4330 return NULL;
4331
4332 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4333 length, DMA_FROM_DEVICE);
4334
4335 skb_put_data(skb, data, length);
4336
4337 return skb;
4338}
4339
4340/**
4341 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4342 * @adapter: board private structure
4343 * @rx_ring: ring to clean
4344 * @work_done: amount of napi work completed this call
4345 * @work_to_do: max amount of work allowed for this call to do
4346 */
4347static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4348 struct e1000_rx_ring *rx_ring,
4349 int *work_done, int work_to_do)
4350{
4351 struct net_device *netdev = adapter->netdev;
4352 struct pci_dev *pdev = adapter->pdev;
4353 struct e1000_rx_desc *rx_desc, *next_rxd;
4354 struct e1000_rx_buffer *buffer_info, *next_buffer;
4355 u32 length;
4356 unsigned int i;
4357 int cleaned_count = 0;
4358 bool cleaned = false;
4359 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4360
4361 i = rx_ring->next_to_clean;
4362 rx_desc = E1000_RX_DESC(*rx_ring, i);
4363 buffer_info = &rx_ring->buffer_info[i];
4364
4365 while (rx_desc->status & E1000_RXD_STAT_DD) {
4366 struct sk_buff *skb;
4367 u8 *data;
4368 u8 status;
4369
4370 if (*work_done >= work_to_do)
4371 break;
4372 (*work_done)++;
4373 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4374
4375 status = rx_desc->status;
4376 length = le16_to_cpu(rx_desc->length);
4377
4378 data = buffer_info->rxbuf.data;
4379 prefetch(data);
4380 skb = e1000_copybreak(adapter, buffer_info, length, data);
4381 if (!skb) {
4382 unsigned int frag_len = e1000_frag_len(adapter);
4383
4384 skb = napi_build_skb(data - E1000_HEADROOM, frag_len);
4385 if (!skb) {
4386 adapter->alloc_rx_buff_failed++;
4387 break;
4388 }
4389
4390 skb_reserve(skb, E1000_HEADROOM);
4391 dma_unmap_single(&pdev->dev, buffer_info->dma,
4392 adapter->rx_buffer_len,
4393 DMA_FROM_DEVICE);
4394 buffer_info->dma = 0;
4395 buffer_info->rxbuf.data = NULL;
4396 }
4397
4398 if (++i == rx_ring->count)
4399 i = 0;
4400
4401 next_rxd = E1000_RX_DESC(*rx_ring, i);
4402 prefetch(next_rxd);
4403
4404 next_buffer = &rx_ring->buffer_info[i];
4405
4406 cleaned = true;
4407 cleaned_count++;
4408
4409 /* !EOP means multiple descriptors were used to store a single
4410 * packet, if thats the case we need to toss it. In fact, we
4411 * to toss every packet with the EOP bit clear and the next
4412 * frame that _does_ have the EOP bit set, as it is by
4413 * definition only a frame fragment
4414 */
4415 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4416 adapter->discarding = true;
4417
4418 if (adapter->discarding) {
4419 /* All receives must fit into a single buffer */
4420 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4421 dev_kfree_skb(skb);
4422 if (status & E1000_RXD_STAT_EOP)
4423 adapter->discarding = false;
4424 goto next_desc;
4425 }
4426
4427 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4428 if (e1000_tbi_should_accept(adapter, status,
4429 rx_desc->errors,
4430 length, data)) {
4431 length--;
4432 } else if (netdev->features & NETIF_F_RXALL) {
4433 goto process_skb;
4434 } else {
4435 dev_kfree_skb(skb);
4436 goto next_desc;
4437 }
4438 }
4439
4440process_skb:
4441 total_rx_bytes += (length - 4); /* don't count FCS */
4442 total_rx_packets++;
4443
4444 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4445 /* adjust length to remove Ethernet CRC, this must be
4446 * done after the TBI_ACCEPT workaround above
4447 */
4448 length -= 4;
4449
4450 if (buffer_info->rxbuf.data == NULL)
4451 skb_put(skb, length);
4452 else /* copybreak skb */
4453 skb_trim(skb, length);
4454
4455 /* Receive Checksum Offload */
4456 e1000_rx_checksum(adapter,
4457 (u32)(status) |
4458 ((u32)(rx_desc->errors) << 24),
4459 le16_to_cpu(rx_desc->csum), skb);
4460
4461 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4462
4463next_desc:
4464 rx_desc->status = 0;
4465
4466 /* return some buffers to hardware, one at a time is too slow */
4467 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4468 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4469 cleaned_count = 0;
4470 }
4471
4472 /* use prefetched values */
4473 rx_desc = next_rxd;
4474 buffer_info = next_buffer;
4475 }
4476 rx_ring->next_to_clean = i;
4477
4478 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4479 if (cleaned_count)
4480 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4481
4482 adapter->total_rx_packets += total_rx_packets;
4483 adapter->total_rx_bytes += total_rx_bytes;
4484 netdev->stats.rx_bytes += total_rx_bytes;
4485 netdev->stats.rx_packets += total_rx_packets;
4486 return cleaned;
4487}
4488
4489/**
4490 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4491 * @adapter: address of board private structure
4492 * @rx_ring: pointer to receive ring structure
4493 * @cleaned_count: number of buffers to allocate this pass
4494 **/
4495static void
4496e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4497 struct e1000_rx_ring *rx_ring, int cleaned_count)
4498{
4499 struct pci_dev *pdev = adapter->pdev;
4500 struct e1000_rx_desc *rx_desc;
4501 struct e1000_rx_buffer *buffer_info;
4502 unsigned int i;
4503
4504 i = rx_ring->next_to_use;
4505 buffer_info = &rx_ring->buffer_info[i];
4506
4507 while (cleaned_count--) {
4508 /* allocate a new page if necessary */
4509 if (!buffer_info->rxbuf.page) {
4510 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4511 if (unlikely(!buffer_info->rxbuf.page)) {
4512 adapter->alloc_rx_buff_failed++;
4513 break;
4514 }
4515 }
4516
4517 if (!buffer_info->dma) {
4518 buffer_info->dma = dma_map_page(&pdev->dev,
4519 buffer_info->rxbuf.page, 0,
4520 adapter->rx_buffer_len,
4521 DMA_FROM_DEVICE);
4522 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4523 put_page(buffer_info->rxbuf.page);
4524 buffer_info->rxbuf.page = NULL;
4525 buffer_info->dma = 0;
4526 adapter->alloc_rx_buff_failed++;
4527 break;
4528 }
4529 }
4530
4531 rx_desc = E1000_RX_DESC(*rx_ring, i);
4532 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4533
4534 if (unlikely(++i == rx_ring->count))
4535 i = 0;
4536 buffer_info = &rx_ring->buffer_info[i];
4537 }
4538
4539 if (likely(rx_ring->next_to_use != i)) {
4540 rx_ring->next_to_use = i;
4541 if (unlikely(i-- == 0))
4542 i = (rx_ring->count - 1);
4543
4544 /* Force memory writes to complete before letting h/w
4545 * know there are new descriptors to fetch. (Only
4546 * applicable for weak-ordered memory model archs,
4547 * such as IA-64).
4548 */
4549 dma_wmb();
4550 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4551 }
4552}
4553
4554/**
4555 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4556 * @adapter: address of board private structure
4557 * @rx_ring: pointer to ring struct
4558 * @cleaned_count: number of new Rx buffers to try to allocate
4559 **/
4560static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4561 struct e1000_rx_ring *rx_ring,
4562 int cleaned_count)
4563{
4564 struct e1000_hw *hw = &adapter->hw;
4565 struct pci_dev *pdev = adapter->pdev;
4566 struct e1000_rx_desc *rx_desc;
4567 struct e1000_rx_buffer *buffer_info;
4568 unsigned int i;
4569 unsigned int bufsz = adapter->rx_buffer_len;
4570
4571 i = rx_ring->next_to_use;
4572 buffer_info = &rx_ring->buffer_info[i];
4573
4574 while (cleaned_count--) {
4575 void *data;
4576
4577 if (buffer_info->rxbuf.data)
4578 goto skip;
4579
4580 data = e1000_alloc_frag(adapter);
4581 if (!data) {
4582 /* Better luck next round */
4583 adapter->alloc_rx_buff_failed++;
4584 break;
4585 }
4586
4587 /* Fix for errata 23, can't cross 64kB boundary */
4588 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4589 void *olddata = data;
4590 e_err(rx_err, "skb align check failed: %u bytes at "
4591 "%p\n", bufsz, data);
4592 /* Try again, without freeing the previous */
4593 data = e1000_alloc_frag(adapter);
4594 /* Failed allocation, critical failure */
4595 if (!data) {
4596 skb_free_frag(olddata);
4597 adapter->alloc_rx_buff_failed++;
4598 break;
4599 }
4600
4601 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4602 /* give up */
4603 skb_free_frag(data);
4604 skb_free_frag(olddata);
4605 adapter->alloc_rx_buff_failed++;
4606 break;
4607 }
4608
4609 /* Use new allocation */
4610 skb_free_frag(olddata);
4611 }
4612 buffer_info->dma = dma_map_single(&pdev->dev,
4613 data,
4614 adapter->rx_buffer_len,
4615 DMA_FROM_DEVICE);
4616 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4617 skb_free_frag(data);
4618 buffer_info->dma = 0;
4619 adapter->alloc_rx_buff_failed++;
4620 break;
4621 }
4622
4623 /* XXX if it was allocated cleanly it will never map to a
4624 * boundary crossing
4625 */
4626
4627 /* Fix for errata 23, can't cross 64kB boundary */
4628 if (!e1000_check_64k_bound(adapter,
4629 (void *)(unsigned long)buffer_info->dma,
4630 adapter->rx_buffer_len)) {
4631 e_err(rx_err, "dma align check failed: %u bytes at "
4632 "%p\n", adapter->rx_buffer_len,
4633 (void *)(unsigned long)buffer_info->dma);
4634
4635 dma_unmap_single(&pdev->dev, buffer_info->dma,
4636 adapter->rx_buffer_len,
4637 DMA_FROM_DEVICE);
4638
4639 skb_free_frag(data);
4640 buffer_info->rxbuf.data = NULL;
4641 buffer_info->dma = 0;
4642
4643 adapter->alloc_rx_buff_failed++;
4644 break;
4645 }
4646 buffer_info->rxbuf.data = data;
4647 skip:
4648 rx_desc = E1000_RX_DESC(*rx_ring, i);
4649 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4650
4651 if (unlikely(++i == rx_ring->count))
4652 i = 0;
4653 buffer_info = &rx_ring->buffer_info[i];
4654 }
4655
4656 if (likely(rx_ring->next_to_use != i)) {
4657 rx_ring->next_to_use = i;
4658 if (unlikely(i-- == 0))
4659 i = (rx_ring->count - 1);
4660
4661 /* Force memory writes to complete before letting h/w
4662 * know there are new descriptors to fetch. (Only
4663 * applicable for weak-ordered memory model archs,
4664 * such as IA-64).
4665 */
4666 dma_wmb();
4667 writel(i, hw->hw_addr + rx_ring->rdt);
4668 }
4669}
4670
4671/**
4672 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4673 * @adapter: address of board private structure
4674 **/
4675static void e1000_smartspeed(struct e1000_adapter *adapter)
4676{
4677 struct e1000_hw *hw = &adapter->hw;
4678 u16 phy_status;
4679 u16 phy_ctrl;
4680
4681 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4682 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4683 return;
4684
4685 if (adapter->smartspeed == 0) {
4686 /* If Master/Slave config fault is asserted twice,
4687 * we assume back-to-back
4688 */
4689 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4690 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4691 return;
4692 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4693 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4694 return;
4695 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4696 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4697 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4698 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4699 phy_ctrl);
4700 adapter->smartspeed++;
4701 if (!e1000_phy_setup_autoneg(hw) &&
4702 !e1000_read_phy_reg(hw, PHY_CTRL,
4703 &phy_ctrl)) {
4704 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4705 MII_CR_RESTART_AUTO_NEG);
4706 e1000_write_phy_reg(hw, PHY_CTRL,
4707 phy_ctrl);
4708 }
4709 }
4710 return;
4711 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4712 /* If still no link, perhaps using 2/3 pair cable */
4713 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4714 phy_ctrl |= CR_1000T_MS_ENABLE;
4715 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4716 if (!e1000_phy_setup_autoneg(hw) &&
4717 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4718 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4719 MII_CR_RESTART_AUTO_NEG);
4720 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4721 }
4722 }
4723 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4724 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4725 adapter->smartspeed = 0;
4726}
4727
4728/**
4729 * e1000_ioctl - handle ioctl calls
4730 * @netdev: pointer to our netdev
4731 * @ifr: pointer to interface request structure
4732 * @cmd: ioctl data
4733 **/
4734static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4735{
4736 switch (cmd) {
4737 case SIOCGMIIPHY:
4738 case SIOCGMIIREG:
4739 case SIOCSMIIREG:
4740 return e1000_mii_ioctl(netdev, ifr, cmd);
4741 default:
4742 return -EOPNOTSUPP;
4743 }
4744}
4745
4746/**
4747 * e1000_mii_ioctl -
4748 * @netdev: pointer to our netdev
4749 * @ifr: pointer to interface request structure
4750 * @cmd: ioctl data
4751 **/
4752static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4753 int cmd)
4754{
4755 struct e1000_adapter *adapter = netdev_priv(netdev);
4756 struct e1000_hw *hw = &adapter->hw;
4757 struct mii_ioctl_data *data = if_mii(ifr);
4758 int retval;
4759 u16 mii_reg;
4760 unsigned long flags;
4761
4762 if (hw->media_type != e1000_media_type_copper)
4763 return -EOPNOTSUPP;
4764
4765 switch (cmd) {
4766 case SIOCGMIIPHY:
4767 data->phy_id = hw->phy_addr;
4768 break;
4769 case SIOCGMIIREG:
4770 spin_lock_irqsave(&adapter->stats_lock, flags);
4771 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4772 &data->val_out)) {
4773 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4774 return -EIO;
4775 }
4776 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4777 break;
4778 case SIOCSMIIREG:
4779 if (data->reg_num & ~(0x1F))
4780 return -EFAULT;
4781 mii_reg = data->val_in;
4782 spin_lock_irqsave(&adapter->stats_lock, flags);
4783 if (e1000_write_phy_reg(hw, data->reg_num,
4784 mii_reg)) {
4785 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4786 return -EIO;
4787 }
4788 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4789 if (hw->media_type == e1000_media_type_copper) {
4790 switch (data->reg_num) {
4791 case PHY_CTRL:
4792 if (mii_reg & MII_CR_POWER_DOWN)
4793 break;
4794 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4795 hw->autoneg = 1;
4796 hw->autoneg_advertised = 0x2F;
4797 } else {
4798 u32 speed;
4799 if (mii_reg & 0x40)
4800 speed = SPEED_1000;
4801 else if (mii_reg & 0x2000)
4802 speed = SPEED_100;
4803 else
4804 speed = SPEED_10;
4805 retval = e1000_set_spd_dplx(
4806 adapter, speed,
4807 ((mii_reg & 0x100)
4808 ? DUPLEX_FULL :
4809 DUPLEX_HALF));
4810 if (retval)
4811 return retval;
4812 }
4813 if (netif_running(adapter->netdev))
4814 e1000_reinit_locked(adapter);
4815 else
4816 e1000_reset(adapter);
4817 break;
4818 case M88E1000_PHY_SPEC_CTRL:
4819 case M88E1000_EXT_PHY_SPEC_CTRL:
4820 if (e1000_phy_reset(hw))
4821 return -EIO;
4822 break;
4823 }
4824 } else {
4825 switch (data->reg_num) {
4826 case PHY_CTRL:
4827 if (mii_reg & MII_CR_POWER_DOWN)
4828 break;
4829 if (netif_running(adapter->netdev))
4830 e1000_reinit_locked(adapter);
4831 else
4832 e1000_reset(adapter);
4833 break;
4834 }
4835 }
4836 break;
4837 default:
4838 return -EOPNOTSUPP;
4839 }
4840 return E1000_SUCCESS;
4841}
4842
4843void e1000_pci_set_mwi(struct e1000_hw *hw)
4844{
4845 struct e1000_adapter *adapter = hw->back;
4846 int ret_val = pci_set_mwi(adapter->pdev);
4847
4848 if (ret_val)
4849 e_err(probe, "Error in setting MWI\n");
4850}
4851
4852void e1000_pci_clear_mwi(struct e1000_hw *hw)
4853{
4854 struct e1000_adapter *adapter = hw->back;
4855
4856 pci_clear_mwi(adapter->pdev);
4857}
4858
4859int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4860{
4861 struct e1000_adapter *adapter = hw->back;
4862 return pcix_get_mmrbc(adapter->pdev);
4863}
4864
4865void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4866{
4867 struct e1000_adapter *adapter = hw->back;
4868 pcix_set_mmrbc(adapter->pdev, mmrbc);
4869}
4870
4871void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4872{
4873 outl(value, port);
4874}
4875
4876static bool e1000_vlan_used(struct e1000_adapter *adapter)
4877{
4878 u16 vid;
4879
4880 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4881 return true;
4882 return false;
4883}
4884
4885static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4886 netdev_features_t features)
4887{
4888 struct e1000_hw *hw = &adapter->hw;
4889 u32 ctrl;
4890
4891 ctrl = er32(CTRL);
4892 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4893 /* enable VLAN tag insert/strip */
4894 ctrl |= E1000_CTRL_VME;
4895 } else {
4896 /* disable VLAN tag insert/strip */
4897 ctrl &= ~E1000_CTRL_VME;
4898 }
4899 ew32(CTRL, ctrl);
4900}
4901static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4902 bool filter_on)
4903{
4904 struct e1000_hw *hw = &adapter->hw;
4905 u32 rctl;
4906
4907 if (!test_bit(__E1000_DOWN, &adapter->flags))
4908 e1000_irq_disable(adapter);
4909
4910 __e1000_vlan_mode(adapter, adapter->netdev->features);
4911 if (filter_on) {
4912 /* enable VLAN receive filtering */
4913 rctl = er32(RCTL);
4914 rctl &= ~E1000_RCTL_CFIEN;
4915 if (!(adapter->netdev->flags & IFF_PROMISC))
4916 rctl |= E1000_RCTL_VFE;
4917 ew32(RCTL, rctl);
4918 e1000_update_mng_vlan(adapter);
4919 } else {
4920 /* disable VLAN receive filtering */
4921 rctl = er32(RCTL);
4922 rctl &= ~E1000_RCTL_VFE;
4923 ew32(RCTL, rctl);
4924 }
4925
4926 if (!test_bit(__E1000_DOWN, &adapter->flags))
4927 e1000_irq_enable(adapter);
4928}
4929
4930static void e1000_vlan_mode(struct net_device *netdev,
4931 netdev_features_t features)
4932{
4933 struct e1000_adapter *adapter = netdev_priv(netdev);
4934
4935 if (!test_bit(__E1000_DOWN, &adapter->flags))
4936 e1000_irq_disable(adapter);
4937
4938 __e1000_vlan_mode(adapter, features);
4939
4940 if (!test_bit(__E1000_DOWN, &adapter->flags))
4941 e1000_irq_enable(adapter);
4942}
4943
4944static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4945 __be16 proto, u16 vid)
4946{
4947 struct e1000_adapter *adapter = netdev_priv(netdev);
4948 struct e1000_hw *hw = &adapter->hw;
4949 u32 vfta, index;
4950
4951 if ((hw->mng_cookie.status &
4952 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4953 (vid == adapter->mng_vlan_id))
4954 return 0;
4955
4956 if (!e1000_vlan_used(adapter))
4957 e1000_vlan_filter_on_off(adapter, true);
4958
4959 /* add VID to filter table */
4960 index = (vid >> 5) & 0x7F;
4961 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4962 vfta |= (1 << (vid & 0x1F));
4963 e1000_write_vfta(hw, index, vfta);
4964
4965 set_bit(vid, adapter->active_vlans);
4966
4967 return 0;
4968}
4969
4970static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4971 __be16 proto, u16 vid)
4972{
4973 struct e1000_adapter *adapter = netdev_priv(netdev);
4974 struct e1000_hw *hw = &adapter->hw;
4975 u32 vfta, index;
4976
4977 if (!test_bit(__E1000_DOWN, &adapter->flags))
4978 e1000_irq_disable(adapter);
4979 if (!test_bit(__E1000_DOWN, &adapter->flags))
4980 e1000_irq_enable(adapter);
4981
4982 /* remove VID from filter table */
4983 index = (vid >> 5) & 0x7F;
4984 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4985 vfta &= ~(1 << (vid & 0x1F));
4986 e1000_write_vfta(hw, index, vfta);
4987
4988 clear_bit(vid, adapter->active_vlans);
4989
4990 if (!e1000_vlan_used(adapter))
4991 e1000_vlan_filter_on_off(adapter, false);
4992
4993 return 0;
4994}
4995
4996static void e1000_restore_vlan(struct e1000_adapter *adapter)
4997{
4998 u16 vid;
4999
5000 if (!e1000_vlan_used(adapter))
5001 return;
5002
5003 e1000_vlan_filter_on_off(adapter, true);
5004 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5005 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5006}
5007
5008int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5009{
5010 struct e1000_hw *hw = &adapter->hw;
5011
5012 hw->autoneg = 0;
5013
5014 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5015 * for the switch() below to work
5016 */
5017 if ((spd & 1) || (dplx & ~1))
5018 goto err_inval;
5019
5020 /* Fiber NICs only allow 1000 gbps Full duplex */
5021 if ((hw->media_type == e1000_media_type_fiber) &&
5022 spd != SPEED_1000 &&
5023 dplx != DUPLEX_FULL)
5024 goto err_inval;
5025
5026 switch (spd + dplx) {
5027 case SPEED_10 + DUPLEX_HALF:
5028 hw->forced_speed_duplex = e1000_10_half;
5029 break;
5030 case SPEED_10 + DUPLEX_FULL:
5031 hw->forced_speed_duplex = e1000_10_full;
5032 break;
5033 case SPEED_100 + DUPLEX_HALF:
5034 hw->forced_speed_duplex = e1000_100_half;
5035 break;
5036 case SPEED_100 + DUPLEX_FULL:
5037 hw->forced_speed_duplex = e1000_100_full;
5038 break;
5039 case SPEED_1000 + DUPLEX_FULL:
5040 hw->autoneg = 1;
5041 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5042 break;
5043 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5044 default:
5045 goto err_inval;
5046 }
5047
5048 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5049 hw->mdix = AUTO_ALL_MODES;
5050
5051 return 0;
5052
5053err_inval:
5054 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5055 return -EINVAL;
5056}
5057
5058static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5059{
5060 struct net_device *netdev = pci_get_drvdata(pdev);
5061 struct e1000_adapter *adapter = netdev_priv(netdev);
5062 struct e1000_hw *hw = &adapter->hw;
5063 u32 ctrl, ctrl_ext, rctl, status;
5064 u32 wufc = adapter->wol;
5065
5066 netif_device_detach(netdev);
5067
5068 if (netif_running(netdev)) {
5069 int count = E1000_CHECK_RESET_COUNT;
5070
5071 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5072 usleep_range(10000, 20000);
5073
5074 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5075 e1000_down(adapter);
5076 }
5077
5078 status = er32(STATUS);
5079 if (status & E1000_STATUS_LU)
5080 wufc &= ~E1000_WUFC_LNKC;
5081
5082 if (wufc) {
5083 e1000_setup_rctl(adapter);
5084 e1000_set_rx_mode(netdev);
5085
5086 rctl = er32(RCTL);
5087
5088 /* turn on all-multi mode if wake on multicast is enabled */
5089 if (wufc & E1000_WUFC_MC)
5090 rctl |= E1000_RCTL_MPE;
5091
5092 /* enable receives in the hardware */
5093 ew32(RCTL, rctl | E1000_RCTL_EN);
5094
5095 if (hw->mac_type >= e1000_82540) {
5096 ctrl = er32(CTRL);
5097 /* advertise wake from D3Cold */
5098 #define E1000_CTRL_ADVD3WUC 0x00100000
5099 /* phy power management enable */
5100 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5101 ctrl |= E1000_CTRL_ADVD3WUC |
5102 E1000_CTRL_EN_PHY_PWR_MGMT;
5103 ew32(CTRL, ctrl);
5104 }
5105
5106 if (hw->media_type == e1000_media_type_fiber ||
5107 hw->media_type == e1000_media_type_internal_serdes) {
5108 /* keep the laser running in D3 */
5109 ctrl_ext = er32(CTRL_EXT);
5110 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5111 ew32(CTRL_EXT, ctrl_ext);
5112 }
5113
5114 ew32(WUC, E1000_WUC_PME_EN);
5115 ew32(WUFC, wufc);
5116 } else {
5117 ew32(WUC, 0);
5118 ew32(WUFC, 0);
5119 }
5120
5121 e1000_release_manageability(adapter);
5122
5123 *enable_wake = !!wufc;
5124
5125 /* make sure adapter isn't asleep if manageability is enabled */
5126 if (adapter->en_mng_pt)
5127 *enable_wake = true;
5128
5129 if (netif_running(netdev))
5130 e1000_free_irq(adapter);
5131
5132 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5133 pci_disable_device(pdev);
5134
5135 return 0;
5136}
5137
5138static int __maybe_unused e1000_suspend(struct device *dev)
5139{
5140 int retval;
5141 struct pci_dev *pdev = to_pci_dev(dev);
5142 bool wake;
5143
5144 retval = __e1000_shutdown(pdev, &wake);
5145 device_set_wakeup_enable(dev, wake);
5146
5147 return retval;
5148}
5149
5150static int __maybe_unused e1000_resume(struct device *dev)
5151{
5152 struct pci_dev *pdev = to_pci_dev(dev);
5153 struct net_device *netdev = pci_get_drvdata(pdev);
5154 struct e1000_adapter *adapter = netdev_priv(netdev);
5155 struct e1000_hw *hw = &adapter->hw;
5156 u32 err;
5157
5158 if (adapter->need_ioport)
5159 err = pci_enable_device(pdev);
5160 else
5161 err = pci_enable_device_mem(pdev);
5162 if (err) {
5163 pr_err("Cannot enable PCI device from suspend\n");
5164 return err;
5165 }
5166
5167 /* flush memory to make sure state is correct */
5168 smp_mb__before_atomic();
5169 clear_bit(__E1000_DISABLED, &adapter->flags);
5170 pci_set_master(pdev);
5171
5172 pci_enable_wake(pdev, PCI_D3hot, 0);
5173 pci_enable_wake(pdev, PCI_D3cold, 0);
5174
5175 if (netif_running(netdev)) {
5176 err = e1000_request_irq(adapter);
5177 if (err)
5178 return err;
5179 }
5180
5181 e1000_power_up_phy(adapter);
5182 e1000_reset(adapter);
5183 ew32(WUS, ~0);
5184
5185 e1000_init_manageability(adapter);
5186
5187 if (netif_running(netdev))
5188 e1000_up(adapter);
5189
5190 netif_device_attach(netdev);
5191
5192 return 0;
5193}
5194
5195static void e1000_shutdown(struct pci_dev *pdev)
5196{
5197 bool wake;
5198
5199 __e1000_shutdown(pdev, &wake);
5200
5201 if (system_state == SYSTEM_POWER_OFF) {
5202 pci_wake_from_d3(pdev, wake);
5203 pci_set_power_state(pdev, PCI_D3hot);
5204 }
5205}
5206
5207#ifdef CONFIG_NET_POLL_CONTROLLER
5208/* Polling 'interrupt' - used by things like netconsole to send skbs
5209 * without having to re-enable interrupts. It's not called while
5210 * the interrupt routine is executing.
