Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/usb.h>
  12#include <linux/overflow.h>
  13#include <linux/pci.h>
  14#include <linux/slab.h>
  15#include <linux/dmapool.h>
  16#include <linux/dma-mapping.h>
  17
  18#include "xhci.h"
  19#include "xhci-trace.h"
  20#include "xhci-debugfs.h"
  21
  22/*
  23 * Allocates a generic ring segment from the ring pool, sets the dma address,
  24 * initializes the segment to zero, and sets the private next pointer to NULL.
  25 *
  26 * Section 4.11.1.1:
  27 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  28 */
  29static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  30					       unsigned int cycle_state,
  31					       unsigned int max_packet,
  32					       unsigned int num,
  33					       gfp_t flags)
  34{
  35	struct xhci_segment *seg;
  36	dma_addr_t	dma;
  37	int		i;
  38	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
  39
  40	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
  41	if (!seg)
  42		return NULL;
  43
  44	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
  45	if (!seg->trbs) {
  46		kfree(seg);
  47		return NULL;
  48	}
  49
  50	if (max_packet) {
  51		seg->bounce_buf = kzalloc_node(max_packet, flags,
  52					dev_to_node(dev));
  53		if (!seg->bounce_buf) {
  54			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
  55			kfree(seg);
  56			return NULL;
  57		}
  58	}
  59	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  60	if (cycle_state == 0) {
  61		for (i = 0; i < TRBS_PER_SEGMENT; i++)
  62			seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
  63	}
  64	seg->num = num;
  65	seg->dma = dma;
  66	seg->next = NULL;
  67
  68	return seg;
  69}
  70
  71static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  72{
  73	if (seg->trbs) {
  74		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  75		seg->trbs = NULL;
  76	}
  77	kfree(seg->bounce_buf);
  78	kfree(seg);
  79}
  80
  81static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  82				struct xhci_segment *first)
  83{
  84	struct xhci_segment *seg;
  85
  86	seg = first->next;
  87	while (seg != first) {
  88		struct xhci_segment *next = seg->next;
  89		xhci_segment_free(xhci, seg);
  90		seg = next;
  91	}
  92	xhci_segment_free(xhci, first);
  93}
  94
  95/*
  96 * Make the prev segment point to the next segment.
  97 *
  98 * Change the last TRB in the prev segment to be a Link TRB which points to the
  99 * DMA address of the next segment.  The caller needs to set any Link TRB
 100 * related flags, such as End TRB, Toggle Cycle, and no snoop.
 101 */
 102static void xhci_link_segments(struct xhci_segment *prev,
 103			       struct xhci_segment *next,
 104			       enum xhci_ring_type type, bool chain_links)
 105{
 106	u32 val;
 107
 108	if (!prev || !next)
 109		return;
 110	prev->next = next;
 111	if (type != TYPE_EVENT) {
 112		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 113			cpu_to_le64(next->dma);
 114
 115		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 116		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 117		val &= ~TRB_TYPE_BITMASK;
 118		val |= TRB_TYPE(TRB_LINK);
 119		if (chain_links)
 
 
 
 
 120			val |= TRB_CHAIN;
 121		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 122	}
 123}
 124
 125/*
 126 * Link the ring to the new segments.
 127 * Set Toggle Cycle for the new ring if needed.
 128 */
 129static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 130		struct xhci_segment *first, struct xhci_segment *last,
 131		unsigned int num_segs)
 132{
 133	struct xhci_segment *next, *seg;
 134	bool chain_links;
 135
 136	if (!ring || !first || !last)
 137		return;
 138
 139	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
 140	chain_links = !!(xhci_link_trb_quirk(xhci) ||
 141			 (ring->type == TYPE_ISOC &&
 142			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
 143
 144	next = ring->enq_seg->next;
 145	xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
 146	xhci_link_segments(last, next, ring->type, chain_links);
 147	ring->num_segs += num_segs;
 
 148
 149	if (ring->enq_seg == ring->last_seg) {
 150		if (ring->type != TYPE_EVENT) {
 151			ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 152				&= ~cpu_to_le32(LINK_TOGGLE);
 153			last->trbs[TRBS_PER_SEGMENT-1].link.control
 154				|= cpu_to_le32(LINK_TOGGLE);
 155		}
 156		ring->last_seg = last;
 157	}
 158
 159	for (seg = last; seg != ring->last_seg; seg = seg->next)
 160		seg->next->num = seg->num + 1;
 161}
 162
 163/*
 164 * We need a radix tree for mapping physical addresses of TRBs to which stream
 165 * ID they belong to.  We need to do this because the host controller won't tell
 166 * us which stream ring the TRB came from.  We could store the stream ID in an
 167 * event data TRB, but that doesn't help us for the cancellation case, since the
 168 * endpoint may stop before it reaches that event data TRB.
 169 *
 170 * The radix tree maps the upper portion of the TRB DMA address to a ring
 171 * segment that has the same upper portion of DMA addresses.  For example, say I
 172 * have segments of size 1KB, that are always 1KB aligned.  A segment may
 173 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 174 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 175 * pass the radix tree a key to get the right stream ID:
 176 *
 177 *	0x10c90fff >> 10 = 0x43243
 178 *	0x10c912c0 >> 10 = 0x43244
 179 *	0x10c91400 >> 10 = 0x43245
 180 *
 181 * Obviously, only those TRBs with DMA addresses that are within the segment
 182 * will make the radix tree return the stream ID for that ring.
 183 *
 184 * Caveats for the radix tree:
 185 *
 186 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 187 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 188 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 189 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 190 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 191 * extended systems (where the DMA address can be bigger than 32-bits),
 192 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 193 */
 194static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 195		struct xhci_ring *ring,
 196		struct xhci_segment *seg,
 197		gfp_t mem_flags)
 198{
 199	unsigned long key;
 200	int ret;
 201
 202	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 203	/* Skip any segments that were already added. */
 204	if (radix_tree_lookup(trb_address_map, key))
 205		return 0;
 206
 207	ret = radix_tree_maybe_preload(mem_flags);
 208	if (ret)
 209		return ret;
 210	ret = radix_tree_insert(trb_address_map,
 211			key, ring);
 212	radix_tree_preload_end();
 213	return ret;
 214}
 215
 216static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 217		struct xhci_segment *seg)
 218{
 219	unsigned long key;
 220
 221	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 222	if (radix_tree_lookup(trb_address_map, key))
 223		radix_tree_delete(trb_address_map, key);
 224}
 225
 226static int xhci_update_stream_segment_mapping(
 227		struct radix_tree_root *trb_address_map,
 228		struct xhci_ring *ring,
 229		struct xhci_segment *first_seg,
 230		struct xhci_segment *last_seg,
 231		gfp_t mem_flags)
 232{
 233	struct xhci_segment *seg;
 234	struct xhci_segment *failed_seg;
 235	int ret;
 236
 237	if (WARN_ON_ONCE(trb_address_map == NULL))
 238		return 0;
 239
 240	seg = first_seg;
 241	do {
 242		ret = xhci_insert_segment_mapping(trb_address_map,
 243				ring, seg, mem_flags);
 244		if (ret)
 245			goto remove_streams;
 246		if (seg == last_seg)
 247			return 0;
 248		seg = seg->next;
 249	} while (seg != first_seg);
 250
 251	return 0;
 252
 253remove_streams:
 254	failed_seg = seg;
 255	seg = first_seg;
 256	do {
 257		xhci_remove_segment_mapping(trb_address_map, seg);
 258		if (seg == failed_seg)
 259			return ret;
 260		seg = seg->next;
 261	} while (seg != first_seg);
 262
 263	return ret;
 264}
 265
 266static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 267{
 268	struct xhci_segment *seg;
 269
 270	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 271		return;
 272
 273	seg = ring->first_seg;
 274	do {
 275		xhci_remove_segment_mapping(ring->trb_address_map, seg);
 276		seg = seg->next;
 277	} while (seg != ring->first_seg);
 278}
 279
 280static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 281{
 282	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 283			ring->first_seg, ring->last_seg, mem_flags);
 284}
 285
 286/* XXX: Do we need the hcd structure in all these functions? */
 287void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 288{
 289	if (!ring)
 290		return;
 291
 292	trace_xhci_ring_free(ring);
 293
 294	if (ring->first_seg) {
 295		if (ring->type == TYPE_STREAM)
 296			xhci_remove_stream_mapping(ring);
 297		xhci_free_segments_for_ring(xhci, ring->first_seg);
 298	}
 299
 300	kfree(ring);
 301}
 302
 303void xhci_initialize_ring_info(struct xhci_ring *ring,
 304			       unsigned int cycle_state)
 305{
 306	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 307	ring->enqueue = ring->first_seg->trbs;
 308	ring->enq_seg = ring->first_seg;
 309	ring->dequeue = ring->enqueue;
 310	ring->deq_seg = ring->first_seg;
 311	/* The ring is initialized to 0. The producer must write 1 to the cycle
 312	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 313	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 314	 *
 315	 * New rings are initialized with cycle state equal to 1; if we are
 316	 * handling ring expansion, set the cycle state equal to the old ring.
 317	 */
 318	ring->cycle_state = cycle_state;
 
 
 
 319
 320	/*
 321	 * Each segment has a link TRB, and leave an extra TRB for SW
 322	 * accounting purpose
 323	 */
 324	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 325}
 326EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
 327
 328/* Allocate segments and link them for a ring */
 329static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 330		struct xhci_segment **first, struct xhci_segment **last,
 331		unsigned int num_segs, unsigned int num,
 332		unsigned int cycle_state, enum xhci_ring_type type,
 333		unsigned int max_packet, gfp_t flags)
 334{
 335	struct xhci_segment *prev;
 336	bool chain_links;
 337
 338	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
 339	chain_links = !!(xhci_link_trb_quirk(xhci) ||
 340			 (type == TYPE_ISOC &&
 341			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
 342
 343	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, num, flags);
 344	if (!prev)
 345		return -ENOMEM;
 346	num++;
 347
 348	*first = prev;
 349	while (num < num_segs) {
 350		struct xhci_segment	*next;
 351
 352		next = xhci_segment_alloc(xhci, cycle_state, max_packet, num,
 353					  flags);
 354		if (!next) {
 355			prev = *first;
 356			while (prev) {
 357				next = prev->next;
 358				xhci_segment_free(xhci, prev);
 359				prev = next;
 360			}
 361			return -ENOMEM;
 362		}
 363		xhci_link_segments(prev, next, type, chain_links);
 364
 365		prev = next;
 366		num++;
 367	}
 368	xhci_link_segments(prev, *first, type, chain_links);
 369	*last = prev;
 370
 371	return 0;
 372}
 373
 374/*
 375 * Create a new ring with zero or more segments.
 376 *
 377 * Link each segment together into a ring.
 378 * Set the end flag and the cycle toggle bit on the last segment.
 379 * See section 4.9.1 and figures 15 and 16.
 380 */
 381struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 382		unsigned int num_segs, unsigned int cycle_state,
 383		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 384{
 385	struct xhci_ring	*ring;
 386	int ret;
 387	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 388
 389	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
 390	if (!ring)
 391		return NULL;
 392
 393	ring->num_segs = num_segs;
 394	ring->bounce_buf_len = max_packet;
 395	INIT_LIST_HEAD(&ring->td_list);
 396	ring->type = type;
 397	if (num_segs == 0)
 398		return ring;
 399
 400	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 401			&ring->last_seg, num_segs, 0, cycle_state, type,
 402			max_packet, flags);
 403	if (ret)
 404		goto fail;
 405
 406	/* Only event ring does not use link TRB */
 407	if (type != TYPE_EVENT) {
 408		/* See section 4.9.2.1 and 6.4.4.1 */
 409		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 410			cpu_to_le32(LINK_TOGGLE);
 411	}
 412	xhci_initialize_ring_info(ring, cycle_state);
 413	trace_xhci_ring_alloc(ring);
 414	return ring;
 415
 416fail:
 417	kfree(ring);
 418	return NULL;
 419}
 420
 421void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
 422		struct xhci_virt_device *virt_dev,
 423		unsigned int ep_index)
 424{
 425	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 426	virt_dev->eps[ep_index].ring = NULL;
 427}
 428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 429/*
 430 * Expand an existing ring.
 431 * Allocate a new ring which has same segment numbers and link the two rings.
 
 432 */
 433int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 434				unsigned int num_new_segs, gfp_t flags)
 435{
 436	struct xhci_segment	*first;
 437	struct xhci_segment	*last;
 
 
 438	int			ret;
 439
 
 
 
 
 
 
 
 440	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 441			num_new_segs, ring->enq_seg->num + 1,
 442			ring->cycle_state, ring->type,
 443			ring->bounce_buf_len, flags);
 444	if (ret)
 445		return -ENOMEM;
 446
 447	if (ring->type == TYPE_STREAM)
 448		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
 449						ring, first, last, flags);
 450	if (ret) {
 451		struct xhci_segment *next;
 452		do {
 453			next = first->next;
 454			xhci_segment_free(xhci, first);
 455			if (first == last)
 456				break;
 457			first = next;
 458		} while (true);
 459		return ret;
 460	}
 461
 462	xhci_link_rings(xhci, ring, first, last, num_new_segs);
 463	trace_xhci_ring_expansion(ring);
 464	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 465			"ring expansion succeed, now has %d segments",
 466			ring->num_segs);
 467
 468	return 0;
 469}
 470
 471struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 
 
 472						    int type, gfp_t flags)
 473{
 474	struct xhci_container_ctx *ctx;
 475	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 476
 477	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 478		return NULL;
 479
 480	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
 481	if (!ctx)
 482		return NULL;
 483
 484	ctx->type = type;
 485	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 486	if (type == XHCI_CTX_TYPE_INPUT)
 487		ctx->size += CTX_SIZE(xhci->hcc_params);
 488
 489	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
 490	if (!ctx->bytes) {
 491		kfree(ctx);
 492		return NULL;
 493	}
 
 494	return ctx;
 495}
 496
 497void xhci_free_container_ctx(struct xhci_hcd *xhci,
 498			     struct xhci_container_ctx *ctx)
 499{
 500	if (!ctx)
 501		return;
 502	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 503	kfree(ctx);
 504}
 505
 506struct xhci_input_control_ctx *xhci_get_input_control_ctx(
 507					      struct xhci_container_ctx *ctx)
 508{
 509	if (ctx->type != XHCI_CTX_TYPE_INPUT)
 510		return NULL;
 511
 512	return (struct xhci_input_control_ctx *)ctx->bytes;
 513}
 514
 515struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 516					struct xhci_container_ctx *ctx)
 517{
 518	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 519		return (struct xhci_slot_ctx *)ctx->bytes;
 520
 521	return (struct xhci_slot_ctx *)
 522		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 523}
 524
 525struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 526				    struct xhci_container_ctx *ctx,
 527				    unsigned int ep_index)
 528{
 529	/* increment ep index by offset of start of ep ctx array */
 530	ep_index++;
 531	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 532		ep_index++;
 533
 534	return (struct xhci_ep_ctx *)
 535		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 536}
 537EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
 538
 539/***************** Streams structures manipulation *************************/
 540
 541static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 542		unsigned int num_stream_ctxs,
 543		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 544{
 545	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 546	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 547
 548	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 549		dma_free_coherent(dev, size, stream_ctx, dma);
 550	else if (size > SMALL_STREAM_ARRAY_SIZE)
 551		dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
 
 
 552	else
 553		dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
 
 554}
 555
 556/*
 557 * The stream context array for each endpoint with bulk streams enabled can
 558 * vary in size, based on:
 559 *  - how many streams the endpoint supports,
 560 *  - the maximum primary stream array size the host controller supports,
 561 *  - and how many streams the device driver asks for.
 562 *
 563 * The stream context array must be a power of 2, and can be as small as
 564 * 64 bytes or as large as 1MB.
 565 */
 566static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 567		unsigned int num_stream_ctxs, dma_addr_t *dma,
 568		gfp_t mem_flags)
 569{
 570	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 571	size_t size = size_mul(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
 572
 573	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 574		return dma_alloc_coherent(dev, size, dma, mem_flags);
 575	if (size > SMALL_STREAM_ARRAY_SIZE)
 576		return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
 
 
 577	else
 578		return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
 
 579}
 580
 581struct xhci_ring *xhci_dma_to_transfer_ring(
 582		struct xhci_virt_ep *ep,
 583		u64 address)
 584{
 585	if (ep->ep_state & EP_HAS_STREAMS)
 586		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 587				address >> TRB_SEGMENT_SHIFT);
 588	return ep->ring;
 589}
 590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591/*
 592 * Change an endpoint's internal structure so it supports stream IDs.  The
 593 * number of requested streams includes stream 0, which cannot be used by device
 594 * drivers.
 595 *
 596 * The number of stream contexts in the stream context array may be bigger than
 597 * the number of streams the driver wants to use.  This is because the number of
 598 * stream context array entries must be a power of two.
 599 */
 600struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 601		unsigned int num_stream_ctxs,
 602		unsigned int num_streams,
 603		unsigned int max_packet, gfp_t mem_flags)
 604{
 605	struct xhci_stream_info *stream_info;
 606	u32 cur_stream;
 607	struct xhci_ring *cur_ring;
 608	u64 addr;
 609	int ret;
 610	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 611
 612	xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
 
 613			num_streams, num_stream_ctxs);
 614	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 615		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 616		return NULL;
 617	}
 618	xhci->cmd_ring_reserved_trbs++;
 619
 620	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
 621			dev_to_node(dev));
 622	if (!stream_info)
 623		goto cleanup_trbs;
 624
 625	stream_info->num_streams = num_streams;
 626	stream_info->num_stream_ctxs = num_stream_ctxs;
 627
 628	/* Initialize the array of virtual pointers to stream rings. */
 629	stream_info->stream_rings = kcalloc_node(
 630			num_streams, sizeof(struct xhci_ring *), mem_flags,
 631			dev_to_node(dev));
 632	if (!stream_info->stream_rings)
 633		goto cleanup_info;
 634
 635	/* Initialize the array of DMA addresses for stream rings for the HW. */
 636	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 637			num_stream_ctxs, &stream_info->ctx_array_dma,
 638			mem_flags);
 639	if (!stream_info->stream_ctx_array)
 640		goto cleanup_ring_array;
 
 
 641
 642	/* Allocate everything needed to free the stream rings later */
 643	stream_info->free_streams_command =
 644		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
 645	if (!stream_info->free_streams_command)
 646		goto cleanup_ctx;
 647
 648	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 649
 650	/* Allocate rings for all the streams that the driver will use,
 651	 * and add their segment DMA addresses to the radix tree.
 652	 * Stream 0 is reserved.
 653	 */
 654
 655	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 656		stream_info->stream_rings[cur_stream] =
 657			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
 658					mem_flags);
 659		cur_ring = stream_info->stream_rings[cur_stream];
 660		if (!cur_ring)
 661			goto cleanup_rings;
 662		cur_ring->stream_id = cur_stream;
 663		cur_ring->trb_address_map = &stream_info->trb_address_map;
 664		/* Set deq ptr, cycle bit, and stream context type */
 665		addr = cur_ring->first_seg->dma |
 666			SCT_FOR_CTX(SCT_PRI_TR) |
 667			cur_ring->cycle_state;
 668		stream_info->stream_ctx_array[cur_stream].stream_ring =
 669			cpu_to_le64(addr);
 670		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
 
