Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2006 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include "e1000.h"
   5#include <net/ip6_checksum.h>
   6#include <linux/io.h>
   7#include <linux/prefetch.h>
   8#include <linux/bitops.h>
   9#include <linux/if_vlan.h>
  10
  11char e1000_driver_name[] = "e1000";
  12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
 
 
  13static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  14
  15/* e1000_pci_tbl - PCI Device ID Table
  16 *
  17 * Last entry must be all 0s
  18 *
  19 * Macro expands to...
  20 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  21 */
  22static const struct pci_device_id e1000_pci_tbl[] = {
  23	INTEL_E1000_ETHERNET_DEVICE(0x1000),
  24	INTEL_E1000_ETHERNET_DEVICE(0x1001),
  25	INTEL_E1000_ETHERNET_DEVICE(0x1004),
  26	INTEL_E1000_ETHERNET_DEVICE(0x1008),
  27	INTEL_E1000_ETHERNET_DEVICE(0x1009),
  28	INTEL_E1000_ETHERNET_DEVICE(0x100C),
  29	INTEL_E1000_ETHERNET_DEVICE(0x100D),
  30	INTEL_E1000_ETHERNET_DEVICE(0x100E),
  31	INTEL_E1000_ETHERNET_DEVICE(0x100F),
  32	INTEL_E1000_ETHERNET_DEVICE(0x1010),
  33	INTEL_E1000_ETHERNET_DEVICE(0x1011),
  34	INTEL_E1000_ETHERNET_DEVICE(0x1012),
  35	INTEL_E1000_ETHERNET_DEVICE(0x1013),
  36	INTEL_E1000_ETHERNET_DEVICE(0x1014),
  37	INTEL_E1000_ETHERNET_DEVICE(0x1015),
  38	INTEL_E1000_ETHERNET_DEVICE(0x1016),
  39	INTEL_E1000_ETHERNET_DEVICE(0x1017),
  40	INTEL_E1000_ETHERNET_DEVICE(0x1018),
  41	INTEL_E1000_ETHERNET_DEVICE(0x1019),
  42	INTEL_E1000_ETHERNET_DEVICE(0x101A),
  43	INTEL_E1000_ETHERNET_DEVICE(0x101D),
  44	INTEL_E1000_ETHERNET_DEVICE(0x101E),
  45	INTEL_E1000_ETHERNET_DEVICE(0x1026),
  46	INTEL_E1000_ETHERNET_DEVICE(0x1027),
  47	INTEL_E1000_ETHERNET_DEVICE(0x1028),
  48	INTEL_E1000_ETHERNET_DEVICE(0x1075),
  49	INTEL_E1000_ETHERNET_DEVICE(0x1076),
  50	INTEL_E1000_ETHERNET_DEVICE(0x1077),
  51	INTEL_E1000_ETHERNET_DEVICE(0x1078),
  52	INTEL_E1000_ETHERNET_DEVICE(0x1079),
  53	INTEL_E1000_ETHERNET_DEVICE(0x107A),
  54	INTEL_E1000_ETHERNET_DEVICE(0x107B),
  55	INTEL_E1000_ETHERNET_DEVICE(0x107C),
  56	INTEL_E1000_ETHERNET_DEVICE(0x108A),
  57	INTEL_E1000_ETHERNET_DEVICE(0x1099),
  58	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  59	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
  60	/* required last entry */
  61	{0,}
  62};
  63
  64MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  65
  66int e1000_up(struct e1000_adapter *adapter);
  67void e1000_down(struct e1000_adapter *adapter);
  68void e1000_reinit_locked(struct e1000_adapter *adapter);
  69void e1000_reset(struct e1000_adapter *adapter);
  70int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  71int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  72void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
  73void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
  74static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
  75				    struct e1000_tx_ring *txdr);
  76static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
  77				    struct e1000_rx_ring *rxdr);
  78static void e1000_free_tx_resources(struct e1000_adapter *adapter,
  79				    struct e1000_tx_ring *tx_ring);
  80static void e1000_free_rx_resources(struct e1000_adapter *adapter,
  81				    struct e1000_rx_ring *rx_ring);
  82void e1000_update_stats(struct e1000_adapter *adapter);
  83
  84static int e1000_init_module(void);
  85static void e1000_exit_module(void);
  86static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
  87static void e1000_remove(struct pci_dev *pdev);
  88static int e1000_alloc_queues(struct e1000_adapter *adapter);
  89static int e1000_sw_init(struct e1000_adapter *adapter);
  90int e1000_open(struct net_device *netdev);
  91int e1000_close(struct net_device *netdev);
  92static void e1000_configure_tx(struct e1000_adapter *adapter);
  93static void e1000_configure_rx(struct e1000_adapter *adapter);
  94static void e1000_setup_rctl(struct e1000_adapter *adapter);
  95static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
  96static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
  97static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
  98				struct e1000_tx_ring *tx_ring);
  99static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 100				struct e1000_rx_ring *rx_ring);
 101static void e1000_set_rx_mode(struct net_device *netdev);
 102static void e1000_update_phy_info_task(struct work_struct *work);
 103static void e1000_watchdog(struct work_struct *work);
 104static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 105static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 106				    struct net_device *netdev);
 
 107static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 108static int e1000_set_mac(struct net_device *netdev, void *p);
 109static irqreturn_t e1000_intr(int irq, void *data);
 110static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 111			       struct e1000_tx_ring *tx_ring);
 112static int e1000_clean(struct napi_struct *napi, int budget);
 113static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 114			       struct e1000_rx_ring *rx_ring,
 115			       int *work_done, int work_to_do);
 116static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 117				     struct e1000_rx_ring *rx_ring,
 118				     int *work_done, int work_to_do);
 119static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
 120					 struct e1000_rx_ring *rx_ring,
 121					 int cleaned_count)
 122{
 123}
 124static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 125				   struct e1000_rx_ring *rx_ring,
 126				   int cleaned_count);
 127static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 128					 struct e1000_rx_ring *rx_ring,
 129					 int cleaned_count);
 130static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 131static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 132			   int cmd);
 133static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 134static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 135static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
 136static void e1000_reset_task(struct work_struct *work);
 137static void e1000_smartspeed(struct e1000_adapter *adapter);
 138static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 139				       struct sk_buff *skb);
 140
 141static bool e1000_vlan_used(struct e1000_adapter *adapter);
 142static void e1000_vlan_mode(struct net_device *netdev,
 143			    netdev_features_t features);
 144static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
 145				     bool filter_on);
 146static int e1000_vlan_rx_add_vid(struct net_device *netdev,
 147				 __be16 proto, u16 vid);
 148static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
 149				  __be16 proto, u16 vid);
 150static void e1000_restore_vlan(struct e1000_adapter *adapter);
 151
 152static int __maybe_unused e1000_suspend(struct device *dev);
 153static int __maybe_unused e1000_resume(struct device *dev);
 
 
 154static void e1000_shutdown(struct pci_dev *pdev);
 155
 156#ifdef CONFIG_NET_POLL_CONTROLLER
 157/* for netdump / net console */
 158static void e1000_netpoll (struct net_device *netdev);
 159#endif
 160
 161#define COPYBREAK_DEFAULT 256
 162static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 163module_param(copybreak, uint, 0644);
 164MODULE_PARM_DESC(copybreak,
 165	"Maximum size of packet that is copied to a new buffer on receive");
 166
 167static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 168						pci_channel_state_t state);
 169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 170static void e1000_io_resume(struct pci_dev *pdev);
 171
 172static const struct pci_error_handlers e1000_err_handler = {
 173	.error_detected = e1000_io_error_detected,
 174	.slot_reset = e1000_io_slot_reset,
 175	.resume = e1000_io_resume,
 176};
 177
 178static SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
 179
 180static struct pci_driver e1000_driver = {
 181	.name     = e1000_driver_name,
 182	.id_table = e1000_pci_tbl,
 183	.probe    = e1000_probe,
 184	.remove   = e1000_remove,
 185	.driver = {
 186		.pm = &e1000_pm_ops,
 187	},
 
 
 188	.shutdown = e1000_shutdown,
 189	.err_handler = &e1000_err_handler
 190};
 191
 192MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
 193MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 194MODULE_LICENSE("GPL v2");
 
 195
 196#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 197static int debug = -1;
 198module_param(debug, int, 0);
 199MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 200
 201/**
 202 * e1000_get_hw_dev - helper function for getting netdev
 203 * @hw: pointer to HW struct
 204 *
 205 * return device used by hardware layer to print debugging information
 206 *
 207 **/
 208struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 209{
 210	struct e1000_adapter *adapter = hw->back;
 211	return adapter->netdev;
 212}
 213
 214/**
 215 * e1000_init_module - Driver Registration Routine
 216 *
 217 * e1000_init_module is the first routine called when the driver is
 218 * loaded. All it does is register with the PCI subsystem.
 219 **/
 220static int __init e1000_init_module(void)
 221{
 222	int ret;
 223	pr_info("%s\n", e1000_driver_string);
 224
 225	pr_info("%s\n", e1000_copyright);
 226
 227	ret = pci_register_driver(&e1000_driver);
 228	if (copybreak != COPYBREAK_DEFAULT) {
 229		if (copybreak == 0)
 230			pr_info("copybreak disabled\n");
 231		else
 232			pr_info("copybreak enabled for "
 233				   "packets <= %u bytes\n", copybreak);
 234	}
 235	return ret;
 236}
 237
 238module_init(e1000_init_module);
 239
 240/**
 241 * e1000_exit_module - Driver Exit Cleanup Routine
 242 *
 243 * e1000_exit_module is called just before the driver is removed
 244 * from memory.
 245 **/
 246static void __exit e1000_exit_module(void)
 247{
 248	pci_unregister_driver(&e1000_driver);
 249}
 250
 251module_exit(e1000_exit_module);
 252
 253static int e1000_request_irq(struct e1000_adapter *adapter)
 254{
 255	struct net_device *netdev = adapter->netdev;
 256	irq_handler_t handler = e1000_intr;
 257	int irq_flags = IRQF_SHARED;
 258	int err;
 259
 260	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 261			  netdev);
 262	if (err) {
 263		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 264	}
 265
 266	return err;
 267}
 268
 269static void e1000_free_irq(struct e1000_adapter *adapter)
 270{
 271	struct net_device *netdev = adapter->netdev;
 272
 273	free_irq(adapter->pdev->irq, netdev);
 274}
 275
 276/**
 277 * e1000_irq_disable - Mask off interrupt generation on the NIC
 278 * @adapter: board private structure
 279 **/
 280static void e1000_irq_disable(struct e1000_adapter *adapter)
 281{
 282	struct e1000_hw *hw = &adapter->hw;
 283
 284	ew32(IMC, ~0);
 285	E1000_WRITE_FLUSH();
 286	synchronize_irq(adapter->pdev->irq);
 287}
 288
 289/**
 290 * e1000_irq_enable - Enable default interrupt generation settings
 291 * @adapter: board private structure
 292 **/
 293static void e1000_irq_enable(struct e1000_adapter *adapter)
 294{
 295	struct e1000_hw *hw = &adapter->hw;
 296
 297	ew32(IMS, IMS_ENABLE_MASK);
 298	E1000_WRITE_FLUSH();
 299}
 300
 301static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 302{
 303	struct e1000_hw *hw = &adapter->hw;
 304	struct net_device *netdev = adapter->netdev;
 305	u16 vid = hw->mng_cookie.vlan_id;
 306	u16 old_vid = adapter->mng_vlan_id;
 307
 308	if (!e1000_vlan_used(adapter))
 309		return;
 310
 311	if (!test_bit(vid, adapter->active_vlans)) {
 312		if (hw->mng_cookie.status &
 313		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 314			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
 315			adapter->mng_vlan_id = vid;
 316		} else {
 317			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 318		}
 319		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 320		    (vid != old_vid) &&
 321		    !test_bit(old_vid, adapter->active_vlans))
 322			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
 323					       old_vid);
 324	} else {
 325		adapter->mng_vlan_id = vid;
 326	}
 327}
 328
 329static void e1000_init_manageability(struct e1000_adapter *adapter)
 330{
 331	struct e1000_hw *hw = &adapter->hw;
 332
 333	if (adapter->en_mng_pt) {
 334		u32 manc = er32(MANC);
 335
 336		/* disable hardware interception of ARP */
 337		manc &= ~(E1000_MANC_ARP_EN);
 338
 339		ew32(MANC, manc);
 340	}
 341}
 342
 343static void e1000_release_manageability(struct e1000_adapter *adapter)
 344{
 345	struct e1000_hw *hw = &adapter->hw;
 346
 347	if (adapter->en_mng_pt) {
 348		u32 manc = er32(MANC);
 349
 350		/* re-enable hardware interception of ARP */
 351		manc |= E1000_MANC_ARP_EN;
 352
 353		ew32(MANC, manc);
 354	}
 355}
 356
 357/**
 358 * e1000_configure - configure the hardware for RX and TX
 359 * @adapter: private board structure
 360 **/
 361static void e1000_configure(struct e1000_adapter *adapter)
 362{
 363	struct net_device *netdev = adapter->netdev;
 364	int i;
 365
 366	e1000_set_rx_mode(netdev);
 367
 368	e1000_restore_vlan(adapter);
 369	e1000_init_manageability(adapter);
 370
 371	e1000_configure_tx(adapter);
 372	e1000_setup_rctl(adapter);
 373	e1000_configure_rx(adapter);
 374	/* call E1000_DESC_UNUSED which always leaves
 375	 * at least 1 descriptor unused to make sure
 376	 * next_to_use != next_to_clean
 377	 */
 378	for (i = 0; i < adapter->num_rx_queues; i++) {
 379		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 380		adapter->alloc_rx_buf(adapter, ring,
 381				      E1000_DESC_UNUSED(ring));
 382	}
 383}
 384
 385int e1000_up(struct e1000_adapter *adapter)
 386{
 387	struct e1000_hw *hw = &adapter->hw;
 388
 389	/* hardware has been reset, we need to reload some things */
 390	e1000_configure(adapter);
 391
 392	clear_bit(__E1000_DOWN, &adapter->flags);
 393
 394	napi_enable(&adapter->napi);
 395
 396	e1000_irq_enable(adapter);
 397
 398	netif_wake_queue(adapter->netdev);
 399
 400	/* fire a link change interrupt to start the watchdog */
 401	ew32(ICS, E1000_ICS_LSC);
 402	return 0;
 403}
 404
 405/**
 406 * e1000_power_up_phy - restore link in case the phy was powered down
 407 * @adapter: address of board private structure
 408 *
 409 * The phy may be powered down to save power and turn off link when the
 410 * driver is unloaded and wake on lan is not enabled (among others)
 411 * *** this routine MUST be followed by a call to e1000_reset ***
 412 **/
 413void e1000_power_up_phy(struct e1000_adapter *adapter)
 414{
 415	struct e1000_hw *hw = &adapter->hw;
 416	u16 mii_reg = 0;
 417
 418	/* Just clear the power down bit to wake the phy back up */
 419	if (hw->media_type == e1000_media_type_copper) {
 420		/* according to the manual, the phy will retain its
 421		 * settings across a power-down/up cycle
 422		 */
 423		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 424		mii_reg &= ~MII_CR_POWER_DOWN;
 425		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 426	}
 427}
 428
 429static void e1000_power_down_phy(struct e1000_adapter *adapter)
 430{
 431	struct e1000_hw *hw = &adapter->hw;
 432
 433	/* Power down the PHY so no link is implied when interface is down *
 434	 * The PHY cannot be powered down if any of the following is true *
 435	 * (a) WoL is enabled
 436	 * (b) AMT is active
 437	 * (c) SoL/IDER session is active
 438	 */
 439	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 440	   hw->media_type == e1000_media_type_copper) {
 441		u16 mii_reg = 0;
 442
 443		switch (hw->mac_type) {
 444		case e1000_82540:
 445		case e1000_82545:
 446		case e1000_82545_rev_3:
 447		case e1000_82546:
 448		case e1000_ce4100:
 449		case e1000_82546_rev_3:
 450		case e1000_82541:
 451		case e1000_82541_rev_2:
 452		case e1000_82547:
 453		case e1000_82547_rev_2:
 454			if (er32(MANC) & E1000_MANC_SMBUS_EN)
 455				goto out;
 456			break;
 457		default:
 458			goto out;
 459		}
 460		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 461		mii_reg |= MII_CR_POWER_DOWN;
 462		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 463		msleep(1);
 464	}
 465out:
 466	return;
 467}
 468
 469static void e1000_down_and_stop(struct e1000_adapter *adapter)
 470{
 471	set_bit(__E1000_DOWN, &adapter->flags);
 472
 473	cancel_delayed_work_sync(&adapter->watchdog_task);
 474
 475	/*
 476	 * Since the watchdog task can reschedule other tasks, we should cancel
 477	 * it first, otherwise we can run into the situation when a work is
 478	 * still running after the adapter has been turned down.
 479	 */
 480
 481	cancel_delayed_work_sync(&adapter->phy_info_task);
 482	cancel_delayed_work_sync(&adapter->fifo_stall_task);
 483
 484	/* Only kill reset task if adapter is not resetting */
 485	if (!test_bit(__E1000_RESETTING, &adapter->flags))
 486		cancel_work_sync(&adapter->reset_task);
 487}
 488
 489void e1000_down(struct e1000_adapter *adapter)
 490{
 491	struct e1000_hw *hw = &adapter->hw;
 492	struct net_device *netdev = adapter->netdev;
 493	u32 rctl, tctl;
 494
 
 495	/* disable receives in the hardware */
 496	rctl = er32(RCTL);
 497	ew32(RCTL, rctl & ~E1000_RCTL_EN);
 498	/* flush and sleep below */
 499
 500	netif_tx_disable(netdev);
 501
 502	/* disable transmits in the hardware */
 503	tctl = er32(TCTL);
 504	tctl &= ~E1000_TCTL_EN;
 505	ew32(TCTL, tctl);
 506	/* flush both disables and wait for them to finish */
 507	E1000_WRITE_FLUSH();
 508	msleep(10);
 509
 510	/* Set the carrier off after transmits have been disabled in the
 511	 * hardware, to avoid race conditions with e1000_watchdog() (which
 512	 * may be running concurrently to us, checking for the carrier
 513	 * bit to decide whether it should enable transmits again). Such
 514	 * a race condition would result into transmission being disabled
 515	 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
 516	 */
 517	netif_carrier_off(netdev);
 518
 519	napi_disable(&adapter->napi);
 520
 521	e1000_irq_disable(adapter);
 522
 523	/* Setting DOWN must be after irq_disable to prevent
 524	 * a screaming interrupt.  Setting DOWN also prevents
 525	 * tasks from rescheduling.
 526	 */
 527	e1000_down_and_stop(adapter);
 528
 529	adapter->link_speed = 0;
 530	adapter->link_duplex = 0;
 
 531
 532	e1000_reset(adapter);
 533	e1000_clean_all_tx_rings(adapter);
 534	e1000_clean_all_rx_rings(adapter);
 535}
 536
 537void e1000_reinit_locked(struct e1000_adapter *adapter)
 538{
 
 539	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 540		msleep(1);
 541
 542	/* only run the task if not already down */
 543	if (!test_bit(__E1000_DOWN, &adapter->flags)) {
 544		e1000_down(adapter);
 545		e1000_up(adapter);
 546	}
 547
 548	clear_bit(__E1000_RESETTING, &adapter->flags);
 549}
 550
 551void e1000_reset(struct e1000_adapter *adapter)
 552{
 553	struct e1000_hw *hw = &adapter->hw;
 554	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 555	bool legacy_pba_adjust = false;
 556	u16 hwm;
 557
 558	/* Repartition Pba for greater than 9k mtu
 559	 * To take effect CTRL.RST is required.
 560	 */
 561
 562	switch (hw->mac_type) {
 563	case e1000_82542_rev2_0:
 564	case e1000_82542_rev2_1:
 565	case e1000_82543:
 566	case e1000_82544:
 567	case e1000_82540:
 568	case e1000_82541:
 569	case e1000_82541_rev_2:
 570		legacy_pba_adjust = true;
 571		pba = E1000_PBA_48K;
 572		break;
 573	case e1000_82545:
 574	case e1000_82545_rev_3:
 575	case e1000_82546:
 576	case e1000_ce4100:
 577	case e1000_82546_rev_3:
 578		pba = E1000_PBA_48K;
 579		break;
 580	case e1000_82547:
 581	case e1000_82547_rev_2:
 582		legacy_pba_adjust = true;
 583		pba = E1000_PBA_30K;
 584		break;
 585	case e1000_undefined:
 586	case e1000_num_macs:
 587		break;
 588	}
 589
 590	if (legacy_pba_adjust) {
 591		if (hw->max_frame_size > E1000_RXBUFFER_8192)
 592			pba -= 8; /* allocate more FIFO for Tx */
 593
 594		if (hw->mac_type == e1000_82547) {
 595			adapter->tx_fifo_head = 0;
 596			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 597			adapter->tx_fifo_size =
 598				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 599			atomic_set(&adapter->tx_fifo_stall, 0);
 600		}
 601	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 602		/* adjust PBA for jumbo frames */
 603		ew32(PBA, pba);
 604
 605		/* To maintain wire speed transmits, the Tx FIFO should be
 606		 * large enough to accommodate two full transmit packets,
 607		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 608		 * the Rx FIFO should be large enough to accommodate at least
 609		 * one full receive packet and is similarly rounded up and
 610		 * expressed in KB.
 611		 */
 612		pba = er32(PBA);
 613		/* upper 16 bits has Tx packet buffer allocation size in KB */
 614		tx_space = pba >> 16;
 615		/* lower 16 bits has Rx packet buffer allocation size in KB */
 616		pba &= 0xffff;
 617		/* the Tx fifo also stores 16 bytes of information about the Tx
 618		 * but don't include ethernet FCS because hardware appends it
 619		 */
 620		min_tx_space = (hw->max_frame_size +
 621				sizeof(struct e1000_tx_desc) -
 622				ETH_FCS_LEN) * 2;
 623		min_tx_space = ALIGN(min_tx_space, 1024);
 624		min_tx_space >>= 10;
 625		/* software strips receive CRC, so leave room for it */
 626		min_rx_space = hw->max_frame_size;
 627		min_rx_space = ALIGN(min_rx_space, 1024);
 628		min_rx_space >>= 10;
 629
 630		/* If current Tx allocation is less than the min Tx FIFO size,
 631		 * and the min Tx FIFO size is less than the current Rx FIFO
 632		 * allocation, take space away from current Rx allocation
 633		 */
 634		if (tx_space < min_tx_space &&
 635		    ((min_tx_space - tx_space) < pba)) {
 636			pba = pba - (min_tx_space - tx_space);
 637
 638			/* PCI/PCIx hardware has PBA alignment constraints */
 639			switch (hw->mac_type) {
 640			case e1000_82545 ... e1000_82546_rev_3:
 641				pba &= ~(E1000_PBA_8K - 1);
 642				break;
 643			default:
 644				break;
 645			}
 646
 647			/* if short on Rx space, Rx wins and must trump Tx
 648			 * adjustment or use Early Receive if available
 649			 */
 650			if (pba < min_rx_space)
 651				pba = min_rx_space;
 652		}
 653	}
 654
 655	ew32(PBA, pba);
 656
 657	/* flow control settings:
 658	 * The high water mark must be low enough to fit one full frame
 659	 * (or the size used for early receive) above it in the Rx FIFO.
 660	 * Set it to the lower of:
 661	 * - 90% of the Rx FIFO size, and
 662	 * - the full Rx FIFO size minus the early receive size (for parts
 663	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
 664	 * - the full Rx FIFO size minus one full frame
 665	 */
 666	hwm = min(((pba << 10) * 9 / 10),
 667		  ((pba << 10) - hw->max_frame_size));
 668
 669	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
 670	hw->fc_low_water = hw->fc_high_water - 8;
 671	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 672	hw->fc_send_xon = 1;
 673	hw->fc = hw->original_fc;
 674
 675	/* Allow time for pending master requests to run */
 676	e1000_reset_hw(hw);
 677	if (hw->mac_type >= e1000_82544)
 678		ew32(WUC, 0);
 679
 680	if (e1000_init_hw(hw))
 681		e_dev_err("Hardware Error\n");
 682	e1000_update_mng_vlan(adapter);
 683
 684	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 685	if (hw->mac_type >= e1000_82544 &&
 686	    hw->autoneg == 1 &&
 687	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 688		u32 ctrl = er32(CTRL);
 689		/* clear phy power management bit if we are in gig only mode,
 690		 * which if enabled will attempt negotiation to 100Mb, which
 691		 * can cause a loss of link at power off or driver unload
 692		 */
 693		ctrl &= ~E1000_CTRL_SWDPIN3;
 694		ew32(CTRL, ctrl);
 695	}
 696
 697	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 698	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 699
 700	e1000_reset_adaptive(hw);
 701	e1000_phy_get_info(hw, &adapter->phy_info);
 702
 703	e1000_release_manageability(adapter);
 704}
 705
 706/* Dump the eeprom for users having checksum issues */
 707static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 708{
 709	struct net_device *netdev = adapter->netdev;
 710	struct ethtool_eeprom eeprom;
 711	const struct ethtool_ops *ops = netdev->ethtool_ops;
 712	u8 *data;
 713	int i;
 714	u16 csum_old, csum_new = 0;
 715
 716	eeprom.len = ops->get_eeprom_len(netdev);
 717	eeprom.offset = 0;
 718
 719	data = kmalloc(eeprom.len, GFP_KERNEL);
 720	if (!data)
 721		return;
 722
 723	ops->get_eeprom(netdev, &eeprom, data);
 724
 725	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 726		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 727	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 728		csum_new += data[i] + (data[i + 1] << 8);
 729	csum_new = EEPROM_SUM - csum_new;
 730
 731	pr_err("/*********************/\n");
 732	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 733	pr_err("Calculated              : 0x%04x\n", csum_new);
 734
 735	pr_err("Offset    Values\n");
 736	pr_err("========  ======\n");
 737	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 738
 739	pr_err("Include this output when contacting your support provider.\n");
 740	pr_err("This is not a software error! Something bad happened to\n");
 741	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 742	pr_err("result in further problems, possibly loss of data,\n");
 743	pr_err("corruption or system hangs!\n");
 744	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 745	pr_err("which is invalid and requires you to set the proper MAC\n");
 746	pr_err("address manually before continuing to enable this network\n");
 747	pr_err("device. Please inspect the EEPROM dump and report the\n");
 748	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 749	pr_err("/*********************/\n");
 750
 751	kfree(data);
 752}
 753
 754/**
 755 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 756 * @pdev: PCI device information struct
 757 *
 758 * Return true if an adapter needs ioport resources
 759 **/
 760static int e1000_is_need_ioport(struct pci_dev *pdev)
 761{
 762	switch (pdev->device) {
 763	case E1000_DEV_ID_82540EM:
 764	case E1000_DEV_ID_82540EM_LOM:
 765	case E1000_DEV_ID_82540EP:
 766	case E1000_DEV_ID_82540EP_LOM:
 767	case E1000_DEV_ID_82540EP_LP:
 768	case E1000_DEV_ID_82541EI:
 769	case E1000_DEV_ID_82541EI_MOBILE:
 770	case E1000_DEV_ID_82541ER:
 771	case E1000_DEV_ID_82541ER_LOM:
 772	case E1000_DEV_ID_82541GI:
 773	case E1000_DEV_ID_82541GI_LF:
 774	case E1000_DEV_ID_82541GI_MOBILE:
 775	case E1000_DEV_ID_82544EI_COPPER:
 776	case E1000_DEV_ID_82544EI_FIBER:
 777	case E1000_DEV_ID_82544GC_COPPER:
 778	case E1000_DEV_ID_82544GC_LOM:
 779	case E1000_DEV_ID_82545EM_COPPER:
 780	case E1000_DEV_ID_82545EM_FIBER:
 781	case E1000_DEV_ID_82546EB_COPPER:
 782	case E1000_DEV_ID_82546EB_FIBER:
 783	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 784		return true;
 785	default:
 786		return false;
 787	}
 788}
 789
 790static netdev_features_t e1000_fix_features(struct net_device *netdev,
 791	netdev_features_t features)
 792{
 793	/* Since there is no support for separate Rx/Tx vlan accel
 794	 * enable/disable make sure Tx flag is always in same state as Rx.
 795	 */
 796	if (features & NETIF_F_HW_VLAN_CTAG_RX)
 797		features |= NETIF_F_HW_VLAN_CTAG_TX;
 798	else
 799		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
 800
 801	return features;
 802}
 803
 804static int e1000_set_features(struct net_device *netdev,
 805	netdev_features_t features)
 806{
 807	struct e1000_adapter *adapter = netdev_priv(netdev);
 808	netdev_features_t changed = features ^ netdev->features;
 809
 810	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
 811		e1000_vlan_mode(netdev, features);
 812
 813	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
 814		return 0;
 815
 816	netdev->features = features;
 817	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
 818
 819	if (netif_running(netdev))
 820		e1000_reinit_locked(adapter);
 821	else
 822		e1000_reset(adapter);
 823
 824	return 1;
 825}
 826
 827static const struct net_device_ops e1000_netdev_ops = {
 828	.ndo_open		= e1000_open,
 829	.ndo_stop		= e1000_close,
 830	.ndo_start_xmit		= e1000_xmit_frame,
 
 831	.ndo_set_rx_mode	= e1000_set_rx_mode,
 832	.ndo_set_mac_address	= e1000_set_mac,
 833	.ndo_tx_timeout		= e1000_tx_timeout,
 834	.ndo_change_mtu		= e1000_change_mtu,
 835	.ndo_eth_ioctl		= e1000_ioctl,
 836	.ndo_validate_addr	= eth_validate_addr,
 837	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
 838	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
 839#ifdef CONFIG_NET_POLL_CONTROLLER
 840	.ndo_poll_controller	= e1000_netpoll,
 841#endif
 842	.ndo_fix_features	= e1000_fix_features,
 843	.ndo_set_features	= e1000_set_features,
 844};
 845
 846/**
 847 * e1000_init_hw_struct - initialize members of hw struct
 848 * @adapter: board private struct
 849 * @hw: structure used by e1000_hw.c
 850 *
 851 * Factors out initialization of the e1000_hw struct to its own function
 852 * that can be called very early at init (just after struct allocation).
 853 * Fields are initialized based on PCI device information and
 854 * OS network device settings (MTU size).
 855 * Returns negative error codes if MAC type setup fails.
 856 */
 857static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 858				struct e1000_hw *hw)
 859{
 860	struct pci_dev *pdev = adapter->pdev;
 861
 862	/* PCI config space info */
 863	hw->vendor_id = pdev->vendor;
 864	hw->device_id = pdev->device;
 865	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 866	hw->subsystem_id = pdev->subsystem_device;
 867	hw->revision_id = pdev->revision;
 868
 869	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 870
 871	hw->max_frame_size = adapter->netdev->mtu +
 872			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 873	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 874
 875	/* identify the MAC */
 876	if (e1000_set_mac_type(hw)) {
 877		e_err(probe, "Unknown MAC Type\n");
 878		return -EIO;
 879	}
 880
 881	switch (hw->mac_type) {
 882	default:
 883		break;
 884	case e1000_82541:
 885	case e1000_82547:
 886	case e1000_82541_rev_2:
 887	case e1000_82547_rev_2:
 888		hw->phy_init_script = 1;
 889		break;
 890	}
 891
 892	e1000_set_media_type(hw);
 893	e1000_get_bus_info(hw);
 894
 895	hw->wait_autoneg_complete = false;
 896	hw->tbi_compatibility_en = true;
 897	hw->adaptive_ifs = true;
 898
 899	/* Copper options */
 900
 901	if (hw->media_type == e1000_media_type_copper) {
 902		hw->mdix = AUTO_ALL_MODES;
 903		hw->disable_polarity_correction = false;
 904		hw->master_slave = E1000_MASTER_SLAVE;
 905	}
 906
 907	return 0;
 908}
 909
 910/**
 911 * e1000_probe - Device Initialization Routine
 912 * @pdev: PCI device information struct
 913 * @ent: entry in e1000_pci_tbl
 914 *
 915 * Returns 0 on success, negative on failure
 916 *
 917 * e1000_probe initializes an adapter identified by a pci_dev structure.
 918 * The OS initialization, configuring of the adapter private structure,
 919 * and a hardware reset occur.
 920 **/
 921static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 922{
 923	struct net_device *netdev;
 924	struct e1000_adapter *adapter = NULL;
 925	struct e1000_hw *hw;
 926
 927	static int cards_found;
 928	static int global_quad_port_a; /* global ksp3 port a indication */
 929	int i, err, pci_using_dac;
 930	u16 eeprom_data = 0;
 931	u16 tmp = 0;
 932	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 933	int bars, need_ioport;
 934	bool disable_dev = false;
 935
 936	/* do not allocate ioport bars when not needed */
 937	need_ioport = e1000_is_need_ioport(pdev);
 938	if (need_ioport) {
 939		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 940		err = pci_enable_device(pdev);
 941	} else {
 942		bars = pci_select_bars(pdev, IORESOURCE_MEM);
 943		err = pci_enable_device_mem(pdev);
 944	}
 945	if (err)
 946		return err;
 947
 948	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 949	if (err)
 950		goto err_pci_reg;
 951
 952	pci_set_master(pdev);
 953	err = pci_save_state(pdev);
 954	if (err)
 955		goto err_alloc_etherdev;
 956
 957	err = -ENOMEM;
 958	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 959	if (!netdev)
 960		goto err_alloc_etherdev;
 961
 962	SET_NETDEV_DEV(netdev, &pdev->dev);
 963
 964	pci_set_drvdata(pdev, netdev);
 965	adapter = netdev_priv(netdev);
 966	adapter->netdev = netdev;
 967	adapter->pdev = pdev;
 968	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 969	adapter->bars = bars;
 970	adapter->need_ioport = need_ioport;
 971
 972	hw = &adapter->hw;
 973	hw->back = adapter;
 974
 975	err = -EIO;
 976	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
 977	if (!hw->hw_addr)
 978		goto err_ioremap;
 979
 980	if (adapter->need_ioport) {
 981		for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
 982			if (pci_resource_len(pdev, i) == 0)
 983				continue;
 984			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
 985				hw->io_base = pci_resource_start(pdev, i);
 986				break;
 987			}
 988		}
 989	}
 990
 991	/* make ready for any if (hw->...) below */
 992	err = e1000_init_hw_struct(adapter, hw);
 993	if (err)
 994		goto err_sw_init;
 995
 996	/* there is a workaround being applied below that limits
 997	 * 64-bit DMA addresses to 64-bit hardware.  There are some
 998	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
 999	 */
1000	pci_using_dac = 0;
1001	if ((hw->bus_type == e1000_bus_type_pcix) &&
1002	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1003		pci_using_dac = 1;
1004	} else {
1005		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1006		if (err) {
1007			pr_err("No usable DMA config, aborting\n");
1008			goto err_dma;
1009		}
1010	}
1011
1012	netdev->netdev_ops = &e1000_netdev_ops;
1013	e1000_set_ethtool_ops(netdev);
1014	netdev->watchdog_timeo = 5 * HZ;
1015	netif_napi_add(netdev, &adapter->napi, e1000_clean);
1016
1017	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
1018
1019	adapter->bd_number = cards_found;
1020
1021	/* setup the private structure */
1022
1023	err = e1000_sw_init(adapter);
1024	if (err)
1025		goto err_sw_init;
1026
1027	err = -EIO;
1028	if (hw->mac_type == e1000_ce4100) {
1029		hw->ce4100_gbe_mdio_base_virt =
1030					ioremap(pci_resource_start(pdev, BAR_1),
1031						pci_resource_len(pdev, BAR_1));
1032
1033		if (!hw->ce4100_gbe_mdio_base_virt)
1034			goto err_mdio_ioremap;
1035	}
1036
1037	if (hw->mac_type >= e1000_82543) {
1038		netdev->hw_features = NETIF_F_SG |
1039				   NETIF_F_HW_CSUM |
1040				   NETIF_F_HW_VLAN_CTAG_RX;
1041		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1042				   NETIF_F_HW_VLAN_CTAG_FILTER;
1043	}
1044
1045	if ((hw->mac_type >= e1000_82544) &&
1046	   (hw->mac_type != e1000_82547))
1047		netdev->hw_features |= NETIF_F_TSO;
1048
1049	netdev->priv_flags |= IFF_SUPP_NOFCS;
1050
1051	netdev->features |= netdev->hw_features;
1052	netdev->hw_features |= (NETIF_F_RXCSUM |
1053				NETIF_F_RXALL |
1054				NETIF_F_RXFCS);
1055
1056	if (pci_using_dac) {
1057		netdev->features |= NETIF_F_HIGHDMA;
1058		netdev->vlan_features |= NETIF_F_HIGHDMA;
1059	}
1060
1061	netdev->vlan_features |= (NETIF_F_TSO |
1062				  NETIF_F_HW_CSUM |
1063				  NETIF_F_SG);
1064
1065	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1066	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1067	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1068		netdev->priv_flags |= IFF_UNICAST_FLT;
1069
1070	/* MTU range: 46 - 16110 */
1071	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1072	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1073
1074	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1075
1076	/* initialize eeprom parameters */
1077	if (e1000_init_eeprom_params(hw)) {
1078		e_err(probe, "EEPROM initialization failed\n");
1079		goto err_eeprom;
1080	}
1081
1082	/* before reading the EEPROM, reset the controller to
1083	 * put the device in a known good starting state
1084	 */
1085
1086	e1000_reset_hw(hw);
1087
1088	/* make sure the EEPROM is good */
1089	if (e1000_validate_eeprom_checksum(hw) < 0) {
1090		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1091		e1000_dump_eeprom(adapter);
1092		/* set MAC address to all zeroes to invalidate and temporary
1093		 * disable this device for the user. This blocks regular
1094		 * traffic while still permitting ethtool ioctls from reaching
1095		 * the hardware as well as allowing the user to run the
1096		 * interface after manually setting a hw addr using
1097		 * `ip set address`
1098		 */
1099		memset(hw->mac_addr, 0, netdev->addr_len);
1100	} else {
1101		/* copy the MAC address out of the EEPROM */
1102		if (e1000_read_mac_addr(hw))
1103			e_err(probe, "EEPROM Read Error\n");
1104	}
1105	/* don't block initialization here due to bad MAC address */
1106	eth_hw_addr_set(netdev, hw->mac_addr);
1107
1108	if (!is_valid_ether_addr(netdev->dev_addr))
1109		e_err(probe, "Invalid MAC Address\n");
1110
1111
1112	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1113	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1114			  e1000_82547_tx_fifo_stall_task);
1115	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1116	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1117
1118	e1000_check_options(adapter);
1119
1120	/* Initial Wake on LAN setting
1121	 * If APM wake is enabled in the EEPROM,
1122	 * enable the ACPI Magic Packet filter
1123	 */
1124
1125	switch (hw->mac_type) {
1126	case e1000_82542_rev2_0:
1127	case e1000_82542_rev2_1:
1128	case e1000_82543:
1129		break;
1130	case e1000_82544:
1131		e1000_read_eeprom(hw,
1132			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1133		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1134		break;
1135	case e1000_82546:
1136	case e1000_82546_rev_3:
1137		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1138			e1000_read_eeprom(hw,
1139				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1140			break;
1141		}
1142		fallthrough;
1143	default:
1144		e1000_read_eeprom(hw,
1145			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1146		break;
1147	}
1148	if (eeprom_data & eeprom_apme_mask)
1149		adapter->eeprom_wol |= E1000_WUFC_MAG;
1150
1151	/* now that we have the eeprom settings, apply the special cases
1152	 * where the eeprom may be wrong or the board simply won't support
1153	 * wake on lan on a particular port
1154	 */
1155	switch (pdev->device) {
1156	case E1000_DEV_ID_82546GB_PCIE:
1157		adapter->eeprom_wol = 0;
1158		break;
1159	case E1000_DEV_ID_82546EB_FIBER:
1160	case E1000_DEV_ID_82546GB_FIBER:
1161		/* Wake events only supported on port A for dual fiber
1162		 * regardless of eeprom setting
1163		 */
1164		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1165			adapter->eeprom_wol = 0;
1166		break;
1167	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1168		/* if quad port adapter, disable WoL on all but port A */
1169		if (global_quad_port_a != 0)
1170			adapter->eeprom_wol = 0;
1171		else
1172			adapter->quad_port_a = true;
1173		/* Reset for multiple quad port adapters */
1174		if (++global_quad_port_a == 4)
1175			global_quad_port_a = 0;
1176		break;
1177	}
1178
1179	/* initialize the wol settings based on the eeprom settings */
1180	adapter->wol = adapter->eeprom_wol;
1181	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1182
1183	/* Auto detect PHY address */
1184	if (hw->mac_type == e1000_ce4100) {
1185		for (i = 0; i < 32; i++) {
1186			hw->phy_addr = i;
1187			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1188
1189			if (tmp != 0 && tmp != 0xFF)
 
 
 
