Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2//
   3// core.c  --  Voltage/Current Regulator framework.
   4//
   5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6// Copyright 2008 SlimLogic Ltd.
   7//
   8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
 
 
 
 
 
 
   9
  10#include <linux/kernel.h>
  11#include <linux/init.h>
  12#include <linux/debugfs.h>
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/async.h>
  16#include <linux/err.h>
  17#include <linux/mutex.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
  20#include <linux/gpio/consumer.h>
  21#include <linux/of.h>
  22#include <linux/reboot.h>
  23#include <linux/regmap.h>
  24#include <linux/regulator/of_regulator.h>
  25#include <linux/regulator/consumer.h>
  26#include <linux/regulator/coupler.h>
  27#include <linux/regulator/driver.h>
  28#include <linux/regulator/machine.h>
  29#include <linux/module.h>
  30
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/regulator.h>
  33
  34#include "dummy.h"
  35#include "internal.h"
  36#include "regnl.h"
  37
  38static DEFINE_WW_CLASS(regulator_ww_class);
  39static DEFINE_MUTEX(regulator_nesting_mutex);
 
 
 
 
 
 
 
 
 
  40static DEFINE_MUTEX(regulator_list_mutex);
 
  41static LIST_HEAD(regulator_map_list);
  42static LIST_HEAD(regulator_ena_gpio_list);
  43static LIST_HEAD(regulator_supply_alias_list);
  44static LIST_HEAD(regulator_coupler_list);
  45static bool has_full_constraints;
  46
  47static struct dentry *debugfs_root;
  48
  49/*
  50 * struct regulator_map
  51 *
  52 * Used to provide symbolic supply names to devices.
  53 */
  54struct regulator_map {
  55	struct list_head list;
  56	const char *dev_name;   /* The dev_name() for the consumer */
  57	const char *supply;
  58	struct regulator_dev *regulator;
  59};
  60
  61/*
  62 * struct regulator_enable_gpio
  63 *
  64 * Management for shared enable GPIO pin
  65 */
  66struct regulator_enable_gpio {
  67	struct list_head list;
  68	struct gpio_desc *gpiod;
  69	u32 enable_count;	/* a number of enabled shared GPIO */
  70	u32 request_count;	/* a number of requested shared GPIO */
 
  71};
  72
  73/*
  74 * struct regulator_supply_alias
  75 *
  76 * Used to map lookups for a supply onto an alternative device.
  77 */
  78struct regulator_supply_alias {
  79	struct list_head list;
  80	struct device *src_dev;
  81	const char *src_supply;
  82	struct device *alias_dev;
  83	const char *alias_supply;
  84};
  85
  86static int _regulator_is_enabled(struct regulator_dev *rdev);
  87static int _regulator_disable(struct regulator *regulator);
  88static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
  89static int _regulator_get_current_limit(struct regulator_dev *rdev);
  90static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  91static int _notifier_call_chain(struct regulator_dev *rdev,
  92				  unsigned long event, void *data);
  93static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  94				     int min_uV, int max_uV);
  95static int regulator_balance_voltage(struct regulator_dev *rdev,
  96				     suspend_state_t state);
  97static struct regulator *create_regulator(struct regulator_dev *rdev,
  98					  struct device *dev,
  99					  const char *supply_name);
 100static void destroy_regulator(struct regulator *regulator);
 101static void _regulator_put(struct regulator *regulator);
 102
 103const char *rdev_get_name(struct regulator_dev *rdev)
 104{
 105	if (rdev->constraints && rdev->constraints->name)
 106		return rdev->constraints->name;
 107	else if (rdev->desc->name)
 108		return rdev->desc->name;
 109	else
 110		return "";
 111}
 112EXPORT_SYMBOL_GPL(rdev_get_name);
 113
 114static bool have_full_constraints(void)
 115{
 116	return has_full_constraints || of_have_populated_dt();
 117}
 118
 119static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 120{
 121	if (!rdev->constraints) {
 122		rdev_err(rdev, "no constraints\n");
 123		return false;
 124	}
 125
 126	if (rdev->constraints->valid_ops_mask & ops)
 127		return true;
 128
 129	return false;
 130}
 131
 132/**
 133 * regulator_lock_nested - lock a single regulator
 134 * @rdev:		regulator source
 135 * @ww_ctx:		w/w mutex acquire context
 136 *
 137 * This function can be called many times by one task on
 138 * a single regulator and its mutex will be locked only
 139 * once. If a task, which is calling this function is other
 140 * than the one, which initially locked the mutex, it will
 141 * wait on mutex.
 142 */
 143static inline int regulator_lock_nested(struct regulator_dev *rdev,
 144					struct ww_acquire_ctx *ww_ctx)
 145{
 146	bool lock = false;
 147	int ret = 0;
 148
 149	mutex_lock(&regulator_nesting_mutex);
 150
 151	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
 152		if (rdev->mutex_owner == current)
 153			rdev->ref_cnt++;
 154		else
 155			lock = true;
 156
 157		if (lock) {
 158			mutex_unlock(&regulator_nesting_mutex);
 159			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
 160			mutex_lock(&regulator_nesting_mutex);
 161		}
 162	} else {
 163		lock = true;
 164	}
 165
 166	if (lock && ret != -EDEADLK) {
 167		rdev->ref_cnt++;
 168		rdev->mutex_owner = current;
 169	}
 170
 171	mutex_unlock(&regulator_nesting_mutex);
 172
 173	return ret;
 174}
 175
 176/**
 177 * regulator_lock - lock a single regulator
 178 * @rdev:		regulator source
 179 *
 180 * This function can be called many times by one task on
 181 * a single regulator and its mutex will be locked only
 182 * once. If a task, which is calling this function is other
 183 * than the one, which initially locked the mutex, it will
 184 * wait on mutex.
 185 */
 186static void regulator_lock(struct regulator_dev *rdev)
 187{
 188	regulator_lock_nested(rdev, NULL);
 189}
 190
 191/**
 192 * regulator_unlock - unlock a single regulator
 193 * @rdev:		regulator_source
 194 *
 195 * This function unlocks the mutex when the
 196 * reference counter reaches 0.
 197 */
 198static void regulator_unlock(struct regulator_dev *rdev)
 199{
 200	mutex_lock(&regulator_nesting_mutex);
 201
 202	if (--rdev->ref_cnt == 0) {
 203		rdev->mutex_owner = NULL;
 204		ww_mutex_unlock(&rdev->mutex);
 205	}
 206
 207	WARN_ON_ONCE(rdev->ref_cnt < 0);
 208
 209	mutex_unlock(&regulator_nesting_mutex);
 210}
 211
 212/**
 213 * regulator_lock_two - lock two regulators
 214 * @rdev1:		first regulator
 215 * @rdev2:		second regulator
 216 * @ww_ctx:		w/w mutex acquire context
 217 *
 218 * Locks both rdevs using the regulator_ww_class.
 219 */
 220static void regulator_lock_two(struct regulator_dev *rdev1,
 221			       struct regulator_dev *rdev2,
 222			       struct ww_acquire_ctx *ww_ctx)
 223{
 224	struct regulator_dev *held, *contended;
 225	int ret;
 226
 227	ww_acquire_init(ww_ctx, &regulator_ww_class);
 228
 229	/* Try to just grab both of them */
 230	ret = regulator_lock_nested(rdev1, ww_ctx);
 231	WARN_ON(ret);
 232	ret = regulator_lock_nested(rdev2, ww_ctx);
 233	if (ret != -EDEADLOCK) {
 234		WARN_ON(ret);
 235		goto exit;
 236	}
 237
 238	held = rdev1;
 239	contended = rdev2;
 240	while (true) {
 241		regulator_unlock(held);
 242
 243		ww_mutex_lock_slow(&contended->mutex, ww_ctx);
 244		contended->ref_cnt++;
 245		contended->mutex_owner = current;
 246		swap(held, contended);
 247		ret = regulator_lock_nested(contended, ww_ctx);
 248
 249		if (ret != -EDEADLOCK) {
 250			WARN_ON(ret);
 251			break;
 252		}
 253	}
 254
 255exit:
 256	ww_acquire_done(ww_ctx);
 257}
 258
 259/**
 260 * regulator_unlock_two - unlock two regulators
 261 * @rdev1:		first regulator
 262 * @rdev2:		second regulator
 263 * @ww_ctx:		w/w mutex acquire context
 264 *
 265 * The inverse of regulator_lock_two().
 266 */
 267
 268static void regulator_unlock_two(struct regulator_dev *rdev1,
 269				 struct regulator_dev *rdev2,
 270				 struct ww_acquire_ctx *ww_ctx)
 271{
 272	regulator_unlock(rdev2);
 273	regulator_unlock(rdev1);
 274	ww_acquire_fini(ww_ctx);
 275}
 276
 277static bool regulator_supply_is_couple(struct regulator_dev *rdev)
 278{
 279	struct regulator_dev *c_rdev;
 280	int i;
 281
 282	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
 283		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 284
 285		if (rdev->supply->rdev == c_rdev)
 286			return true;
 287	}
 288
 289	return false;
 290}
 291
 292static void regulator_unlock_recursive(struct regulator_dev *rdev,
 293				       unsigned int n_coupled)
 294{
 295	struct regulator_dev *c_rdev, *supply_rdev;
 296	int i, supply_n_coupled;
 297
 298	for (i = n_coupled; i > 0; i--) {
 299		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
 300
 301		if (!c_rdev)
 302			continue;
 303
 304		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 305			supply_rdev = c_rdev->supply->rdev;
 306			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
 307
 308			regulator_unlock_recursive(supply_rdev,
 309						   supply_n_coupled);
 310		}
 311
 312		regulator_unlock(c_rdev);
 313	}
 314}
 315
 316static int regulator_lock_recursive(struct regulator_dev *rdev,
 317				    struct regulator_dev **new_contended_rdev,
 318				    struct regulator_dev **old_contended_rdev,
 319				    struct ww_acquire_ctx *ww_ctx)
 320{
 321	struct regulator_dev *c_rdev;
 322	int i, err;
 323
 324	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
 325		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 326
 327		if (!c_rdev)
 328			continue;
 329
 330		if (c_rdev != *old_contended_rdev) {
 331			err = regulator_lock_nested(c_rdev, ww_ctx);
 332			if (err) {
 333				if (err == -EDEADLK) {
 334					*new_contended_rdev = c_rdev;
 335					goto err_unlock;
 336				}
 337
 338				/* shouldn't happen */
 339				WARN_ON_ONCE(err != -EALREADY);
 340			}
 341		} else {
 342			*old_contended_rdev = NULL;
 343		}
 344
 345		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 346			err = regulator_lock_recursive(c_rdev->supply->rdev,
 347						       new_contended_rdev,
 348						       old_contended_rdev,
 349						       ww_ctx);
 350			if (err) {
 351				regulator_unlock(c_rdev);
 352				goto err_unlock;
 353			}
 354		}
 355	}
 356
 357	return 0;
 358
 359err_unlock:
 360	regulator_unlock_recursive(rdev, i);
 361
 362	return err;
 363}
 364
 365/**
 366 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 367 *				regulators
 368 * @rdev:			regulator source
 369 * @ww_ctx:			w/w mutex acquire context
 370 *
 371 * Unlock all regulators related with rdev by coupling or supplying.
 372 */
 373static void regulator_unlock_dependent(struct regulator_dev *rdev,
 374				       struct ww_acquire_ctx *ww_ctx)
 375{
 376	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
 377	ww_acquire_fini(ww_ctx);
 378}
 379
 380/**
 381 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 382 * @rdev:			regulator source
 383 * @ww_ctx:			w/w mutex acquire context
 384 *
 385 * This function as a wrapper on regulator_lock_recursive(), which locks
 386 * all regulators related with rdev by coupling or supplying.
 387 */
 388static void regulator_lock_dependent(struct regulator_dev *rdev,
 389				     struct ww_acquire_ctx *ww_ctx)
 390{
 391	struct regulator_dev *new_contended_rdev = NULL;
 392	struct regulator_dev *old_contended_rdev = NULL;
 393	int err;
 394
 395	mutex_lock(&regulator_list_mutex);
 396
 397	ww_acquire_init(ww_ctx, &regulator_ww_class);
 398
 399	do {
 400		if (new_contended_rdev) {
 401			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 402			old_contended_rdev = new_contended_rdev;
 403			old_contended_rdev->ref_cnt++;
 404			old_contended_rdev->mutex_owner = current;
 405		}
 406
 407		err = regulator_lock_recursive(rdev,
 408					       &new_contended_rdev,
 409					       &old_contended_rdev,
 410					       ww_ctx);
 411
 412		if (old_contended_rdev)
 413			regulator_unlock(old_contended_rdev);
 414
 415	} while (err == -EDEADLK);
 416
 417	ww_acquire_done(ww_ctx);
 418
 419	mutex_unlock(&regulator_list_mutex);
 420}
 421
 422/**
 423 * of_get_child_regulator - get a child regulator device node
 424 * based on supply name
 425 * @parent: Parent device node
 426 * @prop_name: Combination regulator supply name and "-supply"
 427 *
 428 * Traverse all child nodes.
 429 * Extract the child regulator device node corresponding to the supply name.
 430 * returns the device node corresponding to the regulator if found, else
 431 * returns NULL.
 432 */
 433static struct device_node *of_get_child_regulator(struct device_node *parent,
 434						  const char *prop_name)
 435{
 436	struct device_node *regnode = NULL;
 437	struct device_node *child = NULL;
 438
 439	for_each_child_of_node(parent, child) {
 440		regnode = of_parse_phandle(child, prop_name, 0);
 441
 442		if (!regnode) {
 443			regnode = of_get_child_regulator(child, prop_name);
 444			if (regnode)
 445				goto err_node_put;
 446		} else {
 447			goto err_node_put;
 448		}
 449	}
 450	return NULL;
 451
 452err_node_put:
 453	of_node_put(child);
 454	return regnode;
 455}
 456
 457/**
 458 * of_get_regulator - get a regulator device node based on supply name
 459 * @dev: Device pointer for the consumer (of regulator) device
 460 * @supply: regulator supply name
 461 *
 462 * Extract the regulator device node corresponding to the supply name.
 463 * returns the device node corresponding to the regulator if found, else
 464 * returns NULL.
 465 */
 466static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 467{
 468	struct device_node *regnode = NULL;
 469	char prop_name[64]; /* 64 is max size of property name */
 470
 471	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 472
 473	snprintf(prop_name, 64, "%s-supply", supply);
 474	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 475
 476	if (!regnode) {
 477		regnode = of_get_child_regulator(dev->of_node, prop_name);
 478		if (regnode)
 479			return regnode;
 480
 481		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
 482				prop_name, dev->of_node);
 483		return NULL;
 484	}
 485	return regnode;
 486}
 487
 
 
 
 
 
 
 
 
 
 
 
 488/* Platform voltage constraint check */
 489int regulator_check_voltage(struct regulator_dev *rdev,
 490			    int *min_uV, int *max_uV)
 491{
 492	BUG_ON(*min_uV > *max_uV);
 493
 494	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 495		rdev_err(rdev, "voltage operation not allowed\n");
 
 
 
 
 496		return -EPERM;
 497	}
 498
 499	if (*max_uV > rdev->constraints->max_uV)
 500		*max_uV = rdev->constraints->max_uV;
 501	if (*min_uV < rdev->constraints->min_uV)
 502		*min_uV = rdev->constraints->min_uV;
 503
 504	if (*min_uV > *max_uV) {
 505		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 506			 *min_uV, *max_uV);
 507		return -EINVAL;
 508	}
 509
 510	return 0;
 511}
 512
 513/* return 0 if the state is valid */
 514static int regulator_check_states(suspend_state_t state)
 515{
 516	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 517}
 518
 519/* Make sure we select a voltage that suits the needs of all
 520 * regulator consumers
 521 */
 522int regulator_check_consumers(struct regulator_dev *rdev,
 523			      int *min_uV, int *max_uV,
 524			      suspend_state_t state)
 525{
 526	struct regulator *regulator;
 527	struct regulator_voltage *voltage;
 528
 529	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 530		voltage = &regulator->voltage[state];
 531		/*
 532		 * Assume consumers that didn't say anything are OK
 533		 * with anything in the constraint range.
 534		 */
 535		if (!voltage->min_uV && !voltage->max_uV)
 536			continue;
 537
 538		if (*max_uV > voltage->max_uV)
 539			*max_uV = voltage->max_uV;
 540		if (*min_uV < voltage->min_uV)
 541			*min_uV = voltage->min_uV;
 542	}
 543
 544	if (*min_uV > *max_uV) {
 545		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 546			*min_uV, *max_uV);
 547		return -EINVAL;
 548	}
 549
 550	return 0;
 551}
 552
 553/* current constraint check */
 554static int regulator_check_current_limit(struct regulator_dev *rdev,
 555					int *min_uA, int *max_uA)
 556{
 557	BUG_ON(*min_uA > *max_uA);
 558
 559	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 560		rdev_err(rdev, "current operation not allowed\n");
 
 
 
 
 561		return -EPERM;
 562	}
 563
 564	if (*max_uA > rdev->constraints->max_uA)
 565		*max_uA = rdev->constraints->max_uA;
 566	if (*min_uA < rdev->constraints->min_uA)
 567		*min_uA = rdev->constraints->min_uA;
 568
 569	if (*min_uA > *max_uA) {
 570		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 571			 *min_uA, *max_uA);
 572		return -EINVAL;
 573	}
 574
 575	return 0;
 576}
 577
 578/* operating mode constraint check */
 579static int regulator_mode_constrain(struct regulator_dev *rdev,
 580				    unsigned int *mode)
 581{
 582	switch (*mode) {
 583	case REGULATOR_MODE_FAST:
 584	case REGULATOR_MODE_NORMAL:
 585	case REGULATOR_MODE_IDLE:
 586	case REGULATOR_MODE_STANDBY:
 587		break;
 588	default:
 589		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 590		return -EINVAL;
 591	}
 592
 593	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 594		rdev_err(rdev, "mode operation not allowed\n");
 
 
 