 671
 672		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 673		if (ret) {
 674			xhci_ring_free(xhci, cur_ring);
 675			stream_info->stream_rings[cur_stream] = NULL;
 676			goto cleanup_rings;
 677		}
 678	}
 679	/* Leave the other unused stream ring pointers in the stream context
 680	 * array initialized to zero.  This will cause the xHC to give us an
 681	 * error if the device asks for a stream ID we don't have setup (if it
 682	 * was any other way, the host controller would assume the ring is
 683	 * "empty" and wait forever for data to be queued to that stream ID).
 684	 */
 685
 686	return stream_info;
 687
 688cleanup_rings:
 689	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 690		cur_ring = stream_info->stream_rings[cur_stream];
 691		if (cur_ring) {
 692			xhci_ring_free(xhci, cur_ring);
 693			stream_info->stream_rings[cur_stream] = NULL;
 694		}
 695	}
 696	xhci_free_command(xhci, stream_info->free_streams_command);
 697cleanup_ctx:
 698	xhci_free_stream_ctx(xhci,
 699		stream_info->num_stream_ctxs,
 700		stream_info->stream_ctx_array,
 701		stream_info->ctx_array_dma);
 702cleanup_ring_array:
 703	kfree(stream_info->stream_rings);
 704cleanup_info:
 705	kfree(stream_info);
 706cleanup_trbs:
 707	xhci->cmd_ring_reserved_trbs--;
 708	return NULL;
 709}
 710/*
 711 * Sets the MaxPStreams field and the Linear Stream Array field.
 712 * Sets the dequeue pointer to the stream context array.
 713 */
 714void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 715		struct xhci_ep_ctx *ep_ctx,
 716		struct xhci_stream_info *stream_info)
 717{
 718	u32 max_primary_streams;
 719	/* MaxPStreams is the number of stream context array entries, not the
 720	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 721	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 722	 */
 723	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 724	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 725			"Setting number of stream ctx array entries to %u",
 726			1 << (max_primary_streams + 1));
 727	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 728	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 729				       | EP_HAS_LSA);
 730	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 731}
 732
 733/*
 734 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 735 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 736 * not at the beginning of the ring).
 737 */
 738void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
 
 739		struct xhci_virt_ep *ep)
 740{
 741	dma_addr_t addr;
 742	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 743	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 744	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 745}
 746
 747/* Frees all stream contexts associated with the endpoint,
 748 *
 749 * Caller should fix the endpoint context streams fields.
 750 */
 751void xhci_free_stream_info(struct xhci_hcd *xhci,
 752		struct xhci_stream_info *stream_info)
 753{
 754	int cur_stream;
 755	struct xhci_ring *cur_ring;
 756
 757	if (!stream_info)
 758		return;
 759
 760	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 761			cur_stream++) {
 762		cur_ring = stream_info->stream_rings[cur_stream];
 763		if (cur_ring) {
 764			xhci_ring_free(xhci, cur_ring);
 765			stream_info->stream_rings[cur_stream] = NULL;
 766		}
 767	}
 768	xhci_free_command(xhci, stream_info->free_streams_command);
 769	xhci->cmd_ring_reserved_trbs--;
 770	if (stream_info->stream_ctx_array)
 771		xhci_free_stream_ctx(xhci,
 772				stream_info->num_stream_ctxs,
 773				stream_info->stream_ctx_array,
 774				stream_info->ctx_array_dma);
 775
 776	kfree(stream_info->stream_rings);
 777	kfree(stream_info);
 778}
 779
 780
 781/***************** Device context manipulation *************************/
 782
 
 
 
 
 
 
 
 
 
 783static void xhci_free_tt_info(struct xhci_hcd *xhci,
 784		struct xhci_virt_device *virt_dev,
 785		int slot_id)
 786{
 787	struct list_head *tt_list_head;
 788	struct xhci_tt_bw_info *tt_info, *next;
 789	bool slot_found = false;
 790
 791	/* If the device never made it past the Set Address stage,
 792	 * it may not have the real_port set correctly.
 793	 */
 794	if (virt_dev->real_port == 0 ||
 795			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 796		xhci_dbg(xhci, "Bad real port.\n");
 797		return;
 798	}
 799
 800	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 801	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 802		/* Multi-TT hubs will have more than one entry */
 803		if (tt_info->slot_id == slot_id) {
 804			slot_found = true;
 805			list_del(&tt_info->tt_list);
 806			kfree(tt_info);
 807		} else if (slot_found) {
 808			break;
 809		}
 810	}
 811}
 812
 813int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 814		struct xhci_virt_device *virt_dev,
 815		struct usb_device *hdev,
 816		struct usb_tt *tt, gfp_t mem_flags)
 817{
 818	struct xhci_tt_bw_info		*tt_info;
 819	unsigned int			num_ports;
 820	int				i, j;
 821	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 822
 823	if (!tt->multi)
 824		num_ports = 1;
 825	else
 826		num_ports = hdev->maxchild;
 827
 828	for (i = 0; i < num_ports; i++, tt_info++) {
 829		struct xhci_interval_bw_table *bw_table;
 830
 831		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
 832				dev_to_node(dev));
 833		if (!tt_info)
 834			goto free_tts;
 835		INIT_LIST_HEAD(&tt_info->tt_list);
 836		list_add(&tt_info->tt_list,
 837				&xhci->rh_bw[virt_dev->real_port - 1].tts);
 838		tt_info->slot_id = virt_dev->udev->slot_id;
 839		if (tt->multi)
 840			tt_info->ttport = i+1;
 841		bw_table = &tt_info->bw_table;
 842		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 843			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 844	}
 845	return 0;
 846
 847free_tts:
 848	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 849	return -ENOMEM;
 850}
 851
 852
 853/* All the xhci_tds in the ring's TD list should be freed at this point.
 854 * Should be called with xhci->lock held if there is any chance the TT lists
 855 * will be manipulated by the configure endpoint, allocate device, or update
 856 * hub functions while this function is removing the TT entries from the list.
 857 */
 858void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 859{
 860	struct xhci_virt_device *dev;
 861	int i;
 862	int old_active_eps = 0;
 863
 864	/* Slot ID 0 is reserved */
 865	if (slot_id == 0 || !xhci->devs[slot_id])
 866		return;
 867
 868	dev = xhci->devs[slot_id];
 869
 870	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 871	if (!dev)
 872		return;
 873
 874	trace_xhci_free_virt_device(dev);
 875
 876	if (dev->tt_info)
 877		old_active_eps = dev->tt_info->active_eps;
 878
 879	for (i = 0; i < 31; i++) {
 880		if (dev->eps[i].ring)
 881			xhci_ring_free(xhci, dev->eps[i].ring);
 882		if (dev->eps[i].stream_info)
 883			xhci_free_stream_info(xhci,
 884					dev->eps[i].stream_info);
 885		/*
 886		 * Endpoints are normally deleted from the bandwidth list when
 887		 * endpoints are dropped, before device is freed.
 888		 * If host is dying or being removed then endpoints aren't
 889		 * dropped cleanly, so delete the endpoint from list here.
 890		 * Only applicable for hosts with software bandwidth checking.
 891		 */
 892
 893		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
 894			list_del_init(&dev->eps[i].bw_endpoint_list);
 895			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
 896				 slot_id, i);
 897		}
 898	}
 899	/* If this is a hub, free the TT(s) from the TT list */
 900	xhci_free_tt_info(xhci, dev, slot_id);
 901	/* If necessary, update the number of active TTs on this root port */
 902	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 903
 
 
 
 
 
 
 904	if (dev->in_ctx)
 905		xhci_free_container_ctx(xhci, dev->in_ctx);
 906	if (dev->out_ctx)
 907		xhci_free_container_ctx(xhci, dev->out_ctx);
 908
 909	if (dev->udev && dev->udev->slot_id)
 910		dev->udev->slot_id = 0;
 911	kfree(xhci->devs[slot_id]);
 912	xhci->devs[slot_id] = NULL;
 913}
 914
 915/*
 916 * Free a virt_device structure.
 917 * If the virt_device added a tt_info (a hub) and has children pointing to
 918 * that tt_info, then free the child first. Recursive.
 919 * We can't rely on udev at this point to find child-parent relationships.
 920 */
 921static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
 922{
 923	struct xhci_virt_device *vdev;
 924	struct list_head *tt_list_head;
 925	struct xhci_tt_bw_info *tt_info, *next;
 926	int i;
 927
 928	vdev = xhci->devs[slot_id];
 929	if (!vdev)
 930		return;
 931
 932	if (vdev->real_port == 0 ||
 933			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 934		xhci_dbg(xhci, "Bad vdev->real_port.\n");
 935		goto out;
 936	}
 937
 938	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
 939	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 940		/* is this a hub device that added a tt_info to the tts list */
 941		if (tt_info->slot_id == slot_id) {
 942			/* are any devices using this tt_info? */
 943			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
 944				vdev = xhci->devs[i];
 945				if (vdev && (vdev->tt_info == tt_info))
 946					xhci_free_virt_devices_depth_first(
 947						xhci, i);
 948			}
 949		}
 950	}
 951out:
 952	/* we are now at a leaf device */
 953	xhci_debugfs_remove_slot(xhci, slot_id);
 954	xhci_free_virt_device(xhci, slot_id);
 955}
 956
 957int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 958		struct usb_device *udev, gfp_t flags)
 959{
 960	struct xhci_virt_device *dev;
 961	int i;
 962
 963	/* Slot ID 0 is reserved */
 964	if (slot_id == 0 || xhci->devs[slot_id]) {
 965		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 966		return 0;
 967	}
 968
 969	dev = kzalloc(sizeof(*dev), flags);
 970	if (!dev)
 971		return 0;
 972
 973	dev->slot_id = slot_id;
 974
 975	/* Allocate the (output) device context that will be used in the HC. */
 976	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 977	if (!dev->out_ctx)
 978		goto fail;
 979
 980	xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
 
 981
 982	/* Allocate the (input) device context for address device command */
 983	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 984	if (!dev->in_ctx)
 985		goto fail;
 986
 987	xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
 
 988
 989	/* Initialize the cancellation and bandwidth list for each ep */
 990	for (i = 0; i < 31; i++) {
 991		dev->eps[i].ep_index = i;
 992		dev->eps[i].vdev = dev;
 993		dev->eps[i].xhci = xhci;
 994		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
 995		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
 996	}
 997
 998	/* Allocate endpoint 0 ring */
 999	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1000	if (!dev->eps[0].ring)
1001		goto fail;
1002
 
 
 
 
 
 
 
 
 
 
1003	dev->udev = udev;
1004
1005	/* Point to output device context in dcbaa. */
1006	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1007	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1008		 slot_id,
1009		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1010		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1011
1012	trace_xhci_alloc_virt_device(dev);
1013
1014	xhci->devs[slot_id] = dev;
1015
1016	return 1;
1017fail:
1018
1019	if (dev->in_ctx)
1020		xhci_free_container_ctx(xhci, dev->in_ctx);
1021	if (dev->out_ctx)
1022		xhci_free_container_ctx(xhci, dev->out_ctx);
1023	kfree(dev);
1024
1025	return 0;
1026}
1027
1028void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1029		struct usb_device *udev)
1030{
1031	struct xhci_virt_device *virt_dev;
1032	struct xhci_ep_ctx	*ep0_ctx;
1033	struct xhci_ring	*ep_ring;
1034
1035	virt_dev = xhci->devs[udev->slot_id];
1036	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1037	ep_ring = virt_dev->eps[0].ring;
1038	/*
1039	 * FIXME we don't keep track of the dequeue pointer very well after a
1040	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1041	 * host to our enqueue pointer.  This should only be called after a
1042	 * configured device has reset, so all control transfers should have
1043	 * been completed or cancelled before the reset.
1044	 */
1045	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1046							ep_ring->enqueue)
1047				   | ep_ring->cycle_state);
1048}
1049
1050/*
1051 * The xHCI roothub may have ports of differing speeds in any order in the port
1052 * status registers.
 
1053 *
1054 * The xHCI hardware wants to know the roothub port number that the USB device
1055 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1056 * know is the index of that port under either the USB 2.0 or the USB 3.0
1057 * roothub, but that doesn't give us the real index into the HW port status
1058 * registers. Call xhci_find_raw_port_number() to get real index.
1059 */
1060static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1061		struct usb_device *udev)
1062{
1063	struct usb_device *top_dev;
1064	struct usb_hcd *hcd;
1065
1066	if (udev->speed >= USB_SPEED_SUPER)
1067		hcd = xhci_get_usb3_hcd(xhci);
1068	else
1069		hcd = xhci->main_hcd;
1070
1071	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1072			top_dev = top_dev->parent)
1073		/* Found device below root hub */;
1074
1075	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1076}
1077
1078/* Setup an xHCI virtual device for a Set Address command */
1079int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1080{
1081	struct xhci_virt_device *dev;
1082	struct xhci_ep_ctx	*ep0_ctx;
1083	struct xhci_slot_ctx    *slot_ctx;
1084	u32			port_num;
1085	u32			max_packets;
1086	struct usb_device *top_dev;
1087
1088	dev = xhci->devs[udev->slot_id];
1089	/* Slot ID 0 is reserved */
1090	if (udev->slot_id == 0 || !dev) {
1091		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1092				udev->slot_id);
1093		return -EINVAL;
1094	}
1095	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1096	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1097
1098	/* 3) Only the control endpoint is valid - one endpoint context */
1099	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1100	switch (udev->speed) {
1101	case USB_SPEED_SUPER_PLUS:
1102		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1103		max_packets = MAX_PACKET(512);
1104		break;
1105	case USB_SPEED_SUPER:
1106		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1107		max_packets = MAX_PACKET(512);
1108		break;
1109	case USB_SPEED_HIGH:
1110		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1111		max_packets = MAX_PACKET(64);
1112		break;
1113	/* USB core guesses at a 64-byte max packet first for FS devices */
1114	case USB_SPEED_FULL:
1115		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1116		max_packets = MAX_PACKET(64);
1117		break;
1118	case USB_SPEED_LOW:
1119		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1120		max_packets = MAX_PACKET(8);
1121		break;
 
 
 
 
1122	default:
1123		/* Speed was set earlier, this shouldn't happen. */
1124		return -EINVAL;
1125	}
1126	/* Find the root hub port this device is under */
1127	port_num = xhci_find_real_port_number(xhci, udev);
1128	if (!port_num)
1129		return -EINVAL;
1130	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1131	/* Set the port number in the virtual_device to the faked port number */
1132	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1133			top_dev = top_dev->parent)
1134		/* Found device below root hub */;
1135	dev->fake_port = top_dev->portnum;
1136	dev->real_port = port_num;
1137	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1138	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1139
1140	/* Find the right bandwidth table that this device will be a part of.
1141	 * If this is a full speed device attached directly to a root port (or a
1142	 * decendent of one), it counts as a primary bandwidth domain, not a
1143	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1144	 * will never be created for the HS root hub.
1145	 */
1146	if (!udev->tt || !udev->tt->hub->parent) {
1147		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1148	} else {
1149		struct xhci_root_port_bw_info *rh_bw;
1150		struct xhci_tt_bw_info *tt_bw;
1151
1152		rh_bw = &xhci->rh_bw[port_num - 1];
1153		/* Find the right TT. */
1154		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1155			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1156				continue;
1157
1158			if (!dev->udev->tt->multi ||
1159					(udev->tt->multi &&
1160					 tt_bw->ttport == dev->udev->ttport)) {
1161				dev->bw_table = &tt_bw->bw_table;
1162				dev->tt_info = tt_bw;
1163				break;
1164			}
1165		}
1166		if (!dev->tt_info)
1167			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1168	}
1169
1170	/* Is this a LS/FS device under an external HS hub? */
1171	if (udev->tt && udev->tt->hub->parent) {
1172		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1173						(udev->ttport << 8));
1174		if (udev->tt->multi)
1175			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1176	}
1177	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1178	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1179
1180	/* Step 4 - ring already allocated */
1181	/* Step 5 */
1182	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1183
1184	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1185	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1186					 max_packets);
1187
1188	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1189				   dev->eps[0].ring->cycle_state);
1190
1191	trace_xhci_setup_addressable_virt_device(dev);
1192
1193	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1194
1195	return 0;
1196}
1197
1198/*
1199 * Convert interval expressed as 2^(bInterval - 1) == interval into
1200 * straight exponent value 2^n == interval.
1201 *
1202 */
1203static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1204		struct usb_host_endpoint *ep)
1205{
1206	unsigned int interval;
1207
1208	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1209	if (interval != ep->desc.bInterval - 1)
1210		dev_warn(&udev->dev,
1211			 "ep %#x - rounding interval to %d %sframes\n",
1212			 ep->desc.bEndpointAddress,
1213			 1 << interval,
1214			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1215
1216	if (udev->speed == USB_SPEED_FULL) {
1217		/*
1218		 * Full speed isoc endpoints specify interval in frames,
1219		 * not microframes. We are using microframes everywhere,
1220		 * so adjust accordingly.
1221		 */
1222		interval += 3;	/* 1 frame = 2^3 uframes */
1223	}
1224
1225	return interval;
1226}
1227
1228/*
1229 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1230 * microframes, rounded down to nearest power of 2.
1231 */
1232static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1233		struct usb_host_endpoint *ep, unsigned int desc_interval,
1234		unsigned int min_exponent, unsigned int max_exponent)
1235{
1236	unsigned int interval;
1237
1238	interval = fls(desc_interval) - 1;
1239	interval = clamp_val(interval, min_exponent, max_exponent);
1240	if ((1 << interval) != desc_interval)
1241		dev_dbg(&udev->dev,
1242			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1243			 ep->desc.bEndpointAddress,
1244			 1 << interval,
1245			 desc_interval);
1246
1247	return interval;
1248}
1249
1250static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1251		struct usb_host_endpoint *ep)
1252{
1253	if (ep->desc.bInterval == 0)
1254		return 0;
1255	return xhci_microframes_to_exponent(udev, ep,
1256			ep->desc.bInterval, 0, 15);
1257}
1258
1259
1260static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1261		struct usb_host_endpoint *ep)
1262{
1263	return xhci_microframes_to_exponent(udev, ep,
1264			ep->desc.bInterval * 8, 3, 10);
1265}
1266
1267/* Return the polling or NAK interval.
1268 *
1269 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1270 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1271 *
1272 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1273 * is set to 0.
1274 */
1275static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1276		struct usb_host_endpoint *ep)
1277{
1278	unsigned int interval = 0;
1279
1280	switch (udev->speed) {
1281	case USB_SPEED_HIGH:
1282		/* Max NAK rate */
1283		if (usb_endpoint_xfer_control(&ep->desc) ||
1284		    usb_endpoint_xfer_bulk(&ep->desc)) {
1285			interval = xhci_parse_microframe_interval(udev, ep);
1286			break;
1287		}
1288		fallthrough;	/* SS and HS isoc/int have same decoding */
1289
1290	case USB_SPEED_SUPER_PLUS:
1291	case USB_SPEED_SUPER:
1292		if (usb_endpoint_xfer_int(&ep->desc) ||
1293		    usb_endpoint_xfer_isoc(&ep->desc)) {
1294			interval = xhci_parse_exponent_interval(udev, ep);
1295		}
1296		break;
1297
1298	case USB_SPEED_FULL:
1299		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1300			interval = xhci_parse_exponent_interval(udev, ep);
1301			break;
1302		}
1303		/*
1304		 * Fall through for interrupt endpoint interval decoding
1305		 * since it uses the same rules as low speed interrupt
1306		 * endpoints.
1307		 */
1308		fallthrough;
1309
1310	case USB_SPEED_LOW:
1311		if (usb_endpoint_xfer_int(&ep->desc) ||
1312		    usb_endpoint_xfer_isoc(&ep->desc)) {
1313
1314			interval = xhci_parse_frame_interval(udev, ep);
1315		}
1316		break;
1317
1318	default:
1319		BUG();
1320	}
1321	return interval;
1322}
1323
1324/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1325 * High speed endpoint descriptors can define "the number of additional
1326 * transaction opportunities per microframe", but that goes in the Max Burst
1327 * endpoint context field.
1328 */
1329static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1330		struct usb_host_endpoint *ep)
1331{
1332	if (udev->speed < USB_SPEED_SUPER ||
1333			!usb_endpoint_xfer_isoc(&ep->desc))
1334		return 0;
1335	return ep->ss_ep_comp.bmAttributes;
1336}
1337
1338static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1339				       struct usb_host_endpoint *ep)
1340{
1341	/* Super speed and Plus have max burst in ep companion desc */
1342	if (udev->speed >= USB_SPEED_SUPER)
1343		return ep->ss_ep_comp.bMaxBurst;
1344
1345	if (udev->speed == USB_SPEED_HIGH &&
1346	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1347	     usb_endpoint_xfer_int(&ep->desc)))
1348		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1349
1350	return 0;
1351}
1352
1353static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1354{
1355	int in;
 