5211 */
5212static void e1000_netpoll(struct net_device *netdev)
5213{
5214 struct e1000_adapter *adapter = netdev_priv(netdev);
5215
5216 if (disable_hardirq(adapter->pdev->irq))
5217 e1000_intr(adapter->pdev->irq, netdev);
5218 enable_irq(adapter->pdev->irq);
5219}
5220#endif
5221
5222/**
5223 * e1000_io_error_detected - called when PCI error is detected
5224 * @pdev: Pointer to PCI device
5225 * @state: The current pci connection state
5226 *
5227 * This function is called after a PCI bus error affecting
5228 * this device has been detected.
5229 */
5230static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5231 pci_channel_state_t state)
5232{
5233 struct net_device *netdev = pci_get_drvdata(pdev);
5234 struct e1000_adapter *adapter = netdev_priv(netdev);
5235
5236 netif_device_detach(netdev);
5237
5238 if (state == pci_channel_io_perm_failure)
5239 return PCI_ERS_RESULT_DISCONNECT;
5240
5241 if (netif_running(netdev))
5242 e1000_down(adapter);
5243
5244 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5245 pci_disable_device(pdev);
5246
5247 /* Request a slot reset. */
5248 return PCI_ERS_RESULT_NEED_RESET;
5249}
5250
5251/**
5252 * e1000_io_slot_reset - called after the pci bus has been reset.
5253 * @pdev: Pointer to PCI device
5254 *
5255 * Restart the card from scratch, as if from a cold-boot. Implementation
5256 * resembles the first-half of the e1000_resume routine.
5257 */
5258static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5259{
5260 struct net_device *netdev = pci_get_drvdata(pdev);
5261 struct e1000_adapter *adapter = netdev_priv(netdev);
5262 struct e1000_hw *hw = &adapter->hw;
5263 int err;
5264
5265 if (adapter->need_ioport)
5266 err = pci_enable_device(pdev);
5267 else
5268 err = pci_enable_device_mem(pdev);
5269 if (err) {
5270 pr_err("Cannot re-enable PCI device after reset.\n");
5271 return PCI_ERS_RESULT_DISCONNECT;
5272 }
5273
5274 /* flush memory to make sure state is correct */
5275 smp_mb__before_atomic();
5276 clear_bit(__E1000_DISABLED, &adapter->flags);
5277 pci_set_master(pdev);
5278
5279 pci_enable_wake(pdev, PCI_D3hot, 0);
5280 pci_enable_wake(pdev, PCI_D3cold, 0);
5281
5282 e1000_reset(adapter);
5283 ew32(WUS, ~0);
5284
5285 return PCI_ERS_RESULT_RECOVERED;
5286}
5287
5288/**
5289 * e1000_io_resume - called when traffic can start flowing again.
5290 * @pdev: Pointer to PCI device
5291 *
5292 * This callback is called when the error recovery driver tells us that
5293 * its OK to resume normal operation. Implementation resembles the
5294 * second-half of the e1000_resume routine.
5295 */
5296static void e1000_io_resume(struct pci_dev *pdev)
5297{
5298 struct net_device *netdev = pci_get_drvdata(pdev);
5299 struct e1000_adapter *adapter = netdev_priv(netdev);
5300
5301 e1000_init_manageability(adapter);
5302
5303 if (netif_running(netdev)) {
5304 if (e1000_up(adapter)) {
5305 pr_info("can't bring device back up after reset\n");
5306 return;
5307 }
5308 }
5309
5310 netif_device_attach(netdev);
5311}
5312
5313/* e1000_main.c */
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30#include <net/ip6_checksum.h>
31#include <linux/io.h>
32#include <linux/prefetch.h>
33#include <linux/bitops.h>
34#include <linux/if_vlan.h>
35
36char e1000_driver_name[] = "e1000";
37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38#define DRV_VERSION "7.3.21-k8-NAPI"
39const char e1000_driver_version[] = DRV_VERSION;
40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42/* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
49static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
88 {0,}
89};
90
91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93int e1000_up(struct e1000_adapter *adapter);
94void e1000_down(struct e1000_adapter *adapter);
95void e1000_reinit_locked(struct e1000_adapter *adapter);
96void e1000_reset(struct e1000_adapter *adapter);
97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *txdr);
103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rxdr);
105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 struct e1000_tx_ring *tx_ring);
107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 struct e1000_rx_ring *rx_ring);
109void e1000_update_stats(struct e1000_adapter *adapter);
110
111static int e1000_init_module(void);
112static void e1000_exit_module(void);
113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114static void e1000_remove(struct pci_dev *pdev);
115static int e1000_alloc_queues(struct e1000_adapter *adapter);
116static int e1000_sw_init(struct e1000_adapter *adapter);
117static int e1000_open(struct net_device *netdev);
118static int e1000_close(struct net_device *netdev);
119static void e1000_configure_tx(struct e1000_adapter *adapter);
120static void e1000_configure_rx(struct e1000_adapter *adapter);
121static void e1000_setup_rctl(struct e1000_adapter *adapter);
122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 struct e1000_tx_ring *tx_ring);
126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring);
128static void e1000_set_rx_mode(struct net_device *netdev);
129static void e1000_update_phy_info_task(struct work_struct *work);
130static void e1000_watchdog(struct work_struct *work);
131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
134static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136static int e1000_set_mac(struct net_device *netdev, void *p);
137static irqreturn_t e1000_intr(int irq, void *data);
138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140static int e1000_clean(struct napi_struct *napi, int budget);
141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count);
150static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151 struct e1000_rx_ring *rx_ring,
152 int cleaned_count);
153static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155 int cmd);
156static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158static void e1000_tx_timeout(struct net_device *dev);
159static void e1000_reset_task(struct work_struct *work);
160static void e1000_smartspeed(struct e1000_adapter *adapter);
161static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162 struct sk_buff *skb);
163
164static bool e1000_vlan_used(struct e1000_adapter *adapter);
165static void e1000_vlan_mode(struct net_device *netdev,
166 netdev_features_t features);
167static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168 bool filter_on);
169static int e1000_vlan_rx_add_vid(struct net_device *netdev,
170 __be16 proto, u16 vid);
171static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
172 __be16 proto, u16 vid);
173static void e1000_restore_vlan(struct e1000_adapter *adapter);
174
175#ifdef CONFIG_PM
176static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
177static int e1000_resume(struct pci_dev *pdev);
178#endif
179static void e1000_shutdown(struct pci_dev *pdev);
180
181#ifdef CONFIG_NET_POLL_CONTROLLER
182/* for netdump / net console */
183static void e1000_netpoll (struct net_device *netdev);
184#endif
185
186#define COPYBREAK_DEFAULT 256
187static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
188module_param(copybreak, uint, 0644);
189MODULE_PARM_DESC(copybreak,
190 "Maximum size of packet that is copied to a new buffer on receive");
191
192static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
193 pci_channel_state_t state);
194static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
195static void e1000_io_resume(struct pci_dev *pdev);
196
197static const struct pci_error_handlers e1000_err_handler = {
198 .error_detected = e1000_io_error_detected,
199 .slot_reset = e1000_io_slot_reset,
200 .resume = e1000_io_resume,
201};
202
203static struct pci_driver e1000_driver = {
204 .name = e1000_driver_name,
205 .id_table = e1000_pci_tbl,
206 .probe = e1000_probe,
207 .remove = e1000_remove,
208#ifdef CONFIG_PM
209 /* Power Management Hooks */
210 .suspend = e1000_suspend,
211 .resume = e1000_resume,
212#endif
213 .shutdown = e1000_shutdown,
214 .err_handler = &e1000_err_handler
215};
216
217MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
218MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
219MODULE_LICENSE("GPL");
220MODULE_VERSION(DRV_VERSION);
221
222#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
223static int debug = -1;
224module_param(debug, int, 0);
225MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
226
227/**
228 * e1000_get_hw_dev - return device
229 * used by hardware layer to print debugging information
230 *
231 **/
232struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
233{
234 struct e1000_adapter *adapter = hw->back;
235 return adapter->netdev;
236}
237
238/**
239 * e1000_init_module - Driver Registration Routine
240 *
241 * e1000_init_module is the first routine called when the driver is
242 * loaded. All it does is register with the PCI subsystem.
243 **/
244static int __init e1000_init_module(void)
245{
246 int ret;
247 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
248
249 pr_info("%s\n", e1000_copyright);
250
251 ret = pci_register_driver(&e1000_driver);
252 if (copybreak != COPYBREAK_DEFAULT) {
253 if (copybreak == 0)
254 pr_info("copybreak disabled\n");
255 else
256 pr_info("copybreak enabled for "
257 "packets <= %u bytes\n", copybreak);
258 }
259 return ret;
260}
261
262module_init(e1000_init_module);
263
264/**
265 * e1000_exit_module - Driver Exit Cleanup Routine
266 *
267 * e1000_exit_module is called just before the driver is removed
268 * from memory.
269 **/
270static void __exit e1000_exit_module(void)
271{
272 pci_unregister_driver(&e1000_driver);
273}
274
275module_exit(e1000_exit_module);
276
277static int e1000_request_irq(struct e1000_adapter *adapter)
278{
279 struct net_device *netdev = adapter->netdev;
280 irq_handler_t handler = e1000_intr;
281 int irq_flags = IRQF_SHARED;
282 int err;
283
284 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
285 netdev);
286 if (err) {
287 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
288 }
289
290 return err;
291}
292
293static void e1000_free_irq(struct e1000_adapter *adapter)
294{
295 struct net_device *netdev = adapter->netdev;
296
297 free_irq(adapter->pdev->irq, netdev);
298}
299
300/**
301 * e1000_irq_disable - Mask off interrupt generation on the NIC
302 * @adapter: board private structure
303 **/
304static void e1000_irq_disable(struct e1000_adapter *adapter)
305{
306 struct e1000_hw *hw = &adapter->hw;
307
308 ew32(IMC, ~0);
309 E1000_WRITE_FLUSH();
310 synchronize_irq(adapter->pdev->irq);
311}
312
313/**
314 * e1000_irq_enable - Enable default interrupt generation settings
315 * @adapter: board private structure
316 **/
317static void e1000_irq_enable(struct e1000_adapter *adapter)
318{
319 struct e1000_hw *hw = &adapter->hw;
320
321 ew32(IMS, IMS_ENABLE_MASK);
322 E1000_WRITE_FLUSH();
323}
324
325static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
326{
327 struct e1000_hw *hw = &adapter->hw;
328 struct net_device *netdev = adapter->netdev;
329 u16 vid = hw->mng_cookie.vlan_id;
330 u16 old_vid = adapter->mng_vlan_id;
331
332 if (!e1000_vlan_used(adapter))
333 return;
334
335 if (!test_bit(vid, adapter->active_vlans)) {
336 if (hw->mng_cookie.status &
337 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
338 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
339 adapter->mng_vlan_id = vid;
340 } else {
341 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
342 }
343 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
344 (vid != old_vid) &&
345 !test_bit(old_vid, adapter->active_vlans))
346 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
347 old_vid);
348 } else {
349 adapter->mng_vlan_id = vid;
350 }
351}
352
353static void e1000_init_manageability(struct e1000_adapter *adapter)
354{
355 struct e1000_hw *hw = &adapter->hw;
356
357 if (adapter->en_mng_pt) {
358 u32 manc = er32(MANC);
359
360 /* disable hardware interception of ARP */
361 manc &= ~(E1000_MANC_ARP_EN);
362
363 ew32(MANC, manc);
364 }
365}
366
367static void e1000_release_manageability(struct e1000_adapter *adapter)
368{
369 struct e1000_hw *hw = &adapter->hw;
370
371 if (adapter->en_mng_pt) {
372 u32 manc = er32(MANC);
373
374 /* re-enable hardware interception of ARP */
375 manc |= E1000_MANC_ARP_EN;
376
377 ew32(MANC, manc);
378 }
379}
380
381/**
382 * e1000_configure - configure the hardware for RX and TX
383 * @adapter = private board structure
384 **/
385static void e1000_configure(struct e1000_adapter *adapter)
386{
387 struct net_device *netdev = adapter->netdev;
388 int i;
389
390 e1000_set_rx_mode(netdev);
391
392 e1000_restore_vlan(adapter);
393 e1000_init_manageability(adapter);
394
395 e1000_configure_tx(adapter);
396 e1000_setup_rctl(adapter);
397 e1000_configure_rx(adapter);
398 /* call E1000_DESC_UNUSED which always leaves
399 * at least 1 descriptor unused to make sure
400 * next_to_use != next_to_clean
401 */
402 for (i = 0; i < adapter->num_rx_queues; i++) {
403 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
404 adapter->alloc_rx_buf(adapter, ring,
405 E1000_DESC_UNUSED(ring));
406 }
407}
408
409int e1000_up(struct e1000_adapter *adapter)
410{
411 struct e1000_hw *hw = &adapter->hw;
412
413 /* hardware has been reset, we need to reload some things */
414 e1000_configure(adapter);
415
416 clear_bit(__E1000_DOWN, &adapter->flags);
417
418 napi_enable(&adapter->napi);
419
420 e1000_irq_enable(adapter);
421
422 netif_wake_queue(adapter->netdev);
423
424 /* fire a link change interrupt to start the watchdog */
425 ew32(ICS, E1000_ICS_LSC);
426 return 0;
427}
428
429/**
430 * e1000_power_up_phy - restore link in case the phy was powered down
431 * @adapter: address of board private structure
432 *
433 * The phy may be powered down to save power and turn off link when the
434 * driver is unloaded and wake on lan is not enabled (among others)
435 * *** this routine MUST be followed by a call to e1000_reset ***
436 **/
437void e1000_power_up_phy(struct e1000_adapter *adapter)
438{
439 struct e1000_hw *hw = &adapter->hw;
440 u16 mii_reg = 0;
441
442 /* Just clear the power down bit to wake the phy back up */
443 if (hw->media_type == e1000_media_type_copper) {
444 /* according to the manual, the phy will retain its
445 * settings across a power-down/up cycle
446 */
447 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
448 mii_reg &= ~MII_CR_POWER_DOWN;
449 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
450 }
451}
452
453static void e1000_power_down_phy(struct e1000_adapter *adapter)
454{
455 struct e1000_hw *hw = &adapter->hw;
456
457 /* Power down the PHY so no link is implied when interface is down *
458 * The PHY cannot be powered down if any of the following is true *
459 * (a) WoL is enabled
460 * (b) AMT is active
461 * (c) SoL/IDER session is active
462 */
463 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
464 hw->media_type == e1000_media_type_copper) {
465 u16 mii_reg = 0;
466
467 switch (hw->mac_type) {
468 case e1000_82540:
469 case e1000_82545:
470 case e1000_82545_rev_3:
471 case e1000_82546:
472 case e1000_ce4100:
473 case e1000_82546_rev_3:
474 case e1000_82541:
475 case e1000_82541_rev_2:
476 case e1000_82547:
477 case e1000_82547_rev_2:
478 if (er32(MANC) & E1000_MANC_SMBUS_EN)
479 goto out;
480 break;
481 default:
482 goto out;
483 }
484 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
485 mii_reg |= MII_CR_POWER_DOWN;
486 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
487 msleep(1);
488 }
489out:
490 return;
491}
492
493static void e1000_down_and_stop(struct e1000_adapter *adapter)
494{
495 set_bit(__E1000_DOWN, &adapter->flags);
496
497 cancel_delayed_work_sync(&adapter->watchdog_task);
498
499 /*
500 * Since the watchdog task can reschedule other tasks, we should cancel
501 * it first, otherwise we can run into the situation when a work is
502 * still running after the adapter has been turned down.
503 */
504
505 cancel_delayed_work_sync(&adapter->phy_info_task);
506 cancel_delayed_work_sync(&adapter->fifo_stall_task);
507
508 /* Only kill reset task if adapter is not resetting */
509 if (!test_bit(__E1000_RESETTING, &adapter->flags))
510 cancel_work_sync(&adapter->reset_task);
511}
512
513void e1000_down(struct e1000_adapter *adapter)
514{
515 struct e1000_hw *hw = &adapter->hw;
516 struct net_device *netdev = adapter->netdev;
517 u32 rctl, tctl;
518
519
520 /* disable receives in the hardware */
521 rctl = er32(RCTL);
522 ew32(RCTL, rctl & ~E1000_RCTL_EN);
523 /* flush and sleep below */
524
525 netif_tx_disable(netdev);
526
527 /* disable transmits in the hardware */
528 tctl = er32(TCTL);
529 tctl &= ~E1000_TCTL_EN;
530 ew32(TCTL, tctl);
531 /* flush both disables and wait for them to finish */
532 E1000_WRITE_FLUSH();
533 msleep(10);
534
535 napi_disable(&adapter->napi);
536
537 e1000_irq_disable(adapter);
538
539 /* Setting DOWN must be after irq_disable to prevent
540 * a screaming interrupt. Setting DOWN also prevents
541 * tasks from rescheduling.
542 */
543 e1000_down_and_stop(adapter);
544
545 adapter->link_speed = 0;
546 adapter->link_duplex = 0;
547 netif_carrier_off(netdev);
548
549 e1000_reset(adapter);
550 e1000_clean_all_tx_rings(adapter);
551 e1000_clean_all_rx_rings(adapter);
552}
553
554void e1000_reinit_locked(struct e1000_adapter *adapter)
555{
556 WARN_ON(in_interrupt());
557 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
558 msleep(1);
559 e1000_down(adapter);
560 e1000_up(adapter);
561 clear_bit(__E1000_RESETTING, &adapter->flags);
562}
563
564void e1000_reset(struct e1000_adapter *adapter)
565{
566 struct e1000_hw *hw = &adapter->hw;
567 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
568 bool legacy_pba_adjust = false;
569 u16 hwm;
570
571 /* Repartition Pba for greater than 9k mtu
572 * To take effect CTRL.RST is required.
573 */
574
575 switch (hw->mac_type) {
576 case e1000_82542_rev2_0:
577 case e1000_82542_rev2_1:
578 case e1000_82543:
579 case e1000_82544:
580 case e1000_82540:
581 case e1000_82541:
582 case e1000_82541_rev_2:
583 legacy_pba_adjust = true;
584 pba = E1000_PBA_48K;
585 break;
586 case e1000_82545:
587 case e1000_82545_rev_3:
588 case e1000_82546:
589 case e1000_ce4100:
590 case e1000_82546_rev_3:
591 pba = E1000_PBA_48K;
592 break;
593 case e1000_82547:
594 case e1000_82547_rev_2:
595 legacy_pba_adjust = true;
596 pba = E1000_PBA_30K;
597 break;
598 case e1000_undefined:
599 case e1000_num_macs:
600 break;
601 }
602
603 if (legacy_pba_adjust) {
604 if (hw->max_frame_size > E1000_RXBUFFER_8192)
605 pba -= 8; /* allocate more FIFO for Tx */
606
607 if (hw->mac_type == e1000_82547) {
608 adapter->tx_fifo_head = 0;
609 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
610 adapter->tx_fifo_size =
611 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
612 atomic_set(&adapter->tx_fifo_stall, 0);
613 }
614 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
615 /* adjust PBA for jumbo frames */
616 ew32(PBA, pba);
617
618 /* To maintain wire speed transmits, the Tx FIFO should be
619 * large enough to accommodate two full transmit packets,
620 * rounded up to the next 1KB and expressed in KB. Likewise,
621 * the Rx FIFO should be large enough to accommodate at least
622 * one full receive packet and is similarly rounded up and
623 * expressed in KB.
624 */
625 pba = er32(PBA);
626 /* upper 16 bits has Tx packet buffer allocation size in KB */
627 tx_space = pba >> 16;
628 /* lower 16 bits has Rx packet buffer allocation size in KB */
629 pba &= 0xffff;
630 /* the Tx fifo also stores 16 bytes of information about the Tx
631 * but don't include ethernet FCS because hardware appends it
632 */
633 min_tx_space = (hw->max_frame_size +
634 sizeof(struct e1000_tx_desc) -
635 ETH_FCS_LEN) * 2;
636 min_tx_space = ALIGN(min_tx_space, 1024);
637 min_tx_space >>= 10;
638 /* software strips receive CRC, so leave room for it */
639 min_rx_space = hw->max_frame_size;
640 min_rx_space = ALIGN(min_rx_space, 1024);
641 min_rx_space >>= 10;
642
643 /* If current Tx allocation is less than the min Tx FIFO size,
644 * and the min Tx FIFO size is less than the current Rx FIFO
645 * allocation, take space away from current Rx allocation
646 */
647 if (tx_space < min_tx_space &&
648 ((min_tx_space - tx_space) < pba)) {
649 pba = pba - (min_tx_space - tx_space);
650
651 /* PCI/PCIx hardware has PBA alignment constraints */
652 switch (hw->mac_type) {
653 case e1000_82545 ... e1000_82546_rev_3:
654 pba &= ~(E1000_PBA_8K - 1);
655 break;
656 default:
657 break;
658 }
659
660 /* if short on Rx space, Rx wins and must trump Tx
661 * adjustment or use Early Receive if available
662 */
663 if (pba < min_rx_space)
664 pba = min_rx_space;
665 }
666 }
667
668 ew32(PBA, pba);
669
670 /* flow control settings:
671 * The high water mark must be low enough to fit one full frame
672 * (or the size used for early receive) above it in the Rx FIFO.