1190				break;
1191		}
1192
1193		if (i >= 32)
1194			goto err_eeprom;
1195	}
1196
1197	/* reset the hardware with the new settings */
1198	e1000_reset(adapter);
1199
1200	strcpy(netdev->name, "eth%d");
1201	err = register_netdev(netdev);
1202	if (err)
1203		goto err_register;
1204
1205	e1000_vlan_filter_on_off(adapter, false);
1206
1207	/* print bus type/speed/width info */
1208	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1209	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1210	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1211		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1212		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1213		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1214	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1215	       netdev->dev_addr);
1216
1217	/* carrier off reporting is important to ethtool even BEFORE open */
1218	netif_carrier_off(netdev);
1219
1220	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1221
1222	cards_found++;
1223	return 0;
1224
1225err_register:
1226err_eeprom:
1227	e1000_phy_hw_reset(hw);
1228
1229	if (hw->flash_address)
1230		iounmap(hw->flash_address);
1231	kfree(adapter->tx_ring);
1232	kfree(adapter->rx_ring);
1233err_dma:
1234err_sw_init:
1235err_mdio_ioremap:
1236	iounmap(hw->ce4100_gbe_mdio_base_virt);
1237	iounmap(hw->hw_addr);
1238err_ioremap:
1239	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1240	free_netdev(netdev);
1241err_alloc_etherdev:
1242	pci_release_selected_regions(pdev, bars);
1243err_pci_reg:
1244	if (!adapter || disable_dev)
1245		pci_disable_device(pdev);
1246	return err;
1247}
1248
1249/**
1250 * e1000_remove - Device Removal Routine
1251 * @pdev: PCI device information struct
1252 *
1253 * e1000_remove is called by the PCI subsystem to alert the driver
1254 * that it should release a PCI device. That could be caused by a
1255 * Hot-Plug event, or because the driver is going to be removed from
1256 * memory.
1257 **/
1258static void e1000_remove(struct pci_dev *pdev)
1259{
1260	struct net_device *netdev = pci_get_drvdata(pdev);
1261	struct e1000_adapter *adapter = netdev_priv(netdev);
1262	struct e1000_hw *hw = &adapter->hw;
1263	bool disable_dev;
1264
1265	e1000_down_and_stop(adapter);
1266	e1000_release_manageability(adapter);
1267
1268	unregister_netdev(netdev);
1269
1270	e1000_phy_hw_reset(hw);
1271
1272	kfree(adapter->tx_ring);
1273	kfree(adapter->rx_ring);
1274
1275	if (hw->mac_type == e1000_ce4100)
1276		iounmap(hw->ce4100_gbe_mdio_base_virt);
1277	iounmap(hw->hw_addr);
1278	if (hw->flash_address)
1279		iounmap(hw->flash_address);
1280	pci_release_selected_regions(pdev, adapter->bars);
1281
1282	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1283	free_netdev(netdev);
1284
1285	if (disable_dev)
1286		pci_disable_device(pdev);
1287}
1288
1289/**
1290 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1291 * @adapter: board private structure to initialize
1292 *
1293 * e1000_sw_init initializes the Adapter private data structure.
1294 * e1000_init_hw_struct MUST be called before this function
1295 **/
1296static int e1000_sw_init(struct e1000_adapter *adapter)
1297{
1298	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1299
1300	adapter->num_tx_queues = 1;
1301	adapter->num_rx_queues = 1;
1302
1303	if (e1000_alloc_queues(adapter)) {
1304		e_err(probe, "Unable to allocate memory for queues\n");
1305		return -ENOMEM;
1306	}
1307
1308	/* Explicitly disable IRQ since the NIC can be in any state. */
1309	e1000_irq_disable(adapter);
1310
1311	spin_lock_init(&adapter->stats_lock);
1312
1313	set_bit(__E1000_DOWN, &adapter->flags);
1314
1315	return 0;
1316}
1317
1318/**
1319 * e1000_alloc_queues - Allocate memory for all rings
1320 * @adapter: board private structure to initialize
1321 *
1322 * We allocate one ring per queue at run-time since we don't know the
1323 * number of queues at compile-time.
1324 **/
1325static int e1000_alloc_queues(struct e1000_adapter *adapter)
1326{
1327	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1328				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1329	if (!adapter->tx_ring)
1330		return -ENOMEM;
1331
1332	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1333				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1334	if (!adapter->rx_ring) {
1335		kfree(adapter->tx_ring);
1336		return -ENOMEM;
1337	}
1338
1339	return E1000_SUCCESS;
1340}
1341
1342/**
1343 * e1000_open - Called when a network interface is made active
1344 * @netdev: network interface device structure
1345 *
1346 * Returns 0 on success, negative value on failure
1347 *
1348 * The open entry point is called when a network interface is made
1349 * active by the system (IFF_UP).  At this point all resources needed
1350 * for transmit and receive operations are allocated, the interrupt
1351 * handler is registered with the OS, the watchdog task is started,
1352 * and the stack is notified that the interface is ready.
1353 **/
1354int e1000_open(struct net_device *netdev)
1355{
1356	struct e1000_adapter *adapter = netdev_priv(netdev);
1357	struct e1000_hw *hw = &adapter->hw;
1358	int err;
1359
1360	/* disallow open during test */
1361	if (test_bit(__E1000_TESTING, &adapter->flags))
1362		return -EBUSY;
1363
1364	netif_carrier_off(netdev);
1365
1366	/* allocate transmit descriptors */
1367	err = e1000_setup_all_tx_resources(adapter);
1368	if (err)
1369		goto err_setup_tx;
1370
1371	/* allocate receive descriptors */
1372	err = e1000_setup_all_rx_resources(adapter);
1373	if (err)
1374		goto err_setup_rx;
1375
1376	e1000_power_up_phy(adapter);
1377
1378	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1379	if ((hw->mng_cookie.status &
1380			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1381		e1000_update_mng_vlan(adapter);
1382	}
1383
1384	/* before we allocate an interrupt, we must be ready to handle it.
1385	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1386	 * as soon as we call pci_request_irq, so we have to setup our
1387	 * clean_rx handler before we do so.
1388	 */
1389	e1000_configure(adapter);
1390
1391	err = e1000_request_irq(adapter);
1392	if (err)
1393		goto err_req_irq;
1394
1395	/* From here on the code is the same as e1000_up() */
1396	clear_bit(__E1000_DOWN, &adapter->flags);
1397
1398	napi_enable(&adapter->napi);
1399
1400	e1000_irq_enable(adapter);
1401
1402	netif_start_queue(netdev);
1403
1404	/* fire a link status change interrupt to start the watchdog */
1405	ew32(ICS, E1000_ICS_LSC);
1406
1407	return E1000_SUCCESS;
1408
1409err_req_irq:
1410	e1000_power_down_phy(adapter);
1411	e1000_free_all_rx_resources(adapter);
1412err_setup_rx:
1413	e1000_free_all_tx_resources(adapter);
1414err_setup_tx:
1415	e1000_reset(adapter);
1416
1417	return err;
1418}
1419
1420/**
1421 * e1000_close - Disables a network interface
1422 * @netdev: network interface device structure
1423 *
1424 * Returns 0, this is not allowed to fail
1425 *
1426 * The close entry point is called when an interface is de-activated
1427 * by the OS.  The hardware is still under the drivers control, but
1428 * needs to be disabled.  A global MAC reset is issued to stop the
1429 * hardware, and all transmit and receive resources are freed.
1430 **/
1431int e1000_close(struct net_device *netdev)
1432{
1433	struct e1000_adapter *adapter = netdev_priv(netdev);
1434	struct e1000_hw *hw = &adapter->hw;
1435	int count = E1000_CHECK_RESET_COUNT;
1436
1437	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1438		usleep_range(10000, 20000);
1439
1440	WARN_ON(count < 0);
1441
1442	/* signal that we're down so that the reset task will no longer run */
1443	set_bit(__E1000_DOWN, &adapter->flags);
1444	clear_bit(__E1000_RESETTING, &adapter->flags);
1445
1446	e1000_down(adapter);
1447	e1000_power_down_phy(adapter);
1448	e1000_free_irq(adapter);
1449
1450	e1000_free_all_tx_resources(adapter);
1451	e1000_free_all_rx_resources(adapter);
1452
1453	/* kill manageability vlan ID if supported, but not if a vlan with
1454	 * the same ID is registered on the host OS (let 8021q kill it)
1455	 */
1456	if ((hw->mng_cookie.status &
1457	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1458	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1459		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1460				       adapter->mng_vlan_id);
1461	}
1462
1463	return 0;
1464}
1465
1466/**
1467 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1468 * @adapter: address of board private structure
1469 * @start: address of beginning of memory
1470 * @len: length of memory
1471 **/
1472static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1473				  unsigned long len)
1474{
1475	struct e1000_hw *hw = &adapter->hw;
1476	unsigned long begin = (unsigned long)start;
1477	unsigned long end = begin + len;
1478
1479	/* First rev 82545 and 82546 need to not allow any memory
1480	 * write location to cross 64k boundary due to errata 23
1481	 */
1482	if (hw->mac_type == e1000_82545 ||
1483	    hw->mac_type == e1000_ce4100 ||
1484	    hw->mac_type == e1000_82546) {
1485		return ((begin ^ (end - 1)) >> 16) == 0;
1486	}
1487
1488	return true;
1489}
1490
1491/**
1492 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1493 * @adapter: board private structure
1494 * @txdr:    tx descriptor ring (for a specific queue) to setup
1495 *
1496 * Return 0 on success, negative on failure
1497 **/
1498static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1499				    struct e1000_tx_ring *txdr)
1500{
1501	struct pci_dev *pdev = adapter->pdev;
1502	int size;
1503
1504	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1505	txdr->buffer_info = vzalloc(size);
1506	if (!txdr->buffer_info)
1507		return -ENOMEM;
1508
1509	/* round up to nearest 4K */
1510
1511	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1512	txdr->size = ALIGN(txdr->size, 4096);
1513
1514	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1515					GFP_KERNEL);
1516	if (!txdr->desc) {
1517setup_tx_desc_die:
1518		vfree(txdr->buffer_info);
1519		return -ENOMEM;
1520	}
1521
1522	/* Fix for errata 23, can't cross 64kB boundary */
1523	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1524		void *olddesc = txdr->desc;
1525		dma_addr_t olddma = txdr->dma;
1526		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1527		      txdr->size, txdr->desc);
1528		/* Try again, without freeing the previous */
1529		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1530						&txdr->dma, GFP_KERNEL);
1531		/* Failed allocation, critical failure */
1532		if (!txdr->desc) {
1533			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1534					  olddma);
1535			goto setup_tx_desc_die;
1536		}
1537
1538		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1539			/* give up */
1540			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1541					  txdr->dma);
1542			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1543					  olddma);
1544			e_err(probe, "Unable to allocate aligned memory "
1545			      "for the transmit descriptor ring\n");
1546			vfree(txdr->buffer_info);
1547			return -ENOMEM;
1548		} else {
1549			/* Free old allocation, new allocation was successful */
1550			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1551					  olddma);
1552		}
1553	}
1554	memset(txdr->desc, 0, txdr->size);
1555
1556	txdr->next_to_use = 0;
1557	txdr->next_to_clean = 0;
1558
1559	return 0;
1560}
1561
1562/**
1563 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1564 * 				  (Descriptors) for all queues
1565 * @adapter: board private structure
1566 *
1567 * Return 0 on success, negative on failure
1568 **/
1569int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1570{
1571	int i, err = 0;
1572
1573	for (i = 0; i < adapter->num_tx_queues; i++) {
1574		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1575		if (err) {
1576			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1577			for (i-- ; i >= 0; i--)
1578				e1000_free_tx_resources(adapter,
1579							&adapter->tx_ring[i]);
1580			break;
1581		}
1582	}
1583
1584	return err;
1585}
1586
1587/**
1588 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1589 * @adapter: board private structure
1590 *
1591 * Configure the Tx unit of the MAC after a reset.
1592 **/
1593static void e1000_configure_tx(struct e1000_adapter *adapter)
1594{
1595	u64 tdba;
1596	struct e1000_hw *hw = &adapter->hw;
1597	u32 tdlen, tctl, tipg;
1598	u32 ipgr1, ipgr2;
1599
1600	/* Setup the HW Tx Head and Tail descriptor pointers */
1601
1602	switch (adapter->num_tx_queues) {
1603	case 1:
1604	default:
1605		tdba = adapter->tx_ring[0].dma;
1606		tdlen = adapter->tx_ring[0].count *
1607			sizeof(struct e1000_tx_desc);
1608		ew32(TDLEN, tdlen);
1609		ew32(TDBAH, (tdba >> 32));
1610		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1611		ew32(TDT, 0);
1612		ew32(TDH, 0);
1613		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1614					   E1000_TDH : E1000_82542_TDH);
1615		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1616					   E1000_TDT : E1000_82542_TDT);
1617		break;
1618	}
1619
1620	/* Set the default values for the Tx Inter Packet Gap timer */
1621	if ((hw->media_type == e1000_media_type_fiber ||
1622	     hw->media_type == e1000_media_type_internal_serdes))
1623		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1624	else
1625		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1626
1627	switch (hw->mac_type) {
1628	case e1000_82542_rev2_0:
1629	case e1000_82542_rev2_1:
1630		tipg = DEFAULT_82542_TIPG_IPGT;
1631		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1632		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1633		break;
1634	default:
1635		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1636		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1637		break;
1638	}
1639	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1640	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1641	ew32(TIPG, tipg);
1642
1643	/* Set the Tx Interrupt Delay register */
1644
1645	ew32(TIDV, adapter->tx_int_delay);
1646	if (hw->mac_type >= e1000_82540)
1647		ew32(TADV, adapter->tx_abs_int_delay);
1648
1649	/* Program the Transmit Control Register */
1650
1651	tctl = er32(TCTL);
1652	tctl &= ~E1000_TCTL_CT;
1653	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1654		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1655
1656	e1000_config_collision_dist(hw);
1657
1658	/* Setup Transmit Descriptor Settings for eop descriptor */
1659	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1660
1661	/* only set IDE if we are delaying interrupts using the timers */
1662	if (adapter->tx_int_delay)
1663		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1664
1665	if (hw->mac_type < e1000_82543)
1666		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1667	else
1668		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1669
1670	/* Cache if we're 82544 running in PCI-X because we'll
1671	 * need this to apply a workaround later in the send path.
1672	 */
1673	if (hw->mac_type == e1000_82544 &&
1674	    hw->bus_type == e1000_bus_type_pcix)
1675		adapter->pcix_82544 = true;
1676
1677	ew32(TCTL, tctl);
1678
1679}
1680
1681/**
1682 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1683 * @adapter: board private structure
1684 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1685 *
1686 * Returns 0 on success, negative on failure
1687 **/
1688static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1689				    struct e1000_rx_ring *rxdr)
1690{
1691	struct pci_dev *pdev = adapter->pdev;
1692	int size, desc_len;
1693
1694	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1695	rxdr->buffer_info = vzalloc(size);
1696	if (!rxdr->buffer_info)
1697		return -ENOMEM;
1698
1699	desc_len = sizeof(struct e1000_rx_desc);
1700
1701	/* Round up to nearest 4K */
1702
1703	rxdr->size = rxdr->count * desc_len;
1704	rxdr->size = ALIGN(rxdr->size, 4096);
1705
1706	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1707					GFP_KERNEL);
1708	if (!rxdr->desc) {
1709setup_rx_desc_die:
1710		vfree(rxdr->buffer_info);
1711		return -ENOMEM;
1712	}
1713
1714	/* Fix for errata 23, can't cross 64kB boundary */
1715	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1716		void *olddesc = rxdr->desc;
1717		dma_addr_t olddma = rxdr->dma;
1718		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1719		      rxdr->size, rxdr->desc);
1720		/* Try again, without freeing the previous */
1721		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1722						&rxdr->dma, GFP_KERNEL);
1723		/* Failed allocation, critical failure */
1724		if (!rxdr->desc) {
1725			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1726					  olddma);
1727			goto setup_rx_desc_die;
1728		}
1729
1730		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1731			/* give up */
1732			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1733					  rxdr->dma);
1734			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1735					  olddma);
1736			e_err(probe, "Unable to allocate aligned memory for "
1737			      "the Rx descriptor ring\n");
1738			goto setup_rx_desc_die;
1739		} else {
1740			/* Free old allocation, new allocation was successful */
1741			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1742					  olddma);
1743		}
1744	}
1745	memset(rxdr->desc, 0, rxdr->size);
1746
1747	rxdr->next_to_clean = 0;
1748	rxdr->next_to_use = 0;
1749	rxdr->rx_skb_top = NULL;
1750
1751	return 0;
1752}
1753
1754/**
1755 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1756 * 				  (Descriptors) for all queues
1757 * @adapter: board private structure
1758 *
1759 * Return 0 on success, negative on failure
1760 **/
1761int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1762{
1763	int i, err = 0;
1764
1765	for (i = 0; i < adapter->num_rx_queues; i++) {
1766		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1767		if (err) {
1768			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1769			for (i-- ; i >= 0; i--)
1770				e1000_free_rx_resources(adapter,
1771							&adapter->rx_ring[i]);
1772			break;
1773		}
1774	}
1775
1776	return err;
1777}
1778
1779/**
1780 * e1000_setup_rctl - configure the receive control registers
1781 * @adapter: Board private structure
1782 **/
1783static void e1000_setup_rctl(struct e1000_adapter *adapter)
1784{
1785	struct e1000_hw *hw = &adapter->hw;
1786	u32 rctl;
1787
1788	rctl = er32(RCTL);
1789
1790	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1791
1792	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1793		E1000_RCTL_RDMTS_HALF |
1794		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1795
1796	if (hw->tbi_compatibility_on == 1)
1797		rctl |= E1000_RCTL_SBP;
1798	else
1799		rctl &= ~E1000_RCTL_SBP;
1800
1801	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1802		rctl &= ~E1000_RCTL_LPE;
1803	else
1804		rctl |= E1000_RCTL_LPE;
1805
1806	/* Setup buffer sizes */
1807	rctl &= ~E1000_RCTL_SZ_4096;
1808	rctl |= E1000_RCTL_BSEX;
1809	switch (adapter->rx_buffer_len) {
1810	case E1000_RXBUFFER_2048:
1811	default:
1812		rctl |= E1000_RCTL_SZ_2048;
1813		rctl &= ~E1000_RCTL_BSEX;
1814		break;
1815	case E1000_RXBUFFER_4096:
1816		rctl |= E1000_RCTL_SZ_4096;
1817		break;
1818	case E1000_RXBUFFER_8192:
1819		rctl |= E1000_RCTL_SZ_8192;
1820		break;
1821	case E1000_RXBUFFER_16384:
1822		rctl |= E1000_RCTL_SZ_16384;
1823		break;
1824	}
1825
1826	/* This is useful for sniffing bad packets. */
1827	if (adapter->netdev->features & NETIF_F_RXALL) {
1828		/* UPE and MPE will be handled by normal PROMISC logic
1829		 * in e1000e_set_rx_mode
1830		 */
1831		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1832			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1833			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1834
1835		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1836			  E1000_RCTL_DPF | /* Allow filtered pause */
1837			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1838		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1839		 * and that breaks VLANs.
1840		 */
1841	}
1842
1843	ew32(RCTL, rctl);
1844}
1845
1846/**
1847 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1848 * @adapter: board private structure
1849 *
1850 * Configure the Rx unit of the MAC after a reset.
1851 **/
1852static void e1000_configure_rx(struct e1000_adapter *adapter)
1853{
1854	u64 rdba;
1855	struct e1000_hw *hw = &adapter->hw;
1856	u32 rdlen, rctl, rxcsum;
1857
1858	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1859		rdlen = adapter->rx_ring[0].count *
1860			sizeof(struct e1000_rx_desc);
1861		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1862		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1863	} else {
1864		rdlen = adapter->rx_ring[0].count *
1865			sizeof(struct e1000_rx_desc);
1866		adapter->clean_rx = e1000_clean_rx_irq;
1867		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1868	}
1869
1870	/* disable receives while setting up the descriptors */
1871	rctl = er32(RCTL);
1872	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1873
1874	/* set the Receive Delay Timer Register */
1875	ew32(RDTR, adapter->rx_int_delay);
1876
1877	if (hw->mac_type >= e1000_82540) {
1878		ew32(RADV, adapter->rx_abs_int_delay);
1879		if (adapter->itr_setting != 0)
1880			ew32(ITR, 1000000000 / (adapter->itr * 256));
1881	}
1882
1883	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1884	 * the Base and Length of the Rx Descriptor Ring
1885	 */
1886	switch (adapter->num_rx_queues) {
1887	case 1:
1888	default:
1889		rdba = adapter->rx_ring[0].dma;
1890		ew32(RDLEN, rdlen);
1891		ew32(RDBAH, (rdba >> 32));
1892		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1893		ew32(RDT, 0);
1894		ew32(RDH, 0);
1895		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1896					   E1000_RDH : E1000_82542_RDH);
1897		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1898					   E1000_RDT : E1000_82542_RDT);
1899		break;
1900	}
1901
1902	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1903	if (hw->mac_type >= e1000_82543) {
1904		rxcsum = er32(RXCSUM);
1905		if (adapter->rx_csum)
1906			rxcsum |= E1000_RXCSUM_TUOFL;
1907		else
1908			/* don't need to clear IPPCSE as it defaults to 0 */
1909			rxcsum &= ~E1000_RXCSUM_TUOFL;
1910		ew32(RXCSUM, rxcsum);
1911	}
1912
1913	/* Enable Receives */
1914	ew32(RCTL, rctl | E1000_RCTL_EN);
1915}
1916
1917/**
1918 * e1000_free_tx_resources - Free Tx Resources per Queue
1919 * @adapter: board private structure
1920 * @tx_ring: Tx descriptor ring for a specific queue
1921 *
1922 * Free all transmit software resources
1923 **/
1924static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1925				    struct e1000_tx_ring *tx_ring)
1926{
1927	struct pci_dev *pdev = adapter->pdev;
1928
1929	e1000_clean_tx_ring(adapter, tx_ring);
1930
1931	vfree(tx_ring->buffer_info);
1932	tx_ring->buffer_info = NULL;
1933
1934	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1935			  tx_ring->dma);
1936
1937	tx_ring->desc = NULL;
1938}
1939
1940/**
1941 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1942 * @adapter: board private structure
1943 *
1944 * Free all transmit software resources
1945 **/
1946void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1947{
1948	int i;
1949
1950	for (i = 0; i < adapter->num_tx_queues; i++)
1951		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1952}
1953
1954static void
1955e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1956				 struct e1000_tx_buffer *buffer_info,
1957				 int budget)
1958{
1959	if (buffer_info->dma) {
1960		if (buffer_info->mapped_as_page)
1961			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1962				       buffer_info->length, DMA_TO_DEVICE);
1963		else
1964			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1965					 buffer_info->length,
1966					 DMA_TO_DEVICE);
1967		buffer_info->dma = 0;
1968	}
1969	if (buffer_info->skb) {
1970		napi_consume_skb(buffer_info->skb, budget);
1971		buffer_info->skb = NULL;
1972	}
1973	buffer_info->time_stamp = 0;
1974	/* buffer_info must be completely set up in the transmit path */
1975}
1976
1977/**
1978 * e1000_clean_tx_ring - Free Tx Buffers
1979 * @adapter: board private structure
1980 * @tx_ring: ring to be cleaned
1981 **/
1982static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1983				struct e1000_tx_ring *tx_ring)
1984{
1985	struct e1000_hw *hw = &adapter->hw;
1986	struct e1000_tx_buffer *buffer_info;
1987	unsigned long size;
1988	unsigned int i;
1989
1990	/* Free all the Tx ring sk_buffs */
1991
1992	for (i = 0; i < tx_ring->count; i++) {
1993		buffer_info = &tx_ring->buffer_info[i];
1994		e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
1995	}
1996
1997	netdev_reset_queue(adapter->netdev);
1998	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
1999	memset(tx_ring->buffer_info, 0, size);
2000
2001	/* Zero out the descriptor ring */
2002
2003	memset(tx_ring->desc, 0, tx_ring->size);
2004
2005	tx_ring->next_to_use = 0;
2006	tx_ring->next_to_clean = 0;
2007	tx_ring->last_tx_tso = false;
2008
2009	writel(0, hw->hw_addr + tx_ring->tdh);
2010	writel(0, hw->hw_addr + tx_ring->tdt);
2011}
2012
2013/**
2014 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2015 * @adapter: board private structure
2016 **/
2017static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2018{
2019	int i;
2020
2021	for (i = 0; i < adapter->num_tx_queues; i++)
2022		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2023}
2024
2025/**
2026 * e1000_free_rx_resources - Free Rx Resources
2027 * @adapter: board private structure
2028 * @rx_ring: ring to clean the resources from
2029 *
2030 * Free all receive software resources
2031 **/
2032static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2033				    struct e1000_rx_ring *rx_ring)
2034{
2035	struct pci_dev *pdev = adapter->pdev;
2036
2037	e1000_clean_rx_ring(adapter, rx_ring);
2038
2039	vfree(rx_ring->buffer_info);
2040	rx_ring->buffer_info = NULL;
2041
2042	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2043			  rx_ring->dma);
2044
2045	rx_ring->desc = NULL;
2046}
2047
2048/**
2049 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2050 * @adapter: board private structure
2051 *
2052 * Free all receive software resources
2053 **/
2054void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2055{
2056	int i;
2057
2058	for (i = 0; i < adapter->num_rx_queues; i++)
2059		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2060}
2061
2062#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2063static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2064{
2065	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2066		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2067}
2068
2069static void *e1000_alloc_frag(const struct e1000_adapter *a)
2070{
2071	unsigned int len = e1000_frag_len(a);
2072	u8 *data = netdev_alloc_frag(len);
2073
2074	if (likely(data))
2075		data += E1000_HEADROOM;
2076	return data;
2077}
2078
2079/**
2080 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2081 * @adapter: board private structure
2082 * @rx_ring: ring to free buffers from
2083 **/
2084static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2085				struct e1000_rx_ring *rx_ring)
2086{
2087	struct e1000_hw *hw = &adapter->hw;
2088	struct e1000_rx_buffer *buffer_info;
2089	struct pci_dev *pdev = adapter->pdev;
2090	unsigned long size;
2091	unsigned int i;
2092
2093	/* Free all the Rx netfrags */
2094	for (i = 0; i < rx_ring->count; i++) {
2095		buffer_info = &rx_ring->buffer_info[i];
2096		if (adapter->clean_rx == e1000_clean_rx_irq) {
2097			if (buffer_info->dma)
2098				dma_unmap_single(&pdev->dev, buffer_info->dma,
2099						 adapter->rx_buffer_len,
2100						 DMA_FROM_DEVICE);
2101			if (buffer_info->rxbuf.data) {
2102				skb_free_frag(buffer_info->rxbuf.data);
2103				buffer_info->rxbuf.data = NULL;
2104			}
2105		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2106			if (buffer_info->dma)
2107				dma_unmap_page(&pdev->dev, buffer_info->dma,
2108					       adapter->rx_buffer_len,
2109					       DMA_FROM_DEVICE);
2110			if (buffer_info->rxbuf.page) {
2111				put_page(buffer_info->rxbuf.page);
2112				buffer_info->rxbuf.page = NULL;
2113			}
2114		}
2115
2116		buffer_info->dma = 0;
 
 
 
 
 
 
 
 
2117	}
2118
2119	/* there also may be some cached data from a chained receive */
2120	napi_free_frags(&adapter->napi);
2121	rx_ring->rx_skb_top = NULL;
 
 
2122
2123	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2124	memset(rx_ring->buffer_info, 0, size);
2125
2126	/* Zero out the descriptor ring */
2127	memset(rx_ring->desc, 0, rx_ring->size);
2128
2129	rx_ring->next_to_clean = 0;
2130	rx_ring->next_to_use = 0;
2131
2132	writel(0, hw->hw_addr + rx_ring->rdh);
2133	writel(0, hw->hw_addr + rx_ring->rdt);
2134}
2135
2136/**
2137 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2138 * @adapter: board private structure
2139 **/
2140static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2141{
2142	int i;
2143
2144	for (i = 0; i < adapter->num_rx_queues; i++)
2145		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2146}
2147
2148/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2149 * and memory write and invalidate disabled for certain operations
2150 */
2151static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2152{
2153	struct e1000_hw *hw = &adapter->hw;
2154	struct net_device *netdev = adapter->netdev;
2155	u32 rctl;
2156
2157	e1000_pci_clear_mwi(hw);
2158
2159	rctl = er32(RCTL);
2160	rctl |= E1000_RCTL_RST;
2161	ew32(RCTL, rctl);
2162	E1000_WRITE_FLUSH();
2163	mdelay(5);
2164
2165	if (netif_running(netdev))
2166		e1000_clean_all_rx_rings(adapter);
2167}
2168
2169static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2170{
2171	struct e1000_hw *hw = &adapter->hw;
2172	struct net_device *netdev = adapter->netdev;
2173	u32 rctl;
2174
2175	rctl = er32(RCTL);
2176	rctl &= ~E1000_RCTL_RST;
2177	ew32(RCTL, rctl);
2178	E1000_WRITE_FLUSH();
2179	mdelay(5);
2180
2181	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2182		e1000_pci_set_mwi(hw);
2183
2184	if (netif_running(netdev)) {
2185		/* No need to loop, because 82542 supports only 1 queue */
2186		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2187		e1000_configure_rx(adapter);
2188		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2189	}
2190}
2191
2192/**
2193 * e1000_set_mac - Change the Ethernet Address of the NIC
2194 * @netdev: network interface device structure
2195 * @p: pointer to an address structure
2196 *
2197 * Returns 0 on success, negative on failure
2198 **/
2199static int e1000_set_mac(struct net_device *netdev, void *p)
2200{
2201	struct e1000_adapter *adapter = netdev_priv(netdev);
2202	struct e1000_hw *hw = &adapter->hw;
2203	struct sockaddr *addr = p;
2204
2205	if (!is_valid_ether_addr(addr->sa_data))
2206		return -EADDRNOTAVAIL;
2207
2208	/* 82542 2.0 needs to be in reset to write receive address registers */
2209
2210	if (hw->mac_type == e1000_82542_rev2_0)
2211		e1000_enter_82542_rst(adapter);
2212
2213	eth_hw_addr_set(netdev, addr->sa_data);
2214	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2215
2216	e1000_rar_set(hw, hw->mac_addr, 0);
2217
2218	if (hw->mac_type == e1000_82542_rev2_0)
2219		e1000_leave_82542_rst(adapter);
2220
2221	return 0;
2222}
2223
2224/**
2225 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2226 * @netdev: network interface device structure
2227 *
2228 * The set_rx_mode entry point is called whenever the unicast or multicast
2229 * address lists or the network interface flags are updated. This routine is
2230 * responsible for configuring the hardware for proper unicast, multicast,
2231 * promiscuous mode, and all-multi behavior.
2232 **/
2233static void e1000_set_rx_mode(struct net_device *netdev)
2234{
2235	struct e1000_adapter *adapter = netdev_priv(netdev);
2236	struct e1000_hw *hw = &adapter->hw;
2237	struct netdev_hw_addr *ha;
2238	bool use_uc = false;
2239	u32 rctl;
2240	u32 hash_value;
2241	int i, rar_entries = E1000_RAR_ENTRIES;
2242	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2243	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2244
2245	if (!mcarray)
2246		return;
2247
2248	/* Check for Promiscuous and All Multicast modes */
2249
2250	rctl = er32(RCTL);
2251
2252	if (netdev->flags & IFF_PROMISC) {
2253		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2254		rctl &= ~E1000_RCTL_VFE;
2255	} else {
2256		if (netdev->flags & IFF_ALLMULTI)
2257			rctl |= E1000_RCTL_MPE;
2258		else
2259			rctl &= ~E1000_RCTL_MPE;
2260		/* Enable VLAN filter if there is a VLAN */
2261		if (e1000_vlan_used(adapter))
2262			rctl |= E1000_RCTL_VFE;
2263	}
2264
2265	if (netdev_uc_count(netdev) > rar_entries - 1) {
2266		rctl |= E1000_RCTL_UPE;
2267	} else if (!(netdev->flags & IFF_PROMISC)) {
2268		rctl &= ~E1000_RCTL_UPE;
2269		use_uc = true;
2270	}
2271
2272	ew32(RCTL, rctl);
2273
2274	/* 82542 2.0 needs to be in reset to write receive address registers */
2275
2276	if (hw->mac_type == e1000_82542_rev2_0)
2277		e1000_enter_82542_rst(adapter);
2278
2279	/* load the first 14 addresses into the exact filters 1-14. Unicast
2280	 * addresses take precedence to avoid disabling unicast filtering
2281	 * when possible.
2282	 *
2283	 * RAR 0 is used for the station MAC address
2284	 * if there are not 14 addresses, go ahead and clear the filters
2285	 */
2286	i = 1;
2287	if (use_uc)
2288		netdev_for_each_uc_addr(ha, netdev) {
2289			if (i == rar_entries)
2290				break;
2291			e1000_rar_set(hw, ha->addr, i++);
2292		}
2293
2294	netdev_for_each_mc_addr(ha, netdev) {
2295		if (i == rar_entries) {
2296			/* load any remaining addresses into the hash table */
2297			u32 hash_reg, hash_bit, mta;
2298			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2299			hash_reg = (hash_value >> 5) & 0x7F;
2300			hash_bit = hash_value & 0x1F;
2301			mta = (1 << hash_bit);
2302			mcarray[hash_reg] |= mta;
2303		} else {
2304			e1000_rar_set(hw, ha->addr, i++);
2305		}
2306	}
2307
2308	for (; i < rar_entries; i++) {
2309		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2310		E1000_WRITE_FLUSH();
2311		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2312		E1000_WRITE_FLUSH();
2313	}
2314
2315	/* write the hash table completely, write from bottom to avoid
2316	 * both stupid write combining chipsets, and flushing each write
2317	 */
2318	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2319		/* If we are on an 82544 has an errata where writing odd
2320		 * offsets overwrites the previous even offset, but writing
2321		 * backwards over the range solves the issue by always
2322		 * writing the odd offset first
2323		 */
2324		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2325	}
2326	E1000_WRITE_FLUSH();
2327
2328	if (hw->mac_type == e1000_82542_rev2_0)
2329		e1000_leave_82542_rst(adapter);
2330
2331	kfree(mcarray);
2332}
2333
2334/**
2335 * e1000_update_phy_info_task - get phy info
2336 * @work: work struct contained inside adapter struct
2337 *
2338 * Need to wait a few seconds after link up to get diagnostic information from
2339 * the phy
2340 */
2341static void e1000_update_phy_info_task(struct work_struct *work)
2342{
2343	struct e1000_adapter *adapter = container_of(work,
2344						     struct e1000_adapter,
2345						     phy_info_task.work);
2346
2347	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2348}
2349
2350/**
2351 * e1000_82547_tx_fifo_stall_task - task to complete work
2352 * @work: work struct contained inside adapter struct
2353 **/
2354static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2355{
2356	struct e1000_adapter *adapter = container_of(work,
2357						     struct e1000_adapter,
2358						     fifo_stall_task.work);
2359	struct e1000_hw *hw = &adapter->hw;
2360	struct net_device *netdev = adapter->netdev;
2361	u32 tctl;
2362
2363	if (atomic_read(&adapter->tx_fifo_stall)) {
2364		if ((er32(TDT) == er32(TDH)) &&
2365		   (er32(TDFT) == er32(TDFH)) &&
2366		   (er32(TDFTS) == er32(TDFHS))) {
2367			tctl = er32(TCTL);
2368			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2369			ew32(TDFT, adapter->tx_head_addr);
2370			ew32(TDFH, adapter->tx_head_addr);
2371			ew32(TDFTS, adapter->tx_head_addr);
2372			ew32(TDFHS, adapter->tx_head_addr);
2373			ew32(TCTL, tctl);
2374			E1000_WRITE_FLUSH();
2375
2376			adapter->tx_fifo_head = 0;
2377			atomic_set(&adapter->tx_fifo_stall, 0);
2378			netif_wake_queue(netdev);
2379		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2380			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2381		}
2382	}
2383}
2384
2385bool e1000_has_link(struct e1000_adapter *adapter)
2386{
2387	struct e1000_hw *hw = &adapter->hw;
2388	bool link_active = false;
2389
2390	/* get_link_status is set on LSC (link status) interrupt or rx
2391	 * sequence error interrupt (except on intel ce4100).
2392	 * get_link_status will stay false until the
2393	 * e1000_check_for_link establishes link for copper adapters
2394	 * ONLY
2395	 */
2396	switch (hw->media_type) {
2397	case e1000_media_type_copper:
2398		if (hw->mac_type == e1000_ce4100)
2399			hw->get_link_status = 1;
2400		if (hw->get_link_status) {
2401			e1000_check_for_link(hw);
2402			link_active = !hw->get_link_status;
2403		} else {
2404			link_active = true;
2405		}
2406		break;
2407	case e1000_media_type_fiber:
2408		e1000_check_for_link(hw);
2409		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2410		break;
2411	case e1000_media_type_internal_serdes:
2412		e1000_check_for_link(hw);
2413		link_active = hw->serdes_has_link;
2414		break;
2415	default:
2416		break;
2417	}
2418
2419	return link_active;
2420}
2421
2422/**
2423 * e1000_watchdog - work function
2424 * @work: work struct contained inside adapter struct
2425 **/
2426static void e1000_watchdog(struct work_struct *work)
2427{
2428	struct e1000_adapter *adapter = container_of(work,
2429						     struct e1000_adapter,
2430						     watchdog_task.work);
2431	struct e1000_hw *hw = &adapter->hw;
2432	struct net_device *netdev = adapter->netdev;
2433	struct e1000_tx_ring *txdr = adapter->tx_ring;
2434	u32 link, tctl;
2435
2436	link = e1000_has_link(adapter);
2437	if ((netif_carrier_ok(netdev)) && link)
2438		goto link_up;
2439
2440	if (link) {
2441		if (!netif_carrier_ok(netdev)) {
2442			u32 ctrl;
 
2443			/* update snapshot of PHY registers on LSC */
2444			e1000_get_speed_and_duplex(hw,
2445						   &adapter->link_speed,
2446						   &adapter->link_duplex);
2447
2448			ctrl = er32(CTRL);
2449			pr_info("%s NIC Link is Up %d Mbps %s, "
2450				"Flow Control: %s\n",
2451				netdev->name,
2452				adapter->link_speed,
2453				adapter->link_duplex == FULL_DUPLEX ?
2454				"Full Duplex" : "Half Duplex",
2455				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2456				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2457				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2458				E1000_CTRL_TFCE) ? "TX" : "None")));
2459
2460			/* adjust timeout factor according to speed/duplex */
2461			adapter->tx_timeout_factor = 1;
2462			switch (adapter->link_speed) {
2463			case SPEED_10:
 
2464				adapter->tx_timeout_factor = 16;
2465				break;
2466			case SPEED_100:
 
2467				/* maybe add some timeout factor ? */
2468				break;
2469			}
2470
2471			/* enable transmits in the hardware */
2472			tctl = er32(TCTL);
2473			tctl |= E1000_TCTL_EN;
2474			ew32(TCTL, tctl);
2475
2476			netif_carrier_on(netdev);
2477			if (!test_bit(__E1000_DOWN, &adapter->flags))
2478				schedule_delayed_work(&adapter->phy_info_task,
2479						      2 * HZ);
2480			adapter->smartspeed = 0;
2481		}
2482	} else {
2483		if (netif_carrier_ok(netdev)) {
2484			adapter->link_speed = 0;
2485			adapter->link_duplex = 0;
2486			pr_info("%s NIC Link is Down\n",
2487				netdev->name);
2488			netif_carrier_off(netdev);
2489
2490			if (!test_bit(__E1000_DOWN, &adapter->flags))
2491				schedule_delayed_work(&adapter->phy_info_task,
2492						      2 * HZ);
2493		}
2494
2495		e1000_smartspeed(adapter);
2496	}
2497
2498link_up:
2499	e1000_update_stats(adapter);
2500
2501	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2502	adapter->tpt_old = adapter->stats.tpt;
2503	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2504	adapter->colc_old = adapter->stats.colc;
2505
2506	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2507	adapter->gorcl_old = adapter->stats.gorcl;
2508	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2509	adapter->gotcl_old = adapter->stats.gotcl;
2510
2511	e1000_update_adaptive(hw);
2512
2513	if (!netif_carrier_ok(netdev)) {
2514		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2515			/* We've lost link, so the controller stops DMA,
2516			 * but we've got queued Tx work that's never going
2517			 * to get done, so reset controller to flush Tx.
2518			 * (Do the reset outside of interrupt context).
2519			 */
2520			adapter->tx_timeout_count++;
2521			schedule_work(&adapter->reset_task);
2522			/* exit immediately since reset is imminent */
2523			return;
2524		}
2525	}
2526
2527	/* Simple mode for Interrupt Throttle Rate (ITR) */
2528	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2529		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2530		 * Total asymmetrical Tx or Rx gets ITR=8000;
2531		 * everyone else is between 2000-8000.
2532		 */
2533		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2534		u32 dif = (adapter->gotcl > adapter->gorcl ?
2535			    adapter->gotcl - adapter->gorcl :
2536			    adapter->gorcl - adapter->gotcl) / 10000;
2537		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2538
2539		ew32(ITR, 1000000000 / (itr * 256));
2540	}
2541
2542	/* Cause software interrupt to ensure rx ring is cleaned */
2543	ew32(ICS, E1000_ICS_RXDMT0);
2544
2545	/* Force detection of hung controller every watchdog period */
2546	adapter->detect_tx_hung = true;
2547
2548	/* Reschedule the task */
2549	if (!test_bit(__E1000_DOWN, &adapter->flags))
2550		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2551}
2552
2553enum latency_range {
2554	lowest_latency = 0,
2555	low_latency = 1,
2556	bulk_latency = 2,
2557	latency_invalid = 255
2558};
2559
2560/**
2561 * e1000_update_itr - update the dynamic ITR value based on statistics
2562 * @adapter: pointer to adapter
2563 * @itr_setting: current adapter->itr
2564 * @packets: the number of packets during this measurement interval
2565 * @bytes: the number of bytes during this measurement interval
2566 *
2567 *      Stores a new ITR value based on packets and byte
2568 *      counts during the last interrupt.  The advantage of per interrupt
2569 *      computation is faster updates and more accurate ITR for the current
2570 *      traffic pattern.  Constants in this function were computed
2571 *      based on theoretical maximum wire speed and thresholds were set based
2572 *      on testing data as well as attempting to minimize response time
2573 *      while increasing bulk throughput.
2574 *      this functionality is controlled by the InterruptThrottleRate module
2575 *      parameter (see e1000_param.c)
2576 **/
2577static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2578				     u16 itr_setting, int packets, int bytes)
2579{
2580	unsigned int retval = itr_setting;
2581	struct e1000_hw *hw = &adapter->hw;
2582
2583	if (unlikely(hw->mac_type < e1000_82540))
2584		goto update_itr_done;
2585
2586	if (packets == 0)
2587		goto update_itr_done;
2588
2589	switch (itr_setting) {
2590	case lowest_latency:
2591		/* jumbo frames get bulk treatment*/
2592		if (bytes/packets > 8000)
2593			retval = bulk_latency;
2594		else if ((packets < 5) && (bytes > 512))
2595			retval = low_latency;
2596		break;
2597	case low_latency:  /* 50 usec aka 20000 ints/s */
2598		if (bytes > 10000) {
2599			/* jumbo frames need bulk latency setting */
2600			if (bytes/packets > 8000)
2601				retval = bulk_latency;
2602			else if ((packets < 10) || ((bytes/packets) > 1200))
2603				retval = bulk_latency;
2604			else if ((packets > 35))
2605				retval = lowest_latency;
2606		} else if (bytes/packets > 2000)
2607			retval = bulk_latency;
2608		else if (packets <= 2 && bytes < 512)
2609			retval = lowest_latency;
2610		break;
2611	case bulk_latency: /* 250 usec aka 4000 ints/s */
2612		if (bytes > 25000) {
2613			if (packets > 35)
2614				retval = low_latency;
2615		} else if (bytes < 6000) {
2616			retval = low_latency;
2617		}
2618		break;
2619	}
2620
2621update_itr_done:
2622	return retval;
2623}
2624
2625static void e1000_set_itr(struct e1000_adapter *adapter)
2626{
2627	struct e1000_hw *hw = &adapter->hw;
2628	u16 current_itr;
2629	u32 new_itr = adapter->itr;
2630
2631	if (unlikely(hw->mac_type < e1000_82540))
2632		return;
2633
2634	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2635	if (unlikely(adapter->link_speed != SPEED_1000)) {
 
