Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * (C) 1997 Linus Torvalds
   4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   5 */
   6#include <linux/export.h>
   7#include <linux/fs.h>
   8#include <linux/filelock.h>
   9#include <linux/mm.h>
  10#include <linux/backing-dev.h>
  11#include <linux/hash.h>
  12#include <linux/swap.h>
  13#include <linux/security.h>
  14#include <linux/cdev.h>
  15#include <linux/memblock.h>
  16#include <linux/fsnotify.h>
  17#include <linux/mount.h>
  18#include <linux/posix_acl.h>
 
  19#include <linux/buffer_head.h> /* for inode_has_buffers */
  20#include <linux/ratelimit.h>
  21#include <linux/list_lru.h>
  22#include <linux/iversion.h>
  23#include <trace/events/writeback.h>
  24#include "internal.h"
  25
  26/*
  27 * Inode locking rules:
  28 *
  29 * inode->i_lock protects:
  30 *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
  31 * Inode LRU list locks protect:
  32 *   inode->i_sb->s_inode_lru, inode->i_lru
  33 * inode->i_sb->s_inode_list_lock protects:
  34 *   inode->i_sb->s_inodes, inode->i_sb_list
  35 * bdi->wb.list_lock protects:
  36 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
  37 * inode_hash_lock protects:
  38 *   inode_hashtable, inode->i_hash
  39 *
  40 * Lock ordering:
  41 *
  42 * inode->i_sb->s_inode_list_lock
  43 *   inode->i_lock
  44 *     Inode LRU list locks
  45 *
  46 * bdi->wb.list_lock
  47 *   inode->i_lock
  48 *
  49 * inode_hash_lock
  50 *   inode->i_sb->s_inode_list_lock
  51 *   inode->i_lock
  52 *
  53 * iunique_lock
  54 *   inode_hash_lock
  55 */
  56
  57static unsigned int i_hash_mask __ro_after_init;
  58static unsigned int i_hash_shift __ro_after_init;
  59static struct hlist_head *inode_hashtable __ro_after_init;
  60static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  61
 
 
  62/*
  63 * Empty aops. Can be used for the cases where the user does not
  64 * define any of the address_space operations.
  65 */
  66const struct address_space_operations empty_aops = {
  67};
  68EXPORT_SYMBOL(empty_aops);
  69
  70static DEFINE_PER_CPU(unsigned long, nr_inodes);
  71static DEFINE_PER_CPU(unsigned long, nr_unused);
 
 
 
 
 
  72
  73static struct kmem_cache *inode_cachep __ro_after_init;
  74
  75static long get_nr_inodes(void)
  76{
  77	int i;
  78	long sum = 0;
  79	for_each_possible_cpu(i)
  80		sum += per_cpu(nr_inodes, i);
  81	return sum < 0 ? 0 : sum;
  82}
  83
  84static inline long get_nr_inodes_unused(void)
  85{
  86	int i;
  87	long sum = 0;
  88	for_each_possible_cpu(i)
  89		sum += per_cpu(nr_unused, i);
  90	return sum < 0 ? 0 : sum;
  91}
  92
  93long get_nr_dirty_inodes(void)
  94{
  95	/* not actually dirty inodes, but a wild approximation */
  96	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
  97	return nr_dirty > 0 ? nr_dirty : 0;
  98}
  99
 100/*
 101 * Handle nr_inode sysctl
 102 */
 103#ifdef CONFIG_SYSCTL
 104/*
 105 * Statistics gathering..
 106 */
 107static struct inodes_stat_t inodes_stat;
 108
 109static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
 110			  size_t *lenp, loff_t *ppos)
 111{
 112	inodes_stat.nr_inodes = get_nr_inodes();
 113	inodes_stat.nr_unused = get_nr_inodes_unused();
 114	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 115}
 116
 117static struct ctl_table inodes_sysctls[] = {
 118	{
 119		.procname	= "inode-nr",
 120		.data		= &inodes_stat,
 121		.maxlen		= 2*sizeof(long),
 122		.mode		= 0444,
 123		.proc_handler	= proc_nr_inodes,
 124	},
 125	{
 126		.procname	= "inode-state",
 127		.data		= &inodes_stat,
 128		.maxlen		= 7*sizeof(long),
 129		.mode		= 0444,
 130		.proc_handler	= proc_nr_inodes,
 131	},
 132};
 133
 134static int __init init_fs_inode_sysctls(void)
 135{
 136	register_sysctl_init("fs", inodes_sysctls);
 137	return 0;
 138}
 139early_initcall(init_fs_inode_sysctls);
 140#endif
 141
 142static int no_open(struct inode *inode, struct file *file)
 143{
 144	return -ENXIO;
 145}
 146
 147/**
 148 * inode_init_always - perform inode structure initialisation
 149 * @sb: superblock inode belongs to
 150 * @inode: inode to initialise
 151 *
 152 * These are initializations that need to be done on every inode
 153 * allocation as the fields are not initialised by slab allocation.
 154 */
 155int inode_init_always(struct super_block *sb, struct inode *inode)
 156{
 157	static const struct inode_operations empty_iops;
 158	static const struct file_operations no_open_fops = {.open = no_open};
 159	struct address_space *const mapping = &inode->i_data;
 160
 161	inode->i_sb = sb;
 162	inode->i_blkbits = sb->s_blocksize_bits;
 163	inode->i_flags = 0;
 164	atomic64_set(&inode->i_sequence, 0);
 165	atomic_set(&inode->i_count, 1);
 166	inode->i_op = &empty_iops;
 167	inode->i_fop = &no_open_fops;
 168	inode->i_ino = 0;
 169	inode->__i_nlink = 1;
 170	inode->i_opflags = 0;
 171	if (sb->s_xattr)
 172		inode->i_opflags |= IOP_XATTR;
 173	i_uid_write(inode, 0);
 174	i_gid_write(inode, 0);
 175	atomic_set(&inode->i_writecount, 0);
 176	inode->i_size = 0;
 177	inode->i_write_hint = WRITE_LIFE_NOT_SET;
 178	inode->i_blocks = 0;
 179	inode->i_bytes = 0;
 180	inode->i_generation = 0;
 
 
 
 181	inode->i_pipe = NULL;
 
 182	inode->i_cdev = NULL;
 183	inode->i_link = NULL;
 184	inode->i_dir_seq = 0;
 185	inode->i_rdev = 0;
 186	inode->dirtied_when = 0;
 187
 188#ifdef CONFIG_CGROUP_WRITEBACK
 189	inode->i_wb_frn_winner = 0;
 190	inode->i_wb_frn_avg_time = 0;
 191	inode->i_wb_frn_history = 0;
 192#endif
 193
 194	spin_lock_init(&inode->i_lock);
 195	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 196
 197	init_rwsem(&inode->i_rwsem);
 198	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
 199
 200	atomic_set(&inode->i_dio_count, 0);
 201
 202	mapping->a_ops = &empty_aops;
 203	mapping->host = inode;
 204	mapping->flags = 0;
 205	mapping->wb_err = 0;
 206	atomic_set(&mapping->i_mmap_writable, 0);
 207#ifdef CONFIG_READ_ONLY_THP_FOR_FS
 208	atomic_set(&mapping->nr_thps, 0);
 209#endif
 210	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 211	mapping->i_private_data = NULL;
 
 212	mapping->writeback_index = 0;
 213	init_rwsem(&mapping->invalidate_lock);
 214	lockdep_set_class_and_name(&mapping->invalidate_lock,
 215				   &sb->s_type->invalidate_lock_key,
 216				   "mapping.invalidate_lock");
 217	if (sb->s_iflags & SB_I_STABLE_WRITES)
 218		mapping_set_stable_writes(mapping);
 
 
 
 
 
 
 219	inode->i_private = NULL;
 220	inode->i_mapping = mapping;
 221	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
 222#ifdef CONFIG_FS_POSIX_ACL
 223	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 224#endif
 225
 226#ifdef CONFIG_FSNOTIFY
 227	inode->i_fsnotify_mask = 0;
 228#endif
 229	inode->i_flctx = NULL;
 230
 231	if (unlikely(security_inode_alloc(inode)))
 232		return -ENOMEM;
 233	this_cpu_inc(nr_inodes);
 234
 235	return 0;
 
 
 236}
 237EXPORT_SYMBOL(inode_init_always);
 238
 239void free_inode_nonrcu(struct inode *inode)
 240{
 241	kmem_cache_free(inode_cachep, inode);
 242}
 243EXPORT_SYMBOL(free_inode_nonrcu);
 244
 245static void i_callback(struct rcu_head *head)
 246{
 247	struct inode *inode = container_of(head, struct inode, i_rcu);
 248	if (inode->free_inode)
 249		inode->free_inode(inode);
 250	else
 251		free_inode_nonrcu(inode);
 252}
 253
 254static struct inode *alloc_inode(struct super_block *sb)
 255{
 256	const struct super_operations *ops = sb->s_op;
 257	struct inode *inode;
 258
 259	if (ops->alloc_inode)
 260		inode = ops->alloc_inode(sb);
 261	else
 262		inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
 263
 264	if (!inode)
 265		return NULL;
 266
 267	if (unlikely(inode_init_always(sb, inode))) {
 268		if (ops->destroy_inode) {
 269			ops->destroy_inode(inode);
 270			if (!ops->free_inode)
 271				return NULL;
 272		}
 273		inode->free_inode = ops->free_inode;
 274		i_callback(&inode->i_rcu);
 275		return NULL;
 276	}
 277
 278	return inode;
 279}
 280
 
 
 
 
 
 
 281void __destroy_inode(struct inode *inode)
 282{
 283	BUG_ON(inode_has_buffers(inode));
 284	inode_detach_wb(inode);
 285	security_inode_free(inode);
 286	fsnotify_inode_delete(inode);
 287	locks_free_lock_context(inode);
 288	if (!inode->i_nlink) {
 289		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 290		atomic_long_dec(&inode->i_sb->s_remove_count);
 291	}
 292
 293#ifdef CONFIG_FS_POSIX_ACL
 294	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
 295		posix_acl_release(inode->i_acl);
 296	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
 297		posix_acl_release(inode->i_default_acl);
 298#endif
 299	this_cpu_dec(nr_inodes);
 300}
 301EXPORT_SYMBOL(__destroy_inode);
 302
 303static void destroy_inode(struct inode *inode)
 304{
 305	const struct super_operations *ops = inode->i_sb->s_op;
 
 
 306
 
 
 307	BUG_ON(!list_empty(&inode->i_lru));
 308	__destroy_inode(inode);
 309	if (ops->destroy_inode) {
 310		ops->destroy_inode(inode);
 311		if (!ops->free_inode)
 312			return;
 313	}
 314	inode->free_inode = ops->free_inode;
 315	call_rcu(&inode->i_rcu, i_callback);
 316}
 317
 318/**
 319 * drop_nlink - directly drop an inode's link count
 320 * @inode: inode
 321 *
 322 * This is a low-level filesystem helper to replace any
 323 * direct filesystem manipulation of i_nlink.  In cases
 324 * where we are attempting to track writes to the
 325 * filesystem, a decrement to zero means an imminent
 326 * write when the file is truncated and actually unlinked
 327 * on the filesystem.
 328 */
 329void drop_nlink(struct inode *inode)
 330{
 331	WARN_ON(inode->i_nlink == 0);
 332	inode->__i_nlink--;
 333	if (!inode->i_nlink)
 334		atomic_long_inc(&inode->i_sb->s_remove_count);
 335}
 336EXPORT_SYMBOL(drop_nlink);
 337
 338/**
 339 * clear_nlink - directly zero an inode's link count
 340 * @inode: inode
 341 *
 342 * This is a low-level filesystem helper to replace any
 343 * direct filesystem manipulation of i_nlink.  See
 344 * drop_nlink() for why we care about i_nlink hitting zero.
 345 */
 346void clear_nlink(struct inode *inode)
 347{
 348	if (inode->i_nlink) {
 349		inode->__i_nlink = 0;
 350		atomic_long_inc(&inode->i_sb->s_remove_count);
 351	}
 352}
 353EXPORT_SYMBOL(clear_nlink);
 354
 355/**
 356 * set_nlink - directly set an inode's link count
 357 * @inode: inode
 358 * @nlink: new nlink (should be non-zero)
 359 *
 360 * This is a low-level filesystem helper to replace any
 361 * direct filesystem manipulation of i_nlink.
 362 */
 363void set_nlink(struct inode *inode, unsigned int nlink)
 364{
 365	if (!nlink) {
 366		clear_nlink(inode);
 367	} else {
 368		/* Yes, some filesystems do change nlink from zero to one */
 369		if (inode->i_nlink == 0)
 370			atomic_long_dec(&inode->i_sb->s_remove_count);
 371
 372		inode->__i_nlink = nlink;
 373	}
 374}
 375EXPORT_SYMBOL(set_nlink);
 376
 377/**
 378 * inc_nlink - directly increment an inode's link count
 379 * @inode: inode
 380 *
 381 * This is a low-level filesystem helper to replace any
 382 * direct filesystem manipulation of i_nlink.  Currently,
 383 * it is only here for parity with dec_nlink().
 384 */
 385void inc_nlink(struct inode *inode)
 386{
 387	if (unlikely(inode->i_nlink == 0)) {
 388		WARN_ON(!(inode->i_state & I_LINKABLE));
 389		atomic_long_dec(&inode->i_sb->s_remove_count);
 390	}
 391
 392	inode->__i_nlink++;
 393}
 394EXPORT_SYMBOL(inc_nlink);
 395
 396static void __address_space_init_once(struct address_space *mapping)
 397{
 398	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
 399	init_rwsem(&mapping->i_mmap_rwsem);
 400	INIT_LIST_HEAD(&mapping->i_private_list);
 401	spin_lock_init(&mapping->i_private_lock);
 402	mapping->i_mmap = RB_ROOT_CACHED;
 403}
 404
 405void address_space_init_once(struct address_space *mapping)
 406{
 407	memset(mapping, 0, sizeof(*mapping));
 408	__address_space_init_once(mapping);
 
 
 
 
 
 
 409}
 410EXPORT_SYMBOL(address_space_init_once);
 411
 412/*
 413 * These are initializations that only need to be done
 414 * once, because the fields are idempotent across use
 415 * of the inode, so let the slab aware of that.
 416 */
 417void inode_init_once(struct inode *inode)
 418{
 419	memset(inode, 0, sizeof(*inode));
 420	INIT_HLIST_NODE(&inode->i_hash);
 421	INIT_LIST_HEAD(&inode->i_devices);
 422	INIT_LIST_HEAD(&inode->i_io_list);
 423	INIT_LIST_HEAD(&inode->i_wb_list);
 424	INIT_LIST_HEAD(&inode->i_lru);
 425	INIT_LIST_HEAD(&inode->i_sb_list);
 426	__address_space_init_once(&inode->i_data);
 427	i_size_ordered_init(inode);
 
 
 
 428}
 429EXPORT_SYMBOL(inode_init_once);
 430
 431static void init_once(void *foo)
 432{
 433	struct inode *inode = (struct inode *) foo;
 434
 435	inode_init_once(inode);
 436}
 437
 438/*
 439 * inode->i_lock must be held
 440 */
 441void __iget(struct inode *inode)
 442{
 443	atomic_inc(&inode->i_count);
 444}
 445
 446/*
 447 * get additional reference to inode; caller must already hold one.
 448 */
 449void ihold(struct inode *inode)
 450{
 451	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 452}
 453EXPORT_SYMBOL(ihold);
 454
 455static void __inode_add_lru(struct inode *inode, bool rotate)
 456{
 457	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
 458		return;
 459	if (atomic_read(&inode->i_count))
 460		return;
 461	if (!(inode->i_sb->s_flags & SB_ACTIVE))
 462		return;
 463	if (!mapping_shrinkable(&inode->i_data))
 464		return;
 465
 466	if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
 467		this_cpu_inc(nr_unused);
 468	else if (rotate)
 469		inode->i_state |= I_REFERENCED;
 470}
 471
 472/*
 473 * Add inode to LRU if needed (inode is unused and clean).
 474 *
 475 * Needs inode->i_lock held.
 476 */
 477void inode_add_lru(struct inode *inode)
 478{
 479	__inode_add_lru(inode, false);
 480}
 481
 482static void inode_lru_list_del(struct inode *inode)
 483{
 484	if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
 
 
 
 485		this_cpu_dec(nr_unused);
 
 
 486}
 487
 488/**
 489 * inode_sb_list_add - add inode to the superblock list of inodes
 490 * @inode: inode to add
 491 */
 492void inode_sb_list_add(struct inode *inode)
 493{
 494	spin_lock(&inode->i_sb->s_inode_list_lock);
 495	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 496	spin_unlock(&inode->i_sb->s_inode_list_lock);
 497}
 498EXPORT_SYMBOL_GPL(inode_sb_list_add);
 499
 500static inline void inode_sb_list_del(struct inode *inode)
 501{
 502	if (!list_empty(&inode->i_sb_list)) {
 503		spin_lock(&inode->i_sb->s_inode_list_lock);
 504		list_del_init(&inode->i_sb_list);
 505		spin_unlock(&inode->i_sb->s_inode_list_lock);
 506	}
 507}
 508
 509static unsigned long hash(struct super_block *sb, unsigned long hashval)
 510{
 511	unsigned long tmp;
 512
 513	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 514			L1_CACHE_BYTES;
 515	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 516	return tmp & i_hash_mask;
 517}
 518
 519/**
 520 *	__insert_inode_hash - hash an inode
 521 *	@inode: unhashed inode
 522 *	@hashval: unsigned long value used to locate this object in the
 523 *		inode_hashtable.
 524 *
 525 *	Add an inode to the inode hash for this superblock.
 526 */
 527void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 528{
 529	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 530
 531	spin_lock(&inode_hash_lock);
 532	spin_lock(&inode->i_lock);
 533	hlist_add_head_rcu(&inode->i_hash, b);
 534	spin_unlock(&inode->i_lock);
 535	spin_unlock(&inode_hash_lock);
 536}
 537EXPORT_SYMBOL(__insert_inode_hash);
 538
 539/**
 540 *	__remove_inode_hash - remove an inode from the hash
 541 *	@inode: inode to unhash
 542 *
 543 *	Remove an inode from the superblock.
 544 */
 545void __remove_inode_hash(struct inode *inode)
 546{
 547	spin_lock(&inode_hash_lock);
 548	spin_lock(&inode->i_lock);
 549	hlist_del_init_rcu(&inode->i_hash);
 550	spin_unlock(&inode->i_lock);
 551	spin_unlock(&inode_hash_lock);
 552}
 553EXPORT_SYMBOL(__remove_inode_hash);
 554
 555void dump_mapping(const struct address_space *mapping)
 556{
 557	struct inode *host;
 558	const struct address_space_operations *a_ops;
 559	struct hlist_node *dentry_first;
 560	struct dentry *dentry_ptr;
 561	struct dentry dentry;
 562	unsigned long ino;
 563
 564	/*
 565	 * If mapping is an invalid pointer, we don't want to crash
 566	 * accessing it, so probe everything depending on it carefully.
 567	 */
 568	if (get_kernel_nofault(host, &mapping->host) ||
 569	    get_kernel_nofault(a_ops, &mapping->a_ops)) {
 570		pr_warn("invalid mapping:%px\n", mapping);
 571		return;
 572	}
 573
 574	if (!host) {
 575		pr_warn("aops:%ps\n", a_ops);
 576		return;
 577	}
 578
 579	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
 580	    get_kernel_nofault(ino, &host->i_ino)) {
 581		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
 582		return;
 583	}
 584
 585	if (!dentry_first) {
 586		pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
 587		return;
 588	}
 589
 590	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
 591	if (get_kernel_nofault(dentry, dentry_ptr)) {
 592		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
 593				a_ops, ino, dentry_ptr);
 594		return;
 595	}
 596
 597	/*
 598	 * if dentry is corrupted, the %pd handler may still crash,
 599	 * but it's unlikely that we reach here with a corrupt mapping
 600	 */
 601	pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
 602}
 603
 604void clear_inode(struct inode *inode)
 605{
 