673 * Set it to the lower of:
674 * - 90% of the Rx FIFO size, and
675 * - the full Rx FIFO size minus the early receive size (for parts
676 * with ERT support assuming ERT set to E1000_ERT_2048), or
677 * - the full Rx FIFO size minus one full frame
678 */
679 hwm = min(((pba << 10) * 9 / 10),
680 ((pba << 10) - hw->max_frame_size));
681
682 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
683 hw->fc_low_water = hw->fc_high_water - 8;
684 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
685 hw->fc_send_xon = 1;
686 hw->fc = hw->original_fc;
687
688 /* Allow time for pending master requests to run */
689 e1000_reset_hw(hw);
690 if (hw->mac_type >= e1000_82544)
691 ew32(WUC, 0);
692
693 if (e1000_init_hw(hw))
694 e_dev_err("Hardware Error\n");
695 e1000_update_mng_vlan(adapter);
696
697 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
698 if (hw->mac_type >= e1000_82544 &&
699 hw->autoneg == 1 &&
700 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
701 u32 ctrl = er32(CTRL);
702 /* clear phy power management bit if we are in gig only mode,
703 * which if enabled will attempt negotiation to 100Mb, which
704 * can cause a loss of link at power off or driver unload
705 */
706 ctrl &= ~E1000_CTRL_SWDPIN3;
707 ew32(CTRL, ctrl);
708 }
709
710 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
711 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
712
713 e1000_reset_adaptive(hw);
714 e1000_phy_get_info(hw, &adapter->phy_info);
715
716 e1000_release_manageability(adapter);
717}
718
719/* Dump the eeprom for users having checksum issues */
720static void e1000_dump_eeprom(struct e1000_adapter *adapter)
721{
722 struct net_device *netdev = adapter->netdev;
723 struct ethtool_eeprom eeprom;
724 const struct ethtool_ops *ops = netdev->ethtool_ops;
725 u8 *data;
726 int i;
727 u16 csum_old, csum_new = 0;
728
729 eeprom.len = ops->get_eeprom_len(netdev);
730 eeprom.offset = 0;
731
732 data = kmalloc(eeprom.len, GFP_KERNEL);
733 if (!data)
734 return;
735
736 ops->get_eeprom(netdev, &eeprom, data);
737
738 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
739 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
740 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
741 csum_new += data[i] + (data[i + 1] << 8);
742 csum_new = EEPROM_SUM - csum_new;
743
744 pr_err("/*********************/\n");
745 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
746 pr_err("Calculated : 0x%04x\n", csum_new);
747
748 pr_err("Offset Values\n");
749 pr_err("======== ======\n");
750 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
751
752 pr_err("Include this output when contacting your support provider.\n");
753 pr_err("This is not a software error! Something bad happened to\n");
754 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
755 pr_err("result in further problems, possibly loss of data,\n");
756 pr_err("corruption or system hangs!\n");
757 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
758 pr_err("which is invalid and requires you to set the proper MAC\n");
759 pr_err("address manually before continuing to enable this network\n");
760 pr_err("device. Please inspect the EEPROM dump and report the\n");
761 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
762 pr_err("/*********************/\n");
763
764 kfree(data);
765}
766
767/**
768 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
769 * @pdev: PCI device information struct
770 *
771 * Return true if an adapter needs ioport resources
772 **/
773static int e1000_is_need_ioport(struct pci_dev *pdev)
774{
775 switch (pdev->device) {
776 case E1000_DEV_ID_82540EM:
777 case E1000_DEV_ID_82540EM_LOM:
778 case E1000_DEV_ID_82540EP:
779 case E1000_DEV_ID_82540EP_LOM:
780 case E1000_DEV_ID_82540EP_LP:
781 case E1000_DEV_ID_82541EI:
782 case E1000_DEV_ID_82541EI_MOBILE:
783 case E1000_DEV_ID_82541ER:
784 case E1000_DEV_ID_82541ER_LOM:
785 case E1000_DEV_ID_82541GI:
786 case E1000_DEV_ID_82541GI_LF:
787 case E1000_DEV_ID_82541GI_MOBILE:
788 case E1000_DEV_ID_82544EI_COPPER:
789 case E1000_DEV_ID_82544EI_FIBER:
790 case E1000_DEV_ID_82544GC_COPPER:
791 case E1000_DEV_ID_82544GC_LOM:
792 case E1000_DEV_ID_82545EM_COPPER:
793 case E1000_DEV_ID_82545EM_FIBER:
794 case E1000_DEV_ID_82546EB_COPPER:
795 case E1000_DEV_ID_82546EB_FIBER:
796 case E1000_DEV_ID_82546EB_QUAD_COPPER:
797 return true;
798 default:
799 return false;
800 }
801}
802
803static netdev_features_t e1000_fix_features(struct net_device *netdev,
804 netdev_features_t features)
805{
806 /* Since there is no support for separate Rx/Tx vlan accel
807 * enable/disable make sure Tx flag is always in same state as Rx.
808 */
809 if (features & NETIF_F_HW_VLAN_CTAG_RX)
810 features |= NETIF_F_HW_VLAN_CTAG_TX;
811 else
812 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
813
814 return features;
815}
816
817static int e1000_set_features(struct net_device *netdev,
818 netdev_features_t features)
819{
820 struct e1000_adapter *adapter = netdev_priv(netdev);
821 netdev_features_t changed = features ^ netdev->features;
822
823 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
824 e1000_vlan_mode(netdev, features);
825
826 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
827 return 0;
828
829 netdev->features = features;
830 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
831
832 if (netif_running(netdev))
833 e1000_reinit_locked(adapter);
834 else
835 e1000_reset(adapter);
836
837 return 0;
838}
839
840static const struct net_device_ops e1000_netdev_ops = {
841 .ndo_open = e1000_open,
842 .ndo_stop = e1000_close,
843 .ndo_start_xmit = e1000_xmit_frame,
844 .ndo_get_stats = e1000_get_stats,
845 .ndo_set_rx_mode = e1000_set_rx_mode,
846 .ndo_set_mac_address = e1000_set_mac,
847 .ndo_tx_timeout = e1000_tx_timeout,
848 .ndo_change_mtu = e1000_change_mtu,
849 .ndo_do_ioctl = e1000_ioctl,
850 .ndo_validate_addr = eth_validate_addr,
851 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
852 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
853#ifdef CONFIG_NET_POLL_CONTROLLER
854 .ndo_poll_controller = e1000_netpoll,
855#endif
856 .ndo_fix_features = e1000_fix_features,
857 .ndo_set_features = e1000_set_features,
858};
859
860/**
861 * e1000_init_hw_struct - initialize members of hw struct
862 * @adapter: board private struct
863 * @hw: structure used by e1000_hw.c
864 *
865 * Factors out initialization of the e1000_hw struct to its own function
866 * that can be called very early at init (just after struct allocation).
867 * Fields are initialized based on PCI device information and
868 * OS network device settings (MTU size).
869 * Returns negative error codes if MAC type setup fails.
870 */
871static int e1000_init_hw_struct(struct e1000_adapter *adapter,
872 struct e1000_hw *hw)
873{
874 struct pci_dev *pdev = adapter->pdev;
875
876 /* PCI config space info */
877 hw->vendor_id = pdev->vendor;
878 hw->device_id = pdev->device;
879 hw->subsystem_vendor_id = pdev->subsystem_vendor;
880 hw->subsystem_id = pdev->subsystem_device;
881 hw->revision_id = pdev->revision;
882
883 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
884
885 hw->max_frame_size = adapter->netdev->mtu +
886 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
887 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
888
889 /* identify the MAC */
890 if (e1000_set_mac_type(hw)) {
891 e_err(probe, "Unknown MAC Type\n");
892 return -EIO;
893 }
894
895 switch (hw->mac_type) {
896 default:
897 break;
898 case e1000_82541:
899 case e1000_82547:
900 case e1000_82541_rev_2:
901 case e1000_82547_rev_2:
902 hw->phy_init_script = 1;
903 break;
904 }
905
906 e1000_set_media_type(hw);
907 e1000_get_bus_info(hw);
908
909 hw->wait_autoneg_complete = false;
910 hw->tbi_compatibility_en = true;
911 hw->adaptive_ifs = true;
912
913 /* Copper options */
914
915 if (hw->media_type == e1000_media_type_copper) {
916 hw->mdix = AUTO_ALL_MODES;
917 hw->disable_polarity_correction = false;
918 hw->master_slave = E1000_MASTER_SLAVE;
919 }
920
921 return 0;
922}
923
924/**
925 * e1000_probe - Device Initialization Routine
926 * @pdev: PCI device information struct
927 * @ent: entry in e1000_pci_tbl
928 *
929 * Returns 0 on success, negative on failure
930 *
931 * e1000_probe initializes an adapter identified by a pci_dev structure.
932 * The OS initialization, configuring of the adapter private structure,
933 * and a hardware reset occur.
934 **/
935static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
936{
937 struct net_device *netdev;
938 struct e1000_adapter *adapter;
939 struct e1000_hw *hw;
940
941 static int cards_found = 0;
942 static int global_quad_port_a = 0; /* global ksp3 port a indication */
943 int i, err, pci_using_dac;
944 u16 eeprom_data = 0;
945 u16 tmp = 0;
946 u16 eeprom_apme_mask = E1000_EEPROM_APME;
947 int bars, need_ioport;
948
949 /* do not allocate ioport bars when not needed */
950 need_ioport = e1000_is_need_ioport(pdev);
951 if (need_ioport) {
952 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
953 err = pci_enable_device(pdev);
954 } else {
955 bars = pci_select_bars(pdev, IORESOURCE_MEM);
956 err = pci_enable_device_mem(pdev);
957 }
958 if (err)
959 return err;
960
961 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
962 if (err)
963 goto err_pci_reg;
964
965 pci_set_master(pdev);
966 err = pci_save_state(pdev);
967 if (err)
968 goto err_alloc_etherdev;
969
970 err = -ENOMEM;
971 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
972 if (!netdev)
973 goto err_alloc_etherdev;
974
975 SET_NETDEV_DEV(netdev, &pdev->dev);
976
977 pci_set_drvdata(pdev, netdev);
978 adapter = netdev_priv(netdev);
979 adapter->netdev = netdev;
980 adapter->pdev = pdev;
981 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
982 adapter->bars = bars;
983 adapter->need_ioport = need_ioport;
984
985 hw = &adapter->hw;
986 hw->back = adapter;
987
988 err = -EIO;
989 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
990 if (!hw->hw_addr)
991 goto err_ioremap;
992
993 if (adapter->need_ioport) {
994 for (i = BAR_1; i <= BAR_5; i++) {
995 if (pci_resource_len(pdev, i) == 0)
996 continue;
997 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
998 hw->io_base = pci_resource_start(pdev, i);
999 break;
1000 }
1001 }
1002 }
1003
1004 /* make ready for any if (hw->...) below */
1005 err = e1000_init_hw_struct(adapter, hw);
1006 if (err)
1007 goto err_sw_init;
1008
1009 /* there is a workaround being applied below that limits
1010 * 64-bit DMA addresses to 64-bit hardware. There are some
1011 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1012 */
1013 pci_using_dac = 0;
1014 if ((hw->bus_type == e1000_bus_type_pcix) &&
1015 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1016 pci_using_dac = 1;
1017 } else {
1018 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1019 if (err) {
1020 pr_err("No usable DMA config, aborting\n");
1021 goto err_dma;
1022 }
1023 }
1024
1025 netdev->netdev_ops = &e1000_netdev_ops;
1026 e1000_set_ethtool_ops(netdev);
1027 netdev->watchdog_timeo = 5 * HZ;
1028 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1029
1030 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1031
1032 adapter->bd_number = cards_found;
1033
1034 /* setup the private structure */
1035
1036 err = e1000_sw_init(adapter);
1037 if (err)
1038 goto err_sw_init;
1039
1040 err = -EIO;
1041 if (hw->mac_type == e1000_ce4100) {
1042 hw->ce4100_gbe_mdio_base_virt =
1043 ioremap(pci_resource_start(pdev, BAR_1),
1044 pci_resource_len(pdev, BAR_1));
1045
1046 if (!hw->ce4100_gbe_mdio_base_virt)
1047 goto err_mdio_ioremap;
1048 }
1049
1050 if (hw->mac_type >= e1000_82543) {
1051 netdev->hw_features = NETIF_F_SG |
1052 NETIF_F_HW_CSUM |
1053 NETIF_F_HW_VLAN_CTAG_RX;
1054 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1055 NETIF_F_HW_VLAN_CTAG_FILTER;
1056 }
1057
1058 if ((hw->mac_type >= e1000_82544) &&
1059 (hw->mac_type != e1000_82547))
1060 netdev->hw_features |= NETIF_F_TSO;
1061
1062 netdev->priv_flags |= IFF_SUPP_NOFCS;
1063
1064 netdev->features |= netdev->hw_features;
1065 netdev->hw_features |= (NETIF_F_RXCSUM |
1066 NETIF_F_RXALL |
1067 NETIF_F_RXFCS);
1068
1069 if (pci_using_dac) {
1070 netdev->features |= NETIF_F_HIGHDMA;
1071 netdev->vlan_features |= NETIF_F_HIGHDMA;
1072 }
1073
1074 netdev->vlan_features |= (NETIF_F_TSO |
1075 NETIF_F_HW_CSUM |
1076 NETIF_F_SG);
1077
1078 netdev->priv_flags |= IFF_UNICAST_FLT;
1079
1080 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1081
1082 /* initialize eeprom parameters */
1083 if (e1000_init_eeprom_params(hw)) {
1084 e_err(probe, "EEPROM initialization failed\n");
1085 goto err_eeprom;
1086 }
1087
1088 /* before reading the EEPROM, reset the controller to
1089 * put the device in a known good starting state
1090 */
1091
1092 e1000_reset_hw(hw);
1093
1094 /* make sure the EEPROM is good */
1095 if (e1000_validate_eeprom_checksum(hw) < 0) {
1096 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1097 e1000_dump_eeprom(adapter);
1098 /* set MAC address to all zeroes to invalidate and temporary
1099 * disable this device for the user. This blocks regular
1100 * traffic while still permitting ethtool ioctls from reaching
1101 * the hardware as well as allowing the user to run the
1102 * interface after manually setting a hw addr using
1103 * `ip set address`
1104 */
1105 memset(hw->mac_addr, 0, netdev->addr_len);
1106 } else {
1107 /* copy the MAC address out of the EEPROM */
1108 if (e1000_read_mac_addr(hw))
1109 e_err(probe, "EEPROM Read Error\n");
1110 }
1111 /* don't block initalization here due to bad MAC address */
1112 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1113
1114 if (!is_valid_ether_addr(netdev->dev_addr))
1115 e_err(probe, "Invalid MAC Address\n");
1116
1117
1118 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1119 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1120 e1000_82547_tx_fifo_stall_task);
1121 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1122 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1123
1124 e1000_check_options(adapter);
1125
1126 /* Initial Wake on LAN setting
1127 * If APM wake is enabled in the EEPROM,
1128 * enable the ACPI Magic Packet filter
1129 */
1130
1131 switch (hw->mac_type) {
1132 case e1000_82542_rev2_0:
1133 case e1000_82542_rev2_1:
1134 case e1000_82543:
1135 break;
1136 case e1000_82544:
1137 e1000_read_eeprom(hw,
1138 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1139 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1140 break;
1141 case e1000_82546:
1142 case e1000_82546_rev_3:
1143 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1144 e1000_read_eeprom(hw,
1145 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1146 break;
1147 }
1148 /* Fall Through */
1149 default:
1150 e1000_read_eeprom(hw,
1151 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1152 break;
1153 }
1154 if (eeprom_data & eeprom_apme_mask)
1155 adapter->eeprom_wol |= E1000_WUFC_MAG;
1156
1157 /* now that we have the eeprom settings, apply the special cases
1158 * where the eeprom may be wrong or the board simply won't support
1159 * wake on lan on a particular port
1160 */
1161 switch (pdev->device) {
1162 case E1000_DEV_ID_82546GB_PCIE:
1163 adapter->eeprom_wol = 0;
1164 break;
1165 case E1000_DEV_ID_82546EB_FIBER:
1166 case E1000_DEV_ID_82546GB_FIBER:
1167 /* Wake events only supported on port A for dual fiber
1168 * regardless of eeprom setting
1169 */
1170 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1171 adapter->eeprom_wol = 0;
1172 break;
1173 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1174 /* if quad port adapter, disable WoL on all but port A */
1175 if (global_quad_port_a != 0)
1176 adapter->eeprom_wol = 0;
1177 else
1178 adapter->quad_port_a = true;
1179 /* Reset for multiple quad port adapters */
1180 if (++global_quad_port_a == 4)
1181 global_quad_port_a = 0;
1182 break;
1183 }
1184
1185 /* initialize the wol settings based on the eeprom settings */
1186 adapter->wol = adapter->eeprom_wol;
1187 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1188
1189 /* Auto detect PHY address */
1190 if (hw->mac_type == e1000_ce4100) {
1191 for (i = 0; i < 32; i++) {
1192 hw->phy_addr = i;
1193 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1194 if (tmp == 0 || tmp == 0xFF) {
1195 if (i == 31)
1196 goto err_eeprom;
1197 continue;
1198 } else
1199 break;
1200 }
1201 }
1202
1203 /* reset the hardware with the new settings */
1204 e1000_reset(adapter);
1205
1206 strcpy(netdev->name, "eth%d");
1207 err = register_netdev(netdev);
1208 if (err)
1209 goto err_register;
1210
1211 e1000_vlan_filter_on_off(adapter, false);
1212
1213 /* print bus type/speed/width info */
1214 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1215 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1216 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1217 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1218 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1219 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1220 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1221 netdev->dev_addr);
1222
1223 /* carrier off reporting is important to ethtool even BEFORE open */
1224 netif_carrier_off(netdev);
1225
1226 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1227
1228 cards_found++;
1229 return 0;
1230
1231err_register:
1232err_eeprom:
1233 e1000_phy_hw_reset(hw);
1234
1235 if (hw->flash_address)
1236 iounmap(hw->flash_address);
1237 kfree(adapter->tx_ring);
1238 kfree(adapter->rx_ring);
1239err_dma:
1240err_sw_init:
1241err_mdio_ioremap:
1242 iounmap(hw->ce4100_gbe_mdio_base_virt);
1243 iounmap(hw->hw_addr);
1244err_ioremap:
1245 free_netdev(netdev);
1246err_alloc_etherdev:
1247 pci_release_selected_regions(pdev, bars);
1248err_pci_reg:
1249 pci_disable_device(pdev);
1250 return err;
1251}
1252
1253/**
1254 * e1000_remove - Device Removal Routine
1255 * @pdev: PCI device information struct
1256 *
1257 * e1000_remove is called by the PCI subsystem to alert the driver
1258 * that it should release a PCI device. The could be caused by a
1259 * Hot-Plug event, or because the driver is going to be removed from
1260 * memory.
1261 **/
1262static void e1000_remove(struct pci_dev *pdev)
1263{
1264 struct net_device *netdev = pci_get_drvdata(pdev);
1265 struct e1000_adapter *adapter = netdev_priv(netdev);
1266 struct e1000_hw *hw = &adapter->hw;
1267
1268 e1000_down_and_stop(adapter);
1269 e1000_release_manageability(adapter);
1270
1271 unregister_netdev(netdev);
1272
1273 e1000_phy_hw_reset(hw);
1274
1275 kfree(adapter->tx_ring);
1276 kfree(adapter->rx_ring);
1277
1278 if (hw->mac_type == e1000_ce4100)
1279 iounmap(hw->ce4100_gbe_mdio_base_virt);
1280 iounmap(hw->hw_addr);
1281 if (hw->flash_address)
1282 iounmap(hw->flash_address);
1283 pci_release_selected_regions(pdev, adapter->bars);
1284
1285 free_netdev(netdev);
1286
1287 pci_disable_device(pdev);
1288}
1289
1290/**
1291 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1292 * @adapter: board private structure to initialize
1293 *
1294 * e1000_sw_init initializes the Adapter private data structure.
1295 * e1000_init_hw_struct MUST be called before this function
1296 **/
1297static int e1000_sw_init(struct e1000_adapter *adapter)
1298{
1299 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1300
1301 adapter->num_tx_queues = 1;
1302 adapter->num_rx_queues = 1;
1303
1304 if (e1000_alloc_queues(adapter)) {
1305 e_err(probe, "Unable to allocate memory for queues\n");
1306 return -ENOMEM;
1307 }
1308
1309 /* Explicitly disable IRQ since the NIC can be in any state. */
1310 e1000_irq_disable(adapter);
1311
1312 spin_lock_init(&adapter->stats_lock);
1313
1314 set_bit(__E1000_DOWN, &adapter->flags);
1315
1316 return 0;
1317}
1318
1319/**
1320 * e1000_alloc_queues - Allocate memory for all rings
1321 * @adapter: board private structure to initialize
1322 *
1323 * We allocate one ring per queue at run-time since we don't know the
1324 * number of queues at compile-time.
1325 **/
1326static int e1000_alloc_queues(struct e1000_adapter *adapter)
1327{
1328 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1329 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1330 if (!adapter->tx_ring)
1331 return -ENOMEM;
1332
1333 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1334 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1335 if (!adapter->rx_ring) {
1336 kfree(adapter->tx_ring);
1337 return -ENOMEM;
1338 }
1339
1340 return E1000_SUCCESS;
1341}
1342
1343/**
1344 * e1000_open - Called when a network interface is made active
1345 * @netdev: network interface device structure
1346 *
1347 * Returns 0 on success, negative value on failure
1348 *
1349 * The open entry point is called when a network interface is made
1350 * active by the system (IFF_UP). At this point all resources needed
1351 * for transmit and receive operations are allocated, the interrupt
1352 * handler is registered with the OS, the watchdog task is started,
1353 * and the stack is notified that the interface is ready.
1354 **/
1355static int e1000_open(struct net_device *netdev)
1356{
1357 struct e1000_adapter *adapter = netdev_priv(netdev);
1358 struct e1000_hw *hw = &adapter->hw;
1359 int err;
1360
1361 /* disallow open during test */
1362 if (test_bit(__E1000_TESTING, &adapter->flags))
1363 return -EBUSY;
1364
1365 netif_carrier_off(netdev);
1366
1367 /* allocate transmit descriptors */
1368 err = e1000_setup_all_tx_resources(adapter);
1369 if (err)
1370 goto err_setup_tx;
1371
1372 /* allocate receive descriptors */
1373 err = e1000_setup_all_rx_resources(adapter);
1374 if (err)
1375 goto err_setup_rx;
1376
1377 e1000_power_up_phy(adapter);
1378
1379 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1380 if ((hw->mng_cookie.status &
1381 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1382 e1000_update_mng_vlan(adapter);
1383 }
1384
1385 /* before we allocate an interrupt, we must be ready to handle it.
1386 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1387 * as soon as we call pci_request_irq, so we have to setup our
1388 * clean_rx handler before we do so.
1389 */
1390 e1000_configure(adapter);
1391
1392 err = e1000_request_irq(adapter);
1393 if (err)
1394 goto err_req_irq;
1395
1396 /* From here on the code is the same as e1000_up() */
1397 clear_bit(__E1000_DOWN, &adapter->flags);
1398
1399 napi_enable(&adapter->napi);
1400
1401 e1000_irq_enable(adapter);
1402
1403 netif_start_queue(netdev);
1404
1405 /* fire a link status change interrupt to start the watchdog */
1406 ew32(ICS, E1000_ICS_LSC);
1407
1408 return E1000_SUCCESS;
1409
1410err_req_irq:
1411 e1000_power_down_phy(adapter);
1412 e1000_free_all_rx_resources(adapter);
1413err_setup_rx:
1414 e1000_free_all_tx_resources(adapter);
1415err_setup_tx:
1416 e1000_reset(adapter);
1417
1418 return err;
1419}
1420
1421/**
1422 * e1000_close - Disables a network interface
1423 * @netdev: network interface device structure
1424 *
1425 * Returns 0, this is not allowed to fail
1426 *
1427 * The close entry point is called when an interface is de-activated
1428 * by the OS. The hardware is still under the drivers control, but
1429 * needs to be disabled. A global MAC reset is issued to stop the
1430 * hardware, and all transmit and receive resources are freed.