 
 595		return -EPERM;
 596	}
 597
 598	/* The modes are bitmasks, the most power hungry modes having
 599	 * the lowest values. If the requested mode isn't supported
 600	 * try higher modes.
 601	 */
 602	while (*mode) {
 603		if (rdev->constraints->valid_modes_mask & *mode)
 604			return 0;
 605		*mode /= 2;
 606	}
 607
 608	return -EINVAL;
 609}
 610
 611static inline struct regulator_state *
 612regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 613{
 614	if (rdev->constraints == NULL)
 615		return NULL;
 616
 617	switch (state) {
 618	case PM_SUSPEND_STANDBY:
 619		return &rdev->constraints->state_standby;
 620	case PM_SUSPEND_MEM:
 621		return &rdev->constraints->state_mem;
 622	case PM_SUSPEND_MAX:
 623		return &rdev->constraints->state_disk;
 624	default:
 625		return NULL;
 626	}
 627}
 628
 629static const struct regulator_state *
 630regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
 631{
 632	const struct regulator_state *rstate;
 633
 634	rstate = regulator_get_suspend_state(rdev, state);
 635	if (rstate == NULL)
 636		return NULL;
 637
 638	/* If we have no suspend mode configuration don't set anything;
 639	 * only warn if the driver implements set_suspend_voltage or
 640	 * set_suspend_mode callback.
 641	 */
 642	if (rstate->enabled != ENABLE_IN_SUSPEND &&
 643	    rstate->enabled != DISABLE_IN_SUSPEND) {
 644		if (rdev->desc->ops->set_suspend_voltage ||
 645		    rdev->desc->ops->set_suspend_mode)
 646			rdev_warn(rdev, "No configuration\n");
 647		return NULL;
 648	}
 649
 650	return rstate;
 651}
 652
 653static ssize_t microvolts_show(struct device *dev,
 654			       struct device_attribute *attr, char *buf)
 655{
 656	struct regulator_dev *rdev = dev_get_drvdata(dev);
 657	int uV;
 658
 659	regulator_lock(rdev);
 660	uV = regulator_get_voltage_rdev(rdev);
 661	regulator_unlock(rdev);
 662
 663	if (uV < 0)
 664		return uV;
 665	return sprintf(buf, "%d\n", uV);
 666}
 667static DEVICE_ATTR_RO(microvolts);
 668
 669static ssize_t microamps_show(struct device *dev,
 670			      struct device_attribute *attr, char *buf)
 671{
 672	struct regulator_dev *rdev = dev_get_drvdata(dev);
 673
 674	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 675}
 676static DEVICE_ATTR_RO(microamps);
 677
 678static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 679			 char *buf)
 680{
 681	struct regulator_dev *rdev = dev_get_drvdata(dev);
 682
 683	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 684}
 685static DEVICE_ATTR_RO(name);
 686
 687static const char *regulator_opmode_to_str(int mode)
 688{
 689	switch (mode) {
 690	case REGULATOR_MODE_FAST:
 691		return "fast";
 692	case REGULATOR_MODE_NORMAL:
 693		return "normal";
 694	case REGULATOR_MODE_IDLE:
 695		return "idle";
 696	case REGULATOR_MODE_STANDBY:
 697		return "standby";
 698	}
 699	return "unknown";
 700}
 701
 702static ssize_t regulator_print_opmode(char *buf, int mode)
 703{
 704	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
 705}
 706
 707static ssize_t opmode_show(struct device *dev,
 708			   struct device_attribute *attr, char *buf)
 709{
 710	struct regulator_dev *rdev = dev_get_drvdata(dev);
 711
 712	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 713}
 714static DEVICE_ATTR_RO(opmode);
 715
 716static ssize_t regulator_print_state(char *buf, int state)
 717{
 718	if (state > 0)
 719		return sprintf(buf, "enabled\n");
 720	else if (state == 0)
 721		return sprintf(buf, "disabled\n");
 722	else
 723		return sprintf(buf, "unknown\n");
 724}
 725
 726static ssize_t state_show(struct device *dev,
 727			  struct device_attribute *attr, char *buf)
 728{
 729	struct regulator_dev *rdev = dev_get_drvdata(dev);
 730	ssize_t ret;
 731
 732	regulator_lock(rdev);
 733	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 734	regulator_unlock(rdev);
 735
 736	return ret;
 737}
 738static DEVICE_ATTR_RO(state);
 739
 740static ssize_t status_show(struct device *dev,
 741			   struct device_attribute *attr, char *buf)
 742{
 743	struct regulator_dev *rdev = dev_get_drvdata(dev);
 744	int status;
 745	char *label;
 746
 747	status = rdev->desc->ops->get_status(rdev);
 748	if (status < 0)
 749		return status;
 750
 751	switch (status) {
 752	case REGULATOR_STATUS_OFF:
 753		label = "off";
 754		break;
 755	case REGULATOR_STATUS_ON:
 756		label = "on";
 757		break;
 758	case REGULATOR_STATUS_ERROR:
 759		label = "error";
 760		break;
 761	case REGULATOR_STATUS_FAST:
 762		label = "fast";
 763		break;
 764	case REGULATOR_STATUS_NORMAL:
 765		label = "normal";
 766		break;
 767	case REGULATOR_STATUS_IDLE:
 768		label = "idle";
 769		break;
 770	case REGULATOR_STATUS_STANDBY:
 771		label = "standby";
 772		break;
 773	case REGULATOR_STATUS_BYPASS:
 774		label = "bypass";
 775		break;
 776	case REGULATOR_STATUS_UNDEFINED:
 777		label = "undefined";
 778		break;
 779	default:
 780		return -ERANGE;
 781	}
 782
 783	return sprintf(buf, "%s\n", label);
 784}
 785static DEVICE_ATTR_RO(status);
 786
 787static ssize_t min_microamps_show(struct device *dev,
 788				  struct device_attribute *attr, char *buf)
 789{
 790	struct regulator_dev *rdev = dev_get_drvdata(dev);
 791
 792	if (!rdev->constraints)
 793		return sprintf(buf, "constraint not defined\n");
 794
 795	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 796}
 797static DEVICE_ATTR_RO(min_microamps);
 798
 799static ssize_t max_microamps_show(struct device *dev,
 800				  struct device_attribute *attr, char *buf)
 801{
 802	struct regulator_dev *rdev = dev_get_drvdata(dev);
 803
 804	if (!rdev->constraints)
 805		return sprintf(buf, "constraint not defined\n");
 806
 807	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 808}
 809static DEVICE_ATTR_RO(max_microamps);
 810
 811static ssize_t min_microvolts_show(struct device *dev,
 812				   struct device_attribute *attr, char *buf)
 813{
 814	struct regulator_dev *rdev = dev_get_drvdata(dev);
 815
 816	if (!rdev->constraints)
 817		return sprintf(buf, "constraint not defined\n");
 818
 819	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 820}
 821static DEVICE_ATTR_RO(min_microvolts);
 822
 823static ssize_t max_microvolts_show(struct device *dev,
 824				   struct device_attribute *attr, char *buf)
 825{
 826	struct regulator_dev *rdev = dev_get_drvdata(dev);
 827
 828	if (!rdev->constraints)
 829		return sprintf(buf, "constraint not defined\n");
 830
 831	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 832}
 833static DEVICE_ATTR_RO(max_microvolts);
 834
 835static ssize_t requested_microamps_show(struct device *dev,
 836					struct device_attribute *attr, char *buf)
 837{
 838	struct regulator_dev *rdev = dev_get_drvdata(dev);
 839	struct regulator *regulator;
 840	int uA = 0;
 841
 842	regulator_lock(rdev);
 843	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 844		if (regulator->enable_count)
 845			uA += regulator->uA_load;
 846	}
 847	regulator_unlock(rdev);
 848	return sprintf(buf, "%d\n", uA);
 849}
 850static DEVICE_ATTR_RO(requested_microamps);
 851
 852static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 853			      char *buf)
 854{
 855	struct regulator_dev *rdev = dev_get_drvdata(dev);
 856	return sprintf(buf, "%d\n", rdev->use_count);
 857}
 858static DEVICE_ATTR_RO(num_users);
 859
 860static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 861			 char *buf)
 862{
 863	struct regulator_dev *rdev = dev_get_drvdata(dev);
 864
 865	switch (rdev->desc->type) {
 866	case REGULATOR_VOLTAGE:
 867		return sprintf(buf, "voltage\n");
 868	case REGULATOR_CURRENT:
 869		return sprintf(buf, "current\n");
 870	}
 871	return sprintf(buf, "unknown\n");
 872}
 873static DEVICE_ATTR_RO(type);
 874
 875static ssize_t suspend_mem_microvolts_show(struct device *dev,
 876					   struct device_attribute *attr, char *buf)
 877{
 878	struct regulator_dev *rdev = dev_get_drvdata(dev);
 879
 880	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 881}
 882static DEVICE_ATTR_RO(suspend_mem_microvolts);
 
 883
 884static ssize_t suspend_disk_microvolts_show(struct device *dev,
 885					    struct device_attribute *attr, char *buf)
 886{
 887	struct regulator_dev *rdev = dev_get_drvdata(dev);
 888
 889	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 890}
 891static DEVICE_ATTR_RO(suspend_disk_microvolts);
 
 892
 893static ssize_t suspend_standby_microvolts_show(struct device *dev,
 894					       struct device_attribute *attr, char *buf)
 895{
 896	struct regulator_dev *rdev = dev_get_drvdata(dev);
 897
 898	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 899}
 900static DEVICE_ATTR_RO(suspend_standby_microvolts);
 
 901
 902static ssize_t suspend_mem_mode_show(struct device *dev,
 903				     struct device_attribute *attr, char *buf)
 904{
 905	struct regulator_dev *rdev = dev_get_drvdata(dev);
 906
 907	return regulator_print_opmode(buf,
 908		rdev->constraints->state_mem.mode);
 909}
 910static DEVICE_ATTR_RO(suspend_mem_mode);
 
 911
 912static ssize_t suspend_disk_mode_show(struct device *dev,
 913				      struct device_attribute *attr, char *buf)
 914{
 915	struct regulator_dev *rdev = dev_get_drvdata(dev);
 916
 917	return regulator_print_opmode(buf,
 918		rdev->constraints->state_disk.mode);
 919}
 920static DEVICE_ATTR_RO(suspend_disk_mode);
 
 921
 922static ssize_t suspend_standby_mode_show(struct device *dev,
 923					 struct device_attribute *attr, char *buf)
 924{
 925	struct regulator_dev *rdev = dev_get_drvdata(dev);
 926
 927	return regulator_print_opmode(buf,
 928		rdev->constraints->state_standby.mode);
 929}
 930static DEVICE_ATTR_RO(suspend_standby_mode);
 
 931
 932static ssize_t suspend_mem_state_show(struct device *dev,
 933				      struct device_attribute *attr, char *buf)
 934{
 935	struct regulator_dev *rdev = dev_get_drvdata(dev);
 936
 937	return regulator_print_state(buf,
 938			rdev->constraints->state_mem.enabled);
 939}
 940static DEVICE_ATTR_RO(suspend_mem_state);
 
 941
 942static ssize_t suspend_disk_state_show(struct device *dev,
 943				       struct device_attribute *attr, char *buf)
 944{
 945	struct regulator_dev *rdev = dev_get_drvdata(dev);
 946
 947	return regulator_print_state(buf,
 948			rdev->constraints->state_disk.enabled);
 949}
 950static DEVICE_ATTR_RO(suspend_disk_state);
 
 951
 952static ssize_t suspend_standby_state_show(struct device *dev,
 953					  struct device_attribute *attr, char *buf)
 954{
 955	struct regulator_dev *rdev = dev_get_drvdata(dev);
 956
 957	return regulator_print_state(buf,
 958			rdev->constraints->state_standby.enabled);
 959}
 960static DEVICE_ATTR_RO(suspend_standby_state);
 
 961
 962static ssize_t bypass_show(struct device *dev,
 963			   struct device_attribute *attr, char *buf)
 964{
 965	struct regulator_dev *rdev = dev_get_drvdata(dev);
 966	const char *report;
 967	bool bypass;
 968	int ret;
 969
 970	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 971
 972	if (ret != 0)
 973		report = "unknown";
 974	else if (bypass)
 975		report = "enabled";
 976	else
 977		report = "disabled";
 978
 979	return sprintf(buf, "%s\n", report);
 980}
 981static DEVICE_ATTR_RO(bypass);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982
 983#define REGULATOR_ERROR_ATTR(name, bit)							\
 984	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
 985				   char *buf)						\
 986	{										\
 987		int ret;								\
 988		unsigned int flags;							\
 989		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
 990		ret = _regulator_get_error_flags(rdev, &flags);				\
 991		if (ret)								\
 992			return ret;							\
 993		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
 994	}										\
 995	static DEVICE_ATTR_RO(name)
 996
 997REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
 998REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
 999REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
1000REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
1001REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1002REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1003REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1004REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1005REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1006
1007/* Calculate the new optimum regulator operating mode based on the new total
1008 * consumer load. All locks held by caller
1009 */
1010static int drms_uA_update(struct regulator_dev *rdev)
1011{
1012	struct regulator *sibling;
1013	int current_uA = 0, output_uV, input_uV, err;
1014	unsigned int mode;
1015
1016	/*
1017	 * first check to see if we can set modes at all, otherwise just
1018	 * tell the consumer everything is OK.
1019	 */
1020	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1021		rdev_dbg(rdev, "DRMS operation not allowed\n");
1022		return 0;
1023	}
1024
1025	if (!rdev->desc->ops->get_optimum_mode &&
1026	    !rdev->desc->ops->set_load)
1027		return 0;
 
1028
1029	if (!rdev->desc->ops->set_mode &&
1030	    !rdev->desc->ops->set_load)
1031		return -EINVAL;
 
 
 
 
 
1032
1033	/* calc total requested load */
1034	list_for_each_entry(sibling, &rdev->consumer_list, list) {
1035		if (sibling->enable_count)
1036			current_uA += sibling->uA_load;
1037	}
1038
1039	current_uA += rdev->constraints->system_load;
1040
1041	if (rdev->desc->ops->set_load) {
1042		/* set the optimum mode for our new total regulator load */
1043		err = rdev->desc->ops->set_load(rdev, current_uA);
1044		if (err < 0)
1045			rdev_err(rdev, "failed to set load %d: %pe\n",
1046				 current_uA, ERR_PTR(err));
1047	} else {
1048		/*
1049		 * Unfortunately in some cases the constraints->valid_ops has
1050		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1051		 * That's not really legit but we won't consider it a fatal
1052		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1053		 * wasn't set.
1054		 */
1055		if (!rdev->constraints->valid_modes_mask) {
1056			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1057			return 0;
1058		}
1059
1060		/* get output voltage */
1061		output_uV = regulator_get_voltage_rdev(rdev);
1062
1063		/*
1064		 * Don't return an error; if regulator driver cares about
1065		 * output_uV then it's up to the driver to validate.
1066		 */
1067		if (output_uV <= 0)
1068			rdev_dbg(rdev, "invalid output voltage found\n");
1069
1070		/* get input voltage */
1071		input_uV = 0;
1072		if (rdev->supply)
1073			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1074		if (input_uV <= 0)
1075			input_uV = rdev->constraints->input_uV;
1076
1077		/*
1078		 * Don't return an error; if regulator driver cares about
1079		 * input_uV then it's up to the driver to validate.
1080		 */
1081		if (input_uV <= 0)
1082			rdev_dbg(rdev, "invalid input voltage found\n");
1083
1084		/* now get the optimum mode for our new total regulator load */
1085		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1086							 output_uV, current_uA);
1087
1088		/* check the new mode is allowed */
1089		err = regulator_mode_constrain(rdev, &mode);
1090		if (err < 0) {
1091			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1092				 current_uA, input_uV, output_uV, ERR_PTR(err));
1093			return err;
1094		}
1095
1096		err = rdev->desc->ops->set_mode(rdev, mode);
1097		if (err < 0)
1098			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1099				 mode, ERR_PTR(err));
1100	}
1101
1102	return err;
 
 
 
1103}
1104
1105static int __suspend_set_state(struct regulator_dev *rdev,
1106			       const struct regulator_state *rstate)
1107{
1108	int ret = 0;
1109
1110	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1111		rdev->desc->ops->set_suspend_enable)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1112		ret = rdev->desc->ops->set_suspend_enable(rdev);
1113	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1114		rdev->desc->ops->set_suspend_disable)
1115		ret = rdev->desc->ops->set_suspend_disable(rdev);
1116	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1117		ret = 0;
1118
1119	if (ret < 0) {
1120		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1121		return ret;
1122	}
1123
1124	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1125		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1126		if (ret < 0) {
1127			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1128			return ret;
1129		}
1130	}
1131
1132	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1133		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1134		if (ret < 0) {
1135			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1136			return ret;
1137		}
1138	}
1139
1140	return ret;
1141}
1142
1143static int suspend_set_initial_state(struct regulator_dev *rdev)
 
1144{
1145	const struct regulator_state *rstate;
1146
1147	rstate = regulator_get_suspend_state_check(rdev,
1148			rdev->constraints->initial_state);
1149	if (!rstate)
1150		return 0;
1151
1152	return __suspend_set_state(rdev, rstate);
 
 
 
 
 
 
 
 
 
 
 
 
1153}
1154
1155#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1156static void print_constraints_debug(struct regulator_dev *rdev)
1157{
1158	struct regulation_constraints *constraints = rdev->constraints;
1159	char buf[160] = "";
1160	size_t len = sizeof(buf) - 1;
1161	int count = 0;
1162	int ret;
1163
1164	if (constraints->min_uV && constraints->max_uV) {
1165		if (constraints->min_uV == constraints->max_uV)
1166			count += scnprintf(buf + count, len - count, "%d mV ",
1167					   constraints->min_uV / 1000);
1168		else
1169			count += scnprintf(buf + count, len - count,
1170					   "%d <--> %d mV ",
1171					   constraints->min_uV / 1000,
1172					   constraints->max_uV / 1000);
1173	}
1174
1175	if (!constraints->min_uV ||
1176	    constraints->min_uV != constraints->max_uV) {
1177		ret = regulator_get_voltage_rdev(rdev);
1178		if (ret > 0)
1179			count += scnprintf(buf + count, len - count,
1180					   "at %d mV ", ret / 1000);
1181	}
1182
1183	if (constraints->uV_offset)
1184		count += scnprintf(buf + count, len - count, "%dmV offset ",
1185				   constraints->uV_offset / 1000);
1186
1187	if (constraints->min_uA && constraints->max_uA) {
1188		if (constraints->min_uA == constraints->max_uA)
1189			count += scnprintf(buf + count, len - count, "%d mA ",
1190					   constraints->min_uA / 1000);
1191		else
1192			count += scnprintf(buf + count, len - count,
1193					   "%d <--> %d mA ",
1194					   constraints->min_uA / 1000,
1195					   constraints->max_uA / 1000);
1196	}
1197
1198	if (!constraints->min_uA ||
1199	    constraints->min_uA != constraints->max_uA) {
1200		ret = _regulator_get_current_limit(rdev);
1201		if (ret > 0)
1202			count += scnprintf(buf + count, len - count,
1203					   "at %d mA ", ret / 1000);
1204	}
1205
1206	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1207		count += scnprintf(buf + count, len - count, "fast ");
1208	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1209		count += scnprintf(buf + count, len - count, "normal ");
1210	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1211		count += scnprintf(buf + count, len - count, "idle ");
1212	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1213		count += scnprintf(buf + count, len - count, "standby ");
1214
1215	if (!count)
1216		count = scnprintf(buf, len, "no parameters");
1217	else
1218		--count;
1219
1220	count += scnprintf(buf + count, len - count, ", %s",
1221		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1222
1223	rdev_dbg(rdev, "%s\n", buf);
1224}
1225#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1227#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1228
1229static void print_constraints(struct regulator_dev *rdev)
1230{
1231	struct regulation_constraints *constraints = rdev->constraints;
1232
1233	print_constraints_debug(rdev);
1234
1235	if ((constraints->min_uV != constraints->max_uV) &&
1236	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1237		rdev_warn(rdev,
1238			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1239}
1240
1241static int machine_constraints_voltage(struct regulator_dev *rdev,
1242	struct regulation_constraints *constraints)
1243{
1244	const struct regulator_ops *ops = rdev->desc->ops;
1245	int ret;
1246
1247	/* do we need to apply the constraint voltage */
1248	if (rdev->constraints->apply_uV &&
1249	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1250		int target_min, target_max;
1251		int current_uV = regulator_get_voltage_rdev(rdev);
1252
1253		if (current_uV == -ENOTRECOVERABLE) {
1254			/* This regulator can't be read and must be initialized */
1255			rdev_info(rdev, "Setting %d-%duV\n",
1256				  rdev->constraints->min_uV,
1257				  rdev->constraints->max_uV);
1258			_regulator_do_set_voltage(rdev,
1259						  rdev->constraints->min_uV,
1260						  rdev->constraints->max_uV);
1261			current_uV = regulator_get_voltage_rdev(rdev);
1262		}
1263
1264		if (current_uV < 0) {
1265			if (current_uV != -EPROBE_DEFER)
1266				rdev_err(rdev,
1267					 "failed to get the current voltage: %pe\n",
1268					 ERR_PTR(current_uV));
1269			return current_uV;
1270		}
1271
1272		/*
1273		 * If we're below the minimum voltage move up to the
1274		 * minimum voltage, if we're above the maximum voltage
1275		 * then move down to the maximum.
1276		 */
1277		target_min = current_uV;
1278		target_max = current_uV;
1279
1280		if (current_uV < rdev->constraints->min_uV) {
1281			target_min = rdev->constraints->min_uV;
1282			target_max = rdev->constraints->min_uV;
1283		}
1284
1285		if (current_uV > rdev->constraints->max_uV) {
1286			target_min = rdev->constraints->max_uV;
1287			target_max = rdev->constraints->max_uV;
1288		}
1289
1290		if (target_min != current_uV || target_max != current_uV) {
1291			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1292				  current_uV, target_min, target_max);
1293			ret = _regulator_do_set_voltage(
1294				rdev, target_min, target_max);
1295			if (ret < 0) {
1296				rdev_err(rdev,
1297					"failed to apply %d-%duV constraint: %pe\n",
1298					target_min, target_max, ERR_PTR(ret));
1299				return ret;
1300			}
1301		}
1302	}
1303
1304	/* constrain machine-level voltage specs to fit
1305	 * the actual range supported by this regulator.
1306	 */
1307	if (ops->list_voltage && rdev->desc->n_voltages) {
1308		int	count = rdev->desc->n_voltages;
1309		int	i;
1310		int	min_uV = INT_MAX;
1311		int	max_uV = INT_MIN;
1312		int	cmin = constraints->min_uV;
1313		int	cmax = constraints->max_uV;
1314
1315		/* it's safe to autoconfigure fixed-voltage supplies
1316		 * and the constraints are used by list_voltage.
1317		 */
1318		if (count == 1 && !cmin) {
1319			cmin = 1;
1320			cmax = INT_MAX;
1321			constraints->min_uV = cmin;
1322			constraints->max_uV = cmax;
1323		}
1324
1325		/* voltage constraints are optional */
1326		if ((cmin == 0) && (cmax == 0))
1327			return 0;
1328
1329		/* else require explicit machine-level constraints */
1330		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1331			rdev_err(rdev, "invalid voltage constraints\n");
1332			return -EINVAL;
1333		}
1334
1335		/* no need to loop voltages if range is continuous */
1336		if (rdev->desc->continuous_voltage_range)
1337			return 0;
1338
1339		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1340		for (i = 0; i < count; i++) {
1341			int	value;
1342
1343			value = ops->list_voltage(rdev, i);
1344			if (value <= 0)
1345				continue;
1346
1347			/* maybe adjust [min_uV..max_uV] */
1348			if (value >= cmin && value < min_uV)
1349				min_uV = value;
1350			if (value <= cmax && value > max_uV)
1351				max_uV = value;
1352		}
1353
1354		/* final: [min_uV..max_uV] valid iff constraints valid */
1355		if (max_uV < min_uV) {
1356			rdev_err(rdev,
1357				 "unsupportable voltage constraints %u-%uuV\n",
1358				 min_uV, max_uV);
1359			return -EINVAL;
1360		}
1361
1362		/* use regulator's subset of machine constraints */
1363		if (constraints->min_uV < min_uV) {
1364			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1365				 constraints->min_uV, min_uV);
1366			constraints->min_uV = min_uV;
1367		}
1368		if (constraints->max_uV > max_uV) {
1369			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1370				 constraints->max_uV, max_uV);
1371			constraints->max_uV = max_uV;
1372		}
1373	}
1374
1375	return 0;
1376}
1377
1378static int machine_constraints_current(struct regulator_dev *rdev,
1379	struct regulation_constraints *constraints)
1380{
1381	const struct regulator_ops *ops = rdev->desc->ops;
1382	int ret;
1383
1384	if (!constraints->min_uA && !constraints->max_uA)
1385		return 0;
1386
1387	if (constraints->min_uA > constraints->max_uA) {
1388		rdev_err(rdev, "Invalid current constraints\n");
1389		return -EINVAL;
1390	}
1391
1392	if (!ops->set_current_limit || !ops->get_current_limit) {
1393		rdev_warn(rdev, "Operation of current configuration missing\n");
1394		return 0;
1395	}
1396
1397	/* Set regulator current in constraints range */
1398	ret = ops->set_current_limit(rdev, constraints->min_uA,
1399			constraints->max_uA);
1400	if (ret < 0) {
1401		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1402		return ret;
1403	}
1404
1405	return 0;
1406}
1407
1408static int _regulator_do_enable(struct regulator_dev *rdev);
1409
1410static int notif_set_limit(struct regulator_dev *rdev,
1411			   int (*set)(struct regulator_dev *, int, int, bool),
1412			   int limit, int severity)
1413{
1414	bool enable;
1415
1416	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1417		enable = false;
1418		limit = 0;
1419	} else {
1420		enable = true;
1421	}
1422
1423	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1424		limit = 0;
1425
1426	return set(rdev, limit, severity, enable);
1427}
1428
1429static int handle_notify_limits(struct regulator_dev *rdev,
1430			int (*set)(struct regulator_dev *, int, int, bool),
1431			struct notification_limit *limits)
1432{
1433	int ret = 0;
1434
1435	if (!set)
1436		return -EOPNOTSUPP;
1437
1438	if (limits->prot)
1439		ret = notif_set_limit(rdev, set, limits->prot,
1440				      REGULATOR_SEVERITY_PROT);
1441	if (ret)
1442		return ret;
1443
1444	if (limits->err)
1445		ret = notif_set_limit(rdev, set, limits->err,
1446				      REGULATOR_SEVERITY_ERR);
1447	if (ret)
1448		return ret;
1449
1450	if (limits->warn)
1451		ret = notif_set_limit(rdev, set, limits->warn,
1452				      REGULATOR_SEVERITY_WARN);
1453
1454	return ret;
1455}
1456/**
1457 * set_machine_constraints - sets regulator constraints
1458 * @rdev: regulator source
 