 606	/*
 607	 * We have to cycle the i_pages lock here because reclaim can be in the
 608	 * process of removing the last page (in __filemap_remove_folio())
 609	 * and we must not free the mapping under it.
 610	 */
 611	xa_lock_irq(&inode->i_data.i_pages);
 612	BUG_ON(inode->i_data.nrpages);
 613	/*
 614	 * Almost always, mapping_empty(&inode->i_data) here; but there are
 615	 * two known and long-standing ways in which nodes may get left behind
 616	 * (when deep radix-tree node allocation failed partway; or when THP
 617	 * collapse_file() failed). Until those two known cases are cleaned up,
 618	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
 619	 * nor even WARN_ON(!mapping_empty).
 620	 */
 621	xa_unlock_irq(&inode->i_data.i_pages);
 622	BUG_ON(!list_empty(&inode->i_data.i_private_list));
 623	BUG_ON(!(inode->i_state & I_FREEING));
 624	BUG_ON(inode->i_state & I_CLEAR);
 625	BUG_ON(!list_empty(&inode->i_wb_list));
 626	/* don't need i_lock here, no concurrent mods to i_state */
 627	inode->i_state = I_FREEING | I_CLEAR;
 628}
 629EXPORT_SYMBOL(clear_inode);
 630
 631/*
 632 * Free the inode passed in, removing it from the lists it is still connected
 633 * to. We remove any pages still attached to the inode and wait for any IO that
 634 * is still in progress before finally destroying the inode.
 635 *
 636 * An inode must already be marked I_FREEING so that we avoid the inode being
 637 * moved back onto lists if we race with other code that manipulates the lists
 638 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 639 *
 640 * An inode must already be removed from the LRU list before being evicted from
 641 * the cache. This should occur atomically with setting the I_FREEING state
 642 * flag, so no inodes here should ever be on the LRU when being evicted.
 643 */
 644static void evict(struct inode *inode)
 645{
 646	const struct super_operations *op = inode->i_sb->s_op;
 647
 648	BUG_ON(!(inode->i_state & I_FREEING));
 649	BUG_ON(!list_empty(&inode->i_lru));
 650
 651	if (!list_empty(&inode->i_io_list))
 652		inode_io_list_del(inode);
 653
 654	inode_sb_list_del(inode);
 655
 656	/*
 657	 * Wait for flusher thread to be done with the inode so that filesystem
 658	 * does not start destroying it while writeback is still running. Since
 659	 * the inode has I_FREEING set, flusher thread won't start new work on
 660	 * the inode.  We just have to wait for running writeback to finish.
 661	 */
 662	inode_wait_for_writeback(inode);
 663
 664	if (op->evict_inode) {
 665		op->evict_inode(inode);
 666	} else {
 667		truncate_inode_pages_final(&inode->i_data);
 
 668		clear_inode(inode);
 669	}
 
 
 670	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 671		cd_forget(inode);
 672
 673	remove_inode_hash(inode);
 674
 675	spin_lock(&inode->i_lock);
 676	wake_up_bit(&inode->i_state, __I_NEW);
 677	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 678	spin_unlock(&inode->i_lock);
 679
 680	destroy_inode(inode);
 681}
 682
 683/*
 684 * dispose_list - dispose of the contents of a local list
 685 * @head: the head of the list to free
 686 *
 687 * Dispose-list gets a local list with local inodes in it, so it doesn't
 688 * need to worry about list corruption and SMP locks.
 689 */
 690static void dispose_list(struct list_head *head)
 691{
 692	while (!list_empty(head)) {
 693		struct inode *inode;
 694
 695		inode = list_first_entry(head, struct inode, i_lru);
 696		list_del_init(&inode->i_lru);
 697
 698		evict(inode);
 699		cond_resched();
 700	}
 701}
 702
 703/**
 704 * evict_inodes	- evict all evictable inodes for a superblock
 705 * @sb:		superblock to operate on
 706 *
 707 * Make sure that no inodes with zero refcount are retained.  This is
 708 * called by superblock shutdown after having SB_ACTIVE flag removed,
 709 * so any inode reaching zero refcount during or after that call will
 710 * be immediately evicted.
 711 */
 712void evict_inodes(struct super_block *sb)
 713{
 714	struct inode *inode, *next;
 715	LIST_HEAD(dispose);
 716
 717again:
 718	spin_lock(&sb->s_inode_list_lock);
 719	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 720		if (atomic_read(&inode->i_count))
 721			continue;
 722
 723		spin_lock(&inode->i_lock);
 724		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 725			spin_unlock(&inode->i_lock);
 726			continue;
 727		}
 728
 729		inode->i_state |= I_FREEING;
 730		inode_lru_list_del(inode);
 731		spin_unlock(&inode->i_lock);
 732		list_add(&inode->i_lru, &dispose);
 733
 734		/*
 735		 * We can have a ton of inodes to evict at unmount time given
 736		 * enough memory, check to see if we need to go to sleep for a
 737		 * bit so we don't livelock.
 738		 */
 739		if (need_resched()) {
 740			spin_unlock(&sb->s_inode_list_lock);
 741			cond_resched();
 742			dispose_list(&dispose);
 743			goto again;
 744		}
 745	}
 746	spin_unlock(&sb->s_inode_list_lock);
 747
 748	dispose_list(&dispose);
 749}
 750EXPORT_SYMBOL_GPL(evict_inodes);
 751
 752/**
 753 * invalidate_inodes	- attempt to free all inodes on a superblock
 754 * @sb:		superblock to operate on
 
 755 *
 756 * Attempts to free all inodes (including dirty inodes) for a given superblock.
 
 
 
 757 */
 758void invalidate_inodes(struct super_block *sb)
 759{
 
 760	struct inode *inode, *next;
 761	LIST_HEAD(dispose);
 762
 763again:
 764	spin_lock(&sb->s_inode_list_lock);
 765	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 766		spin_lock(&inode->i_lock);
 767		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 768			spin_unlock(&inode->i_lock);
 769			continue;
 770		}
 
 
 
 
 
 771		if (atomic_read(&inode->i_count)) {
 772			spin_unlock(&inode->i_lock);
 
 773			continue;
 774		}
 775
 776		inode->i_state |= I_FREEING;
 777		inode_lru_list_del(inode);
 778		spin_unlock(&inode->i_lock);
 779		list_add(&inode->i_lru, &dispose);
 780		if (need_resched()) {
 781			spin_unlock(&sb->s_inode_list_lock);
 782			cond_resched();
 783			dispose_list(&dispose);
 784			goto again;
 785		}
 786	}
 787	spin_unlock(&sb->s_inode_list_lock);
 788
 789	dispose_list(&dispose);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790}
 791
 792/*
 793 * Isolate the inode from the LRU in preparation for freeing it.
 
 
 
 
 
 
 
 794 *
 795 * If the inode has the I_REFERENCED flag set, then it means that it has been
 796 * used recently - the flag is set in iput_final(). When we encounter such an
 797 * inode, clear the flag and move it to the back of the LRU so it gets another
 798 * pass through the LRU before it gets reclaimed. This is necessary because of
 799 * the fact we are doing lazy LRU updates to minimise lock contention so the
 800 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 801 * with this flag set because they are the inodes that are out of order.
 802 */
 803static enum lru_status inode_lru_isolate(struct list_head *item,
 804		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 805{
 806	struct list_head *freeable = arg;
 807	struct inode	*inode = container_of(item, struct inode, i_lru);
 
 808
 809	/*
 810	 * We are inverting the lru lock/inode->i_lock here, so use a
 811	 * trylock. If we fail to get the lock, just skip it.
 812	 */
 813	if (!spin_trylock(&inode->i_lock))
 814		return LRU_SKIP;
 815
 816	/*
 817	 * Inodes can get referenced, redirtied, or repopulated while
 818	 * they're already on the LRU, and this can make them
 819	 * unreclaimable for a while. Remove them lazily here; iput,
 820	 * sync, or the last page cache deletion will requeue them.
 821	 */
 822	if (atomic_read(&inode->i_count) ||
 823	    (inode->i_state & ~I_REFERENCED) ||
 824	    !mapping_shrinkable(&inode->i_data)) {
 825		list_lru_isolate(lru, &inode->i_lru);
 826		spin_unlock(&inode->i_lock);
 827		this_cpu_dec(nr_unused);
 828		return LRU_REMOVED;
 829	}
 830
 831	/* Recently referenced inodes get one more pass */
 832	if (inode->i_state & I_REFERENCED) {
 833		inode->i_state &= ~I_REFERENCED;
 834		spin_unlock(&inode->i_lock);
 835		return LRU_ROTATE;
 836	}
 837
 838	/*
 839	 * On highmem systems, mapping_shrinkable() permits dropping
 840	 * page cache in order to free up struct inodes: lowmem might
 841	 * be under pressure before the cache inside the highmem zone.
 842	 */
 843	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
 844		__iget(inode);
 845		spin_unlock(&inode->i_lock);
 846		spin_unlock(lru_lock);
 847		if (remove_inode_buffers(inode)) {
 848			unsigned long reap;
 849			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
 850			if (current_is_kswapd())
 851				__count_vm_events(KSWAPD_INODESTEAL, reap);
 852			else
 853				__count_vm_events(PGINODESTEAL, reap);
 854			mm_account_reclaimed_pages(reap);
 855		}
 856		iput(inode);
 857		spin_lock(lru_lock);
 858		return LRU_RETRY;
 859	}
 860
 861	WARN_ON(inode->i_state & I_NEW);
 862	inode->i_state |= I_FREEING;
 863	list_lru_isolate_move(lru, &inode->i_lru, freeable);
 864	spin_unlock(&inode->i_lock);
 
 
 
 
 
 
 
 
 865
 866	this_cpu_dec(nr_unused);
 867	return LRU_REMOVED;
 868}
 
 
 
 
 
 
 
 
 
 
 
 
 
 869
 870/*
 871 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 872 * This is called from the superblock shrinker function with a number of inodes
 873 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 874 * then are freed outside inode_lock by dispose_list().
 875 */
 876long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
 877{
 878	LIST_HEAD(freeable);
 879	long freed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 880
 881	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
 882				     inode_lru_isolate, &freeable);
 883	dispose_list(&freeable);
 884	return freed;
 885}
 886
 887static void __wait_on_freeing_inode(struct inode *inode);
 888/*
 889 * Called with the inode lock held.
 890 */
 891static struct inode *find_inode(struct super_block *sb,
 892				struct hlist_head *head,
 893				int (*test)(struct inode *, void *),
 894				void *data)
 895{
 
 896	struct inode *inode = NULL;
 897
 898repeat:
 899	hlist_for_each_entry(inode, head, i_hash) {
 900		if (inode->i_sb != sb)
 
 
 901			continue;
 902		if (!test(inode, data))
 
 
 903			continue;
 904		spin_lock(&inode->i_lock);
 905		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 906			__wait_on_freeing_inode(inode);
 907			goto repeat;
 908		}
 909		if (unlikely(inode->i_state & I_CREATING)) {
 910			spin_unlock(&inode->i_lock);
 911			return ERR_PTR(-ESTALE);
 912		}
 913		__iget(inode);
 914		spin_unlock(&inode->i_lock);
 915		return inode;
 916	}
 917	return NULL;
 918}
 919
 920/*
 921 * find_inode_fast is the fast path version of find_inode, see the comment at
 922 * iget_locked for details.
 923 */
 924static struct inode *find_inode_fast(struct super_block *sb,
 925				struct hlist_head *head, unsigned long ino)
 926{
 
 927	struct inode *inode = NULL;
 928
 929repeat:
 930	hlist_for_each_entry(inode, head, i_hash) {
 931		if (inode->i_ino != ino)
 
 
 932			continue;
 933		if (inode->i_sb != sb)
 
 
 934			continue;
 935		spin_lock(&inode->i_lock);
 936		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 937			__wait_on_freeing_inode(inode);
 938			goto repeat;
 939		}
 940		if (unlikely(inode->i_state & I_CREATING)) {
 941			spin_unlock(&inode->i_lock);
 942			return ERR_PTR(-ESTALE);
 943		}
 944		__iget(inode);
 945		spin_unlock(&inode->i_lock);
 946		return inode;
 947	}
 948	return NULL;
 949}
 950
 951/*
 952 * Each cpu owns a range of LAST_INO_BATCH numbers.
 953 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 954 * to renew the exhausted range.
 955 *
 956 * This does not significantly increase overflow rate because every CPU can
 957 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 958 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 959 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 960 * overflow rate by 2x, which does not seem too significant.
 961 *
 962 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 963 * error if st_ino won't fit in target struct field. Use 32bit counter
 964 * here to attempt to avoid that.
 965 */
 966#define LAST_INO_BATCH 1024
 967static DEFINE_PER_CPU(unsigned int, last_ino);
 968
 969unsigned int get_next_ino(void)
 970{
 971	unsigned int *p = &get_cpu_var(last_ino);
 972	unsigned int res = *p;
 973
 974#ifdef CONFIG_SMP
 975	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 976		static atomic_t shared_last_ino;
 977		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 978
 979		res = next - LAST_INO_BATCH;
 980	}
 981#endif
 982
 983	res++;
 984	/* get_next_ino should not provide a 0 inode number */
 985	if (unlikely(!res))
 986		res++;
 987	*p = res;
 988	put_cpu_var(last_ino);
 989	return res;
 990}
 991EXPORT_SYMBOL(get_next_ino);
 992
 993/**
 994 *	new_inode_pseudo 	- obtain an inode
 995 *	@sb: superblock
 996 *
 997 *	Allocates a new inode for given superblock.
 998 *	Inode wont be chained in superblock s_inodes list
 999 *	This means :
1000 *	- fs can't be unmount
1001 *	- quotas, fsnotify, writeback can't work
1002 */
1003struct inode *new_inode_pseudo(struct super_block *sb)
1004{
1005	struct inode *inode = alloc_inode(sb);
1006
1007	if (inode) {
1008		spin_lock(&inode->i_lock);
1009		inode->i_state = 0;
1010		spin_unlock(&inode->i_lock);
 
1011	}
1012	return inode;
1013}
1014
1015/**
1016 *	new_inode 	- obtain an inode
1017 *	@sb: superblock
1018 *
1019 *	Allocates a new inode for given superblock. The default gfp_mask
1020 *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1021 *	If HIGHMEM pages are unsuitable or it is known that pages allocated
1022 *	for the page cache are not reclaimable or migratable,
1023 *	mapping_set_gfp_mask() must be called with suitable flags on the
1024 *	newly created inode's mapping
1025 *
1026 */
1027struct inode *new_inode(struct super_block *sb)
1028{
1029	struct inode *inode;
1030
 