1356
1357	in = usb_endpoint_dir_in(&ep->desc);
1358
1359	switch (usb_endpoint_type(&ep->desc)) {
1360	case USB_ENDPOINT_XFER_CONTROL:
1361		return CTRL_EP;
1362	case USB_ENDPOINT_XFER_BULK:
1363		return in ? BULK_IN_EP : BULK_OUT_EP;
1364	case USB_ENDPOINT_XFER_ISOC:
1365		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1366	case USB_ENDPOINT_XFER_INT:
1367		return in ? INT_IN_EP : INT_OUT_EP;
 
 
 
 
 
 
 
 
 
1368	}
1369	return 0;
1370}
1371
1372/* Return the maximum endpoint service interval time (ESIT) payload.
1373 * Basically, this is the maxpacket size, multiplied by the burst size
1374 * and mult size.
1375 */
1376static u32 xhci_get_max_esit_payload(struct usb_device *udev,
 
1377		struct usb_host_endpoint *ep)
1378{
1379	int max_burst;
1380	int max_packet;
1381
1382	/* Only applies for interrupt or isochronous endpoints */
1383	if (usb_endpoint_xfer_control(&ep->desc) ||
1384			usb_endpoint_xfer_bulk(&ep->desc))
1385		return 0;
1386
1387	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1388	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1389	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1390		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1391
1392	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1393	if (udev->speed >= USB_SPEED_SUPER)
1394		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1395
1396	max_packet = usb_endpoint_maxp(&ep->desc);
1397	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1398	/* A 0 in max burst means 1 transfer per ESIT */
1399	return max_packet * max_burst;
1400}
1401
1402/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1403 * Drivers will have to call usb_alloc_streams() to do that.
1404 */
1405int xhci_endpoint_init(struct xhci_hcd *xhci,
1406		struct xhci_virt_device *virt_dev,
1407		struct usb_device *udev,
1408		struct usb_host_endpoint *ep,
1409		gfp_t mem_flags)
1410{
1411	unsigned int ep_index;
1412	struct xhci_ep_ctx *ep_ctx;
1413	struct xhci_ring *ep_ring;
1414	unsigned int max_packet;
1415	enum xhci_ring_type ring_type;
 
1416	u32 max_esit_payload;
1417	u32 endpoint_type;
1418	unsigned int max_burst;
1419	unsigned int interval;
1420	unsigned int mult;
1421	unsigned int avg_trb_len;
1422	unsigned int err_count = 0;
1423
1424	ep_index = xhci_get_endpoint_index(&ep->desc);
1425	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1426
1427	endpoint_type = xhci_get_endpoint_type(ep);
1428	if (!endpoint_type)
1429		return -EINVAL;
 
1430
1431	ring_type = usb_endpoint_type(&ep->desc);
1432
1433	/*
1434	 * Get values to fill the endpoint context, mostly from ep descriptor.
1435	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1436	 * have no clue on scatter gather list entry size. For Isoc and Int,
1437	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1438	 */
1439	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1440	interval = xhci_get_endpoint_interval(udev, ep);
1441
1442	/* Periodic endpoint bInterval limit quirk */
1443	if (usb_endpoint_xfer_int(&ep->desc) ||
1444	    usb_endpoint_xfer_isoc(&ep->desc)) {
1445		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1446		    udev->speed >= USB_SPEED_HIGH &&
1447		    interval >= 7) {
1448			interval = 6;
1449		}
1450	}
 
 
 
1451
1452	mult = xhci_get_endpoint_mult(udev, ep);
1453	max_packet = usb_endpoint_maxp(&ep->desc);
1454	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1455	avg_trb_len = max_esit_payload;
1456
1457	/* FIXME dig Mult and streams info out of ep companion desc */
1458
1459	/* Allow 3 retries for everything but isoc, set CErr = 3 */
 
 
1460	if (!usb_endpoint_xfer_isoc(&ep->desc))
1461		err_count = 3;
1462	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1463	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1464		if (udev->speed == USB_SPEED_HIGH)
 
 
 
 
 
 
 
 
 
 
 
1465			max_packet = 512;
1466		if (udev->speed == USB_SPEED_FULL) {
1467			max_packet = rounddown_pow_of_two(max_packet);
1468			max_packet = clamp_val(max_packet, 8, 64);
 
 
 
 
1469		}
 
 
 
 
 
 
1470	}
1471	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1472	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1473		avg_trb_len = 8;
1474	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1475	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1476		mult = 0;
1477
1478	/* Set up the endpoint ring */
1479	virt_dev->eps[ep_index].new_ring =
1480		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1481	if (!virt_dev->eps[ep_index].new_ring)
1482		return -ENOMEM;
1483
1484	virt_dev->eps[ep_index].skip = false;
1485	ep_ring = virt_dev->eps[ep_index].new_ring;
1486
1487	/* Fill the endpoint context */
1488	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1489				      EP_INTERVAL(interval) |
1490				      EP_MULT(mult));
1491	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1492				       MAX_PACKET(max_packet) |
1493				       MAX_BURST(max_burst) |
1494				       ERROR_COUNT(err_count));
1495	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1496				  ep_ring->cycle_state);
1497
1498	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1499				      EP_AVG_TRB_LENGTH(avg_trb_len));
 
 
 
 
 
 
 
 
 
 
1500
 
1501	return 0;
1502}
1503
1504void xhci_endpoint_zero(struct xhci_hcd *xhci,
1505		struct xhci_virt_device *virt_dev,
1506		struct usb_host_endpoint *ep)
1507{
1508	unsigned int ep_index;
1509	struct xhci_ep_ctx *ep_ctx;
1510
1511	ep_index = xhci_get_endpoint_index(&ep->desc);
1512	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1513
1514	ep_ctx->ep_info = 0;
1515	ep_ctx->ep_info2 = 0;
1516	ep_ctx->deq = 0;
1517	ep_ctx->tx_info = 0;
1518	/* Don't free the endpoint ring until the set interface or configuration
1519	 * request succeeds.
1520	 */
1521}
1522
1523void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1524{
1525	bw_info->ep_interval = 0;
1526	bw_info->mult = 0;
1527	bw_info->num_packets = 0;
1528	bw_info->max_packet_size = 0;
1529	bw_info->type = 0;
1530	bw_info->max_esit_payload = 0;
1531}
1532
1533void xhci_update_bw_info(struct xhci_hcd *xhci,
1534		struct xhci_container_ctx *in_ctx,
1535		struct xhci_input_control_ctx *ctrl_ctx,
1536		struct xhci_virt_device *virt_dev)
1537{
1538	struct xhci_bw_info *bw_info;
1539	struct xhci_ep_ctx *ep_ctx;
1540	unsigned int ep_type;
1541	int i;
1542
1543	for (i = 1; i < 31; i++) {
1544		bw_info = &virt_dev->eps[i].bw_info;
1545
1546		/* We can't tell what endpoint type is being dropped, but
1547		 * unconditionally clearing the bandwidth info for non-periodic
1548		 * endpoints should be harmless because the info will never be
1549		 * set in the first place.
1550		 */
1551		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1552			/* Dropped endpoint */
1553			xhci_clear_endpoint_bw_info(bw_info);
1554			continue;
1555		}
1556
1557		if (EP_IS_ADDED(ctrl_ctx, i)) {
1558			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1559			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1560
1561			/* Ignore non-periodic endpoints */
1562			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1563					ep_type != ISOC_IN_EP &&
1564					ep_type != INT_IN_EP)
1565				continue;
1566
1567			/* Added or changed endpoint */
1568			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1569					le32_to_cpu(ep_ctx->ep_info));
1570			/* Number of packets and mult are zero-based in the
1571			 * input context, but we want one-based for the
1572			 * interval table.
1573			 */
1574			bw_info->mult = CTX_TO_EP_MULT(
1575					le32_to_cpu(ep_ctx->ep_info)) + 1;
1576			bw_info->num_packets = CTX_TO_MAX_BURST(
1577					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1578			bw_info->max_packet_size = MAX_PACKET_DECODED(
1579					le32_to_cpu(ep_ctx->ep_info2));
1580			bw_info->type = ep_type;
1581			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1582					le32_to_cpu(ep_ctx->tx_info));
1583		}
1584	}
1585}
1586
1587/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1588 * Useful when you want to change one particular aspect of the endpoint and then
1589 * issue a configure endpoint command.
1590 */
1591void xhci_endpoint_copy(struct xhci_hcd *xhci,
1592		struct xhci_container_ctx *in_ctx,
1593		struct xhci_container_ctx *out_ctx,
1594		unsigned int ep_index)
1595{
1596	struct xhci_ep_ctx *out_ep_ctx;
1597	struct xhci_ep_ctx *in_ep_ctx;
1598
1599	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1600	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1601
1602	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1603	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1604	in_ep_ctx->deq = out_ep_ctx->deq;
1605	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1606	if (xhci->quirks & XHCI_MTK_HOST) {
1607		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1608		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1609	}
1610}
1611
1612/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1613 * Useful when you want to change one particular aspect of the endpoint and then
1614 * issue a configure endpoint command.  Only the context entries field matters,
1615 * but we'll copy the whole thing anyway.
1616 */
1617void xhci_slot_copy(struct xhci_hcd *xhci,
1618		struct xhci_container_ctx *in_ctx,
1619		struct xhci_container_ctx *out_ctx)
1620{
1621	struct xhci_slot_ctx *in_slot_ctx;
1622	struct xhci_slot_ctx *out_slot_ctx;
1623
1624	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1625	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1626
1627	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1628	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1629	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1630	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1631}
1632
1633/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1634static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1635{
1636	int i;
1637	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1638	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1639
1640	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1641			"Allocating %d scratchpad buffers", num_sp);
1642
1643	if (!num_sp)
1644		return 0;
1645
1646	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1647				dev_to_node(dev));
1648	if (!xhci->scratchpad)
1649		goto fail_sp;
1650
1651	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1652				     size_mul(sizeof(u64), num_sp),
1653				     &xhci->scratchpad->sp_dma, flags);
1654	if (!xhci->scratchpad->sp_array)
1655		goto fail_sp2;
1656
1657	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1658					flags, dev_to_node(dev));
1659	if (!xhci->scratchpad->sp_buffers)
1660		goto fail_sp3;
1661
 
 
 
 
 
 
1662	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1663	for (i = 0; i < num_sp; i++) {
1664		dma_addr_t dma;
1665		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1666					       flags);
1667		if (!buf)
1668			goto fail_sp4;
1669
1670		xhci->scratchpad->sp_array[i] = dma;
1671		xhci->scratchpad->sp_buffers[i] = buf;
 
1672	}
1673
1674	return 0;
1675
1676 fail_sp4:
1677	while (i--)
1678		dma_free_coherent(dev, xhci->page_size,
1679				    xhci->scratchpad->sp_buffers[i],
1680				    xhci->scratchpad->sp_array[i]);
 
 
1681
 
1682	kfree(xhci->scratchpad->sp_buffers);
1683
1684 fail_sp3:
1685	dma_free_coherent(dev, num_sp * sizeof(u64),
1686			    xhci->scratchpad->sp_array,
1687			    xhci->scratchpad->sp_dma);
1688
1689 fail_sp2:
1690	kfree(xhci->scratchpad);
1691	xhci->scratchpad = NULL;
1692
1693 fail_sp:
1694	return -ENOMEM;
1695}
1696
1697static void scratchpad_free(struct xhci_hcd *xhci)
1698{
1699	int num_sp;
1700	int i;
1701	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1702
1703	if (!xhci->scratchpad)
1704		return;
1705
1706	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1707
1708	for (i = 0; i < num_sp; i++) {
1709		dma_free_coherent(dev, xhci->page_size,
1710				    xhci->scratchpad->sp_buffers[i],
1711				    xhci->scratchpad->sp_array[i]);
1712	}
 
1713	kfree(xhci->scratchpad->sp_buffers);
1714	dma_free_coherent(dev, num_sp * sizeof(u64),
1715			    xhci->scratchpad->sp_array,
1716			    xhci->scratchpad->sp_dma);
1717	kfree(xhci->scratchpad);
1718	xhci->scratchpad = NULL;
1719}
1720
1721struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1722		bool allocate_completion, gfp_t mem_flags)
 
1723{
1724	struct xhci_command *command;
1725	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1726
1727	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1728	if (!command)
1729		return NULL;
1730
 
 
 
 
 
 
 
 
 
 
1731	if (allocate_completion) {
1732		command->completion =
1733			kzalloc_node(sizeof(struct completion), mem_flags,
1734				dev_to_node(dev));
1735		if (!command->completion) {
 
1736			kfree(command);
1737			return NULL;
1738		}
1739		init_completion(command->completion);
1740	}
1741
1742	command->status = 0;
1743	/* set default timeout to 5000 ms */
1744	command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT;
1745	INIT_LIST_HEAD(&command->cmd_list);
1746	return command;
1747}
1748
1749struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1750		bool allocate_completion, gfp_t mem_flags)
1751{
1752	struct xhci_command *command;
1753
1754	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1755	if (!command)
1756		return NULL;
1757
1758	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1759						   mem_flags);
1760	if (!command->in_ctx) {
1761		kfree(command->completion);
1762		kfree(command);
1763		return NULL;
1764	}
1765	return command;
1766}
1767
1768void xhci_urb_free_priv(struct urb_priv *urb_priv)
1769{
1770	kfree(urb_priv);
1771}
1772
1773void xhci_free_command(struct xhci_hcd *xhci,
1774		struct xhci_command *command)
1775{
1776	xhci_free_container_ctx(xhci,
1777			command->in_ctx);
1778	kfree(command->completion);
1779	kfree(command);
1780}
1781
1782static int xhci_alloc_erst(struct xhci_hcd *xhci,
1783		    struct xhci_ring *evt_ring,
1784		    struct xhci_erst *erst,
1785		    gfp_t flags)
1786{
1787	size_t size;
1788	unsigned int val;
1789	struct xhci_segment *seg;
1790	struct xhci_erst_entry *entry;
1791
1792	size = size_mul(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1793	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1794					   size, &erst->erst_dma_addr, flags);
1795	if (!erst->entries)
1796		return -ENOMEM;
1797
1798	erst->num_entries = evt_ring->num_segs;
1799
1800	seg = evt_ring->first_seg;
1801	for (val = 0; val < evt_ring->num_segs; val++) {
1802		entry = &erst->entries[val];
1803		entry->seg_addr = cpu_to_le64(seg->dma);
1804		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1805		entry->rsvd = 0;
1806		seg = seg->next;
1807	}
1808
1809	return 0;
1810}
1811
1812static void
1813xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1814{
1815	u32 tmp;
1816
1817	if (!ir)
1818		return;
1819
1820	/*
1821	 * Clean out interrupter registers except ERSTBA. Clearing either the
1822	 * low or high 32 bits of ERSTBA immediately causes the controller to
1823	 * dereference the partially cleared 64 bit address, causing IOMMU error.
1824	 */
1825	if (ir->ir_set) {
1826		tmp = readl(&ir->ir_set->erst_size);
1827		tmp &= ERST_SIZE_MASK;
1828		writel(tmp, &ir->ir_set->erst_size);
1829
1830		xhci_write_64(xhci, ERST_EHB, &ir->ir_set->erst_dequeue);
1831	}
1832}
1833
1834static void
1835xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1836{
1837	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1838	size_t erst_size;
1839
1840	if (!ir)
1841		return;
1842
1843	erst_size = sizeof(struct xhci_erst_entry) * ir->erst.num_entries;
1844	if (ir->erst.entries)
1845		dma_free_coherent(dev, erst_size,
1846				  ir->erst.entries,
1847				  ir->erst.erst_dma_addr);
1848	ir->erst.entries = NULL;
1849
1850	/* free interrupter event ring */
1851	if (ir->event_ring)
1852		xhci_ring_free(xhci, ir->event_ring);
1853
1854	ir->event_ring = NULL;
1855
1856	kfree(ir);
1857}
1858
1859void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir)
1860{
1861	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1862	unsigned int intr_num;
1863
1864	spin_lock_irq(&xhci->lock);
1865
1866	/* interrupter 0 is primary interrupter, don't touch it */
1867	if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) {
1868		xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n");
1869		spin_unlock_irq(&xhci->lock);
1870		return;
1871	}
1872
1873	intr_num = ir->intr_num;
1874
1875	xhci_remove_interrupter(xhci, ir);
1876	xhci->interrupters[intr_num] = NULL;
1877
1878	spin_unlock_irq(&xhci->lock);
1879
1880	xhci_free_interrupter(xhci, ir);
1881}
1882EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter);
1883
1884void xhci_mem_cleanup(struct xhci_hcd *xhci)
1885{
1886	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
 
 
1887	int i, j, num_ports;
1888
1889	cancel_delayed_work_sync(&xhci->cmd_timer);
1890
1891	for (i = 0; i < xhci->max_interrupters; i++) {
1892		if (xhci->interrupters[i]) {
1893			xhci_remove_interrupter(xhci, xhci->interrupters[i]);
1894			xhci_free_interrupter(xhci, xhci->interrupters[i]);
1895			xhci->interrupters[i] = NULL;
1896		}
1897	}
1898	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters");
 
1899
 
 
1900	if (xhci->cmd_ring)
1901		xhci_ring_free(xhci, xhci->cmd_ring);
1902	xhci->cmd_ring = NULL;
1903	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1904	xhci_cleanup_command_queue(xhci);
 
 
 
 
1905
1906	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1907	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1908		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1909		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1910			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1911			while (!list_empty(ep))
1912				list_del_init(ep->next);
1913		}
1914	}
1915
1916	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1917		xhci_free_virt_devices_depth_first(xhci, i);
1918
1919	dma_pool_destroy(xhci->segment_pool);
 
1920	xhci->segment_pool = NULL;
1921	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1922
1923	dma_pool_destroy(xhci->device_pool);
 
1924	xhci->device_pool = NULL;
1925	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1926
1927	dma_pool_destroy(xhci->small_streams_pool);
 
1928	xhci->small_streams_pool = NULL;
1929	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1930			"Freed small stream array pool");
1931
1932	dma_pool_destroy(xhci->medium_streams_pool);
 