1459 *
1460 * Allows platform initialisation code to define and constrain
1461 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1462 * Constraints *must* be set by platform code in order for some
1463 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1464 * set_mode.
1465 */
1466static int set_machine_constraints(struct regulator_dev *rdev)
 
1467{
1468	int ret = 0;
1469	const struct regulator_ops *ops = rdev->desc->ops;
 
 
 
 
 
 
 
 
 
1470
1471	ret = machine_constraints_voltage(rdev, rdev->constraints);
1472	if (ret != 0)
1473		return ret;
1474
1475	ret = machine_constraints_current(rdev, rdev->constraints);
1476	if (ret != 0)
1477		return ret;
1478
1479	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1480		ret = ops->set_input_current_limit(rdev,
1481						   rdev->constraints->ilim_uA);
1482		if (ret < 0) {
1483			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1484			return ret;
1485		}
1486	}
1487
1488	/* do we need to setup our suspend state */
1489	if (rdev->constraints->initial_state) {
1490		ret = suspend_set_initial_state(rdev);
1491		if (ret < 0) {
1492			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1493			return ret;
1494		}
1495	}
1496
1497	if (rdev->constraints->initial_mode) {
1498		if (!ops->set_mode) {
1499			rdev_err(rdev, "no set_mode operation\n");
1500			return -EINVAL;
 
1501		}
1502
1503		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1504		if (ret < 0) {
1505			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1506			return ret;
1507		}
1508	} else if (rdev->constraints->system_load) {
1509		/*
1510		 * We'll only apply the initial system load if an
1511		 * initial mode wasn't specified.
1512		 */
1513		drms_uA_update(rdev);
1514	}
1515
1516	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1517		&& ops->set_ramp_delay) {
1518		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1519		if (ret < 0) {
1520			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1521			return ret;
1522		}
1523	}
1524
1525	if (rdev->constraints->pull_down && ops->set_pull_down) {
1526		ret = ops->set_pull_down(rdev);
1527		if (ret < 0) {
1528			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1529			return ret;
1530		}
1531	}
1532
1533	if (rdev->constraints->soft_start && ops->set_soft_start) {
1534		ret = ops->set_soft_start(rdev);
1535		if (ret < 0) {
1536			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1537			return ret;
1538		}
1539	}
1540
1541	/*
1542	 * Existing logic does not warn if over_current_protection is given as
1543	 * a constraint but driver does not support that. I think we should
1544	 * warn about this type of issues as it is possible someone changes
1545	 * PMIC on board to another type - and the another PMIC's driver does
1546	 * not support setting protection. Board composer may happily believe
1547	 * the DT limits are respected - especially if the new PMIC HW also
1548	 * supports protection but the driver does not. I won't change the logic
1549	 * without hearing more experienced opinion on this though.
1550	 *
1551	 * If warning is seen as a good idea then we can merge handling the
1552	 * over-curret protection and detection and get rid of this special
1553	 * handling.
1554	 */
1555	if (rdev->constraints->over_current_protection
1556		&& ops->set_over_current_protection) {
1557		int lim = rdev->constraints->over_curr_limits.prot;
1558
1559		ret = ops->set_over_current_protection(rdev, lim,
1560						       REGULATOR_SEVERITY_PROT,
1561						       true);
1562		if (ret < 0) {
1563			rdev_err(rdev, "failed to set over current protection: %pe\n",
1564				 ERR_PTR(ret));
1565			return ret;
1566		}
1567	}
1568
1569	if (rdev->constraints->over_current_detection)
1570		ret = handle_notify_limits(rdev,
1571					   ops->set_over_current_protection,
1572					   &rdev->constraints->over_curr_limits);
1573	if (ret) {
1574		if (ret != -EOPNOTSUPP) {
1575			rdev_err(rdev, "failed to set over current limits: %pe\n",
1576				 ERR_PTR(ret));
1577			return ret;
1578		}
1579		rdev_warn(rdev,
1580			  "IC does not support requested over-current limits\n");
1581	}
1582
1583	if (rdev->constraints->over_voltage_detection)
1584		ret = handle_notify_limits(rdev,
1585					   ops->set_over_voltage_protection,
1586					   &rdev->constraints->over_voltage_limits);
1587	if (ret) {
1588		if (ret != -EOPNOTSUPP) {
1589			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1590				 ERR_PTR(ret));
1591			return ret;
1592		}
1593		rdev_warn(rdev,
1594			  "IC does not support requested over voltage limits\n");
1595	}
1596
1597	if (rdev->constraints->under_voltage_detection)
1598		ret = handle_notify_limits(rdev,
1599					   ops->set_under_voltage_protection,
1600					   &rdev->constraints->under_voltage_limits);
1601	if (ret) {
1602		if (ret != -EOPNOTSUPP) {
1603			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1604				 ERR_PTR(ret));
1605			return ret;
1606		}
1607		rdev_warn(rdev,
1608			  "IC does not support requested under voltage limits\n");
1609	}
1610
1611	if (rdev->constraints->over_temp_detection)
1612		ret = handle_notify_limits(rdev,
1613					   ops->set_thermal_protection,
1614					   &rdev->constraints->temp_limits);
1615	if (ret) {
1616		if (ret != -EOPNOTSUPP) {
1617			rdev_err(rdev, "failed to set temperature limits %pe\n",
1618				 ERR_PTR(ret));
1619			return ret;
1620		}
1621		rdev_warn(rdev,
1622			  "IC does not support requested temperature limits\n");
1623	}
1624
1625	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1626		bool ad_state = (rdev->constraints->active_discharge ==
1627			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1628
1629		ret = ops->set_active_discharge(rdev, ad_state);
1630		if (ret < 0) {
1631			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1632			return ret;
1633		}
1634	}
1635
1636	/*
1637	 * If there is no mechanism for controlling the regulator then
1638	 * flag it as always_on so we don't end up duplicating checks
1639	 * for this so much.  Note that we could control the state of
1640	 * a supply to control the output on a regulator that has no
1641	 * direct control.
1642	 */
1643	if (!rdev->ena_pin && !ops->enable) {
1644		if (rdev->supply_name && !rdev->supply)
1645			return -EPROBE_DEFER;
1646
1647		if (rdev->supply)
1648			rdev->constraints->always_on =
1649				rdev->supply->rdev->constraints->always_on;
1650		else
1651			rdev->constraints->always_on = true;
1652	}
1653
1654	/* If the constraints say the regulator should be on at this point
1655	 * and we have control then make sure it is enabled.
1656	 */
1657	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1658		/* If we want to enable this regulator, make sure that we know
1659		 * the supplying regulator.
1660		 */
1661		if (rdev->supply_name && !rdev->supply)
1662			return -EPROBE_DEFER;
1663
1664		/* If supplying regulator has already been enabled,
1665		 * it's not intended to have use_count increment
1666		 * when rdev is only boot-on.
1667		 */
1668		if (rdev->supply &&
1669		    (rdev->constraints->always_on ||
1670		     !regulator_is_enabled(rdev->supply))) {
1671			ret = regulator_enable(rdev->supply);
1672			if (ret < 0) {
1673				_regulator_put(rdev->supply);
1674				rdev->supply = NULL;
1675				return ret;
1676			}
1677		}
1678
1679		ret = _regulator_do_enable(rdev);
1680		if (ret < 0 && ret != -EINVAL) {
1681			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1682			return ret;
1683		}
 
1684
1685		if (rdev->constraints->always_on)
1686			rdev->use_count++;
1687	} else if (rdev->desc->off_on_delay) {
1688		rdev->last_off = ktime_get();
 
 
 
1689	}
1690
1691	print_constraints(rdev);
1692	return 0;
 
 
 
 
1693}
1694
1695/**
1696 * set_supply - set regulator supply regulator
1697 * @rdev: regulator (locked)
1698 * @supply_rdev: supply regulator (locked))
1699 *
1700 * Called by platform initialisation code to set the supply regulator for this
1701 * regulator. This ensures that a regulators supply will also be enabled by the
1702 * core if it's child is enabled.
1703 */
1704static int set_supply(struct regulator_dev *rdev,
1705		      struct regulator_dev *supply_rdev)
1706{
1707	int err;
1708
1709	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1710
1711	if (!try_module_get(supply_rdev->owner))
1712		return -ENODEV;
1713
1714	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1715	if (rdev->supply == NULL) {
1716		module_put(supply_rdev->owner);
1717		err = -ENOMEM;
1718		return err;
1719	}
1720	supply_rdev->open_count++;
1721
1722	return 0;
1723}
1724
1725/**
1726 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1727 * @rdev:         regulator source
1728 * @consumer_dev_name: dev_name() string for device supply applies to
1729 * @supply:       symbolic name for supply
1730 *
1731 * Allows platform initialisation code to map physical regulator
1732 * sources to symbolic names for supplies for use by devices.  Devices
1733 * should use these symbolic names to request regulators, avoiding the
1734 * need to provide board-specific regulator names as platform data.
1735 */
1736static int set_consumer_device_supply(struct regulator_dev *rdev,
1737				      const char *consumer_dev_name,
1738				      const char *supply)
1739{
1740	struct regulator_map *node, *new_node;
1741	int has_dev;
1742
1743	if (supply == NULL)
1744		return -EINVAL;
1745
1746	if (consumer_dev_name != NULL)
1747		has_dev = 1;
1748	else
1749		has_dev = 0;
1750
1751	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1752	if (new_node == NULL)
1753		return -ENOMEM;
1754
1755	new_node->regulator = rdev;
1756	new_node->supply = supply;
1757
1758	if (has_dev) {
1759		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1760		if (new_node->dev_name == NULL) {
1761			kfree(new_node);
1762			return -ENOMEM;
1763		}
1764	}
1765
1766	mutex_lock(&regulator_list_mutex);
1767	list_for_each_entry(node, &regulator_map_list, list) {
1768		if (node->dev_name && consumer_dev_name) {
1769			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1770				continue;
1771		} else if (node->dev_name || consumer_dev_name) {
1772			continue;
1773		}
1774
1775		if (strcmp(node->supply, supply) != 0)
1776			continue;
1777
1778		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1779			 consumer_dev_name,
1780			 dev_name(&node->regulator->dev),
1781			 node->regulator->desc->name,
1782			 supply,
1783			 dev_name(&rdev->dev), rdev_get_name(rdev));
1784		goto fail;
1785	}
1786
1787	list_add(&new_node->list, &regulator_map_list);
1788	mutex_unlock(&regulator_list_mutex);
 
1789
1790	return 0;
 
1791
1792fail:
1793	mutex_unlock(&regulator_list_mutex);
1794	kfree(new_node->dev_name);
1795	kfree(new_node);
1796	return -EBUSY;
 
 
 
 
 
1797}
1798
1799static void unset_regulator_supplies(struct regulator_dev *rdev)
1800{
1801	struct regulator_map *node, *n;
1802
1803	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1804		if (rdev == node->regulator) {
1805			list_del(&node->list);
1806			kfree(node->dev_name);
1807			kfree(node);
1808		}
1809	}
1810}
1811
1812#ifdef CONFIG_DEBUG_FS
1813static ssize_t constraint_flags_read_file(struct file *file,
1814					  char __user *user_buf,
1815					  size_t count, loff_t *ppos)
1816{
1817	const struct regulator *regulator = file->private_data;
1818	const struct regulation_constraints *c = regulator->rdev->constraints;
1819	char *buf;
1820	ssize_t ret;
1821
1822	if (!c)
1823		return 0;
1824
1825	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1826	if (!buf)
1827		return -ENOMEM;
1828
1829	ret = snprintf(buf, PAGE_SIZE,
1830			"always_on: %u\n"
1831			"boot_on: %u\n"
1832			"apply_uV: %u\n"
1833			"ramp_disable: %u\n"
1834			"soft_start: %u\n"
1835			"pull_down: %u\n"
1836			"over_current_protection: %u\n",
1837			c->always_on,
1838			c->boot_on,
1839			c->apply_uV,
1840			c->ramp_disable,
1841			c->soft_start,
1842			c->pull_down,
1843			c->over_current_protection);
1844
1845	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1846	kfree(buf);
1847
1848	return ret;
1849}
1850
1851#endif
1852
1853static const struct file_operations constraint_flags_fops = {
1854#ifdef CONFIG_DEBUG_FS
1855	.open = simple_open,
1856	.read = constraint_flags_read_file,
1857	.llseek = default_llseek,
1858#endif
1859};
1860
1861#define REG_STR_SIZE	64
1862
1863static struct regulator *create_regulator(struct regulator_dev *rdev,
1864					  struct device *dev,
1865					  const char *supply_name)
1866{
1867	struct regulator *regulator;
1868	int err = 0;
1869
1870	lockdep_assert_held_once(&rdev->mutex.base);
1871
1872	if (dev) {
1873		char buf[REG_STR_SIZE];
1874		int size;
1875
1876		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1877				dev->kobj.name, supply_name);
1878		if (size >= REG_STR_SIZE)
1879			return NULL;
1880
1881		supply_name = kstrdup(buf, GFP_KERNEL);
1882		if (supply_name == NULL)
1883			return NULL;
1884	} else {
1885		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1886		if (supply_name == NULL)
1887			return NULL;
1888	}
1889
1890	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1891	if (regulator == NULL) {
1892		kfree_const(supply_name);
1893		return NULL;
1894	}
1895
 
1896	regulator->rdev = rdev;
1897	regulator->supply_name = supply_name;
1898
1899	list_add(&regulator->list, &rdev->consumer_list);
1900
1901	if (dev) {
1902		regulator->dev = dev;
1903
1904		/* Add a link to the device sysfs entry */
1905		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1906					       supply_name);
 
 
 
 
 
 
 
 
 
1907		if (err) {
1908			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1909				  dev->kobj.name, ERR_PTR(err));
1910			/* non-fatal */
1911		}
 
 
 
 
1912	}
1913
1914	if (err != -EEXIST)
1915		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1916	if (IS_ERR(regulator->debugfs))
1917		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1918
1919	debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1920			   &regulator->uA_load);
1921	debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1922			   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1923	debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1924			   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1925	debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1926			    regulator, &constraint_flags_fops);
1927
1928	/*
1929	 * Check now if the regulator is an always on regulator - if
1930	 * it is then we don't need to do nearly so much work for
1931	 * enable/disable calls.
1932	 */
1933	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1934	    _regulator_is_enabled(rdev))
1935		regulator->always_on = true;
1936
 
1937	return regulator;
 
 
 
 
 
1938}
1939
1940static int _regulator_get_enable_time(struct regulator_dev *rdev)
1941{
1942	if (rdev->constraints && rdev->constraints->enable_time)
1943		return rdev->constraints->enable_time;
1944	if (rdev->desc->ops->enable_time)
1945		return rdev->desc->ops->enable_time(rdev);
1946	return rdev->desc->enable_time;
1947}
1948
1949static struct regulator_supply_alias *regulator_find_supply_alias(
1950		struct device *dev, const char *supply)
1951{
1952	struct regulator_supply_alias *map;
1953
1954	list_for_each_entry(map, &regulator_supply_alias_list, list)
1955		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1956			return map;
1957
1958	return NULL;
1959}
1960
1961static void regulator_supply_alias(struct device **dev, const char **supply)
1962{
1963	struct regulator_supply_alias *map;
1964
1965	map = regulator_find_supply_alias(*dev, *supply);
1966	if (map) {
1967		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1968				*supply, map->alias_supply,
1969				dev_name(map->alias_dev));
1970		*dev = map->alias_dev;
1971		*supply = map->alias_supply;
1972	}
1973}
1974
1975static int regulator_match(struct device *dev, const void *data)
1976{
1977	struct regulator_dev *r = dev_to_rdev(dev);
1978
1979	return strcmp(rdev_get_name(r), data) == 0;
1980}
1981
1982static struct regulator_dev *regulator_lookup_by_name(const char *name)
1983{
1984	struct device *dev;
1985
1986	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1987
1988	return dev ? dev_to_rdev(dev) : NULL;
1989}
1990
1991/**
1992 * regulator_dev_lookup - lookup a regulator device.
1993 * @dev: device for regulator "consumer".
1994 * @supply: Supply name or regulator ID.
1995 *
1996 * If successful, returns a struct regulator_dev that corresponds to the name
1997 * @supply and with the embedded struct device refcount incremented by one.
1998 * The refcount must be dropped by calling put_device().
1999 * On failure one of the following ERR-PTR-encoded values is returned:
2000 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2001 * in the future.
2002 */
2003static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2004						  const char *supply)
 
2005{
2006	struct regulator_dev *r = NULL;
2007	struct device_node *node;
2008	struct regulator_map *map;
2009	const char *devname = NULL;
2010
2011	regulator_supply_alias(&dev, &supply);
2012
2013	/* first do a dt based lookup */
2014	if (dev && dev->of_node) {
2015		node = of_get_regulator(dev, supply);
2016		if (node) {
2017			r = of_find_regulator_by_node(node);
2018			of_node_put(node);
2019			if (r)
2020				return r;
2021
 
 
2022			/*
2023			 * We have a node, but there is no device.
2024			 * assume it has not registered yet.
 
 
2025			 */
2026			return ERR_PTR(-EPROBE_DEFER);
2027		}
2028	}
2029
2030	/* if not found, try doing it non-dt way */
2031	if (dev)
2032		devname = dev_name(dev);
2033
2034	mutex_lock(&regulator_list_mutex);
 
 
 
2035	list_for_each_entry(map, &regulator_map_list, list) {
2036		/* If the mapping has a device set up it must match */
2037		if (map->dev_name &&
2038		    (!devname || strcmp(map->dev_name, devname)))
2039			continue;
2040
2041		if (strcmp(map->supply, supply) == 0 &&
2042		    get_device(&map->regulator->dev)) {
2043			r = map->regulator;
2044			break;
2045		}
2046	}
2047	mutex_unlock(&regulator_list_mutex);
2048
2049	if (r)
2050		return r;
2051
2052	r = regulator_lookup_by_name(supply);
2053	if (r)
2054		return r;
2055
2056	return ERR_PTR(-ENODEV);
2057}
2058
2059static int regulator_resolve_supply(struct regulator_dev *rdev)
2060{
2061	struct regulator_dev *r;
2062	struct device *dev = rdev->dev.parent;
2063	struct ww_acquire_ctx ww_ctx;
2064	int ret = 0;
2065
2066	/* No supply to resolve? */
2067	if (!rdev->supply_name)
2068		return 0;
2069
2070	/* Supply already resolved? (fast-path without locking contention) */
2071	if (rdev->supply)
2072		return 0;
2073
2074	r = regulator_dev_lookup(dev, rdev->supply_name);
2075	if (IS_ERR(r)) {
2076		ret = PTR_ERR(r);
2077
2078		/* Did the lookup explicitly defer for us? */
2079		if (ret == -EPROBE_DEFER)
2080			goto out;
2081
2082		if (have_full_constraints()) {
2083			r = dummy_regulator_rdev;
2084			get_device(&r->dev);
2085		} else {
2086			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2087				rdev->supply_name, rdev->desc->name);
2088			ret = -EPROBE_DEFER;
2089			goto out;
2090		}
2091	}
2092
2093	if (r == rdev) {
2094		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2095			rdev->desc->name, rdev->supply_name);
2096		if (!have_full_constraints()) {
2097			ret = -EINVAL;
2098			goto out;
2099		}
2100		r = dummy_regulator_rdev;
2101		get_device(&r->dev);
2102	}
2103
2104	/*
2105	 * If the supply's parent device is not the same as the
2106	 * regulator's parent device, then ensure the parent device
2107	 * is bound before we resolve the supply, in case the parent
2108	 * device get probe deferred and unregisters the supply.
2109	 */
2110	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2111		if (!device_is_bound(r->dev.parent)) {
2112			put_device(&r->dev);
2113			ret = -EPROBE_DEFER;
2114			goto out;
2115		}
2116	}
2117
2118	/* Recursively resolve the supply of the supply */
2119	ret = regulator_resolve_supply(r);
2120	if (ret < 0) {
2121		put_device(&r->dev);
2122		goto out;
2123	}
2124
2125	/*
2126	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2127	 * between rdev->supply null check and setting rdev->supply in
2128	 * set_supply() from concurrent tasks.
2129	 */
2130	regulator_lock_two(rdev, r, &ww_ctx);
2131
2132	/* Supply just resolved by a concurrent task? */
2133	if (rdev->supply) {
2134		regulator_unlock_two(rdev, r, &ww_ctx);
2135		put_device(&r->dev);
2136		goto out;
2137	}
2138
2139	ret = set_supply(rdev, r);
2140	if (ret < 0) {
2141		regulator_unlock_two(rdev, r, &ww_ctx);
2142		put_device(&r->dev);
2143		goto out;
2144	}
2145
2146	regulator_unlock_two(rdev, r, &ww_ctx);
2147
2148	/*
2149	 * In set_machine_constraints() we may have turned this regulator on
2150	 * but we couldn't propagate to the supply if it hadn't been resolved
2151	 * yet.  Do it now.
2152	 */
2153	if (rdev->use_count) {
2154		ret = regulator_enable(rdev->supply);
2155		if (ret < 0) {
2156			_regulator_put(rdev->supply);
2157			rdev->supply = NULL;
2158			goto out;
2159		}
2160	}
2161
2162out:
2163	return ret;
2164}
2165
2166/* Internal regulator request function */
2167struct regulator *_regulator_get(struct device *dev, const char *id,
2168				 enum regulator_get_type get_type)
2169{
2170	struct regulator_dev *rdev;
2171	struct regulator *regulator;
2172	struct device_link *link;
2173	int ret;
2174
2175	if (get_type >= MAX_GET_TYPE) {
2176		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2177		return ERR_PTR(-EINVAL);
2178	}
2179
2180	if (id == NULL) {
2181		pr_err("get() with no identifier\n");
2182		return ERR_PTR(-EINVAL);
2183	}
2184
2185	rdev = regulator_dev_lookup(dev, id);
2186	if (IS_ERR(rdev)) {
2187		ret = PTR_ERR(rdev);
2188
2189		/*
2190		 * If regulator_dev_lookup() fails with error other
2191		 * than -ENODEV our job here is done, we simply return it.
2192		 */
2193		if (ret != -ENODEV)
2194			return ERR_PTR(ret);
2195
2196		if (!have_full_constraints()) {
2197			dev_warn(dev,
2198				 "incomplete constraints, dummy supplies not allowed\n");
2199			return ERR_PTR(-ENODEV);
2200		}
2201
2202		switch (get_type) {
2203		case NORMAL_GET:
2204			/*
2205			 * Assume that a regulator is physically present and
2206			 * enabled, even if it isn't hooked up, and just
2207			 * provide a dummy.
2208			 */
2209			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2210			rdev = dummy_regulator_rdev;
2211			get_device(&rdev->dev);
2212			break;
2213
2214		case EXCLUSIVE_GET:
2215			dev_warn(dev,
2216				 "dummy supplies not allowed for exclusive requests\n");
2217			fallthrough;
2218
2219		default:
2220			return ERR_PTR(-ENODEV);
2221		}
2222	}
 
