Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/blkdev.h>
8#include <linux/radix-tree.h>
9#include <linux/writeback.h>
10#include <linux/workqueue.h>
11#include <linux/kthread.h>
12#include <linux/slab.h>
13#include <linux/migrate.h>
14#include <linux/ratelimit.h>
15#include <linux/uuid.h>
16#include <linux/semaphore.h>
17#include <linux/error-injection.h>
18#include <linux/crc32c.h>
19#include <linux/sched/mm.h>
20#include <asm/unaligned.h>
21#include <crypto/hash.h>
22#include "ctree.h"
23#include "disk-io.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
26#include "bio.h"
27#include "print-tree.h"
28#include "locking.h"
29#include "tree-log.h"
30#include "free-space-cache.h"
31#include "free-space-tree.h"
32#include "rcu-string.h"
33#include "dev-replace.h"
34#include "raid56.h"
35#include "sysfs.h"
36#include "qgroup.h"
37#include "compression.h"
38#include "tree-checker.h"
39#include "ref-verify.h"
40#include "block-group.h"
41#include "discard.h"
42#include "space-info.h"
43#include "zoned.h"
44#include "subpage.h"
45#include "fs.h"
46#include "accessors.h"
47#include "extent-tree.h"
48#include "root-tree.h"
49#include "defrag.h"
50#include "uuid-tree.h"
51#include "relocation.h"
52#include "scrub.h"
53#include "super.h"
54
55#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
56 BTRFS_HEADER_FLAG_RELOC |\
57 BTRFS_SUPER_FLAG_ERROR |\
58 BTRFS_SUPER_FLAG_SEEDING |\
59 BTRFS_SUPER_FLAG_METADUMP |\
60 BTRFS_SUPER_FLAG_METADUMP_V2)
61
62static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
63static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
64
65static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
66{
67 if (fs_info->csum_shash)
68 crypto_free_shash(fs_info->csum_shash);
69}
70
71/*
72 * Compute the csum of a btree block and store the result to provided buffer.
73 */
74static void csum_tree_block(struct extent_buffer *buf, u8 *result)
75{
76 struct btrfs_fs_info *fs_info = buf->fs_info;
77 int num_pages;
78 u32 first_page_part;
79 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
80 char *kaddr;
81 int i;
82
83 shash->tfm = fs_info->csum_shash;
84 crypto_shash_init(shash);
85
86 if (buf->addr) {
87 /* Pages are contiguous, handle them as a big one. */
88 kaddr = buf->addr;
89 first_page_part = fs_info->nodesize;
90 num_pages = 1;
91 } else {
92 kaddr = folio_address(buf->folios[0]);
93 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
94 num_pages = num_extent_pages(buf);
95 }
96
97 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
98 first_page_part - BTRFS_CSUM_SIZE);
99
100 /*
101 * Multiple single-page folios case would reach here.
102 *
103 * nodesize <= PAGE_SIZE and large folio all handled by above
104 * crypto_shash_update() already.
105 */
106 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
107 kaddr = folio_address(buf->folios[i]);
108 crypto_shash_update(shash, kaddr, PAGE_SIZE);
109 }
110 memset(result, 0, BTRFS_CSUM_SIZE);
111 crypto_shash_final(shash, result);
112}
113
114/*
115 * we can't consider a given block up to date unless the transid of the
116 * block matches the transid in the parent node's pointer. This is how we
117 * detect blocks that either didn't get written at all or got written
118 * in the wrong place.
119 */
120int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
121{
122 if (!extent_buffer_uptodate(eb))
123 return 0;
124
125 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
126 return 1;
127
128 if (atomic)
129 return -EAGAIN;
130
131 if (!extent_buffer_uptodate(eb) ||
132 btrfs_header_generation(eb) != parent_transid) {
133 btrfs_err_rl(eb->fs_info,
134"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
135 eb->start, eb->read_mirror,
136 parent_transid, btrfs_header_generation(eb));
137 clear_extent_buffer_uptodate(eb);
138 return 0;
139 }
140 return 1;
141}
142
143static bool btrfs_supported_super_csum(u16 csum_type)
144{
145 switch (csum_type) {
146 case BTRFS_CSUM_TYPE_CRC32:
147 case BTRFS_CSUM_TYPE_XXHASH:
148 case BTRFS_CSUM_TYPE_SHA256:
149 case BTRFS_CSUM_TYPE_BLAKE2:
150 return true;
151 default:
152 return false;
153 }
154}
155
156/*
157 * Return 0 if the superblock checksum type matches the checksum value of that
158 * algorithm. Pass the raw disk superblock data.
159 */
160int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
161 const struct btrfs_super_block *disk_sb)
162{
163 char result[BTRFS_CSUM_SIZE];
164 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
165
166 shash->tfm = fs_info->csum_shash;
167
168 /*
169 * The super_block structure does not span the whole
170 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
171 * filled with zeros and is included in the checksum.
172 */
173 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
174 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
175
176 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
177 return 1;
178
179 return 0;
180}
181
182static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
183 int mirror_num)
184{
185 struct btrfs_fs_info *fs_info = eb->fs_info;
186 int num_folios = num_extent_folios(eb);
187 int ret = 0;
188
189 if (sb_rdonly(fs_info->sb))
190 return -EROFS;
191
192 for (int i = 0; i < num_folios; i++) {
193 struct folio *folio = eb->folios[i];
194 u64 start = max_t(u64, eb->start, folio_pos(folio));
195 u64 end = min_t(u64, eb->start + eb->len,
196 folio_pos(folio) + folio_size(folio));
197 u32 len = end - start;
198
199 ret = btrfs_repair_io_failure(fs_info, 0, start, len,
200 start, folio, offset_in_folio(folio, start),
201 mirror_num);
202 if (ret)
203 break;
204 }
205
206 return ret;
207}
208
209/*
210 * helper to read a given tree block, doing retries as required when
211 * the checksums don't match and we have alternate mirrors to try.
212 *
213 * @check: expected tree parentness check, see the comments of the
214 * structure for details.
215 */
216int btrfs_read_extent_buffer(struct extent_buffer *eb,
217 struct btrfs_tree_parent_check *check)
218{
219 struct btrfs_fs_info *fs_info = eb->fs_info;
220 int failed = 0;
221 int ret;
222 int num_copies = 0;
223 int mirror_num = 0;
224 int failed_mirror = 0;
225
226 ASSERT(check);
227
228 while (1) {
229 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
230 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
231 if (!ret)
232 break;
233
234 num_copies = btrfs_num_copies(fs_info,
235 eb->start, eb->len);
236 if (num_copies == 1)
237 break;
238
239 if (!failed_mirror) {
240 failed = 1;
241 failed_mirror = eb->read_mirror;
242 }
243
244 mirror_num++;
245 if (mirror_num == failed_mirror)
246 mirror_num++;
247
248 if (mirror_num > num_copies)
249 break;
250 }
251
252 if (failed && !ret && failed_mirror)
253 btrfs_repair_eb_io_failure(eb, failed_mirror);
254
255 return ret;
256}
257
258/*
259 * Checksum a dirty tree block before IO.
260 */
261blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
262{
263 struct extent_buffer *eb = bbio->private;
264 struct btrfs_fs_info *fs_info = eb->fs_info;
265 u64 found_start = btrfs_header_bytenr(eb);
266 u64 last_trans;
267 u8 result[BTRFS_CSUM_SIZE];
268 int ret;
269
270 /* Btree blocks are always contiguous on disk. */
271 if (WARN_ON_ONCE(bbio->file_offset != eb->start))
272 return BLK_STS_IOERR;
273 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
274 return BLK_STS_IOERR;
275
276 /*
277 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
278 * checksum it but zero-out its content. This is done to preserve
279 * ordering of I/O without unnecessarily writing out data.
280 */
281 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
282 memzero_extent_buffer(eb, 0, eb->len);
283 return BLK_STS_OK;
284 }
285
286 if (WARN_ON_ONCE(found_start != eb->start))
287 return BLK_STS_IOERR;
288 if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0],
289 eb->start, eb->len)))
290 return BLK_STS_IOERR;
291
292 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
293 offsetof(struct btrfs_header, fsid),
294 BTRFS_FSID_SIZE) == 0);
295 csum_tree_block(eb, result);
296
297 if (btrfs_header_level(eb))
298 ret = btrfs_check_node(eb);
299 else
300 ret = btrfs_check_leaf(eb);
301
302 if (ret < 0)
303 goto error;
304
305 /*
306 * Also check the generation, the eb reached here must be newer than
307 * last committed. Or something seriously wrong happened.
308 */
309 last_trans = btrfs_get_last_trans_committed(fs_info);
310 if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
311 ret = -EUCLEAN;
312 btrfs_err(fs_info,
313 "block=%llu bad generation, have %llu expect > %llu",
314 eb->start, btrfs_header_generation(eb), last_trans);
315 goto error;
316 }
317 write_extent_buffer(eb, result, 0, fs_info->csum_size);
318 return BLK_STS_OK;
319
320error:
321 btrfs_print_tree(eb, 0);
322 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
323 eb->start);
324 /*
325 * Be noisy if this is an extent buffer from a log tree. We don't abort
326 * a transaction in case there's a bad log tree extent buffer, we just
327 * fallback to a transaction commit. Still we want to know when there is
328 * a bad log tree extent buffer, as that may signal a bug somewhere.
329 */
330 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
331 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
332 return errno_to_blk_status(ret);
333}
334
335static bool check_tree_block_fsid(struct extent_buffer *eb)
336{
337 struct btrfs_fs_info *fs_info = eb->fs_info;
338 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
339 u8 fsid[BTRFS_FSID_SIZE];
340
341 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
342 BTRFS_FSID_SIZE);
343
344 /*
345 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
346 * This is then overwritten by metadata_uuid if it is present in the
347 * device_list_add(). The same true for a seed device as well. So use of
348 * fs_devices::metadata_uuid is appropriate here.
349 */
350 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
351 return false;
352
353 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
354 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
355 return false;
356
357 return true;
358}
359
360/* Do basic extent buffer checks at read time */
361int btrfs_validate_extent_buffer(struct extent_buffer *eb,
362 struct btrfs_tree_parent_check *check)
363{
364 struct btrfs_fs_info *fs_info = eb->fs_info;
365 u64 found_start;
366 const u32 csum_size = fs_info->csum_size;
367 u8 found_level;
368 u8 result[BTRFS_CSUM_SIZE];
369 const u8 *header_csum;
370 int ret = 0;
371
372 ASSERT(check);
373
374 found_start = btrfs_header_bytenr(eb);
375 if (found_start != eb->start) {
376 btrfs_err_rl(fs_info,
377 "bad tree block start, mirror %u want %llu have %llu",
378 eb->read_mirror, eb->start, found_start);
379 ret = -EIO;
380 goto out;
381 }
382 if (check_tree_block_fsid(eb)) {
383 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
384 eb->start, eb->read_mirror);
385 ret = -EIO;
386 goto out;
387 }
388 found_level = btrfs_header_level(eb);
389 if (found_level >= BTRFS_MAX_LEVEL) {
390 btrfs_err(fs_info,
391 "bad tree block level, mirror %u level %d on logical %llu",
392 eb->read_mirror, btrfs_header_level(eb), eb->start);
393 ret = -EIO;
394 goto out;
395 }
396
397 csum_tree_block(eb, result);
398 header_csum = folio_address(eb->folios[0]) +
399 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
400
401 if (memcmp(result, header_csum, csum_size) != 0) {
402 btrfs_warn_rl(fs_info,
403"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
404 eb->start, eb->read_mirror,
405 CSUM_FMT_VALUE(csum_size, header_csum),
406 CSUM_FMT_VALUE(csum_size, result),
407 btrfs_header_level(eb));
408 ret = -EUCLEAN;
409 goto out;
410 }
411
412 if (found_level != check->level) {
413 btrfs_err(fs_info,
414 "level verify failed on logical %llu mirror %u wanted %u found %u",
415 eb->start, eb->read_mirror, check->level, found_level);
416 ret = -EIO;
417 goto out;
418 }
419 if (unlikely(check->transid &&
420 btrfs_header_generation(eb) != check->transid)) {
421 btrfs_err_rl(eb->fs_info,
422"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
423 eb->start, eb->read_mirror, check->transid,
424 btrfs_header_generation(eb));
425 ret = -EIO;
426 goto out;
427 }
428 if (check->has_first_key) {
429 struct btrfs_key *expect_key = &check->first_key;
430 struct btrfs_key found_key;
431
432 if (found_level)
433 btrfs_node_key_to_cpu(eb, &found_key, 0);
434 else
435 btrfs_item_key_to_cpu(eb, &found_key, 0);
436 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
437 btrfs_err(fs_info,
438"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
439 eb->start, check->transid,
440 expect_key->objectid,
441 expect_key->type, expect_key->offset,
442 found_key.objectid, found_key.type,
443 found_key.offset);
444 ret = -EUCLEAN;
445 goto out;
446 }
447 }
448 if (check->owner_root) {
449 ret = btrfs_check_eb_owner(eb, check->owner_root);
450 if (ret < 0)
451 goto out;
452 }
453
454 /*
455 * If this is a leaf block and it is corrupt, set the corrupt bit so
456 * that we don't try and read the other copies of this block, just
457 * return -EIO.
458 */
459 if (found_level == 0 && btrfs_check_leaf(eb)) {
460 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
461 ret = -EIO;
462 }
463
464 if (found_level > 0 && btrfs_check_node(eb))
465 ret = -EIO;
466
467 if (ret)
468 btrfs_err(fs_info,
469 "read time tree block corruption detected on logical %llu mirror %u",
470 eb->start, eb->read_mirror);
471out:
472 return ret;
473}
474
475#ifdef CONFIG_MIGRATION
476static int btree_migrate_folio(struct address_space *mapping,
477 struct folio *dst, struct folio *src, enum migrate_mode mode)
478{
479 /*
480 * we can't safely write a btree page from here,
481 * we haven't done the locking hook
482 */
483 if (folio_test_dirty(src))
484 return -EAGAIN;
485 /*
486 * Buffers may be managed in a filesystem specific way.
487 * We must have no buffers or drop them.
488 */
489 if (folio_get_private(src) &&
490 !filemap_release_folio(src, GFP_KERNEL))
491 return -EAGAIN;
492 return migrate_folio(mapping, dst, src, mode);
493}
494#else
495#define btree_migrate_folio NULL
496#endif
497
498static int btree_writepages(struct address_space *mapping,
499 struct writeback_control *wbc)
500{
501 struct btrfs_fs_info *fs_info;
502 int ret;
503
504 if (wbc->sync_mode == WB_SYNC_NONE) {
505
506 if (wbc->for_kupdate)
507 return 0;
508
509 fs_info = BTRFS_I(mapping->host)->root->fs_info;
510 /* this is a bit racy, but that's ok */
511 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
512 BTRFS_DIRTY_METADATA_THRESH,
513 fs_info->dirty_metadata_batch);
514 if (ret < 0)
515 return 0;
516 }
517 return btree_write_cache_pages(mapping, wbc);
518}
519
520static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
521{
522 if (folio_test_writeback(folio) || folio_test_dirty(folio))
523 return false;
524
525 return try_release_extent_buffer(&folio->page);
526}
527
528static void btree_invalidate_folio(struct folio *folio, size_t offset,
529 size_t length)
530{
531 struct extent_io_tree *tree;
532 tree = &BTRFS_I(folio->mapping->host)->io_tree;
533 extent_invalidate_folio(tree, folio, offset);
534 btree_release_folio(folio, GFP_NOFS);
535 if (folio_get_private(folio)) {
536 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
537 "folio private not zero on folio %llu",
538 (unsigned long long)folio_pos(folio));
539 folio_detach_private(folio);
540 }
541}
542
543#ifdef DEBUG
544static bool btree_dirty_folio(struct address_space *mapping,
545 struct folio *folio)
546{
547 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
548 struct btrfs_subpage_info *spi = fs_info->subpage_info;
549 struct btrfs_subpage *subpage;
550 struct extent_buffer *eb;
551 int cur_bit = 0;
552 u64 page_start = folio_pos(folio);
553
554 if (fs_info->sectorsize == PAGE_SIZE) {
555 eb = folio_get_private(folio);
556 BUG_ON(!eb);
557 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
558 BUG_ON(!atomic_read(&eb->refs));
559 btrfs_assert_tree_write_locked(eb);
560 return filemap_dirty_folio(mapping, folio);
561 }
562
563 ASSERT(spi);
564 subpage = folio_get_private(folio);
565
566 for (cur_bit = spi->dirty_offset;
567 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
568 cur_bit++) {
569 unsigned long flags;
570 u64 cur;
571
572 spin_lock_irqsave(&subpage->lock, flags);
573 if (!test_bit(cur_bit, subpage->bitmaps)) {
574 spin_unlock_irqrestore(&subpage->lock, flags);
575 continue;
576 }
577 spin_unlock_irqrestore(&subpage->lock, flags);
578 cur = page_start + cur_bit * fs_info->sectorsize;
579
580 eb = find_extent_buffer(fs_info, cur);
581 ASSERT(eb);
582 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
583 ASSERT(atomic_read(&eb->refs));
584 btrfs_assert_tree_write_locked(eb);
585 free_extent_buffer(eb);
586
587 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
588 }
589 return filemap_dirty_folio(mapping, folio);
590}
591#else
592#define btree_dirty_folio filemap_dirty_folio
593#endif
594
595static const struct address_space_operations btree_aops = {
596 .writepages = btree_writepages,
597 .release_folio = btree_release_folio,
598 .invalidate_folio = btree_invalidate_folio,
599 .migrate_folio = btree_migrate_folio,
600 .dirty_folio = btree_dirty_folio,
601};
602
603struct extent_buffer *btrfs_find_create_tree_block(
604 struct btrfs_fs_info *fs_info,
605 u64 bytenr, u64 owner_root,
606 int level)
607{
608 if (btrfs_is_testing(fs_info))
609 return alloc_test_extent_buffer(fs_info, bytenr);
610 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
611}
612
613/*
614 * Read tree block at logical address @bytenr and do variant basic but critical
615 * verification.
616 *
617 * @check: expected tree parentness check, see comments of the
618 * structure for details.
619 */
620struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
621 struct btrfs_tree_parent_check *check)
622{
623 struct extent_buffer *buf = NULL;
624 int ret;
625
626 ASSERT(check);
627
628 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
629 check->level);
630 if (IS_ERR(buf))
631 return buf;
632
633 ret = btrfs_read_extent_buffer(buf, check);
634 if (ret) {
635 free_extent_buffer_stale(buf);
636 return ERR_PTR(ret);
637 }
638 if (btrfs_check_eb_owner(buf, check->owner_root)) {
639 free_extent_buffer_stale(buf);
640 return ERR_PTR(-EUCLEAN);
641 }
642 return buf;
643
644}
645
646static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
647 u64 objectid)
648{
649 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
650
651 memset(&root->root_key, 0, sizeof(root->root_key));
652 memset(&root->root_item, 0, sizeof(root->root_item));
653 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
654 root->fs_info = fs_info;
655 root->root_key.objectid = objectid;
656 root->node = NULL;
657 root->commit_root = NULL;
658 root->state = 0;
659 RB_CLEAR_NODE(&root->rb_node);
660
661 root->last_trans = 0;
662 root->free_objectid = 0;
663 root->nr_delalloc_inodes = 0;
664 root->nr_ordered_extents = 0;
665 root->inode_tree = RB_ROOT;
666 /* GFP flags are compatible with XA_FLAGS_*. */
667 xa_init_flags(&root->delayed_nodes, GFP_ATOMIC);
668
669 btrfs_init_root_block_rsv(root);
670
671 INIT_LIST_HEAD(&root->dirty_list);
672 INIT_LIST_HEAD(&root->root_list);
673 INIT_LIST_HEAD(&root->delalloc_inodes);
674 INIT_LIST_HEAD(&root->delalloc_root);
675 INIT_LIST_HEAD(&root->ordered_extents);
676 INIT_LIST_HEAD(&root->ordered_root);
677 INIT_LIST_HEAD(&root->reloc_dirty_list);
678 spin_lock_init(&root->inode_lock);
679 spin_lock_init(&root->delalloc_lock);
680 spin_lock_init(&root->ordered_extent_lock);
681 spin_lock_init(&root->accounting_lock);
682 spin_lock_init(&root->qgroup_meta_rsv_lock);
683 mutex_init(&root->objectid_mutex);
684 mutex_init(&root->log_mutex);
685 mutex_init(&root->ordered_extent_mutex);
686 mutex_init(&root->delalloc_mutex);
687 init_waitqueue_head(&root->qgroup_flush_wait);
688 init_waitqueue_head(&root->log_writer_wait);
689 init_waitqueue_head(&root->log_commit_wait[0]);
690 init_waitqueue_head(&root->log_commit_wait[1]);
691 INIT_LIST_HEAD(&root->log_ctxs[0]);
692 INIT_LIST_HEAD(&root->log_ctxs[1]);
693 atomic_set(&root->log_commit[0], 0);
694 atomic_set(&root->log_commit[1], 0);
695 atomic_set(&root->log_writers, 0);
696 atomic_set(&root->log_batch, 0);
697 refcount_set(&root->refs, 1);
698 atomic_set(&root->snapshot_force_cow, 0);
699 atomic_set(&root->nr_swapfiles, 0);
700 btrfs_set_root_log_transid(root, 0);
701 root->log_transid_committed = -1;
702 btrfs_set_root_last_log_commit(root, 0);
703 root->anon_dev = 0;
704 if (!dummy) {
705 extent_io_tree_init(fs_info, &root->dirty_log_pages,
706 IO_TREE_ROOT_DIRTY_LOG_PAGES);
707 extent_io_tree_init(fs_info, &root->log_csum_range,
708 IO_TREE_LOG_CSUM_RANGE);
709 }
710
711 spin_lock_init(&root->root_item_lock);
712 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
713#ifdef CONFIG_BTRFS_DEBUG
714 INIT_LIST_HEAD(&root->leak_list);
715 spin_lock(&fs_info->fs_roots_radix_lock);
716 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
717 spin_unlock(&fs_info->fs_roots_radix_lock);
718#endif
719}
720
721static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
722 u64 objectid, gfp_t flags)
723{
724 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
725 if (root)
726 __setup_root(root, fs_info, objectid);
727 return root;
728}
729
730#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
731/* Should only be used by the testing infrastructure */
732struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
733{
734 struct btrfs_root *root;
735
736 if (!fs_info)
737 return ERR_PTR(-EINVAL);
738
739 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
740 if (!root)
741 return ERR_PTR(-ENOMEM);
742
743 /* We don't use the stripesize in selftest, set it as sectorsize */
744 root->alloc_bytenr = 0;
745
746 return root;
747}
748#endif
749
750static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
751{
752 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
753 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
754
755 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
756}
757
758static int global_root_key_cmp(const void *k, const struct rb_node *node)
759{
760 const struct btrfs_key *key = k;
761 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
762
763 return btrfs_comp_cpu_keys(key, &root->root_key);
764}
765
766int btrfs_global_root_insert(struct btrfs_root *root)
767{
768 struct btrfs_fs_info *fs_info = root->fs_info;
769 struct rb_node *tmp;
770 int ret = 0;
771
772 write_lock(&fs_info->global_root_lock);
773 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
774 write_unlock(&fs_info->global_root_lock);
775
776 if (tmp) {
777 ret = -EEXIST;
778 btrfs_warn(fs_info, "global root %llu %llu already exists",
779 root->root_key.objectid, root->root_key.offset);
780 }
781 return ret;
782}
783
784void btrfs_global_root_delete(struct btrfs_root *root)
785{
786 struct btrfs_fs_info *fs_info = root->fs_info;
787
788 write_lock(&fs_info->global_root_lock);
789 rb_erase(&root->rb_node, &fs_info->global_root_tree);
790 write_unlock(&fs_info->global_root_lock);
791}
792
793struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
794 struct btrfs_key *key)
795{
796 struct rb_node *node;
797 struct btrfs_root *root = NULL;
798
799 read_lock(&fs_info->global_root_lock);
800 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
801 if (node)
802 root = container_of(node, struct btrfs_root, rb_node);
803 read_unlock(&fs_info->global_root_lock);
804
805 return root;
806}
807
808static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
809{
810 struct btrfs_block_group *block_group;
811 u64 ret;
812
813 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
814 return 0;
815
816 if (bytenr)
817 block_group = btrfs_lookup_block_group(fs_info, bytenr);
818 else
819 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
820 ASSERT(block_group);
821 if (!block_group)
822 return 0;
823 ret = block_group->global_root_id;
824 btrfs_put_block_group(block_group);
825
826 return ret;
827}
828
829struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
830{
831 struct btrfs_key key = {
832 .objectid = BTRFS_CSUM_TREE_OBJECTID,
833 .type = BTRFS_ROOT_ITEM_KEY,
834 .offset = btrfs_global_root_id(fs_info, bytenr),
835 };
836
837 return btrfs_global_root(fs_info, &key);
838}
839
840struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
841{
842 struct btrfs_key key = {
843 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
844 .type = BTRFS_ROOT_ITEM_KEY,
845 .offset = btrfs_global_root_id(fs_info, bytenr),
846 };
847
848 return btrfs_global_root(fs_info, &key);
849}
850
851struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
852{
853 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
854 return fs_info->block_group_root;
855 return btrfs_extent_root(fs_info, 0);
856}
857
858struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
859 u64 objectid)
860{
861 struct btrfs_fs_info *fs_info = trans->fs_info;
862 struct extent_buffer *leaf;
863 struct btrfs_root *tree_root = fs_info->tree_root;
864 struct btrfs_root *root;
865 struct btrfs_key key;
866 unsigned int nofs_flag;
867 int ret = 0;
868
869 /*
870 * We're holding a transaction handle, so use a NOFS memory allocation
871 * context to avoid deadlock if reclaim happens.
872 */
873 nofs_flag = memalloc_nofs_save();
874 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
875 memalloc_nofs_restore(nofs_flag);
876 if (!root)
877 return ERR_PTR(-ENOMEM);
878
879 root->root_key.objectid = objectid;
880 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
881 root->root_key.offset = 0;
882
883 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
884 0, BTRFS_NESTING_NORMAL);
885 if (IS_ERR(leaf)) {
886 ret = PTR_ERR(leaf);
887 leaf = NULL;
888 goto fail;
889 }
890
891 root->node = leaf;
892 btrfs_mark_buffer_dirty(trans, leaf);
893
894 root->commit_root = btrfs_root_node(root);
895 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
896
897 btrfs_set_root_flags(&root->root_item, 0);
898 btrfs_set_root_limit(&root->root_item, 0);
899 btrfs_set_root_bytenr(&root->root_item, leaf->start);
900 btrfs_set_root_generation(&root->root_item, trans->transid);
901 btrfs_set_root_level(&root->root_item, 0);
902 btrfs_set_root_refs(&root->root_item, 1);
903 btrfs_set_root_used(&root->root_item, leaf->len);
904 btrfs_set_root_last_snapshot(&root->root_item, 0);
905 btrfs_set_root_dirid(&root->root_item, 0);
906 if (is_fstree(objectid))
907 generate_random_guid(root->root_item.uuid);
908 else
909 export_guid(root->root_item.uuid, &guid_null);
910 btrfs_set_root_drop_level(&root->root_item, 0);
911
912 btrfs_tree_unlock(leaf);
913
914 key.objectid = objectid;
915 key.type = BTRFS_ROOT_ITEM_KEY;
916 key.offset = 0;
917 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
918 if (ret)
919 goto fail;
920
921 return root;
922
923fail:
924 btrfs_put_root(root);
925
926 return ERR_PTR(ret);
927}
928
929static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
930 struct btrfs_fs_info *fs_info)
931{
932 struct btrfs_root *root;
933
934 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
935 if (!root)
936 return ERR_PTR(-ENOMEM);
937
938 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
939 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
940 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
941
942 return root;
943}
944
945int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
946 struct btrfs_root *root)
947{
948 struct extent_buffer *leaf;
949
950 /*
951 * DON'T set SHAREABLE bit for log trees.
952 *
953 * Log trees are not exposed to user space thus can't be snapshotted,
954 * and they go away before a real commit is actually done.
955 *
956 * They do store pointers to file data extents, and those reference
957 * counts still get updated (along with back refs to the log tree).