1933	xhci->medium_streams_pool = NULL;
1934	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1935			"Freed medium stream array pool");
1936
1937	if (xhci->dcbaa)
1938		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1939				xhci->dcbaa, xhci->dcbaa->dma);
1940	xhci->dcbaa = NULL;
1941
1942	scratchpad_free(xhci);
1943
1944	if (!xhci->rh_bw)
1945		goto no_bw;
1946
1947	for (i = 0; i < num_ports; i++) {
1948		struct xhci_tt_bw_info *tt, *n;
1949		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1950			list_del(&tt->tt_list);
1951			kfree(tt);
1952		}
1953	}
1954
1955no_bw:
1956	xhci->cmd_ring_reserved_trbs = 0;
1957	xhci->usb2_rhub.num_ports = 0;
1958	xhci->usb3_rhub.num_ports = 0;
1959	xhci->num_active_eps = 0;
1960	kfree(xhci->usb2_rhub.ports);
1961	kfree(xhci->usb3_rhub.ports);
1962	kfree(xhci->hw_ports);
1963	kfree(xhci->rh_bw);
1964	kfree(xhci->ext_caps);
1965	for (i = 0; i < xhci->num_port_caps; i++)
1966		kfree(xhci->port_caps[i].psi);
1967	kfree(xhci->port_caps);
1968	kfree(xhci->interrupters);
1969	xhci->num_port_caps = 0;
1970
1971	xhci->usb2_rhub.ports = NULL;
1972	xhci->usb3_rhub.ports = NULL;
1973	xhci->hw_ports = NULL;
1974	xhci->rh_bw = NULL;
1975	xhci->ext_caps = NULL;
1976	xhci->port_caps = NULL;
1977	xhci->interrupters = NULL;
1978
1979	xhci->page_size = 0;
1980	xhci->page_shift = 0;
1981	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1982	xhci->usb3_rhub.bus_state.bus_suspended = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1983}
1984
1985static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1986{
 
1987	dma_addr_t deq;
1988
1989	deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
1990			ir->event_ring->dequeue);
1991	if (!deq)
1992		xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
 
1993	/* Update HC event ring dequeue pointer */
 
 
1994	/* Don't clear the EHB bit (which is RW1C) because
1995	 * there might be more events to service.
1996	 */
 
1997	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1998		       "// Write event ring dequeue pointer, preserving EHB bit");
1999	xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue);
 
 
2000}
2001
2002static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2003		__le32 __iomem *addr, int max_caps)
2004{
2005	u32 temp, port_offset, port_count;
2006	int i;
2007	u8 major_revision, minor_revision, tmp_minor_revision;
2008	struct xhci_hub *rhub;
2009	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2010	struct xhci_port_cap *port_cap;
2011
2012	temp = readl(addr);
2013	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2014	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2015
2016	if (major_revision == 0x03) {
2017		rhub = &xhci->usb3_rhub;
2018		/*
2019		 * Some hosts incorrectly use sub-minor version for minor
2020		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2021		 * for bcdUSB 0x310). Since there is no USB release with sub
2022		 * minor version 0x301 to 0x309, we can assume that they are
2023		 * incorrect and fix it here.
2024		 */
2025		if (minor_revision > 0x00 && minor_revision < 0x10)
2026			minor_revision <<= 4;
2027		/*
2028		 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2029		 * but only support Gen1.
2030		 */
2031		if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2032			tmp_minor_revision = minor_revision;
2033			minor_revision = 0;
2034		}
2035
2036	} else if (major_revision <= 0x02) {
2037		rhub = &xhci->usb2_rhub;
2038	} else {
2039		xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
2040				addr, major_revision);
2041		/* Ignoring port protocol we can't understand. FIXME */
2042		return;
2043	}
2044
2045	/* Port offset and count in the third dword, see section 7.2 */
2046	temp = readl(addr + 2);
2047	port_offset = XHCI_EXT_PORT_OFF(temp);
2048	port_count = XHCI_EXT_PORT_COUNT(temp);
2049	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2050		       "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2051		       addr, port_offset, port_count, major_revision);
 
2052	/* Port count includes the current port offset */
2053	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2054		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2055		return;
2056
2057	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2058	if (xhci->num_port_caps > max_caps)
2059		return;
2060
2061	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2062
2063	if (port_cap->psi_count) {
2064		port_cap->psi = kcalloc_node(port_cap->psi_count,
2065					     sizeof(*port_cap->psi),
2066					     GFP_KERNEL, dev_to_node(dev));
2067		if (!port_cap->psi)
2068			port_cap->psi_count = 0;
2069
2070		port_cap->psi_uid_count++;
2071		for (i = 0; i < port_cap->psi_count; i++) {
2072			port_cap->psi[i] = readl(addr + 4 + i);
2073
2074			/* count unique ID values, two consecutive entries can
2075			 * have the same ID if link is assymetric
2076			 */
2077			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2078				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2079				port_cap->psi_uid_count++;
2080
2081			if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2082			    major_revision == 0x03 &&
2083			    XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2084				minor_revision = tmp_minor_revision;
2085
2086			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2087				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2088				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2089				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2090				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2091				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2092				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2093		}
2094	}
2095
2096	rhub->maj_rev = major_revision;
2097
2098	if (rhub->min_rev < minor_revision)
2099		rhub->min_rev = minor_revision;
2100
2101	port_cap->maj_rev = major_revision;
2102	port_cap->min_rev = minor_revision;
2103
2104	/* cache usb2 port capabilities */
2105	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2106		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2107
2108	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2109		 (temp & XHCI_HLC)) {
 
2110		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2111			       "xHCI 1.0: support USB2 hardware lpm");
2112		xhci->hw_lpm_support = 1;
 
 
 
 
 
 
 
 
 
 
 
2113	}
2114
2115	port_offset--;
2116	for (i = port_offset; i < (port_offset + port_count); i++) {
2117		struct xhci_port *hw_port = &xhci->hw_ports[i];
2118		/* Duplicate entry.  Ignore the port if the revisions differ. */
2119		if (hw_port->rhub) {
2120			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2121			xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2122					hw_port->rhub->maj_rev, major_revision);
 
 
2123			/* Only adjust the roothub port counts if we haven't
2124			 * found a similar duplicate.
2125			 */
2126			if (hw_port->rhub != rhub &&
2127				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2128				hw_port->rhub->num_ports--;
2129				hw_port->hcd_portnum = DUPLICATE_ENTRY;
 
 
 
2130			}
 
2131			continue;
2132		}
2133		hw_port->rhub = rhub;
2134		hw_port->port_cap = port_cap;
2135		rhub->num_ports++;
 
 
2136	}
2137	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2138}
2139
2140static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2141					struct xhci_hub *rhub, gfp_t flags)
2142{
2143	int port_index = 0;
2144	int i;
2145	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2146
2147	if (!rhub->num_ports)
2148		return;
2149	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2150			flags, dev_to_node(dev));
2151	if (!rhub->ports)
2152		return;
2153
2154	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2155		if (xhci->hw_ports[i].rhub != rhub ||
2156		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2157			continue;
2158		xhci->hw_ports[i].hcd_portnum = port_index;
2159		rhub->ports[port_index] = &xhci->hw_ports[i];
2160		port_index++;
2161		if (port_index == rhub->num_ports)
2162			break;
2163	}
2164}
2165
2166/*
2167 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2168 * specify what speeds each port is supposed to be.  We can't count on the port
2169 * speed bits in the PORTSC register being correct until a device is connected,
2170 * but we need to set up the two fake roothubs with the correct number of USB
2171 * 3.0 and USB 2.0 ports at host controller initialization time.
2172 */
2173static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2174{
2175	void __iomem *base;
2176	u32 offset;
2177	unsigned int num_ports;
2178	int i, j;
2179	int cap_count = 0;
2180	u32 cap_start;
2181	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 
 
 
 
 
 
2182
2183	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2184	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2185				flags, dev_to_node(dev));
2186	if (!xhci->hw_ports)
2187		return -ENOMEM;
2188
2189	for (i = 0; i < num_ports; i++) {
2190		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2191			NUM_PORT_REGS * i;
2192		xhci->hw_ports[i].hw_portnum = i;
2193
2194		init_completion(&xhci->hw_ports[i].rexit_done);
2195		init_completion(&xhci->hw_ports[i].u3exit_done);
2196	}
2197
2198	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2199				   dev_to_node(dev));
2200	if (!xhci->rh_bw)
2201		return -ENOMEM;
2202	for (i = 0; i < num_ports; i++) {
2203		struct xhci_interval_bw_table *bw_table;
2204
2205		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2206		bw_table = &xhci->rh_bw[i].bw_table;
2207		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2208			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2209	}
2210	base = &xhci->cap_regs->hc_capbase;
2211
2212	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2213	if (!cap_start) {
2214		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2215		return -ENODEV;
2216	}
 
 
 
 
2217
2218	offset = cap_start;
2219	/* count extended protocol capability entries for later caching */
2220	while (offset) {
2221		cap_count++;
2222		offset = xhci_find_next_ext_cap(base, offset,
2223						      XHCI_EXT_CAPS_PROTOCOL);
2224	}
 
 
 
2225
2226	xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2227				flags, dev_to_node(dev));
2228	if (!xhci->ext_caps)
2229		return -ENOMEM;
2230
2231	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2232				flags, dev_to_node(dev));
2233	if (!xhci->port_caps)
2234		return -ENOMEM;
2235
2236	offset = cap_start;
2237
2238	while (offset) {
2239		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2240		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2241		    num_ports)
 
 
 
 
2242			break;
2243		offset = xhci_find_next_ext_cap(base, offset,
2244						XHCI_EXT_CAPS_PROTOCOL);
 
 
 
2245	}
2246	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
 
2247		xhci_warn(xhci, "No ports on the roothubs?\n");
2248		return -ENODEV;
2249	}
2250	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2251		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2252		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2253
2254	/* Place limits on the number of roothub ports so that the hub
2255	 * descriptors aren't longer than the USB core will allocate.
2256	 */
2257	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2258		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2259				"Limiting USB 3.0 roothub ports to %u.",
2260				USB_SS_MAXPORTS);
2261		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2262	}
2263	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2264		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2265				"Limiting USB 2.0 roothub ports to %u.",
2266				USB_MAXCHILDREN);
2267		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2268	}
2269
2270	if (!xhci->usb2_rhub.num_ports)
2271		xhci_info(xhci, "USB2 root hub has no ports\n");
2272
2273	if (!xhci->usb3_rhub.num_ports)
2274		xhci_info(xhci, "USB3 root hub has no ports\n");
2275
2276	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2277	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2278
2279	return 0;
2280}
2281
2282static struct xhci_interrupter *
2283xhci_alloc_interrupter(struct xhci_hcd *xhci, int segs, gfp_t flags)
2284{
2285	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2286	struct xhci_interrupter *ir;
2287	unsigned int num_segs = segs;
2288	int ret;
2289
2290	ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2291	if (!ir)
2292		return NULL;
2293
2294	/* number of ring segments should be greater than 0 */
2295	if (segs <= 0)
2296		num_segs = min_t(unsigned int, 1 << HCS_ERST_MAX(xhci->hcs_params2),
2297			 ERST_MAX_SEGS);
2298
2299	ir->event_ring = xhci_ring_alloc(xhci, num_segs, 1, TYPE_EVENT, 0,
2300					 flags);
2301	if (!ir->event_ring) {
2302		xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2303		kfree(ir);
2304		return NULL;
2305	}
2306
2307	ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2308	if (ret) {
2309		xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2310		xhci_ring_free(xhci, ir->event_ring);
2311		kfree(ir);
2312		return NULL;
2313	}
2314
2315	return ir;
2316}
2317
2318static int
2319xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2320		     unsigned int intr_num)
2321{
2322	u64 erst_base;
2323	u32 erst_size;
2324
2325	if (intr_num >= xhci->max_interrupters) {
2326		xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n",
2327			  intr_num, xhci->max_interrupters);
2328		return -EINVAL;
2329	}
2330
2331	if (xhci->interrupters[intr_num]) {
2332		xhci_warn(xhci, "Interrupter %d\n already set up", intr_num);
2333		return -EINVAL;
2334	}
2335
2336	xhci->interrupters[intr_num] = ir;
2337	ir->intr_num = intr_num;
2338	ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2339
2340	/* set ERST count with the number of entries in the segment table */
2341	erst_size = readl(&ir->ir_set->erst_size);
2342	erst_size &= ERST_SIZE_MASK;
2343	erst_size |= ir->event_ring->num_segs;
2344	writel(erst_size, &ir->ir_set->erst_size);
2345
2346	erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2347	erst_base &= ERST_BASE_RSVDP;
2348	erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP;
2349	xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2350
2351	/* Set the event ring dequeue address of this interrupter */
2352	xhci_set_hc_event_deq(xhci, ir);
2353
2354	return 0;
2355}
2356
2357struct xhci_interrupter *
2358xhci_create_secondary_interrupter(struct usb_hcd *hcd, int num_seg)
2359{
2360	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2361	struct xhci_interrupter *ir;
2362	unsigned int i;
2363	int err = -ENOSPC;
2364
2365	if (!xhci->interrupters || xhci->max_interrupters <= 1)
2366		return NULL;
2367
2368	ir = xhci_alloc_interrupter(xhci, num_seg, GFP_KERNEL);
2369	if (!ir)
2370		return NULL;
2371
2372	spin_lock_irq(&xhci->lock);
 
 
 
 
 
2373
2374	/* Find available secondary interrupter, interrupter 0 is reserved for primary */
2375	for (i = 1; i < xhci->max_interrupters; i++) {
2376		if (xhci->interrupters[i] == NULL) {
2377			err = xhci_add_interrupter(xhci, ir, i);
2378			break;
 
 
 
 
 
2379		}
2380	}
 
 
 
 
 
2381
2382	spin_unlock_irq(&xhci->lock);
2383
2384	if (err) {
2385		xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n",
2386			  xhci->max_interrupters);
2387		xhci_free_interrupter(xhci, ir);
2388		return NULL;
 
 
 
 
 
 
 
2389	}
2390
2391	xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n",
2392		 i, xhci->max_interrupters);
2393
2394	return ir;
2395}
2396EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter);
2397
2398int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2399{
2400	struct xhci_interrupter *ir;
2401	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2402	dma_addr_t	dma;
 
2403	unsigned int	val, val2;
2404	u64		val_64;
2405	u32		page_size, temp;
2406	int		i;
2407
2408	INIT_LIST_HEAD(&xhci->cmd_list);
2409
2410	/* init command timeout work */
2411	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2412	init_completion(&xhci->cmd_ring_stop_completion);
2413
2414	page_size = readl(&xhci->op_regs->page_size);
2415	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416			"Supported page size register = 0x%x", page_size);
2417	i = ffs(page_size);
 
 
 
 
2418	if (i < 16)
2419		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2420			"Supported page size of %iK", (1 << (i+12)) / 1024);
2421	else
2422		xhci_warn(xhci, "WARN: no supported page size\n");
2423	/* Use 4K pages, since that's common and the minimum the HC supports */
2424	xhci->page_shift = 12;
2425	xhci->page_size = 1 << xhci->page_shift;
2426	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2427			"HCD page size set to %iK", xhci->page_size / 1024);
2428
2429	/*
2430	 * Program the Number of Device Slots Enabled field in the CONFIG
2431	 * register with the max value of slots the HC can handle.
2432	 */
2433	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2434	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2435			"// xHC can handle at most %d device slots.", val);
2436	val2 = readl(&xhci->op_regs->config_reg);
2437	val |= (val2 & ~HCS_SLOTS_MASK);
2438	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2439			"// Setting Max device slots reg = 0x%x.", val);
2440	writel(val, &xhci->op_regs->config_reg);
2441
2442	/*
2443	 * xHCI section 5.4.6 - Device Context array must be
2444	 * "physically contiguous and 64-byte (cache line) aligned".
2445	 */
2446	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2447			flags);
2448	if (!xhci->dcbaa)
2449		goto fail;
 
2450	xhci->dcbaa->dma = dma;
2451	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2452			"// Device context base array address = 0x%pad (DMA), %p (virt)",
2453			&xhci->dcbaa->dma, xhci->dcbaa);
2454	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2455
2456	/*
2457	 * Initialize the ring segment pool.  The ring must be a contiguous
2458	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2459	 * however, the command ring segment needs 64-byte aligned segments
2460	 * and our use of dma addresses in the trb_address_map radix tree needs
2461	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2462	 */
2463	if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
2464		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2465				TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2466	else
2467		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2468				TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2469
2470	/* See Table 46 and Note on Figure 55 */
2471	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2472			2112, 64, xhci->page_size);
2473	if (!xhci->segment_pool || !xhci->device_pool)
2474		goto fail;
2475
2476	/* Linear stream context arrays don't have any boundary restrictions,
2477	 * and only need to be 16-byte aligned.
2478	 */
2479	xhci->small_streams_pool =
2480		dma_pool_create("xHCI 256 byte stream ctx arrays",
2481			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2482	xhci->medium_streams_pool =
2483		dma_pool_create("xHCI 1KB stream ctx arrays",
2484			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2485	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2486	 * will be allocated with dma_alloc_coherent()
2487	 */
2488
2489	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2490		goto fail;
2491
2492	/* Set up the command ring to have one segments for now. */
2493	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2494	if (!xhci->cmd_ring)
2495		goto fail;
2496	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2497			"Allocated command ring at %p", xhci->cmd_ring);
2498	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2499			&xhci->cmd_ring->first_seg->dma);
2500
2501	/* Set the address in the Command Ring Control register */
2502	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2503	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2504		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2505		xhci->cmd_ring->cycle_state;
2506	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2507			"// Setting command ring address to 0x%016llx", val_64);
2508	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 
 
 
 
 
2509
2510	/* Reserve one command ring TRB for disabling LPM.
2511	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2512	 * disabling LPM, we only need to reserve one TRB for all devices.
2513	 */
2514	xhci->cmd_ring_reserved_trbs++;
2515
2516	val = readl(&xhci->cap_regs->db_off);
2517	val &= DBOFF_MASK;
2518	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2519		       "// Doorbell array is located at offset 0x%x from cap regs base addr",
2520		       val);
2521	xhci->dba = (void __iomem *) xhci->cap_regs + val;
 
 
 
 
2522
2523	/* Allocate and set up primary interrupter 0 with an event ring. */
2524	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2525		       "Allocating primary event ring");
2526	xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters),
2527					  flags, dev_to_node(dev));
2528
2529	ir = xhci_alloc_interrupter(xhci, 0, flags);
2530	if (!ir)
 
 
2531		goto fail;
2532
2533	if (xhci_add_interrupter(xhci, ir, 0))
 
 
 
2534		goto fail;
 
 
 
2535
2536	xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2537
2538	/*
2539	 * XXX: Might need to set the Interrupter Moderation Register to
2540	 * something other than the default (~1ms minimum between interrupts).
2541	 * See section 5.5.1.2.
2542	 */
2543	for (i = 0; i < MAX_HC_SLOTS; i++)
 
2544		xhci->devs[i] = NULL;
 
 
 
 
 
 
2545
2546	if (scratchpad_alloc(xhci, flags))
2547		goto fail;
2548	if (xhci_setup_port_arrays(xhci, flags))
2549		goto fail;
2550
2551	/* Enable USB 3.0 device notifications for function remote wake, which
2552	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2553	 * U3 (device suspend).
2554	 */
2555	temp = readl(&xhci->op_regs->dev_notification);
2556	temp &= ~DEV_NOTE_MASK;
2557	temp |= DEV_NOTE_FWAKE;
2558	writel(temp, &xhci->op_regs->dev_notification);
2559
2560	return 0;
2561
2562fail:
 
2563	xhci_halt(xhci);
2564	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2565	xhci_mem_cleanup(xhci);
2566	return -ENOMEM;
2567}
v3.15
 
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/usb.h>
 
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/dmapool.h>
  27#include <linux/dma-mapping.h>
  28
  29#include "xhci.h"
  30#include "xhci-trace.h"
 
  31
  32/*
  33 * Allocates a generic ring segment from the ring pool, sets the dma address,
  34 * initializes the segment to zero, and sets the private next pointer to NULL.
  35 *
  36 * Section 4.11.1.1:
  37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  38 */
  39static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  40					unsigned int cycle_state, gfp_t flags)
 
 
 
  41{
  42	struct xhci_segment *seg;
  43	dma_addr_t	dma;
  44	int		i;
 
  45
  46	seg = kzalloc(sizeof *seg, flags);
  47	if (!seg)
  48		return NULL;
  49
  50	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
  51	if (!seg->trbs) {
  52		kfree(seg);
  53		return NULL;
  54	}
  55
  56	memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
 