 
2223
2224	if (rdev->exclusive) {
2225		regulator = ERR_PTR(-EPERM);
2226		put_device(&rdev->dev);
2227		return regulator;
2228	}
2229
2230	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2231		regulator = ERR_PTR(-EBUSY);
2232		put_device(&rdev->dev);
2233		return regulator;
 
 
 
 
 
 
 
 
 
2234	}
2235
2236	mutex_lock(&regulator_list_mutex);
2237	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2238	mutex_unlock(&regulator_list_mutex);
 
2239
2240	if (ret != 0) {
2241		regulator = ERR_PTR(-EPROBE_DEFER);
2242		put_device(&rdev->dev);
2243		return regulator;
2244	}
2245
2246	ret = regulator_resolve_supply(rdev);
2247	if (ret < 0) {
2248		regulator = ERR_PTR(ret);
2249		put_device(&rdev->dev);
2250		return regulator;
2251	}
2252
2253	if (!try_module_get(rdev->owner)) {
2254		regulator = ERR_PTR(-EPROBE_DEFER);
2255		put_device(&rdev->dev);
2256		return regulator;
2257	}
2258
2259	regulator_lock(rdev);
2260	regulator = create_regulator(rdev, dev, id);
2261	regulator_unlock(rdev);
2262	if (regulator == NULL) {
2263		regulator = ERR_PTR(-ENOMEM);
2264		module_put(rdev->owner);
2265		put_device(&rdev->dev);
2266		return regulator;
2267	}
2268
2269	rdev->open_count++;
2270	if (get_type == EXCLUSIVE_GET) {
2271		rdev->exclusive = 1;
2272
2273		ret = _regulator_is_enabled(rdev);
2274		if (ret > 0) {
2275			rdev->use_count = 1;
2276			regulator->enable_count = 1;
2277		} else {
2278			rdev->use_count = 0;
2279			regulator->enable_count = 0;
2280		}
2281	}
2282
2283	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2284	if (!IS_ERR_OR_NULL(link))
2285		regulator->device_link = true;
2286
2287	return regulator;
2288}
2289
2290/**
2291 * regulator_get - lookup and obtain a reference to a regulator.
2292 * @dev: device for regulator "consumer"
2293 * @id: Supply name or regulator ID.
2294 *
2295 * Returns a struct regulator corresponding to the regulator producer,
2296 * or IS_ERR() condition containing errno.
2297 *
2298 * Use of supply names configured via set_consumer_device_supply() is
2299 * strongly encouraged.  It is recommended that the supply name used
2300 * should match the name used for the supply and/or the relevant
2301 * device pins in the datasheet.
2302 */
2303struct regulator *regulator_get(struct device *dev, const char *id)
2304{
2305	return _regulator_get(dev, id, NORMAL_GET);
2306}
2307EXPORT_SYMBOL_GPL(regulator_get);
2308
2309/**
2310 * regulator_get_exclusive - obtain exclusive access to a regulator.
2311 * @dev: device for regulator "consumer"
2312 * @id: Supply name or regulator ID.
2313 *
2314 * Returns a struct regulator corresponding to the regulator producer,
2315 * or IS_ERR() condition containing errno.  Other consumers will be
2316 * unable to obtain this regulator while this reference is held and the
2317 * use count for the regulator will be initialised to reflect the current
2318 * state of the regulator.
2319 *
2320 * This is intended for use by consumers which cannot tolerate shared
2321 * use of the regulator such as those which need to force the
2322 * regulator off for correct operation of the hardware they are
2323 * controlling.
2324 *
2325 * Use of supply names configured via set_consumer_device_supply() is
2326 * strongly encouraged.  It is recommended that the supply name used
2327 * should match the name used for the supply and/or the relevant
2328 * device pins in the datasheet.
2329 */
2330struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2331{
2332	return _regulator_get(dev, id, EXCLUSIVE_GET);
2333}
2334EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2335
2336/**
2337 * regulator_get_optional - obtain optional access to a regulator.
2338 * @dev: device for regulator "consumer"
2339 * @id: Supply name or regulator ID.
2340 *
2341 * Returns a struct regulator corresponding to the regulator producer,
2342 * or IS_ERR() condition containing errno.
 
 
 
2343 *
2344 * This is intended for use by consumers for devices which can have
2345 * some supplies unconnected in normal use, such as some MMC devices.
2346 * It can allow the regulator core to provide stub supplies for other
2347 * supplies requested using normal regulator_get() calls without
2348 * disrupting the operation of drivers that can handle absent
2349 * supplies.
2350 *
2351 * Use of supply names configured via set_consumer_device_supply() is
2352 * strongly encouraged.  It is recommended that the supply name used
2353 * should match the name used for the supply and/or the relevant
2354 * device pins in the datasheet.
2355 */
2356struct regulator *regulator_get_optional(struct device *dev, const char *id)
2357{
2358	return _regulator_get(dev, id, OPTIONAL_GET);
2359}
2360EXPORT_SYMBOL_GPL(regulator_get_optional);
2361
2362static void destroy_regulator(struct regulator *regulator)
2363{
2364	struct regulator_dev *rdev = regulator->rdev;
2365
2366	debugfs_remove_recursive(regulator->debugfs);
2367
2368	if (regulator->dev) {
2369		if (regulator->device_link)
2370			device_link_remove(regulator->dev, &rdev->dev);
2371
2372		/* remove any sysfs entries */
2373		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2374	}
2375
2376	regulator_lock(rdev);
2377	list_del(&regulator->list);
2378
2379	rdev->open_count--;
2380	rdev->exclusive = 0;
2381	regulator_unlock(rdev);
2382
2383	kfree_const(regulator->supply_name);
2384	kfree(regulator);
2385}
2386
2387/* regulator_list_mutex lock held by regulator_put() */
2388static void _regulator_put(struct regulator *regulator)
2389{
2390	struct regulator_dev *rdev;
2391
2392	if (IS_ERR_OR_NULL(regulator))
2393		return;
2394
2395	lockdep_assert_held_once(&regulator_list_mutex);
2396
2397	/* Docs say you must disable before calling regulator_put() */
2398	WARN_ON(regulator->enable_count);
2399
2400	rdev = regulator->rdev;
 
 
 
 
 
2401
2402	destroy_regulator(regulator);
 
2403
2404	module_put(rdev->owner);
2405	put_device(&rdev->dev);
2406}
2407
2408/**
2409 * regulator_put - "free" the regulator source
2410 * @regulator: regulator source
2411 *
2412 * Note: drivers must ensure that all regulator_enable calls made on this
2413 * regulator source are balanced by regulator_disable calls prior to calling
2414 * this function.
2415 */
2416void regulator_put(struct regulator *regulator)
2417{
2418	mutex_lock(&regulator_list_mutex);
2419	_regulator_put(regulator);
2420	mutex_unlock(&regulator_list_mutex);
2421}
2422EXPORT_SYMBOL_GPL(regulator_put);
2423
2424/**
2425 * regulator_register_supply_alias - Provide device alias for supply lookup
2426 *
2427 * @dev: device that will be given as the regulator "consumer"
2428 * @id: Supply name or regulator ID
2429 * @alias_dev: device that should be used to lookup the supply
2430 * @alias_id: Supply name or regulator ID that should be used to lookup the
2431 * supply
2432 *
2433 * All lookups for id on dev will instead be conducted for alias_id on
2434 * alias_dev.
2435 */
2436int regulator_register_supply_alias(struct device *dev, const char *id,
2437				    struct device *alias_dev,
2438				    const char *alias_id)
2439{
2440	struct regulator_supply_alias *map;
2441
2442	map = regulator_find_supply_alias(dev, id);
2443	if (map)
2444		return -EEXIST;
2445
2446	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2447	if (!map)
2448		return -ENOMEM;
2449
2450	map->src_dev = dev;
2451	map->src_supply = id;
2452	map->alias_dev = alias_dev;
2453	map->alias_supply = alias_id;
2454
2455	list_add(&map->list, &regulator_supply_alias_list);
2456
2457	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2458		id, dev_name(dev), alias_id, dev_name(alias_dev));
2459
2460	return 0;
2461}
2462EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2463
2464/**
2465 * regulator_unregister_supply_alias - Remove device alias
2466 *
2467 * @dev: device that will be given as the regulator "consumer"
2468 * @id: Supply name or regulator ID
2469 *
2470 * Remove a lookup alias if one exists for id on dev.
2471 */
2472void regulator_unregister_supply_alias(struct device *dev, const char *id)
2473{
2474	struct regulator_supply_alias *map;
2475
2476	map = regulator_find_supply_alias(dev, id);
2477	if (map) {
2478		list_del(&map->list);
2479		kfree(map);
2480	}
2481}
2482EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2483
2484/**
2485 * regulator_bulk_register_supply_alias - register multiple aliases
2486 *
2487 * @dev: device that will be given as the regulator "consumer"
2488 * @id: List of supply names or regulator IDs
2489 * @alias_dev: device that should be used to lookup the supply
2490 * @alias_id: List of supply names or regulator IDs that should be used to
2491 * lookup the supply
2492 * @num_id: Number of aliases to register
2493 *
2494 * @return 0 on success, an errno on failure.
2495 *
2496 * This helper function allows drivers to register several supply
2497 * aliases in one operation.  If any of the aliases cannot be
2498 * registered any aliases that were registered will be removed
2499 * before returning to the caller.
2500 */
2501int regulator_bulk_register_supply_alias(struct device *dev,
2502					 const char *const *id,
2503					 struct device *alias_dev,
2504					 const char *const *alias_id,
2505					 int num_id)
2506{
2507	int i;
2508	int ret;
2509
2510	for (i = 0; i < num_id; ++i) {
2511		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2512						      alias_id[i]);
2513		if (ret < 0)
2514			goto err;
2515	}
2516
2517	return 0;
2518
2519err:
2520	dev_err(dev,
2521		"Failed to create supply alias %s,%s -> %s,%s\n",
2522		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2523
2524	while (--i >= 0)
2525		regulator_unregister_supply_alias(dev, id[i]);
2526
2527	return ret;
2528}
2529EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2530
2531/**
2532 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2533 *
2534 * @dev: device that will be given as the regulator "consumer"
2535 * @id: List of supply names or regulator IDs
2536 * @num_id: Number of aliases to unregister
2537 *
2538 * This helper function allows drivers to unregister several supply
2539 * aliases in one operation.
2540 */
2541void regulator_bulk_unregister_supply_alias(struct device *dev,
2542					    const char *const *id,
2543					    int num_id)
2544{
2545	int i;
2546
2547	for (i = 0; i < num_id; ++i)
2548		regulator_unregister_supply_alias(dev, id[i]);
2549}
2550EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2551
2552
2553/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2554static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2555				const struct regulator_config *config)
2556{
2557	struct regulator_enable_gpio *pin, *new_pin;
2558	struct gpio_desc *gpiod;
2559
2560	gpiod = config->ena_gpiod;
2561	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2562
2563	mutex_lock(&regulator_list_mutex);
2564
2565	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2566		if (pin->gpiod == gpiod) {
2567			rdev_dbg(rdev, "GPIO is already used\n");
 
2568			goto update_ena_gpio_to_rdev;
2569		}
2570	}
2571
2572	if (new_pin == NULL) {
2573		mutex_unlock(&regulator_list_mutex);
 
 
 
 
 
 
 
2574		return -ENOMEM;
2575	}
2576
2577	pin = new_pin;
2578	new_pin = NULL;
2579
2580	pin->gpiod = gpiod;
2581	list_add(&pin->list, &regulator_ena_gpio_list);
2582
2583update_ena_gpio_to_rdev:
2584	pin->request_count++;
2585	rdev->ena_pin = pin;
2586
2587	mutex_unlock(&regulator_list_mutex);
2588	kfree(new_pin);
2589
2590	return 0;
2591}
2592
2593static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2594{
2595	struct regulator_enable_gpio *pin, *n;
2596
2597	if (!rdev->ena_pin)
2598		return;
2599
2600	/* Free the GPIO only in case of no use */
2601	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2602		if (pin != rdev->ena_pin)
2603			continue;
2604
2605		if (--pin->request_count)
2606			break;
2607
2608		gpiod_put(pin->gpiod);
2609		list_del(&pin->list);
2610		kfree(pin);
2611		break;
2612	}
2613
2614	rdev->ena_pin = NULL;
2615}
2616
2617/**
2618 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2619 * @rdev: regulator_dev structure
2620 * @enable: enable GPIO at initial use?
2621 *
2622 * GPIO is enabled in case of initial use. (enable_count is 0)
2623 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2624 */
2625static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2626{
2627	struct regulator_enable_gpio *pin = rdev->ena_pin;
2628
2629	if (!pin)
2630		return -EINVAL;
2631
2632	if (enable) {
2633		/* Enable GPIO at initial use */
2634		if (pin->enable_count == 0)
2635			gpiod_set_value_cansleep(pin->gpiod, 1);
 
2636
2637		pin->enable_count++;
2638	} else {
2639		if (pin->enable_count > 1) {
2640			pin->enable_count--;
2641			return 0;
2642		}
2643
2644		/* Disable GPIO if not used */
2645		if (pin->enable_count <= 1) {
2646			gpiod_set_value_cansleep(pin->gpiod, 0);
 
2647			pin->enable_count = 0;
2648		}
2649	}
2650
2651	return 0;
2652}
2653
2654/**
2655 * _regulator_delay_helper - a delay helper function
2656 * @delay: time to delay in microseconds
2657 *
2658 * Delay for the requested amount of time as per the guidelines in:
2659 *
2660 *     Documentation/timers/timers-howto.rst
2661 *
2662 * The assumption here is that these regulator operations will never used in
2663 * atomic context and therefore sleeping functions can be used.
2664 */
2665static void _regulator_delay_helper(unsigned int delay)
2666{
2667	unsigned int ms = delay / 1000;
2668	unsigned int us = delay % 1000;
2669
2670	if (ms > 0) {
2671		/*
2672		 * For small enough values, handle super-millisecond
2673		 * delays in the usleep_range() call below.
2674		 */
2675		if (ms < 20)
2676			us += ms * 1000;
2677		else
2678			msleep(ms);
2679	}
2680
2681	/*
2682	 * Give the scheduler some room to coalesce with any other
2683	 * wakeup sources. For delays shorter than 10 us, don't even
2684	 * bother setting up high-resolution timers and just busy-
2685	 * loop.
2686	 */
2687	if (us >= 10)
2688		usleep_range(us, us + 100);
2689	else
2690		udelay(us);
2691}
2692
2693/**
2694 * _regulator_check_status_enabled
2695 *
2696 * A helper function to check if the regulator status can be interpreted
2697 * as 'regulator is enabled'.
2698 * @rdev: the regulator device to check
2699 *
2700 * Return:
2701 * * 1			- if status shows regulator is in enabled state
2702 * * 0			- if not enabled state
2703 * * Error Value	- as received from ops->get_status()
2704 */
2705static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2706{
2707	int ret = rdev->desc->ops->get_status(rdev);
2708
2709	if (ret < 0) {
2710		rdev_info(rdev, "get_status returned error: %d\n", ret);
2711		return ret;
2712	}
2713
2714	switch (ret) {
2715	case REGULATOR_STATUS_OFF:
2716	case REGULATOR_STATUS_ERROR:
2717	case REGULATOR_STATUS_UNDEFINED:
2718		return 0;
2719	default:
2720		return 1;
2721	}
2722}
2723
2724static int _regulator_do_enable(struct regulator_dev *rdev)
2725{
2726	int ret, delay;
2727
2728	/* Query before enabling in case configuration dependent.  */
2729	ret = _regulator_get_enable_time(rdev);
2730	if (ret >= 0) {
2731		delay = ret;
2732	} else {
2733		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2734		delay = 0;
2735	}
2736
2737	trace_regulator_enable(rdev_get_name(rdev));
2738
2739	if (rdev->desc->off_on_delay) {
2740		/* if needed, keep a distance of off_on_delay from last time
2741		 * this regulator was disabled.
2742		 */
2743		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2744		s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2745
2746		if (remaining > 0)
2747			_regulator_delay_helper(remaining);
2748	}
2749
2750	if (rdev->ena_pin) {
2751		if (!rdev->ena_gpio_state) {
2752			ret = regulator_ena_gpio_ctrl(rdev, true);
2753			if (ret < 0)
2754				return ret;
2755			rdev->ena_gpio_state = 1;
2756		}
2757	} else if (rdev->desc->ops->enable) {
2758		ret = rdev->desc->ops->enable(rdev);
2759		if (ret < 0)
2760			return ret;
2761	} else {
2762		return -EINVAL;
2763	}
2764
2765	/* Allow the regulator to ramp; it would be useful to extend
2766	 * this for bulk operations so that the regulators can ramp
2767	 * together.
2768	 */
2769	trace_regulator_enable_delay(rdev_get_name(rdev));
2770
2771	/* If poll_enabled_time is set, poll upto the delay calculated
2772	 * above, delaying poll_enabled_time uS to check if the regulator
2773	 * actually got enabled.
2774	 * If the regulator isn't enabled after our delay helper has expired,
2775	 * return -ETIMEDOUT.
 