958 */
959
960 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
961 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
962 if (IS_ERR(leaf))
963 return PTR_ERR(leaf);
964
965 root->node = leaf;
966
967 btrfs_mark_buffer_dirty(trans, root->node);
968 btrfs_tree_unlock(root->node);
969
970 return 0;
971}
972
973int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
974 struct btrfs_fs_info *fs_info)
975{
976 struct btrfs_root *log_root;
977
978 log_root = alloc_log_tree(trans, fs_info);
979 if (IS_ERR(log_root))
980 return PTR_ERR(log_root);
981
982 if (!btrfs_is_zoned(fs_info)) {
983 int ret = btrfs_alloc_log_tree_node(trans, log_root);
984
985 if (ret) {
986 btrfs_put_root(log_root);
987 return ret;
988 }
989 }
990
991 WARN_ON(fs_info->log_root_tree);
992 fs_info->log_root_tree = log_root;
993 return 0;
994}
995
996int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
997 struct btrfs_root *root)
998{
999 struct btrfs_fs_info *fs_info = root->fs_info;
1000 struct btrfs_root *log_root;
1001 struct btrfs_inode_item *inode_item;
1002 int ret;
1003
1004 log_root = alloc_log_tree(trans, fs_info);
1005 if (IS_ERR(log_root))
1006 return PTR_ERR(log_root);
1007
1008 ret = btrfs_alloc_log_tree_node(trans, log_root);
1009 if (ret) {
1010 btrfs_put_root(log_root);
1011 return ret;
1012 }
1013
1014 log_root->last_trans = trans->transid;
1015 log_root->root_key.offset = root->root_key.objectid;
1016
1017 inode_item = &log_root->root_item.inode;
1018 btrfs_set_stack_inode_generation(inode_item, 1);
1019 btrfs_set_stack_inode_size(inode_item, 3);
1020 btrfs_set_stack_inode_nlink(inode_item, 1);
1021 btrfs_set_stack_inode_nbytes(inode_item,
1022 fs_info->nodesize);
1023 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1024
1025 btrfs_set_root_node(&log_root->root_item, log_root->node);
1026
1027 WARN_ON(root->log_root);
1028 root->log_root = log_root;
1029 btrfs_set_root_log_transid(root, 0);
1030 root->log_transid_committed = -1;
1031 btrfs_set_root_last_log_commit(root, 0);
1032 return 0;
1033}
1034
1035static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1036 struct btrfs_path *path,
1037 struct btrfs_key *key)
1038{
1039 struct btrfs_root *root;
1040 struct btrfs_tree_parent_check check = { 0 };
1041 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1042 u64 generation;
1043 int ret;
1044 int level;
1045
1046 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1047 if (!root)
1048 return ERR_PTR(-ENOMEM);
1049
1050 ret = btrfs_find_root(tree_root, key, path,
1051 &root->root_item, &root->root_key);
1052 if (ret) {
1053 if (ret > 0)
1054 ret = -ENOENT;
1055 goto fail;
1056 }
1057
1058 generation = btrfs_root_generation(&root->root_item);
1059 level = btrfs_root_level(&root->root_item);
1060 check.level = level;
1061 check.transid = generation;
1062 check.owner_root = key->objectid;
1063 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1064 &check);
1065 if (IS_ERR(root->node)) {
1066 ret = PTR_ERR(root->node);
1067 root->node = NULL;
1068 goto fail;
1069 }
1070 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1071 ret = -EIO;
1072 goto fail;
1073 }
1074
1075 /*
1076 * For real fs, and not log/reloc trees, root owner must
1077 * match its root node owner
1078 */
1079 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1080 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1081 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1082 root->root_key.objectid != btrfs_header_owner(root->node)) {
1083 btrfs_crit(fs_info,
1084"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1085 root->root_key.objectid, root->node->start,
1086 btrfs_header_owner(root->node),
1087 root->root_key.objectid);
1088 ret = -EUCLEAN;
1089 goto fail;
1090 }
1091 root->commit_root = btrfs_root_node(root);
1092 return root;
1093fail:
1094 btrfs_put_root(root);
1095 return ERR_PTR(ret);
1096}
1097
1098struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1099 struct btrfs_key *key)
1100{
1101 struct btrfs_root *root;
1102 struct btrfs_path *path;
1103
1104 path = btrfs_alloc_path();
1105 if (!path)
1106 return ERR_PTR(-ENOMEM);
1107 root = read_tree_root_path(tree_root, path, key);
1108 btrfs_free_path(path);
1109
1110 return root;
1111}
1112
1113/*
1114 * Initialize subvolume root in-memory structure
1115 *
1116 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1117 */
1118static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1119{
1120 int ret;
1121
1122 btrfs_drew_lock_init(&root->snapshot_lock);
1123
1124 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1125 !btrfs_is_data_reloc_root(root) &&
1126 is_fstree(root->root_key.objectid)) {
1127 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1128 btrfs_check_and_init_root_item(&root->root_item);
1129 }
1130
1131 /*
1132 * Don't assign anonymous block device to roots that are not exposed to
1133 * userspace, the id pool is limited to 1M
1134 */
1135 if (is_fstree(root->root_key.objectid) &&
1136 btrfs_root_refs(&root->root_item) > 0) {
1137 if (!anon_dev) {
1138 ret = get_anon_bdev(&root->anon_dev);
1139 if (ret)
1140 goto fail;
1141 } else {
1142 root->anon_dev = anon_dev;
1143 }
1144 }
1145
1146 mutex_lock(&root->objectid_mutex);
1147 ret = btrfs_init_root_free_objectid(root);
1148 if (ret) {
1149 mutex_unlock(&root->objectid_mutex);
1150 goto fail;
1151 }
1152
1153 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1154
1155 mutex_unlock(&root->objectid_mutex);
1156
1157 return 0;
1158fail:
1159 /* The caller is responsible to call btrfs_free_fs_root */
1160 return ret;
1161}
1162
1163static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1164 u64 root_id)
1165{
1166 struct btrfs_root *root;
1167
1168 spin_lock(&fs_info->fs_roots_radix_lock);
1169 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1170 (unsigned long)root_id);
1171 root = btrfs_grab_root(root);
1172 spin_unlock(&fs_info->fs_roots_radix_lock);
1173 return root;
1174}
1175
1176static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1177 u64 objectid)
1178{
1179 struct btrfs_key key = {
1180 .objectid = objectid,
1181 .type = BTRFS_ROOT_ITEM_KEY,
1182 .offset = 0,
1183 };
1184
1185 switch (objectid) {
1186 case BTRFS_ROOT_TREE_OBJECTID:
1187 return btrfs_grab_root(fs_info->tree_root);
1188 case BTRFS_EXTENT_TREE_OBJECTID:
1189 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1190 case BTRFS_CHUNK_TREE_OBJECTID:
1191 return btrfs_grab_root(fs_info->chunk_root);
1192 case BTRFS_DEV_TREE_OBJECTID:
1193 return btrfs_grab_root(fs_info->dev_root);
1194 case BTRFS_CSUM_TREE_OBJECTID:
1195 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1196 case BTRFS_QUOTA_TREE_OBJECTID:
1197 return btrfs_grab_root(fs_info->quota_root);
1198 case BTRFS_UUID_TREE_OBJECTID:
1199 return btrfs_grab_root(fs_info->uuid_root);
1200 case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1201 return btrfs_grab_root(fs_info->block_group_root);
1202 case BTRFS_FREE_SPACE_TREE_OBJECTID:
1203 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1204 case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1205 return btrfs_grab_root(fs_info->stripe_root);
1206 default:
1207 return NULL;
1208 }
1209}
1210
1211int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1212 struct btrfs_root *root)
1213{
1214 int ret;
1215
1216 ret = radix_tree_preload(GFP_NOFS);
1217 if (ret)
1218 return ret;
1219
1220 spin_lock(&fs_info->fs_roots_radix_lock);
1221 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1222 (unsigned long)root->root_key.objectid,
1223 root);
1224 if (ret == 0) {
1225 btrfs_grab_root(root);
1226 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1227 }
1228 spin_unlock(&fs_info->fs_roots_radix_lock);
1229 radix_tree_preload_end();
1230
1231 return ret;
1232}
1233
1234void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1235{
1236#ifdef CONFIG_BTRFS_DEBUG
1237 struct btrfs_root *root;
1238
1239 while (!list_empty(&fs_info->allocated_roots)) {
1240 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1241
1242 root = list_first_entry(&fs_info->allocated_roots,
1243 struct btrfs_root, leak_list);
1244 btrfs_err(fs_info, "leaked root %s refcount %d",
1245 btrfs_root_name(&root->root_key, buf),
1246 refcount_read(&root->refs));
1247 while (refcount_read(&root->refs) > 1)
1248 btrfs_put_root(root);
1249 btrfs_put_root(root);
1250 }
1251#endif
1252}
1253
1254static void free_global_roots(struct btrfs_fs_info *fs_info)
1255{
1256 struct btrfs_root *root;
1257 struct rb_node *node;
1258
1259 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1260 root = rb_entry(node, struct btrfs_root, rb_node);
1261 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1262 btrfs_put_root(root);
1263 }
1264}
1265
1266void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1267{
1268 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1269 percpu_counter_destroy(&fs_info->delalloc_bytes);
1270 percpu_counter_destroy(&fs_info->ordered_bytes);
1271 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1272 btrfs_free_csum_hash(fs_info);
1273 btrfs_free_stripe_hash_table(fs_info);
1274 btrfs_free_ref_cache(fs_info);
1275 kfree(fs_info->balance_ctl);
1276 kfree(fs_info->delayed_root);
1277 free_global_roots(fs_info);
1278 btrfs_put_root(fs_info->tree_root);
1279 btrfs_put_root(fs_info->chunk_root);
1280 btrfs_put_root(fs_info->dev_root);
1281 btrfs_put_root(fs_info->quota_root);
1282 btrfs_put_root(fs_info->uuid_root);
1283 btrfs_put_root(fs_info->fs_root);
1284 btrfs_put_root(fs_info->data_reloc_root);
1285 btrfs_put_root(fs_info->block_group_root);
1286 btrfs_put_root(fs_info->stripe_root);
1287 btrfs_check_leaked_roots(fs_info);
1288 btrfs_extent_buffer_leak_debug_check(fs_info);
1289 kfree(fs_info->super_copy);
1290 kfree(fs_info->super_for_commit);
1291 kfree(fs_info->subpage_info);
1292 kvfree(fs_info);
1293}
1294
1295
1296/*
1297 * Get an in-memory reference of a root structure.
1298 *
1299 * For essential trees like root/extent tree, we grab it from fs_info directly.
1300 * For subvolume trees, we check the cached filesystem roots first. If not
1301 * found, then read it from disk and add it to cached fs roots.
1302 *
1303 * Caller should release the root by calling btrfs_put_root() after the usage.
1304 *
1305 * NOTE: Reloc and log trees can't be read by this function as they share the
1306 * same root objectid.
1307 *
1308 * @objectid: root id
1309 * @anon_dev: preallocated anonymous block device number for new roots,
1310 * pass NULL for a new allocation.
1311 * @check_ref: whether to check root item references, If true, return -ENOENT
1312 * for orphan roots
1313 */
1314static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1315 u64 objectid, dev_t *anon_dev,
1316 bool check_ref)
1317{
1318 struct btrfs_root *root;
1319 struct btrfs_path *path;
1320 struct btrfs_key key;
1321 int ret;
1322
1323 root = btrfs_get_global_root(fs_info, objectid);
1324 if (root)
1325 return root;
1326
1327 /*
1328 * If we're called for non-subvolume trees, and above function didn't
1329 * find one, do not try to read it from disk.
1330 *
1331 * This is namely for free-space-tree and quota tree, which can change
1332 * at runtime and should only be grabbed from fs_info.
1333 */
1334 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1335 return ERR_PTR(-ENOENT);
1336again:
1337 root = btrfs_lookup_fs_root(fs_info, objectid);
1338 if (root) {
1339 /*
1340 * Some other caller may have read out the newly inserted
1341 * subvolume already (for things like backref walk etc). Not
1342 * that common but still possible. In that case, we just need
1343 * to free the anon_dev.
1344 */
1345 if (unlikely(anon_dev && *anon_dev)) {
1346 free_anon_bdev(*anon_dev);
1347 *anon_dev = 0;
1348 }
1349
1350 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1351 btrfs_put_root(root);
1352 return ERR_PTR(-ENOENT);
1353 }
1354 return root;
1355 }
1356
1357 key.objectid = objectid;
1358 key.type = BTRFS_ROOT_ITEM_KEY;
1359 key.offset = (u64)-1;
1360 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1361 if (IS_ERR(root))
1362 return root;
1363
1364 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1365 ret = -ENOENT;
1366 goto fail;
1367 }
1368
1369 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1370 if (ret)
1371 goto fail;
1372
1373 path = btrfs_alloc_path();
1374 if (!path) {
1375 ret = -ENOMEM;
1376 goto fail;
1377 }
1378 key.objectid = BTRFS_ORPHAN_OBJECTID;
1379 key.type = BTRFS_ORPHAN_ITEM_KEY;
1380 key.offset = objectid;
1381
1382 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1383 btrfs_free_path(path);
1384 if (ret < 0)
1385 goto fail;
1386 if (ret == 0)
1387 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1388
1389 ret = btrfs_insert_fs_root(fs_info, root);
1390 if (ret) {
1391 if (ret == -EEXIST) {
1392 btrfs_put_root(root);
1393 goto again;
1394 }
1395 goto fail;
1396 }
1397 return root;
1398fail:
1399 /*
1400 * If our caller provided us an anonymous device, then it's his
1401 * responsibility to free it in case we fail. So we have to set our
1402 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1403 * and once again by our caller.
1404 */
1405 if (anon_dev && *anon_dev)
1406 root->anon_dev = 0;
1407 btrfs_put_root(root);
1408 return ERR_PTR(ret);
1409}
1410
1411/*
1412 * Get in-memory reference of a root structure
1413 *
1414 * @objectid: tree objectid
1415 * @check_ref: if set, verify that the tree exists and the item has at least
1416 * one reference
1417 */
1418struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1419 u64 objectid, bool check_ref)
1420{
1421 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1422}
1423
1424/*
1425 * Get in-memory reference of a root structure, created as new, optionally pass
1426 * the anonymous block device id
1427 *
1428 * @objectid: tree objectid
1429 * @anon_dev: if NULL, allocate a new anonymous block device or use the
1430 * parameter value if not NULL
1431 */
1432struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1433 u64 objectid, dev_t *anon_dev)
1434{
1435 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1436}
1437
1438/*
1439 * Return a root for the given objectid.
1440 *
1441 * @fs_info: the fs_info
1442 * @objectid: the objectid we need to lookup
1443 *
1444 * This is exclusively used for backref walking, and exists specifically because
1445 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1446 * creation time, which means we may have to read the tree_root in order to look
1447 * up a fs root that is not in memory. If the root is not in memory we will
1448 * read the tree root commit root and look up the fs root from there. This is a
1449 * temporary root, it will not be inserted into the radix tree as it doesn't
1450 * have the most uptodate information, it'll simply be discarded once the
1451 * backref code is finished using the root.
1452 */
1453struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1454 struct btrfs_path *path,
1455 u64 objectid)
1456{
1457 struct btrfs_root *root;
1458 struct btrfs_key key;
1459
1460 ASSERT(path->search_commit_root && path->skip_locking);
1461
1462 /*
1463 * This can return -ENOENT if we ask for a root that doesn't exist, but
1464 * since this is called via the backref walking code we won't be looking
1465 * up a root that doesn't exist, unless there's corruption. So if root
1466 * != NULL just return it.
1467 */
1468 root = btrfs_get_global_root(fs_info, objectid);
1469 if (root)
1470 return root;
1471
1472 root = btrfs_lookup_fs_root(fs_info, objectid);
1473 if (root)
1474 return root;
1475
1476 key.objectid = objectid;
1477 key.type = BTRFS_ROOT_ITEM_KEY;
1478 key.offset = (u64)-1;
1479 root = read_tree_root_path(fs_info->tree_root, path, &key);
1480 btrfs_release_path(path);
1481
1482 return root;
1483}
1484
1485static int cleaner_kthread(void *arg)
1486{
1487 struct btrfs_fs_info *fs_info = arg;
1488 int again;
1489
1490 while (1) {
1491 again = 0;
1492
1493 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1494
1495 /* Make the cleaner go to sleep early. */
1496 if (btrfs_need_cleaner_sleep(fs_info))
1497 goto sleep;
1498
1499 /*
1500 * Do not do anything if we might cause open_ctree() to block
1501 * before we have finished mounting the filesystem.
1502 */
1503 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1504 goto sleep;
1505
1506 if (!mutex_trylock(&fs_info->cleaner_mutex))
1507 goto sleep;
1508
1509 /*
1510 * Avoid the problem that we change the status of the fs
1511 * during the above check and trylock.
1512 */
1513 if (btrfs_need_cleaner_sleep(fs_info)) {
1514 mutex_unlock(&fs_info->cleaner_mutex);
1515 goto sleep;
1516 }
1517
1518 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1519 btrfs_sysfs_feature_update(fs_info);
1520
1521 btrfs_run_delayed_iputs(fs_info);
1522
1523 again = btrfs_clean_one_deleted_snapshot(fs_info);
1524 mutex_unlock(&fs_info->cleaner_mutex);
1525
1526 /*
1527 * The defragger has dealt with the R/O remount and umount,
1528 * needn't do anything special here.
1529 */
1530 btrfs_run_defrag_inodes(fs_info);
1531
1532 /*
1533 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1534 * with relocation (btrfs_relocate_chunk) and relocation
1535 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1536 * after acquiring fs_info->reclaim_bgs_lock. So we
1537 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1538 * unused block groups.
1539 */
1540 btrfs_delete_unused_bgs(fs_info);
1541
1542 /*
1543 * Reclaim block groups in the reclaim_bgs list after we deleted
1544 * all unused block_groups. This possibly gives us some more free
1545 * space.
1546 */
1547 btrfs_reclaim_bgs(fs_info);
1548sleep:
1549 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1550 if (kthread_should_park())
1551 kthread_parkme();
1552 if (kthread_should_stop())
1553 return 0;
1554 if (!again) {
1555 set_current_state(TASK_INTERRUPTIBLE);
1556 schedule();
1557 __set_current_state(TASK_RUNNING);
1558 }
1559 }
1560}
1561
1562static int transaction_kthread(void *arg)
1563{
1564 struct btrfs_root *root = arg;
1565 struct btrfs_fs_info *fs_info = root->fs_info;
1566 struct btrfs_trans_handle *trans;
1567 struct btrfs_transaction *cur;
1568 u64 transid;
1569 time64_t delta;
1570 unsigned long delay;
1571 bool cannot_commit;
1572
1573 do {
1574 cannot_commit = false;
1575 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1576 mutex_lock(&fs_info->transaction_kthread_mutex);
1577
1578 spin_lock(&fs_info->trans_lock);
1579 cur = fs_info->running_transaction;
1580 if (!cur) {
1581 spin_unlock(&fs_info->trans_lock);
1582 goto sleep;
1583 }
1584
1585 delta = ktime_get_seconds() - cur->start_time;
1586 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1587 cur->state < TRANS_STATE_COMMIT_PREP &&
1588 delta < fs_info->commit_interval) {
1589 spin_unlock(&fs_info->trans_lock);
1590 delay -= msecs_to_jiffies((delta - 1) * 1000);
1591 delay = min(delay,
1592 msecs_to_jiffies(fs_info->commit_interval * 1000));
1593 goto sleep;
1594 }
1595 transid = cur->transid;
1596 spin_unlock(&fs_info->trans_lock);
1597
1598 /* If the file system is aborted, this will always fail. */
1599 trans = btrfs_attach_transaction(root);
1600 if (IS_ERR(trans)) {
1601 if (PTR_ERR(trans) != -ENOENT)
1602 cannot_commit = true;
1603 goto sleep;
1604 }
1605 if (transid == trans->transid) {
1606 btrfs_commit_transaction(trans);
1607 } else {
1608 btrfs_end_transaction(trans);
1609 }
1610sleep:
1611 wake_up_process(fs_info->cleaner_kthread);
1612 mutex_unlock(&fs_info->transaction_kthread_mutex);
1613
1614 if (BTRFS_FS_ERROR(fs_info))
1615 btrfs_cleanup_transaction(fs_info);
1616 if (!kthread_should_stop() &&
1617 (!btrfs_transaction_blocked(fs_info) ||
1618 cannot_commit))
1619 schedule_timeout_interruptible(delay);
1620 } while (!kthread_should_stop());
1621 return 0;
1622}
1623
1624/*
1625 * This will find the highest generation in the array of root backups. The
1626 * index of the highest array is returned, or -EINVAL if we can't find
1627 * anything.
1628 *
1629 * We check to make sure the array is valid by comparing the
1630 * generation of the latest root in the array with the generation
1631 * in the super block. If they don't match we pitch it.
1632 */
1633static int find_newest_super_backup(struct btrfs_fs_info *info)
1634{
1635 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1636 u64 cur;
1637 struct btrfs_root_backup *root_backup;
1638 int i;
1639
1640 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1641 root_backup = info->super_copy->super_roots + i;
1642 cur = btrfs_backup_tree_root_gen(root_backup);
1643 if (cur == newest_gen)
1644 return i;
1645 }
1646
1647 return -EINVAL;
1648}
1649
1650/*
1651 * copy all the root pointers into the super backup array.
1652 * this will bump the backup pointer by one when it is
1653 * done
1654 */
1655static void backup_super_roots(struct btrfs_fs_info *info)
1656{
1657 const int next_backup = info->backup_root_index;
1658 struct btrfs_root_backup *root_backup;
1659
1660 root_backup = info->super_for_commit->super_roots + next_backup;
1661
1662 /*
1663 * make sure all of our padding and empty slots get zero filled
1664 * regardless of which ones we use today
1665 */
1666 memset(root_backup, 0, sizeof(*root_backup));
1667
1668 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1669
1670 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1671 btrfs_set_backup_tree_root_gen(root_backup,
1672 btrfs_header_generation(info->tree_root->node));
1673
1674 btrfs_set_backup_tree_root_level(root_backup,
1675 btrfs_header_level(info->tree_root->node));
1676
1677 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1678 btrfs_set_backup_chunk_root_gen(root_backup,
1679 btrfs_header_generation(info->chunk_root->node));
1680 btrfs_set_backup_chunk_root_level(root_backup,
1681 btrfs_header_level(info->chunk_root->node));
1682
1683 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1684 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1685 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1686
1687 btrfs_set_backup_extent_root(root_backup,
1688 extent_root->node->start);
1689 btrfs_set_backup_extent_root_gen(root_backup,
1690 btrfs_header_generation(extent_root->node));
1691 btrfs_set_backup_extent_root_level(root_backup,
1692 btrfs_header_level(extent_root->node));
1693
1694 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1695 btrfs_set_backup_csum_root_gen(root_backup,
1696 btrfs_header_generation(csum_root->node));
1697 btrfs_set_backup_csum_root_level(root_backup,
1698 btrfs_header_level(csum_root->node));
1699 }
1700
1701 /*
1702 * we might commit during log recovery, which happens before we set
1703 * the fs_root. Make sure it is valid before we fill it in.
1704 */
1705 if (info->fs_root && info->fs_root->node) {
1706 btrfs_set_backup_fs_root(root_backup,
1707 info->fs_root->node->start);
1708 btrfs_set_backup_fs_root_gen(root_backup,
1709 btrfs_header_generation(info->fs_root->node));
1710 btrfs_set_backup_fs_root_level(root_backup,
1711 btrfs_header_level(info->fs_root->node));
1712 }
1713
1714 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1715 btrfs_set_backup_dev_root_gen(root_backup,
1716 btrfs_header_generation(info->dev_root->node));
1717 btrfs_set_backup_dev_root_level(root_backup,
1718 btrfs_header_level(info->dev_root->node));
1719
1720 btrfs_set_backup_total_bytes(root_backup,
1721 btrfs_super_total_bytes(info->super_copy));
1722 btrfs_set_backup_bytes_used(root_backup,
1723 btrfs_super_bytes_used(info->super_copy));
1724 btrfs_set_backup_num_devices(root_backup,
1725 btrfs_super_num_devices(info->super_copy));
1726
1727 /*
1728 * if we don't copy this out to the super_copy, it won't get remembered
1729 * for the next commit
1730 */
1731 memcpy(&info->super_copy->super_roots,
1732 &info->super_for_commit->super_roots,
1733 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1734}
1735
1736/*
1737 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1738 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1739 *
1740 * @fs_info: filesystem whose backup roots need to be read
1741 * @priority: priority of backup root required
1742 *
1743 * Returns backup root index on success and -EINVAL otherwise.
1744 */
1745static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1746{
1747 int backup_index = find_newest_super_backup(fs_info);
1748 struct btrfs_super_block *super = fs_info->super_copy;
1749 struct btrfs_root_backup *root_backup;
1750
1751 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1752 if (priority == 0)
1753 return backup_index;
1754
1755 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1756 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1757 } else {
1758 return -EINVAL;
1759 }
1760
1761 root_backup = super->super_roots + backup_index;
1762
1763 btrfs_set_super_generation(super,
1764 btrfs_backup_tree_root_gen(root_backup));
1765 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1766 btrfs_set_super_root_level(super,
1767 btrfs_backup_tree_root_level(root_backup));
1768 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1769
1770 /*
1771 * Fixme: the total bytes and num_devices need to match or we should
1772 * need a fsck
1773 */
1774 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1775 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1776
1777 return backup_index;
1778}
1779
1780/* helper to cleanup workers */
1781static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1782{
1783 btrfs_destroy_workqueue(fs_info->fixup_workers);
1784 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1785 btrfs_destroy_workqueue(fs_info->workers);
1786 if (fs_info->endio_workers)
1787 destroy_workqueue(fs_info->endio_workers);
1788 if (fs_info->rmw_workers)
1789 destroy_workqueue(fs_info->rmw_workers);
1790 if (fs_info->compressed_write_workers)
1791 destroy_workqueue(fs_info->compressed_write_workers);
1792 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1793 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1794 btrfs_destroy_workqueue(fs_info->delayed_workers);
1795 btrfs_destroy_workqueue(fs_info->caching_workers);
1796 btrfs_destroy_workqueue(fs_info->flush_workers);
1797 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1798 if (fs_info->discard_ctl.discard_workers)
1799 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1800 /*
1801 * Now that all other work queues are destroyed, we can safely destroy
1802 * the queues used for metadata I/O, since tasks from those other work
1803 * queues can do metadata I/O operations.
1804 */
1805 if (fs_info->endio_meta_workers)
1806 destroy_workqueue(fs_info->endio_meta_workers);
1807}
1808
1809static void free_root_extent_buffers(struct btrfs_root *root)
1810{
1811 if (root) {
1812 free_extent_buffer(root->node);
1813 free_extent_buffer(root->commit_root);
1814 root->node = NULL;
1815 root->commit_root = NULL;
1816 }
1817}
1818
1819static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1820{
1821 struct btrfs_root *root, *tmp;
1822
1823 rbtree_postorder_for_each_entry_safe(root, tmp,
1824 &fs_info->global_root_tree,
1825 rb_node)
1826 free_root_extent_buffers(root);
1827}
1828
1829/* helper to cleanup tree roots */
1830static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1831{
1832 free_root_extent_buffers(info->tree_root);
1833
1834 free_global_root_pointers(info);
1835 free_root_extent_buffers(info->dev_root);
1836 free_root_extent_buffers(info->quota_root);
1837 free_root_extent_buffers(info->uuid_root);
1838 free_root_extent_buffers(info->fs_root);
1839 free_root_extent_buffers(info->data_reloc_root);
1840 free_root_extent_buffers(info->block_group_root);
1841 free_root_extent_buffers(info->stripe_root);
1842 if (free_chunk_root)
1843 free_root_extent_buffers(info->chunk_root);
1844}
1845
1846void btrfs_put_root(struct btrfs_root *root)
1847{
1848 if (!root)
1849 return;
1850
1851 if (refcount_dec_and_test(&root->refs)) {
1852 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1853 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1854 if (root->anon_dev)
1855 free_anon_bdev(root->anon_dev);
1856 free_root_extent_buffers(root);
1857#ifdef CONFIG_BTRFS_DEBUG
1858 spin_lock(&root->fs_info->fs_roots_radix_lock);
1859 list_del_init(&root->leak_list);
1860 spin_unlock(&root->fs_info->fs_roots_radix_lock);
1861#endif
1862 kfree(root);
1863 }
1864}
1865
1866void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1867{
1868 int ret;
1869 struct btrfs_root *gang[8];
1870 int i;
1871
1872 while (!list_empty(&fs_info->dead_roots)) {
1873 gang[0] = list_entry(fs_info->dead_roots.next,
1874 struct btrfs_root, root_list);
1875 list_del(&gang[0]->root_list);
1876
1877 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1878 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1879 btrfs_put_root(gang[0]);
1880 }
1881
1882 while (1) {
1883 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1884 (void **)gang, 0,
1885 ARRAY_SIZE(gang));
1886 if (!ret)
1887 break;
1888 for (i = 0; i < ret; i++)
1889 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1890 }
1891}
1892
1893static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1894{
1895 mutex_init(&fs_info->scrub_lock);
1896 atomic_set(&fs_info->scrubs_running, 0);
1897 atomic_set(&fs_info->scrub_pause_req, 0);
1898 atomic_set(&fs_info->scrubs_paused, 0);
1899 atomic_set(&fs_info->scrub_cancel_req, 0);
1900 init_waitqueue_head(&fs_info->scrub_pause_wait);
1901 refcount_set(&fs_info->scrub_workers_refcnt, 0);
1902}
1903
1904static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1905{
1906 spin_lock_init(&fs_info->balance_lock);
1907 mutex_init(&fs_info->balance_mutex);
1908 atomic_set(&fs_info->balance_pause_req, 0);
1909 atomic_set(&fs_info->balance_cancel_req, 0);
1910 fs_info->balance_ctl = NULL;
1911 init_waitqueue_head(&fs_info->balance_wait_q);
1912 atomic_set(&fs_info->reloc_cancel_req, 0);
1913}
1914
1915static int btrfs_init_btree_inode(struct super_block *sb)
1916{
1917 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1918 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1919 fs_info->tree_root);
1920 struct inode *inode;
1921
1922 inode = new_inode(sb);
1923 if (!inode)
1924 return -ENOMEM;
1925
1926 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1927 set_nlink(inode, 1);
1928 /*
1929 * we set the i_size on the btree inode to the max possible int.
1930 * the real end of the address space is determined by all of
1931 * the devices in the system
1932 */
1933 inode->i_size = OFFSET_MAX;
1934 inode->i_mapping->a_ops = &btree_aops;
1935 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1936
1937 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
1938 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1939 IO_TREE_BTREE_INODE_IO);
1940 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1941
1942 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1943 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1944 BTRFS_I(inode)->location.type = 0;
1945 BTRFS_I(inode)->location.offset = 0;
1946 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1947 __insert_inode_hash(inode, hash);
1948 fs_info->btree_inode = inode;
1949
1950 return 0;
1951}
1952
1953static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1954{
1955 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1956 init_rwsem(&fs_info->dev_replace.rwsem);
1957 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1958}
1959
1960static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1961{
1962 spin_lock_init(&fs_info->qgroup_lock);
1963 mutex_init(&fs_info->qgroup_ioctl_lock);
1964 fs_info->qgroup_tree = RB_ROOT;
1965 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1966 fs_info->qgroup_seq = 1;
1967 fs_info->qgroup_ulist = NULL;
1968 fs_info->qgroup_rescan_running = false;
1969 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
1970 mutex_init(&fs_info->qgroup_rescan_lock);
1971}
1972
1973static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1974{
1975 u32 max_active = fs_info->thread_pool_size;
1976 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1977 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1978
1979 fs_info->workers =
1980 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1981
1982 fs_info->delalloc_workers =
1983 btrfs_alloc_workqueue(fs_info, "delalloc",
1984 flags, max_active, 2);
1985
1986 fs_info->flush_workers =
1987 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1988 flags, max_active, 0);
1989
1990 fs_info->caching_workers =
1991 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1992
1993 fs_info->fixup_workers =
1994 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1995
1996 fs_info->endio_workers =
1997 alloc_workqueue("btrfs-endio", flags, max_active);
1998 fs_info->endio_meta_workers =
1999 alloc_workqueue("btrfs-endio-meta", flags, max_active);
2000 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2001 fs_info->endio_write_workers =
2002 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2003 max_active, 2);
2004 fs_info->compressed_write_workers =
2005 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2006 fs_info->endio_freespace_worker =
2007 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2008 max_active, 0);
2009 fs_info->delayed_workers =
2010 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2011 max_active, 0);
2012 fs_info->qgroup_rescan_workers =
2013 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2014 ordered_flags);
2015 fs_info->discard_ctl.discard_workers =
2016 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2017
2018 if (!(fs_info->workers &&
2019 fs_info->delalloc_workers && fs_info->flush_workers &&
2020 fs_info->endio_workers && fs_info->endio_meta_workers &&
2021 fs_info->compressed_write_workers &&
2022 fs_info->endio_write_workers &&
2023 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2024 fs_info->caching_workers && fs_info->fixup_workers &&
2025 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2026 fs_info->discard_ctl.discard_workers)) {
2027 return -ENOMEM;
2028 }
2029
2030 return 0;
2031}
2032
2033static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2034{
2035 struct crypto_shash *csum_shash;
2036 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2037
2038 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2039
2040 if (IS_ERR(csum_shash)) {
2041 btrfs_err(fs_info, "error allocating %s hash for checksum",
2042 csum_driver);
2043 return PTR_ERR(csum_shash);
2044 }
2045
2046 fs_info->csum_shash = csum_shash;
2047
2048 /*
2049 * Check if the checksum implementation is a fast accelerated one.
2050 * As-is this is a bit of a hack and should be replaced once the csum
2051 * implementations provide that information themselves.
2052 */
2053 switch (csum_type) {
2054 case BTRFS_CSUM_TYPE_CRC32:
2055 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2056 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2057 break;
2058 case BTRFS_CSUM_TYPE_XXHASH:
2059 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2060 break;
2061 default:
2062 break;
2063 }
2064
2065 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2066 btrfs_super_csum_name(csum_type),
2067 crypto_shash_driver_name(csum_shash));
2068 return 0;
2069}
2070
2071static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2072 struct btrfs_fs_devices *fs_devices)
2073{
2074 int ret;
2075 struct btrfs_tree_parent_check check = { 0 };
2076 struct btrfs_root *log_tree_root;
2077 struct btrfs_super_block *disk_super = fs_info->super_copy;
2078 u64 bytenr = btrfs_super_log_root(disk_super);
2079 int level = btrfs_super_log_root_level(disk_super);
2080
2081 if (fs_devices->rw_devices == 0) {
2082 btrfs_warn(fs_info, "log replay required on RO media");
2083 return -EIO;
2084 }
2085
2086 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2087 GFP_KERNEL);
2088 if (!log_tree_root)
2089 return -ENOMEM;
2090
2091 check.level = level;
2092 check.transid = fs_info->generation + 1;
2093 check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2094 log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2095 if (IS_ERR(log_tree_root->node)) {
2096 btrfs_warn(fs_info, "failed to read log tree");
2097 ret = PTR_ERR(log_tree_root->node);
2098 log_tree_root->node = NULL;
2099 btrfs_put_root(log_tree_root);
2100 return ret;
2101 }
2102 if (!extent_buffer_uptodate(log_tree_root->node)) {
2103 btrfs_err(fs_info, "failed to read log tree");
2104 btrfs_put_root(log_tree_root);
2105 return -EIO;
2106 }
2107
2108 /* returns with log_tree_root freed on success */
2109 ret = btrfs_recover_log_trees(log_tree_root);
2110 if (ret) {
2111 btrfs_handle_fs_error(fs_info, ret,
2112 "Failed to recover log tree");
2113 btrfs_put_root(log_tree_root);
2114 return ret;
2115 }
2116
2117 if (sb_rdonly(fs_info->sb)) {
2118 ret = btrfs_commit_super(fs_info);
2119 if (ret)
2120 return ret;
2121 }
2122
2123 return 0;
2124}
2125
2126static int load_global_roots_objectid(struct btrfs_root *tree_root,
2127 struct btrfs_path *path, u64 objectid,
2128 const char *name)
2129{
2130 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2131 struct btrfs_root *root;
2132 u64 max_global_id = 0;
2133 int ret;
2134 struct btrfs_key key = {
2135 .objectid = objectid,
2136 .type = BTRFS_ROOT_ITEM_KEY,
2137 .offset = 0,
2138 };
2139 bool found = false;
2140
2141 /* If we have IGNOREDATACSUMS skip loading these roots. */
2142 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2143 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2144 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2145 return 0;
2146 }
2147
2148 while (1) {
2149 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2150 if (ret < 0)
2151 break;
2152
2153 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2154 ret = btrfs_next_leaf(tree_root, path);
2155 if (ret) {
2156 if (ret > 0)
2157 ret = 0;
2158 break;
2159 }
2160 }
2161 ret = 0;
2162
2163 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2164 if (key.objectid != objectid)
2165 break;
2166 btrfs_release_path(path);
2167
2168 /*
2169 * Just worry about this for extent tree, it'll be the same for
2170 * everybody.