2636		new_itr = 4000;
2637		goto set_itr_now;
2638	}
2639
2640	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2641					   adapter->total_tx_packets,
2642					   adapter->total_tx_bytes);
2643	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2644	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2645		adapter->tx_itr = low_latency;
2646
2647	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2648					   adapter->total_rx_packets,
2649					   adapter->total_rx_bytes);
2650	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2651	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2652		adapter->rx_itr = low_latency;
2653
2654	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2655
2656	switch (current_itr) {
2657	/* counts and packets in update_itr are dependent on these numbers */
2658	case lowest_latency:
2659		new_itr = 70000;
2660		break;
2661	case low_latency:
2662		new_itr = 20000; /* aka hwitr = ~200 */
2663		break;
2664	case bulk_latency:
2665		new_itr = 4000;
2666		break;
2667	default:
2668		break;
2669	}
2670
2671set_itr_now:
2672	if (new_itr != adapter->itr) {
2673		/* this attempts to bias the interrupt rate towards Bulk
2674		 * by adding intermediate steps when interrupt rate is
2675		 * increasing
2676		 */
2677		new_itr = new_itr > adapter->itr ?
2678			  min(adapter->itr + (new_itr >> 2), new_itr) :
2679			  new_itr;
2680		adapter->itr = new_itr;
2681		ew32(ITR, 1000000000 / (new_itr * 256));
2682	}
2683}
2684
2685#define E1000_TX_FLAGS_CSUM		0x00000001
2686#define E1000_TX_FLAGS_VLAN		0x00000002
2687#define E1000_TX_FLAGS_TSO		0x00000004
2688#define E1000_TX_FLAGS_IPV4		0x00000008
2689#define E1000_TX_FLAGS_NO_FCS		0x00000010
2690#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2691#define E1000_TX_FLAGS_VLAN_SHIFT	16
2692
2693static int e1000_tso(struct e1000_adapter *adapter,
2694		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2695		     __be16 protocol)
2696{
2697	struct e1000_context_desc *context_desc;
2698	struct e1000_tx_buffer *buffer_info;
2699	unsigned int i;
2700	u32 cmd_length = 0;
2701	u16 ipcse = 0, tucse, mss;
2702	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2703
2704	if (skb_is_gso(skb)) {
2705		int err;
2706
2707		err = skb_cow_head(skb, 0);
2708		if (err < 0)
2709			return err;
2710
2711		hdr_len = skb_tcp_all_headers(skb);
2712		mss = skb_shinfo(skb)->gso_size;
2713		if (protocol == htons(ETH_P_IP)) {
2714			struct iphdr *iph = ip_hdr(skb);
2715			iph->tot_len = 0;
2716			iph->check = 0;
2717			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2718								 iph->daddr, 0,
2719								 IPPROTO_TCP,
2720								 0);
2721			cmd_length = E1000_TXD_CMD_IP;
2722			ipcse = skb_transport_offset(skb) - 1;
2723		} else if (skb_is_gso_v6(skb)) {
2724			tcp_v6_gso_csum_prep(skb);
 
 
 
 
2725			ipcse = 0;
2726		}
2727		ipcss = skb_network_offset(skb);
2728		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2729		tucss = skb_transport_offset(skb);
2730		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2731		tucse = 0;
2732
2733		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2734			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2735
2736		i = tx_ring->next_to_use;
2737		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2738		buffer_info = &tx_ring->buffer_info[i];
2739
2740		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2741		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2742		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2743		context_desc->upper_setup.tcp_fields.tucss = tucss;
2744		context_desc->upper_setup.tcp_fields.tucso = tucso;
2745		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2746		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2747		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2748		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2749
2750		buffer_info->time_stamp = jiffies;
2751		buffer_info->next_to_watch = i;
2752
2753		if (++i == tx_ring->count)
2754			i = 0;
2755
2756		tx_ring->next_to_use = i;
2757
2758		return true;
2759	}
2760	return false;
2761}
2762
2763static bool e1000_tx_csum(struct e1000_adapter *adapter,
2764			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2765			  __be16 protocol)
2766{
2767	struct e1000_context_desc *context_desc;
2768	struct e1000_tx_buffer *buffer_info;
2769	unsigned int i;
2770	u8 css;
2771	u32 cmd_len = E1000_TXD_CMD_DEXT;
2772
2773	if (skb->ip_summed != CHECKSUM_PARTIAL)
2774		return false;
2775
2776	switch (protocol) {
2777	case cpu_to_be16(ETH_P_IP):
2778		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2779			cmd_len |= E1000_TXD_CMD_TCP;
2780		break;
2781	case cpu_to_be16(ETH_P_IPV6):
2782		/* XXX not handling all IPV6 headers */
2783		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2784			cmd_len |= E1000_TXD_CMD_TCP;
2785		break;
2786	default:
2787		if (unlikely(net_ratelimit()))
2788			e_warn(drv, "checksum_partial proto=%x!\n",
2789			       skb->protocol);
2790		break;
2791	}
2792
2793	css = skb_checksum_start_offset(skb);
2794
2795	i = tx_ring->next_to_use;
2796	buffer_info = &tx_ring->buffer_info[i];
2797	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2798
2799	context_desc->lower_setup.ip_config = 0;
2800	context_desc->upper_setup.tcp_fields.tucss = css;
2801	context_desc->upper_setup.tcp_fields.tucso =
2802		css + skb->csum_offset;
2803	context_desc->upper_setup.tcp_fields.tucse = 0;
2804	context_desc->tcp_seg_setup.data = 0;
2805	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2806
2807	buffer_info->time_stamp = jiffies;
2808	buffer_info->next_to_watch = i;
2809
2810	if (unlikely(++i == tx_ring->count))
2811		i = 0;
2812
2813	tx_ring->next_to_use = i;
2814
2815	return true;
2816}
2817
2818#define E1000_MAX_TXD_PWR	12
2819#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2820
2821static int e1000_tx_map(struct e1000_adapter *adapter,
2822			struct e1000_tx_ring *tx_ring,
2823			struct sk_buff *skb, unsigned int first,
2824			unsigned int max_per_txd, unsigned int nr_frags,
2825			unsigned int mss)
2826{
2827	struct e1000_hw *hw = &adapter->hw;
2828	struct pci_dev *pdev = adapter->pdev;
2829	struct e1000_tx_buffer *buffer_info;
2830	unsigned int len = skb_headlen(skb);
2831	unsigned int offset = 0, size, count = 0, i;
2832	unsigned int f, bytecount, segs;
2833
2834	i = tx_ring->next_to_use;
2835
2836	while (len) {
2837		buffer_info = &tx_ring->buffer_info[i];
2838		size = min(len, max_per_txd);
2839		/* Workaround for Controller erratum --
2840		 * descriptor for non-tso packet in a linear SKB that follows a
2841		 * tso gets written back prematurely before the data is fully
2842		 * DMA'd to the controller
2843		 */
2844		if (!skb->data_len && tx_ring->last_tx_tso &&
2845		    !skb_is_gso(skb)) {
2846			tx_ring->last_tx_tso = false;
2847			size -= 4;
2848		}
2849
2850		/* Workaround for premature desc write-backs
2851		 * in TSO mode.  Append 4-byte sentinel desc
2852		 */
2853		if (unlikely(mss && !nr_frags && size == len && size > 8))
2854			size -= 4;
2855		/* work-around for errata 10 and it applies
2856		 * to all controllers in PCI-X mode
2857		 * The fix is to make sure that the first descriptor of a
2858		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2859		 */
2860		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2861			     (size > 2015) && count == 0))
2862			size = 2015;
2863
2864		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2865		 * terminating buffers within evenly-aligned dwords.
2866		 */
2867		if (unlikely(adapter->pcix_82544 &&
2868		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2869		   size > 4))
2870			size -= 4;
2871
2872		buffer_info->length = size;
2873		/* set time_stamp *before* dma to help avoid a possible race */
2874		buffer_info->time_stamp = jiffies;
2875		buffer_info->mapped_as_page = false;
2876		buffer_info->dma = dma_map_single(&pdev->dev,
2877						  skb->data + offset,
2878						  size, DMA_TO_DEVICE);
2879		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2880			goto dma_error;
2881		buffer_info->next_to_watch = i;
2882
2883		len -= size;
2884		offset += size;
2885		count++;
2886		if (len) {
2887			i++;
2888			if (unlikely(i == tx_ring->count))
2889				i = 0;
2890		}
2891	}
2892
2893	for (f = 0; f < nr_frags; f++) {
2894		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2895
 
2896		len = skb_frag_size(frag);
2897		offset = 0;
2898
2899		while (len) {
2900			unsigned long bufend;
2901			i++;
2902			if (unlikely(i == tx_ring->count))
2903				i = 0;
2904
2905			buffer_info = &tx_ring->buffer_info[i];
2906			size = min(len, max_per_txd);
2907			/* Workaround for premature desc write-backs
2908			 * in TSO mode.  Append 4-byte sentinel desc
2909			 */
2910			if (unlikely(mss && f == (nr_frags-1) &&
2911			    size == len && size > 8))
2912				size -= 4;
2913			/* Workaround for potential 82544 hang in PCI-X.
2914			 * Avoid terminating buffers within evenly-aligned
2915			 * dwords.
2916			 */
2917			bufend = (unsigned long)
2918				page_to_phys(skb_frag_page(frag));
2919			bufend += offset + size - 1;
2920			if (unlikely(adapter->pcix_82544 &&
2921				     !(bufend & 4) &&
2922				     size > 4))
2923				size -= 4;
2924
2925			buffer_info->length = size;
2926			buffer_info->time_stamp = jiffies;
2927			buffer_info->mapped_as_page = true;
2928			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2929						offset, size, DMA_TO_DEVICE);
2930			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2931				goto dma_error;
2932			buffer_info->next_to_watch = i;
2933
2934			len -= size;
2935			offset += size;
2936			count++;
2937		}
2938	}
2939
2940	segs = skb_shinfo(skb)->gso_segs ?: 1;
2941	/* multiply data chunks by size of headers */
2942	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2943
2944	tx_ring->buffer_info[i].skb = skb;
2945	tx_ring->buffer_info[i].segs = segs;
2946	tx_ring->buffer_info[i].bytecount = bytecount;
2947	tx_ring->buffer_info[first].next_to_watch = i;
2948
2949	return count;
2950
2951dma_error:
2952	dev_err(&pdev->dev, "TX DMA map failed\n");
2953	buffer_info->dma = 0;
2954	if (count)
2955		count--;
2956
2957	while (count--) {
2958		if (i == 0)
2959			i += tx_ring->count;
2960		i--;
2961		buffer_info = &tx_ring->buffer_info[i];
2962		e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
2963	}
2964
2965	return 0;
2966}
2967
2968static void e1000_tx_queue(struct e1000_adapter *adapter,
2969			   struct e1000_tx_ring *tx_ring, int tx_flags,
2970			   int count)
2971{
 
2972	struct e1000_tx_desc *tx_desc = NULL;
2973	struct e1000_tx_buffer *buffer_info;
2974	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2975	unsigned int i;
2976
2977	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2978		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2979			     E1000_TXD_CMD_TSE;
2980		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2981
2982		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2983			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2984	}
2985
2986	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2987		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2988		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2989	}
2990
2991	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2992		txd_lower |= E1000_TXD_CMD_VLE;
2993		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2994	}
2995
2996	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2997		txd_lower &= ~(E1000_TXD_CMD_IFCS);
2998
2999	i = tx_ring->next_to_use;
3000
3001	while (count--) {
3002		buffer_info = &tx_ring->buffer_info[i];
3003		tx_desc = E1000_TX_DESC(*tx_ring, i);
3004		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3005		tx_desc->lower.data =
3006			cpu_to_le32(txd_lower | buffer_info->length);
3007		tx_desc->upper.data = cpu_to_le32(txd_upper);
3008		if (unlikely(++i == tx_ring->count))
3009			i = 0;
3010	}
3011
3012	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3013
3014	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3015	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3016		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3017
3018	/* Force memory writes to complete before letting h/w
3019	 * know there are new descriptors to fetch.  (Only
3020	 * applicable for weak-ordered memory model archs,
3021	 * such as IA-64).
3022	 */
3023	dma_wmb();
3024
3025	tx_ring->next_to_use = i;
 
 
 
 
 
3026}
3027
3028/* 82547 workaround to avoid controller hang in half-duplex environment.
3029 * The workaround is to avoid queuing a large packet that would span
3030 * the internal Tx FIFO ring boundary by notifying the stack to resend
3031 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3032 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3033 * to the beginning of the Tx FIFO.
3034 */
3035
3036#define E1000_FIFO_HDR			0x10
3037#define E1000_82547_PAD_LEN		0x3E0
3038
3039static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3040				       struct sk_buff *skb)
3041{
3042	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3043	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3044
3045	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3046
3047	if (adapter->link_duplex != HALF_DUPLEX)
3048		goto no_fifo_stall_required;
3049
3050	if (atomic_read(&adapter->tx_fifo_stall))
3051		return 1;
3052
3053	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3054		atomic_set(&adapter->tx_fifo_stall, 1);
3055		return 1;
3056	}
3057
3058no_fifo_stall_required:
3059	adapter->tx_fifo_head += skb_fifo_len;
3060	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3061		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3062	return 0;
3063}
3064
3065static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3066{
3067	struct e1000_adapter *adapter = netdev_priv(netdev);
3068	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3069
3070	netif_stop_queue(netdev);
3071	/* Herbert's original patch had:
3072	 *  smp_mb__after_netif_stop_queue();
3073	 * but since that doesn't exist yet, just open code it.
3074	 */
3075	smp_mb();
3076
3077	/* We need to check again in a case another CPU has just
3078	 * made room available.
3079	 */
3080	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3081		return -EBUSY;
3082
3083	/* A reprieve! */
3084	netif_start_queue(netdev);
3085	++adapter->restart_queue;
3086	return 0;
3087}
3088
3089static int e1000_maybe_stop_tx(struct net_device *netdev,
3090			       struct e1000_tx_ring *tx_ring, int size)
3091{
3092	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3093		return 0;
3094	return __e1000_maybe_stop_tx(netdev, size);
3095}
3096
3097#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3098static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3099				    struct net_device *netdev)
3100{
3101	struct e1000_adapter *adapter = netdev_priv(netdev);
3102	struct e1000_hw *hw = &adapter->hw;
3103	struct e1000_tx_ring *tx_ring;
3104	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3105	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3106	unsigned int tx_flags = 0;
3107	unsigned int len = skb_headlen(skb);
3108	unsigned int nr_frags;
3109	unsigned int mss;
3110	int count = 0;
3111	int tso;
3112	unsigned int f;
3113	__be16 protocol = vlan_get_protocol(skb);
3114
3115	/* This goes back to the question of how to logically map a Tx queue
3116	 * to a flow.  Right now, performance is impacted slightly negatively
3117	 * if using multiple Tx queues.  If the stack breaks away from a
3118	 * single qdisc implementation, we can look at this again.
3119	 */
3120	tx_ring = adapter->tx_ring;
3121
 
 
 
 
 
3122	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3123	 * packets may get corrupted during padding by HW.
3124	 * To WA this issue, pad all small packets manually.
3125	 */
3126	if (eth_skb_pad(skb))
3127		return NETDEV_TX_OK;
 
 
 
 
3128
3129	mss = skb_shinfo(skb)->gso_size;
3130	/* The controller does a simple calculation to
3131	 * make sure there is enough room in the FIFO before
3132	 * initiating the DMA for each buffer.  The calc is:
3133	 * 4 = ceil(buffer len/mss).  To make sure we don't
3134	 * overrun the FIFO, adjust the max buffer len if mss
3135	 * drops.
3136	 */
3137	if (mss) {
3138		u8 hdr_len;
3139		max_per_txd = min(mss << 2, max_per_txd);
3140		max_txd_pwr = fls(max_per_txd) - 1;
3141
3142		hdr_len = skb_tcp_all_headers(skb);
3143		if (skb->data_len && hdr_len == len) {
3144			switch (hw->mac_type) {
3145			case e1000_82544: {
3146				unsigned int pull_size;
3147
3148				/* Make sure we have room to chop off 4 bytes,
3149				 * and that the end alignment will work out to
3150				 * this hardware's requirements
3151				 * NOTE: this is a TSO only workaround
3152				 * if end byte alignment not correct move us
3153				 * into the next dword
3154				 */
3155				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3156				    & 4)
3157					break;
 
3158				pull_size = min((unsigned int)4, skb->data_len);
3159				if (!__pskb_pull_tail(skb, pull_size)) {
3160					e_err(drv, "__pskb_pull_tail "
3161					      "failed.\n");
3162					dev_kfree_skb_any(skb);
3163					return NETDEV_TX_OK;
3164				}
3165				len = skb_headlen(skb);
3166				break;
3167			}
3168			default:
3169				/* do nothing */
3170				break;
3171			}
3172		}
3173	}
3174
3175	/* reserve a descriptor for the offload context */
3176	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3177		count++;
3178	count++;
3179
3180	/* Controller Erratum workaround */
3181	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3182		count++;
3183
3184	count += TXD_USE_COUNT(len, max_txd_pwr);
3185
3186	if (adapter->pcix_82544)
3187		count++;
3188
3189	/* work-around for errata 10 and it applies to all controllers
3190	 * in PCI-X mode, so add one more descriptor to the count
3191	 */
3192	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3193			(len > 2015)))
3194		count++;
3195
3196	nr_frags = skb_shinfo(skb)->nr_frags;
3197	for (f = 0; f < nr_frags; f++)
3198		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3199				       max_txd_pwr);
3200	if (adapter->pcix_82544)
3201		count += nr_frags;
3202
3203	/* need: count + 2 desc gap to keep tail from touching
3204	 * head, otherwise try next time
3205	 */
3206	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3207		return NETDEV_TX_BUSY;
3208
3209	if (unlikely((hw->mac_type == e1000_82547) &&
3210		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3211		netif_stop_queue(netdev);
3212		if (!test_bit(__E1000_DOWN, &adapter->flags))
3213			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3214		return NETDEV_TX_BUSY;
3215	}
3216
3217	if (skb_vlan_tag_present(skb)) {
3218		tx_flags |= E1000_TX_FLAGS_VLAN;
3219		tx_flags |= (skb_vlan_tag_get(skb) <<
3220			     E1000_TX_FLAGS_VLAN_SHIFT);
3221	}
3222
3223	first = tx_ring->next_to_use;
3224
3225	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3226	if (tso < 0) {
3227		dev_kfree_skb_any(skb);
3228		return NETDEV_TX_OK;
3229	}
3230
3231	if (likely(tso)) {
3232		if (likely(hw->mac_type != e1000_82544))
3233			tx_ring->last_tx_tso = true;
3234		tx_flags |= E1000_TX_FLAGS_TSO;
3235	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3236		tx_flags |= E1000_TX_FLAGS_CSUM;
3237
3238	if (protocol == htons(ETH_P_IP))
3239		tx_flags |= E1000_TX_FLAGS_IPV4;
3240
3241	if (unlikely(skb->no_fcs))
3242		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3243
3244	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3245			     nr_frags, mss);
3246
3247	if (count) {
3248		/* The descriptors needed is higher than other Intel drivers
3249		 * due to a number of workarounds.  The breakdown is below:
3250		 * Data descriptors: MAX_SKB_FRAGS + 1
3251		 * Context Descriptor: 1
3252		 * Keep head from touching tail: 2
3253		 * Workarounds: 3
3254		 */
3255		int desc_needed = MAX_SKB_FRAGS + 7;
3256
3257		netdev_sent_queue(netdev, skb->len);
3258		skb_tx_timestamp(skb);
3259
3260		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3261
3262		/* 82544 potentially requires twice as many data descriptors
3263		 * in order to guarantee buffers don't end on evenly-aligned
3264		 * dwords
3265		 */
3266		if (adapter->pcix_82544)
3267			desc_needed += MAX_SKB_FRAGS + 1;
3268
3269		/* Make sure there is space in the ring for the next send. */
3270		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3271
3272		if (!netdev_xmit_more() ||
3273		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3274			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3275		}
3276	} else {
3277		dev_kfree_skb_any(skb);
3278		tx_ring->buffer_info[first].time_stamp = 0;
3279		tx_ring->next_to_use = first;
3280	}
3281
3282	return NETDEV_TX_OK;
3283}
3284
3285#define NUM_REGS 38 /* 1 based count */
3286static void e1000_regdump(struct e1000_adapter *adapter)
3287{
3288	struct e1000_hw *hw = &adapter->hw;
3289	u32 regs[NUM_REGS];
3290	u32 *regs_buff = regs;
3291	int i = 0;
3292
3293	static const char * const reg_name[] = {
3294		"CTRL",  "STATUS",
3295		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3296		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3297		"TIDV", "TXDCTL", "TADV", "TARC0",
3298		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3299		"TXDCTL1", "TARC1",
3300		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3301		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3302		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3303	};
3304
3305	regs_buff[0]  = er32(CTRL);
3306	regs_buff[1]  = er32(STATUS);
3307
3308	regs_buff[2]  = er32(RCTL);
3309	regs_buff[3]  = er32(RDLEN);
3310	regs_buff[4]  = er32(RDH);
3311	regs_buff[5]  = er32(RDT);
3312	regs_buff[6]  = er32(RDTR);
3313
3314	regs_buff[7]  = er32(TCTL);
3315	regs_buff[8]  = er32(TDBAL);
3316	regs_buff[9]  = er32(TDBAH);
3317	regs_buff[10] = er32(TDLEN);
3318	regs_buff[11] = er32(TDH);
3319	regs_buff[12] = er32(TDT);
3320	regs_buff[13] = er32(TIDV);
3321	regs_buff[14] = er32(TXDCTL);
3322	regs_buff[15] = er32(TADV);
3323	regs_buff[16] = er32(TARC0);
3324
3325	regs_buff[17] = er32(TDBAL1);
3326	regs_buff[18] = er32(TDBAH1);
3327	regs_buff[19] = er32(TDLEN1);
3328	regs_buff[20] = er32(TDH1);
3329	regs_buff[21] = er32(TDT1);
3330	regs_buff[22] = er32(TXDCTL1);
3331	regs_buff[23] = er32(TARC1);
3332	regs_buff[24] = er32(CTRL_EXT);
3333	regs_buff[25] = er32(ERT);
3334	regs_buff[26] = er32(RDBAL0);
3335	regs_buff[27] = er32(RDBAH0);
3336	regs_buff[28] = er32(TDFH);
3337	regs_buff[29] = er32(TDFT);
3338	regs_buff[30] = er32(TDFHS);
3339	regs_buff[31] = er32(TDFTS);
3340	regs_buff[32] = er32(TDFPC);
3341	regs_buff[33] = er32(RDFH);
3342	regs_buff[34] = er32(RDFT);
3343	regs_buff[35] = er32(RDFHS);
3344	regs_buff[36] = er32(RDFTS);
3345	regs_buff[37] = er32(RDFPC);
3346
3347	pr_info("Register dump\n");
3348	for (i = 0; i < NUM_REGS; i++)
3349		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3350}
3351
3352/*
3353 * e1000_dump: Print registers, tx ring and rx ring
3354 */
3355static void e1000_dump(struct e1000_adapter *adapter)
3356{
3357	/* this code doesn't handle multiple rings */
3358	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3359	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3360	int i;
3361
3362	if (!netif_msg_hw(adapter))
3363		return;
3364
3365	/* Print Registers */
3366	e1000_regdump(adapter);
3367
3368	/* transmit dump */
3369	pr_info("TX Desc ring0 dump\n");
3370
3371	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3372	 *
3373	 * Legacy Transmit Descriptor
3374	 *   +--------------------------------------------------------------+
3375	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3376	 *   +--------------------------------------------------------------+
3377	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3378	 *   +--------------------------------------------------------------+
3379	 *   63       48 47        36 35    32 31     24 23    16 15        0
3380	 *
3381	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3382	 *   63      48 47    40 39       32 31             16 15    8 7      0
3383	 *   +----------------------------------------------------------------+
3384	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3385	 *   +----------------------------------------------------------------+
3386	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3387	 *   +----------------------------------------------------------------+
3388	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3389	 *
3390	 * Extended Data Descriptor (DTYP=0x1)
3391	 *   +----------------------------------------------------------------+
3392	 * 0 |                     Buffer Address [63:0]                      |
3393	 *   +----------------------------------------------------------------+
3394	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3395	 *   +----------------------------------------------------------------+
3396	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3397	 */
3398	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3399	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3400
3401	if (!netif_msg_tx_done(adapter))
3402		goto rx_ring_summary;
3403
3404	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3405		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3406		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3407		struct my_u { __le64 a; __le64 b; };
3408		struct my_u *u = (struct my_u *)tx_desc;
3409		const char *type;
3410
3411		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3412			type = "NTC/U";
3413		else if (i == tx_ring->next_to_use)
3414			type = "NTU";
3415		else if (i == tx_ring->next_to_clean)
3416			type = "NTC";
3417		else
3418			type = "";
3419
3420		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3421			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3422			le64_to_cpu(u->a), le64_to_cpu(u->b),
3423			(u64)buffer_info->dma, buffer_info->length,
3424			buffer_info->next_to_watch,
3425			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3426	}
3427
3428rx_ring_summary:
3429	/* receive dump */
3430	pr_info("\nRX Desc ring dump\n");
3431
3432	/* Legacy Receive Descriptor Format
3433	 *
3434	 * +-----------------------------------------------------+
3435	 * |                Buffer Address [63:0]                |
3436	 * +-----------------------------------------------------+
3437	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3438	 * +-----------------------------------------------------+
3439	 * 63       48 47    40 39      32 31         16 15      0
3440	 */
3441	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3442
3443	if (!netif_msg_rx_status(adapter))
3444		goto exit;
3445
3446	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3447		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3448		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3449		struct my_u { __le64 a; __le64 b; };
3450		struct my_u *u = (struct my_u *)rx_desc;
3451		const char *type;
3452
3453		if (i == rx_ring->next_to_use)
3454			type = "NTU";
3455		else if (i == rx_ring->next_to_clean)
3456			type = "NTC";
3457		else
3458			type = "";
3459
3460		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3461			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3462			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3463	} /* for */
3464
3465	/* dump the descriptor caches */
3466	/* rx */
3467	pr_info("Rx descriptor cache in 64bit format\n");
3468	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3469		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3470			i,
3471			readl(adapter->hw.hw_addr + i+4),
3472			readl(adapter->hw.hw_addr + i),
3473			readl(adapter->hw.hw_addr + i+12),
3474			readl(adapter->hw.hw_addr + i+8));
3475	}
3476	/* tx */
3477	pr_info("Tx descriptor cache in 64bit format\n");
3478	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3479		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3480			i,
3481			readl(adapter->hw.hw_addr + i+4),
3482			readl(adapter->hw.hw_addr + i),
3483			readl(adapter->hw.hw_addr + i+12),
3484			readl(adapter->hw.hw_addr + i+8));
3485	}
3486exit:
3487	return;
3488}
3489
3490/**
3491 * e1000_tx_timeout - Respond to a Tx Hang
3492 * @netdev: network interface device structure
3493 * @txqueue: number of the Tx queue that hung (unused)
3494 **/
3495static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3496{
3497	struct e1000_adapter *adapter = netdev_priv(netdev);
3498
3499	/* Do the reset outside of interrupt context */
3500	adapter->tx_timeout_count++;
3501	schedule_work(&adapter->reset_task);
3502}
3503
3504static void e1000_reset_task(struct work_struct *work)
3505{
3506	struct e1000_adapter *adapter =
3507		container_of(work, struct e1000_adapter, reset_task);
3508
3509	e_err(drv, "Reset adapter\n");
3510	e1000_reinit_locked(adapter);
3511}
3512
3513/**
 
 
 
 
 
 
 
 
 
 
 
 
 
3514 * e1000_change_mtu - Change the Maximum Transfer Unit
3515 * @netdev: network interface device structure
3516 * @new_mtu: new value for maximum frame size
3517 *
3518 * Returns 0 on success, negative on failure
3519 **/
3520static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3521{
3522	struct e1000_adapter *adapter = netdev_priv(netdev);
3523	struct e1000_hw *hw = &adapter->hw;
3524	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
 
 
 
 
 
 
3525
3526	/* Adapter-specific max frame size limits. */
3527	switch (hw->mac_type) {
3528	case e1000_undefined ... e1000_82542_rev2_1:
3529		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3530			e_err(probe, "Jumbo Frames not supported.\n");
3531			return -EINVAL;
3532		}
3533		break;
3534	default:
3535		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3536		break;
3537	}
3538
3539	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3540		msleep(1);
3541	/* e1000_down has a dependency on max_frame_size */
3542	hw->max_frame_size = max_frame;
3543	if (netif_running(netdev)) {
3544		/* prevent buffers from being reallocated */
3545		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3546		e1000_down(adapter);
3547	}
3548
3549	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3550	 * means we reserve 2 more, this pushes us to allocate from the next
3551	 * larger slab size.
3552	 * i.e. RXBUFFER_2048 --> size-4096 slab
3553	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3554	 * fragmented skbs
3555	 */
3556
3557	if (max_frame <= E1000_RXBUFFER_2048)
3558		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3559	else
3560#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3561		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3562#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3563		adapter->rx_buffer_len = PAGE_SIZE;
3564#endif
3565
3566	/* adjust allocation if LPE protects us, and we aren't using SBP */
3567	if (!hw->tbi_compatibility_on &&
3568	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3569	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3570		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3571
3572	netdev_dbg(netdev, "changing MTU from %d to %d\n",
3573		   netdev->mtu, new_mtu);
3574	netdev->mtu = new_mtu;
3575
3576	if (netif_running(netdev))
3577		e1000_up(adapter);
3578	else
3579		e1000_reset(adapter);
3580
3581	clear_bit(__E1000_RESETTING, &adapter->flags);
3582
3583	return 0;
3584}
3585
3586/**
3587 * e1000_update_stats - Update the board statistics counters
3588 * @adapter: board private structure
3589 **/
3590void e1000_update_stats(struct e1000_adapter *adapter)
3591{
3592	struct net_device *netdev = adapter->netdev;
3593	struct e1000_hw *hw = &adapter->hw;
3594	struct pci_dev *pdev = adapter->pdev;
3595	unsigned long flags;
3596	u16 phy_tmp;
3597
3598#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3599
3600	/* Prevent stats update while adapter is being reset, or if the pci
3601	 * connection is down.
3602	 */
3603	if (adapter->link_speed == 0)
3604		return;
3605	if (pci_channel_offline(pdev))
3606		return;
3607
3608	spin_lock_irqsave(&adapter->stats_lock, flags);
3609
3610	/* these counters are modified from e1000_tbi_adjust_stats,
3611	 * called from the interrupt context, so they must only
3612	 * be written while holding adapter->stats_lock
3613	 */
3614
3615	adapter->stats.crcerrs += er32(CRCERRS);
3616	adapter->stats.gprc += er32(GPRC);
3617	adapter->stats.gorcl += er32(GORCL);
3618	adapter->stats.gorch += er32(GORCH);
3619	adapter->stats.bprc += er32(BPRC);
3620	adapter->stats.mprc += er32(MPRC);
3621	adapter->stats.roc += er32(ROC);
3622
3623	adapter->stats.prc64 += er32(PRC64);
3624	adapter->stats.prc127 += er32(PRC127);
3625	adapter->stats.prc255 += er32(PRC255);
3626	adapter->stats.prc511 += er32(PRC511);
3627	adapter->stats.prc1023 += er32(PRC1023);
3628	adapter->stats.prc1522 += er32(PRC1522);
3629
3630	adapter->stats.symerrs += er32(SYMERRS);
3631	adapter->stats.mpc += er32(MPC);
3632	adapter->stats.scc += er32(SCC);
3633	adapter->stats.ecol += er32(ECOL);
3634	adapter->stats.mcc += er32(MCC);
3635	adapter->stats.latecol += er32(LATECOL);
3636	adapter->stats.dc += er32(DC);
3637	adapter->stats.sec += er32(SEC);
3638	adapter->stats.rlec += er32(RLEC);
3639	adapter->stats.xonrxc += er32(XONRXC);
3640	adapter->stats.xontxc += er32(XONTXC);
3641	adapter->stats.xoffrxc += er32(XOFFRXC);
3642	adapter->stats.xofftxc += er32(XOFFTXC);
3643	adapter->stats.fcruc += er32(FCRUC);
3644	adapter->stats.gptc += er32(GPTC);
3645	adapter->stats.gotcl += er32(GOTCL);
3646	adapter->stats.gotch += er32(GOTCH);
3647	adapter->stats.rnbc += er32(RNBC);
3648	adapter->stats.ruc += er32(RUC);
3649	adapter->stats.rfc += er32(RFC);
3650	adapter->stats.rjc += er32(RJC);
3651	adapter->stats.torl += er32(TORL);
3652	adapter->stats.torh += er32(TORH);
3653	adapter->stats.totl += er32(TOTL);
3654	adapter->stats.toth += er32(TOTH);
3655	adapter->stats.tpr += er32(TPR);
3656
3657	adapter->stats.ptc64 += er32(PTC64);
3658	adapter->stats.ptc127 += er32(PTC127);
3659	adapter->stats.ptc255 += er32(PTC255);
3660	adapter->stats.ptc511 += er32(PTC511);
3661	adapter->stats.ptc1023 += er32(PTC1023);
3662	adapter->stats.ptc1522 += er32(PTC1522);
3663
3664	adapter->stats.mptc += er32(MPTC);
3665	adapter->stats.bptc += er32(BPTC);
3666
3667	/* used for adaptive IFS */
3668
3669	hw->tx_packet_delta = er32(TPT);
3670	adapter->stats.tpt += hw->tx_packet_delta;
3671	hw->collision_delta = er32(COLC);
3672	adapter->stats.colc += hw->collision_delta;
3673
3674	if (hw->mac_type >= e1000_82543) {
3675		adapter->stats.algnerrc += er32(ALGNERRC);
3676		adapter->stats.rxerrc += er32(RXERRC);
3677		adapter->stats.tncrs += er32(TNCRS);
3678		adapter->stats.cexterr += er32(CEXTERR);
3679		adapter->stats.tsctc += er32(TSCTC);
3680		adapter->stats.tsctfc += er32(TSCTFC);
3681	}
3682
3683	/* Fill out the OS statistics structure */
3684	netdev->stats.multicast = adapter->stats.mprc;
3685	netdev->stats.collisions = adapter->stats.colc;
3686
3687	/* Rx Errors */
3688
3689	/* RLEC on some newer hardware can be incorrect so build
3690	 * our own version based on RUC and ROC
3691	 */
3692	netdev->stats.rx_errors = adapter->stats.rxerrc +
3693		adapter->stats.crcerrs + adapter->stats.algnerrc +
3694		adapter->stats.ruc + adapter->stats.roc +
3695		adapter->stats.cexterr;
3696	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3697	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3698	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3699	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3700	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3701
3702	/* Tx Errors */
3703	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3704	netdev->stats.tx_errors = adapter->stats.txerrc;
3705	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3706	netdev->stats.tx_window_errors = adapter->stats.latecol;
3707	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3708	if (hw->bad_tx_carr_stats_fd &&
3709	    adapter->link_duplex == FULL_DUPLEX) {
3710		netdev->stats.tx_carrier_errors = 0;
3711		adapter->stats.tncrs = 0;
3712	}
3713
3714	/* Tx Dropped needs to be maintained elsewhere */
3715
3716	/* Phy Stats */
3717	if (hw->media_type == e1000_media_type_copper) {
3718		if ((adapter->link_speed == SPEED_1000) &&
3719		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3720			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3721			adapter->phy_stats.idle_errors += phy_tmp;
3722		}
3723
3724		if ((hw->mac_type <= e1000_82546) &&
3725		   (hw->phy_type == e1000_phy_m88) &&
3726		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3727			adapter->phy_stats.receive_errors += phy_tmp;
3728	}
3729
3730	/* Management Stats */
3731	if (hw->has_smbus) {
3732		adapter->stats.mgptc += er32(MGTPTC);
3733		adapter->stats.mgprc += er32(MGTPRC);
3734		adapter->stats.mgpdc += er32(MGTPDC);
3735	}
3736
3737	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3738}
3739
3740/**
3741 * e1000_intr - Interrupt Handler
3742 * @irq: interrupt number
3743 * @data: pointer to a network interface device structure
3744 **/
3745static irqreturn_t e1000_intr(int irq, void *data)
3746{
3747	struct net_device *netdev = data;
3748	struct e1000_adapter *adapter = netdev_priv(netdev);
3749	struct e1000_hw *hw = &adapter->hw;
3750	u32 icr = er32(ICR);
3751
3752	if (unlikely((!icr)))
3753		return IRQ_NONE;  /* Not our interrupt */
3754
3755	/* we might have caused the interrupt, but the above
3756	 * read cleared it, and just in case the driver is
3757	 * down there is nothing to do so return handled
3758	 */
3759	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3760		return IRQ_HANDLED;
3761
3762	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3763		hw->get_link_status = 1;
3764		/* guard against interrupt when we're going down */
3765		if (!test_bit(__E1000_DOWN, &adapter->flags))
3766			schedule_delayed_work(&adapter->watchdog_task, 1);
3767	}
3768
3769	/* disable interrupts, without the synchronize_irq bit */
3770	ew32(IMC, ~0);
3771	E1000_WRITE_FLUSH();
3772
3773	if (likely(napi_schedule_prep(&adapter->napi))) {
3774		adapter->total_tx_bytes = 0;
3775		adapter->total_tx_packets = 0;
3776		adapter->total_rx_bytes = 0;
3777		adapter->total_rx_packets = 0;
3778		__napi_schedule(&adapter->napi);
3779	} else {
3780		/* this really should not happen! if it does it is basically a
3781		 * bug, but not a hard error, so enable ints and continue
3782		 */
3783		if (!test_bit(__E1000_DOWN, &adapter->flags))
3784			e1000_irq_enable(adapter);
3785	}
3786
3787	return IRQ_HANDLED;
3788}
3789
3790/**
3791 * e1000_clean - NAPI Rx polling callback
3792 * @napi: napi struct containing references to driver info
3793 * @budget: budget given to driver for receive packets
3794 **/
3795static int e1000_clean(struct napi_struct *napi, int budget)
3796{
3797	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3798						     napi);
3799	int tx_clean_complete = 0, work_done = 0;
3800
3801	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3802
3803	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3804
3805	if (!tx_clean_complete || work_done == budget)
3806		return budget;
3807
3808	/* Exit the polling mode, but don't re-enable interrupts if stack might
3809	 * poll us due to busy-polling
3810	 */
3811	if (likely(napi_complete_done(napi, work_done))) {
3812		if (likely(adapter->itr_setting & 3))
3813			e1000_set_itr(adapter);
 