 
2776	 */
2777	if (rdev->desc->poll_enabled_time) {
2778		int time_remaining = delay;
2779
2780		while (time_remaining > 0) {
2781			_regulator_delay_helper(rdev->desc->poll_enabled_time);
2782
2783			if (rdev->desc->ops->get_status) {
2784				ret = _regulator_check_status_enabled(rdev);
2785				if (ret < 0)
2786					return ret;
2787				else if (ret)
2788					break;
2789			} else if (rdev->desc->ops->is_enabled(rdev))
2790				break;
2791
2792			time_remaining -= rdev->desc->poll_enabled_time;
2793		}
2794
2795		if (time_remaining <= 0) {
2796			rdev_err(rdev, "Enabled check timed out\n");
2797			return -ETIMEDOUT;
2798		}
2799	} else {
2800		_regulator_delay_helper(delay);
2801	}
2802
2803	trace_regulator_enable_complete(rdev_get_name(rdev));
2804
2805	return 0;
2806}
2807
2808/**
2809 * _regulator_handle_consumer_enable - handle that a consumer enabled
2810 * @regulator: regulator source
2811 *
2812 * Some things on a regulator consumer (like the contribution towards total
2813 * load on the regulator) only have an effect when the consumer wants the
2814 * regulator enabled.  Explained in example with two consumers of the same
2815 * regulator:
2816 *   consumer A: set_load(100);       => total load = 0
2817 *   consumer A: regulator_enable();  => total load = 100
2818 *   consumer B: set_load(1000);      => total load = 100
2819 *   consumer B: regulator_enable();  => total load = 1100
2820 *   consumer A: regulator_disable(); => total_load = 1000
2821 *
2822 * This function (together with _regulator_handle_consumer_disable) is
2823 * responsible for keeping track of the refcount for a given regulator consumer
2824 * and applying / unapplying these things.
2825 *
2826 * Returns 0 upon no error; -error upon error.
2827 */
2828static int _regulator_handle_consumer_enable(struct regulator *regulator)
2829{
2830	int ret;
2831	struct regulator_dev *rdev = regulator->rdev;
2832
2833	lockdep_assert_held_once(&rdev->mutex.base);
2834
2835	regulator->enable_count++;
2836	if (regulator->uA_load && regulator->enable_count == 1) {
2837		ret = drms_uA_update(rdev);
2838		if (ret)
2839			regulator->enable_count--;
2840		return ret;
2841	}
2842
2843	return 0;
2844}
2845
2846/**
2847 * _regulator_handle_consumer_disable - handle that a consumer disabled
2848 * @regulator: regulator source
2849 *
2850 * The opposite of _regulator_handle_consumer_enable().
2851 *
2852 * Returns 0 upon no error; -error upon error.
2853 */
2854static int _regulator_handle_consumer_disable(struct regulator *regulator)
2855{
2856	struct regulator_dev *rdev = regulator->rdev;
2857
2858	lockdep_assert_held_once(&rdev->mutex.base);
2859
2860	if (!regulator->enable_count) {
2861		rdev_err(rdev, "Underflow of regulator enable count\n");
2862		return -EINVAL;
2863	}
2864
2865	regulator->enable_count--;
2866	if (regulator->uA_load && regulator->enable_count == 0)
2867		return drms_uA_update(rdev);
2868
2869	return 0;
2870}
2871
2872/* locks held by regulator_enable() */
2873static int _regulator_enable(struct regulator *regulator)
2874{
2875	struct regulator_dev *rdev = regulator->rdev;
2876	int ret;
2877
2878	lockdep_assert_held_once(&rdev->mutex.base);
2879
2880	if (rdev->use_count == 0 && rdev->supply) {
2881		ret = _regulator_enable(rdev->supply);
2882		if (ret < 0)
2883			return ret;
2884	}
2885
2886	/* balance only if there are regulators coupled */
2887	if (rdev->coupling_desc.n_coupled > 1) {
2888		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2889		if (ret < 0)
2890			goto err_disable_supply;
2891	}
2892
2893	ret = _regulator_handle_consumer_enable(regulator);
2894	if (ret < 0)
2895		goto err_disable_supply;
2896
2897	if (rdev->use_count == 0) {
2898		/*
2899		 * The regulator may already be enabled if it's not switchable
2900		 * or was left on
2901		 */
2902		ret = _regulator_is_enabled(rdev);
2903		if (ret == -EINVAL || ret == 0) {
2904			if (!regulator_ops_is_valid(rdev,
2905					REGULATOR_CHANGE_STATUS)) {
2906				ret = -EPERM;
2907				goto err_consumer_disable;
2908			}
2909
2910			ret = _regulator_do_enable(rdev);
2911			if (ret < 0)
2912				goto err_consumer_disable;
2913
2914			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2915					     NULL);
2916		} else if (ret < 0) {
2917			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2918			goto err_consumer_disable;
2919		}
2920		/* Fallthrough on positive return values - already enabled */
2921	}
2922
2923	if (regulator->enable_count == 1)
2924		rdev->use_count++;
2925
2926	return 0;
2927
2928err_consumer_disable:
2929	_regulator_handle_consumer_disable(regulator);
2930
2931err_disable_supply:
2932	if (rdev->use_count == 0 && rdev->supply)
2933		_regulator_disable(rdev->supply);
2934
2935	return ret;
2936}
2937
2938/**
2939 * regulator_enable - enable regulator output
2940 * @regulator: regulator source
2941 *
2942 * Request that the regulator be enabled with the regulator output at
2943 * the predefined voltage or current value.  Calls to regulator_enable()
2944 * must be balanced with calls to regulator_disable().
2945 *
2946 * NOTE: the output value can be set by other drivers, boot loader or may be
2947 * hardwired in the regulator.
2948 */
2949int regulator_enable(struct regulator *regulator)
2950{
2951	struct regulator_dev *rdev = regulator->rdev;
2952	struct ww_acquire_ctx ww_ctx;
2953	int ret;
2954
2955	regulator_lock_dependent(rdev, &ww_ctx);
2956	ret = _regulator_enable(regulator);
2957	regulator_unlock_dependent(rdev, &ww_ctx);
 
 
 
 
 
 
 
 
 
 
 
 
2958
2959	return ret;
2960}
2961EXPORT_SYMBOL_GPL(regulator_enable);
2962
2963static int _regulator_do_disable(struct regulator_dev *rdev)
2964{
2965	int ret;
2966
2967	trace_regulator_disable(rdev_get_name(rdev));
2968
2969	if (rdev->ena_pin) {
2970		if (rdev->ena_gpio_state) {
2971			ret = regulator_ena_gpio_ctrl(rdev, false);
2972			if (ret < 0)
2973				return ret;
2974			rdev->ena_gpio_state = 0;
2975		}
2976
2977	} else if (rdev->desc->ops->disable) {
2978		ret = rdev->desc->ops->disable(rdev);
2979		if (ret != 0)
2980			return ret;
2981	}
2982
2983	if (rdev->desc->off_on_delay)
2984		rdev->last_off = ktime_get_boottime();
2985
2986	trace_regulator_disable_complete(rdev_get_name(rdev));
2987
2988	return 0;
2989}
2990
2991/* locks held by regulator_disable() */
2992static int _regulator_disable(struct regulator *regulator)
2993{
2994	struct regulator_dev *rdev = regulator->rdev;
2995	int ret = 0;
2996
2997	lockdep_assert_held_once(&rdev->mutex.base);
2998
2999	if (WARN(regulator->enable_count == 0,
3000		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3001		return -EIO;
3002
3003	if (regulator->enable_count == 1) {
3004	/* disabling last enable_count from this regulator */
3005		/* are we the last user and permitted to disable ? */
3006		if (rdev->use_count == 1 &&
3007		    (rdev->constraints && !rdev->constraints->always_on)) {
3008
3009			/* we are last user */
3010			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3011				ret = _notifier_call_chain(rdev,
3012							   REGULATOR_EVENT_PRE_DISABLE,
3013							   NULL);
3014				if (ret & NOTIFY_STOP_MASK)
3015					return -EINVAL;
3016
3017				ret = _regulator_do_disable(rdev);
3018				if (ret < 0) {
3019					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3020					_notifier_call_chain(rdev,
3021							REGULATOR_EVENT_ABORT_DISABLE,
3022							NULL);
3023					return ret;
3024				}
3025				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3026						NULL);
3027			}
3028
3029			rdev->use_count = 0;
3030		} else if (rdev->use_count > 1) {
3031			rdev->use_count--;
3032		}
3033	}
3034
3035	if (ret == 0)
3036		ret = _regulator_handle_consumer_disable(regulator);
3037
3038	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3039		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
 
 
3040
3041	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3042		ret = _regulator_disable(rdev->supply);
3043
3044	return ret;
3045}
3046
3047/**
3048 * regulator_disable - disable regulator output
3049 * @regulator: regulator source
3050 *
3051 * Disable the regulator output voltage or current.  Calls to
3052 * regulator_enable() must be balanced with calls to
3053 * regulator_disable().
3054 *
3055 * NOTE: this will only disable the regulator output if no other consumer
3056 * devices have it enabled, the regulator device supports disabling and
3057 * machine constraints permit this operation.
3058 */
3059int regulator_disable(struct regulator *regulator)
3060{
3061	struct regulator_dev *rdev = regulator->rdev;
3062	struct ww_acquire_ctx ww_ctx;
3063	int ret;
3064
3065	regulator_lock_dependent(rdev, &ww_ctx);
3066	ret = _regulator_disable(regulator);
3067	regulator_unlock_dependent(rdev, &ww_ctx);
 
 
 
 
 
 
3068
3069	return ret;
3070}
3071EXPORT_SYMBOL_GPL(regulator_disable);
3072
3073/* locks held by regulator_force_disable() */
3074static int _regulator_force_disable(struct regulator_dev *rdev)
3075{
3076	int ret = 0;
3077
3078	lockdep_assert_held_once(&rdev->mutex.base);
3079
3080	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3081			REGULATOR_EVENT_PRE_DISABLE, NULL);
3082	if (ret & NOTIFY_STOP_MASK)
3083		return -EINVAL;
3084
3085	ret = _regulator_do_disable(rdev);
3086	if (ret < 0) {
3087		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3088		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3089				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3090		return ret;
3091	}
3092
3093	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3094			REGULATOR_EVENT_DISABLE, NULL);
3095
3096	return 0;
3097}
3098
3099/**
3100 * regulator_force_disable - force disable regulator output
3101 * @regulator: regulator source
3102 *
3103 * Forcibly disable the regulator output voltage or current.
3104 * NOTE: this *will* disable the regulator output even if other consumer
3105 * devices have it enabled. This should be used for situations when device
3106 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3107 */
3108int regulator_force_disable(struct regulator *regulator)
3109{
3110	struct regulator_dev *rdev = regulator->rdev;
3111	struct ww_acquire_ctx ww_ctx;
3112	int ret;
3113
3114	regulator_lock_dependent(rdev, &ww_ctx);
3115
3116	ret = _regulator_force_disable(regulator->rdev);
 
3117
3118	if (rdev->coupling_desc.n_coupled > 1)
3119		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3120
3121	if (regulator->uA_load) {
3122		regulator->uA_load = 0;
3123		ret = drms_uA_update(rdev);
3124	}
3125
3126	if (rdev->use_count != 0 && rdev->supply)
3127		_regulator_disable(rdev->supply);
3128
3129	regulator_unlock_dependent(rdev, &ww_ctx);
3130
3131	return ret;
3132}
3133EXPORT_SYMBOL_GPL(regulator_force_disable);
3134
3135static void regulator_disable_work(struct work_struct *work)
3136{
3137	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3138						  disable_work.work);
3139	struct ww_acquire_ctx ww_ctx;
3140	int count, i, ret;
3141	struct regulator *regulator;
3142	int total_count = 0;
3143
3144	regulator_lock_dependent(rdev, &ww_ctx);
3145
3146	/*
3147	 * Workqueue functions queue the new work instance while the previous
3148	 * work instance is being processed. Cancel the queued work instance
3149	 * as the work instance under processing does the job of the queued
3150	 * work instance.
3151	 */
3152	cancel_delayed_work(&rdev->disable_work);
3153
3154	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3155		count = regulator->deferred_disables;
3156
3157		if (!count)
3158			continue;
 
 
 
3159
3160		total_count += count;
3161		regulator->deferred_disables = 0;
3162
 
3163		for (i = 0; i < count; i++) {
3164			ret = _regulator_disable(regulator);
3165			if (ret != 0)
3166				rdev_err(rdev, "Deferred disable failed: %pe\n",
3167					 ERR_PTR(ret));
 
3168		}
3169	}
3170	WARN_ON(!total_count);
3171
3172	if (rdev->coupling_desc.n_coupled > 1)
3173		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3174
3175	regulator_unlock_dependent(rdev, &ww_ctx);
3176}
3177
3178/**
3179 * regulator_disable_deferred - disable regulator output with delay
3180 * @regulator: regulator source
3181 * @ms: milliseconds until the regulator is disabled
3182 *
3183 * Execute regulator_disable() on the regulator after a delay.  This
3184 * is intended for use with devices that require some time to quiesce.
3185 *
3186 * NOTE: this will only disable the regulator output if no other consumer
3187 * devices have it enabled, the regulator device supports disabling and
3188 * machine constraints permit this operation.
3189 */
3190int regulator_disable_deferred(struct regulator *regulator, int ms)
3191{
3192	struct regulator_dev *rdev = regulator->rdev;
 
 
 
 
3193
3194	if (!ms)
3195		return regulator_disable(regulator);
3196
3197	regulator_lock(rdev);
3198	regulator->deferred_disables++;
3199	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3200			 msecs_to_jiffies(ms));
3201	regulator_unlock(rdev);
3202
3203	return 0;
 
 
 
 
3204}
3205EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3206
3207static int _regulator_is_enabled(struct regulator_dev *rdev)
3208{
3209	/* A GPIO control always takes precedence */
3210	if (rdev->ena_pin)
3211		return rdev->ena_gpio_state;
3212
3213	/* If we don't know then assume that the regulator is always on */
3214	if (!rdev->desc->ops->is_enabled)
3215		return 1;
3216
3217	return rdev->desc->ops->is_enabled(rdev);
3218}
3219
3220static int _regulator_list_voltage(struct regulator_dev *rdev,
3221				   unsigned selector, int lock)
3222{
3223	const struct regulator_ops *ops = rdev->desc->ops;
3224	int ret;
3225
3226	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3227		return rdev->desc->fixed_uV;
3228
3229	if (ops->list_voltage) {
3230		if (selector >= rdev->desc->n_voltages)
3231			return -EINVAL;
3232		if (selector < rdev->desc->linear_min_sel)
3233			return 0;
3234		if (lock)
3235			regulator_lock(rdev);
3236		ret = ops->list_voltage(rdev, selector);
3237		if (lock)
3238			regulator_unlock(rdev);
3239	} else if (rdev->is_switch && rdev->supply) {
3240		ret = _regulator_list_voltage(rdev->supply->rdev,
3241					      selector, lock);
3242	} else {
3243		return -EINVAL;
3244	}
3245
3246	if (ret > 0) {
3247		if (ret < rdev->constraints->min_uV)
3248			ret = 0;
3249		else if (ret > rdev->constraints->max_uV)
3250			ret = 0;
3251	}
3252
3253	return ret;
3254}
3255
3256/**
3257 * regulator_is_enabled - is the regulator output enabled
3258 * @regulator: regulator source
3259 *
3260 * Returns positive if the regulator driver backing the source/client
3261 * has requested that the device be enabled, zero if it hasn't, else a
3262 * negative errno code.
3263 *
3264 * Note that the device backing this regulator handle can have multiple
3265 * users, so it might be enabled even if regulator_enable() was never
3266 * called for this particular source.
3267 */
3268int regulator_is_enabled(struct regulator *regulator)
3269{
3270	int ret;
3271
3272	if (regulator->always_on)
3273		return 1;
3274
3275	regulator_lock(regulator->rdev);
3276	ret = _regulator_is_enabled(regulator->rdev);
3277	regulator_unlock(regulator->rdev);
3278
3279	return ret;
3280}
3281EXPORT_SYMBOL_GPL(regulator_is_enabled);
3282
3283/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3284 * regulator_count_voltages - count regulator_list_voltage() selectors
3285 * @regulator: regulator source
3286 *
3287 * Returns number of selectors, or negative errno.  Selectors are
3288 * numbered starting at zero, and typically correspond to bitfields
3289 * in hardware registers.
3290 */
3291int regulator_count_voltages(struct regulator *regulator)
3292{
3293	struct regulator_dev	*rdev = regulator->rdev;
3294
3295	if (rdev->desc->n_voltages)
3296		return rdev->desc->n_voltages;
3297
3298	if (!rdev->is_switch || !rdev->supply)
3299		return -EINVAL;
3300
3301	return regulator_count_voltages(rdev->supply);
3302}
3303EXPORT_SYMBOL_GPL(regulator_count_voltages);
3304
3305/**
3306 * regulator_list_voltage - enumerate supported voltages
3307 * @regulator: regulator source
3308 * @selector: identify voltage to list
3309 * Context: can sleep
3310 *
3311 * Returns a voltage that can be passed to @regulator_set_voltage(),
3312 * zero if this selector code can't be used on this system, or a
3313 * negative errno.
3314 */
3315int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3316{
3317	return _regulator_list_voltage(regulator->rdev, selector, 1);
3318}
3319EXPORT_SYMBOL_GPL(regulator_list_voltage);
3320
3321/**
3322 * regulator_get_regmap - get the regulator's register map
3323 * @regulator: regulator source
3324 *
3325 * Returns the register map for the given regulator, or an ERR_PTR value
3326 * if the regulator doesn't use regmap.
3327 */
3328struct regmap *regulator_get_regmap(struct regulator *regulator)
3329{
3330	struct regmap *map = regulator->rdev->regmap;
3331
3332	return map ? map : ERR_PTR(-EOPNOTSUPP);
3333}
3334
3335/**
3336 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3337 * @regulator: regulator source
3338 * @vsel_reg: voltage selector register, output parameter
3339 * @vsel_mask: mask for voltage selector bitfield, output parameter
3340 *
3341 * Returns the hardware register offset and bitmask used for setting the
3342 * regulator voltage. This might be useful when configuring voltage-scaling
3343 * hardware or firmware that can make I2C requests behind the kernel's back,
3344 * for example.
3345 *
3346 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3347 * and 0 is returned, otherwise a negative errno is returned.
3348 */
3349int regulator_get_hardware_vsel_register(struct regulator *regulator,
3350					 unsigned *vsel_reg,
3351					 unsigned *vsel_mask)
3352{
3353	struct regulator_dev *rdev = regulator->rdev;
3354	const struct regulator_ops *ops = rdev->desc->ops;
3355
3356	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3357		return -EOPNOTSUPP;
3358
3359	*vsel_reg = rdev->desc->vsel_reg;
3360	*vsel_mask = rdev->desc->vsel_mask;
3361
3362	return 0;
3363}
3364EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3365
3366/**
3367 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3368 * @regulator: regulator source
3369 * @selector: identify voltage to list
3370 *
3371 * Converts the selector to a hardware-specific voltage selector that can be
3372 * directly written to the regulator registers. The address of the voltage
3373 * register can be determined by calling @regulator_get_hardware_vsel_register.
3374 *
3375 * On error a negative errno is returned.
3376 */
3377int regulator_list_hardware_vsel(struct regulator *regulator,
3378				 unsigned selector)
3379{
3380	struct regulator_dev *rdev = regulator->rdev;
3381	const struct regulator_ops *ops = rdev->desc->ops;
3382
3383	if (selector >= rdev->desc->n_voltages)
3384		return -EINVAL;
3385	if (selector < rdev->desc->linear_min_sel)
3386		return 0;
3387	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3388		return -EOPNOTSUPP;
3389
3390	return selector;
3391}
3392EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3393
3394/**
3395 * regulator_get_linear_step - return the voltage step size between VSEL values
3396 * @regulator: regulator source
3397 *
3398 * Returns the voltage step size between VSEL values for linear
3399 * regulators, or return 0 if the regulator isn't a linear regulator.
3400 */
3401unsigned int regulator_get_linear_step(struct regulator *regulator)
3402{
3403	struct regulator_dev *rdev = regulator->rdev;
3404
3405	return rdev->desc->uV_step;
3406}
3407EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3408
3409/**
3410 * regulator_is_supported_voltage - check if a voltage range can be supported
3411 *
3412 * @regulator: Regulator to check.
3413 * @min_uV: Minimum required voltage in uV.
3414 * @max_uV: Maximum required voltage in uV.
3415 *
3416 * Returns a boolean.
3417 */
3418int regulator_is_supported_voltage(struct regulator *regulator,
3419				   int min_uV, int max_uV)
3420{
3421	struct regulator_dev *rdev = regulator->rdev;
3422	int i, voltages, ret;
3423
3424	/* If we can't change voltage check the current voltage */
3425	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3426		ret = regulator_get_voltage(regulator);
3427		if (ret >= 0)
3428			return min_uV <= ret && ret <= max_uV;
3429		else
3430			return ret;
3431	}
3432
3433	/* Any voltage within constrains range is fine? */
3434	if (rdev->desc->continuous_voltage_range)
3435		return min_uV >= rdev->constraints->min_uV &&
3436				max_uV <= rdev->constraints->max_uV;
3437
3438	ret = regulator_count_voltages(regulator);
3439	if (ret < 0)
3440		return 0;
3441	voltages = ret;
3442
3443	for (i = 0; i < voltages; i++) {
3444		ret = regulator_list_voltage(regulator, i);
3445
3446		if (ret >= min_uV && ret <= max_uV)
3447			return 1;
3448	}
3449
3450	return 0;
3451}
3452EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3453
3454static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3455				 int max_uV)
3456{
3457	const struct regulator_desc *desc = rdev->desc;
3458
3459	if (desc->ops->map_voltage)
3460		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3461
3462	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3463		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3464
3465	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3466		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3467
3468	if (desc->ops->list_voltage ==
3469		regulator_list_voltage_pickable_linear_range)
3470		return regulator_map_voltage_pickable_linear_range(rdev,
3471							min_uV, max_uV);
3472
3473	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3474}
3475
3476static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3477				       int min_uV, int max_uV,
3478				       unsigned *selector)
3479{
3480	struct pre_voltage_change_data data;
3481	int ret;
3482
3483	data.old_uV = regulator_get_voltage_rdev(rdev);
3484	data.min_uV = min_uV;
3485	data.max_uV = max_uV;
3486	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3487				   &data);
3488	if (ret & NOTIFY_STOP_MASK)
3489		return -EINVAL;
3490
3491	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3492	if (ret >= 0)
3493		return ret;
3494
3495	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3496			     (void *)data.old_uV);
3497
3498	return ret;
3499}
3500
3501static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3502					   int uV, unsigned selector)
3503{
3504	struct pre_voltage_change_data data;
3505	int ret;
3506
3507	data.old_uV = regulator_get_voltage_rdev(rdev);
3508	data.min_uV = uV;
3509	data.max_uV = uV;
3510	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3511				   &data);
3512	if (ret & NOTIFY_STOP_MASK)
3513		return -EINVAL;
3514
3515	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3516	if (ret >= 0)
3517		return ret;
3518
3519	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3520			     (void *)data.old_uV);
3521
3522	return ret;
3523}
3524
3525static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3526					   int uV, int new_selector)
3527{
3528	const struct regulator_ops *ops = rdev->desc->ops;
3529	int diff, old_sel, curr_sel, ret;
3530
3531	/* Stepping is only needed if the regulator is enabled. */
3532	if (!_regulator_is_enabled(rdev))
3533		goto final_set;
3534
3535	if (!ops->get_voltage_sel)
3536		return -EINVAL;
3537
3538	old_sel = ops->get_voltage_sel(rdev);
3539	if (old_sel < 0)
3540		return old_sel;
3541
3542	diff = new_selector - old_sel;
3543	if (diff == 0)
3544		return 0; /* No change needed. */
3545
3546	if (diff > 0) {
3547		/* Stepping up. */
3548		for (curr_sel = old_sel + rdev->desc->vsel_step;
3549		     curr_sel < new_selector;
3550		     curr_sel += rdev->desc->vsel_step) {
3551			/*
3552			 * Call the callback directly instead of using
3553			 * _regulator_call_set_voltage_sel() as we don't
3554			 * want to notify anyone yet. Same in the branch
3555			 * below.
3556			 */
3557			ret = ops->set_voltage_sel(rdev, curr_sel);
3558			if (ret)
3559				goto try_revert;
3560		}
3561	} else {
3562		/* Stepping down. */
3563		for (curr_sel = old_sel - rdev->desc->vsel_step;
3564		     curr_sel > new_selector;
3565		     curr_sel -= rdev->desc->vsel_step) {
3566			ret = ops->set_voltage_sel(rdev, curr_sel);
3567			if (ret)
3568				goto try_revert;
3569		}
3570	}
3571
3572final_set:
3573	/* The final selector will trigger the notifiers. */
3574	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3575
3576try_revert:
3577	/*
3578	 * At least try to return to the previous voltage if setting a new
3579	 * one failed.
3580	 */
3581	(void)ops->set_voltage_sel(rdev, old_sel);
3582	return ret;
3583}
3584
3585static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3586				       int old_uV, int new_uV)
3587{
3588	unsigned int ramp_delay = 0;
3589
3590	if (rdev->constraints->ramp_delay)
3591		ramp_delay = rdev->constraints->ramp_delay;
3592	else if (rdev->desc->ramp_delay)
3593		ramp_delay = rdev->desc->ramp_delay;
3594	else if (rdev->constraints->settling_time)
3595		return rdev->constraints->settling_time;
3596	else if (rdev->constraints->settling_time_up &&
3597		 (new_uV > old_uV))
3598		return rdev->constraints->settling_time_up;
3599	else if (rdev->constraints->settling_time_down &&
3600		 (new_uV < old_uV))
3601		return rdev->constraints->settling_time_down;
3602
3603	if (ramp_delay == 0)
3604		return 0;
3605
3606	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3607}
3608
3609static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3610				     int min_uV, int max_uV)
3611{
3612	int ret;
3613	int delay = 0;
3614	int best_val = 0;
3615	unsigned int selector;
3616	int old_selector = -1;
3617	const struct regulator_ops *ops = rdev->desc->ops;
3618	int old_uV = regulator_get_voltage_rdev(rdev);
3619
3620	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3621
3622	min_uV += rdev->constraints->uV_offset;
3623	max_uV += rdev->constraints->uV_offset;
3624
3625	/*
3626	 * If we can't obtain the old selector there is not enough
3627	 * info to call set_voltage_time_sel().
3628	 */
3629	if (_regulator_is_enabled(rdev) &&
3630	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3631		old_selector = ops->get_voltage_sel(rdev);
 