 
 
 
 
 
 
 
  57	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  58	if (cycle_state == 0) {
  59		for (i = 0; i < TRBS_PER_SEGMENT; i++)
  60			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
  61	}
 
  62	seg->dma = dma;
  63	seg->next = NULL;
  64
  65	return seg;
  66}
  67
  68static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  69{
  70	if (seg->trbs) {
  71		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  72		seg->trbs = NULL;
  73	}
 
  74	kfree(seg);
  75}
  76
  77static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  78				struct xhci_segment *first)
  79{
  80	struct xhci_segment *seg;
  81
  82	seg = first->next;
  83	while (seg != first) {
  84		struct xhci_segment *next = seg->next;
  85		xhci_segment_free(xhci, seg);
  86		seg = next;
  87	}
  88	xhci_segment_free(xhci, first);
  89}
  90
  91/*
  92 * Make the prev segment point to the next segment.
  93 *
  94 * Change the last TRB in the prev segment to be a Link TRB which points to the
  95 * DMA address of the next segment.  The caller needs to set any Link TRB
  96 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  97 */
  98static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  99		struct xhci_segment *next, enum xhci_ring_type type)
 
 100{
 101	u32 val;
 102
 103	if (!prev || !next)
 104		return;
 105	prev->next = next;
 106	if (type != TYPE_EVENT) {
 107		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 108			cpu_to_le64(next->dma);
 109
 110		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 111		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 112		val &= ~TRB_TYPE_BITMASK;
 113		val |= TRB_TYPE(TRB_LINK);
 114		/* Always set the chain bit with 0.95 hardware */
 115		/* Set chain bit for isoc rings on AMD 0.96 host */
 116		if (xhci_link_trb_quirk(xhci) ||
 117				(type == TYPE_ISOC &&
 118				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
 119			val |= TRB_CHAIN;
 120		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 121	}
 122}
 123
 124/*
 125 * Link the ring to the new segments.
 126 * Set Toggle Cycle for the new ring if needed.
 127 */
 128static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 129		struct xhci_segment *first, struct xhci_segment *last,
 130		unsigned int num_segs)
 131{
 132	struct xhci_segment *next;
 
 133
 134	if (!ring || !first || !last)
 135		return;
 136
 
 
 
 
 
 137	next = ring->enq_seg->next;
 138	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
 139	xhci_link_segments(xhci, last, next, ring->type);
 140	ring->num_segs += num_segs;
 141	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
 142
 143	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
 144		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 145			&= ~cpu_to_le32(LINK_TOGGLE);
 146		last->trbs[TRBS_PER_SEGMENT-1].link.control
 147			|= cpu_to_le32(LINK_TOGGLE);
 
 
 148		ring->last_seg = last;
 149	}
 
 
 
 150}
 151
 152/*
 153 * We need a radix tree for mapping physical addresses of TRBs to which stream
 154 * ID they belong to.  We need to do this because the host controller won't tell
 155 * us which stream ring the TRB came from.  We could store the stream ID in an
 156 * event data TRB, but that doesn't help us for the cancellation case, since the
 157 * endpoint may stop before it reaches that event data TRB.
 158 *
 159 * The radix tree maps the upper portion of the TRB DMA address to a ring
 160 * segment that has the same upper portion of DMA addresses.  For example, say I
 161 * have segments of size 1KB, that are always 1KB aligned.  A segment may
 162 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 163 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 164 * pass the radix tree a key to get the right stream ID:
 165 *
 166 *	0x10c90fff >> 10 = 0x43243
 167 *	0x10c912c0 >> 10 = 0x43244
 168 *	0x10c91400 >> 10 = 0x43245
 169 *
 170 * Obviously, only those TRBs with DMA addresses that are within the segment
 171 * will make the radix tree return the stream ID for that ring.
 172 *
 173 * Caveats for the radix tree:
 174 *
 175 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 176 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 177 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 178 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 179 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 180 * extended systems (where the DMA address can be bigger than 32-bits),
 181 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 182 */
 183static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 184		struct xhci_ring *ring,
 185		struct xhci_segment *seg,
 186		gfp_t mem_flags)
 187{
 188	unsigned long key;
 189	int ret;
 190
 191	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 192	/* Skip any segments that were already added. */
 193	if (radix_tree_lookup(trb_address_map, key))
 194		return 0;
 195
 196	ret = radix_tree_maybe_preload(mem_flags);
 197	if (ret)
 198		return ret;
 199	ret = radix_tree_insert(trb_address_map,
 200			key, ring);
 201	radix_tree_preload_end();
 202	return ret;
 203}
 204
 205static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 206		struct xhci_segment *seg)
 207{
 208	unsigned long key;
 209
 210	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 211	if (radix_tree_lookup(trb_address_map, key))
 212		radix_tree_delete(trb_address_map, key);
 213}
 214
 215static int xhci_update_stream_segment_mapping(
 216		struct radix_tree_root *trb_address_map,
 217		struct xhci_ring *ring,
 218		struct xhci_segment *first_seg,
 219		struct xhci_segment *last_seg,
 220		gfp_t mem_flags)
 221{
 222	struct xhci_segment *seg;
 223	struct xhci_segment *failed_seg;
 224	int ret;
 225
 226	if (WARN_ON_ONCE(trb_address_map == NULL))
 227		return 0;
 228
 229	seg = first_seg;
 230	do {
 231		ret = xhci_insert_segment_mapping(trb_address_map,
 232				ring, seg, mem_flags);
 233		if (ret)
 234			goto remove_streams;
 235		if (seg == last_seg)
 236			return 0;
 237		seg = seg->next;
 238	} while (seg != first_seg);
 239
 240	return 0;
 241
 242remove_streams:
 243	failed_seg = seg;
 244	seg = first_seg;
 245	do {
 246		xhci_remove_segment_mapping(trb_address_map, seg);
 247		if (seg == failed_seg)
 248			return ret;
 249		seg = seg->next;
 250	} while (seg != first_seg);
 251
 252	return ret;
 253}
 254
 255static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 256{
 257	struct xhci_segment *seg;
 258
 259	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 260		return;
 261
 262	seg = ring->first_seg;
 263	do {
 264		xhci_remove_segment_mapping(ring->trb_address_map, seg);
 265		seg = seg->next;
 266	} while (seg != ring->first_seg);
 267}
 268
 269static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 270{
 271	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 272			ring->first_seg, ring->last_seg, mem_flags);
 273}
 274
 275/* XXX: Do we need the hcd structure in all these functions? */
 276void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 277{
 278	if (!ring)
 279		return;
 280
 
 
 281	if (ring->first_seg) {
 282		if (ring->type == TYPE_STREAM)
 283			xhci_remove_stream_mapping(ring);
 284		xhci_free_segments_for_ring(xhci, ring->first_seg);
 285	}
 286
 287	kfree(ring);
 288}
 289
 290static void xhci_initialize_ring_info(struct xhci_ring *ring,
 291					unsigned int cycle_state)
 292{
 293	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 294	ring->enqueue = ring->first_seg->trbs;
 295	ring->enq_seg = ring->first_seg;
 296	ring->dequeue = ring->enqueue;
 297	ring->deq_seg = ring->first_seg;
 298	/* The ring is initialized to 0. The producer must write 1 to the cycle
 299	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 300	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 301	 *
 302	 * New rings are initialized with cycle state equal to 1; if we are
 303	 * handling ring expansion, set the cycle state equal to the old ring.
 304	 */
 305	ring->cycle_state = cycle_state;
 306	/* Not necessary for new rings, but needed for re-initialized rings */
 307	ring->enq_updates = 0;
 308	ring->deq_updates = 0;
 309
 310	/*
 311	 * Each segment has a link TRB, and leave an extra TRB for SW
 312	 * accounting purpose
 313	 */
 314	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 315}
 
 316
 317/* Allocate segments and link them for a ring */
 318static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 319		struct xhci_segment **first, struct xhci_segment **last,
 320		unsigned int num_segs, unsigned int cycle_state,
 321		enum xhci_ring_type type, gfp_t flags)
 
 322{
 323	struct xhci_segment *prev;
 
 
 
 
 
 
 324
 325	prev = xhci_segment_alloc(xhci, cycle_state, flags);
 326	if (!prev)
 327		return -ENOMEM;
 328	num_segs--;
 329
 330	*first = prev;
 331	while (num_segs > 0) {
 332		struct xhci_segment	*next;
 333
 334		next = xhci_segment_alloc(xhci, cycle_state, flags);
 
 335		if (!next) {
 336			prev = *first;
 337			while (prev) {
 338				next = prev->next;
 339				xhci_segment_free(xhci, prev);
 340				prev = next;
 341			}
 342			return -ENOMEM;
 343		}
 344		xhci_link_segments(xhci, prev, next, type);
 345
 346		prev = next;
 347		num_segs--;
 348	}
 349	xhci_link_segments(xhci, prev, *first, type);
 350	*last = prev;
 351
 352	return 0;
 353}
 354
 355/**
 356 * Create a new ring with zero or more segments.
 357 *
 358 * Link each segment together into a ring.
 359 * Set the end flag and the cycle toggle bit on the last segment.
 360 * See section 4.9.1 and figures 15 and 16.
 361 */
 362static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 363		unsigned int num_segs, unsigned int cycle_state,
 364		enum xhci_ring_type type, gfp_t flags)
 365{
 366	struct xhci_ring	*ring;
 367	int ret;
 
 368
 369	ring = kzalloc(sizeof *(ring), flags);
 370	if (!ring)
 371		return NULL;
 372
 373	ring->num_segs = num_segs;
 
 374	INIT_LIST_HEAD(&ring->td_list);
 375	ring->type = type;
 376	if (num_segs == 0)
 377		return ring;
 378
 379	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 380			&ring->last_seg, num_segs, cycle_state, type, flags);
 
 381	if (ret)
 382		goto fail;
 383
 384	/* Only event ring does not use link TRB */
 385	if (type != TYPE_EVENT) {
 386		/* See section 4.9.2.1 and 6.4.4.1 */
 387		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 388			cpu_to_le32(LINK_TOGGLE);
 389	}
 390	xhci_initialize_ring_info(ring, cycle_state);
 
 391	return ring;
 392
 393fail:
 394	kfree(ring);
 395	return NULL;
 396}
 397
 398void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
 399		struct xhci_virt_device *virt_dev,
 400		unsigned int ep_index)
 401{
 402	int rings_cached;
 403
 404	rings_cached = virt_dev->num_rings_cached;
 405	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
 406		virt_dev->ring_cache[rings_cached] =
 407			virt_dev->eps[ep_index].ring;
 408		virt_dev->num_rings_cached++;
 409		xhci_dbg(xhci, "Cached old ring, "
 410				"%d ring%s cached\n",
 411				virt_dev->num_rings_cached,
 412				(virt_dev->num_rings_cached > 1) ? "s" : "");
 413	} else {
 414		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 415		xhci_dbg(xhci, "Ring cache full (%d rings), "
 416				"freeing ring\n",
 417				virt_dev->num_rings_cached);
 418	}
 419	virt_dev->eps[ep_index].ring = NULL;
 420}
 421
 422/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 423 * pointers to the beginning of the ring.
 424 */
 425static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
 426			struct xhci_ring *ring, unsigned int cycle_state,
 427			enum xhci_ring_type type)
 428{
 429	struct xhci_segment	*seg = ring->first_seg;
 430	int i;
 431
 432	do {
 433		memset(seg->trbs, 0,
 434				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
 435		if (cycle_state == 0) {
 436			for (i = 0; i < TRBS_PER_SEGMENT; i++)
 437				seg->trbs[i].link.control |=
 438					cpu_to_le32(TRB_CYCLE);
 439		}
 440		/* All endpoint rings have link TRBs */
 441		xhci_link_segments(xhci, seg, seg->next, type);
 442		seg = seg->next;
 443	} while (seg != ring->first_seg);
 444	ring->type = type;
 445	xhci_initialize_ring_info(ring, cycle_state);
 446	/* td list should be empty since all URBs have been cancelled,
 447	 * but just in case...
 448	 */
 449	INIT_LIST_HEAD(&ring->td_list);
 450}
 451
 452/*
 453 * Expand an existing ring.
 454 * Look for a cached ring or allocate a new ring which has same segment numbers
 455 * and link the two rings.
 456 */
 457int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 458				unsigned int num_trbs, gfp_t flags)
 459{
 460	struct xhci_segment	*first;
 461	struct xhci_segment	*last;
 462	unsigned int		num_segs;
 463	unsigned int		num_segs_needed;
 464	int			ret;
 465
 466	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
 467				(TRBS_PER_SEGMENT - 1);
 468
 469	/* Allocate number of segments we needed, or double the ring size */
 470	num_segs = ring->num_segs > num_segs_needed ?
 471			ring->num_segs : num_segs_needed;
 472
 473	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 474			num_segs, ring->cycle_state, ring->type, flags);
 
 
 475	if (ret)
 476		return -ENOMEM;
 477
 478	if (ring->type == TYPE_STREAM)
 479		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
 480						ring, first, last, flags);
 481	if (ret) {
 482		struct xhci_segment *next;
 483		do {
 484			next = first->next;
 485			xhci_segment_free(xhci, first);
 486			if (first == last)
 487				break;
 488			first = next;
 489		} while (true);
 490		return ret;
 491	}
 492
 493	xhci_link_rings(xhci, ring, first, last, num_segs);
 
 494	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 495			"ring expansion succeed, now has %d segments",
 496			ring->num_segs);
 497
 498	return 0;
 499}
 500
 501#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
 502
 503static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 504						    int type, gfp_t flags)
 505{
 506	struct xhci_container_ctx *ctx;
 
 507
 508	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 509		return NULL;
 510
 511	ctx = kzalloc(sizeof(*ctx), flags);
 512	if (!ctx)
 513		return NULL;
 514
 515	ctx->type = type;
 516	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 517	if (type == XHCI_CTX_TYPE_INPUT)
 518		ctx->size += CTX_SIZE(xhci->hcc_params);
 519
 520	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
 521	if (!ctx->bytes) {
 522		kfree(ctx);
 523		return NULL;
 524	}
 525	memset(ctx->bytes, 0, ctx->size);
 526	return ctx;
 527}
 528
 529static void xhci_free_container_ctx(struct xhci_hcd *xhci,
 530			     struct xhci_container_ctx *ctx)
 531{
 532	if (!ctx)
 533		return;
 534	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 535	kfree(ctx);
 536}
 537
 538struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
 539					      struct xhci_container_ctx *ctx)
 540{
 541	if (ctx->type != XHCI_CTX_TYPE_INPUT)
 542		return NULL;
 543
 544	return (struct xhci_input_control_ctx *)ctx->bytes;
 545}
 546
 547struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 548					struct xhci_container_ctx *ctx)
 549{
 550	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 551		return (struct xhci_slot_ctx *)ctx->bytes;
 552
 553	return (struct xhci_slot_ctx *)
 554		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 555}
 556
 557struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 558				    struct xhci_container_ctx *ctx,
 559				    unsigned int ep_index)
 560{
 561	/* increment ep index by offset of start of ep ctx array */
 562	ep_index++;
 563	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 564		ep_index++;
 565
 566	return (struct xhci_ep_ctx *)
 567		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 568}
 569
 570
 571/***************** Streams structures manipulation *************************/
 572
 573static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 574		unsigned int num_stream_ctxs,
 575		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 576{
 577	struct device *dev = xhci_to_hcd(xhci)->self.controller;
 578	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 579
 580	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 581		dma_free_coherent(dev, size,
 582				stream_ctx, dma);
 583	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 584		return dma_pool_free(xhci->small_streams_pool,
 585				stream_ctx, dma);
 586	else
 587		return dma_pool_free(xhci->medium_streams_pool,
 588				stream_ctx, dma);
 589}
 590
 591/*
 592 * The stream context array for each endpoint with bulk streams enabled can
 593 * vary in size, based on:
 594 *  - how many streams the endpoint supports,
 595 *  - the maximum primary stream array size the host controller supports,
 596 *  - and how many streams the device driver asks for.
 597 *
 598 * The stream context array must be a power of 2, and can be as small as
 599 * 64 bytes or as large as 1MB.
 600 */
 601static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 602		unsigned int num_stream_ctxs, dma_addr_t *dma,
 603		gfp_t mem_flags)
 604{
 605	struct device *dev = xhci_to_hcd(xhci)->self.controller;
 606	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 607
 608	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 609		return dma_alloc_coherent(dev, size,
 610				dma, mem_flags);
 611	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 612		return dma_pool_alloc(xhci->small_streams_pool,
 613				mem_flags, dma);
 614	else
 615		return dma_pool_alloc(xhci->medium_streams_pool,
 616				mem_flags, dma);
 617}
 618
 619struct xhci_ring *xhci_dma_to_transfer_ring(
 620		struct xhci_virt_ep *ep,
 621		u64 address)
 622{
 623	if (ep->ep_state & EP_HAS_STREAMS)
 624		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 625				address >> TRB_SEGMENT_SHIFT);
 626	return ep->ring;
 627}
 628
 629struct xhci_ring *xhci_stream_id_to_ring(
 630		struct xhci_virt_device *dev,
 631		unsigned int ep_index,
 632		unsigned int stream_id)
 633{
 634	struct xhci_virt_ep *ep = &dev->eps[ep_index];
 635
 636	if (stream_id == 0)
 637		return ep->ring;
 638	if (!ep->stream_info)
 639		return NULL;
 640
 641	if (stream_id > ep->stream_info->num_streams)
 642		return NULL;
 643	return ep->stream_info->stream_rings[stream_id];
 644}
 645
 646/*
 647 * Change an endpoint's internal structure so it supports stream IDs.  The
 648 * number of requested streams includes stream 0, which cannot be used by device
 649 * drivers.
 650 *
 651 * The number of stream contexts in the stream context array may be bigger than
 652 * the number of streams the driver wants to use.  This is because the number of
 653 * stream context array entries must be a power of two.
 654 */
 655struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 656		unsigned int num_stream_ctxs,
 657		unsigned int num_streams, gfp_t mem_flags)
 
 658{
 659	struct xhci_stream_info *stream_info;
 660	u32 cur_stream;
 661	struct xhci_ring *cur_ring;
 662	u64 addr;
 663	int ret;
 
 664
 665	xhci_dbg(xhci, "Allocating %u streams and %u "
 666			"stream context array entries.\n",
 667			num_streams, num_stream_ctxs);
 668	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 669		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 670		return NULL;
 671	}
 672	xhci->cmd_ring_reserved_trbs++;
 673
 674	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
 
 675	if (!stream_info)
 676		goto cleanup_trbs;
 677
 678	stream_info->num_streams = num_streams;
 679	stream_info->num_stream_ctxs = num_stream_ctxs;
 680
 681	/* Initialize the array of virtual pointers to stream rings. */
 682	stream_info->stream_rings = kzalloc(
 683			sizeof(struct xhci_ring *)*num_streams,
 684			mem_flags);
 685	if (!stream_info->stream_rings)
 686		goto cleanup_info;
 687
 688	/* Initialize the array of DMA addresses for stream rings for the HW. */
 689	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 690			num_stream_ctxs, &stream_info->ctx_array_dma,
 691			mem_flags);
 692	if (!stream_info->stream_ctx_array)
 693		goto cleanup_ctx;
 694	memset(stream_info->stream_ctx_array, 0,
 695			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 696
 697	/* Allocate everything needed to free the stream rings later */
 698	stream_info->free_streams_command =
 699		xhci_alloc_command(xhci, true, true, mem_flags);
 700	if (!stream_info->free_streams_command)
 701		goto cleanup_ctx;
 702
 703	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 704
 705	/* Allocate rings for all the streams that the driver will use,
 706	 * and add their segment DMA addresses to the radix tree.
 707	 * Stream 0 is reserved.
 708	 */
 