3814		if (!test_bit(__E1000_DOWN, &adapter->flags))
3815			e1000_irq_enable(adapter);
3816	}
3817
3818	return work_done;
3819}
3820
3821/**
3822 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3823 * @adapter: board private structure
3824 * @tx_ring: ring to clean
3825 **/
3826static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3827			       struct e1000_tx_ring *tx_ring)
3828{
3829	struct e1000_hw *hw = &adapter->hw;
3830	struct net_device *netdev = adapter->netdev;
3831	struct e1000_tx_desc *tx_desc, *eop_desc;
3832	struct e1000_tx_buffer *buffer_info;
3833	unsigned int i, eop;
3834	unsigned int count = 0;
3835	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3836	unsigned int bytes_compl = 0, pkts_compl = 0;
3837
3838	i = tx_ring->next_to_clean;
3839	eop = tx_ring->buffer_info[i].next_to_watch;
3840	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3841
3842	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3843	       (count < tx_ring->count)) {
3844		bool cleaned = false;
3845		dma_rmb();	/* read buffer_info after eop_desc */
3846		for ( ; !cleaned; count++) {
3847			tx_desc = E1000_TX_DESC(*tx_ring, i);
3848			buffer_info = &tx_ring->buffer_info[i];
3849			cleaned = (i == eop);
3850
3851			if (cleaned) {
3852				total_tx_packets += buffer_info->segs;
3853				total_tx_bytes += buffer_info->bytecount;
3854				if (buffer_info->skb) {
3855					bytes_compl += buffer_info->skb->len;
3856					pkts_compl++;
3857				}
3858
3859			}
3860			e1000_unmap_and_free_tx_resource(adapter, buffer_info,
3861							 64);
3862			tx_desc->upper.data = 0;
3863
3864			if (unlikely(++i == tx_ring->count))
3865				i = 0;
3866		}
3867
3868		eop = tx_ring->buffer_info[i].next_to_watch;
3869		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3870	}
3871
3872	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3873	 * which will reuse the cleaned buffers.
3874	 */
3875	smp_store_release(&tx_ring->next_to_clean, i);
3876
3877	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3878
3879#define TX_WAKE_THRESHOLD 32
3880	if (unlikely(count && netif_carrier_ok(netdev) &&
3881		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3882		/* Make sure that anybody stopping the queue after this
3883		 * sees the new next_to_clean.
3884		 */
3885		smp_mb();
3886
3887		if (netif_queue_stopped(netdev) &&
3888		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3889			netif_wake_queue(netdev);
3890			++adapter->restart_queue;
3891		}
3892	}
3893
3894	if (adapter->detect_tx_hung) {
3895		/* Detect a transmit hang in hardware, this serializes the
3896		 * check with the clearing of time_stamp and movement of i
3897		 */
3898		adapter->detect_tx_hung = false;
3899		if (tx_ring->buffer_info[eop].time_stamp &&
3900		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3901			       (adapter->tx_timeout_factor * HZ)) &&
3902		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3903
3904			/* detected Tx unit hang */
3905			e_err(drv, "Detected Tx Unit Hang\n"
3906			      "  Tx Queue             <%lu>\n"
3907			      "  TDH                  <%x>\n"
3908			      "  TDT                  <%x>\n"
3909			      "  next_to_use          <%x>\n"
3910			      "  next_to_clean        <%x>\n"
3911			      "buffer_info[next_to_clean]\n"
3912			      "  time_stamp           <%lx>\n"
3913			      "  next_to_watch        <%x>\n"
3914			      "  jiffies              <%lx>\n"
3915			      "  next_to_watch.status <%x>\n",
3916				(unsigned long)(tx_ring - adapter->tx_ring),
3917				readl(hw->hw_addr + tx_ring->tdh),
3918				readl(hw->hw_addr + tx_ring->tdt),
3919				tx_ring->next_to_use,
3920				tx_ring->next_to_clean,
3921				tx_ring->buffer_info[eop].time_stamp,
3922				eop,
3923				jiffies,
3924				eop_desc->upper.fields.status);
3925			e1000_dump(adapter);
3926			netif_stop_queue(netdev);
3927		}
3928	}
3929	adapter->total_tx_bytes += total_tx_bytes;
3930	adapter->total_tx_packets += total_tx_packets;
3931	netdev->stats.tx_bytes += total_tx_bytes;
3932	netdev->stats.tx_packets += total_tx_packets;
3933	return count < tx_ring->count;
3934}
3935
3936/**
3937 * e1000_rx_checksum - Receive Checksum Offload for 82543
3938 * @adapter:     board private structure
3939 * @status_err:  receive descriptor status and error fields
3940 * @csum:        receive descriptor csum field
3941 * @skb:         socket buffer with received data
3942 **/
3943static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3944			      u32 csum, struct sk_buff *skb)
3945{
3946	struct e1000_hw *hw = &adapter->hw;
3947	u16 status = (u16)status_err;
3948	u8 errors = (u8)(status_err >> 24);
3949
3950	skb_checksum_none_assert(skb);
3951
3952	/* 82543 or newer only */
3953	if (unlikely(hw->mac_type < e1000_82543))
3954		return;
3955	/* Ignore Checksum bit is set */
3956	if (unlikely(status & E1000_RXD_STAT_IXSM))
3957		return;
3958	/* TCP/UDP checksum error bit is set */
3959	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3960		/* let the stack verify checksum errors */
3961		adapter->hw_csum_err++;
3962		return;
3963	}
3964	/* TCP/UDP Checksum has not been calculated */
3965	if (!(status & E1000_RXD_STAT_TCPCS))
3966		return;
3967
3968	/* It must be a TCP or UDP packet with a valid checksum */
3969	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3970		/* TCP checksum is good */
3971		skb->ip_summed = CHECKSUM_UNNECESSARY;
3972	}
3973	adapter->hw_csum_good++;
3974}
3975
3976/**
3977 * e1000_consume_page - helper function for jumbo Rx path
3978 * @bi: software descriptor shadow data
3979 * @skb: skb being modified
3980 * @length: length of data being added
3981 **/
3982static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3983			       u16 length)
3984{
3985	bi->rxbuf.page = NULL;
3986	skb->len += length;
3987	skb->data_len += length;
3988	skb->truesize += PAGE_SIZE;
3989}
3990
3991/**
3992 * e1000_receive_skb - helper function to handle rx indications
3993 * @adapter: board private structure
3994 * @status: descriptor status field as written by hardware
3995 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3996 * @skb: pointer to sk_buff to be indicated to stack
3997 */
3998static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3999			      __le16 vlan, struct sk_buff *skb)
4000{
4001	skb->protocol = eth_type_trans(skb, adapter->netdev);
4002
4003	if (status & E1000_RXD_STAT_VP) {
4004		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4005
4006		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4007	}
4008	napi_gro_receive(&adapter->napi, skb);
4009}
4010
4011/**
4012 * e1000_tbi_adjust_stats
4013 * @hw: Struct containing variables accessed by shared code
4014 * @stats: point to stats struct
4015 * @frame_len: The length of the frame in question
4016 * @mac_addr: The Ethernet destination address of the frame in question
4017 *
4018 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4019 */
4020static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4021				   struct e1000_hw_stats *stats,
4022				   u32 frame_len, const u8 *mac_addr)
4023{
4024	u64 carry_bit;
4025
4026	/* First adjust the frame length. */
4027	frame_len--;
4028	/* We need to adjust the statistics counters, since the hardware
4029	 * counters overcount this packet as a CRC error and undercount
4030	 * the packet as a good packet
4031	 */
4032	/* This packet should not be counted as a CRC error. */
4033	stats->crcerrs--;
4034	/* This packet does count as a Good Packet Received. */
4035	stats->gprc++;
4036
4037	/* Adjust the Good Octets received counters */
4038	carry_bit = 0x80000000 & stats->gorcl;
4039	stats->gorcl += frame_len;
4040	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4041	 * Received Count) was one before the addition,
4042	 * AND it is zero after, then we lost the carry out,
4043	 * need to add one to Gorch (Good Octets Received Count High).
4044	 * This could be simplified if all environments supported
4045	 * 64-bit integers.
4046	 */
4047	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4048		stats->gorch++;
4049	/* Is this a broadcast or multicast?  Check broadcast first,
4050	 * since the test for a multicast frame will test positive on
4051	 * a broadcast frame.
4052	 */
4053	if (is_broadcast_ether_addr(mac_addr))
4054		stats->bprc++;
4055	else if (is_multicast_ether_addr(mac_addr))
4056		stats->mprc++;
4057
4058	if (frame_len == hw->max_frame_size) {
4059		/* In this case, the hardware has overcounted the number of
4060		 * oversize frames.
4061		 */
4062		if (stats->roc > 0)
4063			stats->roc--;
4064	}
4065
4066	/* Adjust the bin counters when the extra byte put the frame in the
4067	 * wrong bin. Remember that the frame_len was adjusted above.
4068	 */
4069	if (frame_len == 64) {
4070		stats->prc64++;
4071		stats->prc127--;
4072	} else if (frame_len == 127) {
4073		stats->prc127++;
4074		stats->prc255--;
4075	} else if (frame_len == 255) {
4076		stats->prc255++;
4077		stats->prc511--;
4078	} else if (frame_len == 511) {
4079		stats->prc511++;
4080		stats->prc1023--;
4081	} else if (frame_len == 1023) {
4082		stats->prc1023++;
4083		stats->prc1522--;
4084	} else if (frame_len == 1522) {
4085		stats->prc1522++;
4086	}
4087}
4088
4089static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4090				    u8 status, u8 errors,
4091				    u32 length, const u8 *data)
4092{
4093	struct e1000_hw *hw = &adapter->hw;
4094	u8 last_byte = *(data + length - 1);
4095
4096	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4097		unsigned long irq_flags;
4098
4099		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4100		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4101		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4102
4103		return true;
4104	}
4105
4106	return false;
4107}
4108
4109static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4110					  unsigned int bufsz)
4111{
4112	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4113
4114	if (unlikely(!skb))
4115		adapter->alloc_rx_buff_failed++;
4116	return skb;
4117}
4118
4119/**
4120 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4121 * @adapter: board private structure
4122 * @rx_ring: ring to clean
4123 * @work_done: amount of napi work completed this call
4124 * @work_to_do: max amount of work allowed for this call to do
4125 *
4126 * the return value indicates whether actual cleaning was done, there
4127 * is no guarantee that everything was cleaned
4128 */
4129static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4130				     struct e1000_rx_ring *rx_ring,
4131				     int *work_done, int work_to_do)
4132{
 
4133	struct net_device *netdev = adapter->netdev;
4134	struct pci_dev *pdev = adapter->pdev;
4135	struct e1000_rx_desc *rx_desc, *next_rxd;
4136	struct e1000_rx_buffer *buffer_info, *next_buffer;
 
4137	u32 length;
4138	unsigned int i;
4139	int cleaned_count = 0;
4140	bool cleaned = false;
4141	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4142
4143	i = rx_ring->next_to_clean;
4144	rx_desc = E1000_RX_DESC(*rx_ring, i);
4145	buffer_info = &rx_ring->buffer_info[i];
4146
4147	while (rx_desc->status & E1000_RXD_STAT_DD) {
4148		struct sk_buff *skb;
4149		u8 status;
4150
4151		if (*work_done >= work_to_do)
4152			break;
4153		(*work_done)++;
4154		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4155
4156		status = rx_desc->status;
 
 
4157
4158		if (++i == rx_ring->count)
4159			i = 0;
4160
4161		next_rxd = E1000_RX_DESC(*rx_ring, i);
4162		prefetch(next_rxd);
4163
4164		next_buffer = &rx_ring->buffer_info[i];
4165
4166		cleaned = true;
4167		cleaned_count++;
4168		dma_unmap_page(&pdev->dev, buffer_info->dma,
4169			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4170		buffer_info->dma = 0;
4171
4172		length = le16_to_cpu(rx_desc->length);
4173
4174		/* errors is only valid for DD + EOP descriptors */
4175		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4176		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4177			u8 *mapped = page_address(buffer_info->rxbuf.page);
 
4178
4179			if (e1000_tbi_should_accept(adapter, status,
4180						    rx_desc->errors,
4181						    length, mapped)) {
 
 
 
 
 
 
 
4182				length--;
4183			} else if (netdev->features & NETIF_F_RXALL) {
4184				goto process_skb;
4185			} else {
 
 
 
 
4186				/* an error means any chain goes out the window
4187				 * too
4188				 */
4189				dev_kfree_skb(rx_ring->rx_skb_top);
 
4190				rx_ring->rx_skb_top = NULL;
4191				goto next_desc;
4192			}
4193		}
4194
4195#define rxtop rx_ring->rx_skb_top
4196process_skb:
4197		if (!(status & E1000_RXD_STAT_EOP)) {
4198			/* this descriptor is only the beginning (or middle) */
4199			if (!rxtop) {
4200				/* this is the beginning of a chain */
4201				rxtop = napi_get_frags(&adapter->napi);
4202				if (!rxtop)
4203					break;
4204
4205				skb_fill_page_desc(rxtop, 0,
4206						   buffer_info->rxbuf.page,
4207						   0, length);
4208			} else {
4209				/* this is the middle of a chain */
4210				skb_fill_page_desc(rxtop,
4211				    skb_shinfo(rxtop)->nr_frags,
4212				    buffer_info->rxbuf.page, 0, length);
 
 
4213			}
4214			e1000_consume_page(buffer_info, rxtop, length);
4215			goto next_desc;
4216		} else {
4217			if (rxtop) {
4218				/* end of the chain */
4219				skb_fill_page_desc(rxtop,
4220				    skb_shinfo(rxtop)->nr_frags,
4221				    buffer_info->rxbuf.page, 0, length);
 
 
 
 
4222				skb = rxtop;
4223				rxtop = NULL;
4224				e1000_consume_page(buffer_info, skb, length);
4225			} else {
4226				struct page *p;
4227				/* no chain, got EOP, this buf is the packet
4228				 * copybreak to save the put_page/alloc_page
4229				 */
4230				p = buffer_info->rxbuf.page;
4231				if (length <= copybreak) {
4232					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4233						length -= 4;
4234					skb = e1000_alloc_rx_skb(adapter,
4235								 length);
4236					if (!skb)
4237						break;
4238
4239					memcpy(skb_tail_pointer(skb),
4240					       page_address(p), length);
4241
4242					/* re-use the page, so don't erase
4243					 * buffer_info->rxbuf.page
4244					 */
4245					skb_put(skb, length);
4246					e1000_rx_checksum(adapter,
4247							  status | rx_desc->errors << 24,
4248							  le16_to_cpu(rx_desc->csum), skb);
4249
4250					total_rx_bytes += skb->len;
4251					total_rx_packets++;
4252
4253					e1000_receive_skb(adapter, status,
4254							  rx_desc->special, skb);
4255					goto next_desc;
4256				} else {
4257					skb = napi_get_frags(&adapter->napi);
4258					if (!skb) {
4259						adapter->alloc_rx_buff_failed++;
4260						break;
4261					}
4262					skb_fill_page_desc(skb, 0, p, 0,
4263							   length);
4264					e1000_consume_page(buffer_info, skb,
4265							   length);
4266				}
4267			}
4268		}
4269
4270		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4271		e1000_rx_checksum(adapter,
4272				  (u32)(status) |
4273				  ((u32)(rx_desc->errors) << 24),
4274				  le16_to_cpu(rx_desc->csum), skb);
4275
4276		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4277		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4278			pskb_trim(skb, skb->len - 4);
4279		total_rx_packets++;
4280
4281		if (status & E1000_RXD_STAT_VP) {
4282			__le16 vlan = rx_desc->special;
4283			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4284
4285			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4286		}
4287
4288		napi_gro_frags(&adapter->napi);
4289
4290next_desc:
4291		rx_desc->status = 0;
4292
4293		/* return some buffers to hardware, one at a time is too slow */
4294		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4295			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4296			cleaned_count = 0;
4297		}
4298
4299		/* use prefetched values */
4300		rx_desc = next_rxd;
4301		buffer_info = next_buffer;
4302	}
4303	rx_ring->next_to_clean = i;
4304
4305	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4306	if (cleaned_count)
4307		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4308
4309	adapter->total_rx_packets += total_rx_packets;
4310	adapter->total_rx_bytes += total_rx_bytes;
4311	netdev->stats.rx_bytes += total_rx_bytes;
4312	netdev->stats.rx_packets += total_rx_packets;
4313	return cleaned;
4314}
4315
4316/* this should improve performance for small packets with large amounts
4317 * of reassembly being done in the stack
4318 */
4319static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4320				       struct e1000_rx_buffer *buffer_info,
4321				       u32 length, const void *data)
4322{
4323	struct sk_buff *skb;
4324
4325	if (length > copybreak)
4326		return NULL;
4327
4328	skb = e1000_alloc_rx_skb(adapter, length);
4329	if (!skb)
4330		return NULL;
4331
4332	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4333				length, DMA_FROM_DEVICE);
4334
4335	skb_put_data(skb, data, length);
 
 
4336
4337	return skb;
 
 
 
 
 
4338}
4339
4340/**
4341 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4342 * @adapter: board private structure
4343 * @rx_ring: ring to clean
4344 * @work_done: amount of napi work completed this call
4345 * @work_to_do: max amount of work allowed for this call to do
4346 */
4347static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4348			       struct e1000_rx_ring *rx_ring,
4349			       int *work_done, int work_to_do)
4350{
 
4351	struct net_device *netdev = adapter->netdev;
4352	struct pci_dev *pdev = adapter->pdev;
4353	struct e1000_rx_desc *rx_desc, *next_rxd;
4354	struct e1000_rx_buffer *buffer_info, *next_buffer;
 
4355	u32 length;
4356	unsigned int i;
4357	int cleaned_count = 0;
4358	bool cleaned = false;
4359	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4360
4361	i = rx_ring->next_to_clean;
4362	rx_desc = E1000_RX_DESC(*rx_ring, i);
4363	buffer_info = &rx_ring->buffer_info[i];
4364
4365	while (rx_desc->status & E1000_RXD_STAT_DD) {
4366		struct sk_buff *skb;
4367		u8 *data;
4368		u8 status;
4369
4370		if (*work_done >= work_to_do)
4371			break;
4372		(*work_done)++;
4373		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4374
4375		status = rx_desc->status;
4376		length = le16_to_cpu(rx_desc->length);
4377
4378		data = buffer_info->rxbuf.data;
4379		prefetch(data);
4380		skb = e1000_copybreak(adapter, buffer_info, length, data);
4381		if (!skb) {
4382			unsigned int frag_len = e1000_frag_len(adapter);
4383
4384			skb = napi_build_skb(data - E1000_HEADROOM, frag_len);
4385			if (!skb) {
4386				adapter->alloc_rx_buff_failed++;
4387				break;
4388			}
4389
4390			skb_reserve(skb, E1000_HEADROOM);
4391			dma_unmap_single(&pdev->dev, buffer_info->dma,
4392					 adapter->rx_buffer_len,
4393					 DMA_FROM_DEVICE);
4394			buffer_info->dma = 0;
4395			buffer_info->rxbuf.data = NULL;
4396		}
4397
4398		if (++i == rx_ring->count)
4399			i = 0;
4400
 
4401		next_rxd = E1000_RX_DESC(*rx_ring, i);
4402		prefetch(next_rxd);
4403
4404		next_buffer = &rx_ring->buffer_info[i];
4405
4406		cleaned = true;
4407		cleaned_count++;
 
 
 
4408
 
4409		/* !EOP means multiple descriptors were used to store a single
4410		 * packet, if thats the case we need to toss it.  In fact, we
4411		 * to toss every packet with the EOP bit clear and the next
4412		 * frame that _does_ have the EOP bit set, as it is by
4413		 * definition only a frame fragment
4414		 */
4415		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4416			adapter->discarding = true;
4417
4418		if (adapter->discarding) {
4419			/* All receives must fit into a single buffer */
4420			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4421			dev_kfree_skb(skb);
 
4422			if (status & E1000_RXD_STAT_EOP)
4423				adapter->discarding = false;
4424			goto next_desc;
4425		}
4426
4427		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4428			if (e1000_tbi_should_accept(adapter, status,
4429						    rx_desc->errors,
4430						    length, data)) {
 
 
 
 
 
4431				length--;
4432			} else if (netdev->features & NETIF_F_RXALL) {
4433				goto process_skb;
4434			} else {
4435				dev_kfree_skb(skb);
 
 
 
4436				goto next_desc;
4437			}
4438		}
4439
4440process_skb:
4441		total_rx_bytes += (length - 4); /* don't count FCS */
4442		total_rx_packets++;
4443
4444		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4445			/* adjust length to remove Ethernet CRC, this must be
4446			 * done after the TBI_ACCEPT workaround above
4447			 */
4448			length -= 4;
4449
4450		if (buffer_info->rxbuf.data == NULL)
4451			skb_put(skb, length);
4452		else /* copybreak skb */
4453			skb_trim(skb, length);
4454
4455		/* Receive Checksum Offload */
4456		e1000_rx_checksum(adapter,
4457				  (u32)(status) |
4458				  ((u32)(rx_desc->errors) << 24),
4459				  le16_to_cpu(rx_desc->csum), skb);
4460
4461		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4462
4463next_desc:
4464		rx_desc->status = 0;
4465
4466		/* return some buffers to hardware, one at a time is too slow */
4467		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4468			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4469			cleaned_count = 0;
4470		}
4471
4472		/* use prefetched values */
4473		rx_desc = next_rxd;
4474		buffer_info = next_buffer;
4475	}
4476	rx_ring->next_to_clean = i;
4477
4478	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4479	if (cleaned_count)
4480		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4481
4482	adapter->total_rx_packets += total_rx_packets;
4483	adapter->total_rx_bytes += total_rx_bytes;
4484	netdev->stats.rx_bytes += total_rx_bytes;
4485	netdev->stats.rx_packets += total_rx_packets;
4486	return cleaned;
4487}
4488
4489/**
4490 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4491 * @adapter: address of board private structure
4492 * @rx_ring: pointer to receive ring structure
4493 * @cleaned_count: number of buffers to allocate this pass
4494 **/
4495static void
4496e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4497			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4498{
 
4499	struct pci_dev *pdev = adapter->pdev;
4500	struct e1000_rx_desc *rx_desc;
4501	struct e1000_rx_buffer *buffer_info;
 
4502	unsigned int i;
 
4503
4504	i = rx_ring->next_to_use;
4505	buffer_info = &rx_ring->buffer_info[i];
4506
4507	while (cleaned_count--) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4508		/* allocate a new page if necessary */
4509		if (!buffer_info->rxbuf.page) {
4510			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4511			if (unlikely(!buffer_info->rxbuf.page)) {
4512				adapter->alloc_rx_buff_failed++;
4513				break;
4514			}
4515		}
4516
4517		if (!buffer_info->dma) {
4518			buffer_info->dma = dma_map_page(&pdev->dev,
4519							buffer_info->rxbuf.page, 0,
4520							adapter->rx_buffer_len,
4521							DMA_FROM_DEVICE);
4522			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4523				put_page(buffer_info->rxbuf.page);
4524				buffer_info->rxbuf.page = NULL;
 
 
4525				buffer_info->dma = 0;
4526				adapter->alloc_rx_buff_failed++;
4527				break;
4528			}
4529		}
4530
4531		rx_desc = E1000_RX_DESC(*rx_ring, i);
4532		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4533
4534		if (unlikely(++i == rx_ring->count))
4535			i = 0;
4536		buffer_info = &rx_ring->buffer_info[i];
4537	}
4538
4539	if (likely(rx_ring->next_to_use != i)) {
4540		rx_ring->next_to_use = i;
4541		if (unlikely(i-- == 0))
4542			i = (rx_ring->count - 1);
4543
4544		/* Force memory writes to complete before letting h/w
4545		 * know there are new descriptors to fetch.  (Only
4546		 * applicable for weak-ordered memory model archs,
4547		 * such as IA-64).
4548		 */
4549		dma_wmb();
4550		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4551	}
4552}
4553
4554/**
4555 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4556 * @adapter: address of board private structure
4557 * @rx_ring: pointer to ring struct
4558 * @cleaned_count: number of new Rx buffers to try to allocate
4559 **/
4560static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4561				   struct e1000_rx_ring *rx_ring,
4562				   int cleaned_count)
4563{
4564	struct e1000_hw *hw = &adapter->hw;
 
4565	struct pci_dev *pdev = adapter->pdev;
4566	struct e1000_rx_desc *rx_desc;
4567	struct e1000_rx_buffer *buffer_info;
 
4568	unsigned int i;
4569	unsigned int bufsz = adapter->rx_buffer_len;
4570
4571	i = rx_ring->next_to_use;
4572	buffer_info = &rx_ring->buffer_info[i];
4573
4574	while (cleaned_count--) {
4575		void *data;
4576
4577		if (buffer_info->rxbuf.data)
4578			goto skip;
 
4579
4580		data = e1000_alloc_frag(adapter);
4581		if (!data) {
4582			/* Better luck next round */
4583			adapter->alloc_rx_buff_failed++;
4584			break;
4585		}
4586
4587		/* Fix for errata 23, can't cross 64kB boundary */
4588		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4589			void *olddata = data;
4590			e_err(rx_err, "skb align check failed: %u bytes at "
4591			      "%p\n", bufsz, data);
4592			/* Try again, without freeing the previous */
4593			data = e1000_alloc_frag(adapter);
4594			/* Failed allocation, critical failure */
4595			if (!data) {
4596				skb_free_frag(olddata);
4597				adapter->alloc_rx_buff_failed++;
4598				break;
4599			}
4600
4601			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4602				/* give up */
4603				skb_free_frag(data);
4604				skb_free_frag(olddata);
4605				adapter->alloc_rx_buff_failed++;
4606				break;
4607			}
4608
4609			/* Use new allocation */
4610			skb_free_frag(olddata);
4611		}
 
 
 
4612		buffer_info->dma = dma_map_single(&pdev->dev,
4613						  data,
4614						  adapter->rx_buffer_len,
4615						  DMA_FROM_DEVICE);
4616		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4617			skb_free_frag(data);
 
4618			buffer_info->dma = 0;
4619			adapter->alloc_rx_buff_failed++;
4620			break;
4621		}
4622
4623		/* XXX if it was allocated cleanly it will never map to a
4624		 * boundary crossing
4625		 */
4626
4627		/* Fix for errata 23, can't cross 64kB boundary */
4628		if (!e1000_check_64k_bound(adapter,
4629					(void *)(unsigned long)buffer_info->dma,
4630					adapter->rx_buffer_len)) {
4631			e_err(rx_err, "dma align check failed: %u bytes at "
4632			      "%p\n", adapter->rx_buffer_len,
4633			      (void *)(unsigned long)buffer_info->dma);
 
 
4634
4635			dma_unmap_single(&pdev->dev, buffer_info->dma,
4636					 adapter->rx_buffer_len,
4637					 DMA_FROM_DEVICE);
4638
4639			skb_free_frag(data);
4640			buffer_info->rxbuf.data = NULL;
4641			buffer_info->dma = 0;
4642
4643			adapter->alloc_rx_buff_failed++;
4644			break;
4645		}
4646		buffer_info->rxbuf.data = data;
4647 skip:
4648		rx_desc = E1000_RX_DESC(*rx_ring, i);
4649		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4650
4651		if (unlikely(++i == rx_ring->count))
4652			i = 0;
4653		buffer_info = &rx_ring->buffer_info[i];
4654	}
4655
4656	if (likely(rx_ring->next_to_use != i)) {
4657		rx_ring->next_to_use = i;
4658		if (unlikely(i-- == 0))
4659			i = (rx_ring->count - 1);
4660
4661		/* Force memory writes to complete before letting h/w
4662		 * know there are new descriptors to fetch.  (Only
4663		 * applicable for weak-ordered memory model archs,
4664		 * such as IA-64).
4665		 */
4666		dma_wmb();
4667		writel(i, hw->hw_addr + rx_ring->rdt);
4668	}
4669}
4670
4671/**
4672 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4673 * @adapter: address of board private structure
4674 **/
4675static void e1000_smartspeed(struct e1000_adapter *adapter)
4676{
4677	struct e1000_hw *hw = &adapter->hw;
4678	u16 phy_status;
4679	u16 phy_ctrl;
4680
4681	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4682	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4683		return;
4684
4685	if (adapter->smartspeed == 0) {
4686		/* If Master/Slave config fault is asserted twice,
4687		 * we assume back-to-back
4688		 */
4689		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4690		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4691			return;
4692		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4693		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4694			return;
4695		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4696		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4697			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4698			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4699					    phy_ctrl);
4700			adapter->smartspeed++;
4701			if (!e1000_phy_setup_autoneg(hw) &&
4702			   !e1000_read_phy_reg(hw, PHY_CTRL,
4703					       &phy_ctrl)) {
4704				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4705					     MII_CR_RESTART_AUTO_NEG);
4706				e1000_write_phy_reg(hw, PHY_CTRL,
4707						    phy_ctrl);
4708			}
4709		}
4710		return;
4711	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4712		/* If still no link, perhaps using 2/3 pair cable */
4713		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4714		phy_ctrl |= CR_1000T_MS_ENABLE;
4715		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4716		if (!e1000_phy_setup_autoneg(hw) &&
4717		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4718			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4719				     MII_CR_RESTART_AUTO_NEG);
4720			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4721		}
4722	}
4723	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4724	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4725		adapter->smartspeed = 0;
4726}
4727
4728/**
4729 * e1000_ioctl - handle ioctl calls
4730 * @netdev: pointer to our netdev
4731 * @ifr: pointer to interface request structure
4732 * @cmd: ioctl data
4733 **/
4734static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4735{
4736	switch (cmd) {
4737	case SIOCGMIIPHY:
4738	case SIOCGMIIREG:
4739	case SIOCSMIIREG:
4740		return e1000_mii_ioctl(netdev, ifr, cmd);
4741	default:
4742		return -EOPNOTSUPP;
4743	}
4744}
4745
4746/**
4747 * e1000_mii_ioctl -
4748 * @netdev: pointer to our netdev
4749 * @ifr: pointer to interface request structure
4750 * @cmd: ioctl data
4751 **/
4752static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4753			   int cmd)
4754{
4755	struct e1000_adapter *adapter = netdev_priv(netdev);
4756	struct e1000_hw *hw = &adapter->hw;
4757	struct mii_ioctl_data *data = if_mii(ifr);
4758	int retval;
4759	u16 mii_reg;
4760	unsigned long flags;
4761
4762	if (hw->media_type != e1000_media_type_copper)
4763		return -EOPNOTSUPP;
4764
4765	switch (cmd) {
4766	case SIOCGMIIPHY:
4767		data->phy_id = hw->phy_addr;
4768		break;
4769	case SIOCGMIIREG:
4770		spin_lock_irqsave(&adapter->stats_lock, flags);
4771		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4772				   &data->val_out)) {
4773			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4774			return -EIO;
4775		}
4776		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4777		break;
4778	case SIOCSMIIREG:
4779		if (data->reg_num & ~(0x1F))
4780			return -EFAULT;
4781		mii_reg = data->val_in;
4782		spin_lock_irqsave(&adapter->stats_lock, flags);
4783		if (e1000_write_phy_reg(hw, data->reg_num,
4784					mii_reg)) {
4785			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4786			return -EIO;
4787		}
4788		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4789		if (hw->media_type == e1000_media_type_copper) {
4790			switch (data->reg_num) {
4791			case PHY_CTRL:
4792				if (mii_reg & MII_CR_POWER_DOWN)
4793					break;
4794				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4795					hw->autoneg = 1;
4796					hw->autoneg_advertised = 0x2F;
4797				} else {
4798					u32 speed;
4799					if (mii_reg & 0x40)
4800						speed = SPEED_1000;
4801					else if (mii_reg & 0x2000)
4802						speed = SPEED_100;
4803					else
4804						speed = SPEED_10;
4805					retval = e1000_set_spd_dplx(
4806						adapter, speed,
4807						((mii_reg & 0x100)
4808						 ? DUPLEX_FULL :
4809						 DUPLEX_HALF));
4810					if (retval)
4811						return retval;
4812				}
4813				if (netif_running(adapter->netdev))
4814					e1000_reinit_locked(adapter);
4815				else
4816					e1000_reset(adapter);
4817				break;
4818			case M88E1000_PHY_SPEC_CTRL:
4819			case M88E1000_EXT_PHY_SPEC_CTRL:
4820				if (e1000_phy_reset(hw))
4821					return -EIO;
4822				break;
4823			}
4824		} else {
4825			switch (data->reg_num) {
4826			case PHY_CTRL:
4827				if (mii_reg & MII_CR_POWER_DOWN)
4828					break;
4829				if (netif_running(adapter->netdev))
4830					e1000_reinit_locked(adapter);
4831				else
4832					e1000_reset(adapter);
4833				break;
4834			}
4835		}
4836		break;
4837	default:
4838		return -EOPNOTSUPP;
4839	}
4840	return E1000_SUCCESS;
4841}
4842
4843void e1000_pci_set_mwi(struct e1000_hw *hw)
4844{
4845	struct e1000_adapter *adapter = hw->back;
4846	int ret_val = pci_set_mwi(adapter->pdev);
4847
4848	if (ret_val)
4849		e_err(probe, "Error in setting MWI\n");
4850}
4851
4852void e1000_pci_clear_mwi(struct e1000_hw *hw)
4853{
4854	struct e1000_adapter *adapter = hw->back;
4855
4856	pci_clear_mwi(adapter->pdev);
4857}
4858
4859int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4860{
4861	struct e1000_adapter *adapter = hw->back;
4862	return pcix_get_mmrbc(adapter->pdev);
4863}
4864
4865void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4866{
4867	struct e1000_adapter *adapter = hw->back;
4868	pcix_set_mmrbc(adapter->pdev, mmrbc);
4869}
4870
4871void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4872{
4873	outl(value, port);
4874}
4875
4876static bool e1000_vlan_used(struct e1000_adapter *adapter)
4877{
4878	u16 vid;
4879
4880	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4881		return true;
4882	return false;
4883}
4884
4885static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4886			      netdev_features_t features)
4887{
4888	struct e1000_hw *hw = &adapter->hw;
4889	u32 ctrl;
4890
4891	ctrl = er32(CTRL);
4892	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4893		/* enable VLAN tag insert/strip */
4894		ctrl |= E1000_CTRL_VME;
4895	} else {
4896		/* disable VLAN tag insert/strip */
4897		ctrl &= ~E1000_CTRL_VME;
4898	}
4899	ew32(CTRL, ctrl);
4900}
4901static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4902				     bool filter_on)
4903{
4904	struct e1000_hw *hw = &adapter->hw;
4905	u32 rctl;
4906
4907	if (!test_bit(__E1000_DOWN, &adapter->flags))
4908		e1000_irq_disable(adapter);
4909
4910	__e1000_vlan_mode(adapter, adapter->netdev->features);
4911	if (filter_on) {
4912		/* enable VLAN receive filtering */
4913		rctl = er32(RCTL);
4914		rctl &= ~E1000_RCTL_CFIEN;
4915		if (!(adapter->netdev->flags & IFF_PROMISC))
4916			rctl |= E1000_RCTL_VFE;
4917		ew32(RCTL, rctl);
4918		e1000_update_mng_vlan(adapter);
4919	} else {
4920		/* disable VLAN receive filtering */
4921		rctl = er32(RCTL);
4922		rctl &= ~E1000_RCTL_VFE;
4923		ew32(RCTL, rctl);
4924	}
4925
4926	if (!test_bit(__E1000_DOWN, &adapter->flags))
4927		e1000_irq_enable(adapter);
4928}
4929
4930static void e1000_vlan_mode(struct net_device *netdev,
4931			    netdev_features_t features)
4932{
4933	struct e1000_adapter *adapter = netdev_priv(netdev);
4934
4935	if (!test_bit(__E1000_DOWN, &adapter->flags))
4936		e1000_irq_disable(adapter);
4937
4938	__e1000_vlan_mode(adapter, features);
4939
4940	if (!test_bit(__E1000_DOWN, &adapter->flags))
4941		e1000_irq_enable(adapter);
4942}
4943
4944static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4945				 __be16 proto, u16 vid)
4946{
4947	struct e1000_adapter *adapter = netdev_priv(netdev);
4948	struct e1000_hw *hw = &adapter->hw;
4949	u32 vfta, index;
4950
4951	if ((hw->mng_cookie.status &
4952	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4953	    (vid == adapter->mng_vlan_id))
4954		return 0;
4955
4956	if (!e1000_vlan_used(adapter))
4957		e1000_vlan_filter_on_off(adapter, true);
4958
4959	/* add VID to filter table */
4960	index = (vid >> 5) & 0x7F;
4961	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4962	vfta |= (1 << (vid & 0x1F));
4963	e1000_write_vfta(hw, index, vfta);
4964
4965	set_bit(vid, adapter->active_vlans);
4966
4967	return 0;
4968}
4969
4970static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4971				  __be16 proto, u16 vid)
4972{
4973	struct e1000_adapter *adapter = netdev_priv(netdev);
4974	struct e1000_hw *hw = &adapter->hw;
4975	u32 vfta, index;
4976
4977	if (!test_bit(__E1000_DOWN, &adapter->flags))
4978		e1000_irq_disable(adapter);
4979	if (!test_bit(__E1000_DOWN, &adapter->flags))
4980		e1000_irq_enable(adapter);
4981
4982	/* remove VID from filter table */
4983	index = (vid >> 5) & 0x7F;
4984	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4985	vfta &= ~(1 << (vid & 0x1F));
4986	e1000_write_vfta(hw, index, vfta);
4987
4988	clear_bit(vid, adapter->active_vlans);
4989
4990	if (!e1000_vlan_used(adapter))
4991		e1000_vlan_filter_on_off(adapter, false);
4992
4993	return 0;
4994}
4995
4996static void e1000_restore_vlan(struct e1000_adapter *adapter)
4997{
4998	u16 vid;
4999
5000	if (!e1000_vlan_used(adapter))
5001		return;
5002
5003	e1000_vlan_filter_on_off(adapter, true);
5004	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5005		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5006}
5007
5008int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5009{
5010	struct e1000_hw *hw = &adapter->hw;
5011
5012	hw->autoneg = 0;
5013
5014	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5015	 * for the switch() below to work
5016	 */
5017	if ((spd & 1) || (dplx & ~1))
5018		goto err_inval;
5019
5020	/* Fiber NICs only allow 1000 gbps Full duplex */
5021	if ((hw->media_type == e1000_media_type_fiber) &&
5022	    spd != SPEED_1000 &&
5023	    dplx != DUPLEX_FULL)
5024		goto err_inval;
5025
5026	switch (spd + dplx) {
5027	case SPEED_10 + DUPLEX_HALF:
5028		hw->forced_speed_duplex = e1000_10_half;
5029		break;
5030	case SPEED_10 + DUPLEX_FULL:
5031		hw->forced_speed_duplex = e1000_10_full;
5032		break;
5033	case SPEED_100 + DUPLEX_HALF:
5034		hw->forced_speed_duplex = e1000_100_half;
5035		break;
5036	case SPEED_100 + DUPLEX_FULL:
5037		hw->forced_speed_duplex = e1000_100_full;
5038		break;
5039	case SPEED_1000 + DUPLEX_FULL:
5040		hw->autoneg = 1;
5041		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5042		break;
5043	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5044	default:
5045		goto err_inval;
5046	}
5047
5048	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5049	hw->mdix = AUTO_ALL_MODES;
5050
5051	return 0;
5052
5053err_inval:
5054	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5055	return -EINVAL;
5056}
5057
5058static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5059{
5060	struct net_device *netdev = pci_get_drvdata(pdev);
5061	struct e1000_adapter *adapter = netdev_priv(netdev);
5062	struct e1000_hw *hw = &adapter->hw;
5063	u32 ctrl, ctrl_ext, rctl, status;
5064	u32 wufc = adapter->wol;
 
 
 
5065
5066	netif_device_detach(netdev);
5067
5068	if (netif_running(netdev)) {
5069		int count = E1000_CHECK_RESET_COUNT;
5070
5071		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5072			usleep_range(10000, 20000);
5073
5074		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5075		e1000_down(adapter);
5076	}
5077
 
 
 
 
 
 
5078	status = er32(STATUS);
5079	if (status & E1000_STATUS_LU)
5080		wufc &= ~E1000_WUFC_LNKC;
5081
5082	if (wufc) {
5083		e1000_setup_rctl(adapter);
5084		e1000_set_rx_mode(netdev);
5085
5086		rctl = er32(RCTL);
5087
5088		/* turn on all-multi mode if wake on multicast is enabled */
5089		if (wufc & E1000_WUFC_MC)
5090			rctl |= E1000_RCTL_MPE;
5091
5092		/* enable receives in the hardware */
5093		ew32(RCTL, rctl | E1000_RCTL_EN);
5094
5095		if (hw->mac_type >= e1000_82540) {
5096			ctrl = er32(CTRL);
5097			/* advertise wake from D3Cold */
5098			#define E1000_CTRL_ADVD3WUC 0x00100000
5099			/* phy power management enable */
5100			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5101			ctrl |= E1000_CTRL_ADVD3WUC |
5102				E1000_CTRL_EN_PHY_PWR_MGMT;
5103			ew32(CTRL, ctrl);
5104		}
5105
5106		if (hw->media_type == e1000_media_type_fiber ||
5107		    hw->media_type == e1000_media_type_internal_serdes) {
5108			/* keep the laser running in D3 */
5109			ctrl_ext = er32(CTRL_EXT);
5110			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5111			ew32(CTRL_EXT, ctrl_ext);
5112		}
5113
5114		ew32(WUC, E1000_WUC_PME_EN);
5115		ew32(WUFC, wufc);
5116	} else {
5117		ew32(WUC, 0);
5118		ew32(WUFC, 0);
5119	}
5120
5121	e1000_release_manageability(adapter);
5122
5123	*enable_wake = !!wufc;
5124
5125	/* make sure adapter isn't asleep if manageability is enabled */
5126	if (adapter->en_mng_pt)
5127		*enable_wake = true;
5128
5129	if (netif_running(netdev))
5130		e1000_free_irq(adapter);
5131
5132	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5133		pci_disable_device(pdev);
5134
5135	return 0;
5136}
5137
5138static int __maybe_unused e1000_suspend(struct device *dev)
 
5139{
5140	int retval;
5141	struct pci_dev *pdev = to_pci_dev(dev);
5142	bool wake;
5143
5144	retval = __e1000_shutdown(pdev, &wake);
5145	device_set_wakeup_enable(dev, wake);
 
5146
5147	return retval;
 
 
 
 
 
 
 
5148}
5149
5150static int __maybe_unused e1000_resume(struct device *dev)
5151{
5152	struct pci_dev *pdev = to_pci_dev(dev);
5153	struct net_device *netdev = pci_get_drvdata(pdev);
5154	struct e1000_adapter *adapter = netdev_priv(netdev);
5155	struct e1000_hw *hw = &adapter->hw;
5156	u32 err;
5157
 
 
 
 
5158	if (adapter->need_ioport)
5159		err = pci_enable_device(pdev);
5160	else
5161		err = pci_enable_device_mem(pdev);
5162	if (err) {
5163		pr_err("Cannot enable PCI device from suspend\n");
5164		return err;
5165	}
5166
5167	/* flush memory to make sure state is correct */
5168	smp_mb__before_atomic();
5169	clear_bit(__E1000_DISABLED, &adapter->flags);
5170	pci_set_master(pdev);
5171
5172	pci_enable_wake(pdev, PCI_D3hot, 0);
5173	pci_enable_wake(pdev, PCI_D3cold, 0);
5174
5175	if (netif_running(netdev)) {
5176		err = e1000_request_irq(adapter);
5177		if (err)
5178			return err;
5179	}
5180
5181	e1000_power_up_phy(adapter);
5182	e1000_reset(adapter);
5183	ew32(WUS, ~0);
5184
5185	e1000_init_manageability(adapter);
5186
5187	if (netif_running(netdev))
5188		e1000_up(adapter);
5189
5190	netif_device_attach(netdev);
5191
5192	return 0;
5193}
 
5194
5195static void e1000_shutdown(struct pci_dev *pdev)
5196{
5197	bool wake;
5198
5199	__e1000_shutdown(pdev, &wake);
5200
5201	if (system_state == SYSTEM_POWER_OFF) {
5202		pci_wake_from_d3(pdev, wake);
5203		pci_set_power_state(pdev, PCI_D3hot);
5204	}
5205}
5206
5207#ifdef CONFIG_NET_POLL_CONTROLLER
5208/* Polling 'interrupt' - used by things like netconsole to send skbs
5209 * without having to re-enable interrupts. It's not called while
5210 * the interrupt routine is executing.
5211 */
5212static void e1000_netpoll(struct net_device *netdev)
5213{
5214	struct e1000_adapter *adapter = netdev_priv(netdev);
5215
5216	if (disable_hardirq(adapter->pdev->irq))
5217		e1000_intr(adapter->pdev->irq, netdev);
5218	enable_irq(adapter->pdev->irq);
5219}
5220#endif
5221
5222/**
5223 * e1000_io_error_detected - called when PCI error is detected
5224 * @pdev: Pointer to PCI device
5225 * @state: The current pci connection state
5226 *
5227 * This function is called after a PCI bus error affecting
5228 * this device has been detected.
5229 */
5230static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5231						pci_channel_state_t state)
5232{
5233	struct net_device *netdev = pci_get_drvdata(pdev);
5234	struct e1000_adapter *adapter = netdev_priv(netdev);
5235
5236	netif_device_detach(netdev);
5237
5238	if (state == pci_channel_io_perm_failure)
5239		return PCI_ERS_RESULT_DISCONNECT;
5240
5241	if (netif_running(netdev))
5242		e1000_down(adapter);
 