 
1031	inode = new_inode_pseudo(sb);
1032	if (inode)
1033		inode_sb_list_add(inode);
1034	return inode;
1035}
1036EXPORT_SYMBOL(new_inode);
1037
1038#ifdef CONFIG_DEBUG_LOCK_ALLOC
1039void lockdep_annotate_inode_mutex_key(struct inode *inode)
1040{
1041	if (S_ISDIR(inode->i_mode)) {
1042		struct file_system_type *type = inode->i_sb->s_type;
1043
1044		/* Set new key only if filesystem hasn't already changed it */
1045		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1046			/*
1047			 * ensure nobody is actually holding i_mutex
1048			 */
1049			// mutex_destroy(&inode->i_mutex);
1050			init_rwsem(&inode->i_rwsem);
1051			lockdep_set_class(&inode->i_rwsem,
1052					  &type->i_mutex_dir_key);
1053		}
1054	}
1055}
1056EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1057#endif
1058
1059/**
1060 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1061 * @inode:	new inode to unlock
1062 *
1063 * Called when the inode is fully initialised to clear the new state of the
1064 * inode and wake up anyone waiting for the inode to finish initialisation.
1065 */
1066void unlock_new_inode(struct inode *inode)
1067{
1068	lockdep_annotate_inode_mutex_key(inode);
1069	spin_lock(&inode->i_lock);
1070	WARN_ON(!(inode->i_state & I_NEW));
1071	inode->i_state &= ~I_NEW & ~I_CREATING;
1072	smp_mb();
1073	wake_up_bit(&inode->i_state, __I_NEW);
1074	spin_unlock(&inode->i_lock);
1075}
1076EXPORT_SYMBOL(unlock_new_inode);
1077
1078void discard_new_inode(struct inode *inode)
1079{
1080	lockdep_annotate_inode_mutex_key(inode);
1081	spin_lock(&inode->i_lock);
1082	WARN_ON(!(inode->i_state & I_NEW));
1083	inode->i_state &= ~I_NEW;
1084	smp_mb();
1085	wake_up_bit(&inode->i_state, __I_NEW);
1086	spin_unlock(&inode->i_lock);
1087	iput(inode);
1088}
1089EXPORT_SYMBOL(discard_new_inode);
1090
1091/**
1092 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1093 *
1094 * Lock any non-NULL argument. Passed objects must not be directories.
1095 * Zero, one or two objects may be locked by this function.
1096 *
1097 * @inode1: first inode to lock
1098 * @inode2: second inode to lock
1099 */
1100void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1101{
1102	if (inode1)
1103		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1104	if (inode2)
1105		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1106	if (inode1 > inode2)
1107		swap(inode1, inode2);
1108	if (inode1)
1109		inode_lock(inode1);
1110	if (inode2 && inode2 != inode1)
1111		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1112}
1113EXPORT_SYMBOL(lock_two_nondirectories);
1114
1115/**
1116 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1117 * @inode1: first inode to unlock
1118 * @inode2: second inode to unlock
1119 */
1120void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1121{
1122	if (inode1) {
1123		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1124		inode_unlock(inode1);
1125	}
1126	if (inode2 && inode2 != inode1) {
1127		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1128		inode_unlock(inode2);
1129	}
1130}
1131EXPORT_SYMBOL(unlock_two_nondirectories);
1132
1133/**
1134 * inode_insert5 - obtain an inode from a mounted file system
1135 * @inode:	pre-allocated inode to use for insert to cache
1136 * @hashval:	hash value (usually inode number) to get
1137 * @test:	callback used for comparisons between inodes
1138 * @set:	callback used to initialize a new struct inode
1139 * @data:	opaque data pointer to pass to @test and @set
1140 *
1141 * Search for the inode specified by @hashval and @data in the inode cache,
1142 * and if present it is return it with an increased reference count. This is
1143 * a variant of iget5_locked() for callers that don't want to fail on memory
1144 * allocation of inode.
1145 *
1146 * If the inode is not in cache, insert the pre-allocated inode to cache and
1147 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1148 * to fill it in before unlocking it via unlock_new_inode().
1149 *
1150 * Note both @test and @set are called with the inode_hash_lock held, so can't
1151 * sleep.
1152 */
1153struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1154			    int (*test)(struct inode *, void *),
1155			    int (*set)(struct inode *, void *), void *data)
1156{
1157	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1158	struct inode *old;
1159
1160again:
1161	spin_lock(&inode_hash_lock);
1162	old = find_inode(inode->i_sb, head, test, data);
1163	if (unlikely(old)) {
1164		/*
1165		 * Uhhuh, somebody else created the same inode under us.
1166		 * Use the old inode instead of the preallocated one.
1167		 */
1168		spin_unlock(&inode_hash_lock);
1169		if (IS_ERR(old))
1170			return NULL;
1171		wait_on_inode(old);
1172		if (unlikely(inode_unhashed(old))) {
1173			iput(old);
1174			goto again;
1175		}
1176		return old;
1177	}
1178
1179	if (set && unlikely(set(inode, data))) {
1180		inode = NULL;
1181		goto unlock;
1182	}
1183
1184	/*
1185	 * Return the locked inode with I_NEW set, the
1186	 * caller is responsible for filling in the contents
1187	 */
1188	spin_lock(&inode->i_lock);
1189	inode->i_state |= I_NEW;
1190	hlist_add_head_rcu(&inode->i_hash, head);
1191	spin_unlock(&inode->i_lock);
1192
1193	/*
1194	 * Add inode to the sb list if it's not already. It has I_NEW at this
1195	 * point, so it should be safe to test i_sb_list locklessly.
1196	 */
1197	if (list_empty(&inode->i_sb_list))
1198		inode_sb_list_add(inode);
1199unlock:
1200	spin_unlock(&inode_hash_lock);
1201
1202	return inode;
1203}
1204EXPORT_SYMBOL(inode_insert5);
1205
1206/**
1207 * iget5_locked - obtain an inode from a mounted file system
1208 * @sb:		super block of file system
1209 * @hashval:	hash value (usually inode number) to get
1210 * @test:	callback used for comparisons between inodes
1211 * @set:	callback used to initialize a new struct inode
1212 * @data:	opaque data pointer to pass to @test and @set
1213 *
1214 * Search for the inode specified by @hashval and @data in the inode cache,
1215 * and if present it is return it with an increased reference count. This is
1216 * a generalized version of iget_locked() for file systems where the inode
1217 * number is not sufficient for unique identification of an inode.
1218 *
1219 * If the inode is not in cache, allocate a new inode and return it locked,
1220 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1221 * before unlocking it via unlock_new_inode().
1222 *
1223 * Note both @test and @set are called with the inode_hash_lock held, so can't
1224 * sleep.
1225 */
1226struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1227		int (*test)(struct inode *, void *),
1228		int (*set)(struct inode *, void *), void *data)
1229{
1230	struct inode *inode = ilookup5(sb, hashval, test, data);
 
 
 
 
 
1231
1232	if (!inode) {
1233		struct inode *new = alloc_inode(sb);
 
 
1234
1235		if (new) {
1236			new->i_state = 0;
1237			inode = inode_insert5(new, hashval, test, set, data);
1238			if (unlikely(inode != new))
1239				destroy_inode(new);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1240		}
 
 
 
 
 
 
 
 
 
 
1241	}
1242	return inode;
 
 
 
 
 
1243}
1244EXPORT_SYMBOL(iget5_locked);
1245
1246/**
1247 * iget_locked - obtain an inode from a mounted file system
1248 * @sb:		super block of file system
1249 * @ino:	inode number to get
1250 *
1251 * Search for the inode specified by @ino in the inode cache and if present
1252 * return it with an increased reference count. This is for file systems
1253 * where the inode number is sufficient for unique identification of an inode.
1254 *
1255 * If the inode is not in cache, allocate a new inode and return it locked,
1256 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1257 * before unlocking it via unlock_new_inode().
1258 */
1259struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1260{
1261	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1262	struct inode *inode;
1263again:
1264	spin_lock(&inode_hash_lock);
1265	inode = find_inode_fast(sb, head, ino);
1266	spin_unlock(&inode_hash_lock);
1267	if (inode) {
1268		if (IS_ERR(inode))
1269			return NULL;
1270		wait_on_inode(inode);
1271		if (unlikely(inode_unhashed(inode))) {
1272			iput(inode);
1273			goto again;
1274		}
1275		return inode;
1276	}
1277
1278	inode = alloc_inode(sb);
1279	if (inode) {
1280		struct inode *old;
1281
1282		spin_lock(&inode_hash_lock);
1283		/* We released the lock, so.. */
1284		old = find_inode_fast(sb, head, ino);
1285		if (!old) {
1286			inode->i_ino = ino;
1287			spin_lock(&inode->i_lock);
1288			inode->i_state = I_NEW;
1289			hlist_add_head_rcu(&inode->i_hash, head);
1290			spin_unlock(&inode->i_lock);
1291			inode_sb_list_add(inode);
1292			spin_unlock(&inode_hash_lock);
1293
1294			/* Return the locked inode with I_NEW set, the
1295			 * caller is responsible for filling in the contents
1296			 */
1297			return inode;
1298		}
1299
1300		/*
1301		 * Uhhuh, somebody else created the same inode under
1302		 * us. Use the old inode instead of the one we just
1303		 * allocated.
1304		 */
1305		spin_unlock(&inode_hash_lock);
1306		destroy_inode(inode);
1307		if (IS_ERR(old))
1308			return NULL;
1309		inode = old;
1310		wait_on_inode(inode);
1311		if (unlikely(inode_unhashed(inode))) {
1312			iput(inode);
1313			goto again;
1314		}
1315	}
1316	return inode;
1317}
1318EXPORT_SYMBOL(iget_locked);
1319
1320/*
1321 * search the inode cache for a matching inode number.
1322 * If we find one, then the inode number we are trying to
1323 * allocate is not unique and so we should not use it.
1324 *
1325 * Returns 1 if the inode number is unique, 0 if it is not.
1326 */
1327static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1328{
1329	struct hlist_head *b = inode_hashtable + hash(sb, ino);
 
1330	struct inode *inode;
1331
1332	hlist_for_each_entry_rcu(inode, b, i_hash) {
1333		if (inode->i_ino == ino && inode->i_sb == sb)
 
 
1334			return 0;
 
1335	}
 
 
1336	return 1;
1337}
1338
1339/**
1340 *	iunique - get a unique inode number
1341 *	@sb: superblock
1342 *	@max_reserved: highest reserved inode number
1343 *
1344 *	Obtain an inode number that is unique on the system for a given
1345 *	superblock. This is used by file systems that have no natural
1346 *	permanent inode numbering system. An inode number is returned that
1347 *	is higher than the reserved limit but unique.
1348 *
1349 *	BUGS:
1350 *	With a large number of inodes live on the file system this function
1351 *	currently becomes quite slow.
1352 */
1353ino_t iunique(struct super_block *sb, ino_t max_reserved)
1354{
1355	/*
1356	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1357	 * error if st_ino won't fit in target struct field. Use 32bit counter
1358	 * here to attempt to avoid that.
1359	 */
1360	static DEFINE_SPINLOCK(iunique_lock);
1361	static unsigned int counter;
1362	ino_t res;
1363
1364	rcu_read_lock();
1365	spin_lock(&iunique_lock);
1366	do {
1367		if (counter <= max_reserved)
1368			counter = max_reserved + 1;
1369		res = counter++;
1370	} while (!test_inode_iunique(sb, res));
1371	spin_unlock(&iunique_lock);
1372	rcu_read_unlock();
1373
1374	return res;
1375}
1376EXPORT_SYMBOL(iunique);
1377
1378struct inode *igrab(struct inode *inode)
1379{
1380	spin_lock(&inode->i_lock);
1381	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1382		__iget(inode);
1383		spin_unlock(&inode->i_lock);
1384	} else {
1385		spin_unlock(&inode->i_lock);
1386		/*
1387		 * Handle the case where s_op->clear_inode is not been
1388		 * called yet, and somebody is calling igrab
1389		 * while the inode is getting freed.
1390		 */
1391		inode = NULL;
1392	}
1393	return inode;
1394}
1395EXPORT_SYMBOL(igrab);
1396
1397/**
1398 * ilookup5_nowait - search for an inode in the inode cache
1399 * @sb:		super block of file system to search
1400 * @hashval:	hash value (usually inode number) to search for
1401 * @test:	callback used for comparisons between inodes
1402 * @data:	opaque data pointer to pass to @test
1403 *
1404 * Search for the inode specified by @hashval and @data in the inode cache.
1405 * If the inode is in the cache, the inode is returned with an incremented
1406 * reference count.
1407 *
1408 * Note: I_NEW is not waited upon so you have to be very careful what you do
1409 * with the returned inode.  You probably should be using ilookup5() instead.
1410 *
1411 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1412 */
1413struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1414		int (*test)(struct inode *, void *), void *data)
1415{
1416	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1417	struct inode *inode;
1418
1419	spin_lock(&inode_hash_lock);
1420	inode = find_inode(sb, head, test, data);
1421	spin_unlock(&inode_hash_lock);
1422
1423	return IS_ERR(inode) ? NULL : inode;
1424}
1425EXPORT_SYMBOL(ilookup5_nowait);
1426
1427/**
1428 * ilookup5 - search for an inode in the inode cache
1429 * @sb:		super block of file system to search
1430 * @hashval:	hash value (usually inode number) to search for
1431 * @test:	callback used for comparisons between inodes
1432 * @data:	opaque data pointer to pass to @test
1433 *
1434 * Search for the inode specified by @hashval and @data in the inode cache,
1435 * and if the inode is in the cache, return the inode with an incremented
1436 * reference count.  Waits on I_NEW before returning the inode.
1437 * returned with an incremented reference count.
1438 *
1439 * This is a generalized version of ilookup() for file systems where the
1440 * inode number is not sufficient for unique identification of an inode.
1441 *
1442 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1443 */
1444struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1445		int (*test)(struct inode *, void *), void *data)
1446{
1447	struct inode *inode;
1448again:
1449	inode = ilookup5_nowait(sb, hashval, test, data);
1450	if (inode) {
1451		wait_on_inode(inode);
1452		if (unlikely(inode_unhashed(inode))) {
1453			iput(inode);
1454			goto again;
1455		}
1456	}
1457	return inode;
1458}
1459EXPORT_SYMBOL(ilookup5);
1460
1461/**
1462 * ilookup - search for an inode in the inode cache
1463 * @sb:		super block of file system to search
1464 * @ino:	inode number to search for
1465 *
1466 * Search for the inode @ino in the inode cache, and if the inode is in the
1467 * cache, the inode is returned with an incremented reference count.
1468 */
1469struct inode *ilookup(struct super_block *sb, unsigned long ino)
1470{
1471	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1472	struct inode *inode;
1473again:
1474	spin_lock(&inode_hash_lock);
1475	inode = find_inode_fast(sb, head, ino);
1476	spin_unlock(&inode_hash_lock);
1477
1478	if (inode) {
1479		if (IS_ERR(inode))
1480			return NULL;
1481		wait_on_inode(inode);
1482		if (unlikely(inode_unhashed(inode))) {
1483			iput(inode);
1484			goto again;
1485		}
1486	}
1487	return inode;
1488}
1489EXPORT_SYMBOL(ilookup);
1490
1491/**
1492 * find_inode_nowait - find an inode in the inode cache
1493 * @sb:		super block of file system to search
1494 * @hashval:	hash value (usually inode number) to search for
1495 * @match:	callback used for comparisons between inodes
1496 * @data:	opaque data pointer to pass to @match
1497 *
1498 * Search for the inode specified by @hashval and @data in the inode
1499 * cache, where the helper function @match will return 0 if the inode
1500 * does not match, 1 if the inode does match, and -1 if the search
1501 * should be stopped.  The @match function must be responsible for
1502 * taking the i_lock spin_lock and checking i_state for an inode being
1503 * freed or being initialized, and incrementing the reference count
1504 * before returning 1.  It also must not sleep, since it is called with
1505 * the inode_hash_lock spinlock held.
1506 *
1507 * This is a even more generalized version of ilookup5() when the
1508 * function must never block --- find_inode() can block in
1509 * __wait_on_freeing_inode() --- or when the caller can not increment
1510 * the reference count because the resulting iput() might cause an
1511 * inode eviction.  The tradeoff is that the @match funtion must be
1512 * very carefully implemented.
1513 */
1514struct inode *find_inode_nowait(struct super_block *sb,
1515				unsigned long hashval,
1516				int (*match)(struct inode *, unsigned long,
1517					     void *),
1518				void *data)
1519{
1520	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1521	struct inode *inode, *ret_inode = NULL;
1522	int mval;
1523
1524	spin_lock(&inode_hash_lock);
1525	hlist_for_each_entry(inode, head, i_hash) {
1526		if (inode->i_sb != sb)
1527			continue;
1528		mval = match(inode, hashval, data);
1529		if (mval == 0)
1530			continue;
1531		if (mval == 1)
1532			ret_inode = inode;
1533		goto out;
1534	}
1535out:
1536	spin_unlock(&inode_hash_lock);
1537	return ret_inode;
1538}
1539EXPORT_SYMBOL(find_inode_nowait);
1540
1541/**
1542 * find_inode_rcu - find an inode in the inode cache
1543 * @sb:		Super block of file system to search
1544 * @hashval:	Key to hash
1545 * @test:	Function to test match on an inode
1546 * @data:	Data for test function
1547 *
1548 * Search for the inode specified by @hashval and @data in the inode cache,
1549 * where the helper function @test will return 0 if the inode does not match
1550 * and 1 if it does.  The @test function must be responsible for taking the
1551 * i_lock spin_lock and checking i_state for an inode being freed or being
1552 * initialized.
1553 *
1554 * If successful, this will return the inode for which the @test function
1555 * returned 1 and NULL otherwise.
1556 *
1557 * The @test function is not permitted to take a ref on any inode presented.
1558 * It is also not permitted to sleep.
1559 *
1560 * The caller must hold the RCU read lock.
1561 */
1562struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1563			     int (*test)(struct inode *, void *), void *data)
1564{
1565	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1566	struct inode *inode;
1567
1568	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1569			 "suspicious find_inode_rcu() usage");
1570
1571	hlist_for_each_entry_rcu(inode, head, i_hash) {
1572		if (inode->i_sb == sb &&
1573		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1574		    test(inode, data))
1575			return inode;
1576	}
1577	return NULL;
1578}
1579EXPORT_SYMBOL(find_inode_rcu);
1580
1581/**
1582 * find_inode_by_ino_rcu - Find an inode in the inode cache
1583 * @sb:		Super block of file system to search
1584 * @ino:	The inode number to match
1585 *
1586 * Search for the inode specified by @hashval and @data in the inode cache,
1587 * where the helper function @test will return 0 if the inode does not match
1588 * and 1 if it does.  The @test function must be responsible for taking the
1589 * i_lock spin_lock and checking i_state for an inode being freed or being
1590 * initialized.
1591 *
1592 * If successful, this will return the inode for which the @test function
1593 * returned 1 and NULL otherwise.
1594 *
1595 * The @test function is not permitted to take a ref on any inode presented.
1596 * It is also not permitted to sleep.
1597 *
1598 * The caller must hold the RCU read lock.
1599 */
1600struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1601				    unsigned long ino)
1602{
1603	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1604	struct inode *inode;
1605
1606	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1607			 "suspicious find_inode_by_ino_rcu() usage");
1608
1609	hlist_for_each_entry_rcu(inode, head, i_hash) {
1610		if (inode->i_ino == ino &&
1611		    inode->i_sb == sb &&
1612		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1613		    return inode;
1614	}
1615	return NULL;
1616}
1617EXPORT_SYMBOL(find_inode_by_ino_rcu);
1618
1619int insert_inode_locked(struct inode *inode)
1620{
1621	struct super_block *sb = inode->i_sb;
1622	ino_t ino = inode->i_ino;
1623	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1624
1625	while (1) {
 