1431 **/
1432static int e1000_close(struct net_device *netdev)
1433{
1434 struct e1000_adapter *adapter = netdev_priv(netdev);
1435 struct e1000_hw *hw = &adapter->hw;
1436 int count = E1000_CHECK_RESET_COUNT;
1437
1438 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1439 usleep_range(10000, 20000);
1440
1441 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1442 e1000_down(adapter);
1443 e1000_power_down_phy(adapter);
1444 e1000_free_irq(adapter);
1445
1446 e1000_free_all_tx_resources(adapter);
1447 e1000_free_all_rx_resources(adapter);
1448
1449 /* kill manageability vlan ID if supported, but not if a vlan with
1450 * the same ID is registered on the host OS (let 8021q kill it)
1451 */
1452 if ((hw->mng_cookie.status &
1453 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1454 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1455 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1456 adapter->mng_vlan_id);
1457 }
1458
1459 return 0;
1460}
1461
1462/**
1463 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1464 * @adapter: address of board private structure
1465 * @start: address of beginning of memory
1466 * @len: length of memory
1467 **/
1468static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1469 unsigned long len)
1470{
1471 struct e1000_hw *hw = &adapter->hw;
1472 unsigned long begin = (unsigned long)start;
1473 unsigned long end = begin + len;
1474
1475 /* First rev 82545 and 82546 need to not allow any memory
1476 * write location to cross 64k boundary due to errata 23
1477 */
1478 if (hw->mac_type == e1000_82545 ||
1479 hw->mac_type == e1000_ce4100 ||
1480 hw->mac_type == e1000_82546) {
1481 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1482 }
1483
1484 return true;
1485}
1486
1487/**
1488 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1489 * @adapter: board private structure
1490 * @txdr: tx descriptor ring (for a specific queue) to setup
1491 *
1492 * Return 0 on success, negative on failure
1493 **/
1494static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1495 struct e1000_tx_ring *txdr)
1496{
1497 struct pci_dev *pdev = adapter->pdev;
1498 int size;
1499
1500 size = sizeof(struct e1000_buffer) * txdr->count;
1501 txdr->buffer_info = vzalloc(size);
1502 if (!txdr->buffer_info)
1503 return -ENOMEM;
1504
1505 /* round up to nearest 4K */
1506
1507 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1508 txdr->size = ALIGN(txdr->size, 4096);
1509
1510 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1511 GFP_KERNEL);
1512 if (!txdr->desc) {
1513setup_tx_desc_die:
1514 vfree(txdr->buffer_info);
1515 return -ENOMEM;
1516 }
1517
1518 /* Fix for errata 23, can't cross 64kB boundary */
1519 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1520 void *olddesc = txdr->desc;
1521 dma_addr_t olddma = txdr->dma;
1522 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1523 txdr->size, txdr->desc);
1524 /* Try again, without freeing the previous */
1525 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1526 &txdr->dma, GFP_KERNEL);
1527 /* Failed allocation, critical failure */
1528 if (!txdr->desc) {
1529 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1530 olddma);
1531 goto setup_tx_desc_die;
1532 }
1533
1534 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1535 /* give up */
1536 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1537 txdr->dma);
1538 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1539 olddma);
1540 e_err(probe, "Unable to allocate aligned memory "
1541 "for the transmit descriptor ring\n");
1542 vfree(txdr->buffer_info);
1543 return -ENOMEM;
1544 } else {
1545 /* Free old allocation, new allocation was successful */
1546 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547 olddma);
1548 }
1549 }
1550 memset(txdr->desc, 0, txdr->size);
1551
1552 txdr->next_to_use = 0;
1553 txdr->next_to_clean = 0;
1554
1555 return 0;
1556}
1557
1558/**
1559 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1560 * (Descriptors) for all queues
1561 * @adapter: board private structure
1562 *
1563 * Return 0 on success, negative on failure
1564 **/
1565int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1566{
1567 int i, err = 0;
1568
1569 for (i = 0; i < adapter->num_tx_queues; i++) {
1570 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1571 if (err) {
1572 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1573 for (i-- ; i >= 0; i--)
1574 e1000_free_tx_resources(adapter,
1575 &adapter->tx_ring[i]);
1576 break;
1577 }
1578 }
1579
1580 return err;
1581}
1582
1583/**
1584 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1585 * @adapter: board private structure
1586 *
1587 * Configure the Tx unit of the MAC after a reset.
1588 **/
1589static void e1000_configure_tx(struct e1000_adapter *adapter)
1590{
1591 u64 tdba;
1592 struct e1000_hw *hw = &adapter->hw;
1593 u32 tdlen, tctl, tipg;
1594 u32 ipgr1, ipgr2;
1595
1596 /* Setup the HW Tx Head and Tail descriptor pointers */
1597
1598 switch (adapter->num_tx_queues) {
1599 case 1:
1600 default:
1601 tdba = adapter->tx_ring[0].dma;
1602 tdlen = adapter->tx_ring[0].count *
1603 sizeof(struct e1000_tx_desc);
1604 ew32(TDLEN, tdlen);
1605 ew32(TDBAH, (tdba >> 32));
1606 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1607 ew32(TDT, 0);
1608 ew32(TDH, 0);
1609 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1610 E1000_TDH : E1000_82542_TDH);
1611 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1612 E1000_TDT : E1000_82542_TDT);
1613 break;
1614 }
1615
1616 /* Set the default values for the Tx Inter Packet Gap timer */
1617 if ((hw->media_type == e1000_media_type_fiber ||
1618 hw->media_type == e1000_media_type_internal_serdes))
1619 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1620 else
1621 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1622
1623 switch (hw->mac_type) {
1624 case e1000_82542_rev2_0:
1625 case e1000_82542_rev2_1:
1626 tipg = DEFAULT_82542_TIPG_IPGT;
1627 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1628 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1629 break;
1630 default:
1631 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1632 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1633 break;
1634 }
1635 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1636 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1637 ew32(TIPG, tipg);
1638
1639 /* Set the Tx Interrupt Delay register */
1640
1641 ew32(TIDV, adapter->tx_int_delay);
1642 if (hw->mac_type >= e1000_82540)
1643 ew32(TADV, adapter->tx_abs_int_delay);
1644
1645 /* Program the Transmit Control Register */
1646
1647 tctl = er32(TCTL);
1648 tctl &= ~E1000_TCTL_CT;
1649 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1650 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1651
1652 e1000_config_collision_dist(hw);
1653
1654 /* Setup Transmit Descriptor Settings for eop descriptor */
1655 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1656
1657 /* only set IDE if we are delaying interrupts using the timers */
1658 if (adapter->tx_int_delay)
1659 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1660
1661 if (hw->mac_type < e1000_82543)
1662 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1663 else
1664 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1665
1666 /* Cache if we're 82544 running in PCI-X because we'll
1667 * need this to apply a workaround later in the send path.
1668 */
1669 if (hw->mac_type == e1000_82544 &&
1670 hw->bus_type == e1000_bus_type_pcix)
1671 adapter->pcix_82544 = true;
1672
1673 ew32(TCTL, tctl);
1674
1675}
1676
1677/**
1678 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1679 * @adapter: board private structure
1680 * @rxdr: rx descriptor ring (for a specific queue) to setup
1681 *
1682 * Returns 0 on success, negative on failure
1683 **/
1684static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1685 struct e1000_rx_ring *rxdr)
1686{
1687 struct pci_dev *pdev = adapter->pdev;
1688 int size, desc_len;
1689
1690 size = sizeof(struct e1000_buffer) * rxdr->count;
1691 rxdr->buffer_info = vzalloc(size);
1692 if (!rxdr->buffer_info)
1693 return -ENOMEM;
1694
1695 desc_len = sizeof(struct e1000_rx_desc);
1696
1697 /* Round up to nearest 4K */
1698
1699 rxdr->size = rxdr->count * desc_len;
1700 rxdr->size = ALIGN(rxdr->size, 4096);
1701
1702 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1703 GFP_KERNEL);
1704 if (!rxdr->desc) {
1705setup_rx_desc_die:
1706 vfree(rxdr->buffer_info);
1707 return -ENOMEM;
1708 }
1709
1710 /* Fix for errata 23, can't cross 64kB boundary */
1711 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1712 void *olddesc = rxdr->desc;
1713 dma_addr_t olddma = rxdr->dma;
1714 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1715 rxdr->size, rxdr->desc);
1716 /* Try again, without freeing the previous */
1717 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1718 &rxdr->dma, GFP_KERNEL);
1719 /* Failed allocation, critical failure */
1720 if (!rxdr->desc) {
1721 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1722 olddma);
1723 goto setup_rx_desc_die;
1724 }
1725
1726 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1727 /* give up */
1728 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1729 rxdr->dma);
1730 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1731 olddma);
1732 e_err(probe, "Unable to allocate aligned memory for "
1733 "the Rx descriptor ring\n");
1734 goto setup_rx_desc_die;
1735 } else {
1736 /* Free old allocation, new allocation was successful */
1737 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1738 olddma);
1739 }
1740 }
1741 memset(rxdr->desc, 0, rxdr->size);
1742
1743 rxdr->next_to_clean = 0;
1744 rxdr->next_to_use = 0;
1745 rxdr->rx_skb_top = NULL;
1746
1747 return 0;
1748}
1749
1750/**
1751 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1752 * (Descriptors) for all queues
1753 * @adapter: board private structure
1754 *
1755 * Return 0 on success, negative on failure
1756 **/
1757int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1758{
1759 int i, err = 0;
1760
1761 for (i = 0; i < adapter->num_rx_queues; i++) {
1762 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1763 if (err) {
1764 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1765 for (i-- ; i >= 0; i--)
1766 e1000_free_rx_resources(adapter,
1767 &adapter->rx_ring[i]);
1768 break;
1769 }
1770 }
1771
1772 return err;
1773}
1774
1775/**
1776 * e1000_setup_rctl - configure the receive control registers
1777 * @adapter: Board private structure
1778 **/
1779static void e1000_setup_rctl(struct e1000_adapter *adapter)
1780{
1781 struct e1000_hw *hw = &adapter->hw;
1782 u32 rctl;
1783
1784 rctl = er32(RCTL);
1785
1786 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1787
1788 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1789 E1000_RCTL_RDMTS_HALF |
1790 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1791
1792 if (hw->tbi_compatibility_on == 1)
1793 rctl |= E1000_RCTL_SBP;
1794 else
1795 rctl &= ~E1000_RCTL_SBP;
1796
1797 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1798 rctl &= ~E1000_RCTL_LPE;
1799 else
1800 rctl |= E1000_RCTL_LPE;
1801
1802 /* Setup buffer sizes */
1803 rctl &= ~E1000_RCTL_SZ_4096;
1804 rctl |= E1000_RCTL_BSEX;
1805 switch (adapter->rx_buffer_len) {
1806 case E1000_RXBUFFER_2048:
1807 default:
1808 rctl |= E1000_RCTL_SZ_2048;
1809 rctl &= ~E1000_RCTL_BSEX;
1810 break;
1811 case E1000_RXBUFFER_4096:
1812 rctl |= E1000_RCTL_SZ_4096;
1813 break;
1814 case E1000_RXBUFFER_8192:
1815 rctl |= E1000_RCTL_SZ_8192;
1816 break;
1817 case E1000_RXBUFFER_16384:
1818 rctl |= E1000_RCTL_SZ_16384;
1819 break;
1820 }
1821
1822 /* This is useful for sniffing bad packets. */
1823 if (adapter->netdev->features & NETIF_F_RXALL) {
1824 /* UPE and MPE will be handled by normal PROMISC logic
1825 * in e1000e_set_rx_mode
1826 */
1827 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1828 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1829 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1830
1831 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1832 E1000_RCTL_DPF | /* Allow filtered pause */
1833 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1834 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1835 * and that breaks VLANs.
1836 */
1837 }
1838
1839 ew32(RCTL, rctl);
1840}
1841
1842/**
1843 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1844 * @adapter: board private structure
1845 *
1846 * Configure the Rx unit of the MAC after a reset.
1847 **/
1848static void e1000_configure_rx(struct e1000_adapter *adapter)
1849{
1850 u64 rdba;
1851 struct e1000_hw *hw = &adapter->hw;
1852 u32 rdlen, rctl, rxcsum;
1853
1854 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1855 rdlen = adapter->rx_ring[0].count *
1856 sizeof(struct e1000_rx_desc);
1857 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1858 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1859 } else {
1860 rdlen = adapter->rx_ring[0].count *
1861 sizeof(struct e1000_rx_desc);
1862 adapter->clean_rx = e1000_clean_rx_irq;
1863 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1864 }
1865
1866 /* disable receives while setting up the descriptors */
1867 rctl = er32(RCTL);
1868 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1869
1870 /* set the Receive Delay Timer Register */
1871 ew32(RDTR, adapter->rx_int_delay);
1872
1873 if (hw->mac_type >= e1000_82540) {
1874 ew32(RADV, adapter->rx_abs_int_delay);
1875 if (adapter->itr_setting != 0)
1876 ew32(ITR, 1000000000 / (adapter->itr * 256));
1877 }
1878
1879 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1880 * the Base and Length of the Rx Descriptor Ring
1881 */
1882 switch (adapter->num_rx_queues) {
1883 case 1:
1884 default:
1885 rdba = adapter->rx_ring[0].dma;
1886 ew32(RDLEN, rdlen);
1887 ew32(RDBAH, (rdba >> 32));
1888 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1889 ew32(RDT, 0);
1890 ew32(RDH, 0);
1891 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1892 E1000_RDH : E1000_82542_RDH);
1893 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1894 E1000_RDT : E1000_82542_RDT);
1895 break;
1896 }
1897
1898 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1899 if (hw->mac_type >= e1000_82543) {
1900 rxcsum = er32(RXCSUM);
1901 if (adapter->rx_csum)
1902 rxcsum |= E1000_RXCSUM_TUOFL;
1903 else
1904 /* don't need to clear IPPCSE as it defaults to 0 */
1905 rxcsum &= ~E1000_RXCSUM_TUOFL;
1906 ew32(RXCSUM, rxcsum);
1907 }
1908
1909 /* Enable Receives */
1910 ew32(RCTL, rctl | E1000_RCTL_EN);
1911}
1912
1913/**
1914 * e1000_free_tx_resources - Free Tx Resources per Queue
1915 * @adapter: board private structure
1916 * @tx_ring: Tx descriptor ring for a specific queue
1917 *
1918 * Free all transmit software resources
1919 **/
1920static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1921 struct e1000_tx_ring *tx_ring)
1922{
1923 struct pci_dev *pdev = adapter->pdev;
1924
1925 e1000_clean_tx_ring(adapter, tx_ring);
1926
1927 vfree(tx_ring->buffer_info);
1928 tx_ring->buffer_info = NULL;
1929
1930 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1931 tx_ring->dma);
1932
1933 tx_ring->desc = NULL;
1934}
1935
1936/**
1937 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1938 * @adapter: board private structure
1939 *
1940 * Free all transmit software resources
1941 **/
1942void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1943{
1944 int i;
1945
1946 for (i = 0; i < adapter->num_tx_queues; i++)
1947 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1948}
1949
1950static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1951 struct e1000_buffer *buffer_info)
1952{
1953 if (buffer_info->dma) {
1954 if (buffer_info->mapped_as_page)
1955 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1956 buffer_info->length, DMA_TO_DEVICE);
1957 else
1958 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1959 buffer_info->length,
1960 DMA_TO_DEVICE);
1961 buffer_info->dma = 0;
1962 }
1963 if (buffer_info->skb) {
1964 dev_kfree_skb_any(buffer_info->skb);
1965 buffer_info->skb = NULL;
1966 }
1967 buffer_info->time_stamp = 0;
1968 /* buffer_info must be completely set up in the transmit path */
1969}
1970
1971/**
1972 * e1000_clean_tx_ring - Free Tx Buffers
1973 * @adapter: board private structure
1974 * @tx_ring: ring to be cleaned
1975 **/
1976static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1977 struct e1000_tx_ring *tx_ring)
1978{
1979 struct e1000_hw *hw = &adapter->hw;
1980 struct e1000_buffer *buffer_info;
1981 unsigned long size;
1982 unsigned int i;
1983
1984 /* Free all the Tx ring sk_buffs */
1985
1986 for (i = 0; i < tx_ring->count; i++) {
1987 buffer_info = &tx_ring->buffer_info[i];
1988 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1989 }
1990
1991 netdev_reset_queue(adapter->netdev);
1992 size = sizeof(struct e1000_buffer) * tx_ring->count;
1993 memset(tx_ring->buffer_info, 0, size);
1994
1995 /* Zero out the descriptor ring */
1996
1997 memset(tx_ring->desc, 0, tx_ring->size);
1998
1999 tx_ring->next_to_use = 0;
2000 tx_ring->next_to_clean = 0;
2001 tx_ring->last_tx_tso = false;
2002
2003 writel(0, hw->hw_addr + tx_ring->tdh);
2004 writel(0, hw->hw_addr + tx_ring->tdt);
2005}
2006
2007/**
2008 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2009 * @adapter: board private structure
2010 **/
2011static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2012{
2013 int i;
2014
2015 for (i = 0; i < adapter->num_tx_queues; i++)
2016 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2017}
2018
2019/**
2020 * e1000_free_rx_resources - Free Rx Resources
2021 * @adapter: board private structure
2022 * @rx_ring: ring to clean the resources from
2023 *
2024 * Free all receive software resources
2025 **/
2026static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2027 struct e1000_rx_ring *rx_ring)
2028{
2029 struct pci_dev *pdev = adapter->pdev;
2030
2031 e1000_clean_rx_ring(adapter, rx_ring);
2032
2033 vfree(rx_ring->buffer_info);
2034 rx_ring->buffer_info = NULL;
2035
2036 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2037 rx_ring->dma);
2038
2039 rx_ring->desc = NULL;
2040}
2041
2042/**
2043 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2044 * @adapter: board private structure
2045 *
2046 * Free all receive software resources
2047 **/
2048void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2049{
2050 int i;
2051
2052 for (i = 0; i < adapter->num_rx_queues; i++)
2053 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2054}
2055
2056/**
2057 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2058 * @adapter: board private structure
2059 * @rx_ring: ring to free buffers from
2060 **/
2061static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2062 struct e1000_rx_ring *rx_ring)
2063{
2064 struct e1000_hw *hw = &adapter->hw;
2065 struct e1000_buffer *buffer_info;
2066 struct pci_dev *pdev = adapter->pdev;
2067 unsigned long size;
2068 unsigned int i;
2069
2070 /* Free all the Rx ring sk_buffs */
2071 for (i = 0; i < rx_ring->count; i++) {
2072 buffer_info = &rx_ring->buffer_info[i];
2073 if (buffer_info->dma &&
2074 adapter->clean_rx == e1000_clean_rx_irq) {
2075 dma_unmap_single(&pdev->dev, buffer_info->dma,
2076 buffer_info->length,
2077 DMA_FROM_DEVICE);
2078 } else if (buffer_info->dma &&
2079 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2080 dma_unmap_page(&pdev->dev, buffer_info->dma,
2081 buffer_info->length,
2082 DMA_FROM_DEVICE);
2083 }
2084
2085 buffer_info->dma = 0;
2086 if (buffer_info->page) {
2087 put_page(buffer_info->page);
2088 buffer_info->page = NULL;
2089 }
2090 if (buffer_info->skb) {
2091 dev_kfree_skb(buffer_info->skb);
2092 buffer_info->skb = NULL;
2093 }
2094 }
2095
2096 /* there also may be some cached data from a chained receive */
2097 if (rx_ring->rx_skb_top) {
2098 dev_kfree_skb(rx_ring->rx_skb_top);
2099 rx_ring->rx_skb_top = NULL;
2100 }
2101
2102 size = sizeof(struct e1000_buffer) * rx_ring->count;
2103 memset(rx_ring->buffer_info, 0, size);
2104
2105 /* Zero out the descriptor ring */
2106 memset(rx_ring->desc, 0, rx_ring->size);
2107
2108 rx_ring->next_to_clean = 0;
2109 rx_ring->next_to_use = 0;
2110
2111 writel(0, hw->hw_addr + rx_ring->rdh);
2112 writel(0, hw->hw_addr + rx_ring->rdt);
2113}
2114
2115/**
2116 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2117 * @adapter: board private structure
2118 **/
2119static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2120{
2121 int i;
2122
2123 for (i = 0; i < adapter->num_rx_queues; i++)
2124 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2125}
2126
2127/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2128 * and memory write and invalidate disabled for certain operations
2129 */
2130static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2131{
2132 struct e1000_hw *hw = &adapter->hw;
2133 struct net_device *netdev = adapter->netdev;
2134 u32 rctl;
2135
2136 e1000_pci_clear_mwi(hw);
2137
2138 rctl = er32(RCTL);
2139 rctl |= E1000_RCTL_RST;
2140 ew32(RCTL, rctl);
2141 E1000_WRITE_FLUSH();
2142 mdelay(5);
2143
2144 if (netif_running(netdev))
2145 e1000_clean_all_rx_rings(adapter);
2146}
2147
2148static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2149{
2150 struct e1000_hw *hw = &adapter->hw;
2151 struct net_device *netdev = adapter->netdev;
2152 u32 rctl;
2153
2154 rctl = er32(RCTL);
2155 rctl &= ~E1000_RCTL_RST;
2156 ew32(RCTL, rctl);
2157 E1000_WRITE_FLUSH();
2158 mdelay(5);
2159
2160 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2161 e1000_pci_set_mwi(hw);
2162
2163 if (netif_running(netdev)) {
2164 /* No need to loop, because 82542 supports only 1 queue */
2165 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2166 e1000_configure_rx(adapter);
2167 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2168 }
2169}
2170
2171/**
2172 * e1000_set_mac - Change the Ethernet Address of the NIC
2173 * @netdev: network interface device structure
2174 * @p: pointer to an address structure
2175 *
2176 * Returns 0 on success, negative on failure
2177 **/
2178static int e1000_set_mac(struct net_device *netdev, void *p)
2179{
2180 struct e1000_adapter *adapter = netdev_priv(netdev);
2181 struct e1000_hw *hw = &adapter->hw;
2182 struct sockaddr *addr = p;
2183
2184 if (!is_valid_ether_addr(addr->sa_data))
2185 return -EADDRNOTAVAIL;
2186
2187 /* 82542 2.0 needs to be in reset to write receive address registers */
2188
2189 if (hw->mac_type == e1000_82542_rev2_0)
2190 e1000_enter_82542_rst(adapter);
2191
2192 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2193 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2194
2195 e1000_rar_set(hw, hw->mac_addr, 0);
2196
2197 if (hw->mac_type == e1000_82542_rev2_0)
2198 e1000_leave_82542_rst(adapter);
2199
2200 return 0;
2201}
2202
2203/**
2204 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2205 * @netdev: network interface device structure
2206 *
2207 * The set_rx_mode entry point is called whenever the unicast or multicast
2208 * address lists or the network interface flags are updated. This routine is
2209 * responsible for configuring the hardware for proper unicast, multicast,
2210 * promiscuous mode, and all-multi behavior.