5243
5244	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5245		pci_disable_device(pdev);
5246
5247	/* Request a slot reset. */
5248	return PCI_ERS_RESULT_NEED_RESET;
5249}
5250
5251/**
5252 * e1000_io_slot_reset - called after the pci bus has been reset.
5253 * @pdev: Pointer to PCI device
5254 *
5255 * Restart the card from scratch, as if from a cold-boot. Implementation
5256 * resembles the first-half of the e1000_resume routine.
5257 */
5258static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5259{
5260	struct net_device *netdev = pci_get_drvdata(pdev);
5261	struct e1000_adapter *adapter = netdev_priv(netdev);
5262	struct e1000_hw *hw = &adapter->hw;
5263	int err;
5264
5265	if (adapter->need_ioport)
5266		err = pci_enable_device(pdev);
5267	else
5268		err = pci_enable_device_mem(pdev);
5269	if (err) {
5270		pr_err("Cannot re-enable PCI device after reset.\n");
5271		return PCI_ERS_RESULT_DISCONNECT;
5272	}
5273
5274	/* flush memory to make sure state is correct */
5275	smp_mb__before_atomic();
5276	clear_bit(__E1000_DISABLED, &adapter->flags);
5277	pci_set_master(pdev);
5278
5279	pci_enable_wake(pdev, PCI_D3hot, 0);
5280	pci_enable_wake(pdev, PCI_D3cold, 0);
5281
5282	e1000_reset(adapter);
5283	ew32(WUS, ~0);
5284
5285	return PCI_ERS_RESULT_RECOVERED;
5286}
5287
5288/**
5289 * e1000_io_resume - called when traffic can start flowing again.
5290 * @pdev: Pointer to PCI device
5291 *
5292 * This callback is called when the error recovery driver tells us that
5293 * its OK to resume normal operation. Implementation resembles the
5294 * second-half of the e1000_resume routine.
5295 */
5296static void e1000_io_resume(struct pci_dev *pdev)
5297{
5298	struct net_device *netdev = pci_get_drvdata(pdev);
5299	struct e1000_adapter *adapter = netdev_priv(netdev);
5300
5301	e1000_init_manageability(adapter);
5302
5303	if (netif_running(netdev)) {
5304		if (e1000_up(adapter)) {
5305			pr_info("can't bring device back up after reset\n");
5306			return;
5307		}
5308	}
5309
5310	netif_device_attach(netdev);
5311}
5312
5313/* e1000_main.c */
v3.15
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include "e1000.h"
  30#include <net/ip6_checksum.h>
  31#include <linux/io.h>
  32#include <linux/prefetch.h>
  33#include <linux/bitops.h>
  34#include <linux/if_vlan.h>
  35
  36char e1000_driver_name[] = "e1000";
  37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  38#define DRV_VERSION "7.3.21-k8-NAPI"
  39const char e1000_driver_version[] = DRV_VERSION;
  40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  41
  42/* e1000_pci_tbl - PCI Device ID Table
  43 *
  44 * Last entry must be all 0s
  45 *
  46 * Macro expands to...
  47 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  48 */
  49static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
  50	INTEL_E1000_ETHERNET_DEVICE(0x1000),
  51	INTEL_E1000_ETHERNET_DEVICE(0x1001),
  52	INTEL_E1000_ETHERNET_DEVICE(0x1004),
  53	INTEL_E1000_ETHERNET_DEVICE(0x1008),
  54	INTEL_E1000_ETHERNET_DEVICE(0x1009),
  55	INTEL_E1000_ETHERNET_DEVICE(0x100C),
  56	INTEL_E1000_ETHERNET_DEVICE(0x100D),
  57	INTEL_E1000_ETHERNET_DEVICE(0x100E),
  58	INTEL_E1000_ETHERNET_DEVICE(0x100F),
  59	INTEL_E1000_ETHERNET_DEVICE(0x1010),
  60	INTEL_E1000_ETHERNET_DEVICE(0x1011),
  61	INTEL_E1000_ETHERNET_DEVICE(0x1012),
  62	INTEL_E1000_ETHERNET_DEVICE(0x1013),
  63	INTEL_E1000_ETHERNET_DEVICE(0x1014),
  64	INTEL_E1000_ETHERNET_DEVICE(0x1015),
  65	INTEL_E1000_ETHERNET_DEVICE(0x1016),
  66	INTEL_E1000_ETHERNET_DEVICE(0x1017),
  67	INTEL_E1000_ETHERNET_DEVICE(0x1018),
  68	INTEL_E1000_ETHERNET_DEVICE(0x1019),
  69	INTEL_E1000_ETHERNET_DEVICE(0x101A),
  70	INTEL_E1000_ETHERNET_DEVICE(0x101D),
  71	INTEL_E1000_ETHERNET_DEVICE(0x101E),
  72	INTEL_E1000_ETHERNET_DEVICE(0x1026),
  73	INTEL_E1000_ETHERNET_DEVICE(0x1027),
  74	INTEL_E1000_ETHERNET_DEVICE(0x1028),
  75	INTEL_E1000_ETHERNET_DEVICE(0x1075),
  76	INTEL_E1000_ETHERNET_DEVICE(0x1076),
  77	INTEL_E1000_ETHERNET_DEVICE(0x1077),
  78	INTEL_E1000_ETHERNET_DEVICE(0x1078),
  79	INTEL_E1000_ETHERNET_DEVICE(0x1079),
  80	INTEL_E1000_ETHERNET_DEVICE(0x107A),
  81	INTEL_E1000_ETHERNET_DEVICE(0x107B),
  82	INTEL_E1000_ETHERNET_DEVICE(0x107C),
  83	INTEL_E1000_ETHERNET_DEVICE(0x108A),
  84	INTEL_E1000_ETHERNET_DEVICE(0x1099),
  85	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  86	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
  87	/* required last entry */
  88	{0,}
  89};
  90
  91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  92
  93int e1000_up(struct e1000_adapter *adapter);
  94void e1000_down(struct e1000_adapter *adapter);
  95void e1000_reinit_locked(struct e1000_adapter *adapter);
  96void e1000_reset(struct e1000_adapter *adapter);
  97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
 100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
 101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
 102                             struct e1000_tx_ring *txdr);
 103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
 104                             struct e1000_rx_ring *rxdr);
 105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
 106                             struct e1000_tx_ring *tx_ring);
 107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
 108                             struct e1000_rx_ring *rx_ring);
 109void e1000_update_stats(struct e1000_adapter *adapter);
 110
 111static int e1000_init_module(void);
 112static void e1000_exit_module(void);
 113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
 114static void e1000_remove(struct pci_dev *pdev);
 115static int e1000_alloc_queues(struct e1000_adapter *adapter);
 116static int e1000_sw_init(struct e1000_adapter *adapter);
 117static int e1000_open(struct net_device *netdev);
 118static int e1000_close(struct net_device *netdev);
 119static void e1000_configure_tx(struct e1000_adapter *adapter);
 120static void e1000_configure_rx(struct e1000_adapter *adapter);
 121static void e1000_setup_rctl(struct e1000_adapter *adapter);
 122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
 123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
 124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
 125                                struct e1000_tx_ring *tx_ring);
 126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 127                                struct e1000_rx_ring *rx_ring);
 128static void e1000_set_rx_mode(struct net_device *netdev);
 129static void e1000_update_phy_info_task(struct work_struct *work);
 130static void e1000_watchdog(struct work_struct *work);
 131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 133				    struct net_device *netdev);
 134static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
 135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 136static int e1000_set_mac(struct net_device *netdev, void *p);
 137static irqreturn_t e1000_intr(int irq, void *data);
 138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 139			       struct e1000_tx_ring *tx_ring);
 140static int e1000_clean(struct napi_struct *napi, int budget);
 141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 142			       struct e1000_rx_ring *rx_ring,
 143			       int *work_done, int work_to_do);
 144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 145				     struct e1000_rx_ring *rx_ring,
 146				     int *work_done, int work_to_do);
 
 
 
 
 
 147static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 148				   struct e1000_rx_ring *rx_ring,
 149				   int cleaned_count);
 150static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 151					 struct e1000_rx_ring *rx_ring,
 152					 int cleaned_count);
 153static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 154static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 155			   int cmd);
 156static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 157static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 158static void e1000_tx_timeout(struct net_device *dev);
 159static void e1000_reset_task(struct work_struct *work);
 160static void e1000_smartspeed(struct e1000_adapter *adapter);
 161static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 162                                       struct sk_buff *skb);
 163
 164static bool e1000_vlan_used(struct e1000_adapter *adapter);
 165static void e1000_vlan_mode(struct net_device *netdev,
 166			    netdev_features_t features);
 167static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
 168				     bool filter_on);
 169static int e1000_vlan_rx_add_vid(struct net_device *netdev,
 170				 __be16 proto, u16 vid);
 171static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
 172				  __be16 proto, u16 vid);
 173static void e1000_restore_vlan(struct e1000_adapter *adapter);
 174
 175#ifdef CONFIG_PM
 176static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
 177static int e1000_resume(struct pci_dev *pdev);
 178#endif
 179static void e1000_shutdown(struct pci_dev *pdev);
 180
 181#ifdef CONFIG_NET_POLL_CONTROLLER
 182/* for netdump / net console */
 183static void e1000_netpoll (struct net_device *netdev);
 184#endif
 185
 186#define COPYBREAK_DEFAULT 256
 187static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 188module_param(copybreak, uint, 0644);
 189MODULE_PARM_DESC(copybreak,
 190	"Maximum size of packet that is copied to a new buffer on receive");
 191
 192static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 193                     pci_channel_state_t state);
 194static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 195static void e1000_io_resume(struct pci_dev *pdev);
 196
 197static const struct pci_error_handlers e1000_err_handler = {
 198	.error_detected = e1000_io_error_detected,
 199	.slot_reset = e1000_io_slot_reset,
 200	.resume = e1000_io_resume,
 201};
 202
 
 
 203static struct pci_driver e1000_driver = {
 204	.name     = e1000_driver_name,
 205	.id_table = e1000_pci_tbl,
 206	.probe    = e1000_probe,
 207	.remove   = e1000_remove,
 208#ifdef CONFIG_PM
 209	/* Power Management Hooks */
 210	.suspend  = e1000_suspend,
 211	.resume   = e1000_resume,
 212#endif
 213	.shutdown = e1000_shutdown,
 214	.err_handler = &e1000_err_handler
 215};
 216
 217MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
 218MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 219MODULE_LICENSE("GPL");
 220MODULE_VERSION(DRV_VERSION);
 221
 222#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 223static int debug = -1;
 224module_param(debug, int, 0);
 225MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 226
 227/**
 228 * e1000_get_hw_dev - return device
 229 * used by hardware layer to print debugging information
 
 
 230 *
 231 **/
 232struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 233{
 234	struct e1000_adapter *adapter = hw->back;
 235	return adapter->netdev;
 236}
 237
 238/**
 239 * e1000_init_module - Driver Registration Routine
 240 *
 241 * e1000_init_module is the first routine called when the driver is
 242 * loaded. All it does is register with the PCI subsystem.
 243 **/
 244static int __init e1000_init_module(void)
 245{
 246	int ret;
 247	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
 248
 249	pr_info("%s\n", e1000_copyright);
 250
 251	ret = pci_register_driver(&e1000_driver);
 252	if (copybreak != COPYBREAK_DEFAULT) {
 253		if (copybreak == 0)
 254			pr_info("copybreak disabled\n");
 255		else
 256			pr_info("copybreak enabled for "
 257				   "packets <= %u bytes\n", copybreak);
 258	}
 259	return ret;
 260}
 261
 262module_init(e1000_init_module);
 263
 264/**
 265 * e1000_exit_module - Driver Exit Cleanup Routine
 266 *
 267 * e1000_exit_module is called just before the driver is removed
 268 * from memory.
 269 **/
 270static void __exit e1000_exit_module(void)
 271{
 272	pci_unregister_driver(&e1000_driver);
 273}
 274
 275module_exit(e1000_exit_module);
 276
 277static int e1000_request_irq(struct e1000_adapter *adapter)
 278{
 279	struct net_device *netdev = adapter->netdev;
 280	irq_handler_t handler = e1000_intr;
 281	int irq_flags = IRQF_SHARED;
 282	int err;
 283
 284	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 285	                  netdev);
 286	if (err) {
 287		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 288	}
 289
 290	return err;
 291}
 292
 293static void e1000_free_irq(struct e1000_adapter *adapter)
 294{
 295	struct net_device *netdev = adapter->netdev;
 296
 297	free_irq(adapter->pdev->irq, netdev);
 298}
 299
 300/**
 301 * e1000_irq_disable - Mask off interrupt generation on the NIC
 302 * @adapter: board private structure
 303 **/
 304static void e1000_irq_disable(struct e1000_adapter *adapter)
 305{
 306	struct e1000_hw *hw = &adapter->hw;
 307
 308	ew32(IMC, ~0);
 309	E1000_WRITE_FLUSH();
 310	synchronize_irq(adapter->pdev->irq);
 311}
 312
 313/**
 314 * e1000_irq_enable - Enable default interrupt generation settings
 315 * @adapter: board private structure
 316 **/
 317static void e1000_irq_enable(struct e1000_adapter *adapter)
 318{
 319	struct e1000_hw *hw = &adapter->hw;
 320
 321	ew32(IMS, IMS_ENABLE_MASK);
 322	E1000_WRITE_FLUSH();
 323}
 324
 325static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 326{
 327	struct e1000_hw *hw = &adapter->hw;
 328	struct net_device *netdev = adapter->netdev;
 329	u16 vid = hw->mng_cookie.vlan_id;
 330	u16 old_vid = adapter->mng_vlan_id;
 331
 332	if (!e1000_vlan_used(adapter))
 333		return;
 334
 335	if (!test_bit(vid, adapter->active_vlans)) {
 336		if (hw->mng_cookie.status &
 337		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 338			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
 339			adapter->mng_vlan_id = vid;
 340		} else {
 341			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 342		}
 343		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 344		    (vid != old_vid) &&
 345		    !test_bit(old_vid, adapter->active_vlans))
 346			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
 347					       old_vid);
 348	} else {
 349		adapter->mng_vlan_id = vid;
 350	}
 351}
 352
 353static void e1000_init_manageability(struct e1000_adapter *adapter)
 354{
 355	struct e1000_hw *hw = &adapter->hw;
 356
 357	if (adapter->en_mng_pt) {
 358		u32 manc = er32(MANC);
 359
 360		/* disable hardware interception of ARP */
 361		manc &= ~(E1000_MANC_ARP_EN);
 362
 363		ew32(MANC, manc);
 364	}
 365}
 366
 367static void e1000_release_manageability(struct e1000_adapter *adapter)
 368{
 369	struct e1000_hw *hw = &adapter->hw;
 370
 371	if (adapter->en_mng_pt) {
 372		u32 manc = er32(MANC);
 373
 374		/* re-enable hardware interception of ARP */
 375		manc |= E1000_MANC_ARP_EN;
 376
 377		ew32(MANC, manc);
 378	}
 379}
 380
 381/**
 382 * e1000_configure - configure the hardware for RX and TX
 383 * @adapter = private board structure
 384 **/
 385static void e1000_configure(struct e1000_adapter *adapter)
 386{
 387	struct net_device *netdev = adapter->netdev;
 388	int i;
 389
 390	e1000_set_rx_mode(netdev);
 391
 392	e1000_restore_vlan(adapter);
 393	e1000_init_manageability(adapter);
 394
 395	e1000_configure_tx(adapter);
 396	e1000_setup_rctl(adapter);
 397	e1000_configure_rx(adapter);
 398	/* call E1000_DESC_UNUSED which always leaves
 399	 * at least 1 descriptor unused to make sure
 400	 * next_to_use != next_to_clean
 401	 */
 402	for (i = 0; i < adapter->num_rx_queues; i++) {
 403		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 404		adapter->alloc_rx_buf(adapter, ring,
 405				      E1000_DESC_UNUSED(ring));
 406	}
 407}
 408
 409int e1000_up(struct e1000_adapter *adapter)
 410{
 411	struct e1000_hw *hw = &adapter->hw;
 412
 413	/* hardware has been reset, we need to reload some things */
 414	e1000_configure(adapter);
 415
 416	clear_bit(__E1000_DOWN, &adapter->flags);
 417
 418	napi_enable(&adapter->napi);
 419
 420	e1000_irq_enable(adapter);
 421
 422	netif_wake_queue(adapter->netdev);
 423
 424	/* fire a link change interrupt to start the watchdog */
 425	ew32(ICS, E1000_ICS_LSC);
 426	return 0;
 427}
 428
 429/**
 430 * e1000_power_up_phy - restore link in case the phy was powered down
 431 * @adapter: address of board private structure
 432 *
 433 * The phy may be powered down to save power and turn off link when the
 434 * driver is unloaded and wake on lan is not enabled (among others)
 435 * *** this routine MUST be followed by a call to e1000_reset ***
 436 **/
 437void e1000_power_up_phy(struct e1000_adapter *adapter)
 438{
 439	struct e1000_hw *hw = &adapter->hw;
 440	u16 mii_reg = 0;
 441
 442	/* Just clear the power down bit to wake the phy back up */
 443	if (hw->media_type == e1000_media_type_copper) {
 444		/* according to the manual, the phy will retain its
 445		 * settings across a power-down/up cycle
 446		 */
 447		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 448		mii_reg &= ~MII_CR_POWER_DOWN;
 449		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 450	}
 451}
 452
 453static void e1000_power_down_phy(struct e1000_adapter *adapter)
 454{
 455	struct e1000_hw *hw = &adapter->hw;
 456
 457	/* Power down the PHY so no link is implied when interface is down *
 458	 * The PHY cannot be powered down if any of the following is true *
 459	 * (a) WoL is enabled
 460	 * (b) AMT is active
 461	 * (c) SoL/IDER session is active
 462	 */
 463	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 464	   hw->media_type == e1000_media_type_copper) {
 465		u16 mii_reg = 0;
 466
 467		switch (hw->mac_type) {
 468		case e1000_82540:
 469		case e1000_82545:
 470		case e1000_82545_rev_3:
 471		case e1000_82546:
 472		case e1000_ce4100:
 473		case e1000_82546_rev_3:
 474		case e1000_82541:
 475		case e1000_82541_rev_2:
 476		case e1000_82547:
 477		case e1000_82547_rev_2:
 478			if (er32(MANC) & E1000_MANC_SMBUS_EN)
 479				goto out;
 480			break;
 481		default:
 482			goto out;
 483		}
 484		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 485		mii_reg |= MII_CR_POWER_DOWN;
 486		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 487		msleep(1);
 488	}
 489out:
 490	return;
 491}
 492
 493static void e1000_down_and_stop(struct e1000_adapter *adapter)
 494{
 495	set_bit(__E1000_DOWN, &adapter->flags);
 496
 497	cancel_delayed_work_sync(&adapter->watchdog_task);
 498
 499	/*
 500	 * Since the watchdog task can reschedule other tasks, we should cancel
 501	 * it first, otherwise we can run into the situation when a work is
 502	 * still running after the adapter has been turned down.
 503	 */
 504
 505	cancel_delayed_work_sync(&adapter->phy_info_task);
 506	cancel_delayed_work_sync(&adapter->fifo_stall_task);
 507
 508	/* Only kill reset task if adapter is not resetting */
 509	if (!test_bit(__E1000_RESETTING, &adapter->flags))
 510		cancel_work_sync(&adapter->reset_task);
 511}
 512
 513void e1000_down(struct e1000_adapter *adapter)
 514{
 515	struct e1000_hw *hw = &adapter->hw;
 516	struct net_device *netdev = adapter->netdev;
 517	u32 rctl, tctl;
 518
 519
 520	/* disable receives in the hardware */
 521	rctl = er32(RCTL);
 522	ew32(RCTL, rctl & ~E1000_RCTL_EN);
 523	/* flush and sleep below */
 524
 525	netif_tx_disable(netdev);
 526
 527	/* disable transmits in the hardware */
 528	tctl = er32(TCTL);
 529	tctl &= ~E1000_TCTL_EN;
 530	ew32(TCTL, tctl);
 531	/* flush both disables and wait for them to finish */
 532	E1000_WRITE_FLUSH();
 533	msleep(10);
 534
 
 
 
 
 
 
 
 
 
 535	napi_disable(&adapter->napi);
 536
 537	e1000_irq_disable(adapter);
 538
 539	/* Setting DOWN must be after irq_disable to prevent
 540	 * a screaming interrupt.  Setting DOWN also prevents
 541	 * tasks from rescheduling.
 542	 */
 543	e1000_down_and_stop(adapter);
 544
 545	adapter->link_speed = 0;
 546	adapter->link_duplex = 0;
 547	netif_carrier_off(netdev);
 548
 549	e1000_reset(adapter);
 550	e1000_clean_all_tx_rings(adapter);
 551	e1000_clean_all_rx_rings(adapter);
 552}
 553
 554void e1000_reinit_locked(struct e1000_adapter *adapter)
 555{
 556	WARN_ON(in_interrupt());
 557	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 558		msleep(1);
 559	e1000_down(adapter);
 560	e1000_up(adapter);
 
 
 
 
 
 561	clear_bit(__E1000_RESETTING, &adapter->flags);
 562}
 563
 564void e1000_reset(struct e1000_adapter *adapter)
 565{
 566	struct e1000_hw *hw = &adapter->hw;
 567	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 568	bool legacy_pba_adjust = false;
 569	u16 hwm;
 570
 571	/* Repartition Pba for greater than 9k mtu
 572	 * To take effect CTRL.RST is required.
 573	 */
 574
 575	switch (hw->mac_type) {
 576	case e1000_82542_rev2_0:
 577	case e1000_82542_rev2_1:
 578	case e1000_82543:
 579	case e1000_82544:
 580	case e1000_82540:
 581	case e1000_82541:
 582	case e1000_82541_rev_2:
 583		legacy_pba_adjust = true;
 584		pba = E1000_PBA_48K;
 585		break;
 586	case e1000_82545:
 587	case e1000_82545_rev_3:
 588	case e1000_82546:
 589	case e1000_ce4100:
 590	case e1000_82546_rev_3:
 591		pba = E1000_PBA_48K;
 592		break;
 593	case e1000_82547:
 594	case e1000_82547_rev_2:
 595		legacy_pba_adjust = true;
 596		pba = E1000_PBA_30K;
 597		break;
 598	case e1000_undefined:
 599	case e1000_num_macs:
 600		break;
 601	}
 602
 603	if (legacy_pba_adjust) {
 604		if (hw->max_frame_size > E1000_RXBUFFER_8192)
 605			pba -= 8; /* allocate more FIFO for Tx */
 606
 607		if (hw->mac_type == e1000_82547) {
 608			adapter->tx_fifo_head = 0;
 609			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 610			adapter->tx_fifo_size =
 611				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 612			atomic_set(&adapter->tx_fifo_stall, 0);
 613		}
 614	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 615		/* adjust PBA for jumbo frames */
 616		ew32(PBA, pba);
 617
 618		/* To maintain wire speed transmits, the Tx FIFO should be
 619		 * large enough to accommodate two full transmit packets,
 620		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 621		 * the Rx FIFO should be large enough to accommodate at least
 622		 * one full receive packet and is similarly rounded up and
 623		 * expressed in KB.
 624		 */
 625		pba = er32(PBA);
 626		/* upper 16 bits has Tx packet buffer allocation size in KB */
 627		tx_space = pba >> 16;
 628		/* lower 16 bits has Rx packet buffer allocation size in KB */
 629		pba &= 0xffff;
 630		/* the Tx fifo also stores 16 bytes of information about the Tx
 631		 * but don't include ethernet FCS because hardware appends it
 632		 */
 633		min_tx_space = (hw->max_frame_size +
 634		                sizeof(struct e1000_tx_desc) -
 635		                ETH_FCS_LEN) * 2;
 636		min_tx_space = ALIGN(min_tx_space, 1024);
 637		min_tx_space >>= 10;
 638		/* software strips receive CRC, so leave room for it */
 639		min_rx_space = hw->max_frame_size;
 640		min_rx_space = ALIGN(min_rx_space, 1024);
 641		min_rx_space >>= 10;
 642
 643		/* If current Tx allocation is less than the min Tx FIFO size,
 644		 * and the min Tx FIFO size is less than the current Rx FIFO
 645		 * allocation, take space away from current Rx allocation
 646		 */
 647		if (tx_space < min_tx_space &&
 648		    ((min_tx_space - tx_space) < pba)) {
 649			pba = pba - (min_tx_space - tx_space);
 650
 651			/* PCI/PCIx hardware has PBA alignment constraints */
 652			switch (hw->mac_type) {
 653			case e1000_82545 ... e1000_82546_rev_3:
 654				pba &= ~(E1000_PBA_8K - 1);
 655				break;
 656			default:
 657				break;
 658			}
 659
 660			/* if short on Rx space, Rx wins and must trump Tx
 661			 * adjustment or use Early Receive if available
 662			 */
 663			if (pba < min_rx_space)
 664				pba = min_rx_space;
 665		}
 666	}
 667
 668	ew32(PBA, pba);
 669
 670	/* flow control settings:
 671	 * The high water mark must be low enough to fit one full frame
 672	 * (or the size used for early receive) above it in the Rx FIFO.
 673	 * Set it to the lower of:
 674	 * - 90% of the Rx FIFO size, and
 675	 * - the full Rx FIFO size minus the early receive size (for parts
 676	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
 677	 * - the full Rx FIFO size minus one full frame
 678	 */
 679	hwm = min(((pba << 10) * 9 / 10),
 680		  ((pba << 10) - hw->max_frame_size));
 681
 682	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
 683	hw->fc_low_water = hw->fc_high_water - 8;
 684	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 685	hw->fc_send_xon = 1;
 686	hw->fc = hw->original_fc;
 687
 688	/* Allow time for pending master requests to run */
 689	e1000_reset_hw(hw);
 690	if (hw->mac_type >= e1000_82544)
 691		ew32(WUC, 0);
 692
 693	if (e1000_init_hw(hw))
 694		e_dev_err("Hardware Error\n");
 695	e1000_update_mng_vlan(adapter);
 696
 697	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 698	if (hw->mac_type >= e1000_82544 &&
 699	    hw->autoneg == 1 &&
 700	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 701		u32 ctrl = er32(CTRL);
 702		/* clear phy power management bit if we are in gig only mode,
 703		 * which if enabled will attempt negotiation to 100Mb, which
 704		 * can cause a loss of link at power off or driver unload
 705		 */
 706		ctrl &= ~E1000_CTRL_SWDPIN3;
 707		ew32(CTRL, ctrl);
 708	}
 709
 710	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 711	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 712
 713	e1000_reset_adaptive(hw);
 714	e1000_phy_get_info(hw, &adapter->phy_info);
 715
 716	e1000_release_manageability(adapter);
 717}
 718
 719/* Dump the eeprom for users having checksum issues */
 720static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 721{
 722	struct net_device *netdev = adapter->netdev;
 723	struct ethtool_eeprom eeprom;
 724	const struct ethtool_ops *ops = netdev->ethtool_ops;
 725	u8 *data;
 726	int i;
 727	u16 csum_old, csum_new = 0;
 728
 729	eeprom.len = ops->get_eeprom_len(netdev);
 730	eeprom.offset = 0;
 731
 732	data = kmalloc(eeprom.len, GFP_KERNEL);
 733	if (!data)
 734		return;
 735
 736	ops->get_eeprom(netdev, &eeprom, data);
 737
 738	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 739		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 740	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 741		csum_new += data[i] + (data[i + 1] << 8);
 742	csum_new = EEPROM_SUM - csum_new;
 743
 744	pr_err("/*********************/\n");
 745	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 746	pr_err("Calculated              : 0x%04x\n", csum_new);
 747
 748	pr_err("Offset    Values\n");
 749	pr_err("========  ======\n");
 750	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 751
 752	pr_err("Include this output when contacting your support provider.\n");
 753	pr_err("This is not a software error! Something bad happened to\n");
 754	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 755	pr_err("result in further problems, possibly loss of data,\n");
 756	pr_err("corruption or system hangs!\n");
 757	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 758	pr_err("which is invalid and requires you to set the proper MAC\n");
 759	pr_err("address manually before continuing to enable this network\n");
 760	pr_err("device. Please inspect the EEPROM dump and report the\n");
 761	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 762	pr_err("/*********************/\n");
 763
 764	kfree(data);
 765}
 766
 767/**
 768 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 769 * @pdev: PCI device information struct
 770 *
 771 * Return true if an adapter needs ioport resources
 772 **/
 773static int e1000_is_need_ioport(struct pci_dev *pdev)
 774{
 775	switch (pdev->device) {
 776	case E1000_DEV_ID_82540EM:
 777	case E1000_DEV_ID_82540EM_LOM:
 778	case E1000_DEV_ID_82540EP:
 779	case E1000_DEV_ID_82540EP_LOM:
 780	case E1000_DEV_ID_82540EP_LP:
 781	case E1000_DEV_ID_82541EI:
 782	case E1000_DEV_ID_82541EI_MOBILE:
 783	case E1000_DEV_ID_82541ER:
 784	case E1000_DEV_ID_82541ER_LOM:
 785	case E1000_DEV_ID_82541GI:
 786	case E1000_DEV_ID_82541GI_LF:
 787	case E1000_DEV_ID_82541GI_MOBILE:
 788	case E1000_DEV_ID_82544EI_COPPER:
 789	case E1000_DEV_ID_82544EI_FIBER:
 790	case E1000_DEV_ID_82544GC_COPPER:
 791	case E1000_DEV_ID_82544GC_LOM:
 792	case E1000_DEV_ID_82545EM_COPPER:
 793	case E1000_DEV_ID_82545EM_FIBER:
 794	case E1000_DEV_ID_82546EB_COPPER:
 795	case E1000_DEV_ID_82546EB_FIBER:
 796	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 797		return true;
 798	default:
 799		return false;
 800	}
 801}
 802
 803static netdev_features_t e1000_fix_features(struct net_device *netdev,
 804	netdev_features_t features)
 805{
 806	/* Since there is no support for separate Rx/Tx vlan accel
 807	 * enable/disable make sure Tx flag is always in same state as Rx.
 808	 */
 809	if (features & NETIF_F_HW_VLAN_CTAG_RX)
 810		features |= NETIF_F_HW_VLAN_CTAG_TX;
 811	else
 812		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
 813
 814	return features;
 815}
 816
 817static int e1000_set_features(struct net_device *netdev,
 818	netdev_features_t features)
 819{
 820	struct e1000_adapter *adapter = netdev_priv(netdev);
 821	netdev_features_t changed = features ^ netdev->features;
 822
 823	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
 824		e1000_vlan_mode(netdev, features);
 825
 826	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
 827		return 0;
 828
 829	netdev->features = features;
 830	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
 831
 832	if (netif_running(netdev))
 833		e1000_reinit_locked(adapter);
 834	else
 835		e1000_reset(adapter);
 836
 837	return 0;
 838}
 839
 840static const struct net_device_ops e1000_netdev_ops = {
 841	.ndo_open		= e1000_open,
 842	.ndo_stop		= e1000_close,
 843	.ndo_start_xmit		= e1000_xmit_frame,
 844	.ndo_get_stats		= e1000_get_stats,
 845	.ndo_set_rx_mode	= e1000_set_rx_mode,
 846	.ndo_set_mac_address	= e1000_set_mac,
 847	.ndo_tx_timeout		= e1000_tx_timeout,
 848	.ndo_change_mtu		= e1000_change_mtu,
 849	.ndo_do_ioctl		= e1000_ioctl,
 850	.ndo_validate_addr	= eth_validate_addr,
 851	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
 852	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
 853#ifdef CONFIG_NET_POLL_CONTROLLER
 854	.ndo_poll_controller	= e1000_netpoll,
 855#endif
 856	.ndo_fix_features	= e1000_fix_features,
 857	.ndo_set_features	= e1000_set_features,
 858};
 859
 860/**
 861 * e1000_init_hw_struct - initialize members of hw struct
 862 * @adapter: board private struct
 863 * @hw: structure used by e1000_hw.c
 864 *
 865 * Factors out initialization of the e1000_hw struct to its own function
 866 * that can be called very early at init (just after struct allocation).
 867 * Fields are initialized based on PCI device information and
 868 * OS network device settings (MTU size).
 869 * Returns negative error codes if MAC type setup fails.
 870 */
 871static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 872				struct e1000_hw *hw)
 873{
 874	struct pci_dev *pdev = adapter->pdev;
 875
 876	/* PCI config space info */
 877	hw->vendor_id = pdev->vendor;
 878	hw->device_id = pdev->device;
 879	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 880	hw->subsystem_id = pdev->subsystem_device;
 881	hw->revision_id = pdev->revision;
 882
 883	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 884
 885	hw->max_frame_size = adapter->netdev->mtu +
 886			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 887	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 888
 889	/* identify the MAC */
 890	if (e1000_set_mac_type(hw)) {
 891		e_err(probe, "Unknown MAC Type\n");
 892		return -EIO;
 893	}
 894
 895	switch (hw->mac_type) {
 896	default:
 897		break;
 898	case e1000_82541:
 899	case e1000_82547:
 900	case e1000_82541_rev_2:
 901	case e1000_82547_rev_2:
 902		hw->phy_init_script = 1;
 903		break;
 904	}
 905
 906	e1000_set_media_type(hw);
 907	e1000_get_bus_info(hw);
 908
 909	hw->wait_autoneg_complete = false;
 910	hw->tbi_compatibility_en = true;
 911	hw->adaptive_ifs = true;
 912
 913	/* Copper options */
 914
 915	if (hw->media_type == e1000_media_type_copper) {
 916		hw->mdix = AUTO_ALL_MODES;
 917		hw->disable_polarity_correction = false;
 918		hw->master_slave = E1000_MASTER_SLAVE;
 919	}
 920
 921	return 0;
 922}
 923
 924/**
 925 * e1000_probe - Device Initialization Routine
 926 * @pdev: PCI device information struct
 927 * @ent: entry in e1000_pci_tbl
 928 *
 929 * Returns 0 on success, negative on failure
 930 *
 931 * e1000_probe initializes an adapter identified by a pci_dev structure.
 932 * The OS initialization, configuring of the adapter private structure,
 933 * and a hardware reset occur.
 934 **/
 935static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 936{
 937	struct net_device *netdev;
 938	struct e1000_adapter *adapter;
 939	struct e1000_hw *hw;
 940
 941	static int cards_found = 0;
 942	static int global_quad_port_a = 0; /* global ksp3 port a indication */
 943	int i, err, pci_using_dac;
 944	u16 eeprom_data = 0;
 945	u16 tmp = 0;
 946	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 947	int bars, need_ioport;
 
 948
 949	/* do not allocate ioport bars when not needed */
 950	need_ioport = e1000_is_need_ioport(pdev);
 951	if (need_ioport) {
 952		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 953		err = pci_enable_device(pdev);
 954	} else {
 955		bars = pci_select_bars(pdev, IORESOURCE_MEM);
 956		err = pci_enable_device_mem(pdev);
 957	}
 958	if (err)
 959		return err;
 960
 961	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 962	if (err)
 963		goto err_pci_reg;
 964
 965	pci_set_master(pdev);
 966	err = pci_save_state(pdev);
 967	if (err)
 968		goto err_alloc_etherdev;
 969
 970	err = -ENOMEM;
 971	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 972	if (!netdev)
 973		goto err_alloc_etherdev;
 974
 975	SET_NETDEV_DEV(netdev, &pdev->dev);
 976
 977	pci_set_drvdata(pdev, netdev);
 978	adapter = netdev_priv(netdev);
 979	adapter->netdev = netdev;
 980	adapter->pdev = pdev;
 981	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 982	adapter->bars = bars;
 983	adapter->need_ioport = need_ioport;
 984
 985	hw = &adapter->hw;
 986	hw->back = adapter;
 987
 988	err = -EIO;
 989	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
 990	if (!hw->hw_addr)
 991		goto err_ioremap;
 992
 993	if (adapter->need_ioport) {
 994		for (i = BAR_1; i <= BAR_5; i++) {
 995			if (pci_resource_len(pdev, i) == 0)
 996				continue;
 997			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
 998				hw->io_base = pci_resource_start(pdev, i);
 999				break;
1000			}
1001		}
1002	}
1003
1004	/* make ready for any if (hw->...) below */
1005	err = e1000_init_hw_struct(adapter, hw);
1006	if (err)
1007		goto err_sw_init;
1008
1009	/* there is a workaround being applied below that limits
1010	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1011	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1012	 */
1013	pci_using_dac = 0;
1014	if ((hw->bus_type == e1000_bus_type_pcix) &&
1015	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1016		pci_using_dac = 1;
1017	} else {
1018		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1019		if (err) {
1020			pr_err("No usable DMA config, aborting\n");
1021			goto err_dma;
1022		}
1023	}
1024
1025	netdev->netdev_ops = &e1000_netdev_ops;
1026	e1000_set_ethtool_ops(netdev);
1027	netdev->watchdog_timeo = 5 * HZ;
1028	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1029
1030	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1031
1032	adapter->bd_number = cards_found;
1033
1034	/* setup the private structure */
1035
1036	err = e1000_sw_init(adapter);
1037	if (err)
1038		goto err_sw_init;
1039
1040	err = -EIO;
1041	if (hw->mac_type == e1000_ce4100) {
1042		hw->ce4100_gbe_mdio_base_virt =
1043					ioremap(pci_resource_start(pdev, BAR_1),
1044		                                pci_resource_len(pdev, BAR_1));
1045
1046		if (!hw->ce4100_gbe_mdio_base_virt)
1047			goto err_mdio_ioremap;
1048	}
1049
1050	if (hw->mac_type >= e1000_82543) {
1051		netdev->hw_features = NETIF_F_SG |
1052				   NETIF_F_HW_CSUM |
1053				   NETIF_F_HW_VLAN_CTAG_RX;
1054		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1055				   NETIF_F_HW_VLAN_CTAG_FILTER;
1056	}
1057
1058	if ((hw->mac_type >= e1000_82544) &&
1059	   (hw->mac_type != e1000_82547))
1060		netdev->hw_features |= NETIF_F_TSO;
1061
1062	netdev->priv_flags |= IFF_SUPP_NOFCS;
1063
1064	netdev->features |= netdev->hw_features;
1065	netdev->hw_features |= (NETIF_F_RXCSUM |
1066				NETIF_F_RXALL |
1067				NETIF_F_RXFCS);
1068
1069	if (pci_using_dac) {
1070		netdev->features |= NETIF_F_HIGHDMA;
1071		netdev->vlan_features |= NETIF_F_HIGHDMA;
1072	}
1073
1074	netdev->vlan_features |= (NETIF_F_TSO |
1075				  NETIF_F_HW_CSUM |
1076				  NETIF_F_SG);
1077
1078	netdev->priv_flags |= IFF_UNICAST_FLT;
 
 
 
 
 
 
 
1079
1080	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1081
1082	/* initialize eeprom parameters */
1083	if (e1000_init_eeprom_params(hw)) {
1084		e_err(probe, "EEPROM initialization failed\n");
1085		goto err_eeprom;
1086	}
1087
1088	/* before reading the EEPROM, reset the controller to
1089	 * put the device in a known good starting state
1090	 */
1091
1092	e1000_reset_hw(hw);
1093
1094	/* make sure the EEPROM is good */
1095	if (e1000_validate_eeprom_checksum(hw) < 0) {
1096		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1097		e1000_dump_eeprom(adapter);
1098		/* set MAC address to all zeroes to invalidate and temporary
1099		 * disable this device for the user. This blocks regular
1100		 * traffic while still permitting ethtool ioctls from reaching
1101		 * the hardware as well as allowing the user to run the
1102		 * interface after manually setting a hw addr using
1103		 * `ip set address`
1104		 */
1105		memset(hw->mac_addr, 0, netdev->addr_len);
1106	} else {
1107		/* copy the MAC address out of the EEPROM */
1108		if (e1000_read_mac_addr(hw))
1109			e_err(probe, "EEPROM Read Error\n");
1110	}
1111	/* don't block initalization here due to bad MAC address */
1112	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1113
1114	if (!is_valid_ether_addr(netdev->dev_addr))
1115		e_err(probe, "Invalid MAC Address\n");
1116
1117
1118	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1119	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1120			  e1000_82547_tx_fifo_stall_task);
1121	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1122	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1123
1124	e1000_check_options(adapter);
1125
1126	/* Initial Wake on LAN setting
1127	 * If APM wake is enabled in the EEPROM,
1128	 * enable the ACPI Magic Packet filter
1129	 */
1130
1131	switch (hw->mac_type) {
1132	case e1000_82542_rev2_0:
1133	case e1000_82542_rev2_1:
1134	case e1000_82543:
1135		break;
1136	case e1000_82544:
1137		e1000_read_eeprom(hw,
1138			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1139		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1140		break;
1141	case e1000_82546:
1142	case e1000_82546_rev_3:
1143		if (er32(STATUS) & E1000_STATUS_FUNC_1){
1144			e1000_read_eeprom(hw,
1145				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1146			break;
1147		}
1148		/* Fall Through */
1149	default:
1150		e1000_read_eeprom(hw,
1151			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1152		break;
1153	}
1154	if (eeprom_data & eeprom_apme_mask)
1155		adapter->eeprom_wol |= E1000_WUFC_MAG;
1156
1157	/* now that we have the eeprom settings, apply the special cases
1158	 * where the eeprom may be wrong or the board simply won't support
1159	 * wake on lan on a particular port
1160	 */
1161	switch (pdev->device) {
1162	case E1000_DEV_ID_82546GB_PCIE:
1163		adapter->eeprom_wol = 0;
1164		break;
1165	case E1000_DEV_ID_82546EB_FIBER:
1166	case E1000_DEV_ID_82546GB_FIBER:
1167		/* Wake events only supported on port A for dual fiber
1168		 * regardless of eeprom setting
1169		 */
1170		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1171			adapter->eeprom_wol = 0;
1172		break;
1173	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1174		/* if quad port adapter, disable WoL on all but port A */
1175		if (global_quad_port_a != 0)
1176			adapter->eeprom_wol = 0;
1177		else
1178			adapter->quad_port_a = true;
1179		/* Reset for multiple quad port adapters */
1180		if (++global_quad_port_a == 4)
1181			global_quad_port_a = 0;
1182		break;
1183	}
1184
1185	/* initialize the wol settings based on the eeprom settings */
1186	adapter->wol = adapter->eeprom_wol;
1187	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1188
1189	/* Auto detect PHY address */
1190	if (hw->mac_type == e1000_ce4100) {
1191		for (i = 0; i < 32; i++) {
1192			hw->phy_addr = i;
1193			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1194			if (tmp == 0 || tmp == 0xFF) {
1195				if (i == 31)
1196					goto err_eeprom;
1197				continue;
1198			} else
1199				break;
1200		}
 
 
 
1201	}
1202
1203	/* reset the hardware with the new settings */
1204	e1000_reset(adapter);
1205
1206	strcpy(netdev->name, "eth%d");
1207	err = register_netdev(netdev);
1208	if (err)
1209		goto err_register;
1210
1211	e1000_vlan_filter_on_off(adapter, false);
1212
1213	/* print bus type/speed/width info */
1214	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1215	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1216	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1217		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1218		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1219		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1220	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1221	       netdev->dev_addr);
1222
1223	/* carrier off reporting is important to ethtool even BEFORE open */
1224	netif_carrier_off(netdev);
1225
1226	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1227
1228	cards_found++;
1229	return 0;
1230
1231err_register:
1232err_eeprom:
1233	e1000_phy_hw_reset(hw);
1234
1235	if (hw->flash_address)
1236		iounmap(hw->flash_address);
1237	kfree(adapter->tx_ring);
1238	kfree(adapter->rx_ring);
1239err_dma:
1240err_sw_init:
1241err_mdio_ioremap:
1242	iounmap(hw->ce4100_gbe_mdio_base_virt);
1243	iounmap(hw->hw_addr);
1244err_ioremap:
 