3632		if (old_selector < 0)
3633			return old_selector;
3634	}
3635
3636	if (ops->set_voltage) {
3637		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3638						  &selector);
3639
3640		if (ret >= 0) {
3641			if (ops->list_voltage)
3642				best_val = ops->list_voltage(rdev,
3643							     selector);
 
 
 
 
 
 
 
 
 
 
 
 
 
3644			else
3645				best_val = regulator_get_voltage_rdev(rdev);
 
3646		}
3647
3648	} else if (ops->set_voltage_sel) {
3649		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3650		if (ret >= 0) {
3651			best_val = ops->list_voltage(rdev, ret);
3652			if (min_uV <= best_val && max_uV >= best_val) {
3653				selector = ret;
3654				if (old_selector == selector)
3655					ret = 0;
3656				else if (rdev->desc->vsel_step)
3657					ret = _regulator_set_voltage_sel_step(
3658						rdev, best_val, selector);
3659				else
3660					ret = _regulator_call_set_voltage_sel(
3661						rdev, best_val, selector);
3662			} else {
3663				ret = -EINVAL;
3664			}
3665		}
3666	} else {
3667		ret = -EINVAL;
3668	}
3669
3670	if (ret)
3671		goto out;
 
3672
3673	if (ops->set_voltage_time_sel) {
3674		/*
3675		 * Call set_voltage_time_sel if successfully obtained
3676		 * old_selector
3677		 */
3678		if (old_selector >= 0 && old_selector != selector)
3679			delay = ops->set_voltage_time_sel(rdev, old_selector,
3680							  selector);
3681	} else {
3682		if (old_uV != best_val) {
3683			if (ops->set_voltage_time)
3684				delay = ops->set_voltage_time(rdev, old_uV,
3685							      best_val);
3686			else
3687				delay = _regulator_set_voltage_time(rdev,
3688								    old_uV,
3689								    best_val);
3690		}
3691	}
3692
3693	if (delay < 0) {
3694		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3695		delay = 0;
 
 
 
 
3696	}
3697
3698	/* Insert any necessary delays */
3699	_regulator_delay_helper(delay);
3700
3701	if (best_val >= 0) {
3702		unsigned long data = best_val;
3703
3704		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3705				     (void *)data);
3706	}
3707
3708out:
3709	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3710
3711	return ret;
3712}
3713
3714static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3715				  int min_uV, int max_uV, suspend_state_t state)
3716{
3717	struct regulator_state *rstate;
3718	int uV, sel;
3719
3720	rstate = regulator_get_suspend_state(rdev, state);
3721	if (rstate == NULL)
3722		return -EINVAL;
3723
3724	if (min_uV < rstate->min_uV)
3725		min_uV = rstate->min_uV;
3726	if (max_uV > rstate->max_uV)
3727		max_uV = rstate->max_uV;
3728
3729	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3730	if (sel < 0)
3731		return sel;
3732
3733	uV = rdev->desc->ops->list_voltage(rdev, sel);
3734	if (uV >= min_uV && uV <= max_uV)
3735		rstate->uV = uV;
3736
3737	return 0;
3738}
3739
3740static int regulator_set_voltage_unlocked(struct regulator *regulator,
3741					  int min_uV, int max_uV,
3742					  suspend_state_t state)
3743{
3744	struct regulator_dev *rdev = regulator->rdev;
3745	struct regulator_voltage *voltage = &regulator->voltage[state];
3746	int ret = 0;
3747	int old_min_uV, old_max_uV;
3748	int current_uV;
3749
 
 
3750	/* If we're setting the same range as last time the change
3751	 * should be a noop (some cpufreq implementations use the same
3752	 * voltage for multiple frequencies, for example).
3753	 */
3754	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3755		goto out;
3756
3757	/* If we're trying to set a range that overlaps the current voltage,
3758	 * return successfully even though the regulator does not support
3759	 * changing the voltage.
3760	 */
3761	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3762		current_uV = regulator_get_voltage_rdev(rdev);
3763		if (min_uV <= current_uV && current_uV <= max_uV) {
3764			voltage->min_uV = min_uV;
3765			voltage->max_uV = max_uV;
3766			goto out;
3767		}
3768	}
3769
3770	/* sanity check */
3771	if (!rdev->desc->ops->set_voltage &&
3772	    !rdev->desc->ops->set_voltage_sel) {
3773		ret = -EINVAL;
3774		goto out;
3775	}
3776
3777	/* constraints check */
3778	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3779	if (ret < 0)
3780		goto out;
3781
3782	/* restore original values in case of error */
3783	old_min_uV = voltage->min_uV;
3784	old_max_uV = voltage->max_uV;
3785	voltage->min_uV = min_uV;
3786	voltage->max_uV = max_uV;
3787
3788	/* for not coupled regulators this will just set the voltage */
3789	ret = regulator_balance_voltage(rdev, state);
3790	if (ret < 0) {
3791		voltage->min_uV = old_min_uV;
3792		voltage->max_uV = old_max_uV;
3793	}
3794
3795out:
3796	return ret;
3797}
3798
3799int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3800			       int max_uV, suspend_state_t state)
3801{
3802	int best_supply_uV = 0;
3803	int supply_change_uV = 0;
3804	int ret;
3805
3806	if (rdev->supply &&
3807	    regulator_ops_is_valid(rdev->supply->rdev,
3808				   REGULATOR_CHANGE_VOLTAGE) &&
3809	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3810					   rdev->desc->ops->get_voltage_sel))) {
3811		int current_supply_uV;
3812		int selector;
3813
3814		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3815		if (selector < 0) {
3816			ret = selector;
3817			goto out;
3818		}
3819
3820		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3821		if (best_supply_uV < 0) {
3822			ret = best_supply_uV;
3823			goto out;
3824		}
3825
3826		best_supply_uV += rdev->desc->min_dropout_uV;
3827
3828		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3829		if (current_supply_uV < 0) {
3830			ret = current_supply_uV;
3831			goto out;
3832		}
3833
3834		supply_change_uV = best_supply_uV - current_supply_uV;
3835	}
3836
3837	if (supply_change_uV > 0) {
3838		ret = regulator_set_voltage_unlocked(rdev->supply,
3839				best_supply_uV, INT_MAX, state);
3840		if (ret) {
3841			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3842				ERR_PTR(ret));
3843			goto out;
3844		}
3845	}
3846
3847	if (state == PM_SUSPEND_ON)
3848		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3849	else
3850		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3851							max_uV, state);
3852	if (ret < 0)
3853		goto out;
3854
3855	if (supply_change_uV < 0) {
3856		ret = regulator_set_voltage_unlocked(rdev->supply,
3857				best_supply_uV, INT_MAX, state);
3858		if (ret)
3859			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3860				 ERR_PTR(ret));
3861		/* No need to fail here */
3862		ret = 0;
3863	}
3864
3865out:
3866	return ret;
3867}
3868EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3869
3870static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3871					int *current_uV, int *min_uV)
3872{
3873	struct regulation_constraints *constraints = rdev->constraints;
3874
3875	/* Limit voltage change only if necessary */
3876	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3877		return 1;
3878
3879	if (*current_uV < 0) {
3880		*current_uV = regulator_get_voltage_rdev(rdev);
3881
3882		if (*current_uV < 0)
3883			return *current_uV;
3884	}
3885
3886	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3887		return 1;
3888
3889	/* Clamp target voltage within the given step */
3890	if (*current_uV < *min_uV)
3891		*min_uV = min(*current_uV + constraints->max_uV_step,
3892			      *min_uV);
3893	else
3894		*min_uV = max(*current_uV - constraints->max_uV_step,
3895			      *min_uV);
3896
3897	return 0;
3898}
3899
3900static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3901					 int *current_uV,
3902					 int *min_uV, int *max_uV,
3903					 suspend_state_t state,
3904					 int n_coupled)
3905{
3906	struct coupling_desc *c_desc = &rdev->coupling_desc;
3907	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3908	struct regulation_constraints *constraints = rdev->constraints;
3909	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3910	int max_current_uV = 0, min_current_uV = INT_MAX;
3911	int highest_min_uV = 0, target_uV, possible_uV;
3912	int i, ret, max_spread;
3913	bool done;
3914
3915	*current_uV = -1;
3916
3917	/*
3918	 * If there are no coupled regulators, simply set the voltage
3919	 * demanded by consumers.
3920	 */
3921	if (n_coupled == 1) {
3922		/*
3923		 * If consumers don't provide any demands, set voltage
3924		 * to min_uV
3925		 */
3926		desired_min_uV = constraints->min_uV;
3927		desired_max_uV = constraints->max_uV;
3928
3929		ret = regulator_check_consumers(rdev,
3930						&desired_min_uV,
3931						&desired_max_uV, state);
3932		if (ret < 0)
3933			return ret;
3934
3935		possible_uV = desired_min_uV;
3936		done = true;
3937
3938		goto finish;
3939	}
3940
3941	/* Find highest min desired voltage */
3942	for (i = 0; i < n_coupled; i++) {
3943		int tmp_min = 0;
3944		int tmp_max = INT_MAX;
3945
3946		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3947
3948		ret = regulator_check_consumers(c_rdevs[i],
3949						&tmp_min,
3950						&tmp_max, state);
3951		if (ret < 0)
3952			return ret;
3953
3954		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3955		if (ret < 0)
3956			return ret;
3957
3958		highest_min_uV = max(highest_min_uV, tmp_min);
3959
3960		if (i == 0) {
3961			desired_min_uV = tmp_min;
3962			desired_max_uV = tmp_max;
3963		}
3964	}
3965
3966	max_spread = constraints->max_spread[0];
3967
3968	/*
3969	 * Let target_uV be equal to the desired one if possible.
3970	 * If not, set it to minimum voltage, allowed by other coupled
3971	 * regulators.
3972	 */
3973	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3974
3975	/*
3976	 * Find min and max voltages, which currently aren't violating
3977	 * max_spread.
3978	 */
3979	for (i = 1; i < n_coupled; i++) {
3980		int tmp_act;
3981
3982		if (!_regulator_is_enabled(c_rdevs[i]))
3983			continue;
3984
3985		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3986		if (tmp_act < 0)
3987			return tmp_act;
3988
3989		min_current_uV = min(tmp_act, min_current_uV);
3990		max_current_uV = max(tmp_act, max_current_uV);
3991	}
3992
3993	/* There aren't any other regulators enabled */
3994	if (max_current_uV == 0) {
3995		possible_uV = target_uV;
3996	} else {
3997		/*
3998		 * Correct target voltage, so as it currently isn't
3999		 * violating max_spread
4000		 */
4001		possible_uV = max(target_uV, max_current_uV - max_spread);
4002		possible_uV = min(possible_uV, min_current_uV + max_spread);
4003	}
4004
4005	if (possible_uV > desired_max_uV)
4006		return -EINVAL;
4007
4008	done = (possible_uV == target_uV);
4009	desired_min_uV = possible_uV;
4010
4011finish:
4012	/* Apply max_uV_step constraint if necessary */
4013	if (state == PM_SUSPEND_ON) {
4014		ret = regulator_limit_voltage_step(rdev, current_uV,
4015						   &desired_min_uV);
4016		if (ret < 0)
4017			return ret;
4018
4019		if (ret == 0)
4020			done = false;
4021	}
4022
4023	/* Set current_uV if wasn't done earlier in the code and if necessary */
4024	if (n_coupled > 1 && *current_uV == -1) {
4025
4026		if (_regulator_is_enabled(rdev)) {
4027			ret = regulator_get_voltage_rdev(rdev);
4028			if (ret < 0)
4029				return ret;
4030
4031			*current_uV = ret;
4032		} else {
4033			*current_uV = desired_min_uV;
4034		}
4035	}
4036
4037	*min_uV = desired_min_uV;
4038	*max_uV = desired_max_uV;
4039
4040	return done;
4041}
4042
4043int regulator_do_balance_voltage(struct regulator_dev *rdev,
4044				 suspend_state_t state, bool skip_coupled)
4045{
4046	struct regulator_dev **c_rdevs;
4047	struct regulator_dev *best_rdev;
4048	struct coupling_desc *c_desc = &rdev->coupling_desc;
4049	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4050	unsigned int delta, best_delta;
4051	unsigned long c_rdev_done = 0;
4052	bool best_c_rdev_done;
4053
4054	c_rdevs = c_desc->coupled_rdevs;
4055	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4056
4057	/*
4058	 * Find the best possible voltage change on each loop. Leave the loop
4059	 * if there isn't any possible change.
4060	 */
4061	do {
4062		best_c_rdev_done = false;
4063		best_delta = 0;
4064		best_min_uV = 0;
4065		best_max_uV = 0;
4066		best_c_rdev = 0;
4067		best_rdev = NULL;
4068
4069		/*
4070		 * Find highest difference between optimal voltage
4071		 * and current voltage.
4072		 */
4073		for (i = 0; i < n_coupled; i++) {
4074			/*
4075			 * optimal_uV is the best voltage that can be set for
4076			 * i-th regulator at the moment without violating
4077			 * max_spread constraint in order to balance
4078			 * the coupled voltages.
4079			 */
4080			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4081
4082			if (test_bit(i, &c_rdev_done))
4083				continue;
4084
4085			ret = regulator_get_optimal_voltage(c_rdevs[i],
4086							    &current_uV,
4087							    &optimal_uV,
4088							    &optimal_max_uV,
4089							    state, n_coupled);
4090			if (ret < 0)
4091				goto out;
4092
4093			delta = abs(optimal_uV - current_uV);
4094
4095			if (delta && best_delta <= delta) {
4096				best_c_rdev_done = ret;
4097				best_delta = delta;
4098				best_rdev = c_rdevs[i];
4099				best_min_uV = optimal_uV;
4100				best_max_uV = optimal_max_uV;
4101				best_c_rdev = i;
4102			}
4103		}
4104
4105		/* Nothing to change, return successfully */
4106		if (!best_rdev) {
4107			ret = 0;
4108			goto out;
4109		}
4110
4111		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4112						 best_max_uV, state);
4113
4114		if (ret < 0)
4115			goto out;
4116
4117		if (best_c_rdev_done)
4118			set_bit(best_c_rdev, &c_rdev_done);
4119
4120	} while (n_coupled > 1);
4121
4122out:
 
4123	return ret;
4124}
4125
4126static int regulator_balance_voltage(struct regulator_dev *rdev,
4127				     suspend_state_t state)
4128{
4129	struct coupling_desc *c_desc = &rdev->coupling_desc;
4130	struct regulator_coupler *coupler = c_desc->coupler;
4131	bool skip_coupled = false;
4132
4133	/*
4134	 * If system is in a state other than PM_SUSPEND_ON, don't check
4135	 * other coupled regulators.
4136	 */
4137	if (state != PM_SUSPEND_ON)
4138		skip_coupled = true;
4139
4140	if (c_desc->n_resolved < c_desc->n_coupled) {
4141		rdev_err(rdev, "Not all coupled regulators registered\n");
4142		return -EPERM;
4143	}
4144
4145	/* Invoke custom balancer for customized couplers */
4146	if (coupler && coupler->balance_voltage)
4147		return coupler->balance_voltage(coupler, rdev, state);
4148
4149	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4150}
4151
4152/**
4153 * regulator_set_voltage - set regulator output voltage
4154 * @regulator: regulator source
4155 * @min_uV: Minimum required voltage in uV
4156 * @max_uV: Maximum acceptable voltage in uV
4157 *
4158 * Sets a voltage regulator to the desired output voltage. This can be set
4159 * during any regulator state. IOW, regulator can be disabled or enabled.
4160 *
4161 * If the regulator is enabled then the voltage will change to the new value
4162 * immediately otherwise if the regulator is disabled the regulator will
4163 * output at the new voltage when enabled.
4164 *
4165 * NOTE: If the regulator is shared between several devices then the lowest
4166 * request voltage that meets the system constraints will be used.
4167 * Regulator system constraints must be set for this regulator before
4168 * calling this function otherwise this call will fail.
4169 */
4170int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4171{
4172	struct ww_acquire_ctx ww_ctx;
4173	int ret;
4174
4175	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4176
4177	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4178					     PM_SUSPEND_ON);
4179
4180	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4181
4182	return ret;
4183}
4184EXPORT_SYMBOL_GPL(regulator_set_voltage);
4185
4186static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4187					   suspend_state_t state, bool en)
4188{
4189	struct regulator_state *rstate;
4190
4191	rstate = regulator_get_suspend_state(rdev, state);
4192	if (rstate == NULL)
4193		return -EINVAL;
4194
4195	if (!rstate->changeable)
4196		return -EPERM;
4197
4198	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4199
4200	return 0;
4201}
4202
4203int regulator_suspend_enable(struct regulator_dev *rdev,
4204				    suspend_state_t state)
4205{
4206	return regulator_suspend_toggle(rdev, state, true);
4207}
4208EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4209
4210int regulator_suspend_disable(struct regulator_dev *rdev,
4211				     suspend_state_t state)
4212{
4213	struct regulator *regulator;
4214	struct regulator_voltage *voltage;
4215
4216	/*
4217	 * if any consumer wants this regulator device keeping on in
4218	 * suspend states, don't set it as disabled.
4219	 */
4220	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4221		voltage = &regulator->voltage[state];
4222		if (voltage->min_uV || voltage->max_uV)
4223			return 0;
4224	}
4225
4226	return regulator_suspend_toggle(rdev, state, false);
4227}
4228EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4229
4230static int _regulator_set_suspend_voltage(struct regulator *regulator,
4231					  int min_uV, int max_uV,
4232					  suspend_state_t state)
4233{
4234	struct regulator_dev *rdev = regulator->rdev;
4235	struct regulator_state *rstate;
4236
4237	rstate = regulator_get_suspend_state(rdev, state);
4238	if (rstate == NULL)
4239		return -EINVAL;
4240
4241	if (rstate->min_uV == rstate->max_uV) {
4242		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4243		return -EPERM;
4244	}
4245
4246	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4247}
4248
4249int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4250				  int max_uV, suspend_state_t state)
4251{
4252	struct ww_acquire_ctx ww_ctx;
4253	int ret;
4254
4255	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4256	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4257		return -EINVAL;
4258
4259	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4260
4261	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4262					     max_uV, state);
4263
4264	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4265
4266	return ret;
4267}
4268EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4269
4270/**
4271 * regulator_set_voltage_time - get raise/fall time
4272 * @regulator: regulator source
4273 * @old_uV: starting voltage in microvolts
4274 * @new_uV: target voltage in microvolts
4275 *
4276 * Provided with the starting and ending voltage, this function attempts to
4277 * calculate the time in microseconds required to rise or fall to this new
4278 * voltage.
4279 */
4280int regulator_set_voltage_time(struct regulator *regulator,
4281			       int old_uV, int new_uV)
4282{
4283	struct regulator_dev *rdev = regulator->rdev;
4284	const struct regulator_ops *ops = rdev->desc->ops;
4285	int old_sel = -1;
4286	int new_sel = -1;
4287	int voltage;
4288	int i;
4289
4290	if (ops->set_voltage_time)
4291		return ops->set_voltage_time(rdev, old_uV, new_uV);
4292	else if (!ops->set_voltage_time_sel)
4293		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4294
4295	/* Currently requires operations to do this */
4296	if (!ops->list_voltage || !rdev->desc->n_voltages)
 