1626		struct inode *old = NULL;
1627		spin_lock(&inode_hash_lock);
1628		hlist_for_each_entry(old, head, i_hash) {
1629			if (old->i_ino != ino)
1630				continue;
1631			if (old->i_sb != sb)
1632				continue;
1633			spin_lock(&old->i_lock);
1634			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1635				spin_unlock(&old->i_lock);
1636				continue;
1637			}
1638			break;
1639		}
1640		if (likely(!old)) {
1641			spin_lock(&inode->i_lock);
1642			inode->i_state |= I_NEW | I_CREATING;
1643			hlist_add_head_rcu(&inode->i_hash, head);
1644			spin_unlock(&inode->i_lock);
1645			spin_unlock(&inode_hash_lock);
1646			return 0;
1647		}
1648		if (unlikely(old->i_state & I_CREATING)) {
1649			spin_unlock(&old->i_lock);
1650			spin_unlock(&inode_hash_lock);
1651			return -EBUSY;
1652		}
1653		__iget(old);
1654		spin_unlock(&old->i_lock);
1655		spin_unlock(&inode_hash_lock);
1656		wait_on_inode(old);
1657		if (unlikely(!inode_unhashed(old))) {
1658			iput(old);
1659			return -EBUSY;
1660		}
1661		iput(old);
1662	}
1663}
1664EXPORT_SYMBOL(insert_inode_locked);
1665
1666int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1667		int (*test)(struct inode *, void *), void *data)
1668{
1669	struct inode *old;
 
1670
1671	inode->i_state |= I_CREATING;
1672	old = inode_insert5(inode, hashval, test, NULL, data);
 
1673
1674	if (old != inode) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1675		iput(old);
1676		return -EBUSY;
1677	}
1678	return 0;
1679}
1680EXPORT_SYMBOL(insert_inode_locked4);
1681
1682
1683int generic_delete_inode(struct inode *inode)
1684{
1685	return 1;
1686}
1687EXPORT_SYMBOL(generic_delete_inode);
1688
1689/*
1690 * Called when we're dropping the last reference
1691 * to an inode.
1692 *
1693 * Call the FS "drop_inode()" function, defaulting to
1694 * the legacy UNIX filesystem behaviour.  If it tells
1695 * us to evict inode, do so.  Otherwise, retain inode
1696 * in cache if fs is alive, sync and evict if fs is
1697 * shutting down.
1698 */
1699static void iput_final(struct inode *inode)
1700{
1701	struct super_block *sb = inode->i_sb;
1702	const struct super_operations *op = inode->i_sb->s_op;
1703	unsigned long state;
1704	int drop;
1705
1706	WARN_ON(inode->i_state & I_NEW);
1707
1708	if (op->drop_inode)
1709		drop = op->drop_inode(inode);
1710	else
1711		drop = generic_drop_inode(inode);
1712
1713	if (!drop &&
1714	    !(inode->i_state & I_DONTCACHE) &&
1715	    (sb->s_flags & SB_ACTIVE)) {
1716		__inode_add_lru(inode, true);
1717		spin_unlock(&inode->i_lock);
1718		return;
1719	}
1720
1721	state = inode->i_state;
1722	if (!drop) {
1723		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1724		spin_unlock(&inode->i_lock);
1725
1726		write_inode_now(inode, 1);
1727
1728		spin_lock(&inode->i_lock);
1729		state = inode->i_state;
1730		WARN_ON(state & I_NEW);
1731		state &= ~I_WILL_FREE;
1732	}
1733
1734	WRITE_ONCE(inode->i_state, state | I_FREEING);
1735	if (!list_empty(&inode->i_lru))
1736		inode_lru_list_del(inode);
1737	spin_unlock(&inode->i_lock);
1738
1739	evict(inode);
1740}
1741
1742/**
1743 *	iput	- put an inode
1744 *	@inode: inode to put
1745 *
1746 *	Puts an inode, dropping its usage count. If the inode use count hits
1747 *	zero, the inode is then freed and may also be destroyed.
1748 *
1749 *	Consequently, iput() can sleep.
1750 */
1751void iput(struct inode *inode)
1752{
1753	if (!inode)
1754		return;
1755	BUG_ON(inode->i_state & I_CLEAR);
1756retry:
1757	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1758		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1759			atomic_inc(&inode->i_count);
1760			spin_unlock(&inode->i_lock);
1761			trace_writeback_lazytime_iput(inode);
1762			mark_inode_dirty_sync(inode);
1763			goto retry;
1764		}
1765		iput_final(inode);
1766	}
1767}
1768EXPORT_SYMBOL(iput);
1769
1770#ifdef CONFIG_BLOCK
1771/**
1772 *	bmap	- find a block number in a file
1773 *	@inode:  inode owning the block number being requested
1774 *	@block: pointer containing the block to find
1775 *
1776 *	Replaces the value in ``*block`` with the block number on the device holding
1777 *	corresponding to the requested block number in the file.
1778 *	That is, asked for block 4 of inode 1 the function will replace the
1779 *	4 in ``*block``, with disk block relative to the disk start that holds that
1780 *	block of the file.
1781 *
1782 *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1783 *	hole, returns 0 and ``*block`` is also set to 0.
1784 */
1785int bmap(struct inode *inode, sector_t *block)
1786{
1787	if (!inode->i_mapping->a_ops->bmap)
1788		return -EINVAL;
1789
1790	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1791	return 0;
1792}
1793EXPORT_SYMBOL(bmap);
1794#endif
1795
1796/*
1797 * With relative atime, only update atime if the previous atime is
1798 * earlier than or equal to either the ctime or mtime,
1799 * or if at least a day has passed since the last atime update.
1800 */
1801static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1802			     struct timespec64 now)
1803{
1804	struct timespec64 atime, mtime, ctime;
1805
1806	if (!(mnt->mnt_flags & MNT_RELATIME))
1807		return true;
1808	/*
1809	 * Is mtime younger than or equal to atime? If yes, update atime:
1810	 */
1811	atime = inode_get_atime(inode);
1812	mtime = inode_get_mtime(inode);
1813	if (timespec64_compare(&mtime, &atime) >= 0)
1814		return true;
1815	/*
1816	 * Is ctime younger than or equal to atime? If yes, update atime:
1817	 */
1818	ctime = inode_get_ctime(inode);
1819	if (timespec64_compare(&ctime, &atime) >= 0)
1820		return true;
1821
1822	/*
1823	 * Is the previous atime value older than a day? If yes,
1824	 * update atime:
1825	 */
1826	if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60)
1827		return true;
1828	/*
1829	 * Good, we can skip the atime update:
1830	 */
1831	return false;
1832}
1833
1834/**
1835 * inode_update_timestamps - update the timestamps on the inode
1836 * @inode: inode to be updated
1837 * @flags: S_* flags that needed to be updated
1838 *
1839 * The update_time function is called when an inode's timestamps need to be
1840 * updated for a read or write operation. This function handles updating the
1841 * actual timestamps. It's up to the caller to ensure that the inode is marked
1842 * dirty appropriately.
1843 *
1844 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
1845 * attempt to update all three of them. S_ATIME updates can be handled
1846 * independently of the rest.
1847 *
1848 * Returns a set of S_* flags indicating which values changed.
1849 */
1850int inode_update_timestamps(struct inode *inode, int flags)
1851{
1852	int updated = 0;
1853	struct timespec64 now;
1854
1855	if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
1856		struct timespec64 ctime = inode_get_ctime(inode);
1857		struct timespec64 mtime = inode_get_mtime(inode);
1858
1859		now = inode_set_ctime_current(inode);
1860		if (!timespec64_equal(&now, &ctime))
1861			updated |= S_CTIME;
1862		if (!timespec64_equal(&now, &mtime)) {
1863			inode_set_mtime_to_ts(inode, now);
1864			updated |= S_MTIME;
1865		}
1866		if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
1867			updated |= S_VERSION;
1868	} else {
1869		now = current_time(inode);
1870	}
1871
1872	if (flags & S_ATIME) {
1873		struct timespec64 atime = inode_get_atime(inode);
1874
1875		if (!timespec64_equal(&now, &atime)) {
1876			inode_set_atime_to_ts(inode, now);
1877			updated |= S_ATIME;
1878		}
1879	}
1880	return updated;
1881}
1882EXPORT_SYMBOL(inode_update_timestamps);
1883
1884/**
1885 * generic_update_time - update the timestamps on the inode
1886 * @inode: inode to be updated
1887 * @flags: S_* flags that needed to be updated
1888 *
1889 * The update_time function is called when an inode's timestamps need to be
1890 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
1891 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
1892 * updates can be handled done independently of the rest.
1893 *
1894 * Returns a S_* mask indicating which fields were updated.
1895 */
1896int generic_update_time(struct inode *inode, int flags)
1897{
1898	int updated = inode_update_timestamps(inode, flags);
1899	int dirty_flags = 0;
1900
1901	if (updated & (S_ATIME|S_MTIME|S_CTIME))
1902		dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
1903	if (updated & S_VERSION)
1904		dirty_flags |= I_DIRTY_SYNC;
1905	__mark_inode_dirty(inode, dirty_flags);
1906	return updated;
1907}
1908EXPORT_SYMBOL(generic_update_time);
1909
1910/*
1911 * This does the actual work of updating an inodes time or version.  Must have
1912 * had called mnt_want_write() before calling this.
1913 */
1914int inode_update_time(struct inode *inode, int flags)
1915{
1916	if (inode->i_op->update_time)
1917		return inode->i_op->update_time(inode, flags);
1918	generic_update_time(inode, flags);
 
 
 
 
 
 
 
 
 
1919	return 0;
1920}
1921EXPORT_SYMBOL(inode_update_time);
1922
1923/**
1924 *	atime_needs_update	-	update the access time
1925 *	@path: the &struct path to update
1926 *	@inode: inode to update
1927 *
1928 *	Update the accessed time on an inode and mark it for writeback.
1929 *	This function automatically handles read only file systems and media,
1930 *	as well as the "noatime" flag and inode specific "noatime" markers.
1931 */
1932bool atime_needs_update(const struct path *path, struct inode *inode)
1933{
1934	struct vfsmount *mnt = path->mnt;
1935	struct timespec64 now, atime;
 
1936
1937	if (inode->i_flags & S_NOATIME)
1938		return false;
1939
1940	/* Atime updates will likely cause i_uid and i_gid to be written
1941	 * back improprely if their true value is unknown to the vfs.
1942	 */
1943	if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
1944		return false;
1945
1946	if (IS_NOATIME(inode))
1947		return false;
1948	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1949		return false;
1950
1951	if (mnt->mnt_flags & MNT_NOATIME)
1952		return false;
1953	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1954		return false;
1955
1956	now = current_time(inode);
1957
1958	if (!relatime_need_update(mnt, inode, now))
1959		return false;
1960
1961	atime = inode_get_atime(inode);
1962	if (timespec64_equal(&atime, &now))
1963		return false;
1964
1965	return true;
1966}
1967
1968void touch_atime(const struct path *path)
1969{
1970	struct vfsmount *mnt = path->mnt;
1971	struct inode *inode = d_inode(path->dentry);
1972
1973	if (!atime_needs_update(path, inode))
1974		return;
1975
1976	if (!sb_start_write_trylock(inode->i_sb))
1977		return;
1978
1979	if (mnt_get_write_access(mnt) != 0)
1980		goto skip_update;
1981	/*
1982	 * File systems can error out when updating inodes if they need to
1983	 * allocate new space to modify an inode (such is the case for
1984	 * Btrfs), but since we touch atime while walking down the path we
1985	 * really don't care if we failed to update the atime of the file,
1986	 * so just ignore the return value.
1987	 * We may also fail on filesystems that have the ability to make parts
1988	 * of the fs read only, e.g. subvolumes in Btrfs.
1989	 */
1990	inode_update_time(inode, S_ATIME);
1991	mnt_put_write_access(mnt);
1992skip_update:
1993	sb_end_write(inode->i_sb);
1994}
1995EXPORT_SYMBOL(touch_atime);
1996
1997/*
1998 * Return mask of changes for notify_change() that need to be done as a
1999 * response to write or truncate. Return 0 if nothing has to be changed.
2000 * Negative value on error (change should be denied).
 
2001 */
2002int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2003			      struct dentry *dentry)
2004{
2005	struct inode *inode = d_inode(dentry);
2006	int mask = 0;
2007	int ret;
2008
2009	if (IS_NOSEC(inode))
2010		return 0;
 
 
 
 
 
 
 
 
2011
2012	mask = setattr_should_drop_suidgid(idmap, inode);
2013	ret = security_inode_need_killpriv(dentry);
2014	if (ret < 0)
2015		return ret;
2016	if (ret)
2017		mask |= ATTR_KILL_PRIV;
2018	return mask;
2019}
 
2020
2021static int __remove_privs(struct mnt_idmap *idmap,
2022			  struct dentry *dentry, int kill)
2023{
2024	struct iattr newattrs;
2025
2026	newattrs.ia_valid = ATTR_FORCE | kill;
2027	/*
2028	 * Note we call this on write, so notify_change will not
2029	 * encounter any conflicting delegations:
2030	 */
2031	return notify_change(idmap, dentry, &newattrs, NULL);
2032}
2033
2034static int __file_remove_privs(struct file *file, unsigned int flags)
2035{
2036	struct dentry *dentry = file_dentry(file);
2037	struct inode *inode = file_inode(file);
 
 
2038	int error = 0;
2039	int kill;
2040
2041	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
 
2042		return 0;
2043
2044	kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2045	if (kill < 0)
2046		return kill;
2047
2048	if (kill) {
2049		if (flags & IOCB_NOWAIT)
2050			return -EAGAIN;
2051
2052		error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2053	}
 
 
 
 
 
 
2054
2055	if (!error)
2056		inode_has_no_xattr(inode);
2057	return error;
2058}
 
2059
2060/**
2061 * file_remove_privs - remove special file privileges (suid, capabilities)
2062 * @file: file to remove privileges from
2063 *
2064 * When file is modified by a write or truncation ensure that special
2065 * file privileges are removed.
2066 *
2067 * Return: 0 on success, negative errno on failure.
 
 
 
2068 */
2069int file_remove_privs(struct file *file)
2070{
2071	return __file_remove_privs(file, 0);
2072}
2073EXPORT_SYMBOL(file_remove_privs);
2074
2075static int inode_needs_update_time(struct inode *inode)
2076{
 
 
2077	int sync_it = 0;
2078	struct timespec64 now = current_time(inode);
2079	struct timespec64 ts;
2080
2081	/* First try to exhaust all avenues to not sync */
2082	if (IS_NOCMTIME(inode))
2083		return 0;
2084
2085	ts = inode_get_mtime(inode);
2086	if (!timespec64_equal(&ts, &now))
2087		sync_it = S_MTIME;
2088
2089	ts = inode_get_ctime(inode);
2090	if (!timespec64_equal(&ts, &now))
2091		sync_it |= S_CTIME;
2092
2093	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2094		sync_it |= S_VERSION;
2095
2096	return sync_it;
2097}
2098
2099static int __file_update_time(struct file *file, int sync_mode)
2100{
2101	int ret = 0;
2102	struct inode *inode = file_inode(file);
2103
2104	/* try to update time settings */
2105	if (!mnt_get_write_access_file(file)) {
2106		ret = inode_update_time(inode, sync_mode);
2107		mnt_put_write_access_file(file);
2108	}
2109
2110	return ret;
2111}
2112
2113/**
2114 * file_update_time - update mtime and ctime time
2115 * @file: file accessed
2116 *
2117 * Update the mtime and ctime members of an inode and mark the inode for
2118 * writeback. Note that this function is meant exclusively for usage in
2119 * the file write path of filesystems, and filesystems may choose to
2120 * explicitly ignore updates via this function with the _NOCMTIME inode
2121 * flag, e.g. for network filesystem where these imestamps are handled
2122 * by the server. This can return an error for file systems who need to
2123 * allocate space in order to update an inode.
2124 *
2125 * Return: 0 on success, negative errno on failure.
2126 */
2127int file_update_time(struct file *file)
2128{
2129	int ret;
2130	struct inode *inode = file_inode(file);
2131
2132	ret = inode_needs_update_time(inode);
2133	if (ret <= 0)
2134		return ret;
2135
2136	return __file_update_time(file, ret);
2137}
2138EXPORT_SYMBOL(file_update_time);
2139
2140/**
2141 * file_modified_flags - handle mandated vfs changes when modifying a file
2142 * @file: file that was modified
2143 * @flags: kiocb flags
2144 *
2145 * When file has been modified ensure that special
2146 * file privileges are removed and time settings are updated.
2147 *
2148 * If IOCB_NOWAIT is set, special file privileges will not be removed and
2149 * time settings will not be updated. It will return -EAGAIN.
2150 *
2151 * Context: Caller must hold the file's inode lock.
2152 *
2153 * Return: 0 on success, negative errno on failure.
2154 */
2155static int file_modified_flags(struct file *file, int flags)
2156{
2157	int ret;
2158	struct inode *inode = file_inode(file);
2159
2160	/*
2161	 * Clear the security bits if the process is not being run by root.
2162	 * This keeps people from modifying setuid and setgid binaries.
2163	 */
2164	ret = __file_remove_privs(file, flags);
2165	if (ret)
2166		return ret;
2167
2168	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2169		return 0;
2170
2171	ret = inode_needs_update_time(inode);
2172	if (ret <= 0)
2173		return ret;
2174	if (flags & IOCB_NOWAIT)
2175		return -EAGAIN;
2176
2177	return __file_update_time(file, ret);
2178}
2179
2180/**
2181 * file_modified - handle mandated vfs changes when modifying a file
2182 * @file: file that was modified
2183 *
2184 * When file has been modified ensure that special
2185 * file privileges are removed and time settings are updated.
2186 *
2187 * Context: Caller must hold the file's inode lock.
2188 *
2189 * Return: 0 on success, negative errno on failure.
2190 */
2191int file_modified(struct file *file)
2192{
2193	return file_modified_flags(file, 0);
2194}
2195EXPORT_SYMBOL(file_modified);
2196
2197/**
2198 * kiocb_modified - handle mandated vfs changes when modifying a file
2199 * @iocb: iocb that was modified
2200 *
2201 * When file has been modified ensure that special
2202 * file privileges are removed and time settings are updated.
2203 *
2204 * Context: Caller must hold the file's inode lock.
2205 *
2206 * Return: 0 on success, negative errno on failure.
2207 */
2208int kiocb_modified(struct kiocb *iocb)
2209{
2210	return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2211}
2212EXPORT_SYMBOL_GPL(kiocb_modified);
2213
2214int inode_needs_sync(struct inode *inode)
2215{
2216	if (IS_SYNC(inode))
2217		return 1;
2218	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2219		return 1;
2220	return 0;
2221}
2222EXPORT_SYMBOL(inode_needs_sync);
2223
 