1245	free_netdev(netdev);
1246err_alloc_etherdev:
1247	pci_release_selected_regions(pdev, bars);
1248err_pci_reg:
1249	pci_disable_device(pdev);
 
1250	return err;
1251}
1252
1253/**
1254 * e1000_remove - Device Removal Routine
1255 * @pdev: PCI device information struct
1256 *
1257 * e1000_remove is called by the PCI subsystem to alert the driver
1258 * that it should release a PCI device.  The could be caused by a
1259 * Hot-Plug event, or because the driver is going to be removed from
1260 * memory.
1261 **/
1262static void e1000_remove(struct pci_dev *pdev)
1263{
1264	struct net_device *netdev = pci_get_drvdata(pdev);
1265	struct e1000_adapter *adapter = netdev_priv(netdev);
1266	struct e1000_hw *hw = &adapter->hw;
 
1267
1268	e1000_down_and_stop(adapter);
1269	e1000_release_manageability(adapter);
1270
1271	unregister_netdev(netdev);
1272
1273	e1000_phy_hw_reset(hw);
1274
1275	kfree(adapter->tx_ring);
1276	kfree(adapter->rx_ring);
1277
1278	if (hw->mac_type == e1000_ce4100)
1279		iounmap(hw->ce4100_gbe_mdio_base_virt);
1280	iounmap(hw->hw_addr);
1281	if (hw->flash_address)
1282		iounmap(hw->flash_address);
1283	pci_release_selected_regions(pdev, adapter->bars);
1284
 
1285	free_netdev(netdev);
1286
1287	pci_disable_device(pdev);
 
1288}
1289
1290/**
1291 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1292 * @adapter: board private structure to initialize
1293 *
1294 * e1000_sw_init initializes the Adapter private data structure.
1295 * e1000_init_hw_struct MUST be called before this function
1296 **/
1297static int e1000_sw_init(struct e1000_adapter *adapter)
1298{
1299	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1300
1301	adapter->num_tx_queues = 1;
1302	adapter->num_rx_queues = 1;
1303
1304	if (e1000_alloc_queues(adapter)) {
1305		e_err(probe, "Unable to allocate memory for queues\n");
1306		return -ENOMEM;
1307	}
1308
1309	/* Explicitly disable IRQ since the NIC can be in any state. */
1310	e1000_irq_disable(adapter);
1311
1312	spin_lock_init(&adapter->stats_lock);
1313
1314	set_bit(__E1000_DOWN, &adapter->flags);
1315
1316	return 0;
1317}
1318
1319/**
1320 * e1000_alloc_queues - Allocate memory for all rings
1321 * @adapter: board private structure to initialize
1322 *
1323 * We allocate one ring per queue at run-time since we don't know the
1324 * number of queues at compile-time.
1325 **/
1326static int e1000_alloc_queues(struct e1000_adapter *adapter)
1327{
1328	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1329	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
1330	if (!adapter->tx_ring)
1331		return -ENOMEM;
1332
1333	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1334	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
1335	if (!adapter->rx_ring) {
1336		kfree(adapter->tx_ring);
1337		return -ENOMEM;
1338	}
1339
1340	return E1000_SUCCESS;
1341}
1342
1343/**
1344 * e1000_open - Called when a network interface is made active
1345 * @netdev: network interface device structure
1346 *
1347 * Returns 0 on success, negative value on failure
1348 *
1349 * The open entry point is called when a network interface is made
1350 * active by the system (IFF_UP).  At this point all resources needed
1351 * for transmit and receive operations are allocated, the interrupt
1352 * handler is registered with the OS, the watchdog task is started,
1353 * and the stack is notified that the interface is ready.
1354 **/
1355static int e1000_open(struct net_device *netdev)
1356{
1357	struct e1000_adapter *adapter = netdev_priv(netdev);
1358	struct e1000_hw *hw = &adapter->hw;
1359	int err;
1360
1361	/* disallow open during test */
1362	if (test_bit(__E1000_TESTING, &adapter->flags))
1363		return -EBUSY;
1364
1365	netif_carrier_off(netdev);
1366
1367	/* allocate transmit descriptors */
1368	err = e1000_setup_all_tx_resources(adapter);
1369	if (err)
1370		goto err_setup_tx;
1371
1372	/* allocate receive descriptors */
1373	err = e1000_setup_all_rx_resources(adapter);
1374	if (err)
1375		goto err_setup_rx;
1376
1377	e1000_power_up_phy(adapter);
1378
1379	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1380	if ((hw->mng_cookie.status &
1381			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1382		e1000_update_mng_vlan(adapter);
1383	}
1384
1385	/* before we allocate an interrupt, we must be ready to handle it.
1386	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1387	 * as soon as we call pci_request_irq, so we have to setup our
1388	 * clean_rx handler before we do so.
1389	 */
1390	e1000_configure(adapter);
1391
1392	err = e1000_request_irq(adapter);
1393	if (err)
1394		goto err_req_irq;
1395
1396	/* From here on the code is the same as e1000_up() */
1397	clear_bit(__E1000_DOWN, &adapter->flags);
1398
1399	napi_enable(&adapter->napi);
1400
1401	e1000_irq_enable(adapter);
1402
1403	netif_start_queue(netdev);
1404
1405	/* fire a link status change interrupt to start the watchdog */
1406	ew32(ICS, E1000_ICS_LSC);
1407
1408	return E1000_SUCCESS;
1409
1410err_req_irq:
1411	e1000_power_down_phy(adapter);
1412	e1000_free_all_rx_resources(adapter);
1413err_setup_rx:
1414	e1000_free_all_tx_resources(adapter);
1415err_setup_tx:
1416	e1000_reset(adapter);
1417
1418	return err;
1419}
1420
1421/**
1422 * e1000_close - Disables a network interface
1423 * @netdev: network interface device structure
1424 *
1425 * Returns 0, this is not allowed to fail
1426 *
1427 * The close entry point is called when an interface is de-activated
1428 * by the OS.  The hardware is still under the drivers control, but
1429 * needs to be disabled.  A global MAC reset is issued to stop the
1430 * hardware, and all transmit and receive resources are freed.
1431 **/
1432static int e1000_close(struct net_device *netdev)
1433{
1434	struct e1000_adapter *adapter = netdev_priv(netdev);
1435	struct e1000_hw *hw = &adapter->hw;
1436	int count = E1000_CHECK_RESET_COUNT;
1437
1438	while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1439		usleep_range(10000, 20000);
1440
1441	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
 
 
 
 
 
1442	e1000_down(adapter);
1443	e1000_power_down_phy(adapter);
1444	e1000_free_irq(adapter);
1445
1446	e1000_free_all_tx_resources(adapter);
1447	e1000_free_all_rx_resources(adapter);
1448
1449	/* kill manageability vlan ID if supported, but not if a vlan with
1450	 * the same ID is registered on the host OS (let 8021q kill it)
1451	 */
1452	if ((hw->mng_cookie.status &
1453	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1454	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1455		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1456				       adapter->mng_vlan_id);
1457	}
1458
1459	return 0;
1460}
1461
1462/**
1463 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1464 * @adapter: address of board private structure
1465 * @start: address of beginning of memory
1466 * @len: length of memory
1467 **/
1468static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1469				  unsigned long len)
1470{
1471	struct e1000_hw *hw = &adapter->hw;
1472	unsigned long begin = (unsigned long)start;
1473	unsigned long end = begin + len;
1474
1475	/* First rev 82545 and 82546 need to not allow any memory
1476	 * write location to cross 64k boundary due to errata 23
1477	 */
1478	if (hw->mac_type == e1000_82545 ||
1479	    hw->mac_type == e1000_ce4100 ||
1480	    hw->mac_type == e1000_82546) {
1481		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1482	}
1483
1484	return true;
1485}
1486
1487/**
1488 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1489 * @adapter: board private structure
1490 * @txdr:    tx descriptor ring (for a specific queue) to setup
1491 *
1492 * Return 0 on success, negative on failure
1493 **/
1494static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1495				    struct e1000_tx_ring *txdr)
1496{
1497	struct pci_dev *pdev = adapter->pdev;
1498	int size;
1499
1500	size = sizeof(struct e1000_buffer) * txdr->count;
1501	txdr->buffer_info = vzalloc(size);
1502	if (!txdr->buffer_info)
1503		return -ENOMEM;
1504
1505	/* round up to nearest 4K */
1506
1507	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1508	txdr->size = ALIGN(txdr->size, 4096);
1509
1510	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1511					GFP_KERNEL);
1512	if (!txdr->desc) {
1513setup_tx_desc_die:
1514		vfree(txdr->buffer_info);
1515		return -ENOMEM;
1516	}
1517
1518	/* Fix for errata 23, can't cross 64kB boundary */
1519	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1520		void *olddesc = txdr->desc;
1521		dma_addr_t olddma = txdr->dma;
1522		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1523		      txdr->size, txdr->desc);
1524		/* Try again, without freeing the previous */
1525		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1526						&txdr->dma, GFP_KERNEL);
1527		/* Failed allocation, critical failure */
1528		if (!txdr->desc) {
1529			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1530					  olddma);
1531			goto setup_tx_desc_die;
1532		}
1533
1534		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1535			/* give up */
1536			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1537					  txdr->dma);
1538			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1539					  olddma);
1540			e_err(probe, "Unable to allocate aligned memory "
1541			      "for the transmit descriptor ring\n");
1542			vfree(txdr->buffer_info);
1543			return -ENOMEM;
1544		} else {
1545			/* Free old allocation, new allocation was successful */
1546			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547					  olddma);
1548		}
1549	}
1550	memset(txdr->desc, 0, txdr->size);
1551
1552	txdr->next_to_use = 0;
1553	txdr->next_to_clean = 0;
1554
1555	return 0;
1556}
1557
1558/**
1559 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1560 * 				  (Descriptors) for all queues
1561 * @adapter: board private structure
1562 *
1563 * Return 0 on success, negative on failure
1564 **/
1565int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1566{
1567	int i, err = 0;
1568
1569	for (i = 0; i < adapter->num_tx_queues; i++) {
1570		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1571		if (err) {
1572			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1573			for (i-- ; i >= 0; i--)
1574				e1000_free_tx_resources(adapter,
1575							&adapter->tx_ring[i]);
1576			break;
1577		}
1578	}
1579
1580	return err;
1581}
1582
1583/**
1584 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1585 * @adapter: board private structure
1586 *
1587 * Configure the Tx unit of the MAC after a reset.
1588 **/
1589static void e1000_configure_tx(struct e1000_adapter *adapter)
1590{
1591	u64 tdba;
1592	struct e1000_hw *hw = &adapter->hw;
1593	u32 tdlen, tctl, tipg;
1594	u32 ipgr1, ipgr2;
1595
1596	/* Setup the HW Tx Head and Tail descriptor pointers */
1597
1598	switch (adapter->num_tx_queues) {
1599	case 1:
1600	default:
1601		tdba = adapter->tx_ring[0].dma;
1602		tdlen = adapter->tx_ring[0].count *
1603			sizeof(struct e1000_tx_desc);
1604		ew32(TDLEN, tdlen);
1605		ew32(TDBAH, (tdba >> 32));
1606		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1607		ew32(TDT, 0);
1608		ew32(TDH, 0);
1609		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1610					   E1000_TDH : E1000_82542_TDH);
1611		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1612					   E1000_TDT : E1000_82542_TDT);
1613		break;
1614	}
1615
1616	/* Set the default values for the Tx Inter Packet Gap timer */
1617	if ((hw->media_type == e1000_media_type_fiber ||
1618	     hw->media_type == e1000_media_type_internal_serdes))
1619		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1620	else
1621		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1622
1623	switch (hw->mac_type) {
1624	case e1000_82542_rev2_0:
1625	case e1000_82542_rev2_1:
1626		tipg = DEFAULT_82542_TIPG_IPGT;
1627		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1628		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1629		break;
1630	default:
1631		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1632		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1633		break;
1634	}
1635	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1636	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1637	ew32(TIPG, tipg);
1638
1639	/* Set the Tx Interrupt Delay register */
1640
1641	ew32(TIDV, adapter->tx_int_delay);
1642	if (hw->mac_type >= e1000_82540)
1643		ew32(TADV, adapter->tx_abs_int_delay);
1644
1645	/* Program the Transmit Control Register */
1646
1647	tctl = er32(TCTL);
1648	tctl &= ~E1000_TCTL_CT;
1649	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1650		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1651
1652	e1000_config_collision_dist(hw);
1653
1654	/* Setup Transmit Descriptor Settings for eop descriptor */
1655	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1656
1657	/* only set IDE if we are delaying interrupts using the timers */
1658	if (adapter->tx_int_delay)
1659		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1660
1661	if (hw->mac_type < e1000_82543)
1662		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1663	else
1664		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1665
1666	/* Cache if we're 82544 running in PCI-X because we'll
1667	 * need this to apply a workaround later in the send path.
1668	 */
1669	if (hw->mac_type == e1000_82544 &&
1670	    hw->bus_type == e1000_bus_type_pcix)
1671		adapter->pcix_82544 = true;
1672
1673	ew32(TCTL, tctl);
1674
1675}
1676
1677/**
1678 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1679 * @adapter: board private structure
1680 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1681 *
1682 * Returns 0 on success, negative on failure
1683 **/
1684static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1685				    struct e1000_rx_ring *rxdr)
1686{
1687	struct pci_dev *pdev = adapter->pdev;
1688	int size, desc_len;
1689
1690	size = sizeof(struct e1000_buffer) * rxdr->count;
1691	rxdr->buffer_info = vzalloc(size);
1692	if (!rxdr->buffer_info)
1693		return -ENOMEM;
1694
1695	desc_len = sizeof(struct e1000_rx_desc);
1696
1697	/* Round up to nearest 4K */
1698
1699	rxdr->size = rxdr->count * desc_len;
1700	rxdr->size = ALIGN(rxdr->size, 4096);
1701
1702	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1703					GFP_KERNEL);
1704	if (!rxdr->desc) {
1705setup_rx_desc_die:
1706		vfree(rxdr->buffer_info);
1707		return -ENOMEM;
1708	}
1709
1710	/* Fix for errata 23, can't cross 64kB boundary */
1711	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1712		void *olddesc = rxdr->desc;
1713		dma_addr_t olddma = rxdr->dma;
1714		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1715		      rxdr->size, rxdr->desc);
1716		/* Try again, without freeing the previous */
1717		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1718						&rxdr->dma, GFP_KERNEL);
1719		/* Failed allocation, critical failure */
1720		if (!rxdr->desc) {
1721			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1722					  olddma);
1723			goto setup_rx_desc_die;
1724		}
1725
1726		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1727			/* give up */
1728			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1729					  rxdr->dma);
1730			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1731					  olddma);
1732			e_err(probe, "Unable to allocate aligned memory for "
1733			      "the Rx descriptor ring\n");
1734			goto setup_rx_desc_die;
1735		} else {
1736			/* Free old allocation, new allocation was successful */
1737			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1738					  olddma);
1739		}
1740	}
1741	memset(rxdr->desc, 0, rxdr->size);
1742
1743	rxdr->next_to_clean = 0;
1744	rxdr->next_to_use = 0;
1745	rxdr->rx_skb_top = NULL;
1746
1747	return 0;
1748}
1749
1750/**
1751 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1752 * 				  (Descriptors) for all queues
1753 * @adapter: board private structure
1754 *
1755 * Return 0 on success, negative on failure
1756 **/
1757int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1758{
1759	int i, err = 0;
1760
1761	for (i = 0; i < adapter->num_rx_queues; i++) {
1762		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1763		if (err) {
1764			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1765			for (i-- ; i >= 0; i--)
1766				e1000_free_rx_resources(adapter,
1767							&adapter->rx_ring[i]);
1768			break;
1769		}
1770	}
1771
1772	return err;
1773}
1774
1775/**
1776 * e1000_setup_rctl - configure the receive control registers
1777 * @adapter: Board private structure
1778 **/
1779static void e1000_setup_rctl(struct e1000_adapter *adapter)
1780{
1781	struct e1000_hw *hw = &adapter->hw;
1782	u32 rctl;
1783
1784	rctl = er32(RCTL);
1785
1786	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1787
1788	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1789		E1000_RCTL_RDMTS_HALF |
1790		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1791
1792	if (hw->tbi_compatibility_on == 1)
1793		rctl |= E1000_RCTL_SBP;
1794	else
1795		rctl &= ~E1000_RCTL_SBP;
1796
1797	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1798		rctl &= ~E1000_RCTL_LPE;
1799	else
1800		rctl |= E1000_RCTL_LPE;
1801
1802	/* Setup buffer sizes */
1803	rctl &= ~E1000_RCTL_SZ_4096;
1804	rctl |= E1000_RCTL_BSEX;
1805	switch (adapter->rx_buffer_len) {
1806		case E1000_RXBUFFER_2048:
1807		default:
1808			rctl |= E1000_RCTL_SZ_2048;
1809			rctl &= ~E1000_RCTL_BSEX;
1810			break;
1811		case E1000_RXBUFFER_4096:
1812			rctl |= E1000_RCTL_SZ_4096;
1813			break;
1814		case E1000_RXBUFFER_8192:
1815			rctl |= E1000_RCTL_SZ_8192;
1816			break;
1817		case E1000_RXBUFFER_16384:
1818			rctl |= E1000_RCTL_SZ_16384;
1819			break;
1820	}
1821
1822	/* This is useful for sniffing bad packets. */
1823	if (adapter->netdev->features & NETIF_F_RXALL) {
1824		/* UPE and MPE will be handled by normal PROMISC logic
1825		 * in e1000e_set_rx_mode
1826		 */
1827		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1828			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1829			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1830
1831		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1832			  E1000_RCTL_DPF | /* Allow filtered pause */
1833			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1834		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1835		 * and that breaks VLANs.
1836		 */
1837	}
1838
1839	ew32(RCTL, rctl);
1840}
1841
1842/**
1843 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1844 * @adapter: board private structure
1845 *
1846 * Configure the Rx unit of the MAC after a reset.
1847 **/
1848static void e1000_configure_rx(struct e1000_adapter *adapter)
1849{
1850	u64 rdba;
1851	struct e1000_hw *hw = &adapter->hw;
1852	u32 rdlen, rctl, rxcsum;
1853
1854	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1855		rdlen = adapter->rx_ring[0].count *
1856		        sizeof(struct e1000_rx_desc);
1857		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1858		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1859	} else {
1860		rdlen = adapter->rx_ring[0].count *
1861		        sizeof(struct e1000_rx_desc);
1862		adapter->clean_rx = e1000_clean_rx_irq;
1863		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1864	}
1865
1866	/* disable receives while setting up the descriptors */
1867	rctl = er32(RCTL);
1868	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1869
1870	/* set the Receive Delay Timer Register */
1871	ew32(RDTR, adapter->rx_int_delay);
1872
1873	if (hw->mac_type >= e1000_82540) {
1874		ew32(RADV, adapter->rx_abs_int_delay);
1875		if (adapter->itr_setting != 0)
1876			ew32(ITR, 1000000000 / (adapter->itr * 256));
1877	}
1878
1879	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1880	 * the Base and Length of the Rx Descriptor Ring
1881	 */
1882	switch (adapter->num_rx_queues) {
1883	case 1:
1884	default:
1885		rdba = adapter->rx_ring[0].dma;
1886		ew32(RDLEN, rdlen);
1887		ew32(RDBAH, (rdba >> 32));
1888		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1889		ew32(RDT, 0);
1890		ew32(RDH, 0);
1891		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1892					   E1000_RDH : E1000_82542_RDH);
1893		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1894					   E1000_RDT : E1000_82542_RDT);
1895		break;
1896	}
1897
1898	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1899	if (hw->mac_type >= e1000_82543) {
1900		rxcsum = er32(RXCSUM);
1901		if (adapter->rx_csum)
1902			rxcsum |= E1000_RXCSUM_TUOFL;
1903		else
1904			/* don't need to clear IPPCSE as it defaults to 0 */
1905			rxcsum &= ~E1000_RXCSUM_TUOFL;
1906		ew32(RXCSUM, rxcsum);
1907	}
1908
1909	/* Enable Receives */
1910	ew32(RCTL, rctl | E1000_RCTL_EN);
1911}
1912
1913/**
1914 * e1000_free_tx_resources - Free Tx Resources per Queue
1915 * @adapter: board private structure
1916 * @tx_ring: Tx descriptor ring for a specific queue
1917 *
1918 * Free all transmit software resources
1919 **/
1920static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1921				    struct e1000_tx_ring *tx_ring)
1922{
1923	struct pci_dev *pdev = adapter->pdev;
1924
1925	e1000_clean_tx_ring(adapter, tx_ring);
1926
1927	vfree(tx_ring->buffer_info);
1928	tx_ring->buffer_info = NULL;
1929
1930	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1931			  tx_ring->dma);
1932
1933	tx_ring->desc = NULL;
1934}
1935
1936/**
1937 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1938 * @adapter: board private structure
1939 *
1940 * Free all transmit software resources
1941 **/
1942void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1943{
1944	int i;
1945
1946	for (i = 0; i < adapter->num_tx_queues; i++)
1947		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1948}
1949
1950static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1951					     struct e1000_buffer *buffer_info)
 
 
1952{
1953	if (buffer_info->dma) {
1954		if (buffer_info->mapped_as_page)
1955			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1956				       buffer_info->length, DMA_TO_DEVICE);
1957		else
1958			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1959					 buffer_info->length,
1960					 DMA_TO_DEVICE);
1961		buffer_info->dma = 0;
1962	}
1963	if (buffer_info->skb) {
1964		dev_kfree_skb_any(buffer_info->skb);
1965		buffer_info->skb = NULL;
1966	}
1967	buffer_info->time_stamp = 0;
1968	/* buffer_info must be completely set up in the transmit path */
1969}
1970
1971/**
1972 * e1000_clean_tx_ring - Free Tx Buffers
1973 * @adapter: board private structure
1974 * @tx_ring: ring to be cleaned
1975 **/
1976static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1977				struct e1000_tx_ring *tx_ring)
1978{
1979	struct e1000_hw *hw = &adapter->hw;
1980	struct e1000_buffer *buffer_info;
1981	unsigned long size;
1982	unsigned int i;
1983
1984	/* Free all the Tx ring sk_buffs */
1985
1986	for (i = 0; i < tx_ring->count; i++) {
1987		buffer_info = &tx_ring->buffer_info[i];
1988		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1989	}
1990
1991	netdev_reset_queue(adapter->netdev);
1992	size = sizeof(struct e1000_buffer) * tx_ring->count;
1993	memset(tx_ring->buffer_info, 0, size);
1994
1995	/* Zero out the descriptor ring */
1996
1997	memset(tx_ring->desc, 0, tx_ring->size);
1998
1999	tx_ring->next_to_use = 0;
2000	tx_ring->next_to_clean = 0;
2001	tx_ring->last_tx_tso = false;
2002
2003	writel(0, hw->hw_addr + tx_ring->tdh);
2004	writel(0, hw->hw_addr + tx_ring->tdt);
2005}
2006
2007/**
2008 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2009 * @adapter: board private structure
2010 **/
2011static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2012{
2013	int i;
2014
2015	for (i = 0; i < adapter->num_tx_queues; i++)
2016		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2017}
2018
2019/**
2020 * e1000_free_rx_resources - Free Rx Resources
2021 * @adapter: board private structure
2022 * @rx_ring: ring to clean the resources from
2023 *
2024 * Free all receive software resources
2025 **/
2026static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2027				    struct e1000_rx_ring *rx_ring)
2028{
2029	struct pci_dev *pdev = adapter->pdev;
2030
2031	e1000_clean_rx_ring(adapter, rx_ring);
2032
2033	vfree(rx_ring->buffer_info);
2034	rx_ring->buffer_info = NULL;
2035
2036	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2037			  rx_ring->dma);
2038
2039	rx_ring->desc = NULL;
2040}
2041
2042/**
2043 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2044 * @adapter: board private structure
2045 *
2046 * Free all receive software resources
2047 **/
2048void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2049{
2050	int i;
2051
2052	for (i = 0; i < adapter->num_rx_queues; i++)
2053		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2054}
2055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2056/**
2057 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2058 * @adapter: board private structure
2059 * @rx_ring: ring to free buffers from
2060 **/
2061static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2062				struct e1000_rx_ring *rx_ring)
2063{
2064	struct e1000_hw *hw = &adapter->hw;
2065	struct e1000_buffer *buffer_info;
2066	struct pci_dev *pdev = adapter->pdev;
2067	unsigned long size;
2068	unsigned int i;
2069
2070	/* Free all the Rx ring sk_buffs */
2071	for (i = 0; i < rx_ring->count; i++) {
2072		buffer_info = &rx_ring->buffer_info[i];
2073		if (buffer_info->dma &&
2074		    adapter->clean_rx == e1000_clean_rx_irq) {
2075			dma_unmap_single(&pdev->dev, buffer_info->dma,
2076			                 buffer_info->length,
2077					 DMA_FROM_DEVICE);
2078		} else if (buffer_info->dma &&
2079		           adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2080			dma_unmap_page(&pdev->dev, buffer_info->dma,
2081				       buffer_info->length,
2082				       DMA_FROM_DEVICE);
 
 
 
 
 
 
 
 
2083		}
2084
2085		buffer_info->dma = 0;
2086		if (buffer_info->page) {
2087			put_page(buffer_info->page);
2088			buffer_info->page = NULL;
2089		}
2090		if (buffer_info->skb) {
2091			dev_kfree_skb(buffer_info->skb);
2092			buffer_info->skb = NULL;
2093		}
2094	}
2095
2096	/* there also may be some cached data from a chained receive */
2097	if (rx_ring->rx_skb_top) {
2098		dev_kfree_skb(rx_ring->rx_skb_top);
2099		rx_ring->rx_skb_top = NULL;
2100	}
2101
2102	size = sizeof(struct e1000_buffer) * rx_ring->count;
2103	memset(rx_ring->buffer_info, 0, size);
2104
2105	/* Zero out the descriptor ring */
2106	memset(rx_ring->desc, 0, rx_ring->size);
2107
2108	rx_ring->next_to_clean = 0;
2109	rx_ring->next_to_use = 0;
2110
2111	writel(0, hw->hw_addr + rx_ring->rdh);
2112	writel(0, hw->hw_addr + rx_ring->rdt);
2113}
2114
2115/**
2116 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2117 * @adapter: board private structure
2118 **/
2119static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2120{
2121	int i;
2122
2123	for (i = 0; i < adapter->num_rx_queues; i++)
2124		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2125}
2126
2127/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2128 * and memory write and invalidate disabled for certain operations
2129 */
2130static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2131{
2132	struct e1000_hw *hw = &adapter->hw;
2133	struct net_device *netdev = adapter->netdev;
2134	u32 rctl;
2135
2136	e1000_pci_clear_mwi(hw);
2137
2138	rctl = er32(RCTL);
2139	rctl |= E1000_RCTL_RST;
2140	ew32(RCTL, rctl);
2141	E1000_WRITE_FLUSH();
2142	mdelay(5);
2143
2144	if (netif_running(netdev))
2145		e1000_clean_all_rx_rings(adapter);
2146}
2147
2148static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2149{
2150	struct e1000_hw *hw = &adapter->hw;
2151	struct net_device *netdev = adapter->netdev;
2152	u32 rctl;
2153
2154	rctl = er32(RCTL);
2155	rctl &= ~E1000_RCTL_RST;
2156	ew32(RCTL, rctl);
2157	E1000_WRITE_FLUSH();
2158	mdelay(5);
2159
2160	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2161		e1000_pci_set_mwi(hw);
2162
2163	if (netif_running(netdev)) {
2164		/* No need to loop, because 82542 supports only 1 queue */
2165		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2166		e1000_configure_rx(adapter);
2167		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2168	}
2169}
2170
2171/**
2172 * e1000_set_mac - Change the Ethernet Address of the NIC
2173 * @netdev: network interface device structure
2174 * @p: pointer to an address structure
2175 *
2176 * Returns 0 on success, negative on failure
2177 **/
2178static int e1000_set_mac(struct net_device *netdev, void *p)
2179{
2180	struct e1000_adapter *adapter = netdev_priv(netdev);
2181	struct e1000_hw *hw = &adapter->hw;
2182	struct sockaddr *addr = p;
2183
2184	if (!is_valid_ether_addr(addr->sa_data))
2185		return -EADDRNOTAVAIL;
2186
2187	/* 82542 2.0 needs to be in reset to write receive address registers */
2188
2189	if (hw->mac_type == e1000_82542_rev2_0)
2190		e1000_enter_82542_rst(adapter);
2191
2192	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2193	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2194
2195	e1000_rar_set(hw, hw->mac_addr, 0);
2196
2197	if (hw->mac_type == e1000_82542_rev2_0)
2198		e1000_leave_82542_rst(adapter);
2199
2200	return 0;
2201}
2202
2203/**
2204 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2205 * @netdev: network interface device structure
2206 *
2207 * The set_rx_mode entry point is called whenever the unicast or multicast
2208 * address lists or the network interface flags are updated. This routine is
2209 * responsible for configuring the hardware for proper unicast, multicast,
2210 * promiscuous mode, and all-multi behavior.
2211 **/
2212static void e1000_set_rx_mode(struct net_device *netdev)
2213{
2214	struct e1000_adapter *adapter = netdev_priv(netdev);
2215	struct e1000_hw *hw = &adapter->hw;
2216	struct netdev_hw_addr *ha;
2217	bool use_uc = false;
2218	u32 rctl;
2219	u32 hash_value;
2220	int i, rar_entries = E1000_RAR_ENTRIES;
2221	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2222	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2223
2224	if (!mcarray)
2225		return;
2226
2227	/* Check for Promiscuous and All Multicast modes */
2228
2229	rctl = er32(RCTL);
2230
2231	if (netdev->flags & IFF_PROMISC) {
2232		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2233		rctl &= ~E1000_RCTL_VFE;
2234	} else {
2235		if (netdev->flags & IFF_ALLMULTI)
2236			rctl |= E1000_RCTL_MPE;
2237		else
2238			rctl &= ~E1000_RCTL_MPE;
2239		/* Enable VLAN filter if there is a VLAN */
2240		if (e1000_vlan_used(adapter))
2241			rctl |= E1000_RCTL_VFE;
2242	}
2243
2244	if (netdev_uc_count(netdev) > rar_entries - 1) {
2245		rctl |= E1000_RCTL_UPE;
2246	} else if (!(netdev->flags & IFF_PROMISC)) {
2247		rctl &= ~E1000_RCTL_UPE;
2248		use_uc = true;
2249	}
2250
2251	ew32(RCTL, rctl);
2252
2253	/* 82542 2.0 needs to be in reset to write receive address registers */
2254
2255	if (hw->mac_type == e1000_82542_rev2_0)
2256		e1000_enter_82542_rst(adapter);
2257
2258	/* load the first 14 addresses into the exact filters 1-14. Unicast
2259	 * addresses take precedence to avoid disabling unicast filtering
2260	 * when possible.
2261	 *
2262	 * RAR 0 is used for the station MAC address
2263	 * if there are not 14 addresses, go ahead and clear the filters
2264	 */
2265	i = 1;
2266	if (use_uc)
2267		netdev_for_each_uc_addr(ha, netdev) {
2268			if (i == rar_entries)
2269				break;
2270			e1000_rar_set(hw, ha->addr, i++);
2271		}
2272
2273	netdev_for_each_mc_addr(ha, netdev) {
2274		if (i == rar_entries) {
2275			/* load any remaining addresses into the hash table */
2276			u32 hash_reg, hash_bit, mta;
2277			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2278			hash_reg = (hash_value >> 5) & 0x7F;
2279			hash_bit = hash_value & 0x1F;
2280			mta = (1 << hash_bit);
2281			mcarray[hash_reg] |= mta;
2282		} else {
2283			e1000_rar_set(hw, ha->addr, i++);
2284		}
2285	}
2286
2287	for (; i < rar_entries; i++) {
2288		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2289		E1000_WRITE_FLUSH();
2290		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2291		E1000_WRITE_FLUSH();
2292	}
2293
2294	/* write the hash table completely, write from bottom to avoid
2295	 * both stupid write combining chipsets, and flushing each write
2296	 */
2297	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2298		/* If we are on an 82544 has an errata where writing odd
2299		 * offsets overwrites the previous even offset, but writing
2300		 * backwards over the range solves the issue by always
2301		 * writing the odd offset first
2302		 */
2303		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2304	}
2305	E1000_WRITE_FLUSH();
2306
2307	if (hw->mac_type == e1000_82542_rev2_0)
2308		e1000_leave_82542_rst(adapter);
2309
2310	kfree(mcarray);
2311}
2312
2313/**
2314 * e1000_update_phy_info_task - get phy info
2315 * @work: work struct contained inside adapter struct
2316 *
2317 * Need to wait a few seconds after link up to get diagnostic information from
2318 * the phy
2319 */
2320static void e1000_update_phy_info_task(struct work_struct *work)
2321{
2322	struct e1000_adapter *adapter = container_of(work,
2323						     struct e1000_adapter,
2324						     phy_info_task.work);
2325
2326	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2327}
2328
2329/**
2330 * e1000_82547_tx_fifo_stall_task - task to complete work
2331 * @work: work struct contained inside adapter struct
2332 **/
2333static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2334{
2335	struct e1000_adapter *adapter = container_of(work,
2336						     struct e1000_adapter,
2337						     fifo_stall_task.work);
2338	struct e1000_hw *hw = &adapter->hw;
2339	struct net_device *netdev = adapter->netdev;
2340	u32 tctl;
2341
2342	if (atomic_read(&adapter->tx_fifo_stall)) {
2343		if ((er32(TDT) == er32(TDH)) &&
2344		   (er32(TDFT) == er32(TDFH)) &&
2345		   (er32(TDFTS) == er32(TDFHS))) {
2346			tctl = er32(TCTL);
2347			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2348			ew32(TDFT, adapter->tx_head_addr);
2349			ew32(TDFH, adapter->tx_head_addr);
2350			ew32(TDFTS, adapter->tx_head_addr);
2351			ew32(TDFHS, adapter->tx_head_addr);
2352			ew32(TCTL, tctl);
2353			E1000_WRITE_FLUSH();
2354
2355			adapter->tx_fifo_head = 0;
2356			atomic_set(&adapter->tx_fifo_stall, 0);
2357			netif_wake_queue(netdev);
2358		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2359			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2360		}
2361	}
2362}
2363
2364bool e1000_has_link(struct e1000_adapter *adapter)
2365{
2366	struct e1000_hw *hw = &adapter->hw;
2367	bool link_active = false;
2368
2369	/* get_link_status is set on LSC (link status) interrupt or rx
2370	 * sequence error interrupt (except on intel ce4100).
2371	 * get_link_status will stay false until the
2372	 * e1000_check_for_link establishes link for copper adapters
2373	 * ONLY
2374	 */
2375	switch (hw->media_type) {
2376	case e1000_media_type_copper:
2377		if (hw->mac_type == e1000_ce4100)
2378			hw->get_link_status = 1;
2379		if (hw->get_link_status) {
2380			e1000_check_for_link(hw);
2381			link_active = !hw->get_link_status;
2382		} else {
2383			link_active = true;
2384		}
2385		break;
2386	case e1000_media_type_fiber:
2387		e1000_check_for_link(hw);
2388		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2389		break;
2390	case e1000_media_type_internal_serdes:
2391		e1000_check_for_link(hw);
2392		link_active = hw->serdes_has_link;
2393		break;
2394	default:
2395		break;
2396	}
2397
2398	return link_active;
2399}
2400
2401/**
2402 * e1000_watchdog - work function
2403 * @work: work struct contained inside adapter struct
2404 **/
2405static void e1000_watchdog(struct work_struct *work)
2406{
2407	struct e1000_adapter *adapter = container_of(work,
2408						     struct e1000_adapter,
2409						     watchdog_task.work);
2410	struct e1000_hw *hw = &adapter->hw;
2411	struct net_device *netdev = adapter->netdev;
2412	struct e1000_tx_ring *txdr = adapter->tx_ring;
2413	u32 link, tctl;
2414
2415	link = e1000_has_link(adapter);
2416	if ((netif_carrier_ok(netdev)) && link)
2417		goto link_up;
2418
2419	if (link) {
2420		if (!netif_carrier_ok(netdev)) {
2421			u32 ctrl;
2422			bool txb2b = true;
2423			/* update snapshot of PHY registers on LSC */
2424			e1000_get_speed_and_duplex(hw,
2425						   &adapter->link_speed,
2426						   &adapter->link_duplex);
2427
2428			ctrl = er32(CTRL);
2429			pr_info("%s NIC Link is Up %d Mbps %s, "
2430				"Flow Control: %s\n",
2431				netdev->name,
2432				adapter->link_speed,
2433				adapter->link_duplex == FULL_DUPLEX ?
2434				"Full Duplex" : "Half Duplex",
2435				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2436				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2437				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2438				E1000_CTRL_TFCE) ? "TX" : "None")));
2439
2440			/* adjust timeout factor according to speed/duplex */
2441			adapter->tx_timeout_factor = 1;
2442			switch (adapter->link_speed) {
2443			case SPEED_10:
2444				txb2b = false;
2445				adapter->tx_timeout_factor = 16;
2446				break;
2447			case SPEED_100:
2448				txb2b = false;
2449				/* maybe add some timeout factor ? */
2450				break;
2451			}
2452
2453			/* enable transmits in the hardware */
2454			tctl = er32(TCTL);
2455			tctl |= E1000_TCTL_EN;
2456			ew32(TCTL, tctl);
2457
2458			netif_carrier_on(netdev);
2459			if (!test_bit(__E1000_DOWN, &adapter->flags))
2460				schedule_delayed_work(&adapter->phy_info_task,
2461						      2 * HZ);
2462			adapter->smartspeed = 0;
2463		}
2464	} else {
2465		if (netif_carrier_ok(netdev)) {
2466			adapter->link_speed = 0;
2467			adapter->link_duplex = 0;
2468			pr_info("%s NIC Link is Down\n",
2469				netdev->name);
2470			netif_carrier_off(netdev);
2471
2472			if (!test_bit(__E1000_DOWN, &adapter->flags))
2473				schedule_delayed_work(&adapter->phy_info_task,
2474						      2 * HZ);
2475		}
2476
2477		e1000_smartspeed(adapter);
2478	}
2479
2480link_up:
2481	e1000_update_stats(adapter);
2482
2483	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2484	adapter->tpt_old = adapter->stats.tpt;
2485	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2486	adapter->colc_old = adapter->stats.colc;
2487
2488	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2489	adapter->gorcl_old = adapter->stats.gorcl;
2490	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2491	adapter->gotcl_old = adapter->stats.gotcl;
2492
2493	e1000_update_adaptive(hw);
2494
2495	if (!netif_carrier_ok(netdev)) {
2496		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2497			/* We've lost link, so the controller stops DMA,
2498			 * but we've got queued Tx work that's never going
2499			 * to get done, so reset controller to flush Tx.
2500			 * (Do the reset outside of interrupt context).
2501			 */
2502			adapter->tx_timeout_count++;
2503			schedule_work(&adapter->reset_task);
2504			/* exit immediately since reset is imminent */
2505			return;
2506		}
2507	}
2508
2509	/* Simple mode for Interrupt Throttle Rate (ITR) */
2510	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2511		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2512		 * Total asymmetrical Tx or Rx gets ITR=8000;
2513		 * everyone else is between 2000-8000.
2514		 */
2515		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2516		u32 dif = (adapter->gotcl > adapter->gorcl ?
2517			    adapter->gotcl - adapter->gorcl :
2518			    adapter->gorcl - adapter->gotcl) / 10000;
2519		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2520
2521		ew32(ITR, 1000000000 / (itr * 256));
2522	}
2523
2524	/* Cause software interrupt to ensure rx ring is cleaned */
2525	ew32(ICS, E1000_ICS_RXDMT0);
2526
2527	/* Force detection of hung controller every watchdog period */
2528	adapter->detect_tx_hung = true;
2529
2530	/* Reschedule the task */
2531	if (!test_bit(__E1000_DOWN, &adapter->flags))
2532		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2533}
2534
2535enum latency_range {
2536	lowest_latency = 0,
2537	low_latency = 1,
2538	bulk_latency = 2,
2539	latency_invalid = 255
2540};
2541
2542/**
2543 * e1000_update_itr - update the dynamic ITR value based on statistics
2544 * @adapter: pointer to adapter
2545 * @itr_setting: current adapter->itr
2546 * @packets: the number of packets during this measurement interval
2547 * @bytes: the number of bytes during this measurement interval
2548 *
2549 *      Stores a new ITR value based on packets and byte
2550 *      counts during the last interrupt.  The advantage of per interrupt
2551 *      computation is faster updates and more accurate ITR for the current
2552 *      traffic pattern.  Constants in this function were computed
2553 *      based on theoretical maximum wire speed and thresholds were set based
2554 *      on testing data as well as attempting to minimize response time
2555 *      while increasing bulk throughput.
2556 *      this functionality is controlled by the InterruptThrottleRate module
2557 *      parameter (see e1000_param.c)
2558 **/
2559static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2560				     u16 itr_setting, int packets, int bytes)
2561{
2562	unsigned int retval = itr_setting;
2563	struct e1000_hw *hw = &adapter->hw;
2564
2565	if (unlikely(hw->mac_type < e1000_82540))
2566		goto update_itr_done;
2567
2568	if (packets == 0)
2569		goto update_itr_done;
2570
2571	switch (itr_setting) {
2572	case lowest_latency:
2573		/* jumbo frames get bulk treatment*/
2574		if (bytes/packets > 8000)
2575			retval = bulk_latency;
2576		else if ((packets < 5) && (bytes > 512))
2577			retval = low_latency;
2578		break;
2579	case low_latency:  /* 50 usec aka 20000 ints/s */
2580		if (bytes > 10000) {
2581			/* jumbo frames need bulk latency setting */
2582			if (bytes/packets > 8000)
2583				retval = bulk_latency;
2584			else if ((packets < 10) || ((bytes/packets) > 1200))
2585				retval = bulk_latency;
2586			else if ((packets > 35))
2587				retval = lowest_latency;
2588		} else if (bytes/packets > 2000)
2589			retval = bulk_latency;
2590		else if (packets <= 2 && bytes < 512)
2591			retval = lowest_latency;
2592		break;
2593	case bulk_latency: /* 250 usec aka 4000 ints/s */
2594		if (bytes > 25000) {
2595			if (packets > 35)
2596				retval = low_latency;
2597		} else if (bytes < 6000) {
2598			retval = low_latency;
2599		}
2600		break;
2601	}
2602
2603update_itr_done:
2604	return retval;
2605}
2606
2607static void e1000_set_itr(struct e1000_adapter *adapter)
2608{
2609	struct e1000_hw *hw = &adapter->hw;
2610	u16 current_itr;
2611	u32 new_itr = adapter->itr;
2612
2613	if (unlikely(hw->mac_type < e1000_82540))
2614		return;
2615
2616	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2617	if (unlikely(adapter->link_speed != SPEED_1000)) {
2618		current_itr = 0;
2619		new_itr = 4000;
2620		goto set_itr_now;
2621	}
2622
2623	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2624					   adapter->total_tx_packets,
2625					   adapter->total_tx_bytes);
2626	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2627	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2628		adapter->tx_itr = low_latency;
2629
2630	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2631					   adapter->total_rx_packets,
2632					   adapter->total_rx_bytes);
2633	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2634	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2635		adapter->rx_itr = low_latency;
2636
2637	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2638
2639	switch (current_itr) {
2640	/* counts and packets in update_itr are dependent on these numbers */
2641	case lowest_latency:
2642		new_itr = 70000;
2643		break;
2644	case low_latency:
2645		new_itr = 20000; /* aka hwitr = ~200 */
2646		break;
2647	case bulk_latency:
2648		new_itr = 4000;
2649		break;
2650	default:
2651		break;
2652	}
2653
2654set_itr_now:
2655	if (new_itr != adapter->itr) {
2656		/* this attempts to bias the interrupt rate towards Bulk
2657		 * by adding intermediate steps when interrupt rate is
2658		 * increasing
2659		 */
2660		new_itr = new_itr > adapter->itr ?
2661			  min(adapter->itr + (new_itr >> 2), new_itr) :
2662			  new_itr;
2663		adapter->itr = new_itr;
2664		ew32(ITR, 1000000000 / (new_itr * 256));
2665	}
2666}
2667
2668#define E1000_TX_FLAGS_CSUM		0x00000001
2669#define E1000_TX_FLAGS_VLAN		0x00000002
2670#define E1000_TX_FLAGS_TSO		0x00000004
2671#define E1000_TX_FLAGS_IPV4		0x00000008
2672#define E1000_TX_FLAGS_NO_FCS		0x00000010
2673#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2674#define E1000_TX_FLAGS_VLAN_SHIFT	16
2675
2676static int e1000_tso(struct e1000_adapter *adapter,
2677		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
 