2171 */
2172 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2173 max_global_id = max(max_global_id, key.offset);
2174
2175 found = true;
2176 root = read_tree_root_path(tree_root, path, &key);
2177 if (IS_ERR(root)) {
2178 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2179 ret = PTR_ERR(root);
2180 break;
2181 }
2182 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2183 ret = btrfs_global_root_insert(root);
2184 if (ret) {
2185 btrfs_put_root(root);
2186 break;
2187 }
2188 key.offset++;
2189 }
2190 btrfs_release_path(path);
2191
2192 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2193 fs_info->nr_global_roots = max_global_id + 1;
2194
2195 if (!found || ret) {
2196 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2197 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2198
2199 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2200 ret = ret ? ret : -ENOENT;
2201 else
2202 ret = 0;
2203 btrfs_err(fs_info, "failed to load root %s", name);
2204 }
2205 return ret;
2206}
2207
2208static int load_global_roots(struct btrfs_root *tree_root)
2209{
2210 struct btrfs_path *path;
2211 int ret = 0;
2212
2213 path = btrfs_alloc_path();
2214 if (!path)
2215 return -ENOMEM;
2216
2217 ret = load_global_roots_objectid(tree_root, path,
2218 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2219 if (ret)
2220 goto out;
2221 ret = load_global_roots_objectid(tree_root, path,
2222 BTRFS_CSUM_TREE_OBJECTID, "csum");
2223 if (ret)
2224 goto out;
2225 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2226 goto out;
2227 ret = load_global_roots_objectid(tree_root, path,
2228 BTRFS_FREE_SPACE_TREE_OBJECTID,
2229 "free space");
2230out:
2231 btrfs_free_path(path);
2232 return ret;
2233}
2234
2235static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2236{
2237 struct btrfs_root *tree_root = fs_info->tree_root;
2238 struct btrfs_root *root;
2239 struct btrfs_key location;
2240 int ret;
2241
2242 BUG_ON(!fs_info->tree_root);
2243
2244 ret = load_global_roots(tree_root);
2245 if (ret)
2246 return ret;
2247
2248 location.type = BTRFS_ROOT_ITEM_KEY;
2249 location.offset = 0;
2250
2251 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2252 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2253 root = btrfs_read_tree_root(tree_root, &location);
2254 if (IS_ERR(root)) {
2255 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2256 ret = PTR_ERR(root);
2257 goto out;
2258 }
2259 } else {
2260 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2261 fs_info->block_group_root = root;
2262 }
2263 }
2264
2265 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2266 root = btrfs_read_tree_root(tree_root, &location);
2267 if (IS_ERR(root)) {
2268 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2269 ret = PTR_ERR(root);
2270 goto out;
2271 }
2272 } else {
2273 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2274 fs_info->dev_root = root;
2275 }
2276 /* Initialize fs_info for all devices in any case */
2277 ret = btrfs_init_devices_late(fs_info);
2278 if (ret)
2279 goto out;
2280
2281 /*
2282 * This tree can share blocks with some other fs tree during relocation
2283 * and we need a proper setup by btrfs_get_fs_root
2284 */
2285 root = btrfs_get_fs_root(tree_root->fs_info,
2286 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2287 if (IS_ERR(root)) {
2288 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2289 ret = PTR_ERR(root);
2290 goto out;
2291 }
2292 } else {
2293 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2294 fs_info->data_reloc_root = root;
2295 }
2296
2297 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2298 root = btrfs_read_tree_root(tree_root, &location);
2299 if (!IS_ERR(root)) {
2300 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2301 fs_info->quota_root = root;
2302 }
2303
2304 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2305 root = btrfs_read_tree_root(tree_root, &location);
2306 if (IS_ERR(root)) {
2307 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2308 ret = PTR_ERR(root);
2309 if (ret != -ENOENT)
2310 goto out;
2311 }
2312 } else {
2313 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2314 fs_info->uuid_root = root;
2315 }
2316
2317 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2318 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2319 root = btrfs_read_tree_root(tree_root, &location);
2320 if (IS_ERR(root)) {
2321 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2322 ret = PTR_ERR(root);
2323 goto out;
2324 }
2325 } else {
2326 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2327 fs_info->stripe_root = root;
2328 }
2329 }
2330
2331 return 0;
2332out:
2333 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2334 location.objectid, ret);
2335 return ret;
2336}
2337
2338/*
2339 * Real super block validation
2340 * NOTE: super csum type and incompat features will not be checked here.
2341 *
2342 * @sb: super block to check
2343 * @mirror_num: the super block number to check its bytenr:
2344 * 0 the primary (1st) sb
2345 * 1, 2 2nd and 3rd backup copy
2346 * -1 skip bytenr check
2347 */
2348int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2349 struct btrfs_super_block *sb, int mirror_num)
2350{
2351 u64 nodesize = btrfs_super_nodesize(sb);
2352 u64 sectorsize = btrfs_super_sectorsize(sb);
2353 int ret = 0;
2354
2355 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2356 btrfs_err(fs_info, "no valid FS found");
2357 ret = -EINVAL;
2358 }
2359 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2360 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2361 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2362 ret = -EINVAL;
2363 }
2364 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2365 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2366 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2367 ret = -EINVAL;
2368 }
2369 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2370 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2371 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2372 ret = -EINVAL;
2373 }
2374 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2375 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2376 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2377 ret = -EINVAL;
2378 }
2379
2380 /*
2381 * Check sectorsize and nodesize first, other check will need it.
2382 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2383 */
2384 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2385 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2386 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2387 ret = -EINVAL;
2388 }
2389
2390 /*
2391 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2392 *
2393 * We can support 16K sectorsize with 64K page size without problem,
2394 * but such sectorsize/pagesize combination doesn't make much sense.
2395 * 4K will be our future standard, PAGE_SIZE is supported from the very
2396 * beginning.
2397 */
2398 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2399 btrfs_err(fs_info,
2400 "sectorsize %llu not yet supported for page size %lu",
2401 sectorsize, PAGE_SIZE);
2402 ret = -EINVAL;
2403 }
2404
2405 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2406 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2407 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2408 ret = -EINVAL;
2409 }
2410 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2411 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2412 le32_to_cpu(sb->__unused_leafsize), nodesize);
2413 ret = -EINVAL;
2414 }
2415
2416 /* Root alignment check */
2417 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2418 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2419 btrfs_super_root(sb));
2420 ret = -EINVAL;
2421 }
2422 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2423 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2424 btrfs_super_chunk_root(sb));
2425 ret = -EINVAL;
2426 }
2427 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2428 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2429 btrfs_super_log_root(sb));
2430 ret = -EINVAL;
2431 }
2432
2433 if (!fs_info->fs_devices->temp_fsid &&
2434 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2435 btrfs_err(fs_info,
2436 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2437 sb->fsid, fs_info->fs_devices->fsid);
2438 ret = -EINVAL;
2439 }
2440
2441 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2442 BTRFS_FSID_SIZE) != 0) {
2443 btrfs_err(fs_info,
2444"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2445 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2446 ret = -EINVAL;
2447 }
2448
2449 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2450 BTRFS_FSID_SIZE) != 0) {
2451 btrfs_err(fs_info,
2452 "dev_item UUID does not match metadata fsid: %pU != %pU",
2453 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2454 ret = -EINVAL;
2455 }
2456
2457 /*
2458 * Artificial requirement for block-group-tree to force newer features
2459 * (free-space-tree, no-holes) so the test matrix is smaller.
2460 */
2461 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2462 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2463 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2464 btrfs_err(fs_info,
2465 "block-group-tree feature requires fres-space-tree and no-holes");
2466 ret = -EINVAL;
2467 }
2468
2469 /*
2470 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2471 * done later
2472 */
2473 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2474 btrfs_err(fs_info, "bytes_used is too small %llu",
2475 btrfs_super_bytes_used(sb));
2476 ret = -EINVAL;
2477 }
2478 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2479 btrfs_err(fs_info, "invalid stripesize %u",
2480 btrfs_super_stripesize(sb));
2481 ret = -EINVAL;
2482 }
2483 if (btrfs_super_num_devices(sb) > (1UL << 31))
2484 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2485 btrfs_super_num_devices(sb));
2486 if (btrfs_super_num_devices(sb) == 0) {
2487 btrfs_err(fs_info, "number of devices is 0");
2488 ret = -EINVAL;
2489 }
2490
2491 if (mirror_num >= 0 &&
2492 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2493 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2494 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2495 ret = -EINVAL;
2496 }
2497
2498 /*
2499 * Obvious sys_chunk_array corruptions, it must hold at least one key
2500 * and one chunk
2501 */
2502 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2503 btrfs_err(fs_info, "system chunk array too big %u > %u",
2504 btrfs_super_sys_array_size(sb),
2505 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2506 ret = -EINVAL;
2507 }
2508 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2509 + sizeof(struct btrfs_chunk)) {
2510 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2511 btrfs_super_sys_array_size(sb),
2512 sizeof(struct btrfs_disk_key)
2513 + sizeof(struct btrfs_chunk));
2514 ret = -EINVAL;
2515 }
2516
2517 /*
2518 * The generation is a global counter, we'll trust it more than the others
2519 * but it's still possible that it's the one that's wrong.
2520 */
2521 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2522 btrfs_warn(fs_info,
2523 "suspicious: generation < chunk_root_generation: %llu < %llu",
2524 btrfs_super_generation(sb),
2525 btrfs_super_chunk_root_generation(sb));
2526 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2527 && btrfs_super_cache_generation(sb) != (u64)-1)
2528 btrfs_warn(fs_info,
2529 "suspicious: generation < cache_generation: %llu < %llu",
2530 btrfs_super_generation(sb),
2531 btrfs_super_cache_generation(sb));
2532
2533 return ret;
2534}
2535
2536/*
2537 * Validation of super block at mount time.
2538 * Some checks already done early at mount time, like csum type and incompat
2539 * flags will be skipped.
2540 */
2541static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2542{
2543 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2544}
2545
2546/*
2547 * Validation of super block at write time.
2548 * Some checks like bytenr check will be skipped as their values will be
2549 * overwritten soon.
2550 * Extra checks like csum type and incompat flags will be done here.
2551 */
2552static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2553 struct btrfs_super_block *sb)
2554{
2555 int ret;
2556
2557 ret = btrfs_validate_super(fs_info, sb, -1);
2558 if (ret < 0)
2559 goto out;
2560 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2561 ret = -EUCLEAN;
2562 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2563 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2564 goto out;
2565 }
2566 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2567 ret = -EUCLEAN;
2568 btrfs_err(fs_info,
2569 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2570 btrfs_super_incompat_flags(sb),
2571 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2572 goto out;
2573 }
2574out:
2575 if (ret < 0)
2576 btrfs_err(fs_info,
2577 "super block corruption detected before writing it to disk");
2578 return ret;
2579}
2580
2581static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2582{
2583 struct btrfs_tree_parent_check check = {
2584 .level = level,
2585 .transid = gen,
2586 .owner_root = root->root_key.objectid
2587 };
2588 int ret = 0;
2589
2590 root->node = read_tree_block(root->fs_info, bytenr, &check);
2591 if (IS_ERR(root->node)) {
2592 ret = PTR_ERR(root->node);
2593 root->node = NULL;
2594 return ret;
2595 }
2596 if (!extent_buffer_uptodate(root->node)) {
2597 free_extent_buffer(root->node);
2598 root->node = NULL;
2599 return -EIO;
2600 }
2601
2602 btrfs_set_root_node(&root->root_item, root->node);
2603 root->commit_root = btrfs_root_node(root);
2604 btrfs_set_root_refs(&root->root_item, 1);
2605 return ret;
2606}
2607
2608static int load_important_roots(struct btrfs_fs_info *fs_info)
2609{
2610 struct btrfs_super_block *sb = fs_info->super_copy;
2611 u64 gen, bytenr;
2612 int level, ret;
2613
2614 bytenr = btrfs_super_root(sb);
2615 gen = btrfs_super_generation(sb);
2616 level = btrfs_super_root_level(sb);
2617 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2618 if (ret) {
2619 btrfs_warn(fs_info, "couldn't read tree root");
2620 return ret;
2621 }
2622 return 0;
2623}
2624
2625static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2626{
2627 int backup_index = find_newest_super_backup(fs_info);
2628 struct btrfs_super_block *sb = fs_info->super_copy;
2629 struct btrfs_root *tree_root = fs_info->tree_root;
2630 bool handle_error = false;
2631 int ret = 0;
2632 int i;
2633
2634 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2635 if (handle_error) {
2636 if (!IS_ERR(tree_root->node))
2637 free_extent_buffer(tree_root->node);
2638 tree_root->node = NULL;
2639
2640 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2641 break;
2642
2643 free_root_pointers(fs_info, 0);
2644
2645 /*
2646 * Don't use the log in recovery mode, it won't be
2647 * valid
2648 */
2649 btrfs_set_super_log_root(sb, 0);
2650
2651 btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2652 ret = read_backup_root(fs_info, i);
2653 backup_index = ret;
2654 if (ret < 0)
2655 return ret;
2656 }
2657
2658 ret = load_important_roots(fs_info);
2659 if (ret) {
2660 handle_error = true;
2661 continue;
2662 }
2663
2664 /*
2665 * No need to hold btrfs_root::objectid_mutex since the fs
2666 * hasn't been fully initialised and we are the only user
2667 */
2668 ret = btrfs_init_root_free_objectid(tree_root);
2669 if (ret < 0) {
2670 handle_error = true;
2671 continue;
2672 }
2673
2674 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2675
2676 ret = btrfs_read_roots(fs_info);
2677 if (ret < 0) {
2678 handle_error = true;
2679 continue;
2680 }
2681
2682 /* All successful */
2683 fs_info->generation = btrfs_header_generation(tree_root->node);
2684 btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2685 fs_info->last_reloc_trans = 0;
2686
2687 /* Always begin writing backup roots after the one being used */
2688 if (backup_index < 0) {
2689 fs_info->backup_root_index = 0;
2690 } else {
2691 fs_info->backup_root_index = backup_index + 1;
2692 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2693 }
2694 break;
2695 }
2696
2697 return ret;
2698}
2699
2700void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2701{
2702 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2703 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2704 INIT_LIST_HEAD(&fs_info->trans_list);
2705 INIT_LIST_HEAD(&fs_info->dead_roots);
2706 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2707 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2708 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2709 spin_lock_init(&fs_info->delalloc_root_lock);
2710 spin_lock_init(&fs_info->trans_lock);
2711 spin_lock_init(&fs_info->fs_roots_radix_lock);
2712 spin_lock_init(&fs_info->delayed_iput_lock);
2713 spin_lock_init(&fs_info->defrag_inodes_lock);
2714 spin_lock_init(&fs_info->super_lock);
2715 spin_lock_init(&fs_info->buffer_lock);
2716 spin_lock_init(&fs_info->unused_bgs_lock);
2717 spin_lock_init(&fs_info->treelog_bg_lock);
2718 spin_lock_init(&fs_info->zone_active_bgs_lock);
2719 spin_lock_init(&fs_info->relocation_bg_lock);
2720 rwlock_init(&fs_info->tree_mod_log_lock);
2721 rwlock_init(&fs_info->global_root_lock);
2722 mutex_init(&fs_info->unused_bg_unpin_mutex);
2723 mutex_init(&fs_info->reclaim_bgs_lock);
2724 mutex_init(&fs_info->reloc_mutex);
2725 mutex_init(&fs_info->delalloc_root_mutex);
2726 mutex_init(&fs_info->zoned_meta_io_lock);
2727 mutex_init(&fs_info->zoned_data_reloc_io_lock);
2728 seqlock_init(&fs_info->profiles_lock);
2729
2730 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2731 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2732 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2733 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2734 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2735 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2736 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2737 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2738 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2739 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2740 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2741 BTRFS_LOCKDEP_TRANS_COMPLETED);
2742
2743 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2744 INIT_LIST_HEAD(&fs_info->space_info);
2745 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2746 INIT_LIST_HEAD(&fs_info->unused_bgs);
2747 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2748 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2749#ifdef CONFIG_BTRFS_DEBUG
2750 INIT_LIST_HEAD(&fs_info->allocated_roots);
2751 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2752 spin_lock_init(&fs_info->eb_leak_lock);
2753#endif
2754 fs_info->mapping_tree = RB_ROOT_CACHED;
2755 rwlock_init(&fs_info->mapping_tree_lock);
2756 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2757 BTRFS_BLOCK_RSV_GLOBAL);
2758 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2759 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2760 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2761 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2762 BTRFS_BLOCK_RSV_DELOPS);
2763 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2764 BTRFS_BLOCK_RSV_DELREFS);
2765
2766 atomic_set(&fs_info->async_delalloc_pages, 0);
2767 atomic_set(&fs_info->defrag_running, 0);
2768 atomic_set(&fs_info->nr_delayed_iputs, 0);
2769 atomic64_set(&fs_info->tree_mod_seq, 0);
2770 fs_info->global_root_tree = RB_ROOT;
2771 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2772 fs_info->metadata_ratio = 0;
2773 fs_info->defrag_inodes = RB_ROOT;
2774 atomic64_set(&fs_info->free_chunk_space, 0);
2775 fs_info->tree_mod_log = RB_ROOT;
2776 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2777 btrfs_init_ref_verify(fs_info);
2778
2779 fs_info->thread_pool_size = min_t(unsigned long,
2780 num_online_cpus() + 2, 8);
2781
2782 INIT_LIST_HEAD(&fs_info->ordered_roots);
2783 spin_lock_init(&fs_info->ordered_root_lock);
2784
2785 btrfs_init_scrub(fs_info);
2786 btrfs_init_balance(fs_info);
2787 btrfs_init_async_reclaim_work(fs_info);
2788
2789 rwlock_init(&fs_info->block_group_cache_lock);
2790 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2791
2792 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2793 IO_TREE_FS_EXCLUDED_EXTENTS);
2794
2795 mutex_init(&fs_info->ordered_operations_mutex);
2796 mutex_init(&fs_info->tree_log_mutex);
2797 mutex_init(&fs_info->chunk_mutex);
2798 mutex_init(&fs_info->transaction_kthread_mutex);
2799 mutex_init(&fs_info->cleaner_mutex);
2800 mutex_init(&fs_info->ro_block_group_mutex);
2801 init_rwsem(&fs_info->commit_root_sem);
2802 init_rwsem(&fs_info->cleanup_work_sem);
2803 init_rwsem(&fs_info->subvol_sem);
2804 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2805
2806 btrfs_init_dev_replace_locks(fs_info);
2807 btrfs_init_qgroup(fs_info);
2808 btrfs_discard_init(fs_info);
2809
2810 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2811 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2812
2813 init_waitqueue_head(&fs_info->transaction_throttle);
2814 init_waitqueue_head(&fs_info->transaction_wait);
2815 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2816 init_waitqueue_head(&fs_info->async_submit_wait);
2817 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2818
2819 /* Usable values until the real ones are cached from the superblock */
2820 fs_info->nodesize = 4096;
2821 fs_info->sectorsize = 4096;
2822 fs_info->sectorsize_bits = ilog2(4096);
2823 fs_info->stripesize = 4096;
2824
2825 /* Default compress algorithm when user does -o compress */
2826 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2827
2828 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2829
2830 spin_lock_init(&fs_info->swapfile_pins_lock);
2831 fs_info->swapfile_pins = RB_ROOT;
2832
2833 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2834 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2835}
2836
2837static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2838{
2839 int ret;
2840
2841 fs_info->sb = sb;
2842 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2843 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2844
2845 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2846 if (ret)
2847 return ret;
2848
2849 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2850 if (ret)
2851 return ret;
2852
2853 fs_info->dirty_metadata_batch = PAGE_SIZE *
2854 (1 + ilog2(nr_cpu_ids));
2855
2856 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2857 if (ret)
2858 return ret;
2859
2860 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2861 GFP_KERNEL);
2862 if (ret)
2863 return ret;
2864
2865 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2866 GFP_KERNEL);
2867 if (!fs_info->delayed_root)
2868 return -ENOMEM;
2869 btrfs_init_delayed_root(fs_info->delayed_root);
2870
2871 if (sb_rdonly(sb))
2872 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2873
2874 return btrfs_alloc_stripe_hash_table(fs_info);
2875}
2876
2877static int btrfs_uuid_rescan_kthread(void *data)
2878{
2879 struct btrfs_fs_info *fs_info = data;
2880 int ret;
2881
2882 /*
2883 * 1st step is to iterate through the existing UUID tree and
2884 * to delete all entries that contain outdated data.
2885 * 2nd step is to add all missing entries to the UUID tree.
2886 */
2887 ret = btrfs_uuid_tree_iterate(fs_info);
2888 if (ret < 0) {
2889 if (ret != -EINTR)
2890 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2891 ret);
2892 up(&fs_info->uuid_tree_rescan_sem);
2893 return ret;
2894 }
2895 return btrfs_uuid_scan_kthread(data);
2896}
2897
2898static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2899{
2900 struct task_struct *task;
2901
2902 down(&fs_info->uuid_tree_rescan_sem);
2903 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2904 if (IS_ERR(task)) {
2905 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2906 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2907 up(&fs_info->uuid_tree_rescan_sem);
2908 return PTR_ERR(task);
2909 }
2910
2911 return 0;
2912}
2913
2914static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2915{
2916 u64 root_objectid = 0;
2917 struct btrfs_root *gang[8];
2918 int i = 0;
2919 int err = 0;
2920 unsigned int ret = 0;
2921
2922 while (1) {
2923 spin_lock(&fs_info->fs_roots_radix_lock);
2924 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2925 (void **)gang, root_objectid,
2926 ARRAY_SIZE(gang));
2927 if (!ret) {
2928 spin_unlock(&fs_info->fs_roots_radix_lock);
2929 break;
2930 }
2931 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2932
2933 for (i = 0; i < ret; i++) {
2934 /* Avoid to grab roots in dead_roots. */
2935 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2936 gang[i] = NULL;
2937 continue;
2938 }
2939 /* Grab all the search result for later use. */
2940 gang[i] = btrfs_grab_root(gang[i]);
2941 }
2942 spin_unlock(&fs_info->fs_roots_radix_lock);
2943
2944 for (i = 0; i < ret; i++) {
2945 if (!gang[i])
2946 continue;
2947 root_objectid = gang[i]->root_key.objectid;
2948 err = btrfs_orphan_cleanup(gang[i]);
2949 if (err)
2950 goto out;
2951 btrfs_put_root(gang[i]);
2952 }
2953 root_objectid++;
2954 }
2955out:
2956 /* Release the uncleaned roots due to error. */
2957 for (; i < ret; i++) {
2958 if (gang[i])
2959 btrfs_put_root(gang[i]);
2960 }
2961 return err;
2962}
2963
2964/*
2965 * Mounting logic specific to read-write file systems. Shared by open_ctree
2966 * and btrfs_remount when remounting from read-only to read-write.
2967 */
2968int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2969{
2970 int ret;
2971 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2972 bool rebuild_free_space_tree = false;
2973
2974 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2975 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2976 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2977 btrfs_warn(fs_info,
2978 "'clear_cache' option is ignored with extent tree v2");
2979 else
2980 rebuild_free_space_tree = true;
2981 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2982 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2983 btrfs_warn(fs_info, "free space tree is invalid");
2984 rebuild_free_space_tree = true;
2985 }
2986
2987 if (rebuild_free_space_tree) {
2988 btrfs_info(fs_info, "rebuilding free space tree");
2989 ret = btrfs_rebuild_free_space_tree(fs_info);
2990 if (ret) {
2991 btrfs_warn(fs_info,
2992 "failed to rebuild free space tree: %d", ret);
2993 goto out;
2994 }
2995 }
2996
2997 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2998 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
2999 btrfs_info(fs_info, "disabling free space tree");
3000 ret = btrfs_delete_free_space_tree(fs_info);
3001 if (ret) {
3002 btrfs_warn(fs_info,
3003 "failed to disable free space tree: %d", ret);
3004 goto out;
3005 }
3006 }
3007
3008 /*
3009 * btrfs_find_orphan_roots() is responsible for finding all the dead
3010 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3011 * them into the fs_info->fs_roots_radix tree. This must be done before
3012 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3013 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3014 * item before the root's tree is deleted - this means that if we unmount
3015 * or crash before the deletion completes, on the next mount we will not
3016 * delete what remains of the tree because the orphan item does not
3017 * exists anymore, which is what tells us we have a pending deletion.
3018 */
3019 ret = btrfs_find_orphan_roots(fs_info);
3020 if (ret)
3021 goto out;
3022
3023 ret = btrfs_cleanup_fs_roots(fs_info);
3024 if (ret)
3025 goto out;
3026
3027 down_read(&fs_info->cleanup_work_sem);
3028 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3029 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3030 up_read(&fs_info->cleanup_work_sem);
3031 goto out;
3032 }
3033 up_read(&fs_info->cleanup_work_sem);
3034
3035 mutex_lock(&fs_info->cleaner_mutex);
3036 ret = btrfs_recover_relocation(fs_info);
3037 mutex_unlock(&fs_info->cleaner_mutex);
3038 if (ret < 0) {
3039 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3040 goto out;
3041 }
3042
3043 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3044 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3045 btrfs_info(fs_info, "creating free space tree");
3046 ret = btrfs_create_free_space_tree(fs_info);
3047 if (ret) {
3048 btrfs_warn(fs_info,
3049 "failed to create free space tree: %d", ret);
3050 goto out;
3051 }
3052 }
3053
3054 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3055 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3056 if (ret)
3057 goto out;
3058 }
3059
3060 ret = btrfs_resume_balance_async(fs_info);
3061 if (ret)
3062 goto out;
3063
3064 ret = btrfs_resume_dev_replace_async(fs_info);
3065 if (ret) {
3066 btrfs_warn(fs_info, "failed to resume dev_replace");
3067 goto out;
3068 }
3069
3070 btrfs_qgroup_rescan_resume(fs_info);
3071
3072 if (!fs_info->uuid_root) {
3073 btrfs_info(fs_info, "creating UUID tree");
3074 ret = btrfs_create_uuid_tree(fs_info);
3075 if (ret) {
3076 btrfs_warn(fs_info,
3077 "failed to create the UUID tree %d", ret);
3078 goto out;
3079 }
3080 }
3081
3082out:
3083 return ret;
3084}
3085
3086/*
3087 * Do various sanity and dependency checks of different features.
3088 *
3089 * @is_rw_mount: If the mount is read-write.
3090 *
3091 * This is the place for less strict checks (like for subpage or artificial
3092 * feature dependencies).
3093 *
3094 * For strict checks or possible corruption detection, see
3095 * btrfs_validate_super().
3096 *
3097 * This should be called after btrfs_parse_options(), as some mount options
3098 * (space cache related) can modify on-disk format like free space tree and
3099 * screw up certain feature dependencies.
3100 */
3101int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3102{
3103 struct btrfs_super_block *disk_super = fs_info->super_copy;
3104 u64 incompat = btrfs_super_incompat_flags(disk_super);
3105 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3106 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3107
3108 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3109 btrfs_err(fs_info,
3110 "cannot mount because of unknown incompat features (0x%llx)",
3111 incompat);
3112 return -EINVAL;
3113 }
3114
3115 /* Runtime limitation for mixed block groups. */
3116 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3117 (fs_info->sectorsize != fs_info->nodesize)) {
3118 btrfs_err(fs_info,
3119"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3120 fs_info->nodesize, fs_info->sectorsize);
3121 return -EINVAL;
3122 }
3123
3124 /* Mixed backref is an always-enabled feature. */
3125 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3126
3127 /* Set compression related flags just in case. */
3128 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3129 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3130 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3131 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3132
3133 /*
3134 * An ancient flag, which should really be marked deprecated.
3135 * Such runtime limitation doesn't really need a incompat flag.
3136 */
3137 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3138 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3139
3140 if (compat_ro_unsupp && is_rw_mount) {
3141 btrfs_err(fs_info,
3142 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3143 compat_ro);
3144 return -EINVAL;
3145 }
3146
3147 /*
3148 * We have unsupported RO compat features, although RO mounted, we
3149 * should not cause any metadata writes, including log replay.
3150 * Or we could screw up whatever the new feature requires.
3151 */
3152 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3153 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3154 btrfs_err(fs_info,
3155"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3156 compat_ro);
3157 return -EINVAL;
3158 }
3159
3160 /*
3161 * Artificial limitations for block group tree, to force
3162 * block-group-tree to rely on no-holes and free-space-tree.
3163 */
3164 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3165 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3166 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3167 btrfs_err(fs_info,
3168"block-group-tree feature requires no-holes and free-space-tree features");
3169 return -EINVAL;
3170 }
3171
3172 /*
3173 * Subpage runtime limitation on v1 cache.
3174 *
3175 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3176 * we're already defaulting to v2 cache, no need to bother v1 as it's
3177 * going to be deprecated anyway.
3178 */
3179 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3180 btrfs_warn(fs_info,
3181 "v1 space cache is not supported for page size %lu with sectorsize %u",
3182 PAGE_SIZE, fs_info->sectorsize);
3183 return -EINVAL;
3184 }
3185
3186 /* This can be called by remount, we need to protect the super block. */
3187 spin_lock(&fs_info->super_lock);
3188 btrfs_set_super_incompat_flags(disk_super, incompat);
3189 spin_unlock(&fs_info->super_lock);
3190
3191 return 0;
3192}
3193
3194int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3195 char *options)
3196{
3197 u32 sectorsize;
3198 u32 nodesize;
3199 u32 stripesize;
3200 u64 generation;
3201 u16 csum_type;
3202 struct btrfs_super_block *disk_super;
3203 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3204 struct btrfs_root *tree_root;
3205 struct btrfs_root *chunk_root;
3206 int ret;
3207 int level;
3208
3209 ret = init_mount_fs_info(fs_info, sb);
3210 if (ret)
3211 goto fail;
3212
3213 /* These need to be init'ed before we start creating inodes and such. */
3214 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3215 GFP_KERNEL);
3216 fs_info->tree_root = tree_root;
3217 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3218 GFP_KERNEL);
3219 fs_info->chunk_root = chunk_root;
3220 if (!tree_root || !chunk_root) {
3221 ret = -ENOMEM;
3222 goto fail;
3223 }
3224
3225 ret = btrfs_init_btree_inode(sb);
3226 if (ret)
3227 goto fail;
3228
3229 invalidate_bdev(fs_devices->latest_dev->bdev);
3230
3231 /*
3232 * Read super block and check the signature bytes only
3233 */
3234 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3235 if (IS_ERR(disk_super)) {
3236 ret = PTR_ERR(disk_super);
3237 goto fail_alloc;
3238 }
3239
3240 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3241 /*
3242 * Verify the type first, if that or the checksum value are
3243 * corrupted, we'll find out
3244 */
3245 csum_type = btrfs_super_csum_type(disk_super);
3246 if (!btrfs_supported_super_csum(csum_type)) {
3247 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3248 csum_type);
3249 ret = -EINVAL;
3250 btrfs_release_disk_super(disk_super);
3251 goto fail_alloc;
3252 }
3253
3254 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3255
3256 ret = btrfs_init_csum_hash(fs_info, csum_type);
3257 if (ret) {
3258 btrfs_release_disk_super(disk_super);
3259 goto fail_alloc;
3260 }
3261
3262 /*
3263 * We want to check superblock checksum, the type is stored inside.