2211 **/
2212static void e1000_set_rx_mode(struct net_device *netdev)
2213{
2214 struct e1000_adapter *adapter = netdev_priv(netdev);
2215 struct e1000_hw *hw = &adapter->hw;
2216 struct netdev_hw_addr *ha;
2217 bool use_uc = false;
2218 u32 rctl;
2219 u32 hash_value;
2220 int i, rar_entries = E1000_RAR_ENTRIES;
2221 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2222 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2223
2224 if (!mcarray)
2225 return;
2226
2227 /* Check for Promiscuous and All Multicast modes */
2228
2229 rctl = er32(RCTL);
2230
2231 if (netdev->flags & IFF_PROMISC) {
2232 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2233 rctl &= ~E1000_RCTL_VFE;
2234 } else {
2235 if (netdev->flags & IFF_ALLMULTI)
2236 rctl |= E1000_RCTL_MPE;
2237 else
2238 rctl &= ~E1000_RCTL_MPE;
2239 /* Enable VLAN filter if there is a VLAN */
2240 if (e1000_vlan_used(adapter))
2241 rctl |= E1000_RCTL_VFE;
2242 }
2243
2244 if (netdev_uc_count(netdev) > rar_entries - 1) {
2245 rctl |= E1000_RCTL_UPE;
2246 } else if (!(netdev->flags & IFF_PROMISC)) {
2247 rctl &= ~E1000_RCTL_UPE;
2248 use_uc = true;
2249 }
2250
2251 ew32(RCTL, rctl);
2252
2253 /* 82542 2.0 needs to be in reset to write receive address registers */
2254
2255 if (hw->mac_type == e1000_82542_rev2_0)
2256 e1000_enter_82542_rst(adapter);
2257
2258 /* load the first 14 addresses into the exact filters 1-14. Unicast
2259 * addresses take precedence to avoid disabling unicast filtering
2260 * when possible.
2261 *
2262 * RAR 0 is used for the station MAC address
2263 * if there are not 14 addresses, go ahead and clear the filters
2264 */
2265 i = 1;
2266 if (use_uc)
2267 netdev_for_each_uc_addr(ha, netdev) {
2268 if (i == rar_entries)
2269 break;
2270 e1000_rar_set(hw, ha->addr, i++);
2271 }
2272
2273 netdev_for_each_mc_addr(ha, netdev) {
2274 if (i == rar_entries) {
2275 /* load any remaining addresses into the hash table */
2276 u32 hash_reg, hash_bit, mta;
2277 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2278 hash_reg = (hash_value >> 5) & 0x7F;
2279 hash_bit = hash_value & 0x1F;
2280 mta = (1 << hash_bit);
2281 mcarray[hash_reg] |= mta;
2282 } else {
2283 e1000_rar_set(hw, ha->addr, i++);
2284 }
2285 }
2286
2287 for (; i < rar_entries; i++) {
2288 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2289 E1000_WRITE_FLUSH();
2290 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2291 E1000_WRITE_FLUSH();
2292 }
2293
2294 /* write the hash table completely, write from bottom to avoid
2295 * both stupid write combining chipsets, and flushing each write
2296 */
2297 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2298 /* If we are on an 82544 has an errata where writing odd
2299 * offsets overwrites the previous even offset, but writing
2300 * backwards over the range solves the issue by always
2301 * writing the odd offset first
2302 */
2303 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2304 }
2305 E1000_WRITE_FLUSH();
2306
2307 if (hw->mac_type == e1000_82542_rev2_0)
2308 e1000_leave_82542_rst(adapter);
2309
2310 kfree(mcarray);
2311}
2312
2313/**
2314 * e1000_update_phy_info_task - get phy info
2315 * @work: work struct contained inside adapter struct
2316 *
2317 * Need to wait a few seconds after link up to get diagnostic information from
2318 * the phy
2319 */
2320static void e1000_update_phy_info_task(struct work_struct *work)
2321{
2322 struct e1000_adapter *adapter = container_of(work,
2323 struct e1000_adapter,
2324 phy_info_task.work);
2325
2326 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2327}
2328
2329/**
2330 * e1000_82547_tx_fifo_stall_task - task to complete work
2331 * @work: work struct contained inside adapter struct
2332 **/
2333static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2334{
2335 struct e1000_adapter *adapter = container_of(work,
2336 struct e1000_adapter,
2337 fifo_stall_task.work);
2338 struct e1000_hw *hw = &adapter->hw;
2339 struct net_device *netdev = adapter->netdev;
2340 u32 tctl;
2341
2342 if (atomic_read(&adapter->tx_fifo_stall)) {
2343 if ((er32(TDT) == er32(TDH)) &&
2344 (er32(TDFT) == er32(TDFH)) &&
2345 (er32(TDFTS) == er32(TDFHS))) {
2346 tctl = er32(TCTL);
2347 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2348 ew32(TDFT, adapter->tx_head_addr);
2349 ew32(TDFH, adapter->tx_head_addr);
2350 ew32(TDFTS, adapter->tx_head_addr);
2351 ew32(TDFHS, adapter->tx_head_addr);
2352 ew32(TCTL, tctl);
2353 E1000_WRITE_FLUSH();
2354
2355 adapter->tx_fifo_head = 0;
2356 atomic_set(&adapter->tx_fifo_stall, 0);
2357 netif_wake_queue(netdev);
2358 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2359 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2360 }
2361 }
2362}
2363
2364bool e1000_has_link(struct e1000_adapter *adapter)
2365{
2366 struct e1000_hw *hw = &adapter->hw;
2367 bool link_active = false;
2368
2369 /* get_link_status is set on LSC (link status) interrupt or rx
2370 * sequence error interrupt (except on intel ce4100).
2371 * get_link_status will stay false until the
2372 * e1000_check_for_link establishes link for copper adapters
2373 * ONLY
2374 */
2375 switch (hw->media_type) {
2376 case e1000_media_type_copper:
2377 if (hw->mac_type == e1000_ce4100)
2378 hw->get_link_status = 1;
2379 if (hw->get_link_status) {
2380 e1000_check_for_link(hw);
2381 link_active = !hw->get_link_status;
2382 } else {
2383 link_active = true;
2384 }
2385 break;
2386 case e1000_media_type_fiber:
2387 e1000_check_for_link(hw);
2388 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2389 break;
2390 case e1000_media_type_internal_serdes:
2391 e1000_check_for_link(hw);
2392 link_active = hw->serdes_has_link;
2393 break;
2394 default:
2395 break;
2396 }
2397
2398 return link_active;
2399}
2400
2401/**
2402 * e1000_watchdog - work function
2403 * @work: work struct contained inside adapter struct
2404 **/
2405static void e1000_watchdog(struct work_struct *work)
2406{
2407 struct e1000_adapter *adapter = container_of(work,
2408 struct e1000_adapter,
2409 watchdog_task.work);
2410 struct e1000_hw *hw = &adapter->hw;
2411 struct net_device *netdev = adapter->netdev;
2412 struct e1000_tx_ring *txdr = adapter->tx_ring;
2413 u32 link, tctl;
2414
2415 link = e1000_has_link(adapter);
2416 if ((netif_carrier_ok(netdev)) && link)
2417 goto link_up;
2418
2419 if (link) {
2420 if (!netif_carrier_ok(netdev)) {
2421 u32 ctrl;
2422 bool txb2b = true;
2423 /* update snapshot of PHY registers on LSC */
2424 e1000_get_speed_and_duplex(hw,
2425 &adapter->link_speed,
2426 &adapter->link_duplex);
2427
2428 ctrl = er32(CTRL);
2429 pr_info("%s NIC Link is Up %d Mbps %s, "
2430 "Flow Control: %s\n",
2431 netdev->name,
2432 adapter->link_speed,
2433 adapter->link_duplex == FULL_DUPLEX ?
2434 "Full Duplex" : "Half Duplex",
2435 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2436 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2437 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2438 E1000_CTRL_TFCE) ? "TX" : "None")));
2439
2440 /* adjust timeout factor according to speed/duplex */
2441 adapter->tx_timeout_factor = 1;
2442 switch (adapter->link_speed) {
2443 case SPEED_10:
2444 txb2b = false;
2445 adapter->tx_timeout_factor = 16;
2446 break;
2447 case SPEED_100:
2448 txb2b = false;
2449 /* maybe add some timeout factor ? */
2450 break;
2451 }
2452
2453 /* enable transmits in the hardware */
2454 tctl = er32(TCTL);
2455 tctl |= E1000_TCTL_EN;
2456 ew32(TCTL, tctl);
2457
2458 netif_carrier_on(netdev);
2459 if (!test_bit(__E1000_DOWN, &adapter->flags))
2460 schedule_delayed_work(&adapter->phy_info_task,
2461 2 * HZ);
2462 adapter->smartspeed = 0;
2463 }
2464 } else {
2465 if (netif_carrier_ok(netdev)) {
2466 adapter->link_speed = 0;
2467 adapter->link_duplex = 0;
2468 pr_info("%s NIC Link is Down\n",
2469 netdev->name);
2470 netif_carrier_off(netdev);
2471
2472 if (!test_bit(__E1000_DOWN, &adapter->flags))
2473 schedule_delayed_work(&adapter->phy_info_task,
2474 2 * HZ);
2475 }
2476
2477 e1000_smartspeed(adapter);
2478 }
2479
2480link_up:
2481 e1000_update_stats(adapter);
2482
2483 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2484 adapter->tpt_old = adapter->stats.tpt;
2485 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2486 adapter->colc_old = adapter->stats.colc;
2487
2488 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2489 adapter->gorcl_old = adapter->stats.gorcl;
2490 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2491 adapter->gotcl_old = adapter->stats.gotcl;
2492
2493 e1000_update_adaptive(hw);
2494
2495 if (!netif_carrier_ok(netdev)) {
2496 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2497 /* We've lost link, so the controller stops DMA,
2498 * but we've got queued Tx work that's never going
2499 * to get done, so reset controller to flush Tx.
2500 * (Do the reset outside of interrupt context).
2501 */
2502 adapter->tx_timeout_count++;
2503 schedule_work(&adapter->reset_task);
2504 /* exit immediately since reset is imminent */
2505 return;
2506 }
2507 }
2508
2509 /* Simple mode for Interrupt Throttle Rate (ITR) */
2510 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2511 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2512 * Total asymmetrical Tx or Rx gets ITR=8000;
2513 * everyone else is between 2000-8000.
2514 */
2515 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2516 u32 dif = (adapter->gotcl > adapter->gorcl ?
2517 adapter->gotcl - adapter->gorcl :
2518 adapter->gorcl - adapter->gotcl) / 10000;
2519 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2520
2521 ew32(ITR, 1000000000 / (itr * 256));
2522 }
2523
2524 /* Cause software interrupt to ensure rx ring is cleaned */
2525 ew32(ICS, E1000_ICS_RXDMT0);
2526
2527 /* Force detection of hung controller every watchdog period */
2528 adapter->detect_tx_hung = true;
2529
2530 /* Reschedule the task */
2531 if (!test_bit(__E1000_DOWN, &adapter->flags))
2532 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2533}
2534
2535enum latency_range {
2536 lowest_latency = 0,
2537 low_latency = 1,
2538 bulk_latency = 2,
2539 latency_invalid = 255
2540};
2541
2542/**
2543 * e1000_update_itr - update the dynamic ITR value based on statistics
2544 * @adapter: pointer to adapter
2545 * @itr_setting: current adapter->itr
2546 * @packets: the number of packets during this measurement interval
2547 * @bytes: the number of bytes during this measurement interval
2548 *
2549 * Stores a new ITR value based on packets and byte
2550 * counts during the last interrupt. The advantage of per interrupt
2551 * computation is faster updates and more accurate ITR for the current
2552 * traffic pattern. Constants in this function were computed
2553 * based on theoretical maximum wire speed and thresholds were set based
2554 * on testing data as well as attempting to minimize response time
2555 * while increasing bulk throughput.
2556 * this functionality is controlled by the InterruptThrottleRate module
2557 * parameter (see e1000_param.c)
2558 **/
2559static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2560 u16 itr_setting, int packets, int bytes)
2561{
2562 unsigned int retval = itr_setting;
2563 struct e1000_hw *hw = &adapter->hw;
2564
2565 if (unlikely(hw->mac_type < e1000_82540))
2566 goto update_itr_done;
2567
2568 if (packets == 0)
2569 goto update_itr_done;
2570
2571 switch (itr_setting) {
2572 case lowest_latency:
2573 /* jumbo frames get bulk treatment*/
2574 if (bytes/packets > 8000)
2575 retval = bulk_latency;
2576 else if ((packets < 5) && (bytes > 512))
2577 retval = low_latency;
2578 break;
2579 case low_latency: /* 50 usec aka 20000 ints/s */
2580 if (bytes > 10000) {
2581 /* jumbo frames need bulk latency setting */
2582 if (bytes/packets > 8000)
2583 retval = bulk_latency;
2584 else if ((packets < 10) || ((bytes/packets) > 1200))
2585 retval = bulk_latency;
2586 else if ((packets > 35))
2587 retval = lowest_latency;
2588 } else if (bytes/packets > 2000)
2589 retval = bulk_latency;
2590 else if (packets <= 2 && bytes < 512)
2591 retval = lowest_latency;
2592 break;
2593 case bulk_latency: /* 250 usec aka 4000 ints/s */
2594 if (bytes > 25000) {
2595 if (packets > 35)
2596 retval = low_latency;
2597 } else if (bytes < 6000) {
2598 retval = low_latency;
2599 }
2600 break;
2601 }
2602
2603update_itr_done:
2604 return retval;
2605}
2606
2607static void e1000_set_itr(struct e1000_adapter *adapter)
2608{
2609 struct e1000_hw *hw = &adapter->hw;
2610 u16 current_itr;
2611 u32 new_itr = adapter->itr;
2612
2613 if (unlikely(hw->mac_type < e1000_82540))
2614 return;
2615
2616 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2617 if (unlikely(adapter->link_speed != SPEED_1000)) {
2618 current_itr = 0;
2619 new_itr = 4000;
2620 goto set_itr_now;
2621 }
2622
2623 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2624 adapter->total_tx_packets,
2625 adapter->total_tx_bytes);
2626 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2627 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2628 adapter->tx_itr = low_latency;
2629
2630 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2631 adapter->total_rx_packets,
2632 adapter->total_rx_bytes);
2633 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2634 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2635 adapter->rx_itr = low_latency;
2636
2637 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2638
2639 switch (current_itr) {
2640 /* counts and packets in update_itr are dependent on these numbers */
2641 case lowest_latency:
2642 new_itr = 70000;
2643 break;
2644 case low_latency:
2645 new_itr = 20000; /* aka hwitr = ~200 */
2646 break;
2647 case bulk_latency:
2648 new_itr = 4000;
2649 break;
2650 default:
2651 break;
2652 }
2653
2654set_itr_now:
2655 if (new_itr != adapter->itr) {
2656 /* this attempts to bias the interrupt rate towards Bulk
2657 * by adding intermediate steps when interrupt rate is
2658 * increasing
2659 */
2660 new_itr = new_itr > adapter->itr ?
2661 min(adapter->itr + (new_itr >> 2), new_itr) :
2662 new_itr;
2663 adapter->itr = new_itr;
2664 ew32(ITR, 1000000000 / (new_itr * 256));
2665 }
2666}
2667
2668#define E1000_TX_FLAGS_CSUM 0x00000001
2669#define E1000_TX_FLAGS_VLAN 0x00000002
2670#define E1000_TX_FLAGS_TSO 0x00000004
2671#define E1000_TX_FLAGS_IPV4 0x00000008
2672#define E1000_TX_FLAGS_NO_FCS 0x00000010
2673#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2674#define E1000_TX_FLAGS_VLAN_SHIFT 16
2675
2676static int e1000_tso(struct e1000_adapter *adapter,
2677 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2678{
2679 struct e1000_context_desc *context_desc;
2680 struct e1000_buffer *buffer_info;
2681 unsigned int i;
2682 u32 cmd_length = 0;
2683 u16 ipcse = 0, tucse, mss;
2684 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2685
2686 if (skb_is_gso(skb)) {
2687 int err;
2688
2689 err = skb_cow_head(skb, 0);
2690 if (err < 0)
2691 return err;
2692
2693 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2694 mss = skb_shinfo(skb)->gso_size;
2695 if (skb->protocol == htons(ETH_P_IP)) {
2696 struct iphdr *iph = ip_hdr(skb);
2697 iph->tot_len = 0;
2698 iph->check = 0;
2699 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2700 iph->daddr, 0,
2701 IPPROTO_TCP,
2702 0);
2703 cmd_length = E1000_TXD_CMD_IP;
2704 ipcse = skb_transport_offset(skb) - 1;
2705 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2706 ipv6_hdr(skb)->payload_len = 0;
2707 tcp_hdr(skb)->check =
2708 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2709 &ipv6_hdr(skb)->daddr,
2710 0, IPPROTO_TCP, 0);
2711 ipcse = 0;
2712 }
2713 ipcss = skb_network_offset(skb);
2714 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2715 tucss = skb_transport_offset(skb);
2716 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2717 tucse = 0;
2718
2719 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2720 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2721
2722 i = tx_ring->next_to_use;
2723 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2724 buffer_info = &tx_ring->buffer_info[i];
2725
2726 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2727 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2728 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2729 context_desc->upper_setup.tcp_fields.tucss = tucss;
2730 context_desc->upper_setup.tcp_fields.tucso = tucso;
2731 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2732 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2733 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2734 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2735
2736 buffer_info->time_stamp = jiffies;
2737 buffer_info->next_to_watch = i;
2738
2739 if (++i == tx_ring->count) i = 0;
2740 tx_ring->next_to_use = i;
2741
2742 return true;
2743 }
2744 return false;
2745}
2746
2747static bool e1000_tx_csum(struct e1000_adapter *adapter,
2748 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2749{
2750 struct e1000_context_desc *context_desc;
2751 struct e1000_buffer *buffer_info;
2752 unsigned int i;
2753 u8 css;
2754 u32 cmd_len = E1000_TXD_CMD_DEXT;
2755
2756 if (skb->ip_summed != CHECKSUM_PARTIAL)
2757 return false;
2758
2759 switch (skb->protocol) {
2760 case cpu_to_be16(ETH_P_IP):
2761 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2762 cmd_len |= E1000_TXD_CMD_TCP;
2763 break;
2764 case cpu_to_be16(ETH_P_IPV6):
2765 /* XXX not handling all IPV6 headers */
2766 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2767 cmd_len |= E1000_TXD_CMD_TCP;
2768 break;
2769 default:
2770 if (unlikely(net_ratelimit()))
2771 e_warn(drv, "checksum_partial proto=%x!\n",
2772 skb->protocol);
2773 break;
2774 }
2775
2776 css = skb_checksum_start_offset(skb);
2777
2778 i = tx_ring->next_to_use;
2779 buffer_info = &tx_ring->buffer_info[i];
2780 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2781
2782 context_desc->lower_setup.ip_config = 0;
2783 context_desc->upper_setup.tcp_fields.tucss = css;
2784 context_desc->upper_setup.tcp_fields.tucso =
2785 css + skb->csum_offset;
2786 context_desc->upper_setup.tcp_fields.tucse = 0;
2787 context_desc->tcp_seg_setup.data = 0;
2788 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2789
2790 buffer_info->time_stamp = jiffies;
2791 buffer_info->next_to_watch = i;
2792
2793 if (unlikely(++i == tx_ring->count)) i = 0;
2794 tx_ring->next_to_use = i;
2795
2796 return true;
2797}
2798
2799#define E1000_MAX_TXD_PWR 12
2800#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2801
2802static int e1000_tx_map(struct e1000_adapter *adapter,
2803 struct e1000_tx_ring *tx_ring,
2804 struct sk_buff *skb, unsigned int first,
2805 unsigned int max_per_txd, unsigned int nr_frags,
2806 unsigned int mss)
2807{
2808 struct e1000_hw *hw = &adapter->hw;
2809 struct pci_dev *pdev = adapter->pdev;
2810 struct e1000_buffer *buffer_info;
2811 unsigned int len = skb_headlen(skb);
2812 unsigned int offset = 0, size, count = 0, i;
2813 unsigned int f, bytecount, segs;
2814
2815 i = tx_ring->next_to_use;
2816
2817 while (len) {
2818 buffer_info = &tx_ring->buffer_info[i];
2819 size = min(len, max_per_txd);
2820 /* Workaround for Controller erratum --
2821 * descriptor for non-tso packet in a linear SKB that follows a
2822 * tso gets written back prematurely before the data is fully
2823 * DMA'd to the controller
2824 */
2825 if (!skb->data_len && tx_ring->last_tx_tso &&
2826 !skb_is_gso(skb)) {
2827 tx_ring->last_tx_tso = false;
2828 size -= 4;
2829 }
2830
2831 /* Workaround for premature desc write-backs
2832 * in TSO mode. Append 4-byte sentinel desc
2833 */
2834 if (unlikely(mss && !nr_frags && size == len && size > 8))
2835 size -= 4;
2836 /* work-around for errata 10 and it applies
2837 * to all controllers in PCI-X mode
2838 * The fix is to make sure that the first descriptor of a
2839 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2840 */
2841 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2842 (size > 2015) && count == 0))
2843 size = 2015;
2844
2845 /* Workaround for potential 82544 hang in PCI-X. Avoid
2846 * terminating buffers within evenly-aligned dwords.
2847 */
2848 if (unlikely(adapter->pcix_82544 &&
2849 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2850 size > 4))
2851 size -= 4;
2852
2853 buffer_info->length = size;
2854 /* set time_stamp *before* dma to help avoid a possible race */
2855 buffer_info->time_stamp = jiffies;
2856 buffer_info->mapped_as_page = false;
2857 buffer_info->dma = dma_map_single(&pdev->dev,
2858 skb->data + offset,
2859 size, DMA_TO_DEVICE);
2860 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2861 goto dma_error;
2862 buffer_info->next_to_watch = i;
2863
2864 len -= size;
2865 offset += size;
2866 count++;
2867 if (len) {
2868 i++;
2869 if (unlikely(i == tx_ring->count))
2870 i = 0;
2871 }
2872 }
2873
2874 for (f = 0; f < nr_frags; f++) {
2875 const struct skb_frag_struct *frag;
2876
2877 frag = &skb_shinfo(skb)->frags[f];
2878 len = skb_frag_size(frag);
2879 offset = 0;
2880
2881 while (len) {
2882 unsigned long bufend;
2883 i++;
2884 if (unlikely(i == tx_ring->count))
2885 i = 0;
2886
2887 buffer_info = &tx_ring->buffer_info[i];
2888 size = min(len, max_per_txd);
2889 /* Workaround for premature desc write-backs
2890 * in TSO mode. Append 4-byte sentinel desc
2891 */
2892 if (unlikely(mss && f == (nr_frags-1) &&
2893 size == len && size > 8))
2894 size -= 4;
2895 /* Workaround for potential 82544 hang in PCI-X.
2896 * Avoid terminating buffers within evenly-aligned
2897 * dwords.
2898 */
2899 bufend = (unsigned long)
2900 page_to_phys(skb_frag_page(frag));
2901 bufend += offset + size - 1;
2902 if (unlikely(adapter->pcix_82544 &&
2903 !(bufend & 4) &&
2904 size > 4))
2905 size -= 4;
2906
2907 buffer_info->length = size;
2908 buffer_info->time_stamp = jiffies;
2909 buffer_info->mapped_as_page = true;
2910 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2911 offset, size, DMA_TO_DEVICE);
2912 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2913 goto dma_error;
2914 buffer_info->next_to_watch = i;
2915
2916 len -= size;
2917 offset += size;
2918 count++;
2919 }
2920 }
2921
2922 segs = skb_shinfo(skb)->gso_segs ?: 1;
2923 /* multiply data chunks by size of headers */
2924 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2925
2926 tx_ring->buffer_info[i].skb = skb;
2927 tx_ring->buffer_info[i].segs = segs;
2928 tx_ring->buffer_info[i].bytecount = bytecount;
2929 tx_ring->buffer_info[first].next_to_watch = i;
2930
2931 return count;
2932
2933dma_error:
2934 dev_err(&pdev->dev, "TX DMA map failed\n");
2935 buffer_info->dma = 0;
2936 if (count)
2937 count--;
2938
2939 while (count--) {
2940 if (i==0)
2941 i += tx_ring->count;
2942 i--;
2943 buffer_info = &tx_ring->buffer_info[i];
2944 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2945 }
2946
2947 return 0;
2948}
2949
2950static void e1000_tx_queue(struct e1000_adapter *adapter,
2951 struct e1000_tx_ring *tx_ring, int tx_flags,
2952 int count)
2953{
2954 struct e1000_hw *hw = &adapter->hw;
2955 struct e1000_tx_desc *tx_desc = NULL;
2956 struct e1000_buffer *buffer_info;
2957 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2958 unsigned int i;
2959
2960 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2961 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2962 E1000_TXD_CMD_TSE;
2963 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2964
2965 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2966 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2967 }
2968
2969 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2970 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2971 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2972 }
2973
2974 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2975 txd_lower |= E1000_TXD_CMD_VLE;
2976 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2977 }
2978
2979 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2980 txd_lower &= ~(E1000_TXD_CMD_IFCS);
2981
2982 i = tx_ring->next_to_use;
2983
2984 while (count--) {
2985 buffer_info = &tx_ring->buffer_info[i];
2986 tx_desc = E1000_TX_DESC(*tx_ring, i);
2987 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2988 tx_desc->lower.data =
2989 cpu_to_le32(txd_lower | buffer_info->length);
2990 tx_desc->upper.data = cpu_to_le32(txd_upper);
2991 if (unlikely(++i == tx_ring->count)) i = 0;
2992 }
2993
2994 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2995
2996 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
2997 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2998 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
2999
3000 /* Force memory writes to complete before letting h/w
3001 * know there are new descriptors to fetch. (Only
3002 * applicable for weak-ordered memory model archs,
3003 * such as IA-64).