2678{
2679	struct e1000_context_desc *context_desc;
2680	struct e1000_buffer *buffer_info;
2681	unsigned int i;
2682	u32 cmd_length = 0;
2683	u16 ipcse = 0, tucse, mss;
2684	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2685
2686	if (skb_is_gso(skb)) {
2687		int err;
2688
2689		err = skb_cow_head(skb, 0);
2690		if (err < 0)
2691			return err;
2692
2693		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2694		mss = skb_shinfo(skb)->gso_size;
2695		if (skb->protocol == htons(ETH_P_IP)) {
2696			struct iphdr *iph = ip_hdr(skb);
2697			iph->tot_len = 0;
2698			iph->check = 0;
2699			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2700								 iph->daddr, 0,
2701								 IPPROTO_TCP,
2702								 0);
2703			cmd_length = E1000_TXD_CMD_IP;
2704			ipcse = skb_transport_offset(skb) - 1;
2705		} else if (skb->protocol == htons(ETH_P_IPV6)) {
2706			ipv6_hdr(skb)->payload_len = 0;
2707			tcp_hdr(skb)->check =
2708				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2709						 &ipv6_hdr(skb)->daddr,
2710						 0, IPPROTO_TCP, 0);
2711			ipcse = 0;
2712		}
2713		ipcss = skb_network_offset(skb);
2714		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2715		tucss = skb_transport_offset(skb);
2716		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2717		tucse = 0;
2718
2719		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2720			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2721
2722		i = tx_ring->next_to_use;
2723		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2724		buffer_info = &tx_ring->buffer_info[i];
2725
2726		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2727		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2728		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2729		context_desc->upper_setup.tcp_fields.tucss = tucss;
2730		context_desc->upper_setup.tcp_fields.tucso = tucso;
2731		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2732		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2733		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2734		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2735
2736		buffer_info->time_stamp = jiffies;
2737		buffer_info->next_to_watch = i;
2738
2739		if (++i == tx_ring->count) i = 0;
 
 
2740		tx_ring->next_to_use = i;
2741
2742		return true;
2743	}
2744	return false;
2745}
2746
2747static bool e1000_tx_csum(struct e1000_adapter *adapter,
2748			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
 
2749{
2750	struct e1000_context_desc *context_desc;
2751	struct e1000_buffer *buffer_info;
2752	unsigned int i;
2753	u8 css;
2754	u32 cmd_len = E1000_TXD_CMD_DEXT;
2755
2756	if (skb->ip_summed != CHECKSUM_PARTIAL)
2757		return false;
2758
2759	switch (skb->protocol) {
2760	case cpu_to_be16(ETH_P_IP):
2761		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2762			cmd_len |= E1000_TXD_CMD_TCP;
2763		break;
2764	case cpu_to_be16(ETH_P_IPV6):
2765		/* XXX not handling all IPV6 headers */
2766		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2767			cmd_len |= E1000_TXD_CMD_TCP;
2768		break;
2769	default:
2770		if (unlikely(net_ratelimit()))
2771			e_warn(drv, "checksum_partial proto=%x!\n",
2772			       skb->protocol);
2773		break;
2774	}
2775
2776	css = skb_checksum_start_offset(skb);
2777
2778	i = tx_ring->next_to_use;
2779	buffer_info = &tx_ring->buffer_info[i];
2780	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2781
2782	context_desc->lower_setup.ip_config = 0;
2783	context_desc->upper_setup.tcp_fields.tucss = css;
2784	context_desc->upper_setup.tcp_fields.tucso =
2785		css + skb->csum_offset;
2786	context_desc->upper_setup.tcp_fields.tucse = 0;
2787	context_desc->tcp_seg_setup.data = 0;
2788	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2789
2790	buffer_info->time_stamp = jiffies;
2791	buffer_info->next_to_watch = i;
2792
2793	if (unlikely(++i == tx_ring->count)) i = 0;
 
 
2794	tx_ring->next_to_use = i;
2795
2796	return true;
2797}
2798
2799#define E1000_MAX_TXD_PWR	12
2800#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2801
2802static int e1000_tx_map(struct e1000_adapter *adapter,
2803			struct e1000_tx_ring *tx_ring,
2804			struct sk_buff *skb, unsigned int first,
2805			unsigned int max_per_txd, unsigned int nr_frags,
2806			unsigned int mss)
2807{
2808	struct e1000_hw *hw = &adapter->hw;
2809	struct pci_dev *pdev = adapter->pdev;
2810	struct e1000_buffer *buffer_info;
2811	unsigned int len = skb_headlen(skb);
2812	unsigned int offset = 0, size, count = 0, i;
2813	unsigned int f, bytecount, segs;
2814
2815	i = tx_ring->next_to_use;
2816
2817	while (len) {
2818		buffer_info = &tx_ring->buffer_info[i];
2819		size = min(len, max_per_txd);
2820		/* Workaround for Controller erratum --
2821		 * descriptor for non-tso packet in a linear SKB that follows a
2822		 * tso gets written back prematurely before the data is fully
2823		 * DMA'd to the controller
2824		 */
2825		if (!skb->data_len && tx_ring->last_tx_tso &&
2826		    !skb_is_gso(skb)) {
2827			tx_ring->last_tx_tso = false;
2828			size -= 4;
2829		}
2830
2831		/* Workaround for premature desc write-backs
2832		 * in TSO mode.  Append 4-byte sentinel desc
2833		 */
2834		if (unlikely(mss && !nr_frags && size == len && size > 8))
2835			size -= 4;
2836		/* work-around for errata 10 and it applies
2837		 * to all controllers in PCI-X mode
2838		 * The fix is to make sure that the first descriptor of a
2839		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2840		 */
2841		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2842		                (size > 2015) && count == 0))
2843		        size = 2015;
2844
2845		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2846		 * terminating buffers within evenly-aligned dwords.
2847		 */
2848		if (unlikely(adapter->pcix_82544 &&
2849		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2850		   size > 4))
2851			size -= 4;
2852
2853		buffer_info->length = size;
2854		/* set time_stamp *before* dma to help avoid a possible race */
2855		buffer_info->time_stamp = jiffies;
2856		buffer_info->mapped_as_page = false;
2857		buffer_info->dma = dma_map_single(&pdev->dev,
2858						  skb->data + offset,
2859						  size, DMA_TO_DEVICE);
2860		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2861			goto dma_error;
2862		buffer_info->next_to_watch = i;
2863
2864		len -= size;
2865		offset += size;
2866		count++;
2867		if (len) {
2868			i++;
2869			if (unlikely(i == tx_ring->count))
2870				i = 0;
2871		}
2872	}
2873
2874	for (f = 0; f < nr_frags; f++) {
2875		const struct skb_frag_struct *frag;
2876
2877		frag = &skb_shinfo(skb)->frags[f];
2878		len = skb_frag_size(frag);
2879		offset = 0;
2880
2881		while (len) {
2882			unsigned long bufend;
2883			i++;
2884			if (unlikely(i == tx_ring->count))
2885				i = 0;
2886
2887			buffer_info = &tx_ring->buffer_info[i];
2888			size = min(len, max_per_txd);
2889			/* Workaround for premature desc write-backs
2890			 * in TSO mode.  Append 4-byte sentinel desc
2891			 */
2892			if (unlikely(mss && f == (nr_frags-1) &&
2893			    size == len && size > 8))
2894				size -= 4;
2895			/* Workaround for potential 82544 hang in PCI-X.
2896			 * Avoid terminating buffers within evenly-aligned
2897			 * dwords.
2898			 */
2899			bufend = (unsigned long)
2900				page_to_phys(skb_frag_page(frag));
2901			bufend += offset + size - 1;
2902			if (unlikely(adapter->pcix_82544 &&
2903				     !(bufend & 4) &&
2904				     size > 4))
2905				size -= 4;
2906
2907			buffer_info->length = size;
2908			buffer_info->time_stamp = jiffies;
2909			buffer_info->mapped_as_page = true;
2910			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2911						offset, size, DMA_TO_DEVICE);
2912			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2913				goto dma_error;
2914			buffer_info->next_to_watch = i;
2915
2916			len -= size;
2917			offset += size;
2918			count++;
2919		}
2920	}
2921
2922	segs = skb_shinfo(skb)->gso_segs ?: 1;
2923	/* multiply data chunks by size of headers */
2924	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2925
2926	tx_ring->buffer_info[i].skb = skb;
2927	tx_ring->buffer_info[i].segs = segs;
2928	tx_ring->buffer_info[i].bytecount = bytecount;
2929	tx_ring->buffer_info[first].next_to_watch = i;
2930
2931	return count;
2932
2933dma_error:
2934	dev_err(&pdev->dev, "TX DMA map failed\n");
2935	buffer_info->dma = 0;
2936	if (count)
2937		count--;
2938
2939	while (count--) {
2940		if (i==0)
2941			i += tx_ring->count;
2942		i--;
2943		buffer_info = &tx_ring->buffer_info[i];
2944		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2945	}
2946
2947	return 0;
2948}
2949
2950static void e1000_tx_queue(struct e1000_adapter *adapter,
2951			   struct e1000_tx_ring *tx_ring, int tx_flags,
2952			   int count)
2953{
2954	struct e1000_hw *hw = &adapter->hw;
2955	struct e1000_tx_desc *tx_desc = NULL;
2956	struct e1000_buffer *buffer_info;
2957	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2958	unsigned int i;
2959
2960	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2961		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2962			     E1000_TXD_CMD_TSE;
2963		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2964
2965		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2966			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2967	}
2968
2969	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2970		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2971		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2972	}
2973
2974	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2975		txd_lower |= E1000_TXD_CMD_VLE;
2976		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2977	}
2978
2979	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2980		txd_lower &= ~(E1000_TXD_CMD_IFCS);
2981
2982	i = tx_ring->next_to_use;
2983
2984	while (count--) {
2985		buffer_info = &tx_ring->buffer_info[i];
2986		tx_desc = E1000_TX_DESC(*tx_ring, i);
2987		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2988		tx_desc->lower.data =
2989			cpu_to_le32(txd_lower | buffer_info->length);
2990		tx_desc->upper.data = cpu_to_le32(txd_upper);
2991		if (unlikely(++i == tx_ring->count)) i = 0;
 
2992	}
2993
2994	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2995
2996	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
2997	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2998		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
2999
3000	/* Force memory writes to complete before letting h/w
3001	 * know there are new descriptors to fetch.  (Only
3002	 * applicable for weak-ordered memory model archs,
3003	 * such as IA-64).
3004	 */
3005	wmb();
3006
3007	tx_ring->next_to_use = i;
3008	writel(i, hw->hw_addr + tx_ring->tdt);
3009	/* we need this if more than one processor can write to our tail
3010	 * at a time, it synchronizes IO on IA64/Altix systems
3011	 */
3012	mmiowb();
3013}
3014
3015/* 82547 workaround to avoid controller hang in half-duplex environment.
3016 * The workaround is to avoid queuing a large packet that would span
3017 * the internal Tx FIFO ring boundary by notifying the stack to resend
3018 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3019 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3020 * to the beginning of the Tx FIFO.
3021 */
3022
3023#define E1000_FIFO_HDR			0x10
3024#define E1000_82547_PAD_LEN		0x3E0
3025
3026static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3027				       struct sk_buff *skb)
3028{
3029	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3030	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3031
3032	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3033
3034	if (adapter->link_duplex != HALF_DUPLEX)
3035		goto no_fifo_stall_required;
3036
3037	if (atomic_read(&adapter->tx_fifo_stall))
3038		return 1;
3039
3040	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3041		atomic_set(&adapter->tx_fifo_stall, 1);
3042		return 1;
3043	}
3044
3045no_fifo_stall_required:
3046	adapter->tx_fifo_head += skb_fifo_len;
3047	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3048		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3049	return 0;
3050}
3051
3052static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3053{
3054	struct e1000_adapter *adapter = netdev_priv(netdev);
3055	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3056
3057	netif_stop_queue(netdev);
3058	/* Herbert's original patch had:
3059	 *  smp_mb__after_netif_stop_queue();
3060	 * but since that doesn't exist yet, just open code it.
3061	 */
3062	smp_mb();
3063
3064	/* We need to check again in a case another CPU has just
3065	 * made room available.
3066	 */
3067	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3068		return -EBUSY;
3069
3070	/* A reprieve! */
3071	netif_start_queue(netdev);
3072	++adapter->restart_queue;
3073	return 0;
3074}
3075
3076static int e1000_maybe_stop_tx(struct net_device *netdev,
3077			       struct e1000_tx_ring *tx_ring, int size)
3078{
3079	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3080		return 0;
3081	return __e1000_maybe_stop_tx(netdev, size);
3082}
3083
3084#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3085static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3086				    struct net_device *netdev)
3087{
3088	struct e1000_adapter *adapter = netdev_priv(netdev);
3089	struct e1000_hw *hw = &adapter->hw;
3090	struct e1000_tx_ring *tx_ring;
3091	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3092	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3093	unsigned int tx_flags = 0;
3094	unsigned int len = skb_headlen(skb);
3095	unsigned int nr_frags;
3096	unsigned int mss;
3097	int count = 0;
3098	int tso;
3099	unsigned int f;
 
3100
3101	/* This goes back to the question of how to logically map a Tx queue
3102	 * to a flow.  Right now, performance is impacted slightly negatively
3103	 * if using multiple Tx queues.  If the stack breaks away from a
3104	 * single qdisc implementation, we can look at this again.
3105	 */
3106	tx_ring = adapter->tx_ring;
3107
3108	if (unlikely(skb->len <= 0)) {
3109		dev_kfree_skb_any(skb);
3110		return NETDEV_TX_OK;
3111	}
3112
3113	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3114	 * packets may get corrupted during padding by HW.
3115	 * To WA this issue, pad all small packets manually.
3116	 */
3117	if (skb->len < ETH_ZLEN) {
3118		if (skb_pad(skb, ETH_ZLEN - skb->len))
3119			return NETDEV_TX_OK;
3120		skb->len = ETH_ZLEN;
3121		skb_set_tail_pointer(skb, ETH_ZLEN);
3122	}
3123
3124	mss = skb_shinfo(skb)->gso_size;
3125	/* The controller does a simple calculation to
3126	 * make sure there is enough room in the FIFO before
3127	 * initiating the DMA for each buffer.  The calc is:
3128	 * 4 = ceil(buffer len/mss).  To make sure we don't
3129	 * overrun the FIFO, adjust the max buffer len if mss
3130	 * drops.
3131	 */
3132	if (mss) {
3133		u8 hdr_len;
3134		max_per_txd = min(mss << 2, max_per_txd);
3135		max_txd_pwr = fls(max_per_txd) - 1;
3136
3137		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3138		if (skb->data_len && hdr_len == len) {
3139			switch (hw->mac_type) {
 
3140				unsigned int pull_size;
3141			case e1000_82544:
3142				/* Make sure we have room to chop off 4 bytes,
3143				 * and that the end alignment will work out to
3144				 * this hardware's requirements
3145				 * NOTE: this is a TSO only workaround
3146				 * if end byte alignment not correct move us
3147				 * into the next dword
3148				 */
3149				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3150				    & 4)
3151					break;
3152				/* fall through */
3153				pull_size = min((unsigned int)4, skb->data_len);
3154				if (!__pskb_pull_tail(skb, pull_size)) {
3155					e_err(drv, "__pskb_pull_tail "
3156					      "failed.\n");
3157					dev_kfree_skb_any(skb);
3158					return NETDEV_TX_OK;
3159				}
3160				len = skb_headlen(skb);
3161				break;
 
3162			default:
3163				/* do nothing */
3164				break;
3165			}
3166		}
3167	}
3168
3169	/* reserve a descriptor for the offload context */
3170	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3171		count++;
3172	count++;
3173
3174	/* Controller Erratum workaround */
3175	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3176		count++;
3177
3178	count += TXD_USE_COUNT(len, max_txd_pwr);
3179
3180	if (adapter->pcix_82544)
3181		count++;
3182
3183	/* work-around for errata 10 and it applies to all controllers
3184	 * in PCI-X mode, so add one more descriptor to the count
3185	 */
3186	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3187			(len > 2015)))
3188		count++;
3189
3190	nr_frags = skb_shinfo(skb)->nr_frags;
3191	for (f = 0; f < nr_frags; f++)
3192		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3193				       max_txd_pwr);
3194	if (adapter->pcix_82544)
3195		count += nr_frags;
3196
3197	/* need: count + 2 desc gap to keep tail from touching
3198	 * head, otherwise try next time
3199	 */
3200	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3201		return NETDEV_TX_BUSY;
3202
3203	if (unlikely((hw->mac_type == e1000_82547) &&
3204		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3205		netif_stop_queue(netdev);
3206		if (!test_bit(__E1000_DOWN, &adapter->flags))
3207			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3208		return NETDEV_TX_BUSY;
3209	}
3210
3211	if (vlan_tx_tag_present(skb)) {
3212		tx_flags |= E1000_TX_FLAGS_VLAN;
3213		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
 
3214	}
3215
3216	first = tx_ring->next_to_use;
3217
3218	tso = e1000_tso(adapter, tx_ring, skb);
3219	if (tso < 0) {
3220		dev_kfree_skb_any(skb);
3221		return NETDEV_TX_OK;
3222	}
3223
3224	if (likely(tso)) {
3225		if (likely(hw->mac_type != e1000_82544))
3226			tx_ring->last_tx_tso = true;
3227		tx_flags |= E1000_TX_FLAGS_TSO;
3228	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3229		tx_flags |= E1000_TX_FLAGS_CSUM;
3230
3231	if (likely(skb->protocol == htons(ETH_P_IP)))
3232		tx_flags |= E1000_TX_FLAGS_IPV4;
3233
3234	if (unlikely(skb->no_fcs))
3235		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3236
3237	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3238			     nr_frags, mss);
3239
3240	if (count) {
 
 
 
 
 
 
 
 
 
3241		netdev_sent_queue(netdev, skb->len);
3242		skb_tx_timestamp(skb);
3243
3244		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
 
 
 
 
 
 
 
 
3245		/* Make sure there is space in the ring for the next send. */
3246		e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3247
 
 
 
 
3248	} else {
3249		dev_kfree_skb_any(skb);
3250		tx_ring->buffer_info[first].time_stamp = 0;
3251		tx_ring->next_to_use = first;
3252	}
3253
3254	return NETDEV_TX_OK;
3255}
3256
3257#define NUM_REGS 38 /* 1 based count */
3258static void e1000_regdump(struct e1000_adapter *adapter)
3259{
3260	struct e1000_hw *hw = &adapter->hw;
3261	u32 regs[NUM_REGS];
3262	u32 *regs_buff = regs;
3263	int i = 0;
3264
3265	static const char * const reg_name[] = {
3266		"CTRL",  "STATUS",
3267		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3268		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3269		"TIDV", "TXDCTL", "TADV", "TARC0",
3270		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3271		"TXDCTL1", "TARC1",
3272		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3273		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3274		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3275	};
3276
3277	regs_buff[0]  = er32(CTRL);
3278	regs_buff[1]  = er32(STATUS);
3279
3280	regs_buff[2]  = er32(RCTL);
3281	regs_buff[3]  = er32(RDLEN);
3282	regs_buff[4]  = er32(RDH);
3283	regs_buff[5]  = er32(RDT);
3284	regs_buff[6]  = er32(RDTR);
3285
3286	regs_buff[7]  = er32(TCTL);
3287	regs_buff[8]  = er32(TDBAL);
3288	regs_buff[9]  = er32(TDBAH);
3289	regs_buff[10] = er32(TDLEN);
3290	regs_buff[11] = er32(TDH);
3291	regs_buff[12] = er32(TDT);
3292	regs_buff[13] = er32(TIDV);
3293	regs_buff[14] = er32(TXDCTL);
3294	regs_buff[15] = er32(TADV);
3295	regs_buff[16] = er32(TARC0);
3296
3297	regs_buff[17] = er32(TDBAL1);
3298	regs_buff[18] = er32(TDBAH1);
3299	regs_buff[19] = er32(TDLEN1);
3300	regs_buff[20] = er32(TDH1);
3301	regs_buff[21] = er32(TDT1);
3302	regs_buff[22] = er32(TXDCTL1);
3303	regs_buff[23] = er32(TARC1);
3304	regs_buff[24] = er32(CTRL_EXT);
3305	regs_buff[25] = er32(ERT);
3306	regs_buff[26] = er32(RDBAL0);
3307	regs_buff[27] = er32(RDBAH0);
3308	regs_buff[28] = er32(TDFH);
3309	regs_buff[29] = er32(TDFT);
3310	regs_buff[30] = er32(TDFHS);
3311	regs_buff[31] = er32(TDFTS);
3312	regs_buff[32] = er32(TDFPC);
3313	regs_buff[33] = er32(RDFH);
3314	regs_buff[34] = er32(RDFT);
3315	regs_buff[35] = er32(RDFHS);
3316	regs_buff[36] = er32(RDFTS);
3317	regs_buff[37] = er32(RDFPC);
3318
3319	pr_info("Register dump\n");
3320	for (i = 0; i < NUM_REGS; i++)
3321		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3322}
3323
3324/*
3325 * e1000_dump: Print registers, tx ring and rx ring
3326 */
3327static void e1000_dump(struct e1000_adapter *adapter)
3328{
3329	/* this code doesn't handle multiple rings */
3330	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3331	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3332	int i;
3333
3334	if (!netif_msg_hw(adapter))
3335		return;
3336
3337	/* Print Registers */
3338	e1000_regdump(adapter);
3339
3340	/* transmit dump */
3341	pr_info("TX Desc ring0 dump\n");
3342
3343	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3344	 *
3345	 * Legacy Transmit Descriptor
3346	 *   +--------------------------------------------------------------+
3347	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3348	 *   +--------------------------------------------------------------+
3349	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3350	 *   +--------------------------------------------------------------+
3351	 *   63       48 47        36 35    32 31     24 23    16 15        0
3352	 *
3353	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3354	 *   63      48 47    40 39       32 31             16 15    8 7      0
3355	 *   +----------------------------------------------------------------+
3356	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3357	 *   +----------------------------------------------------------------+
3358	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3359	 *   +----------------------------------------------------------------+
3360	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3361	 *
3362	 * Extended Data Descriptor (DTYP=0x1)
3363	 *   +----------------------------------------------------------------+
3364	 * 0 |                     Buffer Address [63:0]                      |
3365	 *   +----------------------------------------------------------------+
3366	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3367	 *   +----------------------------------------------------------------+
3368	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3369	 */
3370	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3371	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3372
3373	if (!netif_msg_tx_done(adapter))
3374		goto rx_ring_summary;
3375
3376	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3377		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3378		struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3379		struct my_u { __le64 a; __le64 b; };
3380		struct my_u *u = (struct my_u *)tx_desc;
3381		const char *type;
3382
3383		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3384			type = "NTC/U";
3385		else if (i == tx_ring->next_to_use)
3386			type = "NTU";
3387		else if (i == tx_ring->next_to_clean)
3388			type = "NTC";
3389		else
3390			type = "";
3391
3392		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3393			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3394			le64_to_cpu(u->a), le64_to_cpu(u->b),
3395			(u64)buffer_info->dma, buffer_info->length,
3396			buffer_info->next_to_watch,
3397			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3398	}
3399
3400rx_ring_summary:
3401	/* receive dump */
3402	pr_info("\nRX Desc ring dump\n");
3403
3404	/* Legacy Receive Descriptor Format
3405	 *
3406	 * +-----------------------------------------------------+
3407	 * |                Buffer Address [63:0]                |
3408	 * +-----------------------------------------------------+
3409	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3410	 * +-----------------------------------------------------+
3411	 * 63       48 47    40 39      32 31         16 15      0
3412	 */
3413	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3414
3415	if (!netif_msg_rx_status(adapter))
3416		goto exit;
3417
3418	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3419		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3420		struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3421		struct my_u { __le64 a; __le64 b; };
3422		struct my_u *u = (struct my_u *)rx_desc;
3423		const char *type;
3424
3425		if (i == rx_ring->next_to_use)
3426			type = "NTU";
3427		else if (i == rx_ring->next_to_clean)
3428			type = "NTC";
3429		else
3430			type = "";
3431
3432		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3433			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3434			(u64)buffer_info->dma, buffer_info->skb, type);
3435	} /* for */
3436
3437	/* dump the descriptor caches */
3438	/* rx */
3439	pr_info("Rx descriptor cache in 64bit format\n");
3440	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3441		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3442			i,
3443			readl(adapter->hw.hw_addr + i+4),
3444			readl(adapter->hw.hw_addr + i),
3445			readl(adapter->hw.hw_addr + i+12),
3446			readl(adapter->hw.hw_addr + i+8));
3447	}
3448	/* tx */
3449	pr_info("Tx descriptor cache in 64bit format\n");
3450	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3451		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3452			i,
3453			readl(adapter->hw.hw_addr + i+4),
3454			readl(adapter->hw.hw_addr + i),
3455			readl(adapter->hw.hw_addr + i+12),
3456			readl(adapter->hw.hw_addr + i+8));
3457	}
3458exit:
3459	return;
3460}
3461
3462/**
3463 * e1000_tx_timeout - Respond to a Tx Hang
3464 * @netdev: network interface device structure
 
3465 **/
3466static void e1000_tx_timeout(struct net_device *netdev)
3467{
3468	struct e1000_adapter *adapter = netdev_priv(netdev);
3469
3470	/* Do the reset outside of interrupt context */
3471	adapter->tx_timeout_count++;
3472	schedule_work(&adapter->reset_task);
3473}
3474
3475static void e1000_reset_task(struct work_struct *work)
3476{
3477	struct e1000_adapter *adapter =
3478		container_of(work, struct e1000_adapter, reset_task);
3479
3480	e_err(drv, "Reset adapter\n");
3481	e1000_reinit_locked(adapter);
3482}
3483
3484/**
3485 * e1000_get_stats - Get System Network Statistics
3486 * @netdev: network interface device structure
3487 *
3488 * Returns the address of the device statistics structure.
3489 * The statistics are actually updated from the watchdog.
3490 **/
3491static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3492{
3493	/* only return the current stats */
3494	return &netdev->stats;
3495}
3496
3497/**
3498 * e1000_change_mtu - Change the Maximum Transfer Unit
3499 * @netdev: network interface device structure
3500 * @new_mtu: new value for maximum frame size
3501 *
3502 * Returns 0 on success, negative on failure
3503 **/
3504static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3505{
3506	struct e1000_adapter *adapter = netdev_priv(netdev);
3507	struct e1000_hw *hw = &adapter->hw;
3508	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3509
3510	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3511	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3512		e_err(probe, "Invalid MTU setting\n");
3513		return -EINVAL;
3514	}
3515
3516	/* Adapter-specific max frame size limits. */
3517	switch (hw->mac_type) {
3518	case e1000_undefined ... e1000_82542_rev2_1:
3519		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3520			e_err(probe, "Jumbo Frames not supported.\n");
3521			return -EINVAL;
3522		}
3523		break;
3524	default:
3525		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3526		break;
3527	}
3528
3529	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3530		msleep(1);
3531	/* e1000_down has a dependency on max_frame_size */
3532	hw->max_frame_size = max_frame;
3533	if (netif_running(netdev))
 
 
3534		e1000_down(adapter);
 
3535
3536	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3537	 * means we reserve 2 more, this pushes us to allocate from the next
3538	 * larger slab size.
3539	 * i.e. RXBUFFER_2048 --> size-4096 slab
3540	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3541	 * fragmented skbs
3542	 */
3543
3544	if (max_frame <= E1000_RXBUFFER_2048)
3545		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3546	else
3547#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3548		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3549#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3550		adapter->rx_buffer_len = PAGE_SIZE;
3551#endif
3552
3553	/* adjust allocation if LPE protects us, and we aren't using SBP */
3554	if (!hw->tbi_compatibility_on &&
3555	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3556	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3557		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3558
3559	pr_info("%s changing MTU from %d to %d\n",
3560		netdev->name, netdev->mtu, new_mtu);
3561	netdev->mtu = new_mtu;
3562
3563	if (netif_running(netdev))
3564		e1000_up(adapter);
3565	else
3566		e1000_reset(adapter);
3567
3568	clear_bit(__E1000_RESETTING, &adapter->flags);
3569
3570	return 0;
3571}
3572
3573/**
3574 * e1000_update_stats - Update the board statistics counters
3575 * @adapter: board private structure
3576 **/
3577void e1000_update_stats(struct e1000_adapter *adapter)
3578{
3579	struct net_device *netdev = adapter->netdev;
3580	struct e1000_hw *hw = &adapter->hw;
3581	struct pci_dev *pdev = adapter->pdev;
3582	unsigned long flags;
3583	u16 phy_tmp;
3584
3585#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3586
3587	/* Prevent stats update while adapter is being reset, or if the pci
3588	 * connection is down.
3589	 */
3590	if (adapter->link_speed == 0)
3591		return;
3592	if (pci_channel_offline(pdev))
3593		return;
3594
3595	spin_lock_irqsave(&adapter->stats_lock, flags);
3596
3597	/* these counters are modified from e1000_tbi_adjust_stats,
3598	 * called from the interrupt context, so they must only
3599	 * be written while holding adapter->stats_lock
3600	 */
3601
3602	adapter->stats.crcerrs += er32(CRCERRS);
3603	adapter->stats.gprc += er32(GPRC);
3604	adapter->stats.gorcl += er32(GORCL);
3605	adapter->stats.gorch += er32(GORCH);
3606	adapter->stats.bprc += er32(BPRC);
3607	adapter->stats.mprc += er32(MPRC);
3608	adapter->stats.roc += er32(ROC);
3609
3610	adapter->stats.prc64 += er32(PRC64);
3611	adapter->stats.prc127 += er32(PRC127);
3612	adapter->stats.prc255 += er32(PRC255);
3613	adapter->stats.prc511 += er32(PRC511);
3614	adapter->stats.prc1023 += er32(PRC1023);
3615	adapter->stats.prc1522 += er32(PRC1522);
3616
3617	adapter->stats.symerrs += er32(SYMERRS);
3618	adapter->stats.mpc += er32(MPC);
3619	adapter->stats.scc += er32(SCC);
3620	adapter->stats.ecol += er32(ECOL);
3621	adapter->stats.mcc += er32(MCC);
3622	adapter->stats.latecol += er32(LATECOL);
3623	adapter->stats.dc += er32(DC);
3624	adapter->stats.sec += er32(SEC);
3625	adapter->stats.rlec += er32(RLEC);
3626	adapter->stats.xonrxc += er32(XONRXC);
3627	adapter->stats.xontxc += er32(XONTXC);
3628	adapter->stats.xoffrxc += er32(XOFFRXC);
3629	adapter->stats.xofftxc += er32(XOFFTXC);
3630	adapter->stats.fcruc += er32(FCRUC);
3631	adapter->stats.gptc += er32(GPTC);
3632	adapter->stats.gotcl += er32(GOTCL);
3633	adapter->stats.gotch += er32(GOTCH);
3634	adapter->stats.rnbc += er32(RNBC);
3635	adapter->stats.ruc += er32(RUC);
3636	adapter->stats.rfc += er32(RFC);
3637	adapter->stats.rjc += er32(RJC);
3638	adapter->stats.torl += er32(TORL);
3639	adapter->stats.torh += er32(TORH);
3640	adapter->stats.totl += er32(TOTL);
3641	adapter->stats.toth += er32(TOTH);
3642	adapter->stats.tpr += er32(TPR);
3643
3644	adapter->stats.ptc64 += er32(PTC64);
3645	adapter->stats.ptc127 += er32(PTC127);
3646	adapter->stats.ptc255 += er32(PTC255);
3647	adapter->stats.ptc511 += er32(PTC511);
3648	adapter->stats.ptc1023 += er32(PTC1023);
3649	adapter->stats.ptc1522 += er32(PTC1522);
3650
3651	adapter->stats.mptc += er32(MPTC);
3652	adapter->stats.bptc += er32(BPTC);
3653
3654	/* used for adaptive IFS */
3655
3656	hw->tx_packet_delta = er32(TPT);
3657	adapter->stats.tpt += hw->tx_packet_delta;
3658	hw->collision_delta = er32(COLC);
3659	adapter->stats.colc += hw->collision_delta;
3660
3661	if (hw->mac_type >= e1000_82543) {
3662		adapter->stats.algnerrc += er32(ALGNERRC);
3663		adapter->stats.rxerrc += er32(RXERRC);
3664		adapter->stats.tncrs += er32(TNCRS);
3665		adapter->stats.cexterr += er32(CEXTERR);
3666		adapter->stats.tsctc += er32(TSCTC);
3667		adapter->stats.tsctfc += er32(TSCTFC);
3668	}
3669
3670	/* Fill out the OS statistics structure */
3671	netdev->stats.multicast = adapter->stats.mprc;
3672	netdev->stats.collisions = adapter->stats.colc;
3673
3674	/* Rx Errors */
3675
3676	/* RLEC on some newer hardware can be incorrect so build
3677	 * our own version based on RUC and ROC
3678	 */
3679	netdev->stats.rx_errors = adapter->stats.rxerrc +
3680		adapter->stats.crcerrs + adapter->stats.algnerrc +
3681		adapter->stats.ruc + adapter->stats.roc +
3682		adapter->stats.cexterr;
3683	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3684	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3685	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3686	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3687	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3688
3689	/* Tx Errors */
3690	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3691	netdev->stats.tx_errors = adapter->stats.txerrc;
3692	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3693	netdev->stats.tx_window_errors = adapter->stats.latecol;
3694	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3695	if (hw->bad_tx_carr_stats_fd &&
3696	    adapter->link_duplex == FULL_DUPLEX) {
3697		netdev->stats.tx_carrier_errors = 0;
3698		adapter->stats.tncrs = 0;
3699	}
3700
3701	/* Tx Dropped needs to be maintained elsewhere */
3702
3703	/* Phy Stats */
3704	if (hw->media_type == e1000_media_type_copper) {
3705		if ((adapter->link_speed == SPEED_1000) &&
3706		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3707			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3708			adapter->phy_stats.idle_errors += phy_tmp;
3709		}
3710
3711		if ((hw->mac_type <= e1000_82546) &&
3712		   (hw->phy_type == e1000_phy_m88) &&
3713		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3714			adapter->phy_stats.receive_errors += phy_tmp;
3715	}
3716
3717	/* Management Stats */
3718	if (hw->has_smbus) {
3719		adapter->stats.mgptc += er32(MGTPTC);
3720		adapter->stats.mgprc += er32(MGTPRC);
3721		adapter->stats.mgpdc += er32(MGTPDC);
3722	}
3723
3724	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3725}
3726
3727/**
3728 * e1000_intr - Interrupt Handler
3729 * @irq: interrupt number
3730 * @data: pointer to a network interface device structure
3731 **/
3732static irqreturn_t e1000_intr(int irq, void *data)
3733{
3734	struct net_device *netdev = data;
3735	struct e1000_adapter *adapter = netdev_priv(netdev);
3736	struct e1000_hw *hw = &adapter->hw;
3737	u32 icr = er32(ICR);
3738
3739	if (unlikely((!icr)))
3740		return IRQ_NONE;  /* Not our interrupt */
3741
3742	/* we might have caused the interrupt, but the above
3743	 * read cleared it, and just in case the driver is
3744	 * down there is nothing to do so return handled
3745	 */
3746	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3747		return IRQ_HANDLED;
3748
3749	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3750		hw->get_link_status = 1;
3751		/* guard against interrupt when we're going down */
3752		if (!test_bit(__E1000_DOWN, &adapter->flags))
3753			schedule_delayed_work(&adapter->watchdog_task, 1);
3754	}
3755
3756	/* disable interrupts, without the synchronize_irq bit */
3757	ew32(IMC, ~0);
3758	E1000_WRITE_FLUSH();
3759
3760	if (likely(napi_schedule_prep(&adapter->napi))) {
3761		adapter->total_tx_bytes = 0;
3762		adapter->total_tx_packets = 0;
3763		adapter->total_rx_bytes = 0;
3764		adapter->total_rx_packets = 0;
3765		__napi_schedule(&adapter->napi);
3766	} else {
3767		/* this really should not happen! if it does it is basically a
3768		 * bug, but not a hard error, so enable ints and continue
3769		 */
3770		if (!test_bit(__E1000_DOWN, &adapter->flags))
3771			e1000_irq_enable(adapter);
3772	}
3773
3774	return IRQ_HANDLED;
3775}
3776
3777/**
3778 * e1000_clean - NAPI Rx polling callback
3779 * @adapter: board private structure
 
3780 **/
3781static int e1000_clean(struct napi_struct *napi, int budget)
3782{
3783	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3784						     napi);
3785	int tx_clean_complete = 0, work_done = 0;
3786
3787	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3788
3789	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3790
3791	if (!tx_clean_complete)
3792		work_done = budget;
3793
3794	/* If budget not fully consumed, exit the polling mode */
3795	if (work_done < budget) {
 
 
3796		if (likely(adapter->itr_setting & 3))
3797			e1000_set_itr(adapter);
3798		napi_complete(napi);
3799		if (!test_bit(__E1000_DOWN, &adapter->flags))
3800			e1000_irq_enable(adapter);
3801	}
3802
3803	return work_done;
3804}
3805
3806/**
3807 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3808 * @adapter: board private structure
 
3809 **/
3810static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3811			       struct e1000_tx_ring *tx_ring)
3812{
3813	struct e1000_hw *hw = &adapter->hw;
3814	struct net_device *netdev = adapter->netdev;
3815	struct e1000_tx_desc *tx_desc, *eop_desc;
3816	struct e1000_buffer *buffer_info;
3817	unsigned int i, eop;
3818	unsigned int count = 0;
3819	unsigned int total_tx_bytes=0, total_tx_packets=0;
3820	unsigned int bytes_compl = 0, pkts_compl = 0;
3821
3822	i = tx_ring->next_to_clean;
3823	eop = tx_ring->buffer_info[i].next_to_watch;
3824	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3825
3826	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3827	       (count < tx_ring->count)) {
3828		bool cleaned = false;
3829		rmb();	/* read buffer_info after eop_desc */
3830		for ( ; !cleaned; count++) {
3831			tx_desc = E1000_TX_DESC(*tx_ring, i);
3832			buffer_info = &tx_ring->buffer_info[i];
3833			cleaned = (i == eop);
3834
3835			if (cleaned) {
3836				total_tx_packets += buffer_info->segs;
3837				total_tx_bytes += buffer_info->bytecount;
3838				if (buffer_info->skb) {
3839					bytes_compl += buffer_info->skb->len;
3840					pkts_compl++;
3841				}
3842
3843			}
3844			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
 
3845			tx_desc->upper.data = 0;
3846
3847			if (unlikely(++i == tx_ring->count)) i = 0;
 
3848		}
3849
3850		eop = tx_ring->buffer_info[i].next_to_watch;
3851		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3852	}
3853
3854	tx_ring->next_to_clean = i;
 
 
 