 709	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 710		stream_info->stream_rings[cur_stream] =
 711			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
 
 712		cur_ring = stream_info->stream_rings[cur_stream];
 713		if (!cur_ring)
 714			goto cleanup_rings;
 715		cur_ring->stream_id = cur_stream;
 716		cur_ring->trb_address_map = &stream_info->trb_address_map;
 717		/* Set deq ptr, cycle bit, and stream context type */
 718		addr = cur_ring->first_seg->dma |
 719			SCT_FOR_CTX(SCT_PRI_TR) |
 720			cur_ring->cycle_state;
 721		stream_info->stream_ctx_array[cur_stream].stream_ring =
 722			cpu_to_le64(addr);
 723		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 724				cur_stream, (unsigned long long) addr);
 725
 726		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 727		if (ret) {
 728			xhci_ring_free(xhci, cur_ring);
 729			stream_info->stream_rings[cur_stream] = NULL;
 730			goto cleanup_rings;
 731		}
 732	}
 733	/* Leave the other unused stream ring pointers in the stream context
 734	 * array initialized to zero.  This will cause the xHC to give us an
 735	 * error if the device asks for a stream ID we don't have setup (if it
 736	 * was any other way, the host controller would assume the ring is
 737	 * "empty" and wait forever for data to be queued to that stream ID).
 738	 */
 739
 740	return stream_info;
 741
 742cleanup_rings:
 743	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 744		cur_ring = stream_info->stream_rings[cur_stream];
 745		if (cur_ring) {
 746			xhci_ring_free(xhci, cur_ring);
 747			stream_info->stream_rings[cur_stream] = NULL;
 748		}
 749	}
 750	xhci_free_command(xhci, stream_info->free_streams_command);
 751cleanup_ctx:
 
 
 
 
 
 752	kfree(stream_info->stream_rings);
 753cleanup_info:
 754	kfree(stream_info);
 755cleanup_trbs:
 756	xhci->cmd_ring_reserved_trbs--;
 757	return NULL;
 758}
 759/*
 760 * Sets the MaxPStreams field and the Linear Stream Array field.
 761 * Sets the dequeue pointer to the stream context array.
 762 */
 763void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 764		struct xhci_ep_ctx *ep_ctx,
 765		struct xhci_stream_info *stream_info)
 766{
 767	u32 max_primary_streams;
 768	/* MaxPStreams is the number of stream context array entries, not the
 769	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 770	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 771	 */
 772	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 773	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 774			"Setting number of stream ctx array entries to %u",
 775			1 << (max_primary_streams + 1));
 776	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 777	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 778				       | EP_HAS_LSA);
 779	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 780}
 781
 782/*
 783 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 784 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 785 * not at the beginning of the ring).
 786 */
 787void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
 788		struct xhci_ep_ctx *ep_ctx,
 789		struct xhci_virt_ep *ep)
 790{
 791	dma_addr_t addr;
 792	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 793	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 794	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 795}
 796
 797/* Frees all stream contexts associated with the endpoint,
 798 *
 799 * Caller should fix the endpoint context streams fields.
 800 */
 801void xhci_free_stream_info(struct xhci_hcd *xhci,
 802		struct xhci_stream_info *stream_info)
 803{
 804	int cur_stream;
 805	struct xhci_ring *cur_ring;
 806
 807	if (!stream_info)
 808		return;
 809
 810	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 811			cur_stream++) {
 812		cur_ring = stream_info->stream_rings[cur_stream];
 813		if (cur_ring) {
 814			xhci_ring_free(xhci, cur_ring);
 815			stream_info->stream_rings[cur_stream] = NULL;
 816		}
 817	}
 818	xhci_free_command(xhci, stream_info->free_streams_command);
 819	xhci->cmd_ring_reserved_trbs--;
 820	if (stream_info->stream_ctx_array)
 821		xhci_free_stream_ctx(xhci,
 822				stream_info->num_stream_ctxs,
 823				stream_info->stream_ctx_array,
 824				stream_info->ctx_array_dma);
 825
 826	kfree(stream_info->stream_rings);
 827	kfree(stream_info);
 828}
 829
 830
 831/***************** Device context manipulation *************************/
 832
 833static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 834		struct xhci_virt_ep *ep)
 835{
 836	init_timer(&ep->stop_cmd_timer);
 837	ep->stop_cmd_timer.data = (unsigned long) ep;
 838	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
 839	ep->xhci = xhci;
 840}
 841
 842static void xhci_free_tt_info(struct xhci_hcd *xhci,
 843		struct xhci_virt_device *virt_dev,
 844		int slot_id)
 845{
 846	struct list_head *tt_list_head;
 847	struct xhci_tt_bw_info *tt_info, *next;
 848	bool slot_found = false;
 849
 850	/* If the device never made it past the Set Address stage,
 851	 * it may not have the real_port set correctly.
 852	 */
 853	if (virt_dev->real_port == 0 ||
 854			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 855		xhci_dbg(xhci, "Bad real port.\n");
 856		return;
 857	}
 858
 859	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 860	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 861		/* Multi-TT hubs will have more than one entry */
 862		if (tt_info->slot_id == slot_id) {
 863			slot_found = true;
 864			list_del(&tt_info->tt_list);
 865			kfree(tt_info);
 866		} else if (slot_found) {
 867			break;
 868		}
 869	}
 870}
 871
 872int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 873		struct xhci_virt_device *virt_dev,
 874		struct usb_device *hdev,
 875		struct usb_tt *tt, gfp_t mem_flags)
 876{
 877	struct xhci_tt_bw_info		*tt_info;
 878	unsigned int			num_ports;
 879	int				i, j;
 
 880
 881	if (!tt->multi)
 882		num_ports = 1;
 883	else
 884		num_ports = hdev->maxchild;
 885
 886	for (i = 0; i < num_ports; i++, tt_info++) {
 887		struct xhci_interval_bw_table *bw_table;
 888
 889		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
 
 890		if (!tt_info)
 891			goto free_tts;
 892		INIT_LIST_HEAD(&tt_info->tt_list);
 893		list_add(&tt_info->tt_list,
 894				&xhci->rh_bw[virt_dev->real_port - 1].tts);
 895		tt_info->slot_id = virt_dev->udev->slot_id;
 896		if (tt->multi)
 897			tt_info->ttport = i+1;
 898		bw_table = &tt_info->bw_table;
 899		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 900			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 901	}
 902	return 0;
 903
 904free_tts:
 905	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 906	return -ENOMEM;
 907}
 908
 909
 910/* All the xhci_tds in the ring's TD list should be freed at this point.
 911 * Should be called with xhci->lock held if there is any chance the TT lists
 912 * will be manipulated by the configure endpoint, allocate device, or update
 913 * hub functions while this function is removing the TT entries from the list.
 914 */
 915void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 916{
 917	struct xhci_virt_device *dev;
 918	int i;
 919	int old_active_eps = 0;
 920
 921	/* Slot ID 0 is reserved */
 922	if (slot_id == 0 || !xhci->devs[slot_id])
 923		return;
 924
 925	dev = xhci->devs[slot_id];
 
 926	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 927	if (!dev)
 928		return;
 929
 
 
 930	if (dev->tt_info)
 931		old_active_eps = dev->tt_info->active_eps;
 932
 933	for (i = 0; i < 31; ++i) {
 934		if (dev->eps[i].ring)
 935			xhci_ring_free(xhci, dev->eps[i].ring);
 936		if (dev->eps[i].stream_info)
 937			xhci_free_stream_info(xhci,
 938					dev->eps[i].stream_info);
 939		/* Endpoints on the TT/root port lists should have been removed
 940		 * when usb_disable_device() was called for the device.
 941		 * We can't drop them anyway, because the udev might have gone
 942		 * away by this point, and we can't tell what speed it was.
 
 
 943		 */
 944		if (!list_empty(&dev->eps[i].bw_endpoint_list))
 945			xhci_warn(xhci, "Slot %u endpoint %u "
 946					"not removed from BW list!\n",
 947					slot_id, i);
 
 
 948	}
 949	/* If this is a hub, free the TT(s) from the TT list */
 950	xhci_free_tt_info(xhci, dev, slot_id);
 951	/* If necessary, update the number of active TTs on this root port */
 952	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 953
 954	if (dev->ring_cache) {
 955		for (i = 0; i < dev->num_rings_cached; i++)
 956			xhci_ring_free(xhci, dev->ring_cache[i]);
 957		kfree(dev->ring_cache);
 958	}
 959
 960	if (dev->in_ctx)
 961		xhci_free_container_ctx(xhci, dev->in_ctx);
 962	if (dev->out_ctx)
 963		xhci_free_container_ctx(xhci, dev->out_ctx);
 964
 
 
 965	kfree(xhci->devs[slot_id]);
 966	xhci->devs[slot_id] = NULL;
 967}
 968
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 970		struct usb_device *udev, gfp_t flags)
 971{
 972	struct xhci_virt_device *dev;
 973	int i;
 974
 975	/* Slot ID 0 is reserved */
 976	if (slot_id == 0 || xhci->devs[slot_id]) {
 977		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 978		return 0;
 979	}
 980
 981	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
 982	if (!xhci->devs[slot_id])
 983		return 0;
 984	dev = xhci->devs[slot_id];
 
 985
 986	/* Allocate the (output) device context that will be used in the HC. */
 987	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 988	if (!dev->out_ctx)
 989		goto fail;
 990
 991	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 992			(unsigned long long)dev->out_ctx->dma);
 993
 994	/* Allocate the (input) device context for address device command */
 995	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 996	if (!dev->in_ctx)
 997		goto fail;
 998
 999	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1000			(unsigned long long)dev->in_ctx->dma);
1001
1002	/* Initialize the cancellation list and watchdog timers for each ep */
1003	for (i = 0; i < 31; i++) {
1004		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
 
 
1005		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1006		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1007	}
1008
1009	/* Allocate endpoint 0 ring */
1010	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
1011	if (!dev->eps[0].ring)
1012		goto fail;
1013
1014	/* Allocate pointers to the ring cache */
1015	dev->ring_cache = kzalloc(
1016			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1017			flags);
1018	if (!dev->ring_cache)
1019		goto fail;
1020	dev->num_rings_cached = 0;
1021
1022	init_completion(&dev->cmd_completion);
1023	INIT_LIST_HEAD(&dev->cmd_list);
1024	dev->udev = udev;
1025
1026	/* Point to output device context in dcbaa. */
1027	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1028	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1029		 slot_id,
1030		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1031		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1032
 
 
 
 
1033	return 1;
1034fail:
1035	xhci_free_virt_device(xhci, slot_id);
 
 
 
 
 
 
1036	return 0;
1037}
1038
1039void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1040		struct usb_device *udev)
1041{
1042	struct xhci_virt_device *virt_dev;
1043	struct xhci_ep_ctx	*ep0_ctx;
1044	struct xhci_ring	*ep_ring;
1045
1046	virt_dev = xhci->devs[udev->slot_id];
1047	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1048	ep_ring = virt_dev->eps[0].ring;
1049	/*
1050	 * FIXME we don't keep track of the dequeue pointer very well after a
1051	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1052	 * host to our enqueue pointer.  This should only be called after a
1053	 * configured device has reset, so all control transfers should have
1054	 * been completed or cancelled before the reset.
1055	 */
1056	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1057							ep_ring->enqueue)
1058				   | ep_ring->cycle_state);
1059}
1060
1061/*
1062 * The xHCI roothub may have ports of differing speeds in any order in the port
1063 * status registers.  xhci->port_array provides an array of the port speed for
1064 * each offset into the port status registers.
1065 *
1066 * The xHCI hardware wants to know the roothub port number that the USB device
1067 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1068 * know is the index of that port under either the USB 2.0 or the USB 3.0
1069 * roothub, but that doesn't give us the real index into the HW port status
1070 * registers. Call xhci_find_raw_port_number() to get real index.
1071 */
1072static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1073		struct usb_device *udev)
1074{
1075	struct usb_device *top_dev;
1076	struct usb_hcd *hcd;
1077
1078	if (udev->speed == USB_SPEED_SUPER)
1079		hcd = xhci->shared_hcd;
1080	else
1081		hcd = xhci->main_hcd;
1082
1083	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1084			top_dev = top_dev->parent)
1085		/* Found device below root hub */;
1086
1087	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1088}
1089
1090/* Setup an xHCI virtual device for a Set Address command */
1091int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1092{
1093	struct xhci_virt_device *dev;
1094	struct xhci_ep_ctx	*ep0_ctx;
1095	struct xhci_slot_ctx    *slot_ctx;
1096	u32			port_num;
1097	u32			max_packets;
1098	struct usb_device *top_dev;
1099
1100	dev = xhci->devs[udev->slot_id];
1101	/* Slot ID 0 is reserved */
1102	if (udev->slot_id == 0 || !dev) {
1103		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1104				udev->slot_id);
1105		return -EINVAL;
1106	}
1107	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1108	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1109
1110	/* 3) Only the control endpoint is valid - one endpoint context */
1111	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1112	switch (udev->speed) {
 
 
 
 
1113	case USB_SPEED_SUPER:
1114		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1115		max_packets = MAX_PACKET(512);
1116		break;
1117	case USB_SPEED_HIGH:
1118		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1119		max_packets = MAX_PACKET(64);
1120		break;
1121	/* USB core guesses at a 64-byte max packet first for FS devices */
1122	case USB_SPEED_FULL:
1123		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1124		max_packets = MAX_PACKET(64);
1125		break;
1126	case USB_SPEED_LOW:
1127		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1128		max_packets = MAX_PACKET(8);
1129		break;
1130	case USB_SPEED_WIRELESS:
1131		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1132		return -EINVAL;
1133		break;
1134	default:
1135		/* Speed was set earlier, this shouldn't happen. */
1136		return -EINVAL;
1137	}
1138	/* Find the root hub port this device is under */
1139	port_num = xhci_find_real_port_number(xhci, udev);
1140	if (!port_num)
1141		return -EINVAL;
1142	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1143	/* Set the port number in the virtual_device to the faked port number */
1144	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1145			top_dev = top_dev->parent)
1146		/* Found device below root hub */;
1147	dev->fake_port = top_dev->portnum;
1148	dev->real_port = port_num;
1149	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1150	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1151
1152	/* Find the right bandwidth table that this device will be a part of.
1153	 * If this is a full speed device attached directly to a root port (or a
1154	 * decendent of one), it counts as a primary bandwidth domain, not a
1155	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1156	 * will never be created for the HS root hub.
1157	 */
1158	if (!udev->tt || !udev->tt->hub->parent) {
1159		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1160	} else {
1161		struct xhci_root_port_bw_info *rh_bw;
1162		struct xhci_tt_bw_info *tt_bw;
1163
1164		rh_bw = &xhci->rh_bw[port_num - 1];
1165		/* Find the right TT. */
1166		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1167			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1168				continue;
1169
1170			if (!dev->udev->tt->multi ||
1171					(udev->tt->multi &&
1172					 tt_bw->ttport == dev->udev->ttport)) {
1173				dev->bw_table = &tt_bw->bw_table;
1174				dev->tt_info = tt_bw;
1175				break;
1176			}
1177		}
1178		if (!dev->tt_info)
1179			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1180	}
1181
1182	/* Is this a LS/FS device under an external HS hub? */
1183	if (udev->tt && udev->tt->hub->parent) {
1184		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1185						(udev->ttport << 8));
1186		if (udev->tt->multi)
1187			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1188	}
1189	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1190	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1191
1192	/* Step 4 - ring already allocated */
1193	/* Step 5 */
1194	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1195
1196	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1197	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1198					 max_packets);
1199
1200	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1201				   dev->eps[0].ring->cycle_state);
1202
 
 
1203	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1204
1205	return 0;
1206}
1207
1208/*
1209 * Convert interval expressed as 2^(bInterval - 1) == interval into
1210 * straight exponent value 2^n == interval.
1211 *
1212 */
1213static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1214		struct usb_host_endpoint *ep)
1215{
1216	unsigned int interval;
1217
1218	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1219	if (interval != ep->desc.bInterval - 1)
1220		dev_warn(&udev->dev,
1221			 "ep %#x - rounding interval to %d %sframes\n",
1222			 ep->desc.bEndpointAddress,
1223			 1 << interval,
1224			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1225
1226	if (udev->speed == USB_SPEED_FULL) {
1227		/*
1228		 * Full speed isoc endpoints specify interval in frames,
1229		 * not microframes. We are using microframes everywhere,
1230		 * so adjust accordingly.
1231		 */
1232		interval += 3;	/* 1 frame = 2^3 uframes */
1233	}
1234
1235	return interval;
1236}
1237
1238/*
1239 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1240 * microframes, rounded down to nearest power of 2.
1241 */
1242static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1243		struct usb_host_endpoint *ep, unsigned int desc_interval,
1244		unsigned int min_exponent, unsigned int max_exponent)
1245{
1246	unsigned int interval;
1247
1248	interval = fls(desc_interval) - 1;
1249	interval = clamp_val(interval, min_exponent, max_exponent);
1250	if ((1 << interval) != desc_interval)
1251		dev_warn(&udev->dev,
1252			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1253			 ep->desc.bEndpointAddress,
1254			 1 << interval,
1255			 desc_interval);
1256
1257	return interval;
1258}
1259
1260static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1261		struct usb_host_endpoint *ep)
1262{
1263	if (ep->desc.bInterval == 0)
1264		return 0;
1265	return xhci_microframes_to_exponent(udev, ep,
1266			ep->desc.bInterval, 0, 15);
1267}
1268
1269
1270static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1271		struct usb_host_endpoint *ep)
1272{
1273	return xhci_microframes_to_exponent(udev, ep,
1274			ep->desc.bInterval * 8, 3, 10);
1275}
1276
1277/* Return the polling or NAK interval.
1278 *
1279 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1280 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1281 *
1282 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1283 * is set to 0.
1284 */
1285static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1286		struct usb_host_endpoint *ep)
1287{
1288	unsigned int interval = 0;
1289
1290	switch (udev->speed) {
1291	case USB_SPEED_HIGH:
1292		/* Max NAK rate */
1293		if (usb_endpoint_xfer_control(&ep->desc) ||
1294		    usb_endpoint_xfer_bulk(&ep->desc)) {
1295			interval = xhci_parse_microframe_interval(udev, ep);
1296			break;
1297		}
1298		/* Fall through - SS and HS isoc/int have same decoding */
1299
 
1300	case USB_SPEED_SUPER:
1301		if (usb_endpoint_xfer_int(&ep->desc) ||
1302		    usb_endpoint_xfer_isoc(&ep->desc)) {
1303			interval = xhci_parse_exponent_interval(udev, ep);
1304		}
1305		break;
1306
1307	case USB_SPEED_FULL:
1308		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1309			interval = xhci_parse_exponent_interval(udev, ep);
1310			break;
1311		}
1312		/*
1313		 * Fall through for interrupt endpoint interval decoding
1314		 * since it uses the same rules as low speed interrupt
1315		 * endpoints.
1316		 */
 