 
 
 
 
 
 
2224/*
2225 * If we try to find an inode in the inode hash while it is being
2226 * deleted, we have to wait until the filesystem completes its
2227 * deletion before reporting that it isn't found.  This function waits
2228 * until the deletion _might_ have completed.  Callers are responsible
2229 * to recheck inode state.
2230 *
2231 * It doesn't matter if I_NEW is not set initially, a call to
2232 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2233 * will DTRT.
2234 */
2235static void __wait_on_freeing_inode(struct inode *inode)
2236{
2237	wait_queue_head_t *wq;
2238	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2239	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2240	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2241	spin_unlock(&inode->i_lock);
2242	spin_unlock(&inode_hash_lock);
2243	schedule();
2244	finish_wait(wq, &wait.wq_entry);
2245	spin_lock(&inode_hash_lock);
2246}
2247
2248static __initdata unsigned long ihash_entries;
2249static int __init set_ihash_entries(char *str)
2250{
2251	if (!str)
2252		return 0;
2253	ihash_entries = simple_strtoul(str, &str, 0);
2254	return 1;
2255}
2256__setup("ihash_entries=", set_ihash_entries);
2257
2258/*
2259 * Initialize the waitqueues and inode hash table.
2260 */
2261void __init inode_init_early(void)
2262{
 
 
2263	/* If hashes are distributed across NUMA nodes, defer
2264	 * hash allocation until vmalloc space is available.
2265	 */
2266	if (hashdist)
2267		return;
2268
2269	inode_hashtable =
2270		alloc_large_system_hash("Inode-cache",
2271					sizeof(struct hlist_head),
2272					ihash_entries,
2273					14,
2274					HASH_EARLY | HASH_ZERO,
2275					&i_hash_shift,
2276					&i_hash_mask,
2277					0,
2278					0);
 
 
 
2279}
2280
2281void __init inode_init(void)
2282{
 
 
2283	/* inode slab cache */
2284	inode_cachep = kmem_cache_create("inode_cache",
2285					 sizeof(struct inode),
2286					 0,
2287					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2288					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2289					 init_once);
2290
2291	/* Hash may have been set up in inode_init_early */
2292	if (!hashdist)
2293		return;
2294
2295	inode_hashtable =
2296		alloc_large_system_hash("Inode-cache",
2297					sizeof(struct hlist_head),
2298					ihash_entries,
2299					14,
2300					HASH_ZERO,
2301					&i_hash_shift,
2302					&i_hash_mask,
2303					0,
2304					0);
 
 
 
2305}
2306
2307void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2308{
2309	inode->i_mode = mode;
2310	if (S_ISCHR(mode)) {
2311		inode->i_fop = &def_chr_fops;
2312		inode->i_rdev = rdev;
2313	} else if (S_ISBLK(mode)) {
2314		if (IS_ENABLED(CONFIG_BLOCK))
2315			inode->i_fop = &def_blk_fops;
2316		inode->i_rdev = rdev;
2317	} else if (S_ISFIFO(mode))
2318		inode->i_fop = &pipefifo_fops;
2319	else if (S_ISSOCK(mode))
2320		;	/* leave it no_open_fops */
2321	else
2322		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2323				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2324				  inode->i_ino);
2325}
2326EXPORT_SYMBOL(init_special_inode);
2327
2328/**
2329 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2330 * @idmap: idmap of the mount the inode was created from
2331 * @inode: New inode
2332 * @dir: Directory inode
2333 * @mode: mode of the new inode
2334 *
2335 * If the inode has been created through an idmapped mount the idmap of
2336 * the vfsmount must be passed through @idmap. This function will then take
2337 * care to map the inode according to @idmap before checking permissions
2338 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2339 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2340 */
2341void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2342		      const struct inode *dir, umode_t mode)
2343{
2344	inode_fsuid_set(inode, idmap);
2345	if (dir && dir->i_mode & S_ISGID) {
2346		inode->i_gid = dir->i_gid;
2347
2348		/* Directories are special, and always inherit S_ISGID */
2349		if (S_ISDIR(mode))
2350			mode |= S_ISGID;
2351	} else
2352		inode_fsgid_set(inode, idmap);
2353	inode->i_mode = mode;
2354}
2355EXPORT_SYMBOL(inode_init_owner);
2356
2357/**
2358 * inode_owner_or_capable - check current task permissions to inode
2359 * @idmap: idmap of the mount the inode was found from
2360 * @inode: inode being checked
2361 *
2362 * Return true if current either has CAP_FOWNER in a namespace with the
2363 * inode owner uid mapped, or owns the file.
2364 *
2365 * If the inode has been found through an idmapped mount the idmap of
2366 * the vfsmount must be passed through @idmap. This function will then take
2367 * care to map the inode according to @idmap before checking permissions.
2368 * On non-idmapped mounts or if permission checking is to be performed on the
2369 * raw inode simply pass @nop_mnt_idmap.
2370 */
2371bool inode_owner_or_capable(struct mnt_idmap *idmap,
2372			    const struct inode *inode)
2373{
2374	vfsuid_t vfsuid;
2375	struct user_namespace *ns;
2376
2377	vfsuid = i_uid_into_vfsuid(idmap, inode);
2378	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2379		return true;
2380
2381	ns = current_user_ns();
2382	if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2383		return true;
2384	return false;
2385}
2386EXPORT_SYMBOL(inode_owner_or_capable);
2387
2388/*
2389 * Direct i/o helper functions
2390 */
2391static void __inode_dio_wait(struct inode *inode)
2392{
2393	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2394	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2395
2396	do {
2397		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2398		if (atomic_read(&inode->i_dio_count))
2399			schedule();
2400	} while (atomic_read(&inode->i_dio_count));
2401	finish_wait(wq, &q.wq_entry);
2402}
2403
2404/**
2405 * inode_dio_wait - wait for outstanding DIO requests to finish
2406 * @inode: inode to wait for
2407 *
2408 * Waits for all pending direct I/O requests to finish so that we can
2409 * proceed with a truncate or equivalent operation.
2410 *
2411 * Must be called under a lock that serializes taking new references
2412 * to i_dio_count, usually by inode->i_mutex.
2413 */
2414void inode_dio_wait(struct inode *inode)
2415{
2416	if (atomic_read(&inode->i_dio_count))
2417		__inode_dio_wait(inode);
2418}
2419EXPORT_SYMBOL(inode_dio_wait);
2420
2421/*
2422 * inode_set_flags - atomically set some inode flags
2423 *
2424 * Note: the caller should be holding i_mutex, or else be sure that
2425 * they have exclusive access to the inode structure (i.e., while the
2426 * inode is being instantiated).  The reason for the cmpxchg() loop
2427 * --- which wouldn't be necessary if all code paths which modify
2428 * i_flags actually followed this rule, is that there is at least one
2429 * code path which doesn't today so we use cmpxchg() out of an abundance
2430 * of caution.
2431 *
2432 * In the long run, i_mutex is overkill, and we should probably look
2433 * at using the i_lock spinlock to protect i_flags, and then make sure
2434 * it is so documented in include/linux/fs.h and that all code follows
2435 * the locking convention!!
2436 */
2437void inode_set_flags(struct inode *inode, unsigned int flags,
2438		     unsigned int mask)
2439{
2440	WARN_ON_ONCE(flags & ~mask);
2441	set_mask_bits(&inode->i_flags, mask, flags);
2442}
2443EXPORT_SYMBOL(inode_set_flags);
2444
2445void inode_nohighmem(struct inode *inode)
2446{
2447	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2448}
2449EXPORT_SYMBOL(inode_nohighmem);
2450
2451/**
2452 * timestamp_truncate - Truncate timespec to a granularity
2453 * @t: Timespec
2454 * @inode: inode being updated
2455 *
2456 * Truncate a timespec to the granularity supported by the fs
2457 * containing the inode. Always rounds down. gran must
2458 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2459 */
2460struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2461{
2462	struct super_block *sb = inode->i_sb;
2463	unsigned int gran = sb->s_time_gran;
2464
2465	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2466	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2467		t.tv_nsec = 0;
2468
2469	/* Avoid division in the common cases 1 ns and 1 s. */
2470	if (gran == 1)
2471		; /* nothing */
2472	else if (gran == NSEC_PER_SEC)
2473		t.tv_nsec = 0;
2474	else if (gran > 1 && gran < NSEC_PER_SEC)
2475		t.tv_nsec -= t.tv_nsec % gran;
2476	else
2477		WARN(1, "invalid file time granularity: %u", gran);
2478	return t;
2479}
2480EXPORT_SYMBOL(timestamp_truncate);
2481
2482/**
2483 * current_time - Return FS time
2484 * @inode: inode.
2485 *
2486 * Return the current time truncated to the time granularity supported by
2487 * the fs.
2488 *
2489 * Note that inode and inode->sb cannot be NULL.
2490 * Otherwise, the function warns and returns time without truncation.
2491 */
2492struct timespec64 current_time(struct inode *inode)
2493{
2494	struct timespec64 now;
2495
2496	ktime_get_coarse_real_ts64(&now);
2497	return timestamp_truncate(now, inode);
2498}
2499EXPORT_SYMBOL(current_time);
2500
2501/**
2502 * inode_set_ctime_current - set the ctime to current_time
2503 * @inode: inode
2504 *
2505 * Set the inode->i_ctime to the current value for the inode. Returns
2506 * the current value that was assigned to i_ctime.
2507 */
2508struct timespec64 inode_set_ctime_current(struct inode *inode)
2509{
2510	struct timespec64 now = current_time(inode);
2511
2512	inode_set_ctime(inode, now.tv_sec, now.tv_nsec);
2513	return now;
2514}
2515EXPORT_SYMBOL(inode_set_ctime_current);
2516
2517/**
2518 * in_group_or_capable - check whether caller is CAP_FSETID privileged
2519 * @idmap:	idmap of the mount @inode was found from
2520 * @inode:	inode to check
2521 * @vfsgid:	the new/current vfsgid of @inode
2522 *
2523 * Check wether @vfsgid is in the caller's group list or if the caller is
2524 * privileged with CAP_FSETID over @inode. This can be used to determine
2525 * whether the setgid bit can be kept or must be dropped.
2526 *
2527 * Return: true if the caller is sufficiently privileged, false if not.
2528 */
2529bool in_group_or_capable(struct mnt_idmap *idmap,
2530			 const struct inode *inode, vfsgid_t vfsgid)
2531{
2532	if (vfsgid_in_group_p(vfsgid))
2533		return true;
2534	if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2535		return true;
2536	return false;
2537}
2538
2539/**
2540 * mode_strip_sgid - handle the sgid bit for non-directories
2541 * @idmap: idmap of the mount the inode was created from
2542 * @dir: parent directory inode
2543 * @mode: mode of the file to be created in @dir
2544 *
2545 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2546 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2547 * either in the group of the parent directory or they have CAP_FSETID
2548 * in their user namespace and are privileged over the parent directory.
2549 * In all other cases, strip the S_ISGID bit from @mode.
2550 *
2551 * Return: the new mode to use for the file
2552 */
2553umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2554			const struct inode *dir, umode_t mode)
2555{
2556	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2557		return mode;
2558	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2559		return mode;
2560	if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2561		return mode;
2562	return mode & ~S_ISGID;
2563}
2564EXPORT_SYMBOL(mode_strip_sgid);
v3.5.6
 
   1/*
   2 * (C) 1997 Linus Torvalds
   3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   4 */
   5#include <linux/export.h>
   6#include <linux/fs.h>
 
   7#include <linux/mm.h>
   8#include <linux/backing-dev.h>
   9#include <linux/hash.h>
  10#include <linux/swap.h>
  11#include <linux/security.h>
  12#include <linux/cdev.h>
  13#include <linux/bootmem.h>
  14#include <linux/fsnotify.h>
  15#include <linux/mount.h>
  16#include <linux/posix_acl.h>
  17#include <linux/prefetch.h>
  18#include <linux/buffer_head.h> /* for inode_has_buffers */
  19#include <linux/ratelimit.h>
 
 
 
  20#include "internal.h"
  21
  22/*
  23 * Inode locking rules:
  24 *
  25 * inode->i_lock protects:
  26 *   inode->i_state, inode->i_hash, __iget()
  27 * inode->i_sb->s_inode_lru_lock protects:
  28 *   inode->i_sb->s_inode_lru, inode->i_lru
  29 * inode_sb_list_lock protects:
  30 *   sb->s_inodes, inode->i_sb_list
  31 * bdi->wb.list_lock protects:
  32 *   bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
  33 * inode_hash_lock protects:
  34 *   inode_hashtable, inode->i_hash
  35 *
  36 * Lock ordering:
  37 *
  38 * inode_sb_list_lock
  39 *   inode->i_lock
  40 *     inode->i_sb->s_inode_lru_lock
  41 *
  42 * bdi->wb.list_lock
  43 *   inode->i_lock
  44 *
  45 * inode_hash_lock
  46 *   inode_sb_list_lock
  47 *   inode->i_lock
  48 *
  49 * iunique_lock
  50 *   inode_hash_lock
  51 */
  52
  53static unsigned int i_hash_mask __read_mostly;
  54static unsigned int i_hash_shift __read_mostly;
  55static struct hlist_head *inode_hashtable __read_mostly;
  56static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  57
  58__cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
  59
  60/*
  61 * Empty aops. Can be used for the cases where the user does not
  62 * define any of the address_space operations.
  63 */
  64const struct address_space_operations empty_aops = {
  65};
  66EXPORT_SYMBOL(empty_aops);
  67
  68/*
  69 * Statistics gathering..
  70 */
  71struct inodes_stat_t inodes_stat;
  72
  73static DEFINE_PER_CPU(unsigned int, nr_inodes);
  74static DEFINE_PER_CPU(unsigned int, nr_unused);
  75
  76static struct kmem_cache *inode_cachep __read_mostly;
  77
  78static int get_nr_inodes(void)
  79{
  80	int i;
  81	int sum = 0;
  82	for_each_possible_cpu(i)
  83		sum += per_cpu(nr_inodes, i);
  84	return sum < 0 ? 0 : sum;
  85}
  86
  87static inline int get_nr_inodes_unused(void)
  88{
  89	int i;
  90	int sum = 0;
  91	for_each_possible_cpu(i)
  92		sum += per_cpu(nr_unused, i);
  93	return sum < 0 ? 0 : sum;
  94}
  95
  96int get_nr_dirty_inodes(void)
  97{
  98	/* not actually dirty inodes, but a wild approximation */
  99	int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
 100	return nr_dirty > 0 ? nr_dirty : 0;
 101}
 102
 103/*
 104 * Handle nr_inode sysctl
 105 */
 106#ifdef CONFIG_SYSCTL
 107int proc_nr_inodes(ctl_table *table, int write,
 108		   void __user *buffer, size_t *lenp, loff_t *ppos)
 
 
 
 
 
 109{
 110	inodes_stat.nr_inodes = get_nr_inodes();
 111	inodes_stat.nr_unused = get_nr_inodes_unused();
 112	return proc_dointvec(table, write, buffer, lenp, ppos);
 113}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114#endif
 115
 
 
 
 
 
 116/**
 117 * inode_init_always - perform inode structure intialisation
 118 * @sb: superblock inode belongs to
 119 * @inode: inode to initialise
 120 *
 121 * These are initializations that need to be done on every inode
 122 * allocation as the fields are not initialised by slab allocation.
 123 */
 124int inode_init_always(struct super_block *sb, struct inode *inode)
 125{
 126	static const struct inode_operations empty_iops;
 127	static const struct file_operations empty_fops;
 128	struct address_space *const mapping = &inode->i_data;
 129
 130	inode->i_sb = sb;
 131	inode->i_blkbits = sb->s_blocksize_bits;
 132	inode->i_flags = 0;
 
 133	atomic_set(&inode->i_count, 1);
 134	inode->i_op = &empty_iops;
 135	inode->i_fop = &empty_fops;
 
 136	inode->__i_nlink = 1;
 137	inode->i_opflags = 0;
 
 
 138	i_uid_write(inode, 0);
 139	i_gid_write(inode, 0);
 140	atomic_set(&inode->i_writecount, 0);
 141	inode->i_size = 0;
 
 142	inode->i_blocks = 0;
 143	inode->i_bytes = 0;
 144	inode->i_generation = 0;
 145#ifdef CONFIG_QUOTA
 146	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
 147#endif
 148	inode->i_pipe = NULL;
 149	inode->i_bdev = NULL;
 150	inode->i_cdev = NULL;
 
 
 151	inode->i_rdev = 0;
 152	inode->dirtied_when = 0;
 153
 154	if (security_inode_alloc(inode))
 155		goto out;
 
 
 
 
 156	spin_lock_init(&inode->i_lock);
 157	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 158
 159	mutex_init(&inode->i_mutex);
 160	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
 161
 162	atomic_set(&inode->i_dio_count, 0);
 163
 164	mapping->a_ops = &empty_aops;
 165	mapping->host = inode;
 166	mapping->flags = 0;
 
 
 
 
 
 167	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 168	mapping->assoc_mapping = NULL;
 169	mapping->backing_dev_info = &default_backing_dev_info;
 170	mapping->writeback_index = 0;
 171
 172	/*
 173	 * If the block_device provides a backing_dev_info for client
 174	 * inodes then use that.  Otherwise the inode share the bdev's
 175	 * backing_dev_info.
 176	 */
 177	if (sb->s_bdev) {
 178		struct backing_dev_info *bdi;
 179
 180		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
 181		mapping->backing_dev_info = bdi;
 182	}
 183	inode->i_private = NULL;
 184	inode->i_mapping = mapping;
 185	INIT_LIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
 186#ifdef CONFIG_FS_POSIX_ACL
 187	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 188#endif
 189
 190#ifdef CONFIG_FSNOTIFY
 191	inode->i_fsnotify_mask = 0;
 192#endif
 
 193
 
 
 194	this_cpu_inc(nr_inodes);
 195
 196	return 0;
 197out:
 198	return -ENOMEM;
 199}
 200EXPORT_SYMBOL(inode_init_always);
 201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 202static struct inode *alloc_inode(struct super_block *sb)
 203{
 