3004 */
3005 wmb();
3006
3007 tx_ring->next_to_use = i;
3008 writel(i, hw->hw_addr + tx_ring->tdt);
3009 /* we need this if more than one processor can write to our tail
3010 * at a time, it synchronizes IO on IA64/Altix systems
3011 */
3012 mmiowb();
3013}
3014
3015/* 82547 workaround to avoid controller hang in half-duplex environment.
3016 * The workaround is to avoid queuing a large packet that would span
3017 * the internal Tx FIFO ring boundary by notifying the stack to resend
3018 * the packet at a later time. This gives the Tx FIFO an opportunity to
3019 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3020 * to the beginning of the Tx FIFO.
3021 */
3022
3023#define E1000_FIFO_HDR 0x10
3024#define E1000_82547_PAD_LEN 0x3E0
3025
3026static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3027 struct sk_buff *skb)
3028{
3029 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3030 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3031
3032 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3033
3034 if (adapter->link_duplex != HALF_DUPLEX)
3035 goto no_fifo_stall_required;
3036
3037 if (atomic_read(&adapter->tx_fifo_stall))
3038 return 1;
3039
3040 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3041 atomic_set(&adapter->tx_fifo_stall, 1);
3042 return 1;
3043 }
3044
3045no_fifo_stall_required:
3046 adapter->tx_fifo_head += skb_fifo_len;
3047 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3048 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3049 return 0;
3050}
3051
3052static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3053{
3054 struct e1000_adapter *adapter = netdev_priv(netdev);
3055 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3056
3057 netif_stop_queue(netdev);
3058 /* Herbert's original patch had:
3059 * smp_mb__after_netif_stop_queue();
3060 * but since that doesn't exist yet, just open code it.
3061 */
3062 smp_mb();
3063
3064 /* We need to check again in a case another CPU has just
3065 * made room available.
3066 */
3067 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3068 return -EBUSY;
3069
3070 /* A reprieve! */
3071 netif_start_queue(netdev);
3072 ++adapter->restart_queue;
3073 return 0;
3074}
3075
3076static int e1000_maybe_stop_tx(struct net_device *netdev,
3077 struct e1000_tx_ring *tx_ring, int size)
3078{
3079 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3080 return 0;
3081 return __e1000_maybe_stop_tx(netdev, size);
3082}
3083
3084#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3085static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3086 struct net_device *netdev)
3087{
3088 struct e1000_adapter *adapter = netdev_priv(netdev);
3089 struct e1000_hw *hw = &adapter->hw;
3090 struct e1000_tx_ring *tx_ring;
3091 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3092 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3093 unsigned int tx_flags = 0;
3094 unsigned int len = skb_headlen(skb);
3095 unsigned int nr_frags;
3096 unsigned int mss;
3097 int count = 0;
3098 int tso;
3099 unsigned int f;
3100
3101 /* This goes back to the question of how to logically map a Tx queue
3102 * to a flow. Right now, performance is impacted slightly negatively
3103 * if using multiple Tx queues. If the stack breaks away from a
3104 * single qdisc implementation, we can look at this again.
3105 */
3106 tx_ring = adapter->tx_ring;
3107
3108 if (unlikely(skb->len <= 0)) {
3109 dev_kfree_skb_any(skb);
3110 return NETDEV_TX_OK;
3111 }
3112
3113 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3114 * packets may get corrupted during padding by HW.
3115 * To WA this issue, pad all small packets manually.
3116 */
3117 if (skb->len < ETH_ZLEN) {
3118 if (skb_pad(skb, ETH_ZLEN - skb->len))
3119 return NETDEV_TX_OK;
3120 skb->len = ETH_ZLEN;
3121 skb_set_tail_pointer(skb, ETH_ZLEN);
3122 }
3123
3124 mss = skb_shinfo(skb)->gso_size;
3125 /* The controller does a simple calculation to
3126 * make sure there is enough room in the FIFO before
3127 * initiating the DMA for each buffer. The calc is:
3128 * 4 = ceil(buffer len/mss). To make sure we don't
3129 * overrun the FIFO, adjust the max buffer len if mss
3130 * drops.
3131 */
3132 if (mss) {
3133 u8 hdr_len;
3134 max_per_txd = min(mss << 2, max_per_txd);
3135 max_txd_pwr = fls(max_per_txd) - 1;
3136
3137 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3138 if (skb->data_len && hdr_len == len) {
3139 switch (hw->mac_type) {
3140 unsigned int pull_size;
3141 case e1000_82544:
3142 /* Make sure we have room to chop off 4 bytes,
3143 * and that the end alignment will work out to
3144 * this hardware's requirements
3145 * NOTE: this is a TSO only workaround
3146 * if end byte alignment not correct move us
3147 * into the next dword
3148 */
3149 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3150 & 4)
3151 break;
3152 /* fall through */
3153 pull_size = min((unsigned int)4, skb->data_len);
3154 if (!__pskb_pull_tail(skb, pull_size)) {
3155 e_err(drv, "__pskb_pull_tail "
3156 "failed.\n");
3157 dev_kfree_skb_any(skb);
3158 return NETDEV_TX_OK;
3159 }
3160 len = skb_headlen(skb);
3161 break;
3162 default:
3163 /* do nothing */
3164 break;
3165 }
3166 }
3167 }
3168
3169 /* reserve a descriptor for the offload context */
3170 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3171 count++;
3172 count++;
3173
3174 /* Controller Erratum workaround */
3175 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3176 count++;
3177
3178 count += TXD_USE_COUNT(len, max_txd_pwr);
3179
3180 if (adapter->pcix_82544)
3181 count++;
3182
3183 /* work-around for errata 10 and it applies to all controllers
3184 * in PCI-X mode, so add one more descriptor to the count
3185 */
3186 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3187 (len > 2015)))
3188 count++;
3189
3190 nr_frags = skb_shinfo(skb)->nr_frags;
3191 for (f = 0; f < nr_frags; f++)
3192 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3193 max_txd_pwr);
3194 if (adapter->pcix_82544)
3195 count += nr_frags;
3196
3197 /* need: count + 2 desc gap to keep tail from touching
3198 * head, otherwise try next time
3199 */
3200 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3201 return NETDEV_TX_BUSY;
3202
3203 if (unlikely((hw->mac_type == e1000_82547) &&
3204 (e1000_82547_fifo_workaround(adapter, skb)))) {
3205 netif_stop_queue(netdev);
3206 if (!test_bit(__E1000_DOWN, &adapter->flags))
3207 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3208 return NETDEV_TX_BUSY;
3209 }
3210
3211 if (vlan_tx_tag_present(skb)) {
3212 tx_flags |= E1000_TX_FLAGS_VLAN;
3213 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3214 }
3215
3216 first = tx_ring->next_to_use;
3217
3218 tso = e1000_tso(adapter, tx_ring, skb);
3219 if (tso < 0) {
3220 dev_kfree_skb_any(skb);
3221 return NETDEV_TX_OK;
3222 }
3223
3224 if (likely(tso)) {
3225 if (likely(hw->mac_type != e1000_82544))
3226 tx_ring->last_tx_tso = true;
3227 tx_flags |= E1000_TX_FLAGS_TSO;
3228 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3229 tx_flags |= E1000_TX_FLAGS_CSUM;
3230
3231 if (likely(skb->protocol == htons(ETH_P_IP)))
3232 tx_flags |= E1000_TX_FLAGS_IPV4;
3233
3234 if (unlikely(skb->no_fcs))
3235 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3236
3237 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3238 nr_frags, mss);
3239
3240 if (count) {
3241 netdev_sent_queue(netdev, skb->len);
3242 skb_tx_timestamp(skb);
3243
3244 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3245 /* Make sure there is space in the ring for the next send. */
3246 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3247
3248 } else {
3249 dev_kfree_skb_any(skb);
3250 tx_ring->buffer_info[first].time_stamp = 0;
3251 tx_ring->next_to_use = first;
3252 }
3253
3254 return NETDEV_TX_OK;
3255}
3256
3257#define NUM_REGS 38 /* 1 based count */
3258static void e1000_regdump(struct e1000_adapter *adapter)
3259{
3260 struct e1000_hw *hw = &adapter->hw;
3261 u32 regs[NUM_REGS];
3262 u32 *regs_buff = regs;
3263 int i = 0;
3264
3265 static const char * const reg_name[] = {
3266 "CTRL", "STATUS",
3267 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3268 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3269 "TIDV", "TXDCTL", "TADV", "TARC0",
3270 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3271 "TXDCTL1", "TARC1",
3272 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3273 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3274 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3275 };
3276
3277 regs_buff[0] = er32(CTRL);
3278 regs_buff[1] = er32(STATUS);
3279
3280 regs_buff[2] = er32(RCTL);
3281 regs_buff[3] = er32(RDLEN);
3282 regs_buff[4] = er32(RDH);
3283 regs_buff[5] = er32(RDT);
3284 regs_buff[6] = er32(RDTR);
3285
3286 regs_buff[7] = er32(TCTL);
3287 regs_buff[8] = er32(TDBAL);
3288 regs_buff[9] = er32(TDBAH);
3289 regs_buff[10] = er32(TDLEN);
3290 regs_buff[11] = er32(TDH);
3291 regs_buff[12] = er32(TDT);
3292 regs_buff[13] = er32(TIDV);
3293 regs_buff[14] = er32(TXDCTL);
3294 regs_buff[15] = er32(TADV);
3295 regs_buff[16] = er32(TARC0);
3296
3297 regs_buff[17] = er32(TDBAL1);
3298 regs_buff[18] = er32(TDBAH1);
3299 regs_buff[19] = er32(TDLEN1);
3300 regs_buff[20] = er32(TDH1);
3301 regs_buff[21] = er32(TDT1);
3302 regs_buff[22] = er32(TXDCTL1);
3303 regs_buff[23] = er32(TARC1);
3304 regs_buff[24] = er32(CTRL_EXT);
3305 regs_buff[25] = er32(ERT);
3306 regs_buff[26] = er32(RDBAL0);
3307 regs_buff[27] = er32(RDBAH0);
3308 regs_buff[28] = er32(TDFH);
3309 regs_buff[29] = er32(TDFT);
3310 regs_buff[30] = er32(TDFHS);
3311 regs_buff[31] = er32(TDFTS);
3312 regs_buff[32] = er32(TDFPC);
3313 regs_buff[33] = er32(RDFH);
3314 regs_buff[34] = er32(RDFT);
3315 regs_buff[35] = er32(RDFHS);
3316 regs_buff[36] = er32(RDFTS);
3317 regs_buff[37] = er32(RDFPC);
3318
3319 pr_info("Register dump\n");
3320 for (i = 0; i < NUM_REGS; i++)
3321 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3322}
3323
3324/*
3325 * e1000_dump: Print registers, tx ring and rx ring
3326 */
3327static void e1000_dump(struct e1000_adapter *adapter)
3328{
3329 /* this code doesn't handle multiple rings */
3330 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3331 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3332 int i;
3333
3334 if (!netif_msg_hw(adapter))
3335 return;
3336
3337 /* Print Registers */
3338 e1000_regdump(adapter);
3339
3340 /* transmit dump */
3341 pr_info("TX Desc ring0 dump\n");
3342
3343 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3344 *
3345 * Legacy Transmit Descriptor
3346 * +--------------------------------------------------------------+
3347 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3348 * +--------------------------------------------------------------+
3349 * 8 | Special | CSS | Status | CMD | CSO | Length |
3350 * +--------------------------------------------------------------+
3351 * 63 48 47 36 35 32 31 24 23 16 15 0
3352 *
3353 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3354 * 63 48 47 40 39 32 31 16 15 8 7 0
3355 * +----------------------------------------------------------------+
3356 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3357 * +----------------------------------------------------------------+
3358 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3359 * +----------------------------------------------------------------+
3360 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3361 *
3362 * Extended Data Descriptor (DTYP=0x1)
3363 * +----------------------------------------------------------------+
3364 * 0 | Buffer Address [63:0] |
3365 * +----------------------------------------------------------------+
3366 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3367 * +----------------------------------------------------------------+
3368 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3369 */
3370 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3371 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3372
3373 if (!netif_msg_tx_done(adapter))
3374 goto rx_ring_summary;
3375
3376 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3377 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3378 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3379 struct my_u { __le64 a; __le64 b; };
3380 struct my_u *u = (struct my_u *)tx_desc;
3381 const char *type;
3382
3383 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3384 type = "NTC/U";
3385 else if (i == tx_ring->next_to_use)
3386 type = "NTU";
3387 else if (i == tx_ring->next_to_clean)
3388 type = "NTC";
3389 else
3390 type = "";
3391
3392 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3393 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3394 le64_to_cpu(u->a), le64_to_cpu(u->b),
3395 (u64)buffer_info->dma, buffer_info->length,
3396 buffer_info->next_to_watch,
3397 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3398 }
3399
3400rx_ring_summary:
3401 /* receive dump */
3402 pr_info("\nRX Desc ring dump\n");
3403
3404 /* Legacy Receive Descriptor Format
3405 *
3406 * +-----------------------------------------------------+
3407 * | Buffer Address [63:0] |
3408 * +-----------------------------------------------------+
3409 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3410 * +-----------------------------------------------------+
3411 * 63 48 47 40 39 32 31 16 15 0
3412 */
3413 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3414
3415 if (!netif_msg_rx_status(adapter))
3416 goto exit;
3417
3418 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3419 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3420 struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3421 struct my_u { __le64 a; __le64 b; };
3422 struct my_u *u = (struct my_u *)rx_desc;
3423 const char *type;
3424
3425 if (i == rx_ring->next_to_use)
3426 type = "NTU";
3427 else if (i == rx_ring->next_to_clean)
3428 type = "NTC";
3429 else
3430 type = "";
3431
3432 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3433 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3434 (u64)buffer_info->dma, buffer_info->skb, type);
3435 } /* for */
3436
3437 /* dump the descriptor caches */
3438 /* rx */
3439 pr_info("Rx descriptor cache in 64bit format\n");
3440 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3441 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3442 i,
3443 readl(adapter->hw.hw_addr + i+4),
3444 readl(adapter->hw.hw_addr + i),
3445 readl(adapter->hw.hw_addr + i+12),
3446 readl(adapter->hw.hw_addr + i+8));
3447 }
3448 /* tx */
3449 pr_info("Tx descriptor cache in 64bit format\n");
3450 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3451 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3452 i,
3453 readl(adapter->hw.hw_addr + i+4),
3454 readl(adapter->hw.hw_addr + i),
3455 readl(adapter->hw.hw_addr + i+12),
3456 readl(adapter->hw.hw_addr + i+8));
3457 }
3458exit:
3459 return;
3460}
3461
3462/**
3463 * e1000_tx_timeout - Respond to a Tx Hang
3464 * @netdev: network interface device structure
3465 **/
3466static void e1000_tx_timeout(struct net_device *netdev)
3467{
3468 struct e1000_adapter *adapter = netdev_priv(netdev);
3469
3470 /* Do the reset outside of interrupt context */
3471 adapter->tx_timeout_count++;
3472 schedule_work(&adapter->reset_task);
3473}
3474
3475static void e1000_reset_task(struct work_struct *work)
3476{
3477 struct e1000_adapter *adapter =
3478 container_of(work, struct e1000_adapter, reset_task);
3479
3480 e_err(drv, "Reset adapter\n");
3481 e1000_reinit_locked(adapter);
3482}
3483
3484/**
3485 * e1000_get_stats - Get System Network Statistics
3486 * @netdev: network interface device structure
3487 *
3488 * Returns the address of the device statistics structure.
3489 * The statistics are actually updated from the watchdog.
3490 **/
3491static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3492{
3493 /* only return the current stats */
3494 return &netdev->stats;
3495}
3496
3497/**
3498 * e1000_change_mtu - Change the Maximum Transfer Unit
3499 * @netdev: network interface device structure
3500 * @new_mtu: new value for maximum frame size
3501 *
3502 * Returns 0 on success, negative on failure
3503 **/
3504static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3505{
3506 struct e1000_adapter *adapter = netdev_priv(netdev);
3507 struct e1000_hw *hw = &adapter->hw;
3508 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3509
3510 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3511 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3512 e_err(probe, "Invalid MTU setting\n");
3513 return -EINVAL;
3514 }
3515
3516 /* Adapter-specific max frame size limits. */
3517 switch (hw->mac_type) {
3518 case e1000_undefined ... e1000_82542_rev2_1:
3519 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3520 e_err(probe, "Jumbo Frames not supported.\n");
3521 return -EINVAL;
3522 }
3523 break;
3524 default:
3525 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3526 break;
3527 }
3528
3529 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3530 msleep(1);
3531 /* e1000_down has a dependency on max_frame_size */
3532 hw->max_frame_size = max_frame;
3533 if (netif_running(netdev))
3534 e1000_down(adapter);
3535
3536 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3537 * means we reserve 2 more, this pushes us to allocate from the next
3538 * larger slab size.
3539 * i.e. RXBUFFER_2048 --> size-4096 slab
3540 * however with the new *_jumbo_rx* routines, jumbo receives will use
3541 * fragmented skbs
3542 */
3543
3544 if (max_frame <= E1000_RXBUFFER_2048)
3545 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3546 else
3547#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3548 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3549#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3550 adapter->rx_buffer_len = PAGE_SIZE;
3551#endif
3552
3553 /* adjust allocation if LPE protects us, and we aren't using SBP */
3554 if (!hw->tbi_compatibility_on &&
3555 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3556 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3557 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3558
3559 pr_info("%s changing MTU from %d to %d\n",
3560 netdev->name, netdev->mtu, new_mtu);
3561 netdev->mtu = new_mtu;
3562
3563 if (netif_running(netdev))
3564 e1000_up(adapter);
3565 else
3566 e1000_reset(adapter);
3567
3568 clear_bit(__E1000_RESETTING, &adapter->flags);
3569
3570 return 0;
3571}
3572
3573/**
3574 * e1000_update_stats - Update the board statistics counters
3575 * @adapter: board private structure
3576 **/
3577void e1000_update_stats(struct e1000_adapter *adapter)
3578{
3579 struct net_device *netdev = adapter->netdev;
3580 struct e1000_hw *hw = &adapter->hw;
3581 struct pci_dev *pdev = adapter->pdev;
3582 unsigned long flags;
3583 u16 phy_tmp;
3584
3585#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3586
3587 /* Prevent stats update while adapter is being reset, or if the pci
3588 * connection is down.