1317
1318	case USB_SPEED_LOW:
1319		if (usb_endpoint_xfer_int(&ep->desc) ||
1320		    usb_endpoint_xfer_isoc(&ep->desc)) {
1321
1322			interval = xhci_parse_frame_interval(udev, ep);
1323		}
1324		break;
1325
1326	default:
1327		BUG();
1328	}
1329	return EP_INTERVAL(interval);
1330}
1331
1332/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1333 * High speed endpoint descriptors can define "the number of additional
1334 * transaction opportunities per microframe", but that goes in the Max Burst
1335 * endpoint context field.
1336 */
1337static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1338		struct usb_host_endpoint *ep)
1339{
1340	if (udev->speed != USB_SPEED_SUPER ||
1341			!usb_endpoint_xfer_isoc(&ep->desc))
1342		return 0;
1343	return ep->ss_ep_comp.bmAttributes;
1344}
1345
1346static u32 xhci_get_endpoint_type(struct usb_device *udev,
1347		struct usb_host_endpoint *ep)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1348{
1349	int in;
1350	u32 type;
1351
1352	in = usb_endpoint_dir_in(&ep->desc);
1353	if (usb_endpoint_xfer_control(&ep->desc)) {
1354		type = EP_TYPE(CTRL_EP);
1355	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1356		if (in)
1357			type = EP_TYPE(BULK_IN_EP);
1358		else
1359			type = EP_TYPE(BULK_OUT_EP);
1360	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1361		if (in)
1362			type = EP_TYPE(ISOC_IN_EP);
1363		else
1364			type = EP_TYPE(ISOC_OUT_EP);
1365	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1366		if (in)
1367			type = EP_TYPE(INT_IN_EP);
1368		else
1369			type = EP_TYPE(INT_OUT_EP);
1370	} else {
1371		type = 0;
1372	}
1373	return type;
1374}
1375
1376/* Return the maximum endpoint service interval time (ESIT) payload.
1377 * Basically, this is the maxpacket size, multiplied by the burst size
1378 * and mult size.
1379 */
1380static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1381		struct usb_device *udev,
1382		struct usb_host_endpoint *ep)
1383{
1384	int max_burst;
1385	int max_packet;
1386
1387	/* Only applies for interrupt or isochronous endpoints */
1388	if (usb_endpoint_xfer_control(&ep->desc) ||
1389			usb_endpoint_xfer_bulk(&ep->desc))
1390		return 0;
1391
1392	if (udev->speed == USB_SPEED_SUPER)
 
 
 
 
 
 
1393		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1394
1395	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1396	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1397	/* A 0 in max burst means 1 transfer per ESIT */
1398	return max_packet * (max_burst + 1);
1399}
1400
1401/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1402 * Drivers will have to call usb_alloc_streams() to do that.
1403 */
1404int xhci_endpoint_init(struct xhci_hcd *xhci,
1405		struct xhci_virt_device *virt_dev,
1406		struct usb_device *udev,
1407		struct usb_host_endpoint *ep,
1408		gfp_t mem_flags)
1409{
1410	unsigned int ep_index;
1411	struct xhci_ep_ctx *ep_ctx;
1412	struct xhci_ring *ep_ring;
1413	unsigned int max_packet;
1414	unsigned int max_burst;
1415	enum xhci_ring_type type;
1416	u32 max_esit_payload;
1417	u32 endpoint_type;
 
 
 
 
 
1418
1419	ep_index = xhci_get_endpoint_index(&ep->desc);
1420	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1421
1422	endpoint_type = xhci_get_endpoint_type(udev, ep);
1423	if (!endpoint_type)
1424		return -EINVAL;
1425	ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1426
1427	type = usb_endpoint_type(&ep->desc);
1428	/* Set up the endpoint ring */
1429	virt_dev->eps[ep_index].new_ring =
1430		xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1431	if (!virt_dev->eps[ep_index].new_ring) {
1432		/* Attempt to use the ring cache */
1433		if (virt_dev->num_rings_cached == 0)
1434			return -ENOMEM;
1435		virt_dev->eps[ep_index].new_ring =
1436			virt_dev->ring_cache[virt_dev->num_rings_cached];
1437		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1438		virt_dev->num_rings_cached--;
1439		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1440					1, type);
 
 
 
 
 
1441	}
1442	virt_dev->eps[ep_index].skip = false;
1443	ep_ring = virt_dev->eps[ep_index].new_ring;
1444	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1445
1446	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1447				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
 
 
1448
1449	/* FIXME dig Mult and streams info out of ep companion desc */
1450
1451	/* Allow 3 retries for everything but isoc;
1452	 * CErr shall be set to 0 for Isoch endpoints.
1453	 */
1454	if (!usb_endpoint_xfer_isoc(&ep->desc))
1455		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1456	else
1457		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1458
1459	/* Set the max packet size and max burst */
1460	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1461	max_burst = 0;
1462	switch (udev->speed) {
1463	case USB_SPEED_SUPER:
1464		/* dig out max burst from ep companion desc */
1465		max_burst = ep->ss_ep_comp.bMaxBurst;
1466		break;
1467	case USB_SPEED_HIGH:
1468		/* Some devices get this wrong */
1469		if (usb_endpoint_xfer_bulk(&ep->desc))
1470			max_packet = 512;
1471		/* bits 11:12 specify the number of additional transaction
1472		 * opportunities per microframe (USB 2.0, section 9.6.6)
1473		 */
1474		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1475				usb_endpoint_xfer_int(&ep->desc)) {
1476			max_burst = (usb_endpoint_maxp(&ep->desc)
1477				     & 0x1800) >> 11;
1478		}
1479		break;
1480	case USB_SPEED_FULL:
1481	case USB_SPEED_LOW:
1482		break;
1483	default:
1484		BUG();
1485	}
1486	ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1487			MAX_BURST(max_burst));
1488	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1489	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
 
 
 
 
 
 
 
 
 
 
 
1490
1491	/*
1492	 * XXX no idea how to calculate the average TRB buffer length for bulk
1493	 * endpoints, as the driver gives us no clue how big each scatter gather
1494	 * list entry (or buffer) is going to be.
1495	 *
1496	 * For isochronous and interrupt endpoints, we set it to the max
1497	 * available, until we have new API in the USB core to allow drivers to
1498	 * declare how much bandwidth they actually need.
1499	 *
1500	 * Normally, it would be calculated by taking the total of the buffer
1501	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1502	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1503	 * use Event Data TRBs, and we don't chain in a link TRB on short
1504	 * transfers, we're basically dividing by 1.
1505	 *
1506	 * xHCI 1.0 specification indicates that the Average TRB Length should
1507	 * be set to 8 for control endpoints.
1508	 */
1509	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1510		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1511	else
1512		ep_ctx->tx_info |=
1513			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1514
1515	/* FIXME Debug endpoint context */
1516	return 0;
1517}
1518
1519void xhci_endpoint_zero(struct xhci_hcd *xhci,
1520		struct xhci_virt_device *virt_dev,
1521		struct usb_host_endpoint *ep)
1522{
1523	unsigned int ep_index;
1524	struct xhci_ep_ctx *ep_ctx;
1525
1526	ep_index = xhci_get_endpoint_index(&ep->desc);
1527	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1528
1529	ep_ctx->ep_info = 0;
1530	ep_ctx->ep_info2 = 0;
1531	ep_ctx->deq = 0;
1532	ep_ctx->tx_info = 0;
1533	/* Don't free the endpoint ring until the set interface or configuration
1534	 * request succeeds.
1535	 */
1536}
1537
1538void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1539{
1540	bw_info->ep_interval = 0;
1541	bw_info->mult = 0;
1542	bw_info->num_packets = 0;
1543	bw_info->max_packet_size = 0;
1544	bw_info->type = 0;
1545	bw_info->max_esit_payload = 0;
1546}
1547
1548void xhci_update_bw_info(struct xhci_hcd *xhci,
1549		struct xhci_container_ctx *in_ctx,
1550		struct xhci_input_control_ctx *ctrl_ctx,
1551		struct xhci_virt_device *virt_dev)
1552{
1553	struct xhci_bw_info *bw_info;
1554	struct xhci_ep_ctx *ep_ctx;
1555	unsigned int ep_type;
1556	int i;
1557
1558	for (i = 1; i < 31; ++i) {
1559		bw_info = &virt_dev->eps[i].bw_info;
1560
1561		/* We can't tell what endpoint type is being dropped, but
1562		 * unconditionally clearing the bandwidth info for non-periodic
1563		 * endpoints should be harmless because the info will never be
1564		 * set in the first place.
1565		 */
1566		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1567			/* Dropped endpoint */
1568			xhci_clear_endpoint_bw_info(bw_info);
1569			continue;
1570		}
1571
1572		if (EP_IS_ADDED(ctrl_ctx, i)) {
1573			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1574			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1575
1576			/* Ignore non-periodic endpoints */
1577			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1578					ep_type != ISOC_IN_EP &&
1579					ep_type != INT_IN_EP)
1580				continue;
1581
1582			/* Added or changed endpoint */
1583			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1584					le32_to_cpu(ep_ctx->ep_info));
1585			/* Number of packets and mult are zero-based in the
1586			 * input context, but we want one-based for the
1587			 * interval table.
1588			 */
1589			bw_info->mult = CTX_TO_EP_MULT(
1590					le32_to_cpu(ep_ctx->ep_info)) + 1;
1591			bw_info->num_packets = CTX_TO_MAX_BURST(
1592					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1593			bw_info->max_packet_size = MAX_PACKET_DECODED(
1594					le32_to_cpu(ep_ctx->ep_info2));
1595			bw_info->type = ep_type;
1596			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1597					le32_to_cpu(ep_ctx->tx_info));
1598		}
1599	}
1600}
1601
1602/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1603 * Useful when you want to change one particular aspect of the endpoint and then
1604 * issue a configure endpoint command.
1605 */
1606void xhci_endpoint_copy(struct xhci_hcd *xhci,
1607		struct xhci_container_ctx *in_ctx,
1608		struct xhci_container_ctx *out_ctx,
1609		unsigned int ep_index)
1610{
1611	struct xhci_ep_ctx *out_ep_ctx;
1612	struct xhci_ep_ctx *in_ep_ctx;
1613
1614	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1615	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1616
1617	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1618	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1619	in_ep_ctx->deq = out_ep_ctx->deq;
1620	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
 
 
 
 
1621}
1622
1623/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1624 * Useful when you want to change one particular aspect of the endpoint and then
1625 * issue a configure endpoint command.  Only the context entries field matters,
1626 * but we'll copy the whole thing anyway.
1627 */
1628void xhci_slot_copy(struct xhci_hcd *xhci,
1629		struct xhci_container_ctx *in_ctx,
1630		struct xhci_container_ctx *out_ctx)
1631{
1632	struct xhci_slot_ctx *in_slot_ctx;
1633	struct xhci_slot_ctx *out_slot_ctx;
1634
1635	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1636	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1637
1638	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1639	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1640	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1641	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1642}
1643
1644/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1645static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1646{
1647	int i;
1648	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1649	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1650
1651	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1652			"Allocating %d scratchpad buffers", num_sp);
1653
1654	if (!num_sp)
1655		return 0;
1656
1657	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
 
1658	if (!xhci->scratchpad)
1659		goto fail_sp;
1660
1661	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1662				     num_sp * sizeof(u64),
1663				     &xhci->scratchpad->sp_dma, flags);
1664	if (!xhci->scratchpad->sp_array)
1665		goto fail_sp2;
1666
1667	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
 
1668	if (!xhci->scratchpad->sp_buffers)
1669		goto fail_sp3;
1670
1671	xhci->scratchpad->sp_dma_buffers =
1672		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1673
1674	if (!xhci->scratchpad->sp_dma_buffers)
1675		goto fail_sp4;
1676
1677	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1678	for (i = 0; i < num_sp; i++) {
1679		dma_addr_t dma;
1680		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1681				flags);
1682		if (!buf)
1683			goto fail_sp5;
1684
1685		xhci->scratchpad->sp_array[i] = dma;
1686		xhci->scratchpad->sp_buffers[i] = buf;
1687		xhci->scratchpad->sp_dma_buffers[i] = dma;
1688	}
1689
1690	return 0;
1691
1692 fail_sp5:
1693	for (i = i - 1; i >= 0; i--) {
1694		dma_free_coherent(dev, xhci->page_size,
1695				    xhci->scratchpad->sp_buffers[i],
1696				    xhci->scratchpad->sp_dma_buffers[i]);
1697	}
1698	kfree(xhci->scratchpad->sp_dma_buffers);
1699
1700 fail_sp4:
1701	kfree(xhci->scratchpad->sp_buffers);
1702
1703 fail_sp3:
1704	dma_free_coherent(dev, num_sp * sizeof(u64),
1705			    xhci->scratchpad->sp_array,
1706			    xhci->scratchpad->sp_dma);
1707
1708 fail_sp2:
1709	kfree(xhci->scratchpad);
1710	xhci->scratchpad = NULL;
1711
1712 fail_sp:
1713	return -ENOMEM;
1714}
1715
1716static void scratchpad_free(struct xhci_hcd *xhci)
1717{
1718	int num_sp;
1719	int i;
1720	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1721
1722	if (!xhci->scratchpad)
1723		return;
1724
1725	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1726
1727	for (i = 0; i < num_sp; i++) {
1728		dma_free_coherent(dev, xhci->page_size,
1729				    xhci->scratchpad->sp_buffers[i],
1730				    xhci->scratchpad->sp_dma_buffers[i]);
1731	}
1732	kfree(xhci->scratchpad->sp_dma_buffers);
1733	kfree(xhci->scratchpad->sp_buffers);
1734	dma_free_coherent(dev, num_sp * sizeof(u64),
1735			    xhci->scratchpad->sp_array,
1736			    xhci->scratchpad->sp_dma);
1737	kfree(xhci->scratchpad);
1738	xhci->scratchpad = NULL;
1739}
1740
1741struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1742		bool allocate_in_ctx, bool allocate_completion,
1743		gfp_t mem_flags)
1744{
1745	struct xhci_command *command;
 
1746
1747	command = kzalloc(sizeof(*command), mem_flags);
1748	if (!command)
1749		return NULL;
1750
1751	if (allocate_in_ctx) {
1752		command->in_ctx =
1753			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1754					mem_flags);
1755		if (!command->in_ctx) {
1756			kfree(command);
1757			return NULL;
1758		}
1759	}
1760
1761	if (allocate_completion) {
1762		command->completion =
1763			kzalloc(sizeof(struct completion), mem_flags);
 
1764		if (!command->completion) {
1765			xhci_free_container_ctx(xhci, command->in_ctx);
1766			kfree(command);
1767			return NULL;
1768		}
1769		init_completion(command->completion);
1770	}
1771
1772	command->status = 0;
 
 
1773	INIT_LIST_HEAD(&command->cmd_list);
1774	return command;
1775}
1776
1777void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
 
1778{
1779	if (urb_priv) {
1780		kfree(urb_priv->td[0]);
1781		kfree(urb_priv);
 
 
 
 
 
 
 
 
 
1782	}
 
 
 
 
 
 
1783}
1784
1785void xhci_free_command(struct xhci_hcd *xhci,
1786		struct xhci_command *command)
1787{
1788	xhci_free_container_ctx(xhci,
1789			command->in_ctx);
1790	kfree(command->completion);
1791	kfree(command);
1792}
1793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1794void xhci_mem_cleanup(struct xhci_hcd *xhci)
1795{
1796	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1797	struct xhci_cd  *cur_cd, *next_cd;
1798	int size;
1799	int i, j, num_ports;
1800
1801	/* Free the Event Ring Segment Table and the actual Event Ring */
1802	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1803	if (xhci->erst.entries)
1804		dma_free_coherent(dev, size,
1805				xhci->erst.entries, xhci->erst.erst_dma_addr);
1806	xhci->erst.entries = NULL;
1807	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1808	if (xhci->event_ring)
1809		xhci_ring_free(xhci, xhci->event_ring);
1810	xhci->event_ring = NULL;
1811	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1812
1813	if (xhci->lpm_command)
1814		xhci_free_command(xhci, xhci->lpm_command);
1815	if (xhci->cmd_ring)
1816		xhci_ring_free(xhci, xhci->cmd_ring);
1817	xhci->cmd_ring = NULL;
1818	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1819	list_for_each_entry_safe(cur_cd, next_cd,
1820			&xhci->cancel_cmd_list, cancel_cmd_list) {
1821		list_del(&cur_cd->cancel_cmd_list);
1822		kfree(cur_cd);
1823	}
1824
1825	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1826	for (i = 0; i < num_ports; i++) {
1827		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1828		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1829			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1830			while (!list_empty(ep))
1831				list_del_init(ep->next);
1832		}
1833	}
1834
1835	for (i = 1; i < MAX_HC_SLOTS; ++i)
1836		xhci_free_virt_device(xhci, i);
1837
1838	if (xhci->segment_pool)
1839		dma_pool_destroy(xhci->segment_pool);
1840	xhci->segment_pool = NULL;
1841	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1842
1843	if (xhci->device_pool)
1844		dma_pool_destroy(xhci->device_pool);
1845	xhci->device_pool = NULL;
1846	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1847
1848	if (xhci->small_streams_pool)
1849		dma_pool_destroy(xhci->small_streams_pool);
1850	xhci->small_streams_pool = NULL;
1851	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1852			"Freed small stream array pool");
1853
1854	if (xhci->medium_streams_pool)
1855		dma_pool_destroy(xhci->medium_streams_pool);
1856	xhci->medium_streams_pool = NULL;
1857	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1858			"Freed medium stream array pool");
1859
1860	if (xhci->dcbaa)
1861		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1862				xhci->dcbaa, xhci->dcbaa->dma);
1863	xhci->dcbaa = NULL;
1864
1865	scratchpad_free(xhci);
1866
1867	if (!xhci->rh_bw)
1868		goto no_bw;
1869
1870	for (i = 0; i < num_ports; i++) {
1871		struct xhci_tt_bw_info *tt, *n;
1872		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1873			list_del(&tt->tt_list);
1874			kfree(tt);
1875		}
1876	}
1877
1878no_bw:
1879	xhci->cmd_ring_reserved_trbs = 0;
1880	xhci->num_usb2_ports = 0;
1881	xhci->num_usb3_ports = 0;
1882	xhci->num_active_eps = 0;
1883	kfree(xhci->usb2_ports);
1884	kfree(xhci->usb3_ports);
1885	kfree(xhci->port_array);
1886	kfree(xhci->rh_bw);
1887	kfree(xhci->ext_caps);
 
 
 
 
 
 
 
 
 
 
 
 
 