 204	struct inode *inode;
 205
 206	if (sb->s_op->alloc_inode)
 207		inode = sb->s_op->alloc_inode(sb);
 208	else
 209		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
 210
 211	if (!inode)
 212		return NULL;
 213
 214	if (unlikely(inode_init_always(sb, inode))) {
 215		if (inode->i_sb->s_op->destroy_inode)
 216			inode->i_sb->s_op->destroy_inode(inode);
 217		else
 218			kmem_cache_free(inode_cachep, inode);
 
 
 
 219		return NULL;
 220	}
 221
 222	return inode;
 223}
 224
 225void free_inode_nonrcu(struct inode *inode)
 226{
 227	kmem_cache_free(inode_cachep, inode);
 228}
 229EXPORT_SYMBOL(free_inode_nonrcu);
 230
 231void __destroy_inode(struct inode *inode)
 232{
 233	BUG_ON(inode_has_buffers(inode));
 
 234	security_inode_free(inode);
 235	fsnotify_inode_delete(inode);
 
 236	if (!inode->i_nlink) {
 237		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 238		atomic_long_dec(&inode->i_sb->s_remove_count);
 239	}
 240
 241#ifdef CONFIG_FS_POSIX_ACL
 242	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
 243		posix_acl_release(inode->i_acl);
 244	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
 245		posix_acl_release(inode->i_default_acl);
 246#endif
 247	this_cpu_dec(nr_inodes);
 248}
 249EXPORT_SYMBOL(__destroy_inode);
 250
 251static void i_callback(struct rcu_head *head)
 252{
 253	struct inode *inode = container_of(head, struct inode, i_rcu);
 254	kmem_cache_free(inode_cachep, inode);
 255}
 256
 257static void destroy_inode(struct inode *inode)
 258{
 259	BUG_ON(!list_empty(&inode->i_lru));
 260	__destroy_inode(inode);
 261	if (inode->i_sb->s_op->destroy_inode)
 262		inode->i_sb->s_op->destroy_inode(inode);
 263	else
 264		call_rcu(&inode->i_rcu, i_callback);
 
 
 
 265}
 266
 267/**
 268 * drop_nlink - directly drop an inode's link count
 269 * @inode: inode
 270 *
 271 * This is a low-level filesystem helper to replace any
 272 * direct filesystem manipulation of i_nlink.  In cases
 273 * where we are attempting to track writes to the
 274 * filesystem, a decrement to zero means an imminent
 275 * write when the file is truncated and actually unlinked
 276 * on the filesystem.
 277 */
 278void drop_nlink(struct inode *inode)
 279{
 280	WARN_ON(inode->i_nlink == 0);
 281	inode->__i_nlink--;
 282	if (!inode->i_nlink)
 283		atomic_long_inc(&inode->i_sb->s_remove_count);
 284}
 285EXPORT_SYMBOL(drop_nlink);
 286
 287/**
 288 * clear_nlink - directly zero an inode's link count
 289 * @inode: inode
 290 *
 291 * This is a low-level filesystem helper to replace any
 292 * direct filesystem manipulation of i_nlink.  See
 293 * drop_nlink() for why we care about i_nlink hitting zero.
 294 */
 295void clear_nlink(struct inode *inode)
 296{
 297	if (inode->i_nlink) {
 298		inode->__i_nlink = 0;
 299		atomic_long_inc(&inode->i_sb->s_remove_count);
 300	}
 301}
 302EXPORT_SYMBOL(clear_nlink);
 303
 304/**
 305 * set_nlink - directly set an inode's link count
 306 * @inode: inode
 307 * @nlink: new nlink (should be non-zero)
 308 *
 309 * This is a low-level filesystem helper to replace any
 310 * direct filesystem manipulation of i_nlink.
 311 */
 312void set_nlink(struct inode *inode, unsigned int nlink)
 313{
 314	if (!nlink) {
 315		clear_nlink(inode);
 316	} else {
 317		/* Yes, some filesystems do change nlink from zero to one */
 318		if (inode->i_nlink == 0)
 319			atomic_long_dec(&inode->i_sb->s_remove_count);
 320
 321		inode->__i_nlink = nlink;
 322	}
 323}
 324EXPORT_SYMBOL(set_nlink);
 325
 326/**
 327 * inc_nlink - directly increment an inode's link count
 328 * @inode: inode
 329 *
 330 * This is a low-level filesystem helper to replace any
 331 * direct filesystem manipulation of i_nlink.  Currently,
 332 * it is only here for parity with dec_nlink().
 333 */
 334void inc_nlink(struct inode *inode)
 335{
 336	if (WARN_ON(inode->i_nlink == 0))
 
 337		atomic_long_dec(&inode->i_sb->s_remove_count);
 
 338
 339	inode->__i_nlink++;
 340}
 341EXPORT_SYMBOL(inc_nlink);
 342
 
 
 
 
 
 
 
 
 
 343void address_space_init_once(struct address_space *mapping)
 344{
 345	memset(mapping, 0, sizeof(*mapping));
 346	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
 347	spin_lock_init(&mapping->tree_lock);
 348	mutex_init(&mapping->i_mmap_mutex);
 349	INIT_LIST_HEAD(&mapping->private_list);
 350	spin_lock_init(&mapping->private_lock);
 351	INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
 352	INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
 353}
 354EXPORT_SYMBOL(address_space_init_once);
 355
 356/*
 357 * These are initializations that only need to be done
 358 * once, because the fields are idempotent across use
 359 * of the inode, so let the slab aware of that.
 360 */
 361void inode_init_once(struct inode *inode)
 362{
 363	memset(inode, 0, sizeof(*inode));
 364	INIT_HLIST_NODE(&inode->i_hash);
 365	INIT_LIST_HEAD(&inode->i_devices);
 
 366	INIT_LIST_HEAD(&inode->i_wb_list);
 367	INIT_LIST_HEAD(&inode->i_lru);
 368	address_space_init_once(&inode->i_data);
 
 369	i_size_ordered_init(inode);
 370#ifdef CONFIG_FSNOTIFY
 371	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
 372#endif
 373}
 374EXPORT_SYMBOL(inode_init_once);
 375
 376static void init_once(void *foo)
 377{
 378	struct inode *inode = (struct inode *) foo;
 379
 380	inode_init_once(inode);
 381}
 382
 383/*
 384 * inode->i_lock must be held
 385 */
 386void __iget(struct inode *inode)
 387{
 388	atomic_inc(&inode->i_count);
 389}
 390
 391/*
 392 * get additional reference to inode; caller must already hold one.
 393 */
 394void ihold(struct inode *inode)
 395{
 396	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 397}
 398EXPORT_SYMBOL(ihold);
 399
 400static void inode_lru_list_add(struct inode *inode)
 401{
 402	spin_lock(&inode->i_sb->s_inode_lru_lock);
 403	if (list_empty(&inode->i_lru)) {
 404		list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
 405		inode->i_sb->s_nr_inodes_unused++;
 
 
 
 
 
 
 406		this_cpu_inc(nr_unused);
 407	}
 408	spin_unlock(&inode->i_sb->s_inode_lru_lock);
 
 
 
 
 
 
 
 
 
 
 409}
 410
 411static void inode_lru_list_del(struct inode *inode)
 412{
 413	spin_lock(&inode->i_sb->s_inode_lru_lock);
 414	if (!list_empty(&inode->i_lru)) {
 415		list_del_init(&inode->i_lru);
 416		inode->i_sb->s_nr_inodes_unused--;
 417		this_cpu_dec(nr_unused);
 418	}
 419	spin_unlock(&inode->i_sb->s_inode_lru_lock);
 420}
 421
 422/**
 423 * inode_sb_list_add - add inode to the superblock list of inodes
 424 * @inode: inode to add
 425 */
 426void inode_sb_list_add(struct inode *inode)
 427{
 428	spin_lock(&inode_sb_list_lock);
 429	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 430	spin_unlock(&inode_sb_list_lock);
 431}
 432EXPORT_SYMBOL_GPL(inode_sb_list_add);
 433
 434static inline void inode_sb_list_del(struct inode *inode)
 435{
 436	if (!list_empty(&inode->i_sb_list)) {
 437		spin_lock(&inode_sb_list_lock);
 438		list_del_init(&inode->i_sb_list);
 439		spin_unlock(&inode_sb_list_lock);
 440	}
 441}
 442
 443static unsigned long hash(struct super_block *sb, unsigned long hashval)
 444{
 445	unsigned long tmp;
 446
 447	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 448			L1_CACHE_BYTES;
 449	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 450	return tmp & i_hash_mask;
 451}
 452
 453/**
 454 *	__insert_inode_hash - hash an inode
 455 *	@inode: unhashed inode
 456 *	@hashval: unsigned long value used to locate this object in the
 457 *		inode_hashtable.
 458 *
 459 *	Add an inode to the inode hash for this superblock.
 460 */
 461void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 462{
 463	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 464
 465	spin_lock(&inode_hash_lock);
 466	spin_lock(&inode->i_lock);
 467	hlist_add_head(&inode->i_hash, b);
 468	spin_unlock(&inode->i_lock);
 469	spin_unlock(&inode_hash_lock);
 470}
 471EXPORT_SYMBOL(__insert_inode_hash);
 472
 473/**
 474 *	__remove_inode_hash - remove an inode from the hash
 475 *	@inode: inode to unhash
 476 *
 477 *	Remove an inode from the superblock.
 478 */
 479void __remove_inode_hash(struct inode *inode)
 480{
 481	spin_lock(&inode_hash_lock);
 482	spin_lock(&inode->i_lock);
 483	hlist_del_init(&inode->i_hash);
 484	spin_unlock(&inode->i_lock);
 485	spin_unlock(&inode_hash_lock);
 486}
 487EXPORT_SYMBOL(__remove_inode_hash);
 488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 489void clear_inode(struct inode *inode)
 490{
 491	might_sleep();
 492	/*
 493	 * We have to cycle tree_lock here because reclaim can be still in the
 494	 * process of removing the last page (in __delete_from_page_cache())
 495	 * and we must not free mapping under it.
 496	 */
 497	spin_lock_irq(&inode->i_data.tree_lock);
 498	BUG_ON(inode->i_data.nrpages);
 499	spin_unlock_irq(&inode->i_data.tree_lock);
 500	BUG_ON(!list_empty(&inode->i_data.private_list));
 
 
 
 
 
 
 
 
 501	BUG_ON(!(inode->i_state & I_FREEING));
 502	BUG_ON(inode->i_state & I_CLEAR);
 
 503	/* don't need i_lock here, no concurrent mods to i_state */
 504	inode->i_state = I_FREEING | I_CLEAR;
 505}
 506EXPORT_SYMBOL(clear_inode);
 507
 508/*
 509 * Free the inode passed in, removing it from the lists it is still connected
 510 * to. We remove any pages still attached to the inode and wait for any IO that
 511 * is still in progress before finally destroying the inode.
 512 *
 513 * An inode must already be marked I_FREEING so that we avoid the inode being
 514 * moved back onto lists if we race with other code that manipulates the lists
 515 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 516 *
 517 * An inode must already be removed from the LRU list before being evicted from
 518 * the cache. This should occur atomically with setting the I_FREEING state
 519 * flag, so no inodes here should ever be on the LRU when being evicted.
 520 */
 521static void evict(struct inode *inode)
 522{
 523	const struct super_operations *op = inode->i_sb->s_op;
 524
 525	BUG_ON(!(inode->i_state & I_FREEING));
 526	BUG_ON(!list_empty(&inode->i_lru));
 527
 528	if (!list_empty(&inode->i_wb_list))
 529		inode_wb_list_del(inode);
 530
 531	inode_sb_list_del(inode);
 532
 533	/*
 534	 * Wait for flusher thread to be done with the inode so that filesystem
 535	 * does not start destroying it while writeback is still running. Since
 536	 * the inode has I_FREEING set, flusher thread won't start new work on
 537	 * the inode.  We just have to wait for running writeback to finish.
 538	 */
 539	inode_wait_for_writeback(inode);
 540
 541	if (op->evict_inode) {
 542		op->evict_inode(inode);
 543	} else {
 544		if (inode->i_data.nrpages)
 545			truncate_inode_pages(&inode->i_data, 0);
 546		clear_inode(inode);
 547	}
 548	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
 549		bd_forget(inode);
 550	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 551		cd_forget(inode);
 552
 553	remove_inode_hash(inode);
 554
 555	spin_lock(&inode->i_lock);
 556	wake_up_bit(&inode->i_state, __I_NEW);
 557	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 558	spin_unlock(&inode->i_lock);
 559
 560	destroy_inode(inode);
 561}
 562
 563/*
 564 * dispose_list - dispose of the contents of a local list
 565 * @head: the head of the list to free
 566 *
 567 * Dispose-list gets a local list with local inodes in it, so it doesn't
 568 * need to worry about list corruption and SMP locks.
 569 */
 570static void dispose_list(struct list_head *head)
 571{
 572	while (!list_empty(head)) {
 573		struct inode *inode;
 574
 575		inode = list_first_entry(head, struct inode, i_lru);
 576		list_del_init(&inode->i_lru);
 577
 578		evict(inode);
 
 579	}
 580}
 581
 582/**
 583 * evict_inodes	- evict all evictable inodes for a superblock
 584 * @sb:		superblock to operate on
 585 *
 586 * Make sure that no inodes with zero refcount are retained.  This is
 587 * called by superblock shutdown after having MS_ACTIVE flag removed,
 588 * so any inode reaching zero refcount during or after that call will
 589 * be immediately evicted.
 590 */
 591void evict_inodes(struct super_block *sb)
 592{
 593	struct inode *inode, *next;
 594	LIST_HEAD(dispose);
 595
 596	spin_lock(&inode_sb_list_lock);
 
 597	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 598		if (atomic_read(&inode->i_count))
 599			continue;
 600
 601		spin_lock(&inode->i_lock);
 602		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 603			spin_unlock(&inode->i_lock);
 604			continue;
 605		}
 606
 607		inode->i_state |= I_FREEING;
 608		inode_lru_list_del(inode);
 609		spin_unlock(&inode->i_lock);
 610		list_add(&inode->i_lru, &dispose);
 
 
 
 
 
 
 
 
 
 
 
 
 611	}
 612	spin_unlock(&inode_sb_list_lock);
 613
 614	dispose_list(&dispose);
 615}
 
 616
 617/**
 618 * invalidate_inodes	- attempt to free all inodes on a superblock
 619 * @sb:		superblock to operate on
 620 * @kill_dirty: flag to guide handling of dirty inodes
 621 *
 622 * Attempts to free all inodes for a given superblock.  If there were any
 623 * busy inodes return a non-zero value, else zero.
 624 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
 625 * them as busy.
 626 */
 627int invalidate_inodes(struct super_block *sb, bool kill_dirty)
 628{
 629	int busy = 0;
 630	struct inode *inode, *next;
 631	LIST_HEAD(dispose);
 632
 633	spin_lock(&inode_sb_list_lock);
 
 634	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 635		spin_lock(&inode->i_lock);
 636		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 637			spin_unlock(&inode->i_lock);
 638			continue;
 639		}
 640		if (inode->i_state & I_DIRTY && !kill_dirty) {
 641			spin_unlock(&inode->i_lock);
 642			busy = 1;
 643			continue;
 644		}
 645		if (atomic_read(&inode->i_count)) {
 646			spin_unlock(&inode->i_lock);
 647			busy = 1;
 648			continue;
 649		}
 650
 651		inode->i_state |= I_FREEING;
 652		inode_lru_list_del(inode);
 653		spin_unlock(&inode->i_lock);
 654		list_add(&inode->i_lru, &dispose);
 
 
 
 
 
 
 655	}
 656	spin_unlock(&inode_sb_list_lock);
 657
 658	dispose_list(&dispose);
 659
 660	return busy;
 661}
 662
 663static int can_unuse(struct inode *inode)
 664{
 665	if (inode->i_state & ~I_REFERENCED)
 666		return 0;
 667	if (inode_has_buffers(inode))
 668		return 0;
 669	if (atomic_read(&inode->i_count))
 670		return 0;
 671	if (inode->i_data.nrpages)
 672		return 0;
 673	return 1;
 674}
 675
 676/*
 677 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 678 * This is called from the superblock shrinker function with a number of inodes
 679 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 680 * then are freed outside inode_lock by dispose_list().
 681 *
 682 * Any inodes which are pinned purely because of attached pagecache have their
 683 * pagecache removed.  If the inode has metadata buffers attached to
 684 * mapping->private_list then try to remove them.
 685 *
 686 * If the inode has the I_REFERENCED flag set, then it means that it has been
 687 * used recently - the flag is set in iput_final(). When we encounter such an
 688 * inode, clear the flag and move it to the back of the LRU so it gets another
 689 * pass through the LRU before it gets reclaimed. This is necessary because of
 690 * the fact we are doing lazy LRU updates to minimise lock contention so the
 691 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 692 * with this flag set because they are the inodes that are out of order.
 693 */
 694void prune_icache_sb(struct super_block *sb, int nr_to_scan)
 
 695{
 696	LIST_HEAD(freeable);
 697	int nr_scanned;
 698	unsigned long reap = 0;
 699
 700	spin_lock(&sb->s_inode_lru_lock);
 701	for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
 702		struct inode *inode;
 
 
 
 703
 704		if (list_empty(&sb->s_inode_lru))
 705			break;
 
 
 
 
 
 
 
 
 
 
 
 
 706
 707		inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
 
 
 
 
 