4297		return -EINVAL;
4298
4299	for (i = 0; i < rdev->desc->n_voltages; i++) {
4300		/* We only look for exact voltage matches here */
4301		if (i < rdev->desc->linear_min_sel)
4302			continue;
4303
4304		if (old_sel >= 0 && new_sel >= 0)
4305			break;
4306
4307		voltage = regulator_list_voltage(regulator, i);
4308		if (voltage < 0)
4309			return -EINVAL;
4310		if (voltage == 0)
4311			continue;
4312		if (voltage == old_uV)
4313			old_sel = i;
4314		if (voltage == new_uV)
4315			new_sel = i;
4316	}
4317
4318	if (old_sel < 0 || new_sel < 0)
4319		return -EINVAL;
4320
4321	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4322}
4323EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4324
4325/**
4326 * regulator_set_voltage_time_sel - get raise/fall time
4327 * @rdev: regulator source device
4328 * @old_selector: selector for starting voltage
4329 * @new_selector: selector for target voltage
4330 *
4331 * Provided with the starting and target voltage selectors, this function
4332 * returns time in microseconds required to rise or fall to this new voltage
4333 *
4334 * Drivers providing ramp_delay in regulation_constraints can use this as their
4335 * set_voltage_time_sel() operation.
4336 */
4337int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4338				   unsigned int old_selector,
4339				   unsigned int new_selector)
4340{
 
4341	int old_volt, new_volt;
4342
 
 
 
 
 
 
 
 
 
 
4343	/* sanity check */
4344	if (!rdev->desc->ops->list_voltage)
4345		return -EINVAL;
4346
4347	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4348	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4349
4350	if (rdev->desc->ops->set_voltage_time)
4351		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4352							 new_volt);
4353	else
4354		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4355}
4356EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4357
4358int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4359{
4360	int ret;
4361
4362	regulator_lock(rdev);
4363
4364	if (!rdev->desc->ops->set_voltage &&
4365	    !rdev->desc->ops->set_voltage_sel) {
4366		ret = -EINVAL;
4367		goto out;
4368	}
4369
4370	/* balance only, if regulator is coupled */
4371	if (rdev->coupling_desc.n_coupled > 1)
4372		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4373	else
4374		ret = -EOPNOTSUPP;
4375
4376out:
4377	regulator_unlock(rdev);
4378	return ret;
4379}
4380
4381/**
4382 * regulator_sync_voltage - re-apply last regulator output voltage
4383 * @regulator: regulator source
4384 *
4385 * Re-apply the last configured voltage.  This is intended to be used
4386 * where some external control source the consumer is cooperating with
4387 * has caused the configured voltage to change.
4388 */
4389int regulator_sync_voltage(struct regulator *regulator)
4390{
4391	struct regulator_dev *rdev = regulator->rdev;
4392	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4393	int ret, min_uV, max_uV;
4394
4395	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4396		return 0;
4397
4398	regulator_lock(rdev);
4399
4400	if (!rdev->desc->ops->set_voltage &&
4401	    !rdev->desc->ops->set_voltage_sel) {
4402		ret = -EINVAL;
4403		goto out;
4404	}
4405
4406	/* This is only going to work if we've had a voltage configured. */
4407	if (!voltage->min_uV && !voltage->max_uV) {
4408		ret = -EINVAL;
4409		goto out;
4410	}
4411
4412	min_uV = voltage->min_uV;
4413	max_uV = voltage->max_uV;
4414
4415	/* This should be a paranoia check... */
4416	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4417	if (ret < 0)
4418		goto out;
4419
4420	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4421	if (ret < 0)
4422		goto out;
4423
4424	/* balance only, if regulator is coupled */
4425	if (rdev->coupling_desc.n_coupled > 1)
4426		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4427	else
4428		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4429
4430out:
4431	regulator_unlock(rdev);
4432	return ret;
4433}
4434EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4435
4436int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4437{
4438	int sel, ret;
4439	bool bypassed;
4440
4441	if (rdev->desc->ops->get_bypass) {
4442		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4443		if (ret < 0)
4444			return ret;
4445		if (bypassed) {
4446			/* if bypassed the regulator must have a supply */
4447			if (!rdev->supply) {
4448				rdev_err(rdev,
4449					 "bypassed regulator has no supply!\n");
4450				return -EPROBE_DEFER;
4451			}
4452
4453			return regulator_get_voltage_rdev(rdev->supply->rdev);
4454		}
4455	}
4456
4457	if (rdev->desc->ops->get_voltage_sel) {
4458		sel = rdev->desc->ops->get_voltage_sel(rdev);
4459		if (sel < 0)
4460			return sel;
4461		ret = rdev->desc->ops->list_voltage(rdev, sel);
4462	} else if (rdev->desc->ops->get_voltage) {
4463		ret = rdev->desc->ops->get_voltage(rdev);
4464	} else if (rdev->desc->ops->list_voltage) {
4465		ret = rdev->desc->ops->list_voltage(rdev, 0);
4466	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4467		ret = rdev->desc->fixed_uV;
4468	} else if (rdev->supply) {
4469		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4470	} else if (rdev->supply_name) {
4471		return -EPROBE_DEFER;
4472	} else {
4473		return -EINVAL;
4474	}
4475
4476	if (ret < 0)
4477		return ret;
4478	return ret - rdev->constraints->uV_offset;
4479}
4480EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4481
4482/**
4483 * regulator_get_voltage - get regulator output voltage
4484 * @regulator: regulator source
4485 *
4486 * This returns the current regulator voltage in uV.
4487 *
4488 * NOTE: If the regulator is disabled it will return the voltage value. This
4489 * function should not be used to determine regulator state.
4490 */
4491int regulator_get_voltage(struct regulator *regulator)
4492{
4493	struct ww_acquire_ctx ww_ctx;
4494	int ret;
4495
4496	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4497	ret = regulator_get_voltage_rdev(regulator->rdev);
4498	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
 
 
4499
4500	return ret;
4501}
4502EXPORT_SYMBOL_GPL(regulator_get_voltage);
4503
4504/**
4505 * regulator_set_current_limit - set regulator output current limit
4506 * @regulator: regulator source
4507 * @min_uA: Minimum supported current in uA
4508 * @max_uA: Maximum supported current in uA
4509 *
4510 * Sets current sink to the desired output current. This can be set during
4511 * any regulator state. IOW, regulator can be disabled or enabled.
4512 *
4513 * If the regulator is enabled then the current will change to the new value
4514 * immediately otherwise if the regulator is disabled the regulator will
4515 * output at the new current when enabled.
4516 *
4517 * NOTE: Regulator system constraints must be set for this regulator before
4518 * calling this function otherwise this call will fail.
4519 */
4520int regulator_set_current_limit(struct regulator *regulator,
4521			       int min_uA, int max_uA)
4522{
4523	struct regulator_dev *rdev = regulator->rdev;
4524	int ret;
4525
4526	regulator_lock(rdev);
4527
4528	/* sanity check */
4529	if (!rdev->desc->ops->set_current_limit) {
4530		ret = -EINVAL;
4531		goto out;
4532	}
4533
4534	/* constraints check */
4535	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4536	if (ret < 0)
4537		goto out;
4538
4539	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4540out:
4541	regulator_unlock(rdev);
4542	return ret;
4543}
4544EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4545
4546static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4547{
4548	/* sanity check */
4549	if (!rdev->desc->ops->get_current_limit)
4550		return -EINVAL;
4551
4552	return rdev->desc->ops->get_current_limit(rdev);
4553}
4554
4555static int _regulator_get_current_limit(struct regulator_dev *rdev)
4556{
4557	int ret;
4558
4559	regulator_lock(rdev);
4560	ret = _regulator_get_current_limit_unlocked(rdev);
4561	regulator_unlock(rdev);
4562
 
 
 
 
 
 
 
 
 
4563	return ret;
4564}
4565
4566/**
4567 * regulator_get_current_limit - get regulator output current
4568 * @regulator: regulator source
4569 *
4570 * This returns the current supplied by the specified current sink in uA.
4571 *
4572 * NOTE: If the regulator is disabled it will return the current value. This
4573 * function should not be used to determine regulator state.
4574 */
4575int regulator_get_current_limit(struct regulator *regulator)
4576{
4577	return _regulator_get_current_limit(regulator->rdev);
4578}
4579EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4580
4581/**
4582 * regulator_set_mode - set regulator operating mode
4583 * @regulator: regulator source
4584 * @mode: operating mode - one of the REGULATOR_MODE constants
4585 *
4586 * Set regulator operating mode to increase regulator efficiency or improve
4587 * regulation performance.
4588 *
4589 * NOTE: Regulator system constraints must be set for this regulator before
4590 * calling this function otherwise this call will fail.
4591 */
4592int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4593{
4594	struct regulator_dev *rdev = regulator->rdev;
4595	int ret;
4596	int regulator_curr_mode;
4597
4598	regulator_lock(rdev);
4599
4600	/* sanity check */
4601	if (!rdev->desc->ops->set_mode) {
4602		ret = -EINVAL;
4603		goto out;
4604	}
4605
4606	/* return if the same mode is requested */
4607	if (rdev->desc->ops->get_mode) {
4608		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4609		if (regulator_curr_mode == mode) {
4610			ret = 0;
4611			goto out;
4612		}
4613	}
4614
4615	/* constraints check */
4616	ret = regulator_mode_constrain(rdev, &mode);
4617	if (ret < 0)
4618		goto out;
4619
4620	ret = rdev->desc->ops->set_mode(rdev, mode);
4621out:
4622	regulator_unlock(rdev);
4623	return ret;
4624}
4625EXPORT_SYMBOL_GPL(regulator_set_mode);
4626
4627static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4628{
4629	/* sanity check */
4630	if (!rdev->desc->ops->get_mode)
4631		return -EINVAL;
4632
4633	return rdev->desc->ops->get_mode(rdev);
4634}
4635
4636static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4637{
4638	int ret;
4639
4640	regulator_lock(rdev);
4641	ret = _regulator_get_mode_unlocked(rdev);
4642	regulator_unlock(rdev);
4643
 
 
 
 
 
 
 
 
 
4644	return ret;
4645}
4646
4647/**
4648 * regulator_get_mode - get regulator operating mode
4649 * @regulator: regulator source
4650 *
4651 * Get the current regulator operating mode.
4652 */
4653unsigned int regulator_get_mode(struct regulator *regulator)
4654{
4655	return _regulator_get_mode(regulator->rdev);
4656}
4657EXPORT_SYMBOL_GPL(regulator_get_mode);
4658
4659static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4660{
4661	int ret = 0;
4662
4663	if (rdev->use_cached_err) {
4664		spin_lock(&rdev->err_lock);
4665		ret = rdev->cached_err;
4666		spin_unlock(&rdev->err_lock);
4667	}
4668	return ret;
4669}
4670
4671static int _regulator_get_error_flags(struct regulator_dev *rdev,
4672					unsigned int *flags)
4673{
4674	int cached_flags, ret = 0;
4675
4676	regulator_lock(rdev);
4677
4678	cached_flags = rdev_get_cached_err_flags(rdev);
4679
4680	if (rdev->desc->ops->get_error_flags)
4681		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4682	else if (!rdev->use_cached_err)
4683		ret = -EINVAL;
4684
4685	*flags |= cached_flags;
4686
4687	regulator_unlock(rdev);
4688
4689	return ret;
4690}
4691
4692/**
4693 * regulator_get_error_flags - get regulator error information
4694 * @regulator: regulator source
4695 * @flags: pointer to store error flags
4696 *
4697 * Get the current regulator error information.
4698 */
4699int regulator_get_error_flags(struct regulator *regulator,
4700				unsigned int *flags)
4701{
4702	return _regulator_get_error_flags(regulator->rdev, flags);
4703}
4704EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4705
4706/**
4707 * regulator_set_load - set regulator load
4708 * @regulator: regulator source
4709 * @uA_load: load current
4710 *
4711 * Notifies the regulator core of a new device load. This is then used by
4712 * DRMS (if enabled by constraints) to set the most efficient regulator
4713 * operating mode for the new regulator loading.
4714 *
4715 * Consumer devices notify their supply regulator of the maximum power
4716 * they will require (can be taken from device datasheet in the power
4717 * consumption tables) when they change operational status and hence power
4718 * state. Examples of operational state changes that can affect power
4719 * consumption are :-
4720 *
4721 *    o Device is opened / closed.
4722 *    o Device I/O is about to begin or has just finished.
4723 *    o Device is idling in between work.
4724 *
4725 * This information is also exported via sysfs to userspace.
4726 *
4727 * DRMS will sum the total requested load on the regulator and change
4728 * to the most efficient operating mode if platform constraints allow.
4729 *
4730 * NOTE: when a regulator consumer requests to have a regulator
4731 * disabled then any load that consumer requested no longer counts
4732 * toward the total requested load.  If the regulator is re-enabled
4733 * then the previously requested load will start counting again.
4734 *
4735 * If a regulator is an always-on regulator then an individual consumer's
4736 * load will still be removed if that consumer is fully disabled.
4737 *
4738 * On error a negative errno is returned.
4739 */
4740int regulator_set_load(struct regulator *regulator, int uA_load)
4741{
4742	struct regulator_dev *rdev = regulator->rdev;
4743	int old_uA_load;
4744	int ret = 0;
 
 
 
 
4745
4746	regulator_lock(rdev);
4747	old_uA_load = regulator->uA_load;
 
 
 
 
4748	regulator->uA_load = uA_load;
4749	if (regulator->enable_count && old_uA_load != uA_load) {
4750		ret = drms_uA_update(rdev);
4751		if (ret < 0)
4752			regulator->uA_load = old_uA_load;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4753	}
4754	regulator_unlock(rdev);
4755
 
 
 
 
 
 
 
 
4756	return ret;
4757}
4758EXPORT_SYMBOL_GPL(regulator_set_load);
4759
4760/**
4761 * regulator_allow_bypass - allow the regulator to go into bypass mode
4762 *
4763 * @regulator: Regulator to configure
4764 * @enable: enable or disable bypass mode
4765 *
4766 * Allow the regulator to go into bypass mode if all other consumers
4767 * for the regulator also enable bypass mode and the machine
4768 * constraints allow this.  Bypass mode means that the regulator is
4769 * simply passing the input directly to the output with no regulation.
4770 */
4771int regulator_allow_bypass(struct regulator *regulator, bool enable)
4772{
4773	struct regulator_dev *rdev = regulator->rdev;
4774	const char *name = rdev_get_name(rdev);
4775	int ret = 0;
4776
4777	if (!rdev->desc->ops->set_bypass)
4778		return 0;
4779
4780	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
 
4781		return 0;
4782
4783	regulator_lock(rdev);
4784
4785	if (enable && !regulator->bypass) {
4786		rdev->bypass_count++;
4787
4788		if (rdev->bypass_count == rdev->open_count) {
4789			trace_regulator_bypass_enable(name);
4790
4791			ret = rdev->desc->ops->set_bypass(rdev, enable);
4792			if (ret != 0)
4793				rdev->bypass_count--;
4794			else
4795				trace_regulator_bypass_enable_complete(name);
4796		}
4797
4798	} else if (!enable && regulator->bypass) {
4799		rdev->bypass_count--;
4800
4801		if (rdev->bypass_count != rdev->open_count) {
4802			trace_regulator_bypass_disable(name);
4803
4804			ret = rdev->desc->ops->set_bypass(rdev, enable);
4805			if (ret != 0)
4806				rdev->bypass_count++;
4807			else
4808				trace_regulator_bypass_disable_complete(name);
4809		}
4810	}
4811
4812	if (ret == 0)
4813		regulator->bypass = enable;
4814
4815	regulator_unlock(rdev);
4816
4817	return ret;
4818}
4819EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4820
4821/**
4822 * regulator_register_notifier - register regulator event notifier
4823 * @regulator: regulator source
4824 * @nb: notifier block
4825 *
4826 * Register notifier block to receive regulator events.
4827 */
4828int regulator_register_notifier(struct regulator *regulator,
4829			      struct notifier_block *nb)
4830{
4831	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4832						nb);
4833}
4834EXPORT_SYMBOL_GPL(regulator_register_notifier);
4835
4836/**
4837 * regulator_unregister_notifier - unregister regulator event notifier
4838 * @regulator: regulator source
4839 * @nb: notifier block
4840 *
4841 * Unregister regulator event notifier block.
4842 */
4843int regulator_unregister_notifier(struct regulator *regulator,
4844				struct notifier_block *nb)
4845{
4846	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4847						  nb);
4848}
4849EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4850
4851/* notify regulator consumers and downstream regulator consumers.
4852 * Note mutex must be held by caller.
4853 */
4854static int _notifier_call_chain(struct regulator_dev *rdev,
4855				  unsigned long event, void *data)
4856{
4857	/* call rdev chain first */
4858	int ret =  blocking_notifier_call_chain(&rdev->notifier, event, data);
4859
4860	if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4861		struct device *parent = rdev->dev.parent;
4862		const char *rname = rdev_get_name(rdev);
4863		char name[32];
4864
4865		/* Avoid duplicate debugfs directory names */
4866		if (parent && rname == rdev->desc->name) {
4867			snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4868				 rname);
4869			rname = name;
4870		}
4871		reg_generate_netlink_event(rname, event);
4872	}
4873
4874	return ret;
4875}
4876
4877int _regulator_bulk_get(struct device *dev, int num_consumers,
4878			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4879{
4880	int i;
4881	int ret;
4882
4883	for (i = 0; i < num_consumers; i++)
4884		consumers[i].consumer = NULL;
4885
4886	for (i = 0; i < num_consumers; i++) {
4887		consumers[i].consumer = _regulator_get(dev,
4888						       consumers[i].supply, get_type);
4889		if (IS_ERR(consumers[i].consumer)) {
4890			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4891					    "Failed to get supply '%s'",
4892					    consumers[i].supply);
4893			consumers[i].consumer = NULL;
4894			goto err;
4895		}
4896
4897		if (consumers[i].init_load_uA > 0) {
4898			ret = regulator_set_load(consumers[i].consumer,
4899						 consumers[i].init_load_uA);
4900			if (ret) {
4901				i++;
4902				goto err;
4903			}
4904		}
4905	}
4906
4907	return 0;
4908
4909err:
4910	while (--i >= 0)
4911		regulator_put(consumers[i].consumer);
4912
4913	return ret;
4914}
4915
4916/**
4917 * regulator_bulk_get - get multiple regulator consumers
4918 *
4919 * @dev:           Device to supply
4920 * @num_consumers: Number of consumers to register
4921 * @consumers:     Configuration of consumers; clients are stored here.
4922 *
4923 * @return 0 on success, an errno on failure.
4924 *
4925 * This helper function allows drivers to get several regulator
4926 * consumers in one operation.  If any of the regulators cannot be
4927 * acquired then any regulators that were allocated will be freed
4928 * before returning to the caller.
4929 */
4930int regulator_bulk_get(struct device *dev, int num_consumers,
4931		       struct regulator_bulk_data *consumers)
4932{
4933	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4934}
4935EXPORT_SYMBOL_GPL(regulator_bulk_get);
4936
4937static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4938{
4939	struct regulator_bulk_data *bulk = data;
4940
4941	bulk->ret = regulator_enable(bulk->consumer);
4942}
4943
4944/**
4945 * regulator_bulk_enable - enable multiple regulator consumers
4946 *
4947 * @num_consumers: Number of consumers
4948 * @consumers:     Consumer data; clients are stored here.
4949 * @return         0 on success, an errno on failure
4950 *
4951 * This convenience API allows consumers to enable multiple regulator
4952 * clients in a single API call.  If any consumers cannot be enabled
4953 * then any others that were enabled will be disabled again prior to
4954 * return.
4955 */
4956int regulator_bulk_enable(int num_consumers,
4957			  struct regulator_bulk_data *consumers)
4958{
4959	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4960	int i;
4961	int ret = 0;
4962
4963	for (i = 0; i < num_consumers; i++) {
4964		async_schedule_domain(regulator_bulk_enable_async,
4965				      &consumers[i], &async_domain);
 
 
 
4966	}
4967
4968	async_synchronize_full_domain(&async_domain);
4969
4970	/* If any consumer failed we need to unwind any that succeeded */
4971	for (i = 0; i < num_consumers; i++) {
4972		if (consumers[i].ret != 0) {
4973			ret = consumers[i].ret;
4974			goto err;
4975		}
4976	}
4977
4978	return 0;
4979
4980err:
4981	for (i = 0; i < num_consumers; i++) {
4982		if (consumers[i].ret < 0)
4983			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4984			       ERR_PTR(consumers[i].ret));
4985		else
4986			regulator_disable(consumers[i].consumer);
4987	}
4988
4989	return ret;
4990}
4991EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4992
4993/**
4994 * regulator_bulk_disable - disable multiple regulator consumers
4995 *
4996 * @num_consumers: Number of consumers
4997 * @consumers:     Consumer data; clients are stored here.
4998 * @return         0 on success, an errno on failure
4999 *
5000 * This convenience API allows consumers to disable multiple regulator
5001 * clients in a single API call.  If any consumers cannot be disabled
5002 * then any others that were disabled will be enabled again prior to
5003 * return.
5004 */
5005int regulator_bulk_disable(int num_consumers,
5006			   struct regulator_bulk_data *consumers)
5007{
5008	int i;
5009	int ret, r;
5010
5011	for (i = num_consumers - 1; i >= 0; --i) {
5012		ret = regulator_disable(consumers[i].consumer);
5013		if (ret != 0)
5014			goto err;
5015	}
5016
5017	return 0;
5018
5019err:
5020	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5021	for (++i; i < num_consumers; ++i) {
5022		r = regulator_enable(consumers[i].consumer);
5023		if (r != 0)
5024			pr_err("Failed to re-enable %s: %pe\n",
5025			       consumers[i].supply, ERR_PTR(r));
5026	}
5027
5028	return ret;
5029}
5030EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5031
5032/**
5033 * regulator_bulk_force_disable - force disable multiple regulator consumers
5034 *
5035 * @num_consumers: Number of consumers
5036 * @consumers:     Consumer data; clients are stored here.
5037 * @return         0 on success, an errno on failure
5038 *
5039 * This convenience API allows consumers to forcibly disable multiple regulator
5040 * clients in a single API call.
5041 * NOTE: This should be used for situations when device damage will
5042 * likely occur if the regulators are not disabled (e.g. over temp).
5043 * Although regulator_force_disable function call for some consumers can
5044 * return error numbers, the function is called for all consumers.
5045 */
5046int regulator_bulk_force_disable(int num_consumers,
5047			   struct regulator_bulk_data *consumers)
5048{
5049	int i;
5050	int ret = 0;
5051
5052	for (i = 0; i < num_consumers; i++) {
5053		consumers[i].ret =
5054			    regulator_force_disable(consumers[i].consumer);
5055
5056		/* Store first error for reporting */
5057		if (consumers[i].ret && !ret)
5058			ret = consumers[i].ret;
 
 
5059	}
5060
 
 
5061	return ret;
5062}
5063EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5064
5065/**
5066 * regulator_bulk_free - free multiple regulator consumers
5067 *
5068 * @num_consumers: Number of consumers
5069 * @consumers:     Consumer data; clients are stored here.
5070 *
5071 * This convenience API allows consumers to free multiple regulator
5072 * clients in a single API call.
5073 */
5074void regulator_bulk_free(int num_consumers,
5075			 struct regulator_bulk_data *consumers)
5076{
5077	int i;
5078
5079	for (i = 0; i < num_consumers; i++) {
5080		regulator_put(consumers[i].consumer);
5081		consumers[i].consumer = NULL;
5082	}
5083}
5084EXPORT_SYMBOL_GPL(regulator_bulk_free);
5085
5086/**
5087 * regulator_handle_critical - Handle events for system-critical regulators.
5088 * @rdev: The regulator device.
5089 * @event: The event being handled.
5090 *
5091 * This function handles critical events such as under-voltage, over-current,
5092 * and unknown errors for regulators deemed system-critical. On detecting such
5093 * events, it triggers a hardware protection shutdown with a defined timeout.
5094 */
5095static void regulator_handle_critical(struct regulator_dev *rdev,
5096				      unsigned long event)
5097{
5098	const char *reason = NULL;
5099
5100	if (!rdev->constraints->system_critical)
5101		return;
5102
5103	switch (event) {
5104	case REGULATOR_EVENT_UNDER_VOLTAGE:
5105		reason = "System critical regulator: voltage drop detected";
5106		break;
5107	case REGULATOR_EVENT_OVER_CURRENT:
5108		reason = "System critical regulator: over-current detected";
5109		break;
5110	case REGULATOR_EVENT_FAIL:
5111		reason = "System critical regulator: unknown error";
5112	}
5113
5114	if (!reason)
5115		return;
5116
5117	hw_protection_shutdown(reason,
5118			       rdev->constraints->uv_less_critical_window_ms);
5119}
5120
5121/**
5122 * regulator_notifier_call_chain - call regulator event notifier
5123 * @rdev: regulator source
5124 * @event: notifier block
5125 * @data: callback-specific data.
5126 *
5127 * Called by regulator drivers to notify clients a regulator event has
5128 * occurred.
 