1888
1889	xhci->page_size = 0;
1890	xhci->page_shift = 0;
1891	xhci->bus_state[0].bus_suspended = 0;
1892	xhci->bus_state[1].bus_suspended = 0;
1893}
1894
1895static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1896		struct xhci_segment *input_seg,
1897		union xhci_trb *start_trb,
1898		union xhci_trb *end_trb,
1899		dma_addr_t input_dma,
1900		struct xhci_segment *result_seg,
1901		char *test_name, int test_number)
1902{
1903	unsigned long long start_dma;
1904	unsigned long long end_dma;
1905	struct xhci_segment *seg;
1906
1907	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1908	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1909
1910	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1911	if (seg != result_seg) {
1912		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1913				test_name, test_number);
1914		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1915				"input DMA 0x%llx\n",
1916				input_seg,
1917				(unsigned long long) input_dma);
1918		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1919				"ending TRB %p (0x%llx DMA)\n",
1920				start_trb, start_dma,
1921				end_trb, end_dma);
1922		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1923				result_seg, seg);
1924		return -1;
1925	}
1926	return 0;
1927}
1928
1929/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1930static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1931{
1932	struct {
1933		dma_addr_t		input_dma;
1934		struct xhci_segment	*result_seg;
1935	} simple_test_vector [] = {
1936		/* A zeroed DMA field should fail */
1937		{ 0, NULL },
1938		/* One TRB before the ring start should fail */
1939		{ xhci->event_ring->first_seg->dma - 16, NULL },
1940		/* One byte before the ring start should fail */
1941		{ xhci->event_ring->first_seg->dma - 1, NULL },
1942		/* Starting TRB should succeed */
1943		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1944		/* Ending TRB should succeed */
1945		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1946			xhci->event_ring->first_seg },
1947		/* One byte after the ring end should fail */
1948		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1949		/* One TRB after the ring end should fail */
1950		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1951		/* An address of all ones should fail */
1952		{ (dma_addr_t) (~0), NULL },
1953	};
1954	struct {
1955		struct xhci_segment	*input_seg;
1956		union xhci_trb		*start_trb;
1957		union xhci_trb		*end_trb;
1958		dma_addr_t		input_dma;
1959		struct xhci_segment	*result_seg;
1960	} complex_test_vector [] = {
1961		/* Test feeding a valid DMA address from a different ring */
1962		{	.input_seg = xhci->event_ring->first_seg,
1963			.start_trb = xhci->event_ring->first_seg->trbs,
1964			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1965			.input_dma = xhci->cmd_ring->first_seg->dma,
1966			.result_seg = NULL,
1967		},
1968		/* Test feeding a valid end TRB from a different ring */
1969		{	.input_seg = xhci->event_ring->first_seg,
1970			.start_trb = xhci->event_ring->first_seg->trbs,
1971			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1972			.input_dma = xhci->cmd_ring->first_seg->dma,
1973			.result_seg = NULL,
1974		},
1975		/* Test feeding a valid start and end TRB from a different ring */
1976		{	.input_seg = xhci->event_ring->first_seg,
1977			.start_trb = xhci->cmd_ring->first_seg->trbs,
1978			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1979			.input_dma = xhci->cmd_ring->first_seg->dma,
1980			.result_seg = NULL,
1981		},
1982		/* TRB in this ring, but after this TD */
1983		{	.input_seg = xhci->event_ring->first_seg,
1984			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1985			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1986			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1987			.result_seg = NULL,
1988		},
1989		/* TRB in this ring, but before this TD */
1990		{	.input_seg = xhci->event_ring->first_seg,
1991			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1992			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1993			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1994			.result_seg = NULL,
1995		},
1996		/* TRB in this ring, but after this wrapped TD */
1997		{	.input_seg = xhci->event_ring->first_seg,
1998			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1999			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2000			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2001			.result_seg = NULL,
2002		},
2003		/* TRB in this ring, but before this wrapped TD */
2004		{	.input_seg = xhci->event_ring->first_seg,
2005			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2006			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2007			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2008			.result_seg = NULL,
2009		},
2010		/* TRB not in this ring, and we have a wrapped TD */
2011		{	.input_seg = xhci->event_ring->first_seg,
2012			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2013			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2014			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2015			.result_seg = NULL,
2016		},
2017	};
2018
2019	unsigned int num_tests;
2020	int i, ret;
2021
2022	num_tests = ARRAY_SIZE(simple_test_vector);
2023	for (i = 0; i < num_tests; i++) {
2024		ret = xhci_test_trb_in_td(xhci,
2025				xhci->event_ring->first_seg,
2026				xhci->event_ring->first_seg->trbs,
2027				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2028				simple_test_vector[i].input_dma,
2029				simple_test_vector[i].result_seg,
2030				"Simple", i);
2031		if (ret < 0)
2032			return ret;
2033	}
2034
2035	num_tests = ARRAY_SIZE(complex_test_vector);
2036	for (i = 0; i < num_tests; i++) {
2037		ret = xhci_test_trb_in_td(xhci,
2038				complex_test_vector[i].input_seg,
2039				complex_test_vector[i].start_trb,
2040				complex_test_vector[i].end_trb,
2041				complex_test_vector[i].input_dma,
2042				complex_test_vector[i].result_seg,
2043				"Complex", i);
2044		if (ret < 0)
2045			return ret;
2046	}
2047	xhci_dbg(xhci, "TRB math tests passed.\n");
2048	return 0;
2049}
2050
2051static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2052{
2053	u64 temp;
2054	dma_addr_t deq;
2055
2056	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2057			xhci->event_ring->dequeue);
2058	if (deq == 0 && !in_interrupt())
2059		xhci_warn(xhci, "WARN something wrong with SW event ring "
2060				"dequeue ptr.\n");
2061	/* Update HC event ring dequeue pointer */
2062	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2063	temp &= ERST_PTR_MASK;
2064	/* Don't clear the EHB bit (which is RW1C) because
2065	 * there might be more events to service.
2066	 */
2067	temp &= ~ERST_EHB;
2068	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2069			"// Write event ring dequeue pointer, "
2070			"preserving EHB bit");
2071	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2072			&xhci->ir_set->erst_dequeue);
2073}
2074
2075static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2076		__le32 __iomem *addr, u8 major_revision, int max_caps)
2077{
2078	u32 temp, port_offset, port_count;
2079	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2080
2081	if (major_revision > 0x03) {
2082		xhci_warn(xhci, "Ignoring unknown port speed, "
2083				"Ext Cap %p, revision = 0x%x\n",
 
2084				addr, major_revision);
2085		/* Ignoring port protocol we can't understand. FIXME */
2086		return;
2087	}
2088
2089	/* Port offset and count in the third dword, see section 7.2 */
2090	temp = readl(addr + 2);
2091	port_offset = XHCI_EXT_PORT_OFF(temp);
2092	port_count = XHCI_EXT_PORT_COUNT(temp);
2093	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2094			"Ext Cap %p, port offset = %u, "
2095			"count = %u, revision = 0x%x",
2096			addr, port_offset, port_count, major_revision);
2097	/* Port count includes the current port offset */
2098	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2099		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2100		return;
2101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2102	/* cache usb2 port capabilities */
2103	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2104		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2105
2106	/* Check the host's USB2 LPM capability */
2107	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2108			(temp & XHCI_L1C)) {
2109		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2110				"xHCI 0.96: support USB2 software lpm");
2111		xhci->sw_lpm_support = 1;
2112	}
2113
2114	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2115		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2116				"xHCI 1.0: support USB2 software lpm");
2117		xhci->sw_lpm_support = 1;
2118		if (temp & XHCI_HLC) {
2119			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2120					"xHCI 1.0: support USB2 hardware lpm");
2121			xhci->hw_lpm_support = 1;
2122		}
2123	}
2124
2125	port_offset--;
2126	for (i = port_offset; i < (port_offset + port_count); i++) {
 
2127		/* Duplicate entry.  Ignore the port if the revisions differ. */
2128		if (xhci->port_array[i] != 0) {
2129			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2130					" port %u\n", addr, i);
2131			xhci_warn(xhci, "Port was marked as USB %u, "
2132					"duplicated as USB %u\n",
2133					xhci->port_array[i], major_revision);
2134			/* Only adjust the roothub port counts if we haven't
2135			 * found a similar duplicate.
2136			 */
2137			if (xhci->port_array[i] != major_revision &&
2138				xhci->port_array[i] != DUPLICATE_ENTRY) {
2139				if (xhci->port_array[i] == 0x03)
2140					xhci->num_usb3_ports--;
2141				else
2142					xhci->num_usb2_ports--;
2143				xhci->port_array[i] = DUPLICATE_ENTRY;
2144			}
2145			/* FIXME: Should we disable the port? */
2146			continue;
2147		}
2148		xhci->port_array[i] = major_revision;
2149		if (major_revision == 0x03)
2150			xhci->num_usb3_ports++;
2151		else
2152			xhci->num_usb2_ports++;
2153	}
2154	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2155}
2156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2157/*
2158 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2159 * specify what speeds each port is supposed to be.  We can't count on the port
2160 * speed bits in the PORTSC register being correct until a device is connected,
2161 * but we need to set up the two fake roothubs with the correct number of USB
2162 * 3.0 and USB 2.0 ports at host controller initialization time.
2163 */
2164static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2165{
2166	__le32 __iomem *addr, *tmp_addr;
2167	u32 offset, tmp_offset;
2168	unsigned int num_ports;
2169	int i, j, port_index;
2170	int cap_count = 0;
2171
2172	addr = &xhci->cap_regs->hcc_params;
2173	offset = XHCI_HCC_EXT_CAPS(readl(addr));
2174	if (offset == 0) {
2175		xhci_err(xhci, "No Extended Capability registers, "
2176				"unable to set up roothub.\n");
2177		return -ENODEV;
2178	}
2179
2180	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2181	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2182	if (!xhci->port_array)
 
2183		return -ENOMEM;
2184
2185	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
 
 
 
 
 
 
 
 
 
 
2186	if (!xhci->rh_bw)
2187		return -ENOMEM;
2188	for (i = 0; i < num_ports; i++) {
2189		struct xhci_interval_bw_table *bw_table;
2190
2191		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2192		bw_table = &xhci->rh_bw[i].bw_table;
2193		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2194			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2195	}
 
2196
2197	/*
2198	 * For whatever reason, the first capability offset is from the
2199	 * capability register base, not from the HCCPARAMS register.
2200	 * See section 5.3.6 for offset calculation.
2201	 */
2202	addr = &xhci->cap_regs->hc_capbase + offset;
2203
2204	tmp_addr = addr;
2205	tmp_offset = offset;
2206
 
2207	/* count extended protocol capability entries for later caching */
2208	do {
2209		u32 cap_id;
2210		cap_id = readl(tmp_addr);
2211		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2212			cap_count++;
2213		tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2214		tmp_addr += tmp_offset;
2215	} while (tmp_offset);
2216
2217	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
 
2218	if (!xhci->ext_caps)
2219		return -ENOMEM;
2220
2221	while (1) {
2222		u32 cap_id;
 
 
 
 
2223
2224		cap_id = readl(addr);
2225		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2226			xhci_add_in_port(xhci, num_ports, addr,
2227					(u8) XHCI_EXT_PORT_MAJOR(cap_id),
2228					cap_count);
2229		offset = XHCI_EXT_CAPS_NEXT(cap_id);
2230		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2231				== num_ports)
2232			break;
2233		/*
2234		 * Once you're into the Extended Capabilities, the offset is
2235		 * always relative to the register holding the offset.
2236		 */
2237		addr += offset;
2238	}
2239
2240	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2241		xhci_warn(xhci, "No ports on the roothubs?\n");
2242		return -ENODEV;
2243	}
2244	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2245			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2246			xhci->num_usb2_ports, xhci->num_usb3_ports);
2247
2248	/* Place limits on the number of roothub ports so that the hub
2249	 * descriptors aren't longer than the USB core will allocate.
2250	 */
2251	if (xhci->num_usb3_ports > 15) {
2252		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2253				"Limiting USB 3.0 roothub ports to 15.");
2254		xhci->num_usb3_ports = 15;
 
2255	}
2256	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2257		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2258				"Limiting USB 2.0 roothub ports to %u.",
2259				USB_MAXCHILDREN);
2260		xhci->num_usb2_ports = USB_MAXCHILDREN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2261	}
2262
2263	/*
2264	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2265	 * Not sure how the USB core will handle a hub with no ports...
2266	 */
2267	if (xhci->num_usb2_ports) {
2268		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2269				xhci->num_usb2_ports, flags);
2270		if (!xhci->usb2_ports)
2271			return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2272
2273		port_index = 0;
2274		for (i = 0; i < num_ports; i++) {
2275			if (xhci->port_array[i] == 0x03 ||
2276					xhci->port_array[i] == 0 ||
2277					xhci->port_array[i] == DUPLICATE_ENTRY)
2278				continue;
2279
2280			xhci->usb2_ports[port_index] =
2281				&xhci->op_regs->port_status_base +
2282				NUM_PORT_REGS*i;
2283			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2284					"USB 2.0 port at index %u, "
2285					"addr = %p", i,
2286					xhci->usb2_ports[port_index]);
2287			port_index++;
2288			if (port_index == xhci->num_usb2_ports)
2289				break;
2290		}
2291	}
2292	if (xhci->num_usb3_ports) {
2293		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2294				xhci->num_usb3_ports, flags);
2295		if (!xhci->usb3_ports)
2296			return -ENOMEM;
2297
2298		port_index = 0;
2299		for (i = 0; i < num_ports; i++)
2300			if (xhci->port_array[i] == 0x03) {
2301				xhci->usb3_ports[port_index] =
2302					&xhci->op_regs->port_status_base +
2303					NUM_PORT_REGS*i;
2304				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2305						"USB 3.0 port at index %u, "
2306						"addr = %p", i,
2307						xhci->usb3_ports[port_index]);
2308				port_index++;
2309				if (port_index == xhci->num_usb3_ports)
2310					break;
2311			}
2312	}
2313	return 0;
 
 
 
 
2314}
 
2315
2316int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2317{
 
 
2318	dma_addr_t	dma;
2319	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2320	unsigned int	val, val2;
2321	u64		val_64;
2322	struct xhci_segment	*seg;
2323	u32 page_size, temp;
2324	int i;
 
2325
2326	INIT_LIST_HEAD(&xhci->cancel_cmd_list);
 
 
2327
2328	page_size = readl(&xhci->op_regs->page_size);
2329	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2330			"Supported page size register = 0x%x", page_size);
2331	for (i = 0; i < 16; i++) {
2332		if ((0x1 & page_size) != 0)
2333			break;
2334		page_size = page_size >> 1;
2335	}
2336	if (i < 16)
2337		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2338			"Supported page size of %iK", (1 << (i+12)) / 1024);
2339	else
2340		xhci_warn(xhci, "WARN: no supported page size\n");
2341	/* Use 4K pages, since that's common and the minimum the HC supports */
2342	xhci->page_shift = 12;
2343	xhci->page_size = 1 << xhci->page_shift;
2344	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2345			"HCD page size set to %iK", xhci->page_size / 1024);
2346
2347	/*
2348	 * Program the Number of Device Slots Enabled field in the CONFIG
2349	 * register with the max value of slots the HC can handle.
2350	 */
2351	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2352	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2353			"// xHC can handle at most %d device slots.", val);
2354	val2 = readl(&xhci->op_regs->config_reg);
2355	val |= (val2 & ~HCS_SLOTS_MASK);
2356	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2357			"// Setting Max device slots reg = 0x%x.", val);
2358	writel(val, &xhci->op_regs->config_reg);
2359
2360	/*
2361	 * Section 5.4.8 - doorbell array must be
2362	 * "physically contiguous and 64-byte (cache line) aligned".
2363	 */
2364	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2365			GFP_KERNEL);
2366	if (!xhci->dcbaa)
2367		goto fail;
2368	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2369	xhci->dcbaa->dma = dma;
2370	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2371			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2372			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2373	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2374
2375	/*
2376	 * Initialize the ring segment pool.  The ring must be a contiguous
2377	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2378	 * however, the command ring segment needs 64-byte aligned segments
2379	 * and our use of dma addresses in the trb_address_map radix tree needs
2380	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2381	 */
2382	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2383			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
 
 
 
 
2384
2385	/* See Table 46 and Note on Figure 55 */
2386	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2387			2112, 64, xhci->page_size);
2388	if (!xhci->segment_pool || !xhci->device_pool)
2389		goto fail;
2390
2391	/* Linear stream context arrays don't have any boundary restrictions,
2392	 * and only need to be 16-byte aligned.
2393	 */
2394	xhci->small_streams_pool =
2395		dma_pool_create("xHCI 256 byte stream ctx arrays",
2396			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2397	xhci->medium_streams_pool =
2398		dma_pool_create("xHCI 1KB stream ctx arrays",
2399			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2400	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2401	 * will be allocated with dma_alloc_coherent()
2402	 */
2403
2404	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2405		goto fail;
2406
2407	/* Set up the command ring to have one segments for now. */
2408	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2409	if (!xhci->cmd_ring)
2410		goto fail;
2411	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412			"Allocated command ring at %p", xhci->cmd_ring);
2413	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2414			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2415
2416	/* Set the address in the Command Ring Control register */
2417	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2418	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2419		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2420		xhci->cmd_ring->cycle_state;
2421	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2422			"// Setting command ring address to 0x%x", val);
2423	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2424	xhci_dbg_cmd_ptrs(xhci);
2425
2426	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2427	if (!xhci->lpm_command)
2428		goto fail;
2429
2430	/* Reserve one command ring TRB for disabling LPM.
2431	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2432	 * disabling LPM, we only need to reserve one TRB for all devices.
2433	 */
2434	xhci->cmd_ring_reserved_trbs++;
2435
2436	val = readl(&xhci->cap_regs->db_off);
2437	val &= DBOFF_MASK;
2438	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2439			"// Doorbell array is located at offset 0x%x"
2440			" from cap regs base addr", val);
2441	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2442	xhci_dbg_regs(xhci);
2443	xhci_print_run_regs(xhci);
2444	/* Set ir_set to interrupt register set 0 */
2445	xhci->ir_set = &xhci->run_regs->ir_set[0];
2446
2447	/*
2448	 * Event ring setup: Allocate a normal ring, but also setup
2449	 * the event ring segment table (ERST).  Section 4.9.3.
2450	 */
2451	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2452	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2453						flags);
2454	if (!xhci->event_ring)
2455		goto fail;
2456	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2457		goto fail;
2458
2459	xhci->erst.entries = dma_alloc_coherent(dev,
2460			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2461			GFP_KERNEL);
2462	if (!xhci->erst.entries)
2463		goto fail;
2464	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2465			"// Allocated event ring segment table at 0x%llx",
2466			(unsigned long long)dma);
2467
2468	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2469	xhci->erst.num_entries = ERST_NUM_SEGS;
2470	xhci->erst.erst_dma_addr = dma;
2471	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2472			"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2473			xhci->erst.num_entries,
2474			xhci->erst.entries,
2475			(unsigned long long)xhci->erst.erst_dma_addr);
2476
2477	/* set ring base address and size for each segment table entry */
2478	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2479		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2480		entry->seg_addr = cpu_to_le64(seg->dma);
2481		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2482		entry->rsvd = 0;
2483		seg = seg->next;
2484	}
2485
2486	/* set ERST count with the number of entries in the segment table */
2487	val = readl(&xhci->ir_set->erst_size);
2488	val &= ERST_SIZE_MASK;
2489	val |= ERST_NUM_SEGS;
2490	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2491			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2492			val);
2493	writel(val, &xhci->ir_set->erst_size);
2494
2495	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2496			"// Set ERST entries to point to event ring.");
2497	/* set the segment table base address */
2498	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2499			"// Set ERST base address for ir_set 0 = 0x%llx",
2500			(unsigned long long)xhci->erst.erst_dma_addr);
2501	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2502	val_64 &= ERST_PTR_MASK;
2503	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2504	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2505
2506	/* Set the event ring dequeue address */
2507	xhci_set_hc_event_deq(xhci);
2508	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2509			"Wrote ERST address to ir_set 0.");
2510	xhci_print_ir_set(xhci, 0);
2511
2512	/*
2513	 * XXX: Might need to set the Interrupter Moderation Register to
2514	 * something other than the default (~1ms minimum between interrupts).
2515	 * See section 5.5.1.2.
2516	 */
2517	init_completion(&xhci->addr_dev);
2518	for (i = 0; i < MAX_HC_SLOTS; ++i)
2519		xhci->devs[i] = NULL;
2520	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2521		xhci->bus_state[0].resume_done[i] = 0;
2522		xhci->bus_state[1].resume_done[i] = 0;
2523		/* Only the USB 2.0 completions will ever be used. */
2524		init_completion(&xhci->bus_state[1].rexit_done[i]);
2525	}
2526
2527	if (scratchpad_alloc(xhci, flags))
2528		goto fail;
2529	if (xhci_setup_port_arrays(xhci, flags))
2530		goto fail;
2531
2532	/* Enable USB 3.0 device notifications for function remote wake, which
2533	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2534	 * U3 (device suspend).
2535	 */
2536	temp = readl(&xhci->op_regs->dev_notification);
2537	temp &= ~DEV_NOTE_MASK;
2538	temp |= DEV_NOTE_FWAKE;
2539	writel(temp, &xhci->op_regs->dev_notification);
2540
2541	return 0;
2542
2543fail:
2544	xhci_warn(xhci, "Couldn't initialize memory\n");
2545	xhci_halt(xhci);
2546	xhci_reset(xhci);
2547	xhci_mem_cleanup(xhci);
2548	return -ENOMEM;
2549}