 708
 709		/*
 710		 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
 711		 * so use a trylock. If we fail to get the lock, just move the
 712		 * inode to the back of the list so we don't spin on it.
 713		 */
 714		if (!spin_trylock(&inode->i_lock)) {
 715			list_move_tail(&inode->i_lru, &sb->s_inode_lru);
 716			continue;
 717		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 718
 719		/*
 720		 * Referenced or dirty inodes are still in use. Give them
 721		 * another pass through the LRU as we canot reclaim them now.
 722		 */
 723		if (atomic_read(&inode->i_count) ||
 724		    (inode->i_state & ~I_REFERENCED)) {
 725			list_del_init(&inode->i_lru);
 726			spin_unlock(&inode->i_lock);
 727			sb->s_nr_inodes_unused--;
 728			this_cpu_dec(nr_unused);
 729			continue;
 730		}
 731
 732		/* recently referenced inodes get one more pass */
 733		if (inode->i_state & I_REFERENCED) {
 734			inode->i_state &= ~I_REFERENCED;
 735			list_move(&inode->i_lru, &sb->s_inode_lru);
 736			spin_unlock(&inode->i_lock);
 737			continue;
 738		}
 739		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
 740			__iget(inode);
 741			spin_unlock(&inode->i_lock);
 742			spin_unlock(&sb->s_inode_lru_lock);
 743			if (remove_inode_buffers(inode))
 744				reap += invalidate_mapping_pages(&inode->i_data,
 745								0, -1);
 746			iput(inode);
 747			spin_lock(&sb->s_inode_lru_lock);
 748
 749			if (inode != list_entry(sb->s_inode_lru.next,
 750						struct inode, i_lru))
 751				continue;	/* wrong inode or list_empty */
 752			/* avoid lock inversions with trylock */
 753			if (!spin_trylock(&inode->i_lock))
 754				continue;
 755			if (!can_unuse(inode)) {
 756				spin_unlock(&inode->i_lock);
 757				continue;
 758			}
 759		}
 760		WARN_ON(inode->i_state & I_NEW);
 761		inode->i_state |= I_FREEING;
 762		spin_unlock(&inode->i_lock);
 763
 764		list_move(&inode->i_lru, &freeable);
 765		sb->s_nr_inodes_unused--;
 766		this_cpu_dec(nr_unused);
 767	}
 768	if (current_is_kswapd())
 769		__count_vm_events(KSWAPD_INODESTEAL, reap);
 770	else
 771		__count_vm_events(PGINODESTEAL, reap);
 772	spin_unlock(&sb->s_inode_lru_lock);
 773	if (current->reclaim_state)
 774		current->reclaim_state->reclaimed_slab += reap;
 775
 
 
 776	dispose_list(&freeable);
 
 777}
 778
 779static void __wait_on_freeing_inode(struct inode *inode);
 780/*
 781 * Called with the inode lock held.
 782 */
 783static struct inode *find_inode(struct super_block *sb,
 784				struct hlist_head *head,
 785				int (*test)(struct inode *, void *),
 786				void *data)
 787{
 788	struct hlist_node *node;
 789	struct inode *inode = NULL;
 790
 791repeat:
 792	hlist_for_each_entry(inode, node, head, i_hash) {
 793		spin_lock(&inode->i_lock);
 794		if (inode->i_sb != sb) {
 795			spin_unlock(&inode->i_lock);
 796			continue;
 797		}
 798		if (!test(inode, data)) {
 799			spin_unlock(&inode->i_lock);
 800			continue;
 801		}
 802		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 803			__wait_on_freeing_inode(inode);
 804			goto repeat;
 805		}
 
 
 
 
 806		__iget(inode);
 807		spin_unlock(&inode->i_lock);
 808		return inode;
 809	}
 810	return NULL;
 811}
 812
 813/*
 814 * find_inode_fast is the fast path version of find_inode, see the comment at
 815 * iget_locked for details.
 816 */
 817static struct inode *find_inode_fast(struct super_block *sb,
 818				struct hlist_head *head, unsigned long ino)
 819{
 820	struct hlist_node *node;
 821	struct inode *inode = NULL;
 822
 823repeat:
 824	hlist_for_each_entry(inode, node, head, i_hash) {
 825		spin_lock(&inode->i_lock);
 826		if (inode->i_ino != ino) {
 827			spin_unlock(&inode->i_lock);
 828			continue;
 829		}
 830		if (inode->i_sb != sb) {
 831			spin_unlock(&inode->i_lock);
 832			continue;
 833		}
 834		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 835			__wait_on_freeing_inode(inode);
 836			goto repeat;
 837		}
 
 
 
 
 838		__iget(inode);
 839		spin_unlock(&inode->i_lock);
 840		return inode;
 841	}
 842	return NULL;
 843}
 844
 845/*
 846 * Each cpu owns a range of LAST_INO_BATCH numbers.
 847 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 848 * to renew the exhausted range.
 849 *
 850 * This does not significantly increase overflow rate because every CPU can
 851 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 852 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 853 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 854 * overflow rate by 2x, which does not seem too significant.
 855 *
 856 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 857 * error if st_ino won't fit in target struct field. Use 32bit counter
 858 * here to attempt to avoid that.
 859 */
 860#define LAST_INO_BATCH 1024
 861static DEFINE_PER_CPU(unsigned int, last_ino);
 862
 863unsigned int get_next_ino(void)
 864{
 865	unsigned int *p = &get_cpu_var(last_ino);
 866	unsigned int res = *p;
 867
 868#ifdef CONFIG_SMP
 869	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 870		static atomic_t shared_last_ino;
 871		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 872
 873		res = next - LAST_INO_BATCH;
 874	}
 875#endif
 876
 877	*p = ++res;
 
 
 
 
 878	put_cpu_var(last_ino);
 879	return res;
 880}
 881EXPORT_SYMBOL(get_next_ino);
 882
 883/**
 884 *	new_inode_pseudo 	- obtain an inode
 885 *	@sb: superblock
 886 *
 887 *	Allocates a new inode for given superblock.
 888 *	Inode wont be chained in superblock s_inodes list
 889 *	This means :
 890 *	- fs can't be unmount
 891 *	- quotas, fsnotify, writeback can't work
 892 */
 893struct inode *new_inode_pseudo(struct super_block *sb)
 894{
 895	struct inode *inode = alloc_inode(sb);
 896
 897	if (inode) {
 898		spin_lock(&inode->i_lock);
 899		inode->i_state = 0;
 900		spin_unlock(&inode->i_lock);
 901		INIT_LIST_HEAD(&inode->i_sb_list);
 902	}
 903	return inode;
 904}
 905
 906/**
 907 *	new_inode 	- obtain an inode
 908 *	@sb: superblock
 909 *
 910 *	Allocates a new inode for given superblock. The default gfp_mask
 911 *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
 912 *	If HIGHMEM pages are unsuitable or it is known that pages allocated
 913 *	for the page cache are not reclaimable or migratable,
 914 *	mapping_set_gfp_mask() must be called with suitable flags on the
 915 *	newly created inode's mapping
 916 *
 917 */
 918struct inode *new_inode(struct super_block *sb)
 919{
 920	struct inode *inode;
 921
 922	spin_lock_prefetch(&inode_sb_list_lock);
 923
 924	inode = new_inode_pseudo(sb);
 925	if (inode)
 926		inode_sb_list_add(inode);
 927	return inode;
 928}
 929EXPORT_SYMBOL(new_inode);
 930
 931#ifdef CONFIG_DEBUG_LOCK_ALLOC
 932void lockdep_annotate_inode_mutex_key(struct inode *inode)
 933{
 934	if (S_ISDIR(inode->i_mode)) {
 935		struct file_system_type *type = inode->i_sb->s_type;
 936
 937		/* Set new key only if filesystem hasn't already changed it */
 938		if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
 939			/*
 940			 * ensure nobody is actually holding i_mutex
 941			 */
 942			mutex_destroy(&inode->i_mutex);
 943			mutex_init(&inode->i_mutex);
 944			lockdep_set_class(&inode->i_mutex,
 945					  &type->i_mutex_dir_key);
 946		}
 947	}
 948}
 949EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
 950#endif
 951
 952/**
 953 * unlock_new_inode - clear the I_NEW state and wake up any waiters
 954 * @inode:	new inode to unlock
 955 *
 956 * Called when the inode is fully initialised to clear the new state of the
 957 * inode and wake up anyone waiting for the inode to finish initialisation.
 958 */
 959void unlock_new_inode(struct inode *inode)
 960{
 961	lockdep_annotate_inode_mutex_key(inode);
 962	spin_lock(&inode->i_lock);
 963	WARN_ON(!(inode->i_state & I_NEW));
 
 
 
 
 
 
 
 
 
 
 
 
 964	inode->i_state &= ~I_NEW;
 965	smp_mb();
 966	wake_up_bit(&inode->i_state, __I_NEW);
 967	spin_unlock(&inode->i_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968}
 969EXPORT_SYMBOL(unlock_new_inode);
 970
 971/**
 972 * iget5_locked - obtain an inode from a mounted file system
 973 * @sb:		super block of file system
 974 * @hashval:	hash value (usually inode number) to get
 975 * @test:	callback used for comparisons between inodes
 976 * @set:	callback used to initialize a new struct inode
 977 * @data:	opaque data pointer to pass to @test and @set
 978 *
 979 * Search for the inode specified by @hashval and @data in the inode cache,
 980 * and if present it is return it with an increased reference count. This is
 981 * a generalized version of iget_locked() for file systems where the inode
 982 * number is not sufficient for unique identification of an inode.
 983 *
 984 * If the inode is not in cache, allocate a new inode and return it locked,
 985 * hashed, and with the I_NEW flag set. The file system gets to fill it in
 986 * before unlocking it via unlock_new_inode().
 987 *
 988 * Note both @test and @set are called with the inode_hash_lock held, so can't
 989 * sleep.
 990 */
 991struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
 992		int (*test)(struct inode *, void *),
 993		int (*set)(struct inode *, void *), void *data)
 994{
 995	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
 996	struct inode *inode;
 997
 998	spin_lock(&inode_hash_lock);
 999	inode = find_inode(sb, head, test, data);
1000	spin_unlock(&inode_hash_lock);
1001
1002	if (inode) {
1003		wait_on_inode(inode);
1004		return inode;
1005	}
1006
1007	inode = alloc_inode(sb);
1008	if (inode) {
1009		struct inode *old;
1010
1011		spin_lock(&inode_hash_lock);
1012		/* We released the lock, so.. */
1013		old = find_inode(sb, head, test, data);
1014		if (!old) {
1015			if (set(inode, data))
1016				goto set_failed;
1017
1018			spin_lock(&inode->i_lock);
1019			inode->i_state = I_NEW;
1020			hlist_add_head(&inode->i_hash, head);
1021			spin_unlock(&inode->i_lock);
1022			inode_sb_list_add(inode);
1023			spin_unlock(&inode_hash_lock);
1024
1025			/* Return the locked inode with I_NEW set, the
1026			 * caller is responsible for filling in the contents
1027			 */
1028			return inode;
1029		}
1030
1031		/*
1032		 * Uhhuh, somebody else created the same inode under
1033		 * us. Use the old inode instead of the one we just
1034		 * allocated.
1035		 */
1036		spin_unlock(&inode_hash_lock);
1037		destroy_inode(inode);
1038		inode = old;
1039		wait_on_inode(inode);
1040	}
1041	return inode;
1042
1043set_failed:
1044	spin_unlock(&inode_hash_lock);
1045	destroy_inode(inode);
1046	return NULL;
1047}
1048EXPORT_SYMBOL(iget5_locked);
1049
1050/**
1051 * iget_locked - obtain an inode from a mounted file system
1052 * @sb:		super block of file system
1053 * @ino:	inode number to get
1054 *
1055 * Search for the inode specified by @ino in the inode cache and if present
1056 * return it with an increased reference count. This is for file systems
1057 * where the inode number is sufficient for unique identification of an inode.
1058 *
1059 * If the inode is not in cache, allocate a new inode and return it locked,
1060 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1061 * before unlocking it via unlock_new_inode().
1062 */
1063struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1064{
1065	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1066	struct inode *inode;
1067
1068	spin_lock(&inode_hash_lock);
1069	inode = find_inode_fast(sb, head, ino);
1070	spin_unlock(&inode_hash_lock);
1071	if (inode) {
 
 
1072		wait_on_inode(inode);
 
 
 
 
1073		return inode;
1074	}
1075
1076	inode = alloc_inode(sb);
1077	if (inode) {
1078		struct inode *old;
1079
1080		spin_lock(&inode_hash_lock);
1081		/* We released the lock, so.. */
1082		old = find_inode_fast(sb, head, ino);
1083		if (!old) {
1084			inode->i_ino = ino;
1085			spin_lock(&inode->i_lock);
1086			inode->i_state = I_NEW;
1087			hlist_add_head(&inode->i_hash, head);
1088			spin_unlock(&inode->i_lock);
1089			inode_sb_list_add(inode);
1090			spin_unlock(&inode_hash_lock);
1091
1092			/* Return the locked inode with I_NEW set, the
1093			 * caller is responsible for filling in the contents
1094			 */
1095			return inode;
1096		}
1097
1098		/*
1099		 * Uhhuh, somebody else created the same inode under
1100		 * us. Use the old inode instead of the one we just
1101		 * allocated.
1102		 */
1103		spin_unlock(&inode_hash_lock);
1104		destroy_inode(inode);
 
 
1105		inode = old;
1106		wait_on_inode(inode);
 
 
 
 
1107	}
1108	return inode;
1109}
1110EXPORT_SYMBOL(iget_locked);
1111
1112/*
1113 * search the inode cache for a matching inode number.
1114 * If we find one, then the inode number we are trying to
1115 * allocate is not unique and so we should not use it.
1116 *
1117 * Returns 1 if the inode number is unique, 0 if it is not.
1118 */
1119static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1120{
1121	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1122	struct hlist_node *node;
1123	struct inode *inode;
1124
1125	spin_lock(&inode_hash_lock);
1126	hlist_for_each_entry(inode, node, b, i_hash) {
1127		if (inode->i_ino == ino && inode->i_sb == sb) {
1128			spin_unlock(&inode_hash_lock);
1129			return 0;
1130		}
1131	}
1132	spin_unlock(&inode_hash_lock);
1133
1134	return 1;
1135}
1136
1137/**
1138 *	iunique - get a unique inode number
1139 *	@sb: superblock
1140 *	@max_reserved: highest reserved inode number
1141 *
1142 *	Obtain an inode number that is unique on the system for a given
1143 *	superblock. This is used by file systems that have no natural
1144 *	permanent inode numbering system. An inode number is returned that
1145 *	is higher than the reserved limit but unique.
1146 *
1147 *	BUGS:
1148 *	With a large number of inodes live on the file system this function
1149 *	currently becomes quite slow.
1150 */
1151ino_t iunique(struct super_block *sb, ino_t max_reserved)
1152{
1153	/*
1154	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1155	 * error if st_ino won't fit in target struct field. Use 32bit counter
1156	 * here to attempt to avoid that.
1157	 */
1158	static DEFINE_SPINLOCK(iunique_lock);
1159	static unsigned int counter;
1160	ino_t res;
1161
 
1162	spin_lock(&iunique_lock);
1163	do {
1164		if (counter <= max_reserved)
1165			counter = max_reserved + 1;
1166		res = counter++;
1167	} while (!test_inode_iunique(sb, res));
1168	spin_unlock(&iunique_lock);
 
1169
1170	return res;
1171}
1172EXPORT_SYMBOL(iunique);
1173
1174struct inode *igrab(struct inode *inode)
1175{
1176	spin_lock(&inode->i_lock);
1177	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1178		__iget(inode);
1179		spin_unlock(&inode->i_lock);
1180	} else {
1181		spin_unlock(&inode->i_lock);
1182		/*
1183		 * Handle the case where s_op->clear_inode is not been
1184		 * called yet, and somebody is calling igrab
1185		 * while the inode is getting freed.
1186		 */
1187		inode = NULL;
1188	}
1189	return inode;
1190}
1191EXPORT_SYMBOL(igrab);
1192
1193/**
1194 * ilookup5_nowait - search for an inode in the inode cache
1195 * @sb:		super block of file system to search
1196 * @hashval:	hash value (usually inode number) to search for
1197 * @test:	callback used for comparisons between inodes
1198 * @data:	opaque data pointer to pass to @test
1199 *
1200 * Search for the inode specified by @hashval and @data in the inode cache.
1201 * If the inode is in the cache, the inode is returned with an incremented
1202 * reference count.
1203 *
1204 * Note: I_NEW is not waited upon so you have to be very careful what you do
1205 * with the returned inode.  You probably should be using ilookup5() instead.
1206 *
1207 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1208 */
1209struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1210		int (*test)(struct inode *, void *), void *data)
1211{
1212	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1213	struct inode *inode;
1214
1215	spin_lock(&inode_hash_lock);
1216	inode = find_inode(sb, head, test, data);
1217	spin_unlock(&inode_hash_lock);
1218
1219	return inode;
1220}
1221EXPORT_SYMBOL(ilookup5_nowait);
1222
1223/**
1224 * ilookup5 - search for an inode in the inode cache
1225 * @sb:		super block of file system to search
1226 * @hashval:	hash value (usually inode number) to search for
1227 * @test:	callback used for comparisons between inodes
1228 * @data:	opaque data pointer to pass to @test
1229 *
1230 * Search for the inode specified by @hashval and @data in the inode cache,
1231 * and if the inode is in the cache, return the inode with an incremented
1232 * reference count.  Waits on I_NEW before returning the inode.
1233 * returned with an incremented reference count.
1234 *
1235 * This is a generalized version of ilookup() for file systems where the
1236 * inode number is not sufficient for unique identification of an inode.
1237 *
1238 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1239 */
1240struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1241		int (*test)(struct inode *, void *), void *data)
1242{
1243	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1244
1245	if (inode)
 
1246		wait_on_inode(inode);
 
 
 
 
 
1247	return inode;
1248}
1249EXPORT_SYMBOL(ilookup5);
1250
1251/**
1252 * ilookup - search for an inode in the inode cache
1253 * @sb:		super block of file system to search
1254 * @ino:	inode number to search for
1255 *
1256 * Search for the inode @ino in the inode cache, and if the inode is in the
1257 * cache, the inode is returned with an incremented reference count.
1258 */
1259struct inode *ilookup(struct super_block *sb, unsigned long ino)
1260{
1261	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1262	struct inode *inode;
1263
1264	spin_lock(&inode_hash_lock);
1265	inode = find_inode_fast(sb, head, ino);
1266	spin_unlock(&inode_hash_lock);
1267
1268	if (inode)
 
 
1269		wait_on_inode(inode);
 
 
 
 
 
1270	return inode;
1271}
1272EXPORT_SYMBOL(ilookup);
1273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1274int insert_inode_locked(struct inode *inode)
1275{
1276	struct super_block *sb = inode->i_sb;
1277	ino_t ino = inode->i_ino;
1278	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1279
1280	while (1) {
1281		struct hlist_node *node;
1282		struct inode *old = NULL;
1283		spin_lock(&inode_hash_lock);
1284		hlist_for_each_entry(old, node, head, i_hash) {
1285			if (old->i_ino != ino)
1286				continue;
1287			if (old->i_sb != sb)
1288				continue;
1289			spin_lock(&old->i_lock);
1290			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1291				spin_unlock(&old->i_lock);
1292				continue;
1293			}
1294			break;
1295		}
1296		if (likely(!node)) {
1297			spin_lock(&inode->i_lock);
1298			inode->i_state |= I_NEW;
1299			hlist_add_head(&inode->i_hash, head);
1300			spin_unlock(&inode->i_lock);
1301			spin_unlock(&inode_hash_lock);
1302			return 0;
1303		}
 