3264 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3265 */
3266 if (btrfs_check_super_csum(fs_info, disk_super)) {
3267 btrfs_err(fs_info, "superblock checksum mismatch");
3268 ret = -EINVAL;
3269 btrfs_release_disk_super(disk_super);
3270 goto fail_alloc;
3271 }
3272
3273 /*
3274 * super_copy is zeroed at allocation time and we never touch the
3275 * following bytes up to INFO_SIZE, the checksum is calculated from
3276 * the whole block of INFO_SIZE
3277 */
3278 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3279 btrfs_release_disk_super(disk_super);
3280
3281 disk_super = fs_info->super_copy;
3282
3283 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3284 sizeof(*fs_info->super_for_commit));
3285
3286 ret = btrfs_validate_mount_super(fs_info);
3287 if (ret) {
3288 btrfs_err(fs_info, "superblock contains fatal errors");
3289 ret = -EINVAL;
3290 goto fail_alloc;
3291 }
3292
3293 if (!btrfs_super_root(disk_super)) {
3294 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3295 ret = -EINVAL;
3296 goto fail_alloc;
3297 }
3298
3299 /* check FS state, whether FS is broken. */
3300 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3301 WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3302
3303 /* Set up fs_info before parsing mount options */
3304 nodesize = btrfs_super_nodesize(disk_super);
3305 sectorsize = btrfs_super_sectorsize(disk_super);
3306 stripesize = sectorsize;
3307 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3308 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3309
3310 fs_info->nodesize = nodesize;
3311 fs_info->sectorsize = sectorsize;
3312 fs_info->sectorsize_bits = ilog2(sectorsize);
3313 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3314 fs_info->stripesize = stripesize;
3315
3316 /*
3317 * Handle the space caching options appropriately now that we have the
3318 * super block loaded and validated.
3319 */
3320 btrfs_set_free_space_cache_settings(fs_info);
3321
3322 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3323 ret = -EINVAL;
3324 goto fail_alloc;
3325 }
3326
3327 ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3328 if (ret < 0)
3329 goto fail_alloc;
3330
3331 /*
3332 * At this point our mount options are validated, if we set ->max_inline
3333 * to something non-standard make sure we truncate it to sectorsize.
3334 */
3335 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3336
3337 if (sectorsize < PAGE_SIZE) {
3338 struct btrfs_subpage_info *subpage_info;
3339
3340 btrfs_warn(fs_info,
3341 "read-write for sector size %u with page size %lu is experimental",
3342 sectorsize, PAGE_SIZE);
3343 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3344 if (!subpage_info) {
3345 ret = -ENOMEM;
3346 goto fail_alloc;
3347 }
3348 btrfs_init_subpage_info(subpage_info, sectorsize);
3349 fs_info->subpage_info = subpage_info;
3350 }
3351
3352 ret = btrfs_init_workqueues(fs_info);
3353 if (ret)
3354 goto fail_sb_buffer;
3355
3356 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3357 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3358
3359 sb->s_blocksize = sectorsize;
3360 sb->s_blocksize_bits = blksize_bits(sectorsize);
3361 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3362
3363 mutex_lock(&fs_info->chunk_mutex);
3364 ret = btrfs_read_sys_array(fs_info);
3365 mutex_unlock(&fs_info->chunk_mutex);
3366 if (ret) {
3367 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3368 goto fail_sb_buffer;
3369 }
3370
3371 generation = btrfs_super_chunk_root_generation(disk_super);
3372 level = btrfs_super_chunk_root_level(disk_super);
3373 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3374 generation, level);
3375 if (ret) {
3376 btrfs_err(fs_info, "failed to read chunk root");
3377 goto fail_tree_roots;
3378 }
3379
3380 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3381 offsetof(struct btrfs_header, chunk_tree_uuid),
3382 BTRFS_UUID_SIZE);
3383
3384 ret = btrfs_read_chunk_tree(fs_info);
3385 if (ret) {
3386 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3387 goto fail_tree_roots;
3388 }
3389
3390 /*
3391 * At this point we know all the devices that make this filesystem,
3392 * including the seed devices but we don't know yet if the replace
3393 * target is required. So free devices that are not part of this
3394 * filesystem but skip the replace target device which is checked
3395 * below in btrfs_init_dev_replace().
3396 */
3397 btrfs_free_extra_devids(fs_devices);
3398 if (!fs_devices->latest_dev->bdev) {
3399 btrfs_err(fs_info, "failed to read devices");
3400 ret = -EIO;
3401 goto fail_tree_roots;
3402 }
3403
3404 ret = init_tree_roots(fs_info);
3405 if (ret)
3406 goto fail_tree_roots;
3407
3408 /*
3409 * Get zone type information of zoned block devices. This will also
3410 * handle emulation of a zoned filesystem if a regular device has the
3411 * zoned incompat feature flag set.
3412 */
3413 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3414 if (ret) {
3415 btrfs_err(fs_info,
3416 "zoned: failed to read device zone info: %d", ret);
3417 goto fail_block_groups;
3418 }
3419
3420 /*
3421 * If we have a uuid root and we're not being told to rescan we need to
3422 * check the generation here so we can set the
3423 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3424 * transaction during a balance or the log replay without updating the
3425 * uuid generation, and then if we crash we would rescan the uuid tree,
3426 * even though it was perfectly fine.
3427 */
3428 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3429 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3430 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3431
3432 ret = btrfs_verify_dev_extents(fs_info);
3433 if (ret) {
3434 btrfs_err(fs_info,
3435 "failed to verify dev extents against chunks: %d",
3436 ret);
3437 goto fail_block_groups;
3438 }
3439 ret = btrfs_recover_balance(fs_info);
3440 if (ret) {
3441 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3442 goto fail_block_groups;
3443 }
3444
3445 ret = btrfs_init_dev_stats(fs_info);
3446 if (ret) {
3447 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3448 goto fail_block_groups;
3449 }
3450
3451 ret = btrfs_init_dev_replace(fs_info);
3452 if (ret) {
3453 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3454 goto fail_block_groups;
3455 }
3456
3457 ret = btrfs_check_zoned_mode(fs_info);
3458 if (ret) {
3459 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3460 ret);
3461 goto fail_block_groups;
3462 }
3463
3464 ret = btrfs_sysfs_add_fsid(fs_devices);
3465 if (ret) {
3466 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3467 ret);
3468 goto fail_block_groups;
3469 }
3470
3471 ret = btrfs_sysfs_add_mounted(fs_info);
3472 if (ret) {
3473 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3474 goto fail_fsdev_sysfs;
3475 }
3476
3477 ret = btrfs_init_space_info(fs_info);
3478 if (ret) {
3479 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3480 goto fail_sysfs;
3481 }
3482
3483 ret = btrfs_read_block_groups(fs_info);
3484 if (ret) {
3485 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3486 goto fail_sysfs;
3487 }
3488
3489 btrfs_free_zone_cache(fs_info);
3490
3491 btrfs_check_active_zone_reservation(fs_info);
3492
3493 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3494 !btrfs_check_rw_degradable(fs_info, NULL)) {
3495 btrfs_warn(fs_info,
3496 "writable mount is not allowed due to too many missing devices");
3497 ret = -EINVAL;
3498 goto fail_sysfs;
3499 }
3500
3501 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3502 "btrfs-cleaner");
3503 if (IS_ERR(fs_info->cleaner_kthread)) {
3504 ret = PTR_ERR(fs_info->cleaner_kthread);
3505 goto fail_sysfs;
3506 }
3507
3508 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3509 tree_root,
3510 "btrfs-transaction");
3511 if (IS_ERR(fs_info->transaction_kthread)) {
3512 ret = PTR_ERR(fs_info->transaction_kthread);
3513 goto fail_cleaner;
3514 }
3515
3516 ret = btrfs_read_qgroup_config(fs_info);
3517 if (ret)
3518 goto fail_trans_kthread;
3519
3520 if (btrfs_build_ref_tree(fs_info))
3521 btrfs_err(fs_info, "couldn't build ref tree");
3522
3523 /* do not make disk changes in broken FS or nologreplay is given */
3524 if (btrfs_super_log_root(disk_super) != 0 &&
3525 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3526 btrfs_info(fs_info, "start tree-log replay");
3527 ret = btrfs_replay_log(fs_info, fs_devices);
3528 if (ret)
3529 goto fail_qgroup;
3530 }
3531
3532 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3533 if (IS_ERR(fs_info->fs_root)) {
3534 ret = PTR_ERR(fs_info->fs_root);
3535 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3536 fs_info->fs_root = NULL;
3537 goto fail_qgroup;
3538 }
3539
3540 if (sb_rdonly(sb))
3541 return 0;
3542
3543 ret = btrfs_start_pre_rw_mount(fs_info);
3544 if (ret) {
3545 close_ctree(fs_info);
3546 return ret;
3547 }
3548 btrfs_discard_resume(fs_info);
3549
3550 if (fs_info->uuid_root &&
3551 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3552 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3553 btrfs_info(fs_info, "checking UUID tree");
3554 ret = btrfs_check_uuid_tree(fs_info);
3555 if (ret) {
3556 btrfs_warn(fs_info,
3557 "failed to check the UUID tree: %d", ret);
3558 close_ctree(fs_info);
3559 return ret;
3560 }
3561 }
3562
3563 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3564
3565 /* Kick the cleaner thread so it'll start deleting snapshots. */
3566 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3567 wake_up_process(fs_info->cleaner_kthread);
3568
3569 return 0;
3570
3571fail_qgroup:
3572 btrfs_free_qgroup_config(fs_info);
3573fail_trans_kthread:
3574 kthread_stop(fs_info->transaction_kthread);
3575 btrfs_cleanup_transaction(fs_info);
3576 btrfs_free_fs_roots(fs_info);
3577fail_cleaner:
3578 kthread_stop(fs_info->cleaner_kthread);
3579
3580 /*
3581 * make sure we're done with the btree inode before we stop our
3582 * kthreads
3583 */
3584 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3585
3586fail_sysfs:
3587 btrfs_sysfs_remove_mounted(fs_info);
3588
3589fail_fsdev_sysfs:
3590 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3591
3592fail_block_groups:
3593 btrfs_put_block_group_cache(fs_info);
3594
3595fail_tree_roots:
3596 if (fs_info->data_reloc_root)
3597 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3598 free_root_pointers(fs_info, true);
3599 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3600
3601fail_sb_buffer:
3602 btrfs_stop_all_workers(fs_info);
3603 btrfs_free_block_groups(fs_info);
3604fail_alloc:
3605 btrfs_mapping_tree_free(fs_info);
3606
3607 iput(fs_info->btree_inode);
3608fail:
3609 btrfs_close_devices(fs_info->fs_devices);
3610 ASSERT(ret < 0);
3611 return ret;
3612}
3613ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3614
3615static void btrfs_end_super_write(struct bio *bio)
3616{
3617 struct btrfs_device *device = bio->bi_private;
3618 struct bio_vec *bvec;
3619 struct bvec_iter_all iter_all;
3620 struct page *page;
3621
3622 bio_for_each_segment_all(bvec, bio, iter_all) {
3623 page = bvec->bv_page;
3624
3625 if (bio->bi_status) {
3626 btrfs_warn_rl_in_rcu(device->fs_info,
3627 "lost page write due to IO error on %s (%d)",
3628 btrfs_dev_name(device),
3629 blk_status_to_errno(bio->bi_status));
3630 ClearPageUptodate(page);
3631 SetPageError(page);
3632 btrfs_dev_stat_inc_and_print(device,
3633 BTRFS_DEV_STAT_WRITE_ERRS);
3634 } else {
3635 SetPageUptodate(page);
3636 }
3637
3638 put_page(page);
3639 unlock_page(page);
3640 }
3641
3642 bio_put(bio);
3643}
3644
3645struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3646 int copy_num, bool drop_cache)
3647{
3648 struct btrfs_super_block *super;
3649 struct page *page;
3650 u64 bytenr, bytenr_orig;
3651 struct address_space *mapping = bdev->bd_inode->i_mapping;
3652 int ret;
3653
3654 bytenr_orig = btrfs_sb_offset(copy_num);
3655 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3656 if (ret == -ENOENT)
3657 return ERR_PTR(-EINVAL);
3658 else if (ret)
3659 return ERR_PTR(ret);
3660
3661 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3662 return ERR_PTR(-EINVAL);
3663
3664 if (drop_cache) {
3665 /* This should only be called with the primary sb. */
3666 ASSERT(copy_num == 0);
3667
3668 /*
3669 * Drop the page of the primary superblock, so later read will
3670 * always read from the device.
3671 */
3672 invalidate_inode_pages2_range(mapping,
3673 bytenr >> PAGE_SHIFT,
3674 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3675 }
3676
3677 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3678 if (IS_ERR(page))
3679 return ERR_CAST(page);
3680
3681 super = page_address(page);
3682 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3683 btrfs_release_disk_super(super);
3684 return ERR_PTR(-ENODATA);
3685 }
3686
3687 if (btrfs_super_bytenr(super) != bytenr_orig) {
3688 btrfs_release_disk_super(super);
3689 return ERR_PTR(-EINVAL);
3690 }
3691
3692 return super;
3693}
3694
3695
3696struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3697{
3698 struct btrfs_super_block *super, *latest = NULL;
3699 int i;
3700 u64 transid = 0;
3701
3702 /* we would like to check all the supers, but that would make
3703 * a btrfs mount succeed after a mkfs from a different FS.
3704 * So, we need to add a special mount option to scan for
3705 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3706 */
3707 for (i = 0; i < 1; i++) {
3708 super = btrfs_read_dev_one_super(bdev, i, false);
3709 if (IS_ERR(super))
3710 continue;
3711
3712 if (!latest || btrfs_super_generation(super) > transid) {
3713 if (latest)
3714 btrfs_release_disk_super(super);
3715
3716 latest = super;
3717 transid = btrfs_super_generation(super);
3718 }
3719 }
3720
3721 return super;
3722}
3723
3724/*
3725 * Write superblock @sb to the @device. Do not wait for completion, all the
3726 * pages we use for writing are locked.
3727 *
3728 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3729 * the expected device size at commit time. Note that max_mirrors must be
3730 * same for write and wait phases.
3731 *
3732 * Return number of errors when page is not found or submission fails.
3733 */
3734static int write_dev_supers(struct btrfs_device *device,
3735 struct btrfs_super_block *sb, int max_mirrors)
3736{
3737 struct btrfs_fs_info *fs_info = device->fs_info;
3738 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3739 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3740 int i;
3741 int errors = 0;
3742 int ret;
3743 u64 bytenr, bytenr_orig;
3744
3745 if (max_mirrors == 0)
3746 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3747
3748 shash->tfm = fs_info->csum_shash;
3749
3750 for (i = 0; i < max_mirrors; i++) {
3751 struct page *page;
3752 struct bio *bio;
3753 struct btrfs_super_block *disk_super;
3754
3755 bytenr_orig = btrfs_sb_offset(i);
3756 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3757 if (ret == -ENOENT) {
3758 continue;
3759 } else if (ret < 0) {
3760 btrfs_err(device->fs_info,
3761 "couldn't get super block location for mirror %d",
3762 i);
3763 errors++;
3764 continue;
3765 }
3766 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3767 device->commit_total_bytes)
3768 break;
3769
3770 btrfs_set_super_bytenr(sb, bytenr_orig);
3771
3772 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3773 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3774 sb->csum);
3775
3776 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3777 GFP_NOFS);
3778 if (!page) {
3779 btrfs_err(device->fs_info,
3780 "couldn't get super block page for bytenr %llu",
3781 bytenr);
3782 errors++;
3783 continue;
3784 }
3785
3786 /* Bump the refcount for wait_dev_supers() */
3787 get_page(page);
3788
3789 disk_super = page_address(page);
3790 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3791
3792 /*
3793 * Directly use bios here instead of relying on the page cache
3794 * to do I/O, so we don't lose the ability to do integrity
3795 * checking.
3796 */
3797 bio = bio_alloc(device->bdev, 1,
3798 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3799 GFP_NOFS);
3800 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3801 bio->bi_private = device;
3802 bio->bi_end_io = btrfs_end_super_write;
3803 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3804 offset_in_page(bytenr));
3805
3806 /*
3807 * We FUA only the first super block. The others we allow to
3808 * go down lazy and there's a short window where the on-disk
3809 * copies might still contain the older version.
3810 */
3811 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3812 bio->bi_opf |= REQ_FUA;
3813 submit_bio(bio);
3814
3815 if (btrfs_advance_sb_log(device, i))
3816 errors++;
3817 }
3818 return errors < i ? 0 : -1;
3819}
3820
3821/*
3822 * Wait for write completion of superblocks done by write_dev_supers,
3823 * @max_mirrors same for write and wait phases.
3824 *
3825 * Return number of errors when page is not found or not marked up to
3826 * date.
3827 */
3828static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3829{
3830 int i;
3831 int errors = 0;
3832 bool primary_failed = false;
3833 int ret;
3834 u64 bytenr;
3835
3836 if (max_mirrors == 0)
3837 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3838
3839 for (i = 0; i < max_mirrors; i++) {
3840 struct page *page;
3841
3842 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3843 if (ret == -ENOENT) {
3844 break;
3845 } else if (ret < 0) {
3846 errors++;
3847 if (i == 0)
3848 primary_failed = true;
3849 continue;
3850 }
3851 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3852 device->commit_total_bytes)
3853 break;
3854
3855 page = find_get_page(device->bdev->bd_inode->i_mapping,
3856 bytenr >> PAGE_SHIFT);
3857 if (!page) {
3858 errors++;
3859 if (i == 0)
3860 primary_failed = true;
3861 continue;
3862 }
3863 /* Page is submitted locked and unlocked once the IO completes */
3864 wait_on_page_locked(page);
3865 if (PageError(page)) {
3866 errors++;
3867 if (i == 0)
3868 primary_failed = true;
3869 }
3870
3871 /* Drop our reference */
3872 put_page(page);
3873
3874 /* Drop the reference from the writing run */
3875 put_page(page);
3876 }
3877
3878 /* log error, force error return */
3879 if (primary_failed) {
3880 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3881 device->devid);
3882 return -1;
3883 }
3884
3885 return errors < i ? 0 : -1;
3886}
3887
3888/*
3889 * endio for the write_dev_flush, this will wake anyone waiting
3890 * for the barrier when it is done
3891 */
3892static void btrfs_end_empty_barrier(struct bio *bio)
3893{
3894 bio_uninit(bio);
3895 complete(bio->bi_private);
3896}
3897
3898/*
3899 * Submit a flush request to the device if it supports it. Error handling is
3900 * done in the waiting counterpart.
3901 */
3902static void write_dev_flush(struct btrfs_device *device)
3903{
3904 struct bio *bio = &device->flush_bio;
3905
3906 device->last_flush_error = BLK_STS_OK;
3907
3908 bio_init(bio, device->bdev, NULL, 0,
3909 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3910 bio->bi_end_io = btrfs_end_empty_barrier;
3911 init_completion(&device->flush_wait);
3912 bio->bi_private = &device->flush_wait;
3913 submit_bio(bio);
3914 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3915}
3916
3917/*
3918 * If the flush bio has been submitted by write_dev_flush, wait for it.
3919 * Return true for any error, and false otherwise.
3920 */
3921static bool wait_dev_flush(struct btrfs_device *device)
3922{
3923 struct bio *bio = &device->flush_bio;
3924
3925 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3926 return false;
3927
3928 wait_for_completion_io(&device->flush_wait);
3929
3930 if (bio->bi_status) {
3931 device->last_flush_error = bio->bi_status;
3932 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3933 return true;
3934 }
3935
3936 return false;
3937}
3938
3939/*
3940 * send an empty flush down to each device in parallel,
3941 * then wait for them
3942 */
3943static int barrier_all_devices(struct btrfs_fs_info *info)
3944{
3945 struct list_head *head;
3946 struct btrfs_device *dev;
3947 int errors_wait = 0;
3948
3949 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3950 /* send down all the barriers */
3951 head = &info->fs_devices->devices;
3952 list_for_each_entry(dev, head, dev_list) {
3953 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3954 continue;
3955 if (!dev->bdev)
3956 continue;
3957 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3958 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3959 continue;
3960
3961 write_dev_flush(dev);
3962 }
3963
3964 /* wait for all the barriers */
3965 list_for_each_entry(dev, head, dev_list) {
3966 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3967 continue;
3968 if (!dev->bdev) {
3969 errors_wait++;
3970 continue;
3971 }
3972 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3973 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3974 continue;
3975
3976 if (wait_dev_flush(dev))
3977 errors_wait++;
3978 }
3979
3980 /*
3981 * Checks last_flush_error of disks in order to determine the device
3982 * state.
3983 */
3984 if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3985 return -EIO;
3986
3987 return 0;
3988}
3989
3990int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3991{
3992 int raid_type;
3993 int min_tolerated = INT_MAX;
3994
3995 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3996 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3997 min_tolerated = min_t(int, min_tolerated,
3998 btrfs_raid_array[BTRFS_RAID_SINGLE].
3999 tolerated_failures);
4000
4001 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4002 if (raid_type == BTRFS_RAID_SINGLE)
4003 continue;
4004 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4005 continue;
4006 min_tolerated = min_t(int, min_tolerated,
4007 btrfs_raid_array[raid_type].
4008 tolerated_failures);
4009 }
4010
4011 if (min_tolerated == INT_MAX) {
4012 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4013 min_tolerated = 0;
4014 }
4015
4016 return min_tolerated;
4017}
4018
4019int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4020{
4021 struct list_head *head;
4022 struct btrfs_device *dev;
4023 struct btrfs_super_block *sb;
4024 struct btrfs_dev_item *dev_item;
4025 int ret;
4026 int do_barriers;
4027 int max_errors;
4028 int total_errors = 0;
4029 u64 flags;
4030
4031 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4032
4033 /*
4034 * max_mirrors == 0 indicates we're from commit_transaction,
4035 * not from fsync where the tree roots in fs_info have not
4036 * been consistent on disk.
4037 */
4038 if (max_mirrors == 0)
4039 backup_super_roots(fs_info);
4040
4041 sb = fs_info->super_for_commit;
4042 dev_item = &sb->dev_item;
4043
4044 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4045 head = &fs_info->fs_devices->devices;
4046 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4047
4048 if (do_barriers) {
4049 ret = barrier_all_devices(fs_info);
4050 if (ret) {
4051 mutex_unlock(
4052 &fs_info->fs_devices->device_list_mutex);
4053 btrfs_handle_fs_error(fs_info, ret,
4054 "errors while submitting device barriers.");
4055 return ret;
4056 }
4057 }
4058
4059 list_for_each_entry(dev, head, dev_list) {
4060 if (!dev->bdev) {
4061 total_errors++;
4062 continue;
4063 }
4064 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4065 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4066 continue;
4067
4068 btrfs_set_stack_device_generation(dev_item, 0);
4069 btrfs_set_stack_device_type(dev_item, dev->type);
4070 btrfs_set_stack_device_id(dev_item, dev->devid);
4071 btrfs_set_stack_device_total_bytes(dev_item,
4072 dev->commit_total_bytes);
4073 btrfs_set_stack_device_bytes_used(dev_item,
4074 dev->commit_bytes_used);
4075 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4076 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4077 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4078 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4079 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4080 BTRFS_FSID_SIZE);
4081
4082 flags = btrfs_super_flags(sb);
4083 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4084
4085 ret = btrfs_validate_write_super(fs_info, sb);
4086 if (ret < 0) {
4087 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4088 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4089 "unexpected superblock corruption detected");
4090 return -EUCLEAN;
4091 }
4092
4093 ret = write_dev_supers(dev, sb, max_mirrors);
4094 if (ret)
4095 total_errors++;
4096 }
4097 if (total_errors > max_errors) {
4098 btrfs_err(fs_info, "%d errors while writing supers",
4099 total_errors);
4100 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4101
4102 /* FUA is masked off if unsupported and can't be the reason */
4103 btrfs_handle_fs_error(fs_info, -EIO,
4104 "%d errors while writing supers",
4105 total_errors);
4106 return -EIO;
4107 }
4108
4109 total_errors = 0;
4110 list_for_each_entry(dev, head, dev_list) {
4111 if (!dev->bdev)
4112 continue;
4113 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4114 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4115 continue;
4116
4117 ret = wait_dev_supers(dev, max_mirrors);
4118 if (ret)
4119 total_errors++;
4120 }
4121 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4122 if (total_errors > max_errors) {
4123 btrfs_handle_fs_error(fs_info, -EIO,
4124 "%d errors while writing supers",
4125 total_errors);
4126 return -EIO;
4127 }
4128 return 0;
4129}
4130
4131/* Drop a fs root from the radix tree and free it. */
4132void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4133 struct btrfs_root *root)
4134{
4135 bool drop_ref = false;
4136
4137 spin_lock(&fs_info->fs_roots_radix_lock);
4138 radix_tree_delete(&fs_info->fs_roots_radix,
4139 (unsigned long)root->root_key.objectid);
4140 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4141 drop_ref = true;
4142 spin_unlock(&fs_info->fs_roots_radix_lock);
4143
4144 if (BTRFS_FS_ERROR(fs_info)) {
4145 ASSERT(root->log_root == NULL);
4146 if (root->reloc_root) {
4147 btrfs_put_root(root->reloc_root);
4148 root->reloc_root = NULL;
4149 }
4150 }
4151
4152 if (drop_ref)
4153 btrfs_put_root(root);
4154}
4155
4156int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4157{
4158 struct btrfs_root *root = fs_info->tree_root;
4159 struct btrfs_trans_handle *trans;
4160
4161 mutex_lock(&fs_info->cleaner_mutex);
4162 btrfs_run_delayed_iputs(fs_info);
4163 mutex_unlock(&fs_info->cleaner_mutex);
4164 wake_up_process(fs_info->cleaner_kthread);
4165
4166 /* wait until ongoing cleanup work done */
4167 down_write(&fs_info->cleanup_work_sem);
4168 up_write(&fs_info->cleanup_work_sem);
4169
4170 trans = btrfs_join_transaction(root);
4171 if (IS_ERR(trans))
4172 return PTR_ERR(trans);
4173 return btrfs_commit_transaction(trans);
4174}
4175
4176static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4177{
4178 struct btrfs_transaction *trans;
4179 struct btrfs_transaction *tmp;
4180 bool found = false;
4181
4182 if (list_empty(&fs_info->trans_list))
4183 return;
4184
4185 /*
4186 * This function is only called at the very end of close_ctree(),
4187 * thus no other running transaction, no need to take trans_lock.
4188 */
4189 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4190 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4191 struct extent_state *cached = NULL;
4192 u64 dirty_bytes = 0;
4193 u64 cur = 0;
4194 u64 found_start;
4195 u64 found_end;
4196
4197 found = true;
4198 while (find_first_extent_bit(&trans->dirty_pages, cur,
4199 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4200 dirty_bytes += found_end + 1 - found_start;
4201 cur = found_end + 1;
4202 }
4203 btrfs_warn(fs_info,
4204 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4205 trans->transid, dirty_bytes);
4206 btrfs_cleanup_one_transaction(trans, fs_info);
4207
4208 if (trans == fs_info->running_transaction)
4209 fs_info->running_transaction = NULL;
4210 list_del_init(&trans->list);
4211
4212 btrfs_put_transaction(trans);
4213 trace_btrfs_transaction_commit(fs_info);
4214 }
4215 ASSERT(!found);
4216}
4217
4218void __cold close_ctree(struct btrfs_fs_info *fs_info)
4219{
4220 int ret;
4221
4222 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4223
4224 /*
4225 * If we had UNFINISHED_DROPS we could still be processing them, so
4226 * clear that bit and wake up relocation so it can stop.
4227 * We must do this before stopping the block group reclaim task, because
4228 * at btrfs_relocate_block_group() we wait for this bit, and after the
4229 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4230 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4231 * return 1.
4232 */
4233 btrfs_wake_unfinished_drop(fs_info);
4234
4235 /*
4236 * We may have the reclaim task running and relocating a data block group,
4237 * in which case it may create delayed iputs. So stop it before we park
4238 * the cleaner kthread otherwise we can get new delayed iputs after
4239 * parking the cleaner, and that can make the async reclaim task to hang
4240 * if it's waiting for delayed iputs to complete, since the cleaner is
4241 * parked and can not run delayed iputs - this will make us hang when
4242 * trying to stop the async reclaim task.
4243 */
4244 cancel_work_sync(&fs_info->reclaim_bgs_work);
4245 /*
4246 * We don't want the cleaner to start new transactions, add more delayed
4247 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4248 * because that frees the task_struct, and the transaction kthread might
4249 * still try to wake up the cleaner.
4250 */
4251 kthread_park(fs_info->cleaner_kthread);
4252
4253 /* wait for the qgroup rescan worker to stop */
4254 btrfs_qgroup_wait_for_completion(fs_info, false);
4255
4256 /* wait for the uuid_scan task to finish */
4257 down(&fs_info->uuid_tree_rescan_sem);
4258 /* avoid complains from lockdep et al., set sem back to initial state */
4259 up(&fs_info->uuid_tree_rescan_sem);
4260
4261 /* pause restriper - we want to resume on mount */
4262 btrfs_pause_balance(fs_info);
4263
4264 btrfs_dev_replace_suspend_for_unmount(fs_info);
4265
4266 btrfs_scrub_cancel(fs_info);
4267
4268 /* wait for any defraggers to finish */
4269 wait_event(fs_info->transaction_wait,
4270 (atomic_read(&fs_info->defrag_running) == 0));
4271
4272 /* clear out the rbtree of defraggable inodes */
4273 btrfs_cleanup_defrag_inodes(fs_info);
4274
4275 /*
4276 * After we parked the cleaner kthread, ordered extents may have
4277 * completed and created new delayed iputs. If one of the async reclaim
4278 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4279 * can hang forever trying to stop it, because if a delayed iput is
4280 * added after it ran btrfs_run_delayed_iputs() and before it called
4281 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4282 * no one else to run iputs.
4283 *
4284 * So wait for all ongoing ordered extents to complete and then run
4285 * delayed iputs. This works because once we reach this point no one
4286 * can either create new ordered extents nor create delayed iputs
4287 * through some other means.
4288 *
4289 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4290 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4291 * but the delayed iput for the respective inode is made only when doing
4292 * the final btrfs_put_ordered_extent() (which must happen at
4293 * btrfs_finish_ordered_io() when we are unmounting).
4294 */
4295 btrfs_flush_workqueue(fs_info->endio_write_workers);
4296 /* Ordered extents for free space inodes. */
4297 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4298 btrfs_run_delayed_iputs(fs_info);
4299
4300 cancel_work_sync(&fs_info->async_reclaim_work);
4301 cancel_work_sync(&fs_info->async_data_reclaim_work);
4302 cancel_work_sync(&fs_info->preempt_reclaim_work);
4303
4304 /* Cancel or finish ongoing discard work */
4305 btrfs_discard_cleanup(fs_info);
4306
4307 if (!sb_rdonly(fs_info->sb)) {
4308 /*
4309 * The cleaner kthread is stopped, so do one final pass over
4310 * unused block groups.
4311 */
4312 btrfs_delete_unused_bgs(fs_info);
4313
4314 /*
4315 * There might be existing delayed inode workers still running
4316 * and holding an empty delayed inode item. We must wait for
4317 * them to complete first because they can create a transaction.
4318 * This happens when someone calls btrfs_balance_delayed_items()
4319 * and then a transaction commit runs the same delayed nodes
4320 * before any delayed worker has done something with the nodes.
4321 * We must wait for any worker here and not at transaction
4322 * commit time since that could cause a deadlock.
4323 * This is a very rare case.
4324 */
4325 btrfs_flush_workqueue(fs_info->delayed_workers);
4326
4327 ret = btrfs_commit_super(fs_info);
4328 if (ret)
4329 btrfs_err(fs_info, "commit super ret %d", ret);
4330 }
4331
4332 if (BTRFS_FS_ERROR(fs_info))
4333 btrfs_error_commit_super(fs_info);
4334
4335 kthread_stop(fs_info->transaction_kthread);
4336 kthread_stop(fs_info->cleaner_kthread);
4337
4338 ASSERT(list_empty(&fs_info->delayed_iputs));
4339 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4340
4341 if (btrfs_check_quota_leak(fs_info)) {
4342 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4343 btrfs_err(fs_info, "qgroup reserved space leaked");
4344 }
4345
4346 btrfs_free_qgroup_config(fs_info);
4347 ASSERT(list_empty(&fs_info->delalloc_roots));
4348
4349 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4350 btrfs_info(fs_info, "at unmount delalloc count %lld",
4351 percpu_counter_sum(&fs_info->delalloc_bytes));
4352 }
4353
4354 if (percpu_counter_sum(&fs_info->ordered_bytes))
4355 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4356 percpu_counter_sum(&fs_info->ordered_bytes));
4357
4358 btrfs_sysfs_remove_mounted(fs_info);
4359 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4360
4361 btrfs_put_block_group_cache(fs_info);
4362
4363 /*
4364 * we must make sure there is not any read request to
4365 * submit after we stopping all workers.