3855
3856	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3857
3858#define TX_WAKE_THRESHOLD 32
3859	if (unlikely(count && netif_carrier_ok(netdev) &&
3860		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3861		/* Make sure that anybody stopping the queue after this
3862		 * sees the new next_to_clean.
3863		 */
3864		smp_mb();
3865
3866		if (netif_queue_stopped(netdev) &&
3867		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3868			netif_wake_queue(netdev);
3869			++adapter->restart_queue;
3870		}
3871	}
3872
3873	if (adapter->detect_tx_hung) {
3874		/* Detect a transmit hang in hardware, this serializes the
3875		 * check with the clearing of time_stamp and movement of i
3876		 */
3877		adapter->detect_tx_hung = false;
3878		if (tx_ring->buffer_info[eop].time_stamp &&
3879		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3880			       (adapter->tx_timeout_factor * HZ)) &&
3881		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3882
3883			/* detected Tx unit hang */
3884			e_err(drv, "Detected Tx Unit Hang\n"
3885			      "  Tx Queue             <%lu>\n"
3886			      "  TDH                  <%x>\n"
3887			      "  TDT                  <%x>\n"
3888			      "  next_to_use          <%x>\n"
3889			      "  next_to_clean        <%x>\n"
3890			      "buffer_info[next_to_clean]\n"
3891			      "  time_stamp           <%lx>\n"
3892			      "  next_to_watch        <%x>\n"
3893			      "  jiffies              <%lx>\n"
3894			      "  next_to_watch.status <%x>\n",
3895				(unsigned long)(tx_ring - adapter->tx_ring),
3896				readl(hw->hw_addr + tx_ring->tdh),
3897				readl(hw->hw_addr + tx_ring->tdt),
3898				tx_ring->next_to_use,
3899				tx_ring->next_to_clean,
3900				tx_ring->buffer_info[eop].time_stamp,
3901				eop,
3902				jiffies,
3903				eop_desc->upper.fields.status);
3904			e1000_dump(adapter);
3905			netif_stop_queue(netdev);
3906		}
3907	}
3908	adapter->total_tx_bytes += total_tx_bytes;
3909	adapter->total_tx_packets += total_tx_packets;
3910	netdev->stats.tx_bytes += total_tx_bytes;
3911	netdev->stats.tx_packets += total_tx_packets;
3912	return count < tx_ring->count;
3913}
3914
3915/**
3916 * e1000_rx_checksum - Receive Checksum Offload for 82543
3917 * @adapter:     board private structure
3918 * @status_err:  receive descriptor status and error fields
3919 * @csum:        receive descriptor csum field
3920 * @sk_buff:     socket buffer with received data
3921 **/
3922static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3923			      u32 csum, struct sk_buff *skb)
3924{
3925	struct e1000_hw *hw = &adapter->hw;
3926	u16 status = (u16)status_err;
3927	u8 errors = (u8)(status_err >> 24);
3928
3929	skb_checksum_none_assert(skb);
3930
3931	/* 82543 or newer only */
3932	if (unlikely(hw->mac_type < e1000_82543)) return;
 
3933	/* Ignore Checksum bit is set */
3934	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
 
3935	/* TCP/UDP checksum error bit is set */
3936	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3937		/* let the stack verify checksum errors */
3938		adapter->hw_csum_err++;
3939		return;
3940	}
3941	/* TCP/UDP Checksum has not been calculated */
3942	if (!(status & E1000_RXD_STAT_TCPCS))
3943		return;
3944
3945	/* It must be a TCP or UDP packet with a valid checksum */
3946	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3947		/* TCP checksum is good */
3948		skb->ip_summed = CHECKSUM_UNNECESSARY;
3949	}
3950	adapter->hw_csum_good++;
3951}
3952
3953/**
3954 * e1000_consume_page - helper function
 
 
 
3955 **/
3956static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3957			       u16 length)
3958{
3959	bi->page = NULL;
3960	skb->len += length;
3961	skb->data_len += length;
3962	skb->truesize += PAGE_SIZE;
3963}
3964
3965/**
3966 * e1000_receive_skb - helper function to handle rx indications
3967 * @adapter: board private structure
3968 * @status: descriptor status field as written by hardware
3969 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3970 * @skb: pointer to sk_buff to be indicated to stack
3971 */
3972static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3973			      __le16 vlan, struct sk_buff *skb)
3974{
3975	skb->protocol = eth_type_trans(skb, adapter->netdev);
3976
3977	if (status & E1000_RXD_STAT_VP) {
3978		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3979
3980		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
3981	}
3982	napi_gro_receive(&adapter->napi, skb);
3983}
3984
3985/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3986 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3987 * @adapter: board private structure
3988 * @rx_ring: ring to clean
3989 * @work_done: amount of napi work completed this call
3990 * @work_to_do: max amount of work allowed for this call to do
3991 *
3992 * the return value indicates whether actual cleaning was done, there
3993 * is no guarantee that everything was cleaned
3994 */
3995static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3996				     struct e1000_rx_ring *rx_ring,
3997				     int *work_done, int work_to_do)
3998{
3999	struct e1000_hw *hw = &adapter->hw;
4000	struct net_device *netdev = adapter->netdev;
4001	struct pci_dev *pdev = adapter->pdev;
4002	struct e1000_rx_desc *rx_desc, *next_rxd;
4003	struct e1000_buffer *buffer_info, *next_buffer;
4004	unsigned long irq_flags;
4005	u32 length;
4006	unsigned int i;
4007	int cleaned_count = 0;
4008	bool cleaned = false;
4009	unsigned int total_rx_bytes=0, total_rx_packets=0;
4010
4011	i = rx_ring->next_to_clean;
4012	rx_desc = E1000_RX_DESC(*rx_ring, i);
4013	buffer_info = &rx_ring->buffer_info[i];
4014
4015	while (rx_desc->status & E1000_RXD_STAT_DD) {
4016		struct sk_buff *skb;
4017		u8 status;
4018
4019		if (*work_done >= work_to_do)
4020			break;
4021		(*work_done)++;
4022		rmb(); /* read descriptor and rx_buffer_info after status DD */
4023
4024		status = rx_desc->status;
4025		skb = buffer_info->skb;
4026		buffer_info->skb = NULL;
4027
4028		if (++i == rx_ring->count) i = 0;
 
 
4029		next_rxd = E1000_RX_DESC(*rx_ring, i);
4030		prefetch(next_rxd);
4031
4032		next_buffer = &rx_ring->buffer_info[i];
4033
4034		cleaned = true;
4035		cleaned_count++;
4036		dma_unmap_page(&pdev->dev, buffer_info->dma,
4037			       buffer_info->length, DMA_FROM_DEVICE);
4038		buffer_info->dma = 0;
4039
4040		length = le16_to_cpu(rx_desc->length);
4041
4042		/* errors is only valid for DD + EOP descriptors */
4043		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4044		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4045			u8 *mapped;
4046			u8 last_byte;
4047
4048			mapped = page_address(buffer_info->page);
4049			last_byte = *(mapped + length - 1);
4050			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4051				       last_byte)) {
4052				spin_lock_irqsave(&adapter->stats_lock,
4053						  irq_flags);
4054				e1000_tbi_adjust_stats(hw, &adapter->stats,
4055						       length, mapped);
4056				spin_unlock_irqrestore(&adapter->stats_lock,
4057						       irq_flags);
4058				length--;
 
 
4059			} else {
4060				if (netdev->features & NETIF_F_RXALL)
4061					goto process_skb;
4062				/* recycle both page and skb */
4063				buffer_info->skb = skb;
4064				/* an error means any chain goes out the window
4065				 * too
4066				 */
4067				if (rx_ring->rx_skb_top)
4068					dev_kfree_skb(rx_ring->rx_skb_top);
4069				rx_ring->rx_skb_top = NULL;
4070				goto next_desc;
4071			}
4072		}
4073
4074#define rxtop rx_ring->rx_skb_top
4075process_skb:
4076		if (!(status & E1000_RXD_STAT_EOP)) {
4077			/* this descriptor is only the beginning (or middle) */
4078			if (!rxtop) {
4079				/* this is the beginning of a chain */
4080				rxtop = skb;
4081				skb_fill_page_desc(rxtop, 0, buffer_info->page,
 
 
 
 
4082						   0, length);
4083			} else {
4084				/* this is the middle of a chain */
4085				skb_fill_page_desc(rxtop,
4086				    skb_shinfo(rxtop)->nr_frags,
4087				    buffer_info->page, 0, length);
4088				/* re-use the skb, only consumed the page */
4089				buffer_info->skb = skb;
4090			}
4091			e1000_consume_page(buffer_info, rxtop, length);
4092			goto next_desc;
4093		} else {
4094			if (rxtop) {
4095				/* end of the chain */
4096				skb_fill_page_desc(rxtop,
4097				    skb_shinfo(rxtop)->nr_frags,
4098				    buffer_info->page, 0, length);
4099				/* re-use the current skb, we only consumed the
4100				 * page
4101				 */
4102				buffer_info->skb = skb;
4103				skb = rxtop;
4104				rxtop = NULL;
4105				e1000_consume_page(buffer_info, skb, length);
4106			} else {
 
4107				/* no chain, got EOP, this buf is the packet
4108				 * copybreak to save the put_page/alloc_page
4109				 */
4110				if (length <= copybreak &&
4111				    skb_tailroom(skb) >= length) {
4112					u8 *vaddr;
4113					vaddr = kmap_atomic(buffer_info->page);
4114					memcpy(skb_tail_pointer(skb), vaddr,
4115					       length);
4116					kunmap_atomic(vaddr);
 
 
 
 
 
4117					/* re-use the page, so don't erase
4118					 * buffer_info->page
4119					 */
4120					skb_put(skb, length);
 
 
 
 
 
 
 
 
 
 
4121				} else {
4122					skb_fill_page_desc(skb, 0,
4123							   buffer_info->page, 0,
 
 
 
 
4124							   length);
4125					e1000_consume_page(buffer_info, skb,
4126							   length);
4127				}
4128			}
4129		}
4130
4131		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4132		e1000_rx_checksum(adapter,
4133				  (u32)(status) |
4134				  ((u32)(rx_desc->errors) << 24),
4135				  le16_to_cpu(rx_desc->csum), skb);
4136
4137		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4138		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4139			pskb_trim(skb, skb->len - 4);
4140		total_rx_packets++;
4141
4142		/* eth type trans needs skb->data to point to something */
4143		if (!pskb_may_pull(skb, ETH_HLEN)) {
4144			e_err(drv, "pskb_may_pull failed.\n");
4145			dev_kfree_skb(skb);
4146			goto next_desc;
4147		}
4148
4149		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4150
4151next_desc:
4152		rx_desc->status = 0;
4153
4154		/* return some buffers to hardware, one at a time is too slow */
4155		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4156			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4157			cleaned_count = 0;
4158		}
4159
4160		/* use prefetched values */
4161		rx_desc = next_rxd;
4162		buffer_info = next_buffer;
4163	}
4164	rx_ring->next_to_clean = i;
4165
4166	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4167	if (cleaned_count)
4168		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4169
4170	adapter->total_rx_packets += total_rx_packets;
4171	adapter->total_rx_bytes += total_rx_bytes;
4172	netdev->stats.rx_bytes += total_rx_bytes;
4173	netdev->stats.rx_packets += total_rx_packets;
4174	return cleaned;
4175}
4176
4177/* this should improve performance for small packets with large amounts
4178 * of reassembly being done in the stack
4179 */
4180static void e1000_check_copybreak(struct net_device *netdev,
4181				 struct e1000_buffer *buffer_info,
4182				 u32 length, struct sk_buff **skb)
4183{
4184	struct sk_buff *new_skb;
4185
4186	if (length > copybreak)
4187		return;
 
 
 
 
 
 
 
4188
4189	new_skb = netdev_alloc_skb_ip_align(netdev, length);
4190	if (!new_skb)
4191		return;
4192
4193	skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4194				       (*skb)->data - NET_IP_ALIGN,
4195				       length + NET_IP_ALIGN);
4196	/* save the skb in buffer_info as good */
4197	buffer_info->skb = *skb;
4198	*skb = new_skb;
4199}
4200
4201/**
4202 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4203 * @adapter: board private structure
4204 * @rx_ring: ring to clean
4205 * @work_done: amount of napi work completed this call
4206 * @work_to_do: max amount of work allowed for this call to do
4207 */
4208static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4209			       struct e1000_rx_ring *rx_ring,
4210			       int *work_done, int work_to_do)
4211{
4212	struct e1000_hw *hw = &adapter->hw;
4213	struct net_device *netdev = adapter->netdev;
4214	struct pci_dev *pdev = adapter->pdev;
4215	struct e1000_rx_desc *rx_desc, *next_rxd;
4216	struct e1000_buffer *buffer_info, *next_buffer;
4217	unsigned long flags;
4218	u32 length;
4219	unsigned int i;
4220	int cleaned_count = 0;
4221	bool cleaned = false;
4222	unsigned int total_rx_bytes=0, total_rx_packets=0;
4223
4224	i = rx_ring->next_to_clean;
4225	rx_desc = E1000_RX_DESC(*rx_ring, i);
4226	buffer_info = &rx_ring->buffer_info[i];
4227
4228	while (rx_desc->status & E1000_RXD_STAT_DD) {
4229		struct sk_buff *skb;
 
4230		u8 status;
4231
4232		if (*work_done >= work_to_do)
4233			break;
4234		(*work_done)++;
4235		rmb(); /* read descriptor and rx_buffer_info after status DD */
4236
4237		status = rx_desc->status;
4238		skb = buffer_info->skb;
4239		buffer_info->skb = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4240
4241		prefetch(skb->data - NET_IP_ALIGN);
 
4242
4243		if (++i == rx_ring->count) i = 0;
4244		next_rxd = E1000_RX_DESC(*rx_ring, i);
4245		prefetch(next_rxd);
4246
4247		next_buffer = &rx_ring->buffer_info[i];
4248
4249		cleaned = true;
4250		cleaned_count++;
4251		dma_unmap_single(&pdev->dev, buffer_info->dma,
4252				 buffer_info->length, DMA_FROM_DEVICE);
4253		buffer_info->dma = 0;
4254
4255		length = le16_to_cpu(rx_desc->length);
4256		/* !EOP means multiple descriptors were used to store a single
4257		 * packet, if thats the case we need to toss it.  In fact, we
4258		 * to toss every packet with the EOP bit clear and the next
4259		 * frame that _does_ have the EOP bit set, as it is by
4260		 * definition only a frame fragment
4261		 */
4262		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4263			adapter->discarding = true;
4264
4265		if (adapter->discarding) {
4266			/* All receives must fit into a single buffer */
4267			e_dbg("Receive packet consumed multiple buffers\n");
4268			/* recycle */
4269			buffer_info->skb = skb;
4270			if (status & E1000_RXD_STAT_EOP)
4271				adapter->discarding = false;
4272			goto next_desc;
4273		}
4274
4275		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4276			u8 last_byte = *(skb->data + length - 1);
4277			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4278				       last_byte)) {
4279				spin_lock_irqsave(&adapter->stats_lock, flags);
4280				e1000_tbi_adjust_stats(hw, &adapter->stats,
4281						       length, skb->data);
4282				spin_unlock_irqrestore(&adapter->stats_lock,
4283						       flags);
4284				length--;
 
 
4285			} else {
4286				if (netdev->features & NETIF_F_RXALL)
4287					goto process_skb;
4288				/* recycle */
4289				buffer_info->skb = skb;
4290				goto next_desc;
4291			}
4292		}
4293
4294process_skb:
4295		total_rx_bytes += (length - 4); /* don't count FCS */
4296		total_rx_packets++;
4297
4298		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4299			/* adjust length to remove Ethernet CRC, this must be
4300			 * done after the TBI_ACCEPT workaround above
4301			 */
4302			length -= 4;
4303
4304		e1000_check_copybreak(netdev, buffer_info, length, &skb);
4305
4306		skb_put(skb, length);
 
4307
4308		/* Receive Checksum Offload */
4309		e1000_rx_checksum(adapter,
4310				  (u32)(status) |
4311				  ((u32)(rx_desc->errors) << 24),
4312				  le16_to_cpu(rx_desc->csum), skb);
4313
4314		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4315
4316next_desc:
4317		rx_desc->status = 0;
4318
4319		/* return some buffers to hardware, one at a time is too slow */
4320		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4321			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4322			cleaned_count = 0;
4323		}
4324
4325		/* use prefetched values */
4326		rx_desc = next_rxd;
4327		buffer_info = next_buffer;
4328	}
4329	rx_ring->next_to_clean = i;
4330
4331	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4332	if (cleaned_count)
4333		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4334
4335	adapter->total_rx_packets += total_rx_packets;
4336	adapter->total_rx_bytes += total_rx_bytes;
4337	netdev->stats.rx_bytes += total_rx_bytes;
4338	netdev->stats.rx_packets += total_rx_packets;
4339	return cleaned;
4340}
4341
4342/**
4343 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4344 * @adapter: address of board private structure
4345 * @rx_ring: pointer to receive ring structure
4346 * @cleaned_count: number of buffers to allocate this pass
4347 **/
4348static void
4349e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4350			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4351{
4352	struct net_device *netdev = adapter->netdev;
4353	struct pci_dev *pdev = adapter->pdev;
4354	struct e1000_rx_desc *rx_desc;
4355	struct e1000_buffer *buffer_info;
4356	struct sk_buff *skb;
4357	unsigned int i;
4358	unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4359
4360	i = rx_ring->next_to_use;
4361	buffer_info = &rx_ring->buffer_info[i];
4362
4363	while (cleaned_count--) {
4364		skb = buffer_info->skb;
4365		if (skb) {
4366			skb_trim(skb, 0);
4367			goto check_page;
4368		}
4369
4370		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4371		if (unlikely(!skb)) {
4372			/* Better luck next round */
4373			adapter->alloc_rx_buff_failed++;
4374			break;
4375		}
4376
4377		buffer_info->skb = skb;
4378		buffer_info->length = adapter->rx_buffer_len;
4379check_page:
4380		/* allocate a new page if necessary */
4381		if (!buffer_info->page) {
4382			buffer_info->page = alloc_page(GFP_ATOMIC);
4383			if (unlikely(!buffer_info->page)) {
4384				adapter->alloc_rx_buff_failed++;
4385				break;
4386			}
4387		}
4388
4389		if (!buffer_info->dma) {
4390			buffer_info->dma = dma_map_page(&pdev->dev,
4391							buffer_info->page, 0,
4392							buffer_info->length,
4393							DMA_FROM_DEVICE);
4394			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4395				put_page(buffer_info->page);
4396				dev_kfree_skb(skb);
4397				buffer_info->page = NULL;
4398				buffer_info->skb = NULL;
4399				buffer_info->dma = 0;
4400				adapter->alloc_rx_buff_failed++;
4401				break; /* while !buffer_info->skb */
4402			}
4403		}
4404
4405		rx_desc = E1000_RX_DESC(*rx_ring, i);
4406		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4407
4408		if (unlikely(++i == rx_ring->count))
4409			i = 0;
4410		buffer_info = &rx_ring->buffer_info[i];
4411	}
4412
4413	if (likely(rx_ring->next_to_use != i)) {
4414		rx_ring->next_to_use = i;
4415		if (unlikely(i-- == 0))
4416			i = (rx_ring->count - 1);
4417
4418		/* Force memory writes to complete before letting h/w
4419		 * know there are new descriptors to fetch.  (Only
4420		 * applicable for weak-ordered memory model archs,
4421		 * such as IA-64).
4422		 */
4423		wmb();
4424		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4425	}
4426}
4427
4428/**
4429 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4430 * @adapter: address of board private structure
 
 
4431 **/
4432static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4433				   struct e1000_rx_ring *rx_ring,
4434				   int cleaned_count)
4435{
4436	struct e1000_hw *hw = &adapter->hw;
4437	struct net_device *netdev = adapter->netdev;
4438	struct pci_dev *pdev = adapter->pdev;
4439	struct e1000_rx_desc *rx_desc;
4440	struct e1000_buffer *buffer_info;
4441	struct sk_buff *skb;
4442	unsigned int i;
4443	unsigned int bufsz = adapter->rx_buffer_len;
4444
4445	i = rx_ring->next_to_use;
4446	buffer_info = &rx_ring->buffer_info[i];
4447
4448	while (cleaned_count--) {
4449		skb = buffer_info->skb;
4450		if (skb) {
4451			skb_trim(skb, 0);
4452			goto map_skb;
4453		}
4454
4455		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4456		if (unlikely(!skb)) {
4457			/* Better luck next round */
4458			adapter->alloc_rx_buff_failed++;
4459			break;
4460		}
4461
4462		/* Fix for errata 23, can't cross 64kB boundary */
4463		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4464			struct sk_buff *oldskb = skb;
4465			e_err(rx_err, "skb align check failed: %u bytes at "
4466			      "%p\n", bufsz, skb->data);
4467			/* Try again, without freeing the previous */
4468			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4469			/* Failed allocation, critical failure */
4470			if (!skb) {
4471				dev_kfree_skb(oldskb);
4472				adapter->alloc_rx_buff_failed++;
4473				break;
4474			}
4475
4476			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4477				/* give up */
4478				dev_kfree_skb(skb);
4479				dev_kfree_skb(oldskb);
4480				adapter->alloc_rx_buff_failed++;
4481				break; /* while !buffer_info->skb */
4482			}
4483
4484			/* Use new allocation */
4485			dev_kfree_skb(oldskb);
4486		}
4487		buffer_info->skb = skb;
4488		buffer_info->length = adapter->rx_buffer_len;
4489map_skb:
4490		buffer_info->dma = dma_map_single(&pdev->dev,
4491						  skb->data,
4492						  buffer_info->length,
4493						  DMA_FROM_DEVICE);
4494		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4495			dev_kfree_skb(skb);
4496			buffer_info->skb = NULL;
4497			buffer_info->dma = 0;
4498			adapter->alloc_rx_buff_failed++;
4499			break; /* while !buffer_info->skb */
4500		}
4501
4502		/* XXX if it was allocated cleanly it will never map to a
4503		 * boundary crossing
4504		 */
4505
4506		/* Fix for errata 23, can't cross 64kB boundary */
4507		if (!e1000_check_64k_bound(adapter,
4508					(void *)(unsigned long)buffer_info->dma,
4509					adapter->rx_buffer_len)) {
4510			e_err(rx_err, "dma align check failed: %u bytes at "
4511			      "%p\n", adapter->rx_buffer_len,
4512			      (void *)(unsigned long)buffer_info->dma);
4513			dev_kfree_skb(skb);
4514			buffer_info->skb = NULL;
4515
4516			dma_unmap_single(&pdev->dev, buffer_info->dma,
4517					 adapter->rx_buffer_len,
4518					 DMA_FROM_DEVICE);
 
 
 
4519			buffer_info->dma = 0;
4520
4521			adapter->alloc_rx_buff_failed++;
4522			break; /* while !buffer_info->skb */
4523		}
 
 
4524		rx_desc = E1000_RX_DESC(*rx_ring, i);
4525		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4526
4527		if (unlikely(++i == rx_ring->count))
4528			i = 0;
4529		buffer_info = &rx_ring->buffer_info[i];
4530	}
4531
4532	if (likely(rx_ring->next_to_use != i)) {
4533		rx_ring->next_to_use = i;
4534		if (unlikely(i-- == 0))
4535			i = (rx_ring->count - 1);
4536
4537		/* Force memory writes to complete before letting h/w
4538		 * know there are new descriptors to fetch.  (Only
4539		 * applicable for weak-ordered memory model archs,
4540		 * such as IA-64).
4541		 */
4542		wmb();
4543		writel(i, hw->hw_addr + rx_ring->rdt);
4544	}
4545}
4546
4547/**
4548 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4549 * @adapter:
4550 **/
4551static void e1000_smartspeed(struct e1000_adapter *adapter)
4552{
4553	struct e1000_hw *hw = &adapter->hw;
4554	u16 phy_status;
4555	u16 phy_ctrl;
4556
4557	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4558	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4559		return;
4560
4561	if (adapter->smartspeed == 0) {
4562		/* If Master/Slave config fault is asserted twice,
4563		 * we assume back-to-back
4564		 */
4565		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4566		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
 
4567		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4568		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
 
4569		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4570		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4571			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4572			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4573					    phy_ctrl);
4574			adapter->smartspeed++;
4575			if (!e1000_phy_setup_autoneg(hw) &&
4576			   !e1000_read_phy_reg(hw, PHY_CTRL,
4577					       &phy_ctrl)) {
4578				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4579					     MII_CR_RESTART_AUTO_NEG);
4580				e1000_write_phy_reg(hw, PHY_CTRL,
4581						    phy_ctrl);
4582			}
4583		}
4584		return;
4585	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4586		/* If still no link, perhaps using 2/3 pair cable */
4587		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4588		phy_ctrl |= CR_1000T_MS_ENABLE;
4589		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4590		if (!e1000_phy_setup_autoneg(hw) &&
4591		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4592			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4593				     MII_CR_RESTART_AUTO_NEG);
4594			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4595		}
4596	}
4597	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4598	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4599		adapter->smartspeed = 0;
4600}
4601
4602/**
4603 * e1000_ioctl -
4604 * @netdev:
4605 * @ifreq:
4606 * @cmd:
4607 **/
4608static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4609{
4610	switch (cmd) {
4611	case SIOCGMIIPHY:
4612	case SIOCGMIIREG:
4613	case SIOCSMIIREG:
4614		return e1000_mii_ioctl(netdev, ifr, cmd);
4615	default:
4616		return -EOPNOTSUPP;
4617	}
4618}
4619
4620/**
4621 * e1000_mii_ioctl -
4622 * @netdev:
4623 * @ifreq:
4624 * @cmd:
4625 **/
4626static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4627			   int cmd)
4628{
4629	struct e1000_adapter *adapter = netdev_priv(netdev);
4630	struct e1000_hw *hw = &adapter->hw;
4631	struct mii_ioctl_data *data = if_mii(ifr);
4632	int retval;
4633	u16 mii_reg;
4634	unsigned long flags;
4635
4636	if (hw->media_type != e1000_media_type_copper)
4637		return -EOPNOTSUPP;
4638
4639	switch (cmd) {
4640	case SIOCGMIIPHY:
4641		data->phy_id = hw->phy_addr;
4642		break;
4643	case SIOCGMIIREG:
4644		spin_lock_irqsave(&adapter->stats_lock, flags);
4645		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4646				   &data->val_out)) {
4647			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4648			return -EIO;
4649		}
4650		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4651		break;
4652	case SIOCSMIIREG:
4653		if (data->reg_num & ~(0x1F))
4654			return -EFAULT;
4655		mii_reg = data->val_in;
4656		spin_lock_irqsave(&adapter->stats_lock, flags);
4657		if (e1000_write_phy_reg(hw, data->reg_num,
4658					mii_reg)) {
4659			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4660			return -EIO;
4661		}
4662		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4663		if (hw->media_type == e1000_media_type_copper) {
4664			switch (data->reg_num) {
4665			case PHY_CTRL:
4666				if (mii_reg & MII_CR_POWER_DOWN)
4667					break;
4668				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4669					hw->autoneg = 1;
4670					hw->autoneg_advertised = 0x2F;
4671				} else {
4672					u32 speed;
4673					if (mii_reg & 0x40)
4674						speed = SPEED_1000;
4675					else if (mii_reg & 0x2000)
4676						speed = SPEED_100;
4677					else
4678						speed = SPEED_10;
4679					retval = e1000_set_spd_dplx(
4680						adapter, speed,
4681						((mii_reg & 0x100)
4682						 ? DUPLEX_FULL :
4683						 DUPLEX_HALF));
4684					if (retval)
4685						return retval;
4686				}
4687				if (netif_running(adapter->netdev))
4688					e1000_reinit_locked(adapter);
4689				else
4690					e1000_reset(adapter);
4691				break;
4692			case M88E1000_PHY_SPEC_CTRL:
4693			case M88E1000_EXT_PHY_SPEC_CTRL:
4694				if (e1000_phy_reset(hw))
4695					return -EIO;
4696				break;
4697			}
4698		} else {
4699			switch (data->reg_num) {
4700			case PHY_CTRL:
4701				if (mii_reg & MII_CR_POWER_DOWN)
4702					break;
4703				if (netif_running(adapter->netdev))
4704					e1000_reinit_locked(adapter);
4705				else
4706					e1000_reset(adapter);
4707				break;
4708			}
4709		}
4710		break;
4711	default:
4712		return -EOPNOTSUPP;
4713	}
4714	return E1000_SUCCESS;
4715}
4716
4717void e1000_pci_set_mwi(struct e1000_hw *hw)
4718{
4719	struct e1000_adapter *adapter = hw->back;
4720	int ret_val = pci_set_mwi(adapter->pdev);
4721
4722	if (ret_val)
4723		e_err(probe, "Error in setting MWI\n");
4724}
4725
4726void e1000_pci_clear_mwi(struct e1000_hw *hw)
4727{
4728	struct e1000_adapter *adapter = hw->back;
4729
4730	pci_clear_mwi(adapter->pdev);
4731}
4732
4733int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4734{
4735	struct e1000_adapter *adapter = hw->back;
4736	return pcix_get_mmrbc(adapter->pdev);
4737}
4738
4739void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4740{
4741	struct e1000_adapter *adapter = hw->back;
4742	pcix_set_mmrbc(adapter->pdev, mmrbc);
4743}
4744
4745void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4746{
4747	outl(value, port);
4748}
4749
4750static bool e1000_vlan_used(struct e1000_adapter *adapter)
4751{
4752	u16 vid;
4753
4754	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4755		return true;
4756	return false;
4757}
4758
4759static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4760			      netdev_features_t features)
4761{
4762	struct e1000_hw *hw = &adapter->hw;
4763	u32 ctrl;
4764
4765	ctrl = er32(CTRL);
4766	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4767		/* enable VLAN tag insert/strip */
4768		ctrl |= E1000_CTRL_VME;
4769	} else {
4770		/* disable VLAN tag insert/strip */
4771		ctrl &= ~E1000_CTRL_VME;
4772	}
4773	ew32(CTRL, ctrl);
4774}
4775static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4776				     bool filter_on)
4777{
4778	struct e1000_hw *hw = &adapter->hw;
4779	u32 rctl;
4780
4781	if (!test_bit(__E1000_DOWN, &adapter->flags))
4782		e1000_irq_disable(adapter);
4783
4784	__e1000_vlan_mode(adapter, adapter->netdev->features);
4785	if (filter_on) {
4786		/* enable VLAN receive filtering */
4787		rctl = er32(RCTL);
4788		rctl &= ~E1000_RCTL_CFIEN;
4789		if (!(adapter->netdev->flags & IFF_PROMISC))
4790			rctl |= E1000_RCTL_VFE;
4791		ew32(RCTL, rctl);
4792		e1000_update_mng_vlan(adapter);
4793	} else {
4794		/* disable VLAN receive filtering */
4795		rctl = er32(RCTL);
4796		rctl &= ~E1000_RCTL_VFE;
4797		ew32(RCTL, rctl);
4798	}
4799
4800	if (!test_bit(__E1000_DOWN, &adapter->flags))
4801		e1000_irq_enable(adapter);
4802}
4803
4804static void e1000_vlan_mode(struct net_device *netdev,
4805			    netdev_features_t features)
4806{
4807	struct e1000_adapter *adapter = netdev_priv(netdev);
4808
4809	if (!test_bit(__E1000_DOWN, &adapter->flags))
4810		e1000_irq_disable(adapter);
4811
4812	__e1000_vlan_mode(adapter, features);
4813
4814	if (!test_bit(__E1000_DOWN, &adapter->flags))
4815		e1000_irq_enable(adapter);
4816}
4817
4818static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4819				 __be16 proto, u16 vid)
4820{
4821	struct e1000_adapter *adapter = netdev_priv(netdev);
4822	struct e1000_hw *hw = &adapter->hw;
4823	u32 vfta, index;
4824
4825	if ((hw->mng_cookie.status &
4826	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4827	    (vid == adapter->mng_vlan_id))
4828		return 0;
4829
4830	if (!e1000_vlan_used(adapter))
4831		e1000_vlan_filter_on_off(adapter, true);
4832
4833	/* add VID to filter table */
4834	index = (vid >> 5) & 0x7F;
4835	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4836	vfta |= (1 << (vid & 0x1F));
4837	e1000_write_vfta(hw, index, vfta);
4838
4839	set_bit(vid, adapter->active_vlans);
4840
4841	return 0;
4842}
4843
4844static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4845				  __be16 proto, u16 vid)
4846{
4847	struct e1000_adapter *adapter = netdev_priv(netdev);
4848	struct e1000_hw *hw = &adapter->hw;
4849	u32 vfta, index;
4850
4851	if (!test_bit(__E1000_DOWN, &adapter->flags))
4852		e1000_irq_disable(adapter);
4853	if (!test_bit(__E1000_DOWN, &adapter->flags))
4854		e1000_irq_enable(adapter);
4855
4856	/* remove VID from filter table */
4857	index = (vid >> 5) & 0x7F;
4858	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4859	vfta &= ~(1 << (vid & 0x1F));
4860	e1000_write_vfta(hw, index, vfta);
4861
4862	clear_bit(vid, adapter->active_vlans);
4863
4864	if (!e1000_vlan_used(adapter))
4865		e1000_vlan_filter_on_off(adapter, false);
4866
4867	return 0;
4868}
4869
4870static void e1000_restore_vlan(struct e1000_adapter *adapter)
4871{
4872	u16 vid;
4873
4874	if (!e1000_vlan_used(adapter))
4875		return;
4876
4877	e1000_vlan_filter_on_off(adapter, true);
4878	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4879		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
4880}
4881
4882int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4883{
4884	struct e1000_hw *hw = &adapter->hw;
4885
4886	hw->autoneg = 0;
4887
4888	/* Make sure dplx is at most 1 bit and lsb of speed is not set
4889	 * for the switch() below to work
4890	 */
4891	if ((spd & 1) || (dplx & ~1))
4892		goto err_inval;
4893
4894	/* Fiber NICs only allow 1000 gbps Full duplex */
4895	if ((hw->media_type == e1000_media_type_fiber) &&
4896	    spd != SPEED_1000 &&
4897	    dplx != DUPLEX_FULL)
4898		goto err_inval;
4899
4900	switch (spd + dplx) {
4901	case SPEED_10 + DUPLEX_HALF:
4902		hw->forced_speed_duplex = e1000_10_half;
4903		break;
4904	case SPEED_10 + DUPLEX_FULL:
4905		hw->forced_speed_duplex = e1000_10_full;
4906		break;
4907	case SPEED_100 + DUPLEX_HALF:
4908		hw->forced_speed_duplex = e1000_100_half;
4909		break;
4910	case SPEED_100 + DUPLEX_FULL:
4911		hw->forced_speed_duplex = e1000_100_full;
4912		break;
4913	case SPEED_1000 + DUPLEX_FULL:
4914		hw->autoneg = 1;
4915		hw->autoneg_advertised = ADVERTISE_1000_FULL;
4916		break;
4917	case SPEED_1000 + DUPLEX_HALF: /* not supported */
4918	default:
4919		goto err_inval;
4920	}
4921
4922	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4923	hw->mdix = AUTO_ALL_MODES;
4924
4925	return 0;
4926
4927err_inval:
4928	e_err(probe, "Unsupported Speed/Duplex configuration\n");
4929	return -EINVAL;
4930}
4931
4932static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4933{
4934	struct net_device *netdev = pci_get_drvdata(pdev);
4935	struct e1000_adapter *adapter = netdev_priv(netdev);
4936	struct e1000_hw *hw = &adapter->hw;
4937	u32 ctrl, ctrl_ext, rctl, status;
4938	u32 wufc = adapter->wol;
4939#ifdef CONFIG_PM
4940	int retval = 0;
4941#endif
4942
4943	netif_device_detach(netdev);
4944
4945	if (netif_running(netdev)) {
4946		int count = E1000_CHECK_RESET_COUNT;
4947
4948		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
4949			usleep_range(10000, 20000);
4950
4951		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4952		e1000_down(adapter);
4953	}
4954
4955#ifdef CONFIG_PM
4956	retval = pci_save_state(pdev);
4957	if (retval)
4958		return retval;
4959#endif
4960
4961	status = er32(STATUS);
4962	if (status & E1000_STATUS_LU)
4963		wufc &= ~E1000_WUFC_LNKC;
4964
4965	if (wufc) {
4966		e1000_setup_rctl(adapter);
4967		e1000_set_rx_mode(netdev);
4968
4969		rctl = er32(RCTL);
4970
4971		/* turn on all-multi mode if wake on multicast is enabled */
4972		if (wufc & E1000_WUFC_MC)
4973			rctl |= E1000_RCTL_MPE;
4974
4975		/* enable receives in the hardware */
4976		ew32(RCTL, rctl | E1000_RCTL_EN);
4977
4978		if (hw->mac_type >= e1000_82540) {
4979			ctrl = er32(CTRL);
4980			/* advertise wake from D3Cold */
4981			#define E1000_CTRL_ADVD3WUC 0x00100000
4982			/* phy power management enable */
4983			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4984			ctrl |= E1000_CTRL_ADVD3WUC |
4985				E1000_CTRL_EN_PHY_PWR_MGMT;
4986			ew32(CTRL, ctrl);
4987		}
4988
4989		if (hw->media_type == e1000_media_type_fiber ||
4990		    hw->media_type == e1000_media_type_internal_serdes) {
4991			/* keep the laser running in D3 */
4992			ctrl_ext = er32(CTRL_EXT);
4993			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4994			ew32(CTRL_EXT, ctrl_ext);
4995		}
4996
4997		ew32(WUC, E1000_WUC_PME_EN);
4998		ew32(WUFC, wufc);
4999	} else {
5000		ew32(WUC, 0);
5001		ew32(WUFC, 0);
5002	}
5003
5004	e1000_release_manageability(adapter);
5005
5006	*enable_wake = !!wufc;
5007
5008	/* make sure adapter isn't asleep if manageability is enabled */
5009	if (adapter->en_mng_pt)
5010		*enable_wake = true;
5011
5012	if (netif_running(netdev))
5013		e1000_free_irq(adapter);
5014
5015	pci_disable_device(pdev);
 
5016
5017	return 0;
5018}
5019
5020#ifdef CONFIG_PM
5021static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5022{
5023	int retval;
 
5024	bool wake;
5025
5026	retval = __e1000_shutdown(pdev, &wake);
5027	if (retval)
5028		return retval;
5029
5030	if (wake) {
5031		pci_prepare_to_sleep(pdev);
5032	} else {
5033		pci_wake_from_d3(pdev, false);
5034		pci_set_power_state(pdev, PCI_D3hot);
5035	}
5036
5037	return 0;
5038}
5039
5040static int e1000_resume(struct pci_dev *pdev)
5041{
 
5042	struct net_device *netdev = pci_get_drvdata(pdev);
5043	struct e1000_adapter *adapter = netdev_priv(netdev);
5044	struct e1000_hw *hw = &adapter->hw;
5045	u32 err;
5046
5047	pci_set_power_state(pdev, PCI_D0);
5048	pci_restore_state(pdev);
5049	pci_save_state(pdev);
5050
5051	if (adapter->need_ioport)
5052		err = pci_enable_device(pdev);
5053	else
5054		err = pci_enable_device_mem(pdev);
5055	if (err) {
5056		pr_err("Cannot enable PCI device from suspend\n");
5057		return err;
5058	}
 
 
 
 
5059	pci_set_master(pdev);
5060
5061	pci_enable_wake(pdev, PCI_D3hot, 0);
5062	pci_enable_wake(pdev, PCI_D3cold, 0);
5063
5064	if (netif_running(netdev)) {
5065		err = e1000_request_irq(adapter);
5066		if (err)
5067			return err;
5068	}
5069
5070	e1000_power_up_phy(adapter);
5071	e1000_reset(adapter);
5072	ew32(WUS, ~0);
5073
5074	e1000_init_manageability(adapter);
5075
5076	if (netif_running(netdev))
5077		e1000_up(adapter);
5078
5079	netif_device_attach(netdev);
5080
5081	return 0;
5082}
5083#endif
5084
5085static void e1000_shutdown(struct pci_dev *pdev)
5086{
5087	bool wake;
5088
5089	__e1000_shutdown(pdev, &wake);
5090
5091	if (system_state == SYSTEM_POWER_OFF) {
5092		pci_wake_from_d3(pdev, wake);
5093		pci_set_power_state(pdev, PCI_D3hot);
5094	}
5095}
5096
5097#ifdef CONFIG_NET_POLL_CONTROLLER
5098/* Polling 'interrupt' - used by things like netconsole to send skbs
5099 * without having to re-enable interrupts. It's not called while
5100 * the interrupt routine is executing.
5101 */
5102static void e1000_netpoll(struct net_device *netdev)
5103{
5104	struct e1000_adapter *adapter = netdev_priv(netdev);
5105
5106	disable_irq(adapter->pdev->irq);
5107	e1000_intr(adapter->pdev->irq, netdev);
5108	enable_irq(adapter->pdev->irq);
5109}
5110#endif
5111
5112/**
5113 * e1000_io_error_detected - called when PCI error is detected
5114 * @pdev: Pointer to PCI device
5115 * @state: The current pci connection state
5116 *
5117 * This function is called after a PCI bus error affecting
5118 * this device has been detected.
5119 */
5120static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5121						pci_channel_state_t state)
5122{
5123	struct net_device *netdev = pci_get_drvdata(pdev);
5124	struct e1000_adapter *adapter = netdev_priv(netdev);
5125
5126	netif_device_detach(netdev);
5127
5128	if (state == pci_channel_io_perm_failure)
5129		return PCI_ERS_RESULT_DISCONNECT;
5130
5131	if (netif_running(netdev))
5132		e1000_down(adapter);
5133	pci_disable_device(pdev);
5134
5135	/* Request a slot slot reset. */
 
 
 
5136	return PCI_ERS_RESULT_NEED_RESET;
5137}
5138
5139/**
5140 * e1000_io_slot_reset - called after the pci bus has been reset.
5141 * @pdev: Pointer to PCI device
5142 *
5143 * Restart the card from scratch, as if from a cold-boot. Implementation
5144 * resembles the first-half of the e1000_resume routine.
5145 */
5146static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5147{
5148	struct net_device *netdev = pci_get_drvdata(pdev);
5149	struct e1000_adapter *adapter = netdev_priv(netdev);
5150	struct e1000_hw *hw = &adapter->hw;
5151	int err;
5152
5153	if (adapter->need_ioport)
5154		err = pci_enable_device(pdev);
5155	else
5156		err = pci_enable_device_mem(pdev);
5157	if (err) {
5158		pr_err("Cannot re-enable PCI device after reset.\n");
5159		return PCI_ERS_RESULT_DISCONNECT;
5160	}
 
 
 
 
5161	pci_set_master(pdev);
5162
5163	pci_enable_wake(pdev, PCI_D3hot, 0);
5164	pci_enable_wake(pdev, PCI_D3cold, 0);
5165
5166	e1000_reset(adapter);
5167	ew32(WUS, ~0);
5168
5169	return PCI_ERS_RESULT_RECOVERED;
5170}
5171
5172/**
5173 * e1000_io_resume - called when traffic can start flowing again.
5174 * @pdev: Pointer to PCI device
5175 *
5176 * This callback is called when the error recovery driver tells us that
5177 * its OK to resume normal operation. Implementation resembles the
5178 * second-half of the e1000_resume routine.
5179 */
5180static void e1000_io_resume(struct pci_dev *pdev)
5181{
5182	struct net_device *netdev = pci_get_drvdata(pdev);
5183	struct e1000_adapter *adapter = netdev_priv(netdev);
5184
5185	e1000_init_manageability(adapter);
5186
5187	if (netif_running(netdev)) {
5188		if (e1000_up(adapter)) {
5189			pr_info("can't bring device back up after reset\n");
5190			return;
5191		}
5192	}
5193
5194	netif_device_attach(netdev);
5195}
5196
5197/* e1000_main.c */