3589 */
3590 if (adapter->link_speed == 0)
3591 return;
3592 if (pci_channel_offline(pdev))
3593 return;
3594
3595 spin_lock_irqsave(&adapter->stats_lock, flags);
3596
3597 /* these counters are modified from e1000_tbi_adjust_stats,
3598 * called from the interrupt context, so they must only
3599 * be written while holding adapter->stats_lock
3600 */
3601
3602 adapter->stats.crcerrs += er32(CRCERRS);
3603 adapter->stats.gprc += er32(GPRC);
3604 adapter->stats.gorcl += er32(GORCL);
3605 adapter->stats.gorch += er32(GORCH);
3606 adapter->stats.bprc += er32(BPRC);
3607 adapter->stats.mprc += er32(MPRC);
3608 adapter->stats.roc += er32(ROC);
3609
3610 adapter->stats.prc64 += er32(PRC64);
3611 adapter->stats.prc127 += er32(PRC127);
3612 adapter->stats.prc255 += er32(PRC255);
3613 adapter->stats.prc511 += er32(PRC511);
3614 adapter->stats.prc1023 += er32(PRC1023);
3615 adapter->stats.prc1522 += er32(PRC1522);
3616
3617 adapter->stats.symerrs += er32(SYMERRS);
3618 adapter->stats.mpc += er32(MPC);
3619 adapter->stats.scc += er32(SCC);
3620 adapter->stats.ecol += er32(ECOL);
3621 adapter->stats.mcc += er32(MCC);
3622 adapter->stats.latecol += er32(LATECOL);
3623 adapter->stats.dc += er32(DC);
3624 adapter->stats.sec += er32(SEC);
3625 adapter->stats.rlec += er32(RLEC);
3626 adapter->stats.xonrxc += er32(XONRXC);
3627 adapter->stats.xontxc += er32(XONTXC);
3628 adapter->stats.xoffrxc += er32(XOFFRXC);
3629 adapter->stats.xofftxc += er32(XOFFTXC);
3630 adapter->stats.fcruc += er32(FCRUC);
3631 adapter->stats.gptc += er32(GPTC);
3632 adapter->stats.gotcl += er32(GOTCL);
3633 adapter->stats.gotch += er32(GOTCH);
3634 adapter->stats.rnbc += er32(RNBC);
3635 adapter->stats.ruc += er32(RUC);
3636 adapter->stats.rfc += er32(RFC);
3637 adapter->stats.rjc += er32(RJC);
3638 adapter->stats.torl += er32(TORL);
3639 adapter->stats.torh += er32(TORH);
3640 adapter->stats.totl += er32(TOTL);
3641 adapter->stats.toth += er32(TOTH);
3642 adapter->stats.tpr += er32(TPR);
3643
3644 adapter->stats.ptc64 += er32(PTC64);
3645 adapter->stats.ptc127 += er32(PTC127);
3646 adapter->stats.ptc255 += er32(PTC255);
3647 adapter->stats.ptc511 += er32(PTC511);
3648 adapter->stats.ptc1023 += er32(PTC1023);
3649 adapter->stats.ptc1522 += er32(PTC1522);
3650
3651 adapter->stats.mptc += er32(MPTC);
3652 adapter->stats.bptc += er32(BPTC);
3653
3654 /* used for adaptive IFS */
3655
3656 hw->tx_packet_delta = er32(TPT);
3657 adapter->stats.tpt += hw->tx_packet_delta;
3658 hw->collision_delta = er32(COLC);
3659 adapter->stats.colc += hw->collision_delta;
3660
3661 if (hw->mac_type >= e1000_82543) {
3662 adapter->stats.algnerrc += er32(ALGNERRC);
3663 adapter->stats.rxerrc += er32(RXERRC);
3664 adapter->stats.tncrs += er32(TNCRS);
3665 adapter->stats.cexterr += er32(CEXTERR);
3666 adapter->stats.tsctc += er32(TSCTC);
3667 adapter->stats.tsctfc += er32(TSCTFC);
3668 }
3669
3670 /* Fill out the OS statistics structure */
3671 netdev->stats.multicast = adapter->stats.mprc;
3672 netdev->stats.collisions = adapter->stats.colc;
3673
3674 /* Rx Errors */
3675
3676 /* RLEC on some newer hardware can be incorrect so build
3677 * our own version based on RUC and ROC
3678 */
3679 netdev->stats.rx_errors = adapter->stats.rxerrc +
3680 adapter->stats.crcerrs + adapter->stats.algnerrc +
3681 adapter->stats.ruc + adapter->stats.roc +
3682 adapter->stats.cexterr;
3683 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3684 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3685 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3686 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3687 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3688
3689 /* Tx Errors */
3690 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3691 netdev->stats.tx_errors = adapter->stats.txerrc;
3692 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3693 netdev->stats.tx_window_errors = adapter->stats.latecol;
3694 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3695 if (hw->bad_tx_carr_stats_fd &&
3696 adapter->link_duplex == FULL_DUPLEX) {
3697 netdev->stats.tx_carrier_errors = 0;
3698 adapter->stats.tncrs = 0;
3699 }
3700
3701 /* Tx Dropped needs to be maintained elsewhere */
3702
3703 /* Phy Stats */
3704 if (hw->media_type == e1000_media_type_copper) {
3705 if ((adapter->link_speed == SPEED_1000) &&
3706 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3707 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3708 adapter->phy_stats.idle_errors += phy_tmp;
3709 }
3710
3711 if ((hw->mac_type <= e1000_82546) &&
3712 (hw->phy_type == e1000_phy_m88) &&
3713 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3714 adapter->phy_stats.receive_errors += phy_tmp;
3715 }
3716
3717 /* Management Stats */
3718 if (hw->has_smbus) {
3719 adapter->stats.mgptc += er32(MGTPTC);
3720 adapter->stats.mgprc += er32(MGTPRC);
3721 adapter->stats.mgpdc += er32(MGTPDC);
3722 }
3723
3724 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3725}
3726
3727/**
3728 * e1000_intr - Interrupt Handler
3729 * @irq: interrupt number
3730 * @data: pointer to a network interface device structure
3731 **/
3732static irqreturn_t e1000_intr(int irq, void *data)
3733{
3734 struct net_device *netdev = data;
3735 struct e1000_adapter *adapter = netdev_priv(netdev);
3736 struct e1000_hw *hw = &adapter->hw;
3737 u32 icr = er32(ICR);
3738
3739 if (unlikely((!icr)))
3740 return IRQ_NONE; /* Not our interrupt */
3741
3742 /* we might have caused the interrupt, but the above
3743 * read cleared it, and just in case the driver is
3744 * down there is nothing to do so return handled
3745 */
3746 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3747 return IRQ_HANDLED;
3748
3749 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3750 hw->get_link_status = 1;
3751 /* guard against interrupt when we're going down */
3752 if (!test_bit(__E1000_DOWN, &adapter->flags))
3753 schedule_delayed_work(&adapter->watchdog_task, 1);
3754 }
3755
3756 /* disable interrupts, without the synchronize_irq bit */
3757 ew32(IMC, ~0);
3758 E1000_WRITE_FLUSH();
3759
3760 if (likely(napi_schedule_prep(&adapter->napi))) {
3761 adapter->total_tx_bytes = 0;
3762 adapter->total_tx_packets = 0;
3763 adapter->total_rx_bytes = 0;
3764 adapter->total_rx_packets = 0;
3765 __napi_schedule(&adapter->napi);
3766 } else {
3767 /* this really should not happen! if it does it is basically a
3768 * bug, but not a hard error, so enable ints and continue
3769 */
3770 if (!test_bit(__E1000_DOWN, &adapter->flags))
3771 e1000_irq_enable(adapter);
3772 }
3773
3774 return IRQ_HANDLED;
3775}
3776
3777/**
3778 * e1000_clean - NAPI Rx polling callback
3779 * @adapter: board private structure
3780 **/
3781static int e1000_clean(struct napi_struct *napi, int budget)
3782{
3783 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3784 napi);
3785 int tx_clean_complete = 0, work_done = 0;
3786
3787 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3788
3789 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3790
3791 if (!tx_clean_complete)
3792 work_done = budget;
3793
3794 /* If budget not fully consumed, exit the polling mode */
3795 if (work_done < budget) {
3796 if (likely(adapter->itr_setting & 3))
3797 e1000_set_itr(adapter);
3798 napi_complete(napi);
3799 if (!test_bit(__E1000_DOWN, &adapter->flags))
3800 e1000_irq_enable(adapter);
3801 }
3802
3803 return work_done;
3804}
3805
3806/**
3807 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3808 * @adapter: board private structure
3809 **/
3810static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3811 struct e1000_tx_ring *tx_ring)
3812{
3813 struct e1000_hw *hw = &adapter->hw;
3814 struct net_device *netdev = adapter->netdev;
3815 struct e1000_tx_desc *tx_desc, *eop_desc;
3816 struct e1000_buffer *buffer_info;
3817 unsigned int i, eop;
3818 unsigned int count = 0;
3819 unsigned int total_tx_bytes=0, total_tx_packets=0;
3820 unsigned int bytes_compl = 0, pkts_compl = 0;
3821
3822 i = tx_ring->next_to_clean;
3823 eop = tx_ring->buffer_info[i].next_to_watch;
3824 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3825
3826 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3827 (count < tx_ring->count)) {
3828 bool cleaned = false;
3829 rmb(); /* read buffer_info after eop_desc */
3830 for ( ; !cleaned; count++) {
3831 tx_desc = E1000_TX_DESC(*tx_ring, i);
3832 buffer_info = &tx_ring->buffer_info[i];
3833 cleaned = (i == eop);
3834
3835 if (cleaned) {
3836 total_tx_packets += buffer_info->segs;
3837 total_tx_bytes += buffer_info->bytecount;
3838 if (buffer_info->skb) {
3839 bytes_compl += buffer_info->skb->len;
3840 pkts_compl++;
3841 }
3842
3843 }
3844 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3845 tx_desc->upper.data = 0;
3846
3847 if (unlikely(++i == tx_ring->count)) i = 0;
3848 }
3849
3850 eop = tx_ring->buffer_info[i].next_to_watch;
3851 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3852 }
3853
3854 tx_ring->next_to_clean = i;
3855
3856 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3857
3858#define TX_WAKE_THRESHOLD 32
3859 if (unlikely(count && netif_carrier_ok(netdev) &&
3860 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3861 /* Make sure that anybody stopping the queue after this
3862 * sees the new next_to_clean.
3863 */
3864 smp_mb();
3865
3866 if (netif_queue_stopped(netdev) &&
3867 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3868 netif_wake_queue(netdev);
3869 ++adapter->restart_queue;
3870 }
3871 }
3872
3873 if (adapter->detect_tx_hung) {
3874 /* Detect a transmit hang in hardware, this serializes the
3875 * check with the clearing of time_stamp and movement of i
3876 */
3877 adapter->detect_tx_hung = false;
3878 if (tx_ring->buffer_info[eop].time_stamp &&
3879 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3880 (adapter->tx_timeout_factor * HZ)) &&
3881 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3882
3883 /* detected Tx unit hang */
3884 e_err(drv, "Detected Tx Unit Hang\n"
3885 " Tx Queue <%lu>\n"
3886 " TDH <%x>\n"
3887 " TDT <%x>\n"
3888 " next_to_use <%x>\n"
3889 " next_to_clean <%x>\n"
3890 "buffer_info[next_to_clean]\n"
3891 " time_stamp <%lx>\n"
3892 " next_to_watch <%x>\n"
3893 " jiffies <%lx>\n"
3894 " next_to_watch.status <%x>\n",
3895 (unsigned long)(tx_ring - adapter->tx_ring),
3896 readl(hw->hw_addr + tx_ring->tdh),
3897 readl(hw->hw_addr + tx_ring->tdt),
3898 tx_ring->next_to_use,
3899 tx_ring->next_to_clean,
3900 tx_ring->buffer_info[eop].time_stamp,
3901 eop,
3902 jiffies,
3903 eop_desc->upper.fields.status);
3904 e1000_dump(adapter);
3905 netif_stop_queue(netdev);
3906 }
3907 }
3908 adapter->total_tx_bytes += total_tx_bytes;
3909 adapter->total_tx_packets += total_tx_packets;
3910 netdev->stats.tx_bytes += total_tx_bytes;
3911 netdev->stats.tx_packets += total_tx_packets;
3912 return count < tx_ring->count;
3913}
3914
3915/**
3916 * e1000_rx_checksum - Receive Checksum Offload for 82543
3917 * @adapter: board private structure
3918 * @status_err: receive descriptor status and error fields
3919 * @csum: receive descriptor csum field
3920 * @sk_buff: socket buffer with received data
3921 **/
3922static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3923 u32 csum, struct sk_buff *skb)
3924{
3925 struct e1000_hw *hw = &adapter->hw;
3926 u16 status = (u16)status_err;
3927 u8 errors = (u8)(status_err >> 24);
3928
3929 skb_checksum_none_assert(skb);
3930
3931 /* 82543 or newer only */
3932 if (unlikely(hw->mac_type < e1000_82543)) return;
3933 /* Ignore Checksum bit is set */
3934 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3935 /* TCP/UDP checksum error bit is set */
3936 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3937 /* let the stack verify checksum errors */
3938 adapter->hw_csum_err++;
3939 return;
3940 }
3941 /* TCP/UDP Checksum has not been calculated */
3942 if (!(status & E1000_RXD_STAT_TCPCS))
3943 return;
3944
3945 /* It must be a TCP or UDP packet with a valid checksum */
3946 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3947 /* TCP checksum is good */
3948 skb->ip_summed = CHECKSUM_UNNECESSARY;
3949 }
3950 adapter->hw_csum_good++;
3951}
3952
3953/**
3954 * e1000_consume_page - helper function
3955 **/
3956static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3957 u16 length)
3958{
3959 bi->page = NULL;
3960 skb->len += length;
3961 skb->data_len += length;
3962 skb->truesize += PAGE_SIZE;
3963}
3964
3965/**
3966 * e1000_receive_skb - helper function to handle rx indications
3967 * @adapter: board private structure
3968 * @status: descriptor status field as written by hardware
3969 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3970 * @skb: pointer to sk_buff to be indicated to stack
3971 */
3972static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3973 __le16 vlan, struct sk_buff *skb)
3974{
3975 skb->protocol = eth_type_trans(skb, adapter->netdev);
3976
3977 if (status & E1000_RXD_STAT_VP) {
3978 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3979
3980 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
3981 }
3982 napi_gro_receive(&adapter->napi, skb);
3983}
3984
3985/**
3986 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3987 * @adapter: board private structure
3988 * @rx_ring: ring to clean
3989 * @work_done: amount of napi work completed this call
3990 * @work_to_do: max amount of work allowed for this call to do
3991 *
3992 * the return value indicates whether actual cleaning was done, there
3993 * is no guarantee that everything was cleaned
3994 */
3995static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3996 struct e1000_rx_ring *rx_ring,
3997 int *work_done, int work_to_do)
3998{
3999 struct e1000_hw *hw = &adapter->hw;
4000 struct net_device *netdev = adapter->netdev;
4001 struct pci_dev *pdev = adapter->pdev;
4002 struct e1000_rx_desc *rx_desc, *next_rxd;
4003 struct e1000_buffer *buffer_info, *next_buffer;
4004 unsigned long irq_flags;
4005 u32 length;
4006 unsigned int i;
4007 int cleaned_count = 0;
4008 bool cleaned = false;
4009 unsigned int total_rx_bytes=0, total_rx_packets=0;
4010
4011 i = rx_ring->next_to_clean;
4012 rx_desc = E1000_RX_DESC(*rx_ring, i);
4013 buffer_info = &rx_ring->buffer_info[i];
4014
4015 while (rx_desc->status & E1000_RXD_STAT_DD) {
4016 struct sk_buff *skb;
4017 u8 status;
4018
4019 if (*work_done >= work_to_do)
4020 break;
4021 (*work_done)++;
4022 rmb(); /* read descriptor and rx_buffer_info after status DD */
4023
4024 status = rx_desc->status;
4025 skb = buffer_info->skb;
4026 buffer_info->skb = NULL;
4027
4028 if (++i == rx_ring->count) i = 0;
4029 next_rxd = E1000_RX_DESC(*rx_ring, i);
4030 prefetch(next_rxd);
4031
4032 next_buffer = &rx_ring->buffer_info[i];
4033
4034 cleaned = true;
4035 cleaned_count++;
4036 dma_unmap_page(&pdev->dev, buffer_info->dma,
4037 buffer_info->length, DMA_FROM_DEVICE);
4038 buffer_info->dma = 0;
4039
4040 length = le16_to_cpu(rx_desc->length);
4041
4042 /* errors is only valid for DD + EOP descriptors */
4043 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4044 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4045 u8 *mapped;
4046 u8 last_byte;
4047
4048 mapped = page_address(buffer_info->page);
4049 last_byte = *(mapped + length - 1);
4050 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4051 last_byte)) {
4052 spin_lock_irqsave(&adapter->stats_lock,
4053 irq_flags);
4054 e1000_tbi_adjust_stats(hw, &adapter->stats,
4055 length, mapped);
4056 spin_unlock_irqrestore(&adapter->stats_lock,
4057 irq_flags);
4058 length--;
4059 } else {
4060 if (netdev->features & NETIF_F_RXALL)
4061 goto process_skb;
4062 /* recycle both page and skb */
4063 buffer_info->skb = skb;
4064 /* an error means any chain goes out the window
4065 * too
4066 */
4067 if (rx_ring->rx_skb_top)
4068 dev_kfree_skb(rx_ring->rx_skb_top);
4069 rx_ring->rx_skb_top = NULL;
4070 goto next_desc;
4071 }
4072 }
4073
4074#define rxtop rx_ring->rx_skb_top
4075process_skb:
4076 if (!(status & E1000_RXD_STAT_EOP)) {
4077 /* this descriptor is only the beginning (or middle) */
4078 if (!rxtop) {
4079 /* this is the beginning of a chain */
4080 rxtop = skb;
4081 skb_fill_page_desc(rxtop, 0, buffer_info->page,
4082 0, length);
4083 } else {
4084 /* this is the middle of a chain */
4085 skb_fill_page_desc(rxtop,
4086 skb_shinfo(rxtop)->nr_frags,
4087 buffer_info->page, 0, length);
4088 /* re-use the skb, only consumed the page */
4089 buffer_info->skb = skb;
4090 }
4091 e1000_consume_page(buffer_info, rxtop, length);
4092 goto next_desc;
4093 } else {
4094 if (rxtop) {
4095 /* end of the chain */
4096 skb_fill_page_desc(rxtop,
4097 skb_shinfo(rxtop)->nr_frags,
4098 buffer_info->page, 0, length);
4099 /* re-use the current skb, we only consumed the
4100 * page
4101 */
4102 buffer_info->skb = skb;
4103 skb = rxtop;
4104 rxtop = NULL;
4105 e1000_consume_page(buffer_info, skb, length);
4106 } else {
4107 /* no chain, got EOP, this buf is the packet
4108 * copybreak to save the put_page/alloc_page
4109 */
4110 if (length <= copybreak &&
4111 skb_tailroom(skb) >= length) {
4112 u8 *vaddr;
4113 vaddr = kmap_atomic(buffer_info->page);
4114 memcpy(skb_tail_pointer(skb), vaddr,
4115 length);
4116 kunmap_atomic(vaddr);
4117 /* re-use the page, so don't erase
4118 * buffer_info->page
4119 */
4120 skb_put(skb, length);
4121 } else {
4122 skb_fill_page_desc(skb, 0,
4123 buffer_info->page, 0,
4124 length);
4125 e1000_consume_page(buffer_info, skb,
4126 length);
4127 }
4128 }
4129 }
4130
4131 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4132 e1000_rx_checksum(adapter,
4133 (u32)(status) |
4134 ((u32)(rx_desc->errors) << 24),
4135 le16_to_cpu(rx_desc->csum), skb);
4136
4137 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4138 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4139 pskb_trim(skb, skb->len - 4);
4140 total_rx_packets++;
4141
4142 /* eth type trans needs skb->data to point to something */
4143 if (!pskb_may_pull(skb, ETH_HLEN)) {
4144 e_err(drv, "pskb_may_pull failed.\n");
4145 dev_kfree_skb(skb);
4146 goto next_desc;
4147 }
4148
4149 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4150
4151next_desc:
4152 rx_desc->status = 0;
4153
4154 /* return some buffers to hardware, one at a time is too slow */
4155 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4156 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4157 cleaned_count = 0;
4158 }
4159
4160 /* use prefetched values */
4161 rx_desc = next_rxd;
4162 buffer_info = next_buffer;
4163 }
4164 rx_ring->next_to_clean = i;
4165
4166 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4167 if (cleaned_count)
4168 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4169
4170 adapter->total_rx_packets += total_rx_packets;
4171 adapter->total_rx_bytes += total_rx_bytes;
4172 netdev->stats.rx_bytes += total_rx_bytes;
4173 netdev->stats.rx_packets += total_rx_packets;
4174 return cleaned;
4175}
4176
4177/* this should improve performance for small packets with large amounts
4178 * of reassembly being done in the stack
4179 */
4180static void e1000_check_copybreak(struct net_device *netdev,
4181 struct e1000_buffer *buffer_info,
4182 u32 length, struct sk_buff **skb)
4183{
4184 struct sk_buff *new_skb;
4185
4186 if (length > copybreak)
4187 return;
4188
4189 new_skb = netdev_alloc_skb_ip_align(netdev, length);
4190 if (!new_skb)
4191 return;
4192
4193 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4194 (*skb)->data - NET_IP_ALIGN,
4195 length + NET_IP_ALIGN);
4196 /* save the skb in buffer_info as good */
4197 buffer_info->skb = *skb;
4198 *skb = new_skb;
4199}
4200
4201/**
4202 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4203 * @adapter: board private structure
4204 * @rx_ring: ring to clean
4205 * @work_done: amount of napi work completed this call
4206 * @work_to_do: max amount of work allowed for this call to do
4207 */
4208static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4209 struct e1000_rx_ring *rx_ring,
4210 int *work_done, int work_to_do)
4211{
4212 struct e1000_hw *hw = &adapter->hw;
4213 struct net_device *netdev = adapter->netdev;
4214 struct pci_dev *pdev = adapter->pdev;
4215 struct e1000_rx_desc *rx_desc, *next_rxd;
4216 struct e1000_buffer *buffer_info, *next_buffer;
4217 unsigned long flags;
4218 u32 length;
4219 unsigned int i;
4220 int cleaned_count = 0;
4221 bool cleaned = false;
4222 unsigned int total_rx_bytes=0, total_rx_packets=0;
4223
4224 i = rx_ring->next_to_clean;
4225 rx_desc = E1000_RX_DESC(*rx_ring, i);
4226 buffer_info = &rx_ring->buffer_info[i];
4227
4228 while (rx_desc->status & E1000_RXD_STAT_DD) {
4229 struct sk_buff *skb;
4230 u8 status;
4231
4232 if (*work_done >= work_to_do)
4233 break;
4234 (*work_done)++;
4235 rmb(); /* read descriptor and rx_buffer_info after status DD */
4236
4237 status = rx_desc->status;
4238 skb = buffer_info->skb;
4239 buffer_info->skb = NULL;
4240
4241 prefetch(skb->data - NET_IP_ALIGN);
4242
4243 if (++i == rx_ring->count) i = 0;
4244 next_rxd = E1000_RX_DESC(*rx_ring, i);
4245 prefetch(next_rxd);
4246
4247 next_buffer = &rx_ring->buffer_info[i];
4248
4249 cleaned = true;
4250 cleaned_count++;
4251 dma_unmap_single(&pdev->dev, buffer_info->dma,
4252 buffer_info->length, DMA_FROM_DEVICE);
4253 buffer_info->dma = 0;
4254
4255 length = le16_to_cpu(rx_desc->length);
4256 /* !EOP means multiple descriptors were used to store a single
4257 * packet, if thats the case we need to toss it. In fact, we
4258 * to toss every packet with the EOP bit clear and the next
4259 * frame that _does_ have the EOP bit set, as it is by
4260 * definition only a frame fragment
4261 */
4262 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4263 adapter->discarding = true;
4264
4265 if (adapter->discarding) {
4266 /* All receives must fit into a single buffer */
4267 e_dbg("Receive packet consumed multiple buffers\n");
4268 /* recycle */
4269 buffer_info->skb = skb;
4270 if (status & E1000_RXD_STAT_EOP)
4271 adapter->discarding = false;
4272 goto next_desc;
4273 }
4274
4275 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4276 u8 last_byte = *(skb->data + length - 1);
4277 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4278 last_byte)) {
4279 spin_lock_irqsave(&adapter->stats_lock, flags);
4280 e1000_tbi_adjust_stats(hw, &adapter->stats,
4281 length, skb->data);
4282 spin_unlock_irqrestore(&adapter->stats_lock,
4283 flags);
4284 length--;
4285 } else {
4286 if (netdev->features & NETIF_F_RXALL)
4287 goto process_skb;
4288 /* recycle */
4289 buffer_info->skb = skb;
4290 goto next_desc;
4291 }
4292 }
4293
4294process_skb:
4295 total_rx_bytes += (length - 4); /* don't count FCS */
4296 total_rx_packets++;
4297
4298 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4299 /* adjust length to remove Ethernet CRC, this must be
4300 * done after the TBI_ACCEPT workaround above
4301 */
4302 length -= 4;
4303
4304 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4305
4306 skb_put(skb, length);
4307
4308 /* Receive Checksum Offload */
4309 e1000_rx_checksum(adapter,
4310 (u32)(status) |
4311 ((u32)(rx_desc->errors) << 24),
4312 le16_to_cpu(rx_desc->csum), skb);
4313
4314 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4315
4316next_desc:
4317 rx_desc->status = 0;
4318
4319 /* return some buffers to hardware, one at a time is too slow */
4320 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4321 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4322 cleaned_count = 0;
4323 }
4324
4325 /* use prefetched values */
4326 rx_desc = next_rxd;
4327 buffer_info = next_buffer;
4328 }
4329 rx_ring->next_to_clean = i;
4330
4331 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4332 if (cleaned_count)
4333 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4334
4335 adapter->total_rx_packets += total_rx_packets;
4336 adapter->total_rx_bytes += total_rx_bytes;
4337 netdev->stats.rx_bytes += total_rx_bytes;
4338 netdev->stats.rx_packets += total_rx_packets;
4339 return cleaned;
4340}
4341
4342/**
4343 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4344 * @adapter: address of board private structure
4345 * @rx_ring: pointer to receive ring structure
4346 * @cleaned_count: number of buffers to allocate this pass
4347 **/
4348static void
4349e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4350 struct e1000_rx_ring *rx_ring, int cleaned_count)
4351{
4352 struct net_device *netdev = adapter->netdev;
4353 struct pci_dev *pdev = adapter->pdev;
4354 struct e1000_rx_desc *rx_desc;
4355 struct e1000_buffer *buffer_info;
4356 struct sk_buff *skb;
4357 unsigned int i;
4358 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4359
4360 i = rx_ring->next_to_use;
4361 buffer_info = &rx_ring->buffer_info[i];
4362
4363 while (cleaned_count--) {
4364 skb = buffer_info->skb;
4365 if (skb) {
4366 skb_trim(skb, 0);
4367 goto check_page;
4368 }
4369
4370 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4371 if (unlikely(!skb)) {
4372 /* Better luck next round */
4373 adapter->alloc_rx_buff_failed++;
4374 break;
4375 }
4376
4377 buffer_info->skb = skb;
4378 buffer_info->length = adapter->rx_buffer_len;
4379check_page:
4380 /* allocate a new page if necessary */
4381 if (!buffer_info->page) {
4382 buffer_info->page = alloc_page(GFP_ATOMIC);
4383 if (unlikely(!buffer_info->page)) {
4384 adapter->alloc_rx_buff_failed++;
4385 break;
4386 }
4387 }
4388
4389 if (!buffer_info->dma) {
4390 buffer_info->dma = dma_map_page(&pdev->dev,
4391 buffer_info->page, 0,
4392 buffer_info->length,
4393 DMA_FROM_DEVICE);
4394 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4395 put_page(buffer_info->page);
4396 dev_kfree_skb(skb);
4397 buffer_info->page = NULL;
4398 buffer_info->skb = NULL;
4399 buffer_info->dma = 0;
4400 adapter->alloc_rx_buff_failed++;
4401 break; /* while !buffer_info->skb */
4402 }
4403 }
4404
4405 rx_desc = E1000_RX_DESC(*rx_ring, i);
4406 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4407
4408 if (unlikely(++i == rx_ring->count))
4409 i = 0;
4410 buffer_info = &rx_ring->buffer_info[i];
4411 }
4412
4413 if (likely(rx_ring->next_to_use != i)) {
4414 rx_ring->next_to_use = i;
4415 if (unlikely(i-- == 0))
4416 i = (rx_ring->count - 1);
4417
4418 /* Force memory writes to complete before letting h/w
4419 * know there are new descriptors to fetch. (Only
4420 * applicable for weak-ordered memory model archs,
4421 * such as IA-64).