 
 
 
 
1304		__iget(old);
1305		spin_unlock(&old->i_lock);
1306		spin_unlock(&inode_hash_lock);
1307		wait_on_inode(old);
1308		if (unlikely(!inode_unhashed(old))) {
1309			iput(old);
1310			return -EBUSY;
1311		}
1312		iput(old);
1313	}
1314}
1315EXPORT_SYMBOL(insert_inode_locked);
1316
1317int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1318		int (*test)(struct inode *, void *), void *data)
1319{
1320	struct super_block *sb = inode->i_sb;
1321	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1322
1323	while (1) {
1324		struct hlist_node *node;
1325		struct inode *old = NULL;
1326
1327		spin_lock(&inode_hash_lock);
1328		hlist_for_each_entry(old, node, head, i_hash) {
1329			if (old->i_sb != sb)
1330				continue;
1331			if (!test(old, data))
1332				continue;
1333			spin_lock(&old->i_lock);
1334			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1335				spin_unlock(&old->i_lock);
1336				continue;
1337			}
1338			break;
1339		}
1340		if (likely(!node)) {
1341			spin_lock(&inode->i_lock);
1342			inode->i_state |= I_NEW;
1343			hlist_add_head(&inode->i_hash, head);
1344			spin_unlock(&inode->i_lock);
1345			spin_unlock(&inode_hash_lock);
1346			return 0;
1347		}
1348		__iget(old);
1349		spin_unlock(&old->i_lock);
1350		spin_unlock(&inode_hash_lock);
1351		wait_on_inode(old);
1352		if (unlikely(!inode_unhashed(old))) {
1353			iput(old);
1354			return -EBUSY;
1355		}
1356		iput(old);
 
1357	}
 
1358}
1359EXPORT_SYMBOL(insert_inode_locked4);
1360
1361
1362int generic_delete_inode(struct inode *inode)
1363{
1364	return 1;
1365}
1366EXPORT_SYMBOL(generic_delete_inode);
1367
1368/*
1369 * Called when we're dropping the last reference
1370 * to an inode.
1371 *
1372 * Call the FS "drop_inode()" function, defaulting to
1373 * the legacy UNIX filesystem behaviour.  If it tells
1374 * us to evict inode, do so.  Otherwise, retain inode
1375 * in cache if fs is alive, sync and evict if fs is
1376 * shutting down.
1377 */
1378static void iput_final(struct inode *inode)
1379{
1380	struct super_block *sb = inode->i_sb;
1381	const struct super_operations *op = inode->i_sb->s_op;
 
1382	int drop;
1383
1384	WARN_ON(inode->i_state & I_NEW);
1385
1386	if (op->drop_inode)
1387		drop = op->drop_inode(inode);
1388	else
1389		drop = generic_drop_inode(inode);
1390
1391	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1392		inode->i_state |= I_REFERENCED;
1393		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1394			inode_lru_list_add(inode);
1395		spin_unlock(&inode->i_lock);
1396		return;
1397	}
1398
 
1399	if (!drop) {
1400		inode->i_state |= I_WILL_FREE;
1401		spin_unlock(&inode->i_lock);
 
1402		write_inode_now(inode, 1);
 
1403		spin_lock(&inode->i_lock);
1404		WARN_ON(inode->i_state & I_NEW);
1405		inode->i_state &= ~I_WILL_FREE;
 
1406	}
1407
1408	inode->i_state |= I_FREEING;
1409	if (!list_empty(&inode->i_lru))
1410		inode_lru_list_del(inode);
1411	spin_unlock(&inode->i_lock);
1412
1413	evict(inode);
1414}
1415
1416/**
1417 *	iput	- put an inode
1418 *	@inode: inode to put
1419 *
1420 *	Puts an inode, dropping its usage count. If the inode use count hits
1421 *	zero, the inode is then freed and may also be destroyed.
1422 *
1423 *	Consequently, iput() can sleep.
1424 */
1425void iput(struct inode *inode)
1426{
1427	if (inode) {
1428		BUG_ON(inode->i_state & I_CLEAR);
1429
1430		if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1431			iput_final(inode);
 
 
 
 
 
 
 
 
1432	}
1433}
1434EXPORT_SYMBOL(iput);
1435
 
1436/**
1437 *	bmap	- find a block number in a file
1438 *	@inode: inode of file
1439 *	@block: block to find
1440 *
1441 *	Returns the block number on the device holding the inode that
1442 *	is the disk block number for the block of the file requested.
1443 *	That is, asked for block 4 of inode 1 the function will return the
1444 *	disk block relative to the disk start that holds that block of the
1445 *	file.
1446 */
1447sector_t bmap(struct inode *inode, sector_t block)
1448{
1449	sector_t res = 0;
1450	if (inode->i_mapping->a_ops->bmap)
1451		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1452	return res;
 
 
 
 
1453}
1454EXPORT_SYMBOL(bmap);
 
1455
1456/*
1457 * With relative atime, only update atime if the previous atime is
1458 * earlier than either the ctime or mtime or if at least a day has
1459 * passed since the last atime update.
1460 */
1461static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1462			     struct timespec now)
1463{
 
1464
1465	if (!(mnt->mnt_flags & MNT_RELATIME))
1466		return 1;
1467	/*
1468	 * Is mtime younger than atime? If yes, update atime:
1469	 */
1470	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1471		return 1;
 
 
1472	/*
1473	 * Is ctime younger than atime? If yes, update atime:
1474	 */
1475	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1476		return 1;
 
1477
1478	/*
1479	 * Is the previous atime value older than a day? If yes,
1480	 * update atime:
1481	 */
1482	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1483		return 1;
1484	/*
1485	 * Good, we can skip the atime update:
1486	 */
1487	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1488}
 
1489
1490/*
1491 * This does the actual work of updating an inodes time or version.  Must have
1492 * had called mnt_want_write() before calling this.
1493 */
1494static int update_time(struct inode *inode, struct timespec *time, int flags)
1495{
1496	if (inode->i_op->update_time)
1497		return inode->i_op->update_time(inode, time, flags);
1498
1499	if (flags & S_ATIME)
1500		inode->i_atime = *time;
1501	if (flags & S_VERSION)
1502		inode_inc_iversion(inode);
1503	if (flags & S_CTIME)
1504		inode->i_ctime = *time;
1505	if (flags & S_MTIME)
1506		inode->i_mtime = *time;
1507	mark_inode_dirty_sync(inode);
1508	return 0;
1509}
 
1510
1511/**
1512 *	touch_atime	-	update the access time
1513 *	@path: the &struct path to update
 
1514 *
1515 *	Update the accessed time on an inode and mark it for writeback.
1516 *	This function automatically handles read only file systems and media,
1517 *	as well as the "noatime" flag and inode specific "noatime" markers.
1518 */
1519void touch_atime(struct path *path)
1520{
1521	struct vfsmount *mnt = path->mnt;
1522	struct inode *inode = path->dentry->d_inode;
1523	struct timespec now;
1524
1525	if (inode->i_flags & S_NOATIME)
1526		return;
 
 
 
 
 
 
 
1527	if (IS_NOATIME(inode))
1528		return;
1529	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1530		return;
1531
1532	if (mnt->mnt_flags & MNT_NOATIME)
1533		return;
1534	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1535		return;
1536
1537	now = current_fs_time(inode->i_sb);
1538
1539	if (!relatime_need_update(mnt, inode, now))
1540		return;
 
 
 
 
 
 
 
 
 
 
 
 
1541
1542	if (timespec_equal(&inode->i_atime, &now))
1543		return;
1544
1545	if (mnt_want_write(mnt))
1546		return;
1547
 
 
1548	/*
1549	 * File systems can error out when updating inodes if they need to
1550	 * allocate new space to modify an inode (such is the case for
1551	 * Btrfs), but since we touch atime while walking down the path we
1552	 * really don't care if we failed to update the atime of the file,
1553	 * so just ignore the return value.
 
 
1554	 */
1555	update_time(inode, &now, S_ATIME);
1556	mnt_drop_write(mnt);
 
 
1557}
1558EXPORT_SYMBOL(touch_atime);
1559
1560/*
1561 * The logic we want is
1562 *
1563 *	if suid or (sgid and xgrp)
1564 *		remove privs
1565 */
1566int should_remove_suid(struct dentry *dentry)
 
1567{
1568	umode_t mode = dentry->d_inode->i_mode;
1569	int kill = 0;
 
1570
1571	/* suid always must be killed */
1572	if (unlikely(mode & S_ISUID))
1573		kill = ATTR_KILL_SUID;
1574
1575	/*
1576	 * sgid without any exec bits is just a mandatory locking mark; leave
1577	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1578	 */
1579	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1580		kill |= ATTR_KILL_SGID;
1581
1582	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1583		return kill;
1584
1585	return 0;
 
 
 
1586}
1587EXPORT_SYMBOL(should_remove_suid);
1588
1589static int __remove_suid(struct dentry *dentry, int kill)
 
1590{
1591	struct iattr newattrs;
1592
1593	newattrs.ia_valid = ATTR_FORCE | kill;
1594	return notify_change(dentry, &newattrs);
 
 
 
 
1595}
1596
1597int file_remove_suid(struct file *file)
1598{
1599	struct dentry *dentry = file->f_path.dentry;
1600	struct inode *inode = dentry->d_inode;
1601	int killsuid;
1602	int killpriv;
1603	int error = 0;
 
1604
1605	/* Fast path for nothing security related */
1606	if (IS_NOSEC(inode))
1607		return 0;
1608
1609	killsuid = should_remove_suid(dentry);
1610	killpriv = security_inode_need_killpriv(dentry);
 
 
 
 
 
1611
1612	if (killpriv < 0)
1613		return killpriv;
1614	if (killpriv)
1615		error = security_inode_killpriv(dentry);
1616	if (!error && killsuid)
1617		error = __remove_suid(dentry, killsuid);
1618	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1619		inode->i_flags |= S_NOSEC;
1620
 
 
1621	return error;
1622}
1623EXPORT_SYMBOL(file_remove_suid);
1624
1625/**
1626 *	file_update_time	-	update mtime and ctime time
1627 *	@file: file accessed
1628 *
1629 *	Update the mtime and ctime members of an inode and mark the inode
1630 *	for writeback.  Note that this function is meant exclusively for
1631 *	usage in the file write path of filesystems, and filesystems may
1632 *	choose to explicitly ignore update via this function with the
1633 *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1634 *	timestamps are handled by the server.  This can return an error for
1635 *	file systems who need to allocate space in order to update an inode.
1636 */
 
 
 
 
 
1637
1638int file_update_time(struct file *file)
1639{
1640	struct inode *inode = file->f_path.dentry->d_inode;
1641	struct timespec now;
1642	int sync_it = 0;
1643	int ret;
 
1644
1645	/* First try to exhaust all avenues to not sync */
1646	if (IS_NOCMTIME(inode))
1647		return 0;
1648
1649	now = current_fs_time(inode->i_sb);
1650	if (!timespec_equal(&inode->i_mtime, &now))
1651		sync_it = S_MTIME;
1652
1653	if (!timespec_equal(&inode->i_ctime, &now))
 
1654		sync_it |= S_CTIME;
1655
1656	if (IS_I_VERSION(inode))
1657		sync_it |= S_VERSION;
1658
1659	if (!sync_it)
1660		return 0;
1661
1662	/* Finally allowed to write? Takes lock. */
1663	if (mnt_want_write_file(file))
1664		return 0;
 
1665
1666	ret = update_time(inode, &now, sync_it);
1667	mnt_drop_write_file(file);
 
 
 
1668
1669	return ret;
1670}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1671EXPORT_SYMBOL(file_update_time);
1672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1673int inode_needs_sync(struct inode *inode)
1674{
1675	if (IS_SYNC(inode))
1676		return 1;
1677	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1678		return 1;
1679	return 0;
1680}
1681EXPORT_SYMBOL(inode_needs_sync);
1682
1683int inode_wait(void *word)
1684{
1685	schedule();
1686	return 0;
1687}
1688EXPORT_SYMBOL(inode_wait);
1689
1690/*
1691 * If we try to find an inode in the inode hash while it is being
1692 * deleted, we have to wait until the filesystem completes its
1693 * deletion before reporting that it isn't found.  This function waits
1694 * until the deletion _might_ have completed.  Callers are responsible
1695 * to recheck inode state.
1696 *
1697 * It doesn't matter if I_NEW is not set initially, a call to
1698 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1699 * will DTRT.
1700 */
1701static void __wait_on_freeing_inode(struct inode *inode)
1702{
1703	wait_queue_head_t *wq;
1704	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1705	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1706	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1707	spin_unlock(&inode->i_lock);
1708	spin_unlock(&inode_hash_lock);
1709	schedule();
1710	finish_wait(wq, &wait.wait);
1711	spin_lock(&inode_hash_lock);
1712}
1713
1714static __initdata unsigned long ihash_entries;
1715static int __init set_ihash_entries(char *str)
1716{
1717	if (!str)
1718		return 0;
1719	ihash_entries = simple_strtoul(str, &str, 0);
1720	return 1;
1721}
1722__setup("ihash_entries=", set_ihash_entries);
1723
1724/*
1725 * Initialize the waitqueues and inode hash table.
1726 */
1727void __init inode_init_early(void)
1728{
1729	unsigned int loop;
1730
1731	/* If hashes are distributed across NUMA nodes, defer
1732	 * hash allocation until vmalloc space is available.
1733	 */
1734	if (hashdist)
1735		return;
1736
1737	inode_hashtable =
1738		alloc_large_system_hash("Inode-cache",
1739					sizeof(struct hlist_head),
1740					ihash_entries,
1741					14,
1742					HASH_EARLY,
1743					&i_hash_shift,
1744					&i_hash_mask,
1745					0,
1746					0);
1747
1748	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1749		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1750}
1751
1752void __init inode_init(void)
1753{
1754	unsigned int loop;
1755
1756	/* inode slab cache */
1757	inode_cachep = kmem_cache_create("inode_cache",
1758					 sizeof(struct inode),
1759					 0,
1760					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1761					 SLAB_MEM_SPREAD),
1762					 init_once);
1763
1764	/* Hash may have been set up in inode_init_early */
1765	if (!hashdist)
1766		return;
1767
1768	inode_hashtable =
1769		alloc_large_system_hash("Inode-cache",
1770					sizeof(struct hlist_head),
1771					ihash_entries,
1772					14,
1773					0,
1774					&i_hash_shift,
1775					&i_hash_mask,
1776					0,
1777					0);
1778
1779	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1780		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1781}
1782
1783void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1784{
1785	inode->i_mode = mode;
1786	if (S_ISCHR(mode)) {
1787		inode->i_fop = &def_chr_fops;
1788		inode->i_rdev = rdev;
1789	} else if (S_ISBLK(mode)) {
1790		inode->i_fop = &def_blk_fops;
 
1791		inode->i_rdev = rdev;
1792	} else if (S_ISFIFO(mode))
1793		inode->i_fop = &def_fifo_fops;
1794	else if (S_ISSOCK(mode))
1795		inode->i_fop = &bad_sock_fops;
1796	else
1797		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1798				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1799				  inode->i_ino);
1800}
1801EXPORT_SYMBOL(init_special_inode);
1802
1803/**
1804 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
 
1805 * @inode: New inode
1806 * @dir: Directory inode
1807 * @mode: mode of the new inode
 
 
 
 
 
 
1808 */
1809void inode_init_owner(struct inode *inode, const struct inode *dir,
1810			umode_t mode)
1811{
1812	inode->i_uid = current_fsuid();
1813	if (dir && dir->i_mode & S_ISGID) {
1814		inode->i_gid = dir->i_gid;
 
 
1815		if (S_ISDIR(mode))
1816			mode |= S_ISGID;
1817	} else
1818		inode->i_gid = current_fsgid();
1819	inode->i_mode = mode;
1820}
1821EXPORT_SYMBOL(inode_init_owner);
1822
1823/**
1824 * inode_owner_or_capable - check current task permissions to inode
 
1825 * @inode: inode being checked
1826 *
1827 * Return true if current either has CAP_FOWNER to the inode, or
1828 * owns the file.
 
 
 
 
 
 
1829 */
1830bool inode_owner_or_capable(const struct inode *inode)
 
1831{
1832	if (uid_eq(current_fsuid(), inode->i_uid))
 
 
 
 
1833		return true;
1834	if (inode_capable(inode, CAP_FOWNER))
 
 
1835		return true;
1836	return false;
1837}
1838EXPORT_SYMBOL(inode_owner_or_capable);
1839
1840/*
1841 * Direct i/o helper functions
1842 */
1843static void __inode_dio_wait(struct inode *inode)
1844{
1845	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1846	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1847
1848	do {
1849		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1850		if (atomic_read(&inode->i_dio_count))
1851			schedule();
1852	} while (atomic_read(&inode->i_dio_count));
1853	finish_wait(wq, &q.wait);
1854}
1855
1856/**
1857 * inode_dio_wait - wait for outstanding DIO requests to finish
1858 * @inode: inode to wait for
1859 *
1860 * Waits for all pending direct I/O requests to finish so that we can
1861 * proceed with a truncate or equivalent operation.
1862 *
1863 * Must be called under a lock that serializes taking new references
1864 * to i_dio_count, usually by inode->i_mutex.
1865 */
1866void inode_dio_wait(struct inode *inode)
1867{
1868	if (atomic_read(&inode->i_dio_count))
1869		__inode_dio_wait(inode);
1870}
1871EXPORT_SYMBOL(inode_dio_wait);
1872
1873/*
1874 * inode_dio_done - signal finish of a direct I/O requests
1875 * @inode: inode the direct I/O happens on
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1876 *
1877 * This is called once we've finished processing a direct I/O request,
1878 * and is used to wake up callers waiting for direct I/O to be quiesced.
 
1879 */
1880void inode_dio_done(struct inode *inode)
1881{
1882	if (atomic_dec_and_test(&inode->i_dio_count))
1883		wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1884}
1885EXPORT_SYMBOL(inode_dio_done);