4366 */
4367 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4368 btrfs_stop_all_workers(fs_info);
4369
4370 /* We shouldn't have any transaction open at this point */
4371 warn_about_uncommitted_trans(fs_info);
4372
4373 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4374 free_root_pointers(fs_info, true);
4375 btrfs_free_fs_roots(fs_info);
4376
4377 /*
4378 * We must free the block groups after dropping the fs_roots as we could
4379 * have had an IO error and have left over tree log blocks that aren't
4380 * cleaned up until the fs roots are freed. This makes the block group
4381 * accounting appear to be wrong because there's pending reserved bytes,
4382 * so make sure we do the block group cleanup afterwards.
4383 */
4384 btrfs_free_block_groups(fs_info);
4385
4386 iput(fs_info->btree_inode);
4387
4388 btrfs_mapping_tree_free(fs_info);
4389 btrfs_close_devices(fs_info->fs_devices);
4390}
4391
4392void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4393 struct extent_buffer *buf)
4394{
4395 struct btrfs_fs_info *fs_info = buf->fs_info;
4396 u64 transid = btrfs_header_generation(buf);
4397
4398#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4399 /*
4400 * This is a fast path so only do this check if we have sanity tests
4401 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4402 * outside of the sanity tests.
4403 */
4404 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4405 return;
4406#endif
4407 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4408 ASSERT(trans->transid == fs_info->generation);
4409 btrfs_assert_tree_write_locked(buf);
4410 if (unlikely(transid != fs_info->generation)) {
4411 btrfs_abort_transaction(trans, -EUCLEAN);
4412 btrfs_crit(fs_info,
4413"dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4414 buf->start, transid, fs_info->generation);
4415 }
4416 set_extent_buffer_dirty(buf);
4417}
4418
4419static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4420 int flush_delayed)
4421{
4422 /*
4423 * looks as though older kernels can get into trouble with
4424 * this code, they end up stuck in balance_dirty_pages forever
4425 */
4426 int ret;
4427
4428 if (current->flags & PF_MEMALLOC)
4429 return;
4430
4431 if (flush_delayed)
4432 btrfs_balance_delayed_items(fs_info);
4433
4434 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4435 BTRFS_DIRTY_METADATA_THRESH,
4436 fs_info->dirty_metadata_batch);
4437 if (ret > 0) {
4438 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4439 }
4440}
4441
4442void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4443{
4444 __btrfs_btree_balance_dirty(fs_info, 1);
4445}
4446
4447void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4448{
4449 __btrfs_btree_balance_dirty(fs_info, 0);
4450}
4451
4452static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4453{
4454 /* cleanup FS via transaction */
4455 btrfs_cleanup_transaction(fs_info);
4456
4457 mutex_lock(&fs_info->cleaner_mutex);
4458 btrfs_run_delayed_iputs(fs_info);
4459 mutex_unlock(&fs_info->cleaner_mutex);
4460
4461 down_write(&fs_info->cleanup_work_sem);
4462 up_write(&fs_info->cleanup_work_sem);
4463}
4464
4465static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4466{
4467 struct btrfs_root *gang[8];
4468 u64 root_objectid = 0;
4469 int ret;
4470
4471 spin_lock(&fs_info->fs_roots_radix_lock);
4472 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4473 (void **)gang, root_objectid,
4474 ARRAY_SIZE(gang))) != 0) {
4475 int i;
4476
4477 for (i = 0; i < ret; i++)
4478 gang[i] = btrfs_grab_root(gang[i]);
4479 spin_unlock(&fs_info->fs_roots_radix_lock);
4480
4481 for (i = 0; i < ret; i++) {
4482 if (!gang[i])
4483 continue;
4484 root_objectid = gang[i]->root_key.objectid;
4485 btrfs_free_log(NULL, gang[i]);
4486 btrfs_put_root(gang[i]);
4487 }
4488 root_objectid++;
4489 spin_lock(&fs_info->fs_roots_radix_lock);
4490 }
4491 spin_unlock(&fs_info->fs_roots_radix_lock);
4492 btrfs_free_log_root_tree(NULL, fs_info);
4493}
4494
4495static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4496{
4497 struct btrfs_ordered_extent *ordered;
4498
4499 spin_lock(&root->ordered_extent_lock);
4500 /*
4501 * This will just short circuit the ordered completion stuff which will
4502 * make sure the ordered extent gets properly cleaned up.
4503 */
4504 list_for_each_entry(ordered, &root->ordered_extents,
4505 root_extent_list)
4506 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4507 spin_unlock(&root->ordered_extent_lock);
4508}
4509
4510static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4511{
4512 struct btrfs_root *root;
4513 LIST_HEAD(splice);
4514
4515 spin_lock(&fs_info->ordered_root_lock);
4516 list_splice_init(&fs_info->ordered_roots, &splice);
4517 while (!list_empty(&splice)) {
4518 root = list_first_entry(&splice, struct btrfs_root,
4519 ordered_root);
4520 list_move_tail(&root->ordered_root,
4521 &fs_info->ordered_roots);
4522
4523 spin_unlock(&fs_info->ordered_root_lock);
4524 btrfs_destroy_ordered_extents(root);
4525
4526 cond_resched();
4527 spin_lock(&fs_info->ordered_root_lock);
4528 }
4529 spin_unlock(&fs_info->ordered_root_lock);
4530
4531 /*
4532 * We need this here because if we've been flipped read-only we won't
4533 * get sync() from the umount, so we need to make sure any ordered
4534 * extents that haven't had their dirty pages IO start writeout yet
4535 * actually get run and error out properly.
4536 */
4537 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4538}
4539
4540static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4541 struct btrfs_fs_info *fs_info)
4542{
4543 struct rb_node *node;
4544 struct btrfs_delayed_ref_root *delayed_refs;
4545 struct btrfs_delayed_ref_node *ref;
4546
4547 delayed_refs = &trans->delayed_refs;
4548
4549 spin_lock(&delayed_refs->lock);
4550 if (atomic_read(&delayed_refs->num_entries) == 0) {
4551 spin_unlock(&delayed_refs->lock);
4552 btrfs_debug(fs_info, "delayed_refs has NO entry");
4553 return;
4554 }
4555
4556 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4557 struct btrfs_delayed_ref_head *head;
4558 struct rb_node *n;
4559 bool pin_bytes = false;
4560
4561 head = rb_entry(node, struct btrfs_delayed_ref_head,
4562 href_node);
4563 if (btrfs_delayed_ref_lock(delayed_refs, head))
4564 continue;
4565
4566 spin_lock(&head->lock);
4567 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4568 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4569 ref_node);
4570 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4571 RB_CLEAR_NODE(&ref->ref_node);
4572 if (!list_empty(&ref->add_list))
4573 list_del(&ref->add_list);
4574 atomic_dec(&delayed_refs->num_entries);
4575 btrfs_put_delayed_ref(ref);
4576 btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
4577 }
4578 if (head->must_insert_reserved)
4579 pin_bytes = true;
4580 btrfs_free_delayed_extent_op(head->extent_op);
4581 btrfs_delete_ref_head(delayed_refs, head);
4582 spin_unlock(&head->lock);
4583 spin_unlock(&delayed_refs->lock);
4584 mutex_unlock(&head->mutex);
4585
4586 if (pin_bytes) {
4587 struct btrfs_block_group *cache;
4588
4589 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4590 BUG_ON(!cache);
4591
4592 spin_lock(&cache->space_info->lock);
4593 spin_lock(&cache->lock);
4594 cache->pinned += head->num_bytes;
4595 btrfs_space_info_update_bytes_pinned(fs_info,
4596 cache->space_info, head->num_bytes);
4597 cache->reserved -= head->num_bytes;
4598 cache->space_info->bytes_reserved -= head->num_bytes;
4599 spin_unlock(&cache->lock);
4600 spin_unlock(&cache->space_info->lock);
4601
4602 btrfs_put_block_group(cache);
4603
4604 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4605 head->bytenr + head->num_bytes - 1);
4606 }
4607 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4608 btrfs_put_delayed_ref_head(head);
4609 cond_resched();
4610 spin_lock(&delayed_refs->lock);
4611 }
4612 btrfs_qgroup_destroy_extent_records(trans);
4613
4614 spin_unlock(&delayed_refs->lock);
4615}
4616
4617static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4618{
4619 struct btrfs_inode *btrfs_inode;
4620 LIST_HEAD(splice);
4621
4622 spin_lock(&root->delalloc_lock);
4623 list_splice_init(&root->delalloc_inodes, &splice);
4624
4625 while (!list_empty(&splice)) {
4626 struct inode *inode = NULL;
4627 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4628 delalloc_inodes);
4629 __btrfs_del_delalloc_inode(root, btrfs_inode);
4630 spin_unlock(&root->delalloc_lock);
4631
4632 /*
4633 * Make sure we get a live inode and that it'll not disappear
4634 * meanwhile.
4635 */
4636 inode = igrab(&btrfs_inode->vfs_inode);
4637 if (inode) {
4638 unsigned int nofs_flag;
4639
4640 nofs_flag = memalloc_nofs_save();
4641 invalidate_inode_pages2(inode->i_mapping);
4642 memalloc_nofs_restore(nofs_flag);
4643 iput(inode);
4644 }
4645 spin_lock(&root->delalloc_lock);
4646 }
4647 spin_unlock(&root->delalloc_lock);
4648}
4649
4650static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4651{
4652 struct btrfs_root *root;
4653 LIST_HEAD(splice);
4654
4655 spin_lock(&fs_info->delalloc_root_lock);
4656 list_splice_init(&fs_info->delalloc_roots, &splice);
4657 while (!list_empty(&splice)) {
4658 root = list_first_entry(&splice, struct btrfs_root,
4659 delalloc_root);
4660 root = btrfs_grab_root(root);
4661 BUG_ON(!root);
4662 spin_unlock(&fs_info->delalloc_root_lock);
4663
4664 btrfs_destroy_delalloc_inodes(root);
4665 btrfs_put_root(root);
4666
4667 spin_lock(&fs_info->delalloc_root_lock);
4668 }
4669 spin_unlock(&fs_info->delalloc_root_lock);
4670}
4671
4672static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4673 struct extent_io_tree *dirty_pages,
4674 int mark)
4675{
4676 struct extent_buffer *eb;
4677 u64 start = 0;
4678 u64 end;
4679
4680 while (find_first_extent_bit(dirty_pages, start, &start, &end,
4681 mark, NULL)) {
4682 clear_extent_bits(dirty_pages, start, end, mark);
4683 while (start <= end) {
4684 eb = find_extent_buffer(fs_info, start);
4685 start += fs_info->nodesize;
4686 if (!eb)
4687 continue;
4688
4689 btrfs_tree_lock(eb);
4690 wait_on_extent_buffer_writeback(eb);
4691 btrfs_clear_buffer_dirty(NULL, eb);
4692 btrfs_tree_unlock(eb);
4693
4694 free_extent_buffer_stale(eb);
4695 }
4696 }
4697}
4698
4699static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4700 struct extent_io_tree *unpin)
4701{
4702 u64 start;
4703 u64 end;
4704
4705 while (1) {
4706 struct extent_state *cached_state = NULL;
4707
4708 /*
4709 * The btrfs_finish_extent_commit() may get the same range as
4710 * ours between find_first_extent_bit and clear_extent_dirty.
4711 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4712 * the same extent range.
4713 */
4714 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4715 if (!find_first_extent_bit(unpin, 0, &start, &end,
4716 EXTENT_DIRTY, &cached_state)) {
4717 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4718 break;
4719 }
4720
4721 clear_extent_dirty(unpin, start, end, &cached_state);
4722 free_extent_state(cached_state);
4723 btrfs_error_unpin_extent_range(fs_info, start, end);
4724 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4725 cond_resched();
4726 }
4727}
4728
4729static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4730{
4731 struct inode *inode;
4732
4733 inode = cache->io_ctl.inode;
4734 if (inode) {
4735 unsigned int nofs_flag;
4736
4737 nofs_flag = memalloc_nofs_save();
4738 invalidate_inode_pages2(inode->i_mapping);
4739 memalloc_nofs_restore(nofs_flag);
4740
4741 BTRFS_I(inode)->generation = 0;
4742 cache->io_ctl.inode = NULL;
4743 iput(inode);
4744 }
4745 ASSERT(cache->io_ctl.pages == NULL);
4746 btrfs_put_block_group(cache);
4747}
4748
4749void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4750 struct btrfs_fs_info *fs_info)
4751{
4752 struct btrfs_block_group *cache;
4753
4754 spin_lock(&cur_trans->dirty_bgs_lock);
4755 while (!list_empty(&cur_trans->dirty_bgs)) {
4756 cache = list_first_entry(&cur_trans->dirty_bgs,
4757 struct btrfs_block_group,
4758 dirty_list);
4759
4760 if (!list_empty(&cache->io_list)) {
4761 spin_unlock(&cur_trans->dirty_bgs_lock);
4762 list_del_init(&cache->io_list);
4763 btrfs_cleanup_bg_io(cache);
4764 spin_lock(&cur_trans->dirty_bgs_lock);
4765 }
4766
4767 list_del_init(&cache->dirty_list);
4768 spin_lock(&cache->lock);
4769 cache->disk_cache_state = BTRFS_DC_ERROR;
4770 spin_unlock(&cache->lock);
4771
4772 spin_unlock(&cur_trans->dirty_bgs_lock);
4773 btrfs_put_block_group(cache);
4774 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4775 spin_lock(&cur_trans->dirty_bgs_lock);
4776 }
4777 spin_unlock(&cur_trans->dirty_bgs_lock);
4778
4779 /*
4780 * Refer to the definition of io_bgs member for details why it's safe
4781 * to use it without any locking
4782 */
4783 while (!list_empty(&cur_trans->io_bgs)) {
4784 cache = list_first_entry(&cur_trans->io_bgs,
4785 struct btrfs_block_group,
4786 io_list);
4787
4788 list_del_init(&cache->io_list);
4789 spin_lock(&cache->lock);
4790 cache->disk_cache_state = BTRFS_DC_ERROR;
4791 spin_unlock(&cache->lock);
4792 btrfs_cleanup_bg_io(cache);
4793 }
4794}
4795
4796static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4797{
4798 struct btrfs_root *gang[8];
4799 int i;
4800 int ret;
4801
4802 spin_lock(&fs_info->fs_roots_radix_lock);
4803 while (1) {
4804 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4805 (void **)gang, 0,
4806 ARRAY_SIZE(gang),
4807 BTRFS_ROOT_TRANS_TAG);
4808 if (ret == 0)
4809 break;
4810 for (i = 0; i < ret; i++) {
4811 struct btrfs_root *root = gang[i];
4812
4813 btrfs_qgroup_free_meta_all_pertrans(root);
4814 radix_tree_tag_clear(&fs_info->fs_roots_radix,
4815 (unsigned long)root->root_key.objectid,
4816 BTRFS_ROOT_TRANS_TAG);
4817 }
4818 }
4819 spin_unlock(&fs_info->fs_roots_radix_lock);
4820}
4821
4822void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4823 struct btrfs_fs_info *fs_info)
4824{
4825 struct btrfs_device *dev, *tmp;
4826
4827 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4828 ASSERT(list_empty(&cur_trans->dirty_bgs));
4829 ASSERT(list_empty(&cur_trans->io_bgs));
4830
4831 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4832 post_commit_list) {
4833 list_del_init(&dev->post_commit_list);
4834 }
4835
4836 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4837
4838 cur_trans->state = TRANS_STATE_COMMIT_START;
4839 wake_up(&fs_info->transaction_blocked_wait);
4840
4841 cur_trans->state = TRANS_STATE_UNBLOCKED;
4842 wake_up(&fs_info->transaction_wait);
4843
4844 btrfs_destroy_delayed_inodes(fs_info);
4845
4846 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4847 EXTENT_DIRTY);
4848 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4849
4850 btrfs_free_all_qgroup_pertrans(fs_info);
4851
4852 cur_trans->state =TRANS_STATE_COMPLETED;
4853 wake_up(&cur_trans->commit_wait);
4854}
4855
4856static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4857{
4858 struct btrfs_transaction *t;
4859
4860 mutex_lock(&fs_info->transaction_kthread_mutex);
4861
4862 spin_lock(&fs_info->trans_lock);
4863 while (!list_empty(&fs_info->trans_list)) {
4864 t = list_first_entry(&fs_info->trans_list,
4865 struct btrfs_transaction, list);
4866 if (t->state >= TRANS_STATE_COMMIT_PREP) {
4867 refcount_inc(&t->use_count);
4868 spin_unlock(&fs_info->trans_lock);
4869 btrfs_wait_for_commit(fs_info, t->transid);
4870 btrfs_put_transaction(t);
4871 spin_lock(&fs_info->trans_lock);
4872 continue;
4873 }
4874 if (t == fs_info->running_transaction) {
4875 t->state = TRANS_STATE_COMMIT_DOING;
4876 spin_unlock(&fs_info->trans_lock);
4877 /*
4878 * We wait for 0 num_writers since we don't hold a trans
4879 * handle open currently for this transaction.
4880 */
4881 wait_event(t->writer_wait,
4882 atomic_read(&t->num_writers) == 0);
4883 } else {
4884 spin_unlock(&fs_info->trans_lock);
4885 }
4886 btrfs_cleanup_one_transaction(t, fs_info);
4887
4888 spin_lock(&fs_info->trans_lock);
4889 if (t == fs_info->running_transaction)
4890 fs_info->running_transaction = NULL;
4891 list_del_init(&t->list);
4892 spin_unlock(&fs_info->trans_lock);
4893
4894 btrfs_put_transaction(t);
4895 trace_btrfs_transaction_commit(fs_info);
4896 spin_lock(&fs_info->trans_lock);
4897 }
4898 spin_unlock(&fs_info->trans_lock);
4899 btrfs_destroy_all_ordered_extents(fs_info);
4900 btrfs_destroy_delayed_inodes(fs_info);
4901 btrfs_assert_delayed_root_empty(fs_info);
4902 btrfs_destroy_all_delalloc_inodes(fs_info);
4903 btrfs_drop_all_logs(fs_info);
4904 mutex_unlock(&fs_info->transaction_kthread_mutex);
4905
4906 return 0;
4907}
4908
4909int btrfs_init_root_free_objectid(struct btrfs_root *root)
4910{
4911 struct btrfs_path *path;
4912 int ret;
4913 struct extent_buffer *l;
4914 struct btrfs_key search_key;
4915 struct btrfs_key found_key;
4916 int slot;
4917
4918 path = btrfs_alloc_path();
4919 if (!path)
4920 return -ENOMEM;
4921
4922 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4923 search_key.type = -1;
4924 search_key.offset = (u64)-1;
4925 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4926 if (ret < 0)
4927 goto error;
4928 BUG_ON(ret == 0); /* Corruption */
4929 if (path->slots[0] > 0) {
4930 slot = path->slots[0] - 1;
4931 l = path->nodes[0];
4932 btrfs_item_key_to_cpu(l, &found_key, slot);
4933 root->free_objectid = max_t(u64, found_key.objectid + 1,
4934 BTRFS_FIRST_FREE_OBJECTID);
4935 } else {
4936 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4937 }
4938 ret = 0;
4939error:
4940 btrfs_free_path(path);
4941 return ret;
4942}
4943
4944int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4945{
4946 int ret;
4947 mutex_lock(&root->objectid_mutex);
4948
4949 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4950 btrfs_warn(root->fs_info,
4951 "the objectid of root %llu reaches its highest value",
4952 root->root_key.objectid);
4953 ret = -ENOSPC;
4954 goto out;
4955 }
4956
4957 *objectid = root->free_objectid++;
4958 ret = 0;
4959out:
4960 mutex_unlock(&root->objectid_mutex);
4961 return ret;
4962}
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/blkdev.h>
21#include <linux/scatterlist.h>
22#include <linux/swap.h>
23#include <linux/radix-tree.h>
24#include <linux/writeback.h>
25#include <linux/buffer_head.h>
26#include <linux/workqueue.h>
27#include <linux/kthread.h>
28#include <linux/freezer.h>
29#include <linux/crc32c.h>
30#include <linux/slab.h>
31#include <linux/migrate.h>
32#include <linux/ratelimit.h>
33#include <asm/unaligned.h>
34#include "compat.h"
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39#include "volumes.h"
40#include "print-tree.h"
41#include "async-thread.h"
42#include "locking.h"
43#include "tree-log.h"
44#include "free-space-cache.h"
45#include "inode-map.h"
46#include "check-integrity.h"
47#include "rcu-string.h"
48
49static struct extent_io_ops btree_extent_io_ops;
50static void end_workqueue_fn(struct btrfs_work *work);
51static void free_fs_root(struct btrfs_root *root);
52static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
53 int read_only);
54static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_root *root);
58static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60static int btrfs_destroy_marked_extents(struct btrfs_root *root,
61 struct extent_io_tree *dirty_pages,
62 int mark);
63static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
64 struct extent_io_tree *pinned_extents);
65
66/*
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
71struct end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 int error;
77 int metadata;
78 struct list_head list;
79 struct btrfs_work work;
80};
81
82/*
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
86 */
87struct async_submit_bio {
88 struct inode *inode;
89 struct bio *bio;
90 struct list_head list;
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
93 int rw;
94 int mirror_num;
95 unsigned long bio_flags;
96 /*
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
99 */
100 u64 bio_offset;
101 struct btrfs_work work;
102 int error;
103};
104
105/*
106 * Lockdep class keys for extent_buffer->lock's in this root. For a given
107 * eb, the lockdep key is determined by the btrfs_root it belongs to and
108 * the level the eb occupies in the tree.
109 *
110 * Different roots are used for different purposes and may nest inside each
111 * other and they require separate keysets. As lockdep keys should be
112 * static, assign keysets according to the purpose of the root as indicated
113 * by btrfs_root->objectid. This ensures that all special purpose roots
114 * have separate keysets.
115 *
116 * Lock-nesting across peer nodes is always done with the immediate parent
117 * node locked thus preventing deadlock. As lockdep doesn't know this, use
118 * subclass to avoid triggering lockdep warning in such cases.
119 *
120 * The key is set by the readpage_end_io_hook after the buffer has passed
121 * csum validation but before the pages are unlocked. It is also set by
122 * btrfs_init_new_buffer on freshly allocated blocks.
123 *
124 * We also add a check to make sure the highest level of the tree is the
125 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
126 * needs update as well.
127 */
128#ifdef CONFIG_DEBUG_LOCK_ALLOC
129# if BTRFS_MAX_LEVEL != 8
130# error
131# endif
132
133static struct btrfs_lockdep_keyset {
134 u64 id; /* root objectid */
135 const char *name_stem; /* lock name stem */
136 char names[BTRFS_MAX_LEVEL + 1][20];
137 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
138} btrfs_lockdep_keysets[] = {
139 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
140 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
141 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
142 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
143 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
144 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
145 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
146 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
147 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
148 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
149 { .id = 0, .name_stem = "tree" },
150};
151
152void __init btrfs_init_lockdep(void)
153{
154 int i, j;
155
156 /* initialize lockdep class names */
157 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
158 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
159
160 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
161 snprintf(ks->names[j], sizeof(ks->names[j]),
162 "btrfs-%s-%02d", ks->name_stem, j);
163 }
164}
165
166void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
167 int level)
168{
169 struct btrfs_lockdep_keyset *ks;
170
171 BUG_ON(level >= ARRAY_SIZE(ks->keys));
172
173 /* find the matching keyset, id 0 is the default entry */
174 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
175 if (ks->id == objectid)
176 break;
177
178 lockdep_set_class_and_name(&eb->lock,
179 &ks->keys[level], ks->names[level]);
180}
181
182#endif
183
184/*
185 * extents on the btree inode are pretty simple, there's one extent
186 * that covers the entire device
187 */
188static struct extent_map *btree_get_extent(struct inode *inode,
189 struct page *page, size_t pg_offset, u64 start, u64 len,
190 int create)
191{
192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
193 struct extent_map *em;
194 int ret;
195
196 read_lock(&em_tree->lock);
197 em = lookup_extent_mapping(em_tree, start, len);
198 if (em) {
199 em->bdev =
200 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
201 read_unlock(&em_tree->lock);
202 goto out;
203 }
204 read_unlock(&em_tree->lock);
205
206 em = alloc_extent_map();
207 if (!em) {
208 em = ERR_PTR(-ENOMEM);
209 goto out;
210 }
211 em->start = 0;
212 em->len = (u64)-1;
213 em->block_len = (u64)-1;
214 em->block_start = 0;
215 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
216
217 write_lock(&em_tree->lock);
218 ret = add_extent_mapping(em_tree, em);
219 if (ret == -EEXIST) {
220 u64 failed_start = em->start;
221 u64 failed_len = em->len;
222
223 free_extent_map(em);
224 em = lookup_extent_mapping(em_tree, start, len);
225 if (em) {
226 ret = 0;
227 } else {
228 em = lookup_extent_mapping(em_tree, failed_start,
229 failed_len);
230 ret = -EIO;
231 }
232 } else if (ret) {
233 free_extent_map(em);
234 em = NULL;
235 }
236 write_unlock(&em_tree->lock);
237
238 if (ret)
239 em = ERR_PTR(ret);
240out:
241 return em;
242}
243
244u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
245{
246 return crc32c(seed, data, len);
247}
248
249void btrfs_csum_final(u32 crc, char *result)
250{
251 put_unaligned_le32(~crc, result);
252}
253
254/*
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
257 */
258static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 int verify)
260{
261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262 char *result = NULL;
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
270 u32 crc = ~(u32)0;
271 unsigned long inline_result;
272
273 len = buf->len - offset;
274 while (len > 0) {
275 err = map_private_extent_buffer(buf, offset, 32,
276 &kaddr, &map_start, &map_len);
277 if (err)
278 return 1;
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(root, kaddr + offset - map_start,
281 crc, cur_len);
282 len -= cur_len;
283 offset += cur_len;
284 }
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 if (!result)
288 return 1;
289 } else {
290 result = (char *)&inline_result;
291 }
292
293 btrfs_csum_final(crc, result);
294
295 if (verify) {
296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297 u32 val;
298 u32 found = 0;
299 memcpy(&found, result, csum_size);
300
301 read_extent_buffer(buf, &val, 0, csum_size);
302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 "failed on %llu wanted %X found %X "
304 "level %d\n",
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
309 kfree(result);
310 return 1;
311 }
312 } else {
313 write_extent_buffer(buf, result, 0, csum_size);
314 }
315 if (result != (char *)&inline_result)
316 kfree(result);
317 return 0;
318}
319
320/*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
326static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
329{
330 struct extent_state *cached_state = NULL;
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
336 if (atomic)
337 return -EAGAIN;
338
339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 0, &cached_state);
341 if (extent_buffer_uptodate(eb) &&
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 "found %llu\n",
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
351 ret = 1;
352 clear_extent_buffer_uptodate(eb);
353out:
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
356 return ret;
357}
358
359/*
360 * helper to read a given tree block, doing retries as required when
361 * the checksums don't match and we have alternate mirrors to try.
362 */
363static int btree_read_extent_buffer_pages(struct btrfs_root *root,
364 struct extent_buffer *eb,
365 u64 start, u64 parent_transid)
366{
367 struct extent_io_tree *io_tree;
368 int failed = 0;
369 int ret;
370 int num_copies = 0;
371 int mirror_num = 0;
372 int failed_mirror = 0;
373
374 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
375 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
376 while (1) {
377 ret = read_extent_buffer_pages(io_tree, eb, start,
378 WAIT_COMPLETE,
379 btree_get_extent, mirror_num);
380 if (!ret && !verify_parent_transid(io_tree, eb,
381 parent_transid, 0))
382 break;
383
384 /*
385 * This buffer's crc is fine, but its contents are corrupted, so
386 * there is no reason to read the other copies, they won't be
387 * any less wrong.
388 */
389 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
390 break;
391
392 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
393 eb->start, eb->len);
394 if (num_copies == 1)
395 break;
396
397 if (!failed_mirror) {
398 failed = 1;
399 failed_mirror = eb->read_mirror;
400 }
401
402 mirror_num++;
403 if (mirror_num == failed_mirror)
404 mirror_num++;
405
406 if (mirror_num > num_copies)
407 break;
408 }
409
410 if (failed && !ret)
411 repair_eb_io_failure(root, eb, failed_mirror);
412
413 return ret;
414}
415
416/*
417 * checksum a dirty tree block before IO. This has extra checks to make sure
418 * we only fill in the checksum field in the first page of a multi-page block
419 */
420
421static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
422{
423 struct extent_io_tree *tree;
424 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
425 u64 found_start;
426 struct extent_buffer *eb;
427
428 tree = &BTRFS_I(page->mapping->host)->io_tree;
429
430 eb = (struct extent_buffer *)page->private;
431 if (page != eb->pages[0])
432 return 0;
433 found_start = btrfs_header_bytenr(eb);
434 if (found_start != start) {
435 WARN_ON(1);
436 return 0;
437 }
438 if (eb->pages[0] != page) {
439 WARN_ON(1);
440 return 0;
441 }
442 if (!PageUptodate(page)) {
443 WARN_ON(1);
444 return 0;
445 }
446 csum_tree_block(root, eb, 0);
447 return 0;
448}
449
450static int check_tree_block_fsid(struct btrfs_root *root,
451 struct extent_buffer *eb)
452{
453 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
454 u8 fsid[BTRFS_UUID_SIZE];
455 int ret = 1;
456
457 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
458 BTRFS_FSID_SIZE);
459 while (fs_devices) {
460 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
461 ret = 0;
462 break;
463 }
464 fs_devices = fs_devices->seed;
465 }
466 return ret;
467}
468
469#define CORRUPT(reason, eb, root, slot) \
470 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
471 "root=%llu, slot=%d\n", reason, \
472 (unsigned long long)btrfs_header_bytenr(eb), \
473 (unsigned long long)root->objectid, slot)
474
475static noinline int check_leaf(struct btrfs_root *root,
476 struct extent_buffer *leaf)
477{
478 struct btrfs_key key;
479 struct btrfs_key leaf_key;
480 u32 nritems = btrfs_header_nritems(leaf);
481 int slot;
482
483 if (nritems == 0)
484 return 0;
485
486 /* Check the 0 item */
487 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
488 BTRFS_LEAF_DATA_SIZE(root)) {
489 CORRUPT("invalid item offset size pair", leaf, root, 0);
490 return -EIO;
491 }
492
493 /*
494 * Check to make sure each items keys are in the correct order and their
495 * offsets make sense. We only have to loop through nritems-1 because
496 * we check the current slot against the next slot, which verifies the
497 * next slot's offset+size makes sense and that the current's slot
498 * offset is correct.
499 */
500 for (slot = 0; slot < nritems - 1; slot++) {
501 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
502 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
503
504 /* Make sure the keys are in the right order */
505 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
506 CORRUPT("bad key order", leaf, root, slot);
507 return -EIO;
508 }
509
510 /*
511 * Make sure the offset and ends are right, remember that the
512 * item data starts at the end of the leaf and grows towards the
513 * front.
514 */
515 if (btrfs_item_offset_nr(leaf, slot) !=
516 btrfs_item_end_nr(leaf, slot + 1)) {
517 CORRUPT("slot offset bad", leaf, root, slot);
518 return -EIO;
519 }
520
521 /*
522 * Check to make sure that we don't point outside of the leaf,
523 * just incase all the items are consistent to eachother, but
524 * all point outside of the leaf.
525 */
526 if (btrfs_item_end_nr(leaf, slot) >
527 BTRFS_LEAF_DATA_SIZE(root)) {
528 CORRUPT("slot end outside of leaf", leaf, root, slot);
529 return -EIO;
530 }
531 }
532
533 return 0;
534}
535
536struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
537 struct page *page, int max_walk)
538{
539 struct extent_buffer *eb;
540 u64 start = page_offset(page);
541 u64 target = start;
542 u64 min_start;
543
544 if (start < max_walk)
545 min_start = 0;
546 else
547 min_start = start - max_walk;
548
549 while (start >= min_start) {
550 eb = find_extent_buffer(tree, start, 0);
551 if (eb) {
552 /*
553 * we found an extent buffer and it contains our page
554 * horray!