4422 */
4423 wmb();
4424 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4425 }
4426}
4427
4428/**
4429 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4430 * @adapter: address of board private structure
4431 **/
4432static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4433 struct e1000_rx_ring *rx_ring,
4434 int cleaned_count)
4435{
4436 struct e1000_hw *hw = &adapter->hw;
4437 struct net_device *netdev = adapter->netdev;
4438 struct pci_dev *pdev = adapter->pdev;
4439 struct e1000_rx_desc *rx_desc;
4440 struct e1000_buffer *buffer_info;
4441 struct sk_buff *skb;
4442 unsigned int i;
4443 unsigned int bufsz = adapter->rx_buffer_len;
4444
4445 i = rx_ring->next_to_use;
4446 buffer_info = &rx_ring->buffer_info[i];
4447
4448 while (cleaned_count--) {
4449 skb = buffer_info->skb;
4450 if (skb) {
4451 skb_trim(skb, 0);
4452 goto map_skb;
4453 }
4454
4455 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4456 if (unlikely(!skb)) {
4457 /* Better luck next round */
4458 adapter->alloc_rx_buff_failed++;
4459 break;
4460 }
4461
4462 /* Fix for errata 23, can't cross 64kB boundary */
4463 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4464 struct sk_buff *oldskb = skb;
4465 e_err(rx_err, "skb align check failed: %u bytes at "
4466 "%p\n", bufsz, skb->data);
4467 /* Try again, without freeing the previous */
4468 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4469 /* Failed allocation, critical failure */
4470 if (!skb) {
4471 dev_kfree_skb(oldskb);
4472 adapter->alloc_rx_buff_failed++;
4473 break;
4474 }
4475
4476 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4477 /* give up */
4478 dev_kfree_skb(skb);
4479 dev_kfree_skb(oldskb);
4480 adapter->alloc_rx_buff_failed++;
4481 break; /* while !buffer_info->skb */
4482 }
4483
4484 /* Use new allocation */
4485 dev_kfree_skb(oldskb);
4486 }
4487 buffer_info->skb = skb;
4488 buffer_info->length = adapter->rx_buffer_len;
4489map_skb:
4490 buffer_info->dma = dma_map_single(&pdev->dev,
4491 skb->data,
4492 buffer_info->length,
4493 DMA_FROM_DEVICE);
4494 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4495 dev_kfree_skb(skb);
4496 buffer_info->skb = NULL;
4497 buffer_info->dma = 0;
4498 adapter->alloc_rx_buff_failed++;
4499 break; /* while !buffer_info->skb */
4500 }
4501
4502 /* XXX if it was allocated cleanly it will never map to a
4503 * boundary crossing
4504 */
4505
4506 /* Fix for errata 23, can't cross 64kB boundary */
4507 if (!e1000_check_64k_bound(adapter,
4508 (void *)(unsigned long)buffer_info->dma,
4509 adapter->rx_buffer_len)) {
4510 e_err(rx_err, "dma align check failed: %u bytes at "
4511 "%p\n", adapter->rx_buffer_len,
4512 (void *)(unsigned long)buffer_info->dma);
4513 dev_kfree_skb(skb);
4514 buffer_info->skb = NULL;
4515
4516 dma_unmap_single(&pdev->dev, buffer_info->dma,
4517 adapter->rx_buffer_len,
4518 DMA_FROM_DEVICE);
4519 buffer_info->dma = 0;
4520
4521 adapter->alloc_rx_buff_failed++;
4522 break; /* while !buffer_info->skb */
4523 }
4524 rx_desc = E1000_RX_DESC(*rx_ring, i);
4525 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4526
4527 if (unlikely(++i == rx_ring->count))
4528 i = 0;
4529 buffer_info = &rx_ring->buffer_info[i];
4530 }
4531
4532 if (likely(rx_ring->next_to_use != i)) {
4533 rx_ring->next_to_use = i;
4534 if (unlikely(i-- == 0))
4535 i = (rx_ring->count - 1);
4536
4537 /* Force memory writes to complete before letting h/w
4538 * know there are new descriptors to fetch. (Only
4539 * applicable for weak-ordered memory model archs,
4540 * such as IA-64).
4541 */
4542 wmb();
4543 writel(i, hw->hw_addr + rx_ring->rdt);
4544 }
4545}
4546
4547/**
4548 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4549 * @adapter:
4550 **/
4551static void e1000_smartspeed(struct e1000_adapter *adapter)
4552{
4553 struct e1000_hw *hw = &adapter->hw;
4554 u16 phy_status;
4555 u16 phy_ctrl;
4556
4557 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4558 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4559 return;
4560
4561 if (adapter->smartspeed == 0) {
4562 /* If Master/Slave config fault is asserted twice,
4563 * we assume back-to-back
4564 */
4565 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4566 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4567 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4568 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4569 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4570 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4571 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4572 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4573 phy_ctrl);
4574 adapter->smartspeed++;
4575 if (!e1000_phy_setup_autoneg(hw) &&
4576 !e1000_read_phy_reg(hw, PHY_CTRL,
4577 &phy_ctrl)) {
4578 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4579 MII_CR_RESTART_AUTO_NEG);
4580 e1000_write_phy_reg(hw, PHY_CTRL,
4581 phy_ctrl);
4582 }
4583 }
4584 return;
4585 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4586 /* If still no link, perhaps using 2/3 pair cable */
4587 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4588 phy_ctrl |= CR_1000T_MS_ENABLE;
4589 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4590 if (!e1000_phy_setup_autoneg(hw) &&
4591 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4592 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4593 MII_CR_RESTART_AUTO_NEG);
4594 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4595 }
4596 }
4597 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4598 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4599 adapter->smartspeed = 0;
4600}
4601
4602/**
4603 * e1000_ioctl -
4604 * @netdev:
4605 * @ifreq:
4606 * @cmd:
4607 **/
4608static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4609{
4610 switch (cmd) {
4611 case SIOCGMIIPHY:
4612 case SIOCGMIIREG:
4613 case SIOCSMIIREG:
4614 return e1000_mii_ioctl(netdev, ifr, cmd);
4615 default:
4616 return -EOPNOTSUPP;
4617 }
4618}
4619
4620/**
4621 * e1000_mii_ioctl -
4622 * @netdev:
4623 * @ifreq:
4624 * @cmd:
4625 **/
4626static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4627 int cmd)
4628{
4629 struct e1000_adapter *adapter = netdev_priv(netdev);
4630 struct e1000_hw *hw = &adapter->hw;
4631 struct mii_ioctl_data *data = if_mii(ifr);
4632 int retval;
4633 u16 mii_reg;
4634 unsigned long flags;
4635
4636 if (hw->media_type != e1000_media_type_copper)
4637 return -EOPNOTSUPP;
4638
4639 switch (cmd) {
4640 case SIOCGMIIPHY:
4641 data->phy_id = hw->phy_addr;
4642 break;
4643 case SIOCGMIIREG:
4644 spin_lock_irqsave(&adapter->stats_lock, flags);
4645 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4646 &data->val_out)) {
4647 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4648 return -EIO;
4649 }
4650 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4651 break;
4652 case SIOCSMIIREG:
4653 if (data->reg_num & ~(0x1F))
4654 return -EFAULT;
4655 mii_reg = data->val_in;
4656 spin_lock_irqsave(&adapter->stats_lock, flags);
4657 if (e1000_write_phy_reg(hw, data->reg_num,
4658 mii_reg)) {
4659 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4660 return -EIO;
4661 }
4662 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4663 if (hw->media_type == e1000_media_type_copper) {
4664 switch (data->reg_num) {
4665 case PHY_CTRL:
4666 if (mii_reg & MII_CR_POWER_DOWN)
4667 break;
4668 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4669 hw->autoneg = 1;
4670 hw->autoneg_advertised = 0x2F;
4671 } else {
4672 u32 speed;
4673 if (mii_reg & 0x40)
4674 speed = SPEED_1000;
4675 else if (mii_reg & 0x2000)
4676 speed = SPEED_100;
4677 else
4678 speed = SPEED_10;
4679 retval = e1000_set_spd_dplx(
4680 adapter, speed,
4681 ((mii_reg & 0x100)
4682 ? DUPLEX_FULL :
4683 DUPLEX_HALF));
4684 if (retval)
4685 return retval;
4686 }
4687 if (netif_running(adapter->netdev))
4688 e1000_reinit_locked(adapter);
4689 else
4690 e1000_reset(adapter);
4691 break;
4692 case M88E1000_PHY_SPEC_CTRL:
4693 case M88E1000_EXT_PHY_SPEC_CTRL:
4694 if (e1000_phy_reset(hw))
4695 return -EIO;
4696 break;
4697 }
4698 } else {
4699 switch (data->reg_num) {
4700 case PHY_CTRL:
4701 if (mii_reg & MII_CR_POWER_DOWN)
4702 break;
4703 if (netif_running(adapter->netdev))
4704 e1000_reinit_locked(adapter);
4705 else
4706 e1000_reset(adapter);
4707 break;
4708 }
4709 }
4710 break;
4711 default:
4712 return -EOPNOTSUPP;
4713 }
4714 return E1000_SUCCESS;
4715}
4716
4717void e1000_pci_set_mwi(struct e1000_hw *hw)
4718{
4719 struct e1000_adapter *adapter = hw->back;
4720 int ret_val = pci_set_mwi(adapter->pdev);
4721
4722 if (ret_val)
4723 e_err(probe, "Error in setting MWI\n");
4724}
4725
4726void e1000_pci_clear_mwi(struct e1000_hw *hw)
4727{
4728 struct e1000_adapter *adapter = hw->back;
4729
4730 pci_clear_mwi(adapter->pdev);
4731}
4732
4733int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4734{
4735 struct e1000_adapter *adapter = hw->back;
4736 return pcix_get_mmrbc(adapter->pdev);
4737}
4738
4739void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4740{
4741 struct e1000_adapter *adapter = hw->back;
4742 pcix_set_mmrbc(adapter->pdev, mmrbc);
4743}
4744
4745void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4746{
4747 outl(value, port);
4748}
4749
4750static bool e1000_vlan_used(struct e1000_adapter *adapter)
4751{
4752 u16 vid;
4753
4754 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4755 return true;
4756 return false;
4757}
4758
4759static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4760 netdev_features_t features)
4761{
4762 struct e1000_hw *hw = &adapter->hw;
4763 u32 ctrl;
4764
4765 ctrl = er32(CTRL);
4766 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4767 /* enable VLAN tag insert/strip */
4768 ctrl |= E1000_CTRL_VME;
4769 } else {
4770 /* disable VLAN tag insert/strip */
4771 ctrl &= ~E1000_CTRL_VME;
4772 }
4773 ew32(CTRL, ctrl);
4774}
4775static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4776 bool filter_on)
4777{
4778 struct e1000_hw *hw = &adapter->hw;
4779 u32 rctl;
4780
4781 if (!test_bit(__E1000_DOWN, &adapter->flags))
4782 e1000_irq_disable(adapter);
4783
4784 __e1000_vlan_mode(adapter, adapter->netdev->features);
4785 if (filter_on) {
4786 /* enable VLAN receive filtering */
4787 rctl = er32(RCTL);
4788 rctl &= ~E1000_RCTL_CFIEN;
4789 if (!(adapter->netdev->flags & IFF_PROMISC))
4790 rctl |= E1000_RCTL_VFE;
4791 ew32(RCTL, rctl);
4792 e1000_update_mng_vlan(adapter);
4793 } else {
4794 /* disable VLAN receive filtering */
4795 rctl = er32(RCTL);
4796 rctl &= ~E1000_RCTL_VFE;
4797 ew32(RCTL, rctl);
4798 }
4799
4800 if (!test_bit(__E1000_DOWN, &adapter->flags))
4801 e1000_irq_enable(adapter);
4802}
4803
4804static void e1000_vlan_mode(struct net_device *netdev,
4805 netdev_features_t features)
4806{
4807 struct e1000_adapter *adapter = netdev_priv(netdev);
4808
4809 if (!test_bit(__E1000_DOWN, &adapter->flags))
4810 e1000_irq_disable(adapter);
4811
4812 __e1000_vlan_mode(adapter, features);
4813
4814 if (!test_bit(__E1000_DOWN, &adapter->flags))
4815 e1000_irq_enable(adapter);
4816}
4817
4818static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4819 __be16 proto, u16 vid)
4820{
4821 struct e1000_adapter *adapter = netdev_priv(netdev);
4822 struct e1000_hw *hw = &adapter->hw;
4823 u32 vfta, index;
4824
4825 if ((hw->mng_cookie.status &
4826 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4827 (vid == adapter->mng_vlan_id))
4828 return 0;
4829
4830 if (!e1000_vlan_used(adapter))
4831 e1000_vlan_filter_on_off(adapter, true);
4832
4833 /* add VID to filter table */
4834 index = (vid >> 5) & 0x7F;
4835 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4836 vfta |= (1 << (vid & 0x1F));
4837 e1000_write_vfta(hw, index, vfta);
4838
4839 set_bit(vid, adapter->active_vlans);
4840
4841 return 0;
4842}
4843
4844static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4845 __be16 proto, u16 vid)
4846{
4847 struct e1000_adapter *adapter = netdev_priv(netdev);
4848 struct e1000_hw *hw = &adapter->hw;
4849 u32 vfta, index;
4850
4851 if (!test_bit(__E1000_DOWN, &adapter->flags))
4852 e1000_irq_disable(adapter);
4853 if (!test_bit(__E1000_DOWN, &adapter->flags))
4854 e1000_irq_enable(adapter);
4855
4856 /* remove VID from filter table */
4857 index = (vid >> 5) & 0x7F;
4858 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4859 vfta &= ~(1 << (vid & 0x1F));
4860 e1000_write_vfta(hw, index, vfta);
4861
4862 clear_bit(vid, adapter->active_vlans);
4863
4864 if (!e1000_vlan_used(adapter))
4865 e1000_vlan_filter_on_off(adapter, false);
4866
4867 return 0;
4868}
4869
4870static void e1000_restore_vlan(struct e1000_adapter *adapter)
4871{
4872 u16 vid;
4873
4874 if (!e1000_vlan_used(adapter))
4875 return;
4876
4877 e1000_vlan_filter_on_off(adapter, true);
4878 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4879 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
4880}
4881
4882int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4883{
4884 struct e1000_hw *hw = &adapter->hw;
4885
4886 hw->autoneg = 0;
4887
4888 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4889 * for the switch() below to work
4890 */
4891 if ((spd & 1) || (dplx & ~1))
4892 goto err_inval;
4893
4894 /* Fiber NICs only allow 1000 gbps Full duplex */
4895 if ((hw->media_type == e1000_media_type_fiber) &&
4896 spd != SPEED_1000 &&
4897 dplx != DUPLEX_FULL)
4898 goto err_inval;
4899
4900 switch (spd + dplx) {
4901 case SPEED_10 + DUPLEX_HALF:
4902 hw->forced_speed_duplex = e1000_10_half;
4903 break;
4904 case SPEED_10 + DUPLEX_FULL:
4905 hw->forced_speed_duplex = e1000_10_full;
4906 break;
4907 case SPEED_100 + DUPLEX_HALF:
4908 hw->forced_speed_duplex = e1000_100_half;
4909 break;
4910 case SPEED_100 + DUPLEX_FULL:
4911 hw->forced_speed_duplex = e1000_100_full;
4912 break;
4913 case SPEED_1000 + DUPLEX_FULL:
4914 hw->autoneg = 1;
4915 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4916 break;
4917 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4918 default:
4919 goto err_inval;
4920 }
4921
4922 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4923 hw->mdix = AUTO_ALL_MODES;
4924
4925 return 0;
4926
4927err_inval:
4928 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4929 return -EINVAL;
4930}
4931
4932static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4933{
4934 struct net_device *netdev = pci_get_drvdata(pdev);
4935 struct e1000_adapter *adapter = netdev_priv(netdev);
4936 struct e1000_hw *hw = &adapter->hw;
4937 u32 ctrl, ctrl_ext, rctl, status;
4938 u32 wufc = adapter->wol;
4939#ifdef CONFIG_PM
4940 int retval = 0;
4941#endif
4942
4943 netif_device_detach(netdev);
4944
4945 if (netif_running(netdev)) {
4946 int count = E1000_CHECK_RESET_COUNT;
4947
4948 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
4949 usleep_range(10000, 20000);
4950
4951 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4952 e1000_down(adapter);
4953 }
4954
4955#ifdef CONFIG_PM
4956 retval = pci_save_state(pdev);
4957 if (retval)
4958 return retval;
4959#endif
4960
4961 status = er32(STATUS);
4962 if (status & E1000_STATUS_LU)
4963 wufc &= ~E1000_WUFC_LNKC;
4964
4965 if (wufc) {
4966 e1000_setup_rctl(adapter);
4967 e1000_set_rx_mode(netdev);
4968
4969 rctl = er32(RCTL);
4970
4971 /* turn on all-multi mode if wake on multicast is enabled */
4972 if (wufc & E1000_WUFC_MC)
4973 rctl |= E1000_RCTL_MPE;
4974
4975 /* enable receives in the hardware */
4976 ew32(RCTL, rctl | E1000_RCTL_EN);
4977
4978 if (hw->mac_type >= e1000_82540) {
4979 ctrl = er32(CTRL);
4980 /* advertise wake from D3Cold */
4981 #define E1000_CTRL_ADVD3WUC 0x00100000
4982 /* phy power management enable */
4983 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4984 ctrl |= E1000_CTRL_ADVD3WUC |
4985 E1000_CTRL_EN_PHY_PWR_MGMT;
4986 ew32(CTRL, ctrl);
4987 }
4988
4989 if (hw->media_type == e1000_media_type_fiber ||
4990 hw->media_type == e1000_media_type_internal_serdes) {
4991 /* keep the laser running in D3 */
4992 ctrl_ext = er32(CTRL_EXT);
4993 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4994 ew32(CTRL_EXT, ctrl_ext);
4995 }
4996
4997 ew32(WUC, E1000_WUC_PME_EN);
4998 ew32(WUFC, wufc);
4999 } else {
5000 ew32(WUC, 0);
5001 ew32(WUFC, 0);
5002 }
5003
5004 e1000_release_manageability(adapter);
5005
5006 *enable_wake = !!wufc;
5007
5008 /* make sure adapter isn't asleep if manageability is enabled */
5009 if (adapter->en_mng_pt)
5010 *enable_wake = true;
5011
5012 if (netif_running(netdev))
5013 e1000_free_irq(adapter);
5014
5015 pci_disable_device(pdev);
5016
5017 return 0;
5018}
5019
5020#ifdef CONFIG_PM
5021static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5022{
5023 int retval;
5024 bool wake;
5025
5026 retval = __e1000_shutdown(pdev, &wake);
5027 if (retval)
5028 return retval;
5029
5030 if (wake) {
5031 pci_prepare_to_sleep(pdev);
5032 } else {
5033 pci_wake_from_d3(pdev, false);
5034 pci_set_power_state(pdev, PCI_D3hot);
5035 }
5036
5037 return 0;
5038}
5039
5040static int e1000_resume(struct pci_dev *pdev)
5041{
5042 struct net_device *netdev = pci_get_drvdata(pdev);
5043 struct e1000_adapter *adapter = netdev_priv(netdev);
5044 struct e1000_hw *hw = &adapter->hw;
5045 u32 err;
5046
5047 pci_set_power_state(pdev, PCI_D0);
5048 pci_restore_state(pdev);
5049 pci_save_state(pdev);
5050
5051 if (adapter->need_ioport)
5052 err = pci_enable_device(pdev);
5053 else
5054 err = pci_enable_device_mem(pdev);
5055 if (err) {
5056 pr_err("Cannot enable PCI device from suspend\n");
5057 return err;
5058 }
5059 pci_set_master(pdev);
5060
5061 pci_enable_wake(pdev, PCI_D3hot, 0);
5062 pci_enable_wake(pdev, PCI_D3cold, 0);
5063
5064 if (netif_running(netdev)) {
5065 err = e1000_request_irq(adapter);
5066 if (err)
5067 return err;
5068 }
5069
5070 e1000_power_up_phy(adapter);
5071 e1000_reset(adapter);
5072 ew32(WUS, ~0);
5073
5074 e1000_init_manageability(adapter);
5075
5076 if (netif_running(netdev))
5077 e1000_up(adapter);
5078
5079 netif_device_attach(netdev);
5080
5081 return 0;
5082}
5083#endif
5084
5085static void e1000_shutdown(struct pci_dev *pdev)
5086{
5087 bool wake;
5088
5089 __e1000_shutdown(pdev, &wake);
5090
5091 if (system_state == SYSTEM_POWER_OFF) {
5092 pci_wake_from_d3(pdev, wake);
5093 pci_set_power_state(pdev, PCI_D3hot);
5094 }
5095}
5096
5097#ifdef CONFIG_NET_POLL_CONTROLLER
5098/* Polling 'interrupt' - used by things like netconsole to send skbs
5099 * without having to re-enable interrupts. It's not called while
5100 * the interrupt routine is executing.
5101 */
5102static void e1000_netpoll(struct net_device *netdev)
5103{
5104 struct e1000_adapter *adapter = netdev_priv(netdev);
5105
5106 disable_irq(adapter->pdev->irq);
5107 e1000_intr(adapter->pdev->irq, netdev);
5108 enable_irq(adapter->pdev->irq);
5109}
5110#endif
5111
5112/**
5113 * e1000_io_error_detected - called when PCI error is detected
5114 * @pdev: Pointer to PCI device
5115 * @state: The current pci connection state
5116 *
5117 * This function is called after a PCI bus error affecting
5118 * this device has been detected.
5119 */
5120static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5121 pci_channel_state_t state)
5122{
5123 struct net_device *netdev = pci_get_drvdata(pdev);
5124 struct e1000_adapter *adapter = netdev_priv(netdev);
5125
5126 netif_device_detach(netdev);
5127
5128 if (state == pci_channel_io_perm_failure)
5129 return PCI_ERS_RESULT_DISCONNECT;
5130
5131 if (netif_running(netdev))
5132 e1000_down(adapter);
5133 pci_disable_device(pdev);
5134
5135 /* Request a slot slot reset. */
5136 return PCI_ERS_RESULT_NEED_RESET;
5137}
5138
5139/**
5140 * e1000_io_slot_reset - called after the pci bus has been reset.
5141 * @pdev: Pointer to PCI device
5142 *
5143 * Restart the card from scratch, as if from a cold-boot. Implementation
5144 * resembles the first-half of the e1000_resume routine.
5145 */
5146static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5147{
5148 struct net_device *netdev = pci_get_drvdata(pdev);
5149 struct e1000_adapter *adapter = netdev_priv(netdev);
5150 struct e1000_hw *hw = &adapter->hw;
5151 int err;
5152
5153 if (adapter->need_ioport)
5154 err = pci_enable_device(pdev);
5155 else
5156 err = pci_enable_device_mem(pdev);
5157 if (err) {
5158 pr_err("Cannot re-enable PCI device after reset.\n");
5159 return PCI_ERS_RESULT_DISCONNECT;
5160 }
5161 pci_set_master(pdev);
5162
5163 pci_enable_wake(pdev, PCI_D3hot, 0);
5164 pci_enable_wake(pdev, PCI_D3cold, 0);
5165
5166 e1000_reset(adapter);
5167 ew32(WUS, ~0);
5168
5169 return PCI_ERS_RESULT_RECOVERED;
5170}
5171
5172/**
5173 * e1000_io_resume - called when traffic can start flowing again.
5174 * @pdev: Pointer to PCI device
5175 *
5176 * This callback is called when the error recovery driver tells us that
5177 * its OK to resume normal operation. Implementation resembles the
5178 * second-half of the e1000_resume routine.
5179 */
5180static void e1000_io_resume(struct pci_dev *pdev)
5181{
5182 struct net_device *netdev = pci_get_drvdata(pdev);
5183 struct e1000_adapter *adapter = netdev_priv(netdev);
5184
5185 e1000_init_manageability(adapter);
5186
5187 if (netif_running(netdev)) {
5188 if (e1000_up(adapter)) {
5189 pr_info("can't bring device back up after reset\n");
5190 return;
5191 }
5192 }
5193
5194 netif_device_attach(netdev);
5195}
5196
5197/* e1000_main.c */