555 */
556 if (eb->start <= target &&
557 eb->start + eb->len > target)
558 return eb;
559
560 /* we found an extent buffer that wasn't for us */
561 free_extent_buffer(eb);
562 return NULL;
563 }
564 if (start == 0)
565 break;
566 start -= PAGE_CACHE_SIZE;
567 }
568 return NULL;
569}
570
571static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
572 struct extent_state *state, int mirror)
573{
574 struct extent_io_tree *tree;
575 u64 found_start;
576 int found_level;
577 struct extent_buffer *eb;
578 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
579 int ret = 0;
580 int reads_done;
581
582 if (!page->private)
583 goto out;
584
585 tree = &BTRFS_I(page->mapping->host)->io_tree;
586 eb = (struct extent_buffer *)page->private;
587
588 /* the pending IO might have been the only thing that kept this buffer
589 * in memory. Make sure we have a ref for all this other checks
590 */
591 extent_buffer_get(eb);
592
593 reads_done = atomic_dec_and_test(&eb->io_pages);
594 if (!reads_done)
595 goto err;
596
597 eb->read_mirror = mirror;
598 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
599 ret = -EIO;
600 goto err;
601 }
602
603 found_start = btrfs_header_bytenr(eb);
604 if (found_start != eb->start) {
605 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
606 "%llu %llu\n",
607 (unsigned long long)found_start,
608 (unsigned long long)eb->start);
609 ret = -EIO;
610 goto err;
611 }
612 if (check_tree_block_fsid(root, eb)) {
613 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
614 (unsigned long long)eb->start);
615 ret = -EIO;
616 goto err;
617 }
618 found_level = btrfs_header_level(eb);
619
620 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621 eb, found_level);
622
623 ret = csum_tree_block(root, eb, 1);
624 if (ret) {
625 ret = -EIO;
626 goto err;
627 }
628
629 /*
630 * If this is a leaf block and it is corrupt, set the corrupt bit so
631 * that we don't try and read the other copies of this block, just
632 * return -EIO.
633 */
634 if (found_level == 0 && check_leaf(root, eb)) {
635 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636 ret = -EIO;
637 }
638
639 if (!ret)
640 set_extent_buffer_uptodate(eb);
641err:
642 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
643 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
644 btree_readahead_hook(root, eb, eb->start, ret);
645 }
646
647 if (ret)
648 clear_extent_buffer_uptodate(eb);
649 free_extent_buffer(eb);
650out:
651 return ret;
652}
653
654static int btree_io_failed_hook(struct page *page, int failed_mirror)
655{
656 struct extent_buffer *eb;
657 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
658
659 eb = (struct extent_buffer *)page->private;
660 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
661 eb->read_mirror = failed_mirror;
662 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
663 btree_readahead_hook(root, eb, eb->start, -EIO);
664 return -EIO; /* we fixed nothing */
665}
666
667static void end_workqueue_bio(struct bio *bio, int err)
668{
669 struct end_io_wq *end_io_wq = bio->bi_private;
670 struct btrfs_fs_info *fs_info;
671
672 fs_info = end_io_wq->info;
673 end_io_wq->error = err;
674 end_io_wq->work.func = end_workqueue_fn;
675 end_io_wq->work.flags = 0;
676
677 if (bio->bi_rw & REQ_WRITE) {
678 if (end_io_wq->metadata == 1)
679 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
680 &end_io_wq->work);
681 else if (end_io_wq->metadata == 2)
682 btrfs_queue_worker(&fs_info->endio_freespace_worker,
683 &end_io_wq->work);
684 else
685 btrfs_queue_worker(&fs_info->endio_write_workers,
686 &end_io_wq->work);
687 } else {
688 if (end_io_wq->metadata)
689 btrfs_queue_worker(&fs_info->endio_meta_workers,
690 &end_io_wq->work);
691 else
692 btrfs_queue_worker(&fs_info->endio_workers,
693 &end_io_wq->work);
694 }
695}
696
697/*
698 * For the metadata arg you want
699 *
700 * 0 - if data
701 * 1 - if normal metadta
702 * 2 - if writing to the free space cache area
703 */
704int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
705 int metadata)
706{
707 struct end_io_wq *end_io_wq;
708 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
709 if (!end_io_wq)
710 return -ENOMEM;
711
712 end_io_wq->private = bio->bi_private;
713 end_io_wq->end_io = bio->bi_end_io;
714 end_io_wq->info = info;
715 end_io_wq->error = 0;
716 end_io_wq->bio = bio;
717 end_io_wq->metadata = metadata;
718
719 bio->bi_private = end_io_wq;
720 bio->bi_end_io = end_workqueue_bio;
721 return 0;
722}
723
724unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
725{
726 unsigned long limit = min_t(unsigned long,
727 info->workers.max_workers,
728 info->fs_devices->open_devices);
729 return 256 * limit;
730}
731
732static void run_one_async_start(struct btrfs_work *work)
733{
734 struct async_submit_bio *async;
735 int ret;
736
737 async = container_of(work, struct async_submit_bio, work);
738 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
739 async->mirror_num, async->bio_flags,
740 async->bio_offset);
741 if (ret)
742 async->error = ret;
743}
744
745static void run_one_async_done(struct btrfs_work *work)
746{
747 struct btrfs_fs_info *fs_info;
748 struct async_submit_bio *async;
749 int limit;
750
751 async = container_of(work, struct async_submit_bio, work);
752 fs_info = BTRFS_I(async->inode)->root->fs_info;
753
754 limit = btrfs_async_submit_limit(fs_info);
755 limit = limit * 2 / 3;
756
757 atomic_dec(&fs_info->nr_async_submits);
758
759 if (atomic_read(&fs_info->nr_async_submits) < limit &&
760 waitqueue_active(&fs_info->async_submit_wait))
761 wake_up(&fs_info->async_submit_wait);
762
763 /* If an error occured we just want to clean up the bio and move on */
764 if (async->error) {
765 bio_endio(async->bio, async->error);
766 return;
767 }
768
769 async->submit_bio_done(async->inode, async->rw, async->bio,
770 async->mirror_num, async->bio_flags,
771 async->bio_offset);
772}
773
774static void run_one_async_free(struct btrfs_work *work)
775{
776 struct async_submit_bio *async;
777
778 async = container_of(work, struct async_submit_bio, work);
779 kfree(async);
780}
781
782int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
783 int rw, struct bio *bio, int mirror_num,
784 unsigned long bio_flags,
785 u64 bio_offset,
786 extent_submit_bio_hook_t *submit_bio_start,
787 extent_submit_bio_hook_t *submit_bio_done)
788{
789 struct async_submit_bio *async;
790
791 async = kmalloc(sizeof(*async), GFP_NOFS);
792 if (!async)
793 return -ENOMEM;
794
795 async->inode = inode;
796 async->rw = rw;
797 async->bio = bio;
798 async->mirror_num = mirror_num;
799 async->submit_bio_start = submit_bio_start;
800 async->submit_bio_done = submit_bio_done;
801
802 async->work.func = run_one_async_start;
803 async->work.ordered_func = run_one_async_done;
804 async->work.ordered_free = run_one_async_free;
805
806 async->work.flags = 0;
807 async->bio_flags = bio_flags;
808 async->bio_offset = bio_offset;
809
810 async->error = 0;
811
812 atomic_inc(&fs_info->nr_async_submits);
813
814 if (rw & REQ_SYNC)
815 btrfs_set_work_high_prio(&async->work);
816
817 btrfs_queue_worker(&fs_info->workers, &async->work);
818
819 while (atomic_read(&fs_info->async_submit_draining) &&
820 atomic_read(&fs_info->nr_async_submits)) {
821 wait_event(fs_info->async_submit_wait,
822 (atomic_read(&fs_info->nr_async_submits) == 0));
823 }
824
825 return 0;
826}
827
828static int btree_csum_one_bio(struct bio *bio)
829{
830 struct bio_vec *bvec = bio->bi_io_vec;
831 int bio_index = 0;
832 struct btrfs_root *root;
833 int ret = 0;
834
835 WARN_ON(bio->bi_vcnt <= 0);
836 while (bio_index < bio->bi_vcnt) {
837 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
838 ret = csum_dirty_buffer(root, bvec->bv_page);
839 if (ret)
840 break;
841 bio_index++;
842 bvec++;
843 }
844 return ret;
845}
846
847static int __btree_submit_bio_start(struct inode *inode, int rw,
848 struct bio *bio, int mirror_num,
849 unsigned long bio_flags,
850 u64 bio_offset)
851{
852 /*
853 * when we're called for a write, we're already in the async
854 * submission context. Just jump into btrfs_map_bio
855 */
856 return btree_csum_one_bio(bio);
857}
858
859static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
860 int mirror_num, unsigned long bio_flags,
861 u64 bio_offset)
862{
863 /*
864 * when we're called for a write, we're already in the async
865 * submission context. Just jump into btrfs_map_bio
866 */
867 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
868}
869
870static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
871 int mirror_num, unsigned long bio_flags,
872 u64 bio_offset)
873{
874 int ret;
875
876 if (!(rw & REQ_WRITE)) {
877
878 /*
879 * called for a read, do the setup so that checksum validation
880 * can happen in the async kernel threads
881 */
882 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
883 bio, 1);
884 if (ret)
885 return ret;
886 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
887 mirror_num, 0);
888 }
889
890 /*
891 * kthread helpers are used to submit writes so that checksumming
892 * can happen in parallel across all CPUs
893 */
894 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
895 inode, rw, bio, mirror_num, 0,
896 bio_offset,
897 __btree_submit_bio_start,
898 __btree_submit_bio_done);
899}
900
901#ifdef CONFIG_MIGRATION
902static int btree_migratepage(struct address_space *mapping,
903 struct page *newpage, struct page *page,
904 enum migrate_mode mode)
905{
906 /*
907 * we can't safely write a btree page from here,
908 * we haven't done the locking hook
909 */
910 if (PageDirty(page))
911 return -EAGAIN;
912 /*
913 * Buffers may be managed in a filesystem specific way.
914 * We must have no buffers or drop them.
915 */
916 if (page_has_private(page) &&
917 !try_to_release_page(page, GFP_KERNEL))
918 return -EAGAIN;
919 return migrate_page(mapping, newpage, page, mode);
920}
921#endif
922
923
924static int btree_writepages(struct address_space *mapping,
925 struct writeback_control *wbc)
926{
927 struct extent_io_tree *tree;
928 tree = &BTRFS_I(mapping->host)->io_tree;
929 if (wbc->sync_mode == WB_SYNC_NONE) {
930 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
931 u64 num_dirty;
932 unsigned long thresh = 32 * 1024 * 1024;
933
934 if (wbc->for_kupdate)
935 return 0;
936
937 /* this is a bit racy, but that's ok */
938 num_dirty = root->fs_info->dirty_metadata_bytes;
939 if (num_dirty < thresh)
940 return 0;
941 }
942 return btree_write_cache_pages(mapping, wbc);
943}
944
945static int btree_readpage(struct file *file, struct page *page)
946{
947 struct extent_io_tree *tree;
948 tree = &BTRFS_I(page->mapping->host)->io_tree;
949 return extent_read_full_page(tree, page, btree_get_extent, 0);
950}
951
952static int btree_releasepage(struct page *page, gfp_t gfp_flags)
953{
954 if (PageWriteback(page) || PageDirty(page))
955 return 0;
956 /*
957 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
958 * slab allocation from alloc_extent_state down the callchain where
959 * it'd hit a BUG_ON as those flags are not allowed.
960 */
961 gfp_flags &= ~GFP_SLAB_BUG_MASK;
962
963 return try_release_extent_buffer(page, gfp_flags);
964}
965
966static void btree_invalidatepage(struct page *page, unsigned long offset)
967{
968 struct extent_io_tree *tree;
969 tree = &BTRFS_I(page->mapping->host)->io_tree;
970 extent_invalidatepage(tree, page, offset);
971 btree_releasepage(page, GFP_NOFS);
972 if (PagePrivate(page)) {
973 printk(KERN_WARNING "btrfs warning page private not zero "
974 "on page %llu\n", (unsigned long long)page_offset(page));
975 ClearPagePrivate(page);
976 set_page_private(page, 0);
977 page_cache_release(page);
978 }
979}
980
981static int btree_set_page_dirty(struct page *page)
982{
983 struct extent_buffer *eb;
984
985 BUG_ON(!PagePrivate(page));
986 eb = (struct extent_buffer *)page->private;
987 BUG_ON(!eb);
988 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
989 BUG_ON(!atomic_read(&eb->refs));
990 btrfs_assert_tree_locked(eb);
991 return __set_page_dirty_nobuffers(page);
992}
993
994static const struct address_space_operations btree_aops = {
995 .readpage = btree_readpage,
996 .writepages = btree_writepages,
997 .releasepage = btree_releasepage,
998 .invalidatepage = btree_invalidatepage,
999#ifdef CONFIG_MIGRATION
1000 .migratepage = btree_migratepage,
1001#endif
1002 .set_page_dirty = btree_set_page_dirty,
1003};
1004
1005int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1006 u64 parent_transid)
1007{
1008 struct extent_buffer *buf = NULL;
1009 struct inode *btree_inode = root->fs_info->btree_inode;
1010 int ret = 0;
1011
1012 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1013 if (!buf)
1014 return 0;
1015 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1016 buf, 0, WAIT_NONE, btree_get_extent, 0);
1017 free_extent_buffer(buf);
1018 return ret;
1019}
1020
1021int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1022 int mirror_num, struct extent_buffer **eb)
1023{
1024 struct extent_buffer *buf = NULL;
1025 struct inode *btree_inode = root->fs_info->btree_inode;
1026 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1027 int ret;
1028
1029 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1030 if (!buf)
1031 return 0;
1032
1033 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1034
1035 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1036 btree_get_extent, mirror_num);
1037 if (ret) {
1038 free_extent_buffer(buf);
1039 return ret;
1040 }
1041
1042 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1043 free_extent_buffer(buf);
1044 return -EIO;
1045 } else if (extent_buffer_uptodate(buf)) {
1046 *eb = buf;
1047 } else {
1048 free_extent_buffer(buf);
1049 }
1050 return 0;
1051}
1052
1053struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1054 u64 bytenr, u32 blocksize)
1055{
1056 struct inode *btree_inode = root->fs_info->btree_inode;
1057 struct extent_buffer *eb;
1058 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1059 bytenr, blocksize);
1060 return eb;
1061}
1062
1063struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1064 u64 bytenr, u32 blocksize)
1065{
1066 struct inode *btree_inode = root->fs_info->btree_inode;
1067 struct extent_buffer *eb;
1068
1069 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1070 bytenr, blocksize);
1071 return eb;
1072}
1073
1074
1075int btrfs_write_tree_block(struct extent_buffer *buf)
1076{
1077 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1078 buf->start + buf->len - 1);
1079}
1080
1081int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1082{
1083 return filemap_fdatawait_range(buf->pages[0]->mapping,
1084 buf->start, buf->start + buf->len - 1);
1085}
1086
1087struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1088 u32 blocksize, u64 parent_transid)
1089{
1090 struct extent_buffer *buf = NULL;
1091 int ret;
1092
1093 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1094 if (!buf)
1095 return NULL;
1096
1097 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1098 return buf;
1099
1100}
1101
1102void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1103 struct extent_buffer *buf)
1104{
1105 if (btrfs_header_generation(buf) ==
1106 root->fs_info->running_transaction->transid) {
1107 btrfs_assert_tree_locked(buf);
1108
1109 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1110 spin_lock(&root->fs_info->delalloc_lock);
1111 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1112 root->fs_info->dirty_metadata_bytes -= buf->len;
1113 else {
1114 spin_unlock(&root->fs_info->delalloc_lock);
1115 btrfs_panic(root->fs_info, -EOVERFLOW,
1116 "Can't clear %lu bytes from "
1117 " dirty_mdatadata_bytes (%lu)",
1118 buf->len,
1119 root->fs_info->dirty_metadata_bytes);
1120 }
1121 spin_unlock(&root->fs_info->delalloc_lock);
1122 }
1123
1124 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1125 btrfs_set_lock_blocking(buf);
1126 clear_extent_buffer_dirty(buf);
1127 }
1128}
1129
1130static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1131 u32 stripesize, struct btrfs_root *root,
1132 struct btrfs_fs_info *fs_info,
1133 u64 objectid)
1134{
1135 root->node = NULL;
1136 root->commit_root = NULL;
1137 root->sectorsize = sectorsize;
1138 root->nodesize = nodesize;
1139 root->leafsize = leafsize;
1140 root->stripesize = stripesize;
1141 root->ref_cows = 0;
1142 root->track_dirty = 0;
1143 root->in_radix = 0;
1144 root->orphan_item_inserted = 0;
1145 root->orphan_cleanup_state = 0;
1146
1147 root->objectid = objectid;
1148 root->last_trans = 0;
1149 root->highest_objectid = 0;
1150 root->name = NULL;
1151 root->inode_tree = RB_ROOT;
1152 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1153 root->block_rsv = NULL;
1154 root->orphan_block_rsv = NULL;
1155
1156 INIT_LIST_HEAD(&root->dirty_list);
1157 INIT_LIST_HEAD(&root->root_list);
1158 spin_lock_init(&root->orphan_lock);
1159 spin_lock_init(&root->inode_lock);
1160 spin_lock_init(&root->accounting_lock);
1161 mutex_init(&root->objectid_mutex);
1162 mutex_init(&root->log_mutex);
1163 init_waitqueue_head(&root->log_writer_wait);
1164 init_waitqueue_head(&root->log_commit_wait[0]);
1165 init_waitqueue_head(&root->log_commit_wait[1]);
1166 atomic_set(&root->log_commit[0], 0);
1167 atomic_set(&root->log_commit[1], 0);
1168 atomic_set(&root->log_writers, 0);
1169 atomic_set(&root->orphan_inodes, 0);
1170 root->log_batch = 0;
1171 root->log_transid = 0;
1172 root->last_log_commit = 0;
1173 extent_io_tree_init(&root->dirty_log_pages,
1174 fs_info->btree_inode->i_mapping);
1175
1176 memset(&root->root_key, 0, sizeof(root->root_key));
1177 memset(&root->root_item, 0, sizeof(root->root_item));
1178 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1179 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1180 root->defrag_trans_start = fs_info->generation;
1181 init_completion(&root->kobj_unregister);
1182 root->defrag_running = 0;
1183 root->root_key.objectid = objectid;
1184 root->anon_dev = 0;
1185}
1186
1187static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1188 struct btrfs_fs_info *fs_info,
1189 u64 objectid,
1190 struct btrfs_root *root)
1191{
1192 int ret;
1193 u32 blocksize;
1194 u64 generation;
1195
1196 __setup_root(tree_root->nodesize, tree_root->leafsize,
1197 tree_root->sectorsize, tree_root->stripesize,
1198 root, fs_info, objectid);
1199 ret = btrfs_find_last_root(tree_root, objectid,
1200 &root->root_item, &root->root_key);
1201 if (ret > 0)
1202 return -ENOENT;
1203 else if (ret < 0)
1204 return ret;
1205
1206 generation = btrfs_root_generation(&root->root_item);
1207 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1208 root->commit_root = NULL;
1209 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1210 blocksize, generation);
1211 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1212 free_extent_buffer(root->node);
1213 root->node = NULL;
1214 return -EIO;
1215 }
1216 root->commit_root = btrfs_root_node(root);
1217 return 0;
1218}
1219
1220static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1221{
1222 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1223 if (root)
1224 root->fs_info = fs_info;
1225 return root;
1226}
1227
1228static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1229 struct btrfs_fs_info *fs_info)
1230{
1231 struct btrfs_root *root;
1232 struct btrfs_root *tree_root = fs_info->tree_root;
1233 struct extent_buffer *leaf;
1234
1235 root = btrfs_alloc_root(fs_info);
1236 if (!root)
1237 return ERR_PTR(-ENOMEM);
1238
1239 __setup_root(tree_root->nodesize, tree_root->leafsize,
1240 tree_root->sectorsize, tree_root->stripesize,
1241 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1242
1243 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1244 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1245 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1246 /*
1247 * log trees do not get reference counted because they go away
1248 * before a real commit is actually done. They do store pointers
1249 * to file data extents, and those reference counts still get
1250 * updated (along with back refs to the log tree).
1251 */
1252 root->ref_cows = 0;
1253
1254 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1255 BTRFS_TREE_LOG_OBJECTID, NULL,
1256 0, 0, 0);
1257 if (IS_ERR(leaf)) {
1258 kfree(root);
1259 return ERR_CAST(leaf);
1260 }
1261
1262 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1263 btrfs_set_header_bytenr(leaf, leaf->start);
1264 btrfs_set_header_generation(leaf, trans->transid);
1265 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1266 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1267 root->node = leaf;
1268
1269 write_extent_buffer(root->node, root->fs_info->fsid,
1270 (unsigned long)btrfs_header_fsid(root->node),
1271 BTRFS_FSID_SIZE);
1272 btrfs_mark_buffer_dirty(root->node);
1273 btrfs_tree_unlock(root->node);
1274 return root;
1275}
1276
1277int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1278 struct btrfs_fs_info *fs_info)
1279{
1280 struct btrfs_root *log_root;
1281
1282 log_root = alloc_log_tree(trans, fs_info);
1283 if (IS_ERR(log_root))
1284 return PTR_ERR(log_root);
1285 WARN_ON(fs_info->log_root_tree);
1286 fs_info->log_root_tree = log_root;
1287 return 0;
1288}
1289
1290int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1291 struct btrfs_root *root)
1292{
1293 struct btrfs_root *log_root;
1294 struct btrfs_inode_item *inode_item;
1295
1296 log_root = alloc_log_tree(trans, root->fs_info);
1297 if (IS_ERR(log_root))
1298 return PTR_ERR(log_root);
1299
1300 log_root->last_trans = trans->transid;
1301 log_root->root_key.offset = root->root_key.objectid;
1302
1303 inode_item = &log_root->root_item.inode;
1304 inode_item->generation = cpu_to_le64(1);
1305 inode_item->size = cpu_to_le64(3);
1306 inode_item->nlink = cpu_to_le32(1);
1307 inode_item->nbytes = cpu_to_le64(root->leafsize);
1308 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1309
1310 btrfs_set_root_node(&log_root->root_item, log_root->node);
1311
1312 WARN_ON(root->log_root);
1313 root->log_root = log_root;
1314 root->log_transid = 0;
1315 root->last_log_commit = 0;
1316 return 0;
1317}
1318
1319struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1320 struct btrfs_key *location)
1321{
1322 struct btrfs_root *root;
1323 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1324 struct btrfs_path *path;
1325 struct extent_buffer *l;
1326 u64 generation;
1327 u32 blocksize;
1328 int ret = 0;
1329
1330 root = btrfs_alloc_root(fs_info);
1331 if (!root)
1332 return ERR_PTR(-ENOMEM);
1333 if (location->offset == (u64)-1) {
1334 ret = find_and_setup_root(tree_root, fs_info,
1335 location->objectid, root);
1336 if (ret) {
1337 kfree(root);
1338 return ERR_PTR(ret);
1339 }
1340 goto out;
1341 }
1342
1343 __setup_root(tree_root->nodesize, tree_root->leafsize,
1344 tree_root->sectorsize, tree_root->stripesize,
1345 root, fs_info, location->objectid);
1346
1347 path = btrfs_alloc_path();
1348 if (!path) {
1349 kfree(root);
1350 return ERR_PTR(-ENOMEM);
1351 }
1352 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1353 if (ret == 0) {
1354 l = path->nodes[0];
1355 read_extent_buffer(l, &root->root_item,
1356 btrfs_item_ptr_offset(l, path->slots[0]),
1357 sizeof(root->root_item));
1358 memcpy(&root->root_key, location, sizeof(*location));
1359 }
1360 btrfs_free_path(path);
1361 if (ret) {
1362 kfree(root);
1363 if (ret > 0)
1364 ret = -ENOENT;
1365 return ERR_PTR(ret);
1366 }
1367
1368 generation = btrfs_root_generation(&root->root_item);
1369 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1370 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1371 blocksize, generation);
1372 root->commit_root = btrfs_root_node(root);
1373 BUG_ON(!root->node); /* -ENOMEM */
1374out:
1375 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1376 root->ref_cows = 1;
1377 btrfs_check_and_init_root_item(&root->root_item);
1378 }
1379
1380 return root;
1381}
1382
1383struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1384 struct btrfs_key *location)
1385{
1386 struct btrfs_root *root;
1387 int ret;
1388
1389 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1390 return fs_info->tree_root;
1391 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1392 return fs_info->extent_root;
1393 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1394 return fs_info->chunk_root;
1395 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1396 return fs_info->dev_root;
1397 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1398 return fs_info->csum_root;
1399again:
1400 spin_lock(&fs_info->fs_roots_radix_lock);
1401 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1402 (unsigned long)location->objectid);
1403 spin_unlock(&fs_info->fs_roots_radix_lock);
1404 if (root)
1405 return root;
1406
1407 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1408 if (IS_ERR(root))
1409 return root;
1410
1411 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1412 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1413 GFP_NOFS);
1414 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1415 ret = -ENOMEM;
1416 goto fail;
1417 }
1418
1419 btrfs_init_free_ino_ctl(root);
1420 mutex_init(&root->fs_commit_mutex);
1421 spin_lock_init(&root->cache_lock);
1422 init_waitqueue_head(&root->cache_wait);
1423
1424 ret = get_anon_bdev(&root->anon_dev);
1425 if (ret)
1426 goto fail;
1427
1428 if (btrfs_root_refs(&root->root_item) == 0) {
1429 ret = -ENOENT;
1430 goto fail;
1431 }
1432
1433 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1434 if (ret < 0)
1435 goto fail;
1436 if (ret == 0)
1437 root->orphan_item_inserted = 1;
1438
1439 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1440 if (ret)
1441 goto fail;
1442
1443 spin_lock(&fs_info->fs_roots_radix_lock);
1444 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1445 (unsigned long)root->root_key.objectid,
1446 root);
1447 if (ret == 0)
1448 root->in_radix = 1;
1449
1450 spin_unlock(&fs_info->fs_roots_radix_lock);
1451 radix_tree_preload_end();
1452 if (ret) {
1453 if (ret == -EEXIST) {
1454 free_fs_root(root);
1455 goto again;
1456 }
1457 goto fail;
1458 }
1459
1460 ret = btrfs_find_dead_roots(fs_info->tree_root,
1461 root->root_key.objectid);
1462 WARN_ON(ret);
1463 return root;
1464fail:
1465 free_fs_root(root);
1466 return ERR_PTR(ret);
1467}
1468
1469static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1470{
1471 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1472 int ret = 0;
1473 struct btrfs_device *device;
1474 struct backing_dev_info *bdi;
1475
1476 rcu_read_lock();
1477 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1478 if (!device->bdev)
1479 continue;
1480 bdi = blk_get_backing_dev_info(device->bdev);
1481 if (bdi && bdi_congested(bdi, bdi_bits)) {
1482 ret = 1;
1483 break;
1484 }
1485 }
1486 rcu_read_unlock();
1487 return ret;
1488}
1489
1490/*
1491 * If this fails, caller must call bdi_destroy() to get rid of the
1492 * bdi again.
1493 */
1494static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1495{
1496 int err;
1497
1498 bdi->capabilities = BDI_CAP_MAP_COPY;
1499 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1500 if (err)
1501 return err;
1502
1503 bdi->ra_pages = default_backing_dev_info.ra_pages;
1504 bdi->congested_fn = btrfs_congested_fn;
1505 bdi->congested_data = info;
1506 return 0;
1507}
1508
1509/*
1510 * called by the kthread helper functions to finally call the bio end_io
1511 * functions. This is where read checksum verification actually happens
1512 */
1513static void end_workqueue_fn(struct btrfs_work *work)
1514{
1515 struct bio *bio;
1516 struct end_io_wq *end_io_wq;
1517 struct btrfs_fs_info *fs_info;
1518 int error;
1519
1520 end_io_wq = container_of(work, struct end_io_wq, work);
1521 bio = end_io_wq->bio;
1522 fs_info = end_io_wq->info;
1523
1524 error = end_io_wq->error;
1525 bio->bi_private = end_io_wq->private;
1526 bio->bi_end_io = end_io_wq->end_io;
1527 kfree(end_io_wq);
1528 bio_endio(bio, error);
1529}
1530
1531static int cleaner_kthread(void *arg)
1532{
1533 struct btrfs_root *root = arg;
1534
1535 do {
1536 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1537
1538 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1539 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1540 btrfs_run_delayed_iputs(root);
1541 btrfs_clean_old_snapshots(root);
1542 mutex_unlock(&root->fs_info->cleaner_mutex);
1543 btrfs_run_defrag_inodes(root->fs_info);
1544 }
1545
1546 if (!try_to_freeze()) {
1547 set_current_state(TASK_INTERRUPTIBLE);
1548 if (!kthread_should_stop())
1549 schedule();
1550 __set_current_state(TASK_RUNNING);
1551 }
1552 } while (!kthread_should_stop());
1553 return 0;
1554}
1555
1556static int transaction_kthread(void *arg)
1557{
1558 struct btrfs_root *root = arg;
1559 struct btrfs_trans_handle *trans;
1560 struct btrfs_transaction *cur;
1561 u64 transid;
1562 unsigned long now;
1563 unsigned long delay;
1564 bool cannot_commit;
1565
1566 do {
1567 cannot_commit = false;
1568 delay = HZ * 30;
1569 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1570 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1571
1572 spin_lock(&root->fs_info->trans_lock);
1573 cur = root->fs_info->running_transaction;
1574 if (!cur) {
1575 spin_unlock(&root->fs_info->trans_lock);
1576 goto sleep;
1577 }
1578
1579 now = get_seconds();
1580 if (!cur->blocked &&
1581 (now < cur->start_time || now - cur->start_time < 30)) {
1582 spin_unlock(&root->fs_info->trans_lock);
1583 delay = HZ * 5;
1584 goto sleep;
1585 }
1586 transid = cur->transid;
1587 spin_unlock(&root->fs_info->trans_lock);
1588
1589 /* If the file system is aborted, this will always fail. */
1590 trans = btrfs_join_transaction(root);
1591 if (IS_ERR(trans)) {
1592 cannot_commit = true;
1593 goto sleep;
1594 }
1595 if (transid == trans->transid) {
1596 btrfs_commit_transaction(trans, root);
1597 } else {
1598 btrfs_end_transaction(trans, root);
1599 }
1600sleep:
1601 wake_up_process(root->fs_info->cleaner_kthread);
1602 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1603
1604 if (!try_to_freeze()) {
1605 set_current_state(TASK_INTERRUPTIBLE);
1606 if (!kthread_should_stop() &&
1607 (!btrfs_transaction_blocked(root->fs_info) ||
1608 cannot_commit))
1609 schedule_timeout(delay);
1610 __set_current_state(TASK_RUNNING);
1611 }
1612 } while (!kthread_should_stop());
1613 return 0;
1614}
1615
1616/*
1617 * this will find the highest generation in the array of
1618 * root backups. The index of the highest array is returned,
1619 * or -1 if we can't find anything.
1620 *
1621 * We check to make sure the array is valid by comparing the
1622 * generation of the latest root in the array with the generation
1623 * in the super block. If they don't match we pitch it.
1624 */
1625static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1626{
1627 u64 cur;
1628 int newest_index = -1;
1629 struct btrfs_root_backup *root_backup;
1630 int i;
1631
1632 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1633 root_backup = info->super_copy->super_roots + i;
1634 cur = btrfs_backup_tree_root_gen(root_backup);
1635 if (cur == newest_gen)
1636 newest_index = i;
1637 }
1638
1639 /* check to see if we actually wrapped around */
1640 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1641 root_backup = info->super_copy->super_roots;
1642 cur = btrfs_backup_tree_root_gen(root_backup);
1643 if (cur == newest_gen)
1644 newest_index = 0;
1645 }
1646 return newest_index;
1647}
1648
1649
1650/*
1651 * find the oldest backup so we know where to store new entries
1652 * in the backup array. This will set the backup_root_index
1653 * field in the fs_info struct
1654 */
1655static void find_oldest_super_backup(struct btrfs_fs_info *info,
1656 u64 newest_gen)
1657{
1658 int newest_index = -1;
1659
1660 newest_index = find_newest_super_backup(info, newest_gen);
1661 /* if there was garbage in there, just move along */
1662 if (newest_index == -1) {
1663 info->backup_root_index = 0;
1664 } else {
1665 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1666 }
1667}
1668
1669/*
1670 * copy all the root pointers into the super backup array.
1671 * this will bump the backup pointer by one when it is
1672 * done
1673 */
1674static void backup_super_roots(struct btrfs_fs_info *info)
1675{
1676 int next_backup;
1677 struct btrfs_root_backup *root_backup;
1678 int last_backup;
1679
1680 next_backup = info->backup_root_index;
1681 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1682 BTRFS_NUM_BACKUP_ROOTS;
1683
1684 /*
1685 * just overwrite the last backup if we're at the same generation
1686 * this happens only at umount
1687 */
1688 root_backup = info->super_for_commit->super_roots + last_backup;
1689 if (btrfs_backup_tree_root_gen(root_backup) ==
1690 btrfs_header_generation(info->tree_root->node))
1691 next_backup = last_backup;
1692
1693 root_backup = info->super_for_commit->super_roots + next_backup;
1694
1695 /*
1696 * make sure all of our padding and empty slots get zero filled
1697 * regardless of which ones we use today
1698 */
1699 memset(root_backup, 0, sizeof(*root_backup));
1700
1701 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1702
1703 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1704 btrfs_set_backup_tree_root_gen(root_backup,
1705 btrfs_header_generation(info->tree_root->node));
1706
1707 btrfs_set_backup_tree_root_level(root_backup,
1708 btrfs_header_level(info->tree_root->node));
1709
1710 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1711 btrfs_set_backup_chunk_root_gen(root_backup,
1712 btrfs_header_generation(info->chunk_root->node));
1713 btrfs_set_backup_chunk_root_level(root_backup,
1714 btrfs_header_level(info->chunk_root->node));
1715
1716 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1717 btrfs_set_backup_extent_root_gen(root_backup,
1718 btrfs_header_generation(info->extent_root->node));
1719 btrfs_set_backup_extent_root_level(root_backup,
1720 btrfs_header_level(info->extent_root->node));
1721
1722 /*
1723 * we might commit during log recovery, which happens before we set
1724 * the fs_root. Make sure it is valid before we fill it in.
1725 */
1726 if (info->fs_root && info->fs_root->node) {
1727 btrfs_set_backup_fs_root(root_backup,
1728 info->fs_root->node->start);
1729 btrfs_set_backup_fs_root_gen(root_backup,
1730 btrfs_header_generation(info->fs_root->node));
1731 btrfs_set_backup_fs_root_level(root_backup,
1732 btrfs_header_level(info->fs_root->node));
1733 }
1734
1735 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1736 btrfs_set_backup_dev_root_gen(root_backup,
1737 btrfs_header_generation(info->dev_root->node));
1738 btrfs_set_backup_dev_root_level(root_backup,
1739 btrfs_header_level(info->dev_root->node));
1740
1741 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1742 btrfs_set_backup_csum_root_gen(root_backup,
1743 btrfs_header_generation(info->csum_root->node));
1744 btrfs_set_backup_csum_root_level(root_backup,
1745 btrfs_header_level(info->csum_root->node));
1746
1747 btrfs_set_backup_total_bytes(root_backup,
1748 btrfs_super_total_bytes(info->super_copy));
1749 btrfs_set_backup_bytes_used(root_backup,
1750 btrfs_super_bytes_used(info->super_copy));
1751 btrfs_set_backup_num_devices(root_backup,
1752 btrfs_super_num_devices(info->super_copy));
1753
1754 /*
1755 * if we don't copy this out to the super_copy, it won't get remembered
1756 * for the next commit
1757 */
1758 memcpy(&info->super_copy->super_roots,
1759 &info->super_for_commit->super_roots,
1760 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1761}
1762
1763/*
1764 * this copies info out of the root backup array and back into
1765 * the in-memory super block. It is meant to help iterate through
1766 * the array, so you send it the number of backups you've already
1767 * tried and the last backup index you used.
1768 *
1769 * this returns -1 when it has tried all the backups
1770 */
1771static noinline int next_root_backup(struct btrfs_fs_info *info,
1772 struct btrfs_super_block *super,
1773 int *num_backups_tried, int *backup_index)
1774{
1775 struct btrfs_root_backup *root_backup;
1776 int newest = *backup_index;
1777
1778 if (*num_backups_tried == 0) {
1779 u64 gen = btrfs_super_generation(super);
1780
1781 newest = find_newest_super_backup(info, gen);
1782 if (newest == -1)
1783 return -1;
1784
1785 *backup_index = newest;
1786 *num_backups_tried = 1;
1787 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1788 /* we've tried all the backups, all done */
1789 return -1;
1790 } else {
1791 /* jump to the next oldest backup */
1792 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1793 BTRFS_NUM_BACKUP_ROOTS;
1794 *backup_index = newest;
1795 *num_backups_tried += 1;
1796 }
1797 root_backup = super->super_roots + newest;
1798
1799 btrfs_set_super_generation(super,
1800 btrfs_backup_tree_root_gen(root_backup));
1801 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1802 btrfs_set_super_root_level(super,
1803 btrfs_backup_tree_root_level(root_backup));
1804 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1805
1806 /*
1807 * fixme: the total bytes and num_devices need to match or we should
1808 * need a fsck
1809 */
1810 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1811 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1812 return 0;
1813}
1814
1815/* helper to cleanup tree roots */
1816static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1817{
1818 free_extent_buffer(info->tree_root->node);
1819 free_extent_buffer(info->tree_root->commit_root);
1820 free_extent_buffer(info->dev_root->node);
1821 free_extent_buffer(info->dev_root->commit_root);
1822 free_extent_buffer(info->extent_root->node);
1823 free_extent_buffer(info->extent_root->commit_root);
1824 free_extent_buffer(info->csum_root->node);
1825 free_extent_buffer(info->csum_root->commit_root);
1826
1827 info->tree_root->node = NULL;
1828 info->tree_root->commit_root = NULL;
1829 info->dev_root->node = NULL;
1830 info->dev_root->commit_root = NULL;
1831 info->extent_root->node = NULL;
1832 info->extent_root->commit_root = NULL;
1833 info->csum_root->node = NULL;
1834 info->csum_root->commit_root = NULL;
1835
1836 if (chunk_root) {
1837 free_extent_buffer(info->chunk_root->node);
1838 free_extent_buffer(info->chunk_root->commit_root);
1839 info->chunk_root->node = NULL;
1840 info->chunk_root->commit_root = NULL;
1841 }
1842}
1843
1844
1845int open_ctree(struct super_block *sb,
1846 struct btrfs_fs_devices *fs_devices,
1847 char *options)
1848{
1849 u32 sectorsize;
1850 u32 nodesize;
1851 u32 leafsize;
1852 u32 blocksize;
1853 u32 stripesize;
1854 u64 generation;
1855 u64 features;
1856 struct btrfs_key location;
1857 struct buffer_head *bh;
1858 struct btrfs_super_block *disk_super;
1859 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1860 struct btrfs_root *tree_root;
1861 struct btrfs_root *extent_root;
1862 struct btrfs_root *csum_root;
1863 struct btrfs_root *chunk_root;
1864 struct btrfs_root *dev_root;
1865 struct btrfs_root *log_tree_root;
1866 int ret;
1867 int err = -EINVAL;
1868 int num_backups_tried = 0;
1869 int backup_index = 0;
1870
1871 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1872 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1873 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1874 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1875 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1876
1877 if (!tree_root || !extent_root || !csum_root ||
1878 !chunk_root || !dev_root) {
1879 err = -ENOMEM;
1880 goto fail;
1881 }
1882
1883 ret = init_srcu_struct(&fs_info->subvol_srcu);
1884 if (ret) {
1885 err = ret;
1886 goto fail;
1887 }
1888
1889 ret = setup_bdi(fs_info, &fs_info->bdi);
1890 if (ret) {
1891 err = ret;
1892 goto fail_srcu;
1893 }
1894
1895 fs_info->btree_inode = new_inode(sb);
1896 if (!fs_info->btree_inode) {
1897 err = -ENOMEM;
1898 goto fail_bdi;
1899 }
1900
1901 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1902
1903 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1904 INIT_LIST_HEAD(&fs_info->trans_list);
1905 INIT_LIST_HEAD(&fs_info->dead_roots);
1906 INIT_LIST_HEAD(&fs_info->delayed_iputs);
1907 INIT_LIST_HEAD(&fs_info->hashers);
1908 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1909 INIT_LIST_HEAD(&fs_info->ordered_operations);
1910 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1911 spin_lock_init(&fs_info->delalloc_lock);
1912 spin_lock_init(&fs_info->trans_lock);
1913 spin_lock_init(&fs_info->ref_cache_lock);
1914 spin_lock_init(&fs_info->fs_roots_radix_lock);
1915 spin_lock_init(&fs_info->delayed_iput_lock);
1916 spin_lock_init(&fs_info->defrag_inodes_lock);
1917 spin_lock_init(&fs_info->free_chunk_lock);
1918 spin_lock_init(&fs_info->tree_mod_seq_lock);
1919 rwlock_init(&fs_info->tree_mod_log_lock);
1920 mutex_init(&fs_info->reloc_mutex);
1921
1922 init_completion(&fs_info->kobj_unregister);
1923 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1924 INIT_LIST_HEAD(&fs_info->space_info);
1925 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
1926 btrfs_mapping_init(&fs_info->mapping_tree);
1927 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1928 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1929 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1930 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1931 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1932 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1933 atomic_set(&fs_info->nr_async_submits, 0);
1934 atomic_set(&fs_info->async_delalloc_pages, 0);
1935 atomic_set(&fs_info->async_submit_draining, 0);
1936 atomic_set(&fs_info->nr_async_bios, 0);
1937 atomic_set(&fs_info->defrag_running, 0);
1938 atomic_set(&fs_info->tree_mod_seq, 0);
1939 fs_info->sb = sb;
1940 fs_info->max_inline = 8192 * 1024;
1941 fs_info->metadata_ratio = 0;
1942 fs_info->defrag_inodes = RB_ROOT;
1943 fs_info->trans_no_join = 0;
1944 fs_info->free_chunk_space = 0;
1945 fs_info->tree_mod_log = RB_ROOT;
1946
1947 /* readahead state */
1948 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1949 spin_lock_init(&fs_info->reada_lock);
1950
1951 fs_info->thread_pool_size = min_t(unsigned long,
1952 num_online_cpus() + 2, 8);
1953
1954 INIT_LIST_HEAD(&fs_info->ordered_extents);
1955 spin_lock_init(&fs_info->ordered_extent_lock);
1956 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1957 GFP_NOFS);
1958 if (!fs_info->delayed_root) {
1959 err = -ENOMEM;
1960 goto fail_iput;
1961 }
1962 btrfs_init_delayed_root(fs_info->delayed_root);
1963
1964 mutex_init(&fs_info->scrub_lock);
1965 atomic_set(&fs_info->scrubs_running, 0);
1966 atomic_set(&fs_info->scrub_pause_req, 0);
1967 atomic_set(&fs_info->scrubs_paused, 0);
1968 atomic_set(&fs_info->scrub_cancel_req, 0);
1969 init_waitqueue_head(&fs_info->scrub_pause_wait);
1970 init_rwsem(&fs_info->scrub_super_lock);
1971 fs_info->scrub_workers_refcnt = 0;
1972#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1973 fs_info->check_integrity_print_mask = 0;
1974#endif
1975
1976 spin_lock_init(&fs_info->balance_lock);
1977 mutex_init(&fs_info->balance_mutex);
1978 atomic_set(&fs_info->balance_running, 0);
1979 atomic_set(&fs_info->balance_pause_req, 0);
1980 atomic_set(&fs_info->balance_cancel_req, 0);
1981 fs_info->balance_ctl = NULL;
1982 init_waitqueue_head(&fs_info->balance_wait_q);
1983
1984 sb->s_blocksize = 4096;
1985 sb->s_blocksize_bits = blksize_bits(4096);
1986 sb->s_bdi = &fs_info->bdi;
1987
1988 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1989 set_nlink(fs_info->btree_inode, 1);
1990 /*
1991 * we set the i_size on the btree inode to the max possible int.
1992 * the real end of the address space is determined by all of
1993 * the devices in the system
1994 */
1995 fs_info->btree_inode->i_size = OFFSET_MAX;
1996 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1997 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1998
1999 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2000 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2001 fs_info->btree_inode->i_mapping);
2002 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2003 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2004
2005 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2006
2007 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2008 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2009 sizeof(struct btrfs_key));
2010 set_bit(BTRFS_INODE_DUMMY,
2011 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2012 insert_inode_hash(fs_info->btree_inode);
2013
2014 spin_lock_init(&fs_info->block_group_cache_lock);
2015 fs_info->block_group_cache_tree = RB_ROOT;
2016
2017 extent_io_tree_init(&fs_info->freed_extents[0],
2018 fs_info->btree_inode->i_mapping);
2019 extent_io_tree_init(&fs_info->freed_extents[1],
2020 fs_info->btree_inode->i_mapping);
2021 fs_info->pinned_extents = &fs_info->freed_extents[0];
2022 fs_info->do_barriers = 1;
2023
2024
2025 mutex_init(&fs_info->ordered_operations_mutex);
2026 mutex_init(&fs_info->tree_log_mutex);
2027 mutex_init(&fs_info->chunk_mutex);
2028 mutex_init(&fs_info->transaction_kthread_mutex);
2029 mutex_init(&fs_info->cleaner_mutex);
2030 mutex_init(&fs_info->volume_mutex);
2031 init_rwsem(&fs_info->extent_commit_sem);
2032 init_rwsem(&fs_info->cleanup_work_sem);
2033 init_rwsem(&fs_info->subvol_sem);
2034
2035 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2036 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2037
2038 init_waitqueue_head(&fs_info->transaction_throttle);
2039 init_waitqueue_head(&fs_info->transaction_wait);
2040 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2041 init_waitqueue_head(&fs_info->async_submit_wait);
2042
2043 __setup_root(4096, 4096, 4096, 4096, tree_root,
2044 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2045
2046 invalidate_bdev(fs_devices->latest_bdev);
2047 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2048 if (!bh) {
2049 err = -EINVAL;
2050 goto fail_alloc;
2051 }
2052
2053 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2054 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2055 sizeof(*fs_info->super_for_commit));
2056 brelse(bh);
2057
2058 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2059
2060 disk_super = fs_info->super_copy;
2061 if (!btrfs_super_root(disk_super))
2062 goto fail_alloc;
2063
2064 /* check FS state, whether FS is broken. */
2065 fs_info->fs_state |= btrfs_super_flags(disk_super);
2066
2067 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2068 if (ret) {
2069 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2070 err = ret;
2071 goto fail_alloc;
2072 }
2073
2074 /*
2075 * run through our array of backup supers and setup
2076 * our ring pointer to the oldest one
2077 */
2078 generation = btrfs_super_generation(disk_super);
2079 find_oldest_super_backup(fs_info, generation);
2080
2081 /*
2082 * In the long term, we'll store the compression type in the super
2083 * block, and it'll be used for per file compression control.
2084 */
2085 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2086
2087 ret = btrfs_parse_options(tree_root, options);
2088 if (ret) {
2089 err = ret;
2090 goto fail_alloc;
2091 }
2092
2093 features = btrfs_super_incompat_flags(disk_super) &
2094 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2095 if (features) {
2096 printk(KERN_ERR "BTRFS: couldn't mount because of "
2097 "unsupported optional features (%Lx).\n",
2098 (unsigned long long)features);
2099 err = -EINVAL;
2100 goto fail_alloc;
2101 }
2102
2103 if (btrfs_super_leafsize(disk_super) !=
2104 btrfs_super_nodesize(disk_super)) {
2105 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2106 "blocksizes don't match. node %d leaf %d\n",
2107 btrfs_super_nodesize(disk_super),
2108 btrfs_super_leafsize(disk_super));
2109 err = -EINVAL;
2110 goto fail_alloc;
2111 }
2112 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2113 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2114 "blocksize (%d) was too large\n",
2115 btrfs_super_leafsize(disk_super));
2116 err = -EINVAL;
2117 goto fail_alloc;
2118 }
2119
2120 features = btrfs_super_incompat_flags(disk_super);
2121 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2122 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2123 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2124
2125 /*
2126 * flag our filesystem as having big metadata blocks if
2127 * they are bigger than the page size
2128 */
2129 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2130 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2131 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2132 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2133 }
2134
2135 nodesize = btrfs_super_nodesize(disk_super);
2136 leafsize = btrfs_super_leafsize(disk_super);
2137 sectorsize = btrfs_super_sectorsize(disk_super);
2138 stripesize = btrfs_super_stripesize(disk_super);
2139
2140 /*
2141 * mixed block groups end up with duplicate but slightly offset
2142 * extent buffers for the same range. It leads to corruptions
2143 */
2144 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2145 (sectorsize != leafsize)) {
2146 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2147 "are not allowed for mixed block groups on %s\n",
2148 sb->s_id);
2149 goto fail_alloc;
2150 }
2151
2152 btrfs_set_super_incompat_flags(disk_super, features);
2153
2154 features = btrfs_super_compat_ro_flags(disk_super) &
2155 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2156 if (!(sb->s_flags & MS_RDONLY) && features) {
2157 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2158 "unsupported option features (%Lx).\n",
2159 (unsigned long long)features);
2160 err = -EINVAL;
2161 goto fail_alloc;
2162 }
2163
2164 btrfs_init_workers(&fs_info->generic_worker,
2165 "genwork", 1, NULL);
2166
2167 btrfs_init_workers(&fs_info->workers, "worker",
2168 fs_info->thread_pool_size,
2169 &fs_info->generic_worker);
2170
2171 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2172 fs_info->thread_pool_size,
2173 &fs_info->generic_worker);
2174
2175 btrfs_init_workers(&fs_info->submit_workers, "submit",
2176 min_t(u64, fs_devices->num_devices,
2177 fs_info->thread_pool_size),
2178 &fs_info->generic_worker);
2179
2180 btrfs_init_workers(&fs_info->caching_workers, "cache",
2181 2, &fs_info->generic_worker);
2182
2183 /* a higher idle thresh on the submit workers makes it much more
2184 * likely that bios will be send down in a sane order to the
2185 * devices
2186 */
2187 fs_info->submit_workers.idle_thresh = 64;
2188
2189 fs_info->workers.idle_thresh = 16;
2190 fs_info->workers.ordered = 1;
2191
2192 fs_info->delalloc_workers.idle_thresh = 2;
2193 fs_info->delalloc_workers.ordered = 1;
2194
2195 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2196 &fs_info->generic_worker);
2197 btrfs_init_workers(&fs_info->endio_workers, "endio",
2198 fs_info->thread_pool_size,
2199 &fs_info->generic_worker);
2200 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2201 fs_info->thread_pool_size,
2202 &fs_info->generic_worker);
2203 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2204 "endio-meta-write", fs_info->thread_pool_size,
2205 &fs_info->generic_worker);
2206 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2207 fs_info->thread_pool_size,
2208 &fs_info->generic_worker);
2209 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2210 1, &fs_info->generic_worker);
2211 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2212 fs_info->thread_pool_size,
2213 &fs_info->generic_worker);
2214 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2215 fs_info->thread_pool_size,
2216 &fs_info->generic_worker);
2217
2218 /*
2219 * endios are largely parallel and should have a very
2220 * low idle thresh
2221 */
2222 fs_info->endio_workers.idle_thresh = 4;
2223 fs_info->endio_meta_workers.idle_thresh = 4;
2224
2225 fs_info->endio_write_workers.idle_thresh = 2;
2226 fs_info->endio_meta_write_workers.idle_thresh = 2;
2227 fs_info->readahead_workers.idle_thresh = 2;
2228
2229 /*
2230 * btrfs_start_workers can really only fail because of ENOMEM so just
2231 * return -ENOMEM if any of these fail.
2232 */
2233 ret = btrfs_start_workers(&fs_info->workers);
2234 ret |= btrfs_start_workers(&fs_info->generic_worker);
2235 ret |= btrfs_start_workers(&fs_info->submit_workers);
2236 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2237 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2238 ret |= btrfs_start_workers(&fs_info->endio_workers);
2239 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2240 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2241 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2242 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2243 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2244 ret |= btrfs_start_workers(&fs_info->caching_workers);
2245 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2246 if (ret) {
2247 ret = -ENOMEM;
2248 goto fail_sb_buffer;
2249 }
2250
2251 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2252 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2253 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2254
2255 tree_root->nodesize = nodesize;
2256 tree_root->leafsize = leafsize;
2257 tree_root->sectorsize = sectorsize;
2258 tree_root->stripesize = stripesize;
2259
2260 sb->s_blocksize = sectorsize;
2261 sb->s_blocksize_bits = blksize_bits(sectorsize);
2262
2263 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2264 sizeof(disk_super->magic))) {
2265 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2266 goto fail_sb_buffer;
2267 }
2268
2269 if (sectorsize != PAGE_SIZE) {
2270 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2271 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2272 goto fail_sb_buffer;
2273 }
2274
2275 mutex_lock(&fs_info->chunk_mutex);
2276 ret = btrfs_read_sys_array(tree_root);
2277 mutex_unlock(&fs_info->chunk_mutex);
2278 if (ret) {
2279 printk(KERN_WARNING "btrfs: failed to read the system "
2280 "array on %s\n", sb->s_id);
2281 goto fail_sb_buffer;
2282 }
2283
2284 blocksize = btrfs_level_size(tree_root,
2285 btrfs_super_chunk_root_level(disk_super));
2286 generation = btrfs_super_chunk_root_generation(disk_super);
2287
2288 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2289 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2290
2291 chunk_root->node = read_tree_block(chunk_root,
2292 btrfs_super_chunk_root(disk_super),
2293 blocksize, generation);
2294 BUG_ON(!chunk_root->node); /* -ENOMEM */
2295 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2296 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2297 sb->s_id);
2298 goto fail_tree_roots;
2299 }
2300 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2301 chunk_root->commit_root = btrfs_root_node(chunk_root);
2302
2303 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2304 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2305 BTRFS_UUID_SIZE);
2306
2307 ret = btrfs_read_chunk_tree(chunk_root);
2308 if (ret) {
2309 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2310 sb->s_id);
2311 goto fail_tree_roots;
2312 }
2313
2314 btrfs_close_extra_devices(fs_devices);
2315
2316 if (!fs_devices->latest_bdev) {
2317 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2318 sb->s_id);
2319 goto fail_tree_roots;
2320 }
2321
2322retry_root_backup:
2323 blocksize = btrfs_level_size(tree_root,
2324 btrfs_super_root_level(disk_super));
2325 generation = btrfs_super_generation(disk_super);
2326
2327 tree_root->node = read_tree_block(tree_root,
2328 btrfs_super_root(disk_super),
2329 blocksize, generation);
2330 if (!tree_root->node ||
2331 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2332 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2333 sb->s_id);
2334
2335 goto recovery_tree_root;
2336 }
2337
2338 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2339 tree_root->commit_root = btrfs_root_node(tree_root);
2340
2341 ret = find_and_setup_root(tree_root, fs_info,
2342 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2343 if (ret)
2344 goto recovery_tree_root;
2345 extent_root->track_dirty = 1;
2346
2347 ret = find_and_setup_root(tree_root, fs_info,
2348 BTRFS_DEV_TREE_OBJECTID, dev_root);
2349 if (ret)
2350 goto recovery_tree_root;
2351 dev_root->track_dirty = 1;
2352
2353 ret = find_and_setup_root(tree_root, fs_info,
2354 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2355 if (ret)
2356 goto recovery_tree_root;
2357 csum_root->track_dirty = 1;
2358
2359 fs_info->generation = generation;
2360 fs_info->last_trans_committed = generation;
2361
2362 ret = btrfs_recover_balance(fs_info);
2363 if (ret) {
2364 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2365 goto fail_block_groups;
2366 }
2367
2368 ret = btrfs_init_dev_stats(fs_info);
2369 if (ret) {
2370 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2371 ret);
2372 goto fail_block_groups;
2373 }
2374
2375 ret = btrfs_init_space_info(fs_info);
2376 if (ret) {
2377 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2378 goto fail_block_groups;
2379 }
2380
2381 ret = btrfs_read_block_groups(extent_root);
2382 if (ret) {
2383 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2384 goto fail_block_groups;
2385 }
2386
2387 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2388 "btrfs-cleaner");
2389 if (IS_ERR(fs_info->cleaner_kthread))
2390 goto fail_block_groups;
2391
2392 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2393 tree_root,
2394 "btrfs-transaction");
2395 if (IS_ERR(fs_info->transaction_kthread))
2396 goto fail_cleaner;
2397
2398 if (!btrfs_test_opt(tree_root, SSD) &&
2399 !btrfs_test_opt(tree_root, NOSSD) &&
2400 !fs_info->fs_devices->rotating) {
2401 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2402 "mode\n");
2403 btrfs_set_opt(fs_info->mount_opt, SSD);
2404 }
2405
2406#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2407 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2408 ret = btrfsic_mount(tree_root, fs_devices,
2409 btrfs_test_opt(tree_root,
2410 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2411 1 : 0,
2412 fs_info->check_integrity_print_mask);
2413 if (ret)
2414 printk(KERN_WARNING "btrfs: failed to initialize"
2415 " integrity check module %s\n", sb->s_id);
2416 }
2417#endif
2418
2419 /* do not make disk changes in broken FS */
2420 if (btrfs_super_log_root(disk_super) != 0 &&
2421 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2422 u64 bytenr = btrfs_super_log_root(disk_super);
2423
2424 if (fs_devices->rw_devices == 0) {
2425 printk(KERN_WARNING "Btrfs log replay required "
2426 "on RO media\n");
2427 err = -EIO;
2428 goto fail_trans_kthread;
2429 }
2430 blocksize =
2431 btrfs_level_size(tree_root,
2432 btrfs_super_log_root_level(disk_super));
2433
2434 log_tree_root = btrfs_alloc_root(fs_info);
2435 if (!log_tree_root) {
2436 err = -ENOMEM;
2437 goto fail_trans_kthread;
2438 }
2439
2440 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2441 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2442
2443 log_tree_root->node = read_tree_block(tree_root, bytenr,
2444 blocksize,
2445 generation + 1);
2446 /* returns with log_tree_root freed on success */
2447 ret = btrfs_recover_log_trees(log_tree_root);
2448 if (ret) {
2449 btrfs_error(tree_root->fs_info, ret,
2450 "Failed to recover log tree");
2451 free_extent_buffer(log_tree_root->node);
2452 kfree(log_tree_root);
2453 goto fail_trans_kthread;
2454 }
2455
2456 if (sb->s_flags & MS_RDONLY) {
2457 ret = btrfs_commit_super(tree_root);
2458 if (ret)
2459 goto fail_trans_kthread;
2460 }
2461 }
2462
2463 ret = btrfs_find_orphan_roots(tree_root);
2464 if (ret)
2465 goto fail_trans_kthread;
2466
2467 if (!(sb->s_flags & MS_RDONLY)) {
2468 ret = btrfs_cleanup_fs_roots(fs_info);
2469 if (ret) {
2470 }
2471
2472 ret = btrfs_recover_relocation(tree_root);
2473 if (ret < 0) {
2474 printk(KERN_WARNING
2475 "btrfs: failed to recover relocation\n");
2476 err = -EINVAL;
2477 goto fail_trans_kthread;
2478 }
2479 }
2480
2481 location.objectid = BTRFS_FS_TREE_OBJECTID;
2482 location.type = BTRFS_ROOT_ITEM_KEY;
2483 location.offset = (u64)-1;
2484
2485 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2486 if (!fs_info->fs_root)
2487 goto fail_trans_kthread;
2488 if (IS_ERR(fs_info->fs_root)) {
2489 err = PTR_ERR(fs_info->fs_root);
2490 goto fail_trans_kthread;
2491 }
2492
2493 if (sb->s_flags & MS_RDONLY)
2494 return 0;
2495
2496 down_read(&fs_info->cleanup_work_sem);
2497 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2498 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2499 up_read(&fs_info->cleanup_work_sem);
2500 close_ctree(tree_root);
2501 return ret;
2502 }
2503 up_read(&fs_info->cleanup_work_sem);
2504
2505 ret = btrfs_resume_balance_async(fs_info);
2506 if (ret) {
2507 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2508 close_ctree(tree_root);
2509 return ret;
2510 }
2511
2512 return 0;
2513
2514fail_trans_kthread:
2515 kthread_stop(fs_info->transaction_kthread);
2516fail_cleaner:
2517 kthread_stop(fs_info->cleaner_kthread);
2518
2519 /*
2520 * make sure we're done with the btree inode before we stop our
2521 * kthreads
2522 */
2523 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2524 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2525
2526fail_block_groups:
2527 btrfs_free_block_groups(fs_info);
2528
2529fail_tree_roots:
2530 free_root_pointers(fs_info, 1);
2531
2532fail_sb_buffer:
2533 btrfs_stop_workers(&fs_info->generic_worker);
2534 btrfs_stop_workers(&fs_info->readahead_workers);
2535 btrfs_stop_workers(&fs_info->fixup_workers);
2536 btrfs_stop_workers(&fs_info->delalloc_workers);
2537 btrfs_stop_workers(&fs_info->workers);
2538 btrfs_stop_workers(&fs_info->endio_workers);
2539 btrfs_stop_workers(&fs_info->endio_meta_workers);
2540 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2541 btrfs_stop_workers(&fs_info->endio_write_workers);
2542 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2543 btrfs_stop_workers(&fs_info->submit_workers);
2544 btrfs_stop_workers(&fs_info->delayed_workers);
2545 btrfs_stop_workers(&fs_info->caching_workers);
2546fail_alloc:
2547fail_iput:
2548 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2549
2550 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2551 iput(fs_info->btree_inode);
2552fail_bdi:
2553 bdi_destroy(&fs_info->bdi);
2554fail_srcu:
2555 cleanup_srcu_struct(&fs_info->subvol_srcu);
2556fail:
2557 btrfs_close_devices(fs_info->fs_devices);
2558 return err;
2559
2560recovery_tree_root:
2561 if (!btrfs_test_opt(tree_root, RECOVERY))
2562 goto fail_tree_roots;
2563
2564 free_root_pointers(fs_info, 0);
2565
2566 /* don't use the log in recovery mode, it won't be valid */
2567 btrfs_set_super_log_root(disk_super, 0);
2568
2569 /* we can't trust the free space cache either */
2570 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2571
2572 ret = next_root_backup(fs_info, fs_info->super_copy,
2573 &num_backups_tried, &backup_index);
2574 if (ret == -1)
2575 goto fail_block_groups;
2576 goto retry_root_backup;
2577}
2578
2579static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2580{
2581 if (uptodate) {
2582 set_buffer_uptodate(bh);
2583 } else {
2584 struct btrfs_device *device = (struct btrfs_device *)
2585 bh->b_private;
2586
2587 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2588 "I/O error on %s\n",
2589 rcu_str_deref(device->name));
2590 /* note, we dont' set_buffer_write_io_error because we have
2591 * our own ways of dealing with the IO errors
2592 */
2593 clear_buffer_uptodate(bh);
2594 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2595 }
2596 unlock_buffer(bh);
2597 put_bh(bh);
2598}
2599
2600struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2601{
2602 struct buffer_head *bh;
2603 struct buffer_head *latest = NULL;
2604 struct btrfs_super_block *super;
2605 int i;
2606 u64 transid = 0;
2607 u64 bytenr;
2608
2609 /* we would like to check all the supers, but that would make
2610 * a btrfs mount succeed after a mkfs from a different FS.
2611 * So, we need to add a special mount option to scan for
2612 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2613 */
2614 for (i = 0; i < 1; i++) {
2615 bytenr = btrfs_sb_offset(i);
2616 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2617 break;
2618 bh = __bread(bdev, bytenr / 4096, 4096);
2619 if (!bh)
2620 continue;
2621
2622 super = (struct btrfs_super_block *)bh->b_data;
2623 if (btrfs_super_bytenr(super) != bytenr ||
2624 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2625 sizeof(super->magic))) {
2626 brelse(bh);
2627 continue;
2628 }
2629
2630 if (!latest || btrfs_super_generation(super) > transid) {
2631 brelse(latest);
2632 latest = bh;
2633 transid = btrfs_super_generation(super);
2634 } else {
2635 brelse(bh);
2636 }
2637 }
2638 return latest;
2639}
2640
2641/*
2642 * this should be called twice, once with wait == 0 and
2643 * once with wait == 1. When wait == 0 is done, all the buffer heads
2644 * we write are pinned.
2645 *
2646 * They are released when wait == 1 is done.
2647 * max_mirrors must be the same for both runs, and it indicates how
2648 * many supers on this one device should be written.
2649 *
2650 * max_mirrors == 0 means to write them all.
2651 */
2652static int write_dev_supers(struct btrfs_device *device,
2653 struct btrfs_super_block *sb,
2654 int do_barriers, int wait, int max_mirrors)
2655{
2656 struct buffer_head *bh;
2657 int i;
2658 int ret;
2659 int errors = 0;
2660 u32 crc;
2661 u64 bytenr;
2662
2663 if (max_mirrors == 0)
2664 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2665
2666 for (i = 0; i < max_mirrors; i++) {
2667 bytenr = btrfs_sb_offset(i);
2668 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2669 break;
2670
2671 if (wait) {
2672 bh = __find_get_block(device->bdev, bytenr / 4096,
2673 BTRFS_SUPER_INFO_SIZE);
2674 BUG_ON(!bh);
2675 wait_on_buffer(bh);
2676 if (!buffer_uptodate(bh))
2677 errors++;
2678
2679 /* drop our reference */
2680 brelse(bh);
2681
2682 /* drop the reference from the wait == 0 run */
2683 brelse(bh);
2684 continue;
2685 } else {
2686 btrfs_set_super_bytenr(sb, bytenr);
2687
2688 crc = ~(u32)0;
2689 crc = btrfs_csum_data(NULL, (char *)sb +
2690 BTRFS_CSUM_SIZE, crc,
2691 BTRFS_SUPER_INFO_SIZE -
2692 BTRFS_CSUM_SIZE);
2693 btrfs_csum_final(crc, sb->csum);
2694
2695 /*
2696 * one reference for us, and we leave it for the
2697 * caller
2698 */
2699 bh = __getblk(device->bdev, bytenr / 4096,
2700 BTRFS_SUPER_INFO_SIZE);
2701 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2702
2703 /* one reference for submit_bh */
2704 get_bh(bh);
2705
2706 set_buffer_uptodate(bh);
2707 lock_buffer(bh);
2708 bh->b_end_io = btrfs_end_buffer_write_sync;
2709 bh->b_private = device;
2710 }
2711
2712 /*
2713 * we fua the first super. The others we allow
2714 * to go down lazy.
2715 */
2716 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2717 if (ret)
2718 errors++;
2719 }
2720 return errors < i ? 0 : -1;
2721}
2722
2723/*
2724 * endio for the write_dev_flush, this will wake anyone waiting
2725 * for the barrier when it is done
2726 */
2727static void btrfs_end_empty_barrier(struct bio *bio, int err)
2728{
2729 if (err) {
2730 if (err == -EOPNOTSUPP)
2731 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2732 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2733 }
2734 if (bio->bi_private)
2735 complete(bio->bi_private);
2736 bio_put(bio);
2737}
2738
2739/*
2740 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2741 * sent down. With wait == 1, it waits for the previous flush.
2742 *
2743 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2744 * capable
2745 */
2746static int write_dev_flush(struct btrfs_device *device, int wait)
2747{
2748 struct bio *bio;
2749 int ret = 0;
2750
2751 if (device->nobarriers)
2752 return 0;
2753
2754 if (wait) {
2755 bio = device->flush_bio;
2756 if (!bio)
2757 return 0;
2758
2759 wait_for_completion(&device->flush_wait);
2760
2761 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2762 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2763 rcu_str_deref(device->name));
2764 device->nobarriers = 1;
2765 }
2766 if (!bio_flagged(bio, BIO_UPTODATE)) {
2767 ret = -EIO;
2768 if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2769 btrfs_dev_stat_inc_and_print(device,
2770 BTRFS_DEV_STAT_FLUSH_ERRS);
2771 }
2772
2773 /* drop the reference from the wait == 0 run */
2774 bio_put(bio);
2775 device->flush_bio = NULL;
2776
2777 return ret;
2778 }
2779
2780 /*
2781 * one reference for us, and we leave it for the
2782 * caller
2783 */
2784 device->flush_bio = NULL;
2785 bio = bio_alloc(GFP_NOFS, 0);
2786 if (!bio)
2787 return -ENOMEM;
2788
2789 bio->bi_end_io = btrfs_end_empty_barrier;
2790 bio->bi_bdev = device->bdev;
2791 init_completion(&device->flush_wait);
2792 bio->bi_private = &device->flush_wait;
2793 device->flush_bio = bio;
2794
2795 bio_get(bio);
2796 btrfsic_submit_bio(WRITE_FLUSH, bio);
2797
2798 return 0;
2799}
2800
2801/*
2802 * send an empty flush down to each device in parallel,
2803 * then wait for them
2804 */
2805static int barrier_all_devices(struct btrfs_fs_info *info)
2806{
2807 struct list_head *head;
2808 struct btrfs_device *dev;
2809 int errors = 0;
2810 int ret;
2811
2812 /* send down all the barriers */
2813 head = &info->fs_devices->devices;
2814 list_for_each_entry_rcu(dev, head, dev_list) {
2815 if (!dev->bdev) {
2816 errors++;
2817 continue;
2818 }
2819 if (!dev->in_fs_metadata || !dev->writeable)
2820 continue;
2821
2822 ret = write_dev_flush(dev, 0);
2823 if (ret)
2824 errors++;
2825 }
2826
2827 /* wait for all the barriers */
2828 list_for_each_entry_rcu(dev, head, dev_list) {
2829 if (!dev->bdev) {
2830 errors++;
2831 continue;
2832 }
2833 if (!dev->in_fs_metadata || !dev->writeable)
2834 continue;
2835
2836 ret = write_dev_flush(dev, 1);
2837 if (ret)
2838 errors++;
2839 }
2840 if (errors)
2841 return -EIO;
2842 return 0;
2843}
2844
2845int write_all_supers(struct btrfs_root *root, int max_mirrors)
2846{
2847 struct list_head *head;
2848 struct btrfs_device *dev;
2849 struct btrfs_super_block *sb;
2850 struct btrfs_dev_item *dev_item;
2851 int ret;
2852 int do_barriers;
2853 int max_errors;
2854 int total_errors = 0;
2855 u64 flags;
2856
2857 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2858 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2859 backup_super_roots(root->fs_info);
2860
2861 sb = root->fs_info->super_for_commit;
2862 dev_item = &sb->dev_item;
2863
2864 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2865 head = &root->fs_info->fs_devices->devices;
2866
2867 if (do_barriers)
2868 barrier_all_devices(root->fs_info);
2869
2870 list_for_each_entry_rcu(dev, head, dev_list) {
2871 if (!dev->bdev) {
2872 total_errors++;
2873 continue;
2874 }
2875 if (!dev->in_fs_metadata || !dev->writeable)
2876 continue;
2877
2878 btrfs_set_stack_device_generation(dev_item, 0);
2879 btrfs_set_stack_device_type(dev_item, dev->type);
2880 btrfs_set_stack_device_id(dev_item, dev->devid);
2881 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2882 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2883 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2884 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2885 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2886 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2887 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2888
2889 flags = btrfs_super_flags(sb);
2890 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2891
2892 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2893 if (ret)
2894 total_errors++;
2895 }
2896 if (total_errors > max_errors) {
2897 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2898 total_errors);
2899
2900 /* This shouldn't happen. FUA is masked off if unsupported */
2901 BUG();
2902 }
2903
2904 total_errors = 0;
2905 list_for_each_entry_rcu(dev, head, dev_list) {
2906 if (!dev->bdev)
2907 continue;
2908 if (!dev->in_fs_metadata || !dev->writeable)
2909 continue;
2910
2911 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2912 if (ret)
2913 total_errors++;
2914 }
2915 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2916 if (total_errors > max_errors) {
2917 btrfs_error(root->fs_info, -EIO,
2918 "%d errors while writing supers", total_errors);
2919 return -EIO;
2920 }
2921 return 0;
2922}
2923
2924int write_ctree_super(struct btrfs_trans_handle *trans,
2925 struct btrfs_root *root, int max_mirrors)
2926{
2927 int ret;
2928
2929 ret = write_all_supers(root, max_mirrors);
2930 return ret;
2931}
2932
2933void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2934{
2935 spin_lock(&fs_info->fs_roots_radix_lock);
2936 radix_tree_delete(&fs_info->fs_roots_radix,
2937 (unsigned long)root->root_key.objectid);
2938 spin_unlock(&fs_info->fs_roots_radix_lock);
2939
2940 if (btrfs_root_refs(&root->root_item) == 0)
2941 synchronize_srcu(&fs_info->subvol_srcu);
2942
2943 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2944 __btrfs_remove_free_space_cache(root->free_ino_ctl);
2945 free_fs_root(root);
2946}
2947
2948static void free_fs_root(struct btrfs_root *root)
2949{
2950 iput(root->cache_inode);
2951 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2952 if (root->anon_dev)
2953 free_anon_bdev(root->anon_dev);
2954 free_extent_buffer(root->node);
2955 free_extent_buffer(root->commit_root);
2956 kfree(root->free_ino_ctl);
2957 kfree(root->free_ino_pinned);
2958 kfree(root->name);
2959 kfree(root);
2960}
2961
2962static void del_fs_roots(struct btrfs_fs_info *fs_info)
2963{
2964 int ret;
2965 struct btrfs_root *gang[8];
2966 int i;
2967
2968 while (!list_empty(&fs_info->dead_roots)) {
2969 gang[0] = list_entry(fs_info->dead_roots.next,
2970 struct btrfs_root, root_list);
2971 list_del(&gang[0]->root_list);
2972
2973 if (gang[0]->in_radix) {
2974 btrfs_free_fs_root(fs_info, gang[0]);
2975 } else {
2976 free_extent_buffer(gang[0]->node);
2977 free_extent_buffer(gang[0]->commit_root);
2978 kfree(gang[0]);
2979 }
2980 }
2981
2982 while (1) {
2983 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2984 (void **)gang, 0,
2985 ARRAY_SIZE(gang));
2986 if (!ret)
2987 break;
2988 for (i = 0; i < ret; i++)
2989 btrfs_free_fs_root(fs_info, gang[i]);
2990 }
2991}
2992
2993int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2994{
2995 u64 root_objectid = 0;
2996 struct btrfs_root *gang[8];
2997 int i;
2998 int ret;
2999
3000 while (1) {
3001 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3002 (void **)gang, root_objectid,
3003 ARRAY_SIZE(gang));
3004 if (!ret)
3005 break;
3006
3007 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3008 for (i = 0; i < ret; i++) {
3009 int err;
3010
3011 root_objectid = gang[i]->root_key.objectid;
3012 err = btrfs_orphan_cleanup(gang[i]);
3013 if (err)
3014 return err;
3015 }
3016 root_objectid++;
3017 }
3018 return 0;
3019}
3020
3021int btrfs_commit_super(struct btrfs_root *root)
3022{
3023 struct btrfs_trans_handle *trans;
3024 int ret;
3025
3026 mutex_lock(&root->fs_info->cleaner_mutex);
3027 btrfs_run_delayed_iputs(root);
3028 btrfs_clean_old_snapshots(root);
3029 mutex_unlock(&root->fs_info->cleaner_mutex);
3030
3031 /* wait until ongoing cleanup work done */
3032 down_write(&root->fs_info->cleanup_work_sem);
3033 up_write(&root->fs_info->cleanup_work_sem);
3034
3035 trans = btrfs_join_transaction(root);
3036 if (IS_ERR(trans))
3037 return PTR_ERR(trans);
3038 ret = btrfs_commit_transaction(trans, root);
3039 if (ret)
3040 return ret;
3041 /* run commit again to drop the original snapshot */
3042 trans = btrfs_join_transaction(root);
3043 if (IS_ERR(trans))
3044 return PTR_ERR(trans);
3045 ret = btrfs_commit_transaction(trans, root);
3046 if (ret)
3047 return ret;
3048 ret = btrfs_write_and_wait_transaction(NULL, root);
3049 if (ret) {
3050 btrfs_error(root->fs_info, ret,
3051 "Failed to sync btree inode to disk.");
3052 return ret;
3053 }
3054
3055 ret = write_ctree_super(NULL, root, 0);
3056 return ret;
3057}
3058
3059int close_ctree(struct btrfs_root *root)
3060{
3061 struct btrfs_fs_info *fs_info = root->fs_info;
3062 int ret;
3063
3064 fs_info->closing = 1;
3065 smp_mb();
3066
3067 /* pause restriper - we want to resume on mount */
3068 btrfs_pause_balance(root->fs_info);
3069
3070 btrfs_scrub_cancel(root);
3071
3072 /* wait for any defraggers to finish */
3073 wait_event(fs_info->transaction_wait,
3074 (atomic_read(&fs_info->defrag_running) == 0));
3075
3076 /* clear out the rbtree of defraggable inodes */
3077 btrfs_run_defrag_inodes(fs_info);
3078
3079 /*
3080 * Here come 2 situations when btrfs is broken to flip readonly:
3081 *
3082 * 1. when btrfs flips readonly somewhere else before
3083 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3084 * and btrfs will skip to write sb directly to keep
3085 * ERROR state on disk.
3086 *
3087 * 2. when btrfs flips readonly just in btrfs_commit_super,
3088 * and in such case, btrfs cannot write sb via btrfs_commit_super,
3089 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3090 * btrfs will cleanup all FS resources first and write sb then.
3091 */
3092 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3093 ret = btrfs_commit_super(root);
3094 if (ret)
3095 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3096 }
3097
3098 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3099 ret = btrfs_error_commit_super(root);
3100 if (ret)
3101 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3102 }
3103
3104 btrfs_put_block_group_cache(fs_info);
3105
3106 kthread_stop(fs_info->transaction_kthread);
3107 kthread_stop(fs_info->cleaner_kthread);
3108
3109 fs_info->closing = 2;
3110 smp_mb();
3111
3112 if (fs_info->delalloc_bytes) {
3113 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3114 (unsigned long long)fs_info->delalloc_bytes);
3115 }
3116 if (fs_info->total_ref_cache_size) {
3117 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3118 (unsigned long long)fs_info->total_ref_cache_size);
3119 }
3120
3121 free_extent_buffer(fs_info->extent_root->node);
3122 free_extent_buffer(fs_info->extent_root->commit_root);
3123 free_extent_buffer(fs_info->tree_root->node);
3124 free_extent_buffer(fs_info->tree_root->commit_root);
3125 free_extent_buffer(fs_info->chunk_root->node);
3126 free_extent_buffer(fs_info->chunk_root->commit_root);
3127 free_extent_buffer(fs_info->dev_root->node);
3128 free_extent_buffer(fs_info->dev_root->commit_root);
3129 free_extent_buffer(fs_info->csum_root->node);
3130 free_extent_buffer(fs_info->csum_root->commit_root);
3131
3132 btrfs_free_block_groups(fs_info);
3133
3134 del_fs_roots(fs_info);
3135
3136 iput(fs_info->btree_inode);
3137
3138 btrfs_stop_workers(&fs_info->generic_worker);
3139 btrfs_stop_workers(&fs_info->fixup_workers);
3140 btrfs_stop_workers(&fs_info->delalloc_workers);
3141 btrfs_stop_workers(&fs_info->workers);
3142 btrfs_stop_workers(&fs_info->endio_workers);
3143 btrfs_stop_workers(&fs_info->endio_meta_workers);
3144 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3145 btrfs_stop_workers(&fs_info->endio_write_workers);
3146 btrfs_stop_workers(&fs_info->endio_freespace_worker);
3147 btrfs_stop_workers(&fs_info->submit_workers);
3148 btrfs_stop_workers(&fs_info->delayed_workers);
3149 btrfs_stop_workers(&fs_info->caching_workers);
3150 btrfs_stop_workers(&fs_info->readahead_workers);
3151
3152#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3153 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3154 btrfsic_unmount(root, fs_info->fs_devices);
3155#endif
3156
3157 btrfs_close_devices(fs_info->fs_devices);
3158 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3159
3160 bdi_destroy(&fs_info->bdi);
3161 cleanup_srcu_struct(&fs_info->subvol_srcu);
3162
3163 return 0;
3164}
3165
3166int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3167 int atomic)
3168{
3169 int ret;
3170 struct inode *btree_inode = buf->pages[0]->mapping->host;
3171
3172 ret = extent_buffer_uptodate(buf);
3173 if (!ret)
3174 return ret;
3175
3176 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3177 parent_transid, atomic);
3178 if (ret == -EAGAIN)
3179 return ret;
3180 return !ret;
3181}
3182
3183int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3184{
3185 return set_extent_buffer_uptodate(buf);
3186}
3187
3188void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3189{
3190 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3191 u64 transid = btrfs_header_generation(buf);
3192 int was_dirty;
3193
3194 btrfs_assert_tree_locked(buf);
3195 if (transid != root->fs_info->generation) {
3196 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3197 "found %llu running %llu\n",
3198 (unsigned long long)buf->start,
3199 (unsigned long long)transid,
3200 (unsigned long long)root->fs_info->generation);
3201 WARN_ON(1);
3202 }
3203 was_dirty = set_extent_buffer_dirty(buf);
3204 if (!was_dirty) {
3205 spin_lock(&root->fs_info->delalloc_lock);
3206 root->fs_info->dirty_metadata_bytes += buf->len;
3207 spin_unlock(&root->fs_info->delalloc_lock);
3208 }
3209}
3210
3211void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3212{
3213 /*
3214 * looks as though older kernels can get into trouble with
3215 * this code, they end up stuck in balance_dirty_pages forever
3216 */
3217 u64 num_dirty;
3218 unsigned long thresh = 32 * 1024 * 1024;
3219
3220 if (current->flags & PF_MEMALLOC)
3221 return;
3222
3223 btrfs_balance_delayed_items(root);
3224
3225 num_dirty = root->fs_info->dirty_metadata_bytes;
3226
3227 if (num_dirty > thresh) {
3228 balance_dirty_pages_ratelimited_nr(
3229 root->fs_info->btree_inode->i_mapping, 1);
3230 }
3231 return;
3232}
3233
3234void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3235{
3236 /*
3237 * looks as though older kernels can get into trouble with
3238 * this code, they end up stuck in balance_dirty_pages forever
3239 */
3240 u64 num_dirty;
3241 unsigned long thresh = 32 * 1024 * 1024;
3242
3243 if (current->flags & PF_MEMALLOC)
3244 return;
3245
3246 num_dirty = root->fs_info->dirty_metadata_bytes;
3247
3248 if (num_dirty > thresh) {
3249 balance_dirty_pages_ratelimited_nr(
3250 root->fs_info->btree_inode->i_mapping, 1);
3251 }
3252 return;
3253}
3254
3255int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3256{
3257 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3258 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3259}
3260
3261static int btree_lock_page_hook(struct page *page, void *data,
3262 void (*flush_fn)(void *))
3263{
3264 struct inode *inode = page->mapping->host;
3265 struct btrfs_root *root = BTRFS_I(inode)->root;
3266 struct extent_buffer *eb;
3267
3268 /*
3269 * We culled this eb but the page is still hanging out on the mapping,
3270 * carry on.
3271 */
3272 if (!PagePrivate(page))
3273 goto out;
3274
3275 eb = (struct extent_buffer *)page->private;
3276 if (!eb) {
3277 WARN_ON(1);
3278 goto out;
3279 }
3280 if (page != eb->pages[0])
3281 goto out;
3282
3283 if (!btrfs_try_tree_write_lock(eb)) {
3284 flush_fn(data);
3285 btrfs_tree_lock(eb);
3286 }
3287 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3288
3289 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3290 spin_lock(&root->fs_info->delalloc_lock);
3291 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3292 root->fs_info->dirty_metadata_bytes -= eb->len;
3293 else
3294 WARN_ON(1);
3295 spin_unlock(&root->fs_info->delalloc_lock);
3296 }
3297
3298 btrfs_tree_unlock(eb);
3299out:
3300 if (!trylock_page(page)) {
3301 flush_fn(data);
3302 lock_page(page);
3303 }
3304 return 0;
3305}
3306
3307static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3308 int read_only)
3309{
3310 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3311 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3312 return -EINVAL;
3313 }
3314
3315 if (read_only)
3316 return 0;
3317
3318 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3319 printk(KERN_WARNING "warning: mount fs with errors, "
3320 "running btrfsck is recommended\n");
3321 }
3322
3323 return 0;
3324}
3325
3326int btrfs_error_commit_super(struct btrfs_root *root)
3327{
3328 int ret;
3329
3330 mutex_lock(&root->fs_info->cleaner_mutex);
3331 btrfs_run_delayed_iputs(root);
3332 mutex_unlock(&root->fs_info->cleaner_mutex);
3333
3334 down_write(&root->fs_info->cleanup_work_sem);
3335 up_write(&root->fs_info->cleanup_work_sem);
3336
3337 /* cleanup FS via transaction */
3338 btrfs_cleanup_transaction(root);
3339
3340 ret = write_ctree_super(NULL, root, 0);
3341
3342 return ret;
3343}
3344
3345static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3346{
3347 struct btrfs_inode *btrfs_inode;
3348 struct list_head splice;
3349
3350 INIT_LIST_HEAD(&splice);
3351
3352 mutex_lock(&root->fs_info->ordered_operations_mutex);
3353 spin_lock(&root->fs_info->ordered_extent_lock);
3354
3355 list_splice_init(&root->fs_info->ordered_operations, &splice);
3356 while (!list_empty(&splice)) {
3357 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3358 ordered_operations);
3359
3360 list_del_init(&btrfs_inode->ordered_operations);
3361
3362 btrfs_invalidate_inodes(btrfs_inode->root);
3363 }
3364
3365 spin_unlock(&root->fs_info->ordered_extent_lock);
3366 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3367}
3368
3369static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3370{
3371 struct list_head splice;
3372 struct btrfs_ordered_extent *ordered;
3373 struct inode *inode;
3374
3375 INIT_LIST_HEAD(&splice);
3376
3377 spin_lock(&root->fs_info->ordered_extent_lock);
3378
3379 list_splice_init(&root->fs_info->ordered_extents, &splice);
3380 while (!list_empty(&splice)) {
3381 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3382 root_extent_list);
3383
3384 list_del_init(&ordered->root_extent_list);
3385 atomic_inc(&ordered->refs);
3386
3387 /* the inode may be getting freed (in sys_unlink path). */
3388 inode = igrab(ordered->inode);
3389
3390 spin_unlock(&root->fs_info->ordered_extent_lock);
3391 if (inode)
3392 iput(inode);
3393
3394 atomic_set(&ordered->refs, 1);
3395 btrfs_put_ordered_extent(ordered);
3396
3397 spin_lock(&root->fs_info->ordered_extent_lock);
3398 }
3399
3400 spin_unlock(&root->fs_info->ordered_extent_lock);
3401}
3402
3403int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3404 struct btrfs_root *root)
3405{
3406 struct rb_node *node;
3407 struct btrfs_delayed_ref_root *delayed_refs;
3408 struct btrfs_delayed_ref_node *ref;
3409 int ret = 0;
3410
3411 delayed_refs = &trans->delayed_refs;
3412
3413 spin_lock(&delayed_refs->lock);
3414 if (delayed_refs->num_entries == 0) {
3415 spin_unlock(&delayed_refs->lock);
3416 printk(KERN_INFO "delayed_refs has NO entry\n");
3417 return ret;
3418 }
3419
3420 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3421 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3422
3423 atomic_set(&ref->refs, 1);
3424 if (btrfs_delayed_ref_is_head(ref)) {
3425 struct btrfs_delayed_ref_head *head;
3426
3427 head = btrfs_delayed_node_to_head(ref);
3428 if (!mutex_trylock(&head->mutex)) {
3429 atomic_inc(&ref->refs);
3430 spin_unlock(&delayed_refs->lock);
3431
3432 /* Need to wait for the delayed ref to run */
3433 mutex_lock(&head->mutex);
3434 mutex_unlock(&head->mutex);
3435 btrfs_put_delayed_ref(ref);
3436
3437 spin_lock(&delayed_refs->lock);
3438 continue;
3439 }
3440
3441 kfree(head->extent_op);
3442 delayed_refs->num_heads--;
3443 if (list_empty(&head->cluster))
3444 delayed_refs->num_heads_ready--;
3445 list_del_init(&head->cluster);
3446 }
3447 ref->in_tree = 0;
3448 rb_erase(&ref->rb_node, &delayed_refs->root);
3449 delayed_refs->num_entries--;
3450
3451 spin_unlock(&delayed_refs->lock);
3452 btrfs_put_delayed_ref(ref);
3453
3454 cond_resched();
3455 spin_lock(&delayed_refs->lock);
3456 }
3457
3458 spin_unlock(&delayed_refs->lock);
3459
3460 return ret;
3461}
3462
3463static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3464{
3465 struct btrfs_pending_snapshot *snapshot;
3466 struct list_head splice;
3467
3468 INIT_LIST_HEAD(&splice);
3469
3470 list_splice_init(&t->pending_snapshots, &splice);
3471
3472 while (!list_empty(&splice)) {
3473 snapshot = list_entry(splice.next,
3474 struct btrfs_pending_snapshot,
3475 list);
3476
3477 list_del_init(&snapshot->list);
3478
3479 kfree(snapshot);
3480 }
3481}
3482
3483static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3484{
3485 struct btrfs_inode *btrfs_inode;
3486 struct list_head splice;
3487
3488 INIT_LIST_HEAD(&splice);
3489
3490 spin_lock(&root->fs_info->delalloc_lock);
3491 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3492
3493 while (!list_empty(&splice)) {
3494 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3495 delalloc_inodes);
3496
3497 list_del_init(&btrfs_inode->delalloc_inodes);
3498
3499 btrfs_invalidate_inodes(btrfs_inode->root);
3500 }
3501
3502 spin_unlock(&root->fs_info->delalloc_lock);
3503}
3504
3505static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3506 struct extent_io_tree *dirty_pages,
3507 int mark)
3508{
3509 int ret;
3510 struct page *page;
3511 struct inode *btree_inode = root->fs_info->btree_inode;
3512 struct extent_buffer *eb;
3513 u64 start = 0;
3514 u64 end;
3515 u64 offset;
3516 unsigned long index;
3517
3518 while (1) {
3519 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3520 mark);
3521 if (ret)
3522 break;
3523
3524 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3525 while (start <= end) {
3526 index = start >> PAGE_CACHE_SHIFT;
3527 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3528 page = find_get_page(btree_inode->i_mapping, index);
3529 if (!page)
3530 continue;
3531 offset = page_offset(page);
3532
3533 spin_lock(&dirty_pages->buffer_lock);
3534 eb = radix_tree_lookup(
3535 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3536 offset >> PAGE_CACHE_SHIFT);
3537 spin_unlock(&dirty_pages->buffer_lock);
3538 if (eb)
3539 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3540 &eb->bflags);
3541 if (PageWriteback(page))
3542 end_page_writeback(page);
3543
3544 lock_page(page);
3545 if (PageDirty(page)) {
3546 clear_page_dirty_for_io(page);
3547 spin_lock_irq(&page->mapping->tree_lock);
3548 radix_tree_tag_clear(&page->mapping->page_tree,
3549 page_index(page),
3550 PAGECACHE_TAG_DIRTY);
3551 spin_unlock_irq(&page->mapping->tree_lock);
3552 }
3553
3554 unlock_page(page);
3555 page_cache_release(page);
3556 }
3557 }
3558
3559 return ret;
3560}
3561
3562static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3563 struct extent_io_tree *pinned_extents)
3564{
3565 struct extent_io_tree *unpin;
3566 u64 start;
3567 u64 end;
3568 int ret;
3569 bool loop = true;
3570
3571 unpin = pinned_extents;
3572again:
3573 while (1) {
3574 ret = find_first_extent_bit(unpin, 0, &start, &end,
3575 EXTENT_DIRTY);
3576 if (ret)
3577 break;
3578
3579 /* opt_discard */
3580 if (btrfs_test_opt(root, DISCARD))
3581 ret = btrfs_error_discard_extent(root, start,
3582 end + 1 - start,
3583 NULL);
3584
3585 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3586 btrfs_error_unpin_extent_range(root, start, end);
3587 cond_resched();
3588 }
3589
3590 if (loop) {
3591 if (unpin == &root->fs_info->freed_extents[0])
3592 unpin = &root->fs_info->freed_extents[1];
3593 else
3594 unpin = &root->fs_info->freed_extents[0];
3595 loop = false;
3596 goto again;
3597 }
3598
3599 return 0;
3600}
3601
3602void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3603 struct btrfs_root *root)
3604{
3605 btrfs_destroy_delayed_refs(cur_trans, root);
3606 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3607 cur_trans->dirty_pages.dirty_bytes);
3608
3609 /* FIXME: cleanup wait for commit */
3610 cur_trans->in_commit = 1;
3611 cur_trans->blocked = 1;
3612 wake_up(&root->fs_info->transaction_blocked_wait);
3613
3614 cur_trans->blocked = 0;
3615 wake_up(&root->fs_info->transaction_wait);
3616
3617 cur_trans->commit_done = 1;
3618 wake_up(&cur_trans->commit_wait);
3619
3620 btrfs_destroy_delayed_inodes(root);
3621 btrfs_assert_delayed_root_empty(root);
3622
3623 btrfs_destroy_pending_snapshots(cur_trans);
3624
3625 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3626 EXTENT_DIRTY);
3627 btrfs_destroy_pinned_extent(root,
3628 root->fs_info->pinned_extents);
3629
3630 /*
3631 memset(cur_trans, 0, sizeof(*cur_trans));
3632 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3633 */
3634}
3635
3636int btrfs_cleanup_transaction(struct btrfs_root *root)
3637{
3638 struct btrfs_transaction *t;
3639 LIST_HEAD(list);
3640
3641 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3642
3643 spin_lock(&root->fs_info->trans_lock);
3644 list_splice_init(&root->fs_info->trans_list, &list);
3645 root->fs_info->trans_no_join = 1;
3646 spin_unlock(&root->fs_info->trans_lock);
3647
3648 while (!list_empty(&list)) {
3649 t = list_entry(list.next, struct btrfs_transaction, list);
3650 if (!t)
3651 break;
3652
3653 btrfs_destroy_ordered_operations(root);
3654
3655 btrfs_destroy_ordered_extents(root);
3656
3657 btrfs_destroy_delayed_refs(t, root);
3658
3659 btrfs_block_rsv_release(root,
3660 &root->fs_info->trans_block_rsv,
3661 t->dirty_pages.dirty_bytes);
3662
3663 /* FIXME: cleanup wait for commit */
3664 t->in_commit = 1;
3665 t->blocked = 1;
3666 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3667 wake_up(&root->fs_info->transaction_blocked_wait);
3668
3669 t->blocked = 0;
3670 if (waitqueue_active(&root->fs_info->transaction_wait))
3671 wake_up(&root->fs_info->transaction_wait);
3672
3673 t->commit_done = 1;
3674 if (waitqueue_active(&t->commit_wait))
3675 wake_up(&t->commit_wait);
3676
3677 btrfs_destroy_delayed_inodes(root);
3678 btrfs_assert_delayed_root_empty(root);
3679
3680 btrfs_destroy_pending_snapshots(t);
3681
3682 btrfs_destroy_delalloc_inodes(root);
3683
3684 spin_lock(&root->fs_info->trans_lock);
3685 root->fs_info->running_transaction = NULL;
3686 spin_unlock(&root->fs_info->trans_lock);
3687
3688 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3689 EXTENT_DIRTY);
3690
3691 btrfs_destroy_pinned_extent(root,
3692 root->fs_info->pinned_extents);
3693
3694 atomic_set(&t->use_count, 0);
3695 list_del_init(&t->list);
3696 memset(t, 0, sizeof(*t));
3697 kmem_cache_free(btrfs_transaction_cachep, t);
3698 }
3699
3700 spin_lock(&root->fs_info->trans_lock);
3701 root->fs_info->trans_no_join = 0;
3702 spin_unlock(&root->fs_info->trans_lock);
3703 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3704
3705 return 0;
3706}
3707
3708static struct extent_io_ops btree_extent_io_ops = {
3709 .write_cache_pages_lock_hook = btree_lock_page_hook,
3710 .readpage_end_io_hook = btree_readpage_end_io_hook,
3711 .readpage_io_failed_hook = btree_io_failed_hook,
3712 .submit_bio_hook = btree_submit_bio_hook,
3713 /* note we're sharing with inode.c for the merge bio hook */
3714 .merge_bio_hook = btrfs_merge_bio_hook,
3715};