5129 */
5130int regulator_notifier_call_chain(struct regulator_dev *rdev,
5131				  unsigned long event, void *data)
5132{
5133	regulator_handle_critical(rdev, event);
5134
5135	_notifier_call_chain(rdev, event, data);
5136	return NOTIFY_DONE;
5137
5138}
5139EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5140
5141/**
5142 * regulator_mode_to_status - convert a regulator mode into a status
5143 *
5144 * @mode: Mode to convert
5145 *
5146 * Convert a regulator mode into a status.
5147 */
5148int regulator_mode_to_status(unsigned int mode)
5149{
5150	switch (mode) {
5151	case REGULATOR_MODE_FAST:
5152		return REGULATOR_STATUS_FAST;
5153	case REGULATOR_MODE_NORMAL:
5154		return REGULATOR_STATUS_NORMAL;
5155	case REGULATOR_MODE_IDLE:
5156		return REGULATOR_STATUS_IDLE;
5157	case REGULATOR_MODE_STANDBY:
5158		return REGULATOR_STATUS_STANDBY;
5159	default:
5160		return REGULATOR_STATUS_UNDEFINED;
5161	}
5162}
5163EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5164
5165static struct attribute *regulator_dev_attrs[] = {
5166	&dev_attr_name.attr,
5167	&dev_attr_num_users.attr,
5168	&dev_attr_type.attr,
5169	&dev_attr_microvolts.attr,
5170	&dev_attr_microamps.attr,
5171	&dev_attr_opmode.attr,
5172	&dev_attr_state.attr,
5173	&dev_attr_status.attr,
5174	&dev_attr_bypass.attr,
5175	&dev_attr_requested_microamps.attr,
5176	&dev_attr_min_microvolts.attr,
5177	&dev_attr_max_microvolts.attr,
5178	&dev_attr_min_microamps.attr,
5179	&dev_attr_max_microamps.attr,
5180	&dev_attr_under_voltage.attr,
5181	&dev_attr_over_current.attr,
5182	&dev_attr_regulation_out.attr,
5183	&dev_attr_fail.attr,
5184	&dev_attr_over_temp.attr,
5185	&dev_attr_under_voltage_warn.attr,
5186	&dev_attr_over_current_warn.attr,
5187	&dev_attr_over_voltage_warn.attr,
5188	&dev_attr_over_temp_warn.attr,
5189	&dev_attr_suspend_standby_state.attr,
5190	&dev_attr_suspend_mem_state.attr,
5191	&dev_attr_suspend_disk_state.attr,
5192	&dev_attr_suspend_standby_microvolts.attr,
5193	&dev_attr_suspend_mem_microvolts.attr,
5194	&dev_attr_suspend_disk_microvolts.attr,
5195	&dev_attr_suspend_standby_mode.attr,
5196	&dev_attr_suspend_mem_mode.attr,
5197	&dev_attr_suspend_disk_mode.attr,
5198	NULL
5199};
5200
5201/*
5202 * To avoid cluttering sysfs (and memory) with useless state, only
5203 * create attributes that can be meaningfully displayed.
5204 */
5205static umode_t regulator_attr_is_visible(struct kobject *kobj,
5206					 struct attribute *attr, int idx)
5207{
5208	struct device *dev = kobj_to_dev(kobj);
5209	struct regulator_dev *rdev = dev_to_rdev(dev);
5210	const struct regulator_ops *ops = rdev->desc->ops;
5211	umode_t mode = attr->mode;
5212
5213	/* these three are always present */
5214	if (attr == &dev_attr_name.attr ||
5215	    attr == &dev_attr_num_users.attr ||
5216	    attr == &dev_attr_type.attr)
5217		return mode;
5218
5219	/* some attributes need specific methods to be displayed */
5220	if (attr == &dev_attr_microvolts.attr) {
5221		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5222		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5223		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5224		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5225			return mode;
5226		return 0;
5227	}
5228
5229	if (attr == &dev_attr_microamps.attr)
5230		return ops->get_current_limit ? mode : 0;
5231
5232	if (attr == &dev_attr_opmode.attr)
5233		return ops->get_mode ? mode : 0;
5234
5235	if (attr == &dev_attr_state.attr)
5236		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5237
5238	if (attr == &dev_attr_status.attr)
5239		return ops->get_status ? mode : 0;
5240
5241	if (attr == &dev_attr_bypass.attr)
5242		return ops->get_bypass ? mode : 0;
5243
5244	if (attr == &dev_attr_under_voltage.attr ||
5245	    attr == &dev_attr_over_current.attr ||
5246	    attr == &dev_attr_regulation_out.attr ||
5247	    attr == &dev_attr_fail.attr ||
5248	    attr == &dev_attr_over_temp.attr ||
5249	    attr == &dev_attr_under_voltage_warn.attr ||
5250	    attr == &dev_attr_over_current_warn.attr ||
5251	    attr == &dev_attr_over_voltage_warn.attr ||
5252	    attr == &dev_attr_over_temp_warn.attr)
5253		return ops->get_error_flags ? mode : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
5254
5255	/* constraints need specific supporting methods */
5256	if (attr == &dev_attr_min_microvolts.attr ||
5257	    attr == &dev_attr_max_microvolts.attr)
5258		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5259
5260	if (attr == &dev_attr_min_microamps.attr ||
5261	    attr == &dev_attr_max_microamps.attr)
5262		return ops->set_current_limit ? mode : 0;
5263
5264	if (attr == &dev_attr_suspend_standby_state.attr ||
5265	    attr == &dev_attr_suspend_mem_state.attr ||
5266	    attr == &dev_attr_suspend_disk_state.attr)
5267		return mode;
5268
5269	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5270	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5271	    attr == &dev_attr_suspend_disk_microvolts.attr)
5272		return ops->set_suspend_voltage ? mode : 0;
5273
5274	if (attr == &dev_attr_suspend_standby_mode.attr ||
5275	    attr == &dev_attr_suspend_mem_mode.attr ||
5276	    attr == &dev_attr_suspend_disk_mode.attr)
5277		return ops->set_suspend_mode ? mode : 0;
5278
5279	return mode;
5280}
5281
5282static const struct attribute_group regulator_dev_group = {
5283	.attrs = regulator_dev_attrs,
5284	.is_visible = regulator_attr_is_visible,
5285};
5286
5287static const struct attribute_group *regulator_dev_groups[] = {
5288	&regulator_dev_group,
5289	NULL
5290};
 
 
 
 
 
5291
5292static void regulator_dev_release(struct device *dev)
5293{
5294	struct regulator_dev *rdev = dev_get_drvdata(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5295
5296	debugfs_remove_recursive(rdev->debugfs);
5297	kfree(rdev->constraints);
5298	of_node_put(rdev->dev.of_node);
5299	kfree(rdev);
5300}
5301
5302static void rdev_init_debugfs(struct regulator_dev *rdev)
5303{
5304	struct device *parent = rdev->dev.parent;
5305	const char *rname = rdev_get_name(rdev);
5306	char name[NAME_MAX];
5307
5308	/* Avoid duplicate debugfs directory names */
5309	if (parent && rname == rdev->desc->name) {
5310		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5311			 rname);
5312		rname = name;
5313	}
5314
5315	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5316	if (IS_ERR(rdev->debugfs))
5317		rdev_dbg(rdev, "Failed to create debugfs directory\n");
5318
5319	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5320			   &rdev->use_count);
5321	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5322			   &rdev->open_count);
5323	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5324			   &rdev->bypass_count);
5325}
5326
5327static int regulator_register_resolve_supply(struct device *dev, void *data)
5328{
5329	struct regulator_dev *rdev = dev_to_rdev(dev);
5330
5331	if (regulator_resolve_supply(rdev))
5332		rdev_dbg(rdev, "unable to resolve supply\n");
5333
5334	return 0;
5335}
5336
5337int regulator_coupler_register(struct regulator_coupler *coupler)
5338{
5339	mutex_lock(&regulator_list_mutex);
5340	list_add_tail(&coupler->list, &regulator_coupler_list);
5341	mutex_unlock(&regulator_list_mutex);
5342
5343	return 0;
5344}
5345
5346static struct regulator_coupler *
5347regulator_find_coupler(struct regulator_dev *rdev)
5348{
5349	struct regulator_coupler *coupler;
5350	int err;
5351
5352	/*
5353	 * Note that regulators are appended to the list and the generic
5354	 * coupler is registered first, hence it will be attached at last
5355	 * if nobody cared.
5356	 */
5357	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5358		err = coupler->attach_regulator(coupler, rdev);
5359		if (!err) {
5360			if (!coupler->balance_voltage &&
5361			    rdev->coupling_desc.n_coupled > 2)
5362				goto err_unsupported;
5363
5364			return coupler;
5365		}
5366
5367		if (err < 0)
5368			return ERR_PTR(err);
5369
5370		if (err == 1)
5371			continue;
5372
5373		break;
5374	}
5375
5376	return ERR_PTR(-EINVAL);
5377
5378err_unsupported:
5379	if (coupler->detach_regulator)
5380		coupler->detach_regulator(coupler, rdev);
5381
5382	rdev_err(rdev,
5383		"Voltage balancing for multiple regulator couples is unimplemented\n");
5384
5385	return ERR_PTR(-EPERM);
5386}
5387
5388static void regulator_resolve_coupling(struct regulator_dev *rdev)
5389{
5390	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5391	struct coupling_desc *c_desc = &rdev->coupling_desc;
5392	int n_coupled = c_desc->n_coupled;
5393	struct regulator_dev *c_rdev;
5394	int i;
5395
5396	for (i = 1; i < n_coupled; i++) {
5397		/* already resolved */
5398		if (c_desc->coupled_rdevs[i])
5399			continue;
5400
5401		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5402
5403		if (!c_rdev)
5404			continue;
5405
5406		if (c_rdev->coupling_desc.coupler != coupler) {
5407			rdev_err(rdev, "coupler mismatch with %s\n",
5408				 rdev_get_name(c_rdev));
5409			return;
5410		}
5411
5412		c_desc->coupled_rdevs[i] = c_rdev;
5413		c_desc->n_resolved++;
5414
5415		regulator_resolve_coupling(c_rdev);
5416	}
5417}
5418
5419static void regulator_remove_coupling(struct regulator_dev *rdev)
5420{
5421	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5422	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5423	struct regulator_dev *__c_rdev, *c_rdev;
5424	unsigned int __n_coupled, n_coupled;
5425	int i, k;
5426	int err;
5427
5428	n_coupled = c_desc->n_coupled;
5429
5430	for (i = 1; i < n_coupled; i++) {
5431		c_rdev = c_desc->coupled_rdevs[i];
5432
5433		if (!c_rdev)
5434			continue;
5435
5436		regulator_lock(c_rdev);
5437
5438		__c_desc = &c_rdev->coupling_desc;
5439		__n_coupled = __c_desc->n_coupled;
5440
5441		for (k = 1; k < __n_coupled; k++) {
5442			__c_rdev = __c_desc->coupled_rdevs[k];
5443
5444			if (__c_rdev == rdev) {
5445				__c_desc->coupled_rdevs[k] = NULL;
5446				__c_desc->n_resolved--;
5447				break;
5448			}
5449		}
5450
5451		regulator_unlock(c_rdev);
5452
5453		c_desc->coupled_rdevs[i] = NULL;
5454		c_desc->n_resolved--;
5455	}
5456
5457	if (coupler && coupler->detach_regulator) {
5458		err = coupler->detach_regulator(coupler, rdev);
5459		if (err)
5460			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5461				 ERR_PTR(err));
5462	}
5463
5464	kfree(rdev->coupling_desc.coupled_rdevs);
5465	rdev->coupling_desc.coupled_rdevs = NULL;
5466}
5467
5468static int regulator_init_coupling(struct regulator_dev *rdev)
5469{
5470	struct regulator_dev **coupled;
5471	int err, n_phandles;
5472
5473	if (!IS_ENABLED(CONFIG_OF))
5474		n_phandles = 0;
5475	else
5476		n_phandles = of_get_n_coupled(rdev);
5477
5478	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5479	if (!coupled)
5480		return -ENOMEM;
5481
5482	rdev->coupling_desc.coupled_rdevs = coupled;
5483
5484	/*
5485	 * Every regulator should always have coupling descriptor filled with
5486	 * at least pointer to itself.
5487	 */
5488	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5489	rdev->coupling_desc.n_coupled = n_phandles + 1;
5490	rdev->coupling_desc.n_resolved++;
5491
5492	/* regulator isn't coupled */
5493	if (n_phandles == 0)
5494		return 0;
5495
5496	if (!of_check_coupling_data(rdev))
5497		return -EPERM;
5498
5499	mutex_lock(&regulator_list_mutex);
5500	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5501	mutex_unlock(&regulator_list_mutex);
5502
5503	if (IS_ERR(rdev->coupling_desc.coupler)) {
5504		err = PTR_ERR(rdev->coupling_desc.coupler);
5505		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5506		return err;
5507	}
5508
5509	return 0;
5510}
5511
5512static int generic_coupler_attach(struct regulator_coupler *coupler,
5513				  struct regulator_dev *rdev)
5514{
5515	if (rdev->coupling_desc.n_coupled > 2) {
5516		rdev_err(rdev,
5517			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5518		return -EPERM;
5519	}
5520
5521	if (!rdev->constraints->always_on) {
5522		rdev_err(rdev,
5523			 "Coupling of a non always-on regulator is unimplemented\n");
5524		return -ENOTSUPP;
5525	}
5526
5527	return 0;
5528}
5529
5530static struct regulator_coupler generic_regulator_coupler = {
5531	.attach_regulator = generic_coupler_attach,
5532};
5533
5534/**
5535 * regulator_register - register regulator
5536 * @dev: the device that drive the regulator
5537 * @regulator_desc: regulator to register
5538 * @cfg: runtime configuration for regulator
5539 *
5540 * Called by regulator drivers to register a regulator.
5541 * Returns a valid pointer to struct regulator_dev on success
5542 * or an ERR_PTR() on error.
5543 */
5544struct regulator_dev *
5545regulator_register(struct device *dev,
5546		   const struct regulator_desc *regulator_desc,
5547		   const struct regulator_config *cfg)
5548{
 
5549	const struct regulator_init_data *init_data;
5550	struct regulator_config *config = NULL;
5551	static atomic_t regulator_no = ATOMIC_INIT(-1);
5552	struct regulator_dev *rdev;
5553	bool dangling_cfg_gpiod = false;
5554	bool dangling_of_gpiod = false;
5555	int ret, i;
5556	bool resolved_early = false;
5557
5558	if (cfg == NULL)
5559		return ERR_PTR(-EINVAL);
5560	if (cfg->ena_gpiod)
5561		dangling_cfg_gpiod = true;
5562	if (regulator_desc == NULL) {
5563		ret = -EINVAL;
5564		goto rinse;
5565	}
5566
5567	WARN_ON(!dev || !cfg->dev);
 
5568
5569	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5570		ret = -EINVAL;
5571		goto rinse;
5572	}
5573
5574	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5575	    regulator_desc->type != REGULATOR_CURRENT) {
5576		ret = -EINVAL;
5577		goto rinse;
5578	}
5579
5580	/* Only one of each should be implemented */
5581	WARN_ON(regulator_desc->ops->get_voltage &&
5582		regulator_desc->ops->get_voltage_sel);
5583	WARN_ON(regulator_desc->ops->set_voltage &&
5584		regulator_desc->ops->set_voltage_sel);
5585
5586	/* If we're using selectors we must implement list_voltage. */
5587	if (regulator_desc->ops->get_voltage_sel &&
5588	    !regulator_desc->ops->list_voltage) {
5589		ret = -EINVAL;
5590		goto rinse;
5591	}
5592	if (regulator_desc->ops->set_voltage_sel &&
5593	    !regulator_desc->ops->list_voltage) {
5594		ret = -EINVAL;
5595		goto rinse;
5596	}
5597
5598	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5599	if (rdev == NULL) {
5600		ret = -ENOMEM;
5601		goto rinse;
5602	}
5603	device_initialize(&rdev->dev);
5604	dev_set_drvdata(&rdev->dev, rdev);
5605	rdev->dev.class = &regulator_class;
5606	spin_lock_init(&rdev->err_lock);
5607
5608	/*
5609	 * Duplicate the config so the driver could override it after
5610	 * parsing init data.
5611	 */
5612	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5613	if (config == NULL) {
5614		ret = -ENOMEM;
5615		goto clean;
5616	}
5617
5618	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5619					       &rdev->dev.of_node);
5620
5621	/*
5622	 * Sometimes not all resources are probed already so we need to take
5623	 * that into account. This happens most the time if the ena_gpiod comes
5624	 * from a gpio extender or something else.
5625	 */
5626	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5627		ret = -EPROBE_DEFER;
5628		goto clean;
5629	}
5630
5631	/*
5632	 * We need to keep track of any GPIO descriptor coming from the
5633	 * device tree until we have handled it over to the core. If the
5634	 * config that was passed in to this function DOES NOT contain
5635	 * a descriptor, and the config after this call DOES contain
5636	 * a descriptor, we definitely got one from parsing the device
5637	 * tree.
5638	 */
5639	if (!cfg->ena_gpiod && config->ena_gpiod)
5640		dangling_of_gpiod = true;
5641	if (!init_data) {
5642		init_data = config->init_data;
5643		rdev->dev.of_node = of_node_get(config->of_node);
5644	}
5645
5646	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5647	rdev->reg_data = config->driver_data;
5648	rdev->owner = regulator_desc->owner;
5649	rdev->desc = regulator_desc;
5650	if (config->regmap)
5651		rdev->regmap = config->regmap;
5652	else if (dev_get_regmap(dev, NULL))
5653		rdev->regmap = dev_get_regmap(dev, NULL);
5654	else if (dev->parent)
5655		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5656	INIT_LIST_HEAD(&rdev->consumer_list);
5657	INIT_LIST_HEAD(&rdev->list);
5658	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5659	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5660
5661	if (init_data && init_data->supply_regulator)
5662		rdev->supply_name = init_data->supply_regulator;
5663	else if (regulator_desc->supply_name)
5664		rdev->supply_name = regulator_desc->supply_name;
5665
5666	/* register with sysfs */
5667	rdev->dev.parent = config->dev;
5668	dev_set_name(&rdev->dev, "regulator.%lu",
5669		    (unsigned long) atomic_inc_return(&regulator_no));
5670
5671	/* set regulator constraints */
5672	if (init_data)
5673		rdev->constraints = kmemdup(&init_data->constraints,
5674					    sizeof(*rdev->constraints),
5675					    GFP_KERNEL);
5676	else
5677		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5678					    GFP_KERNEL);
5679	if (!rdev->constraints) {
5680		ret = -ENOMEM;
5681		goto wash;
5682	}
5683
5684	if ((rdev->supply_name && !rdev->supply) &&
5685		(rdev->constraints->always_on ||
5686		 rdev->constraints->boot_on)) {
5687		ret = regulator_resolve_supply(rdev);
5688		if (ret)
5689			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5690					 ERR_PTR(ret));
5691
5692		resolved_early = true;
5693	}
5694
5695	/* perform any regulator specific init */
5696	if (init_data && init_data->regulator_init) {
5697		ret = init_data->regulator_init(rdev->reg_data);
5698		if (ret < 0)
5699			goto wash;
5700	}
5701
5702	if (config->ena_gpiod) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5703		ret = regulator_ena_gpio_request(rdev, config);
5704		if (ret != 0) {
5705			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5706				 ERR_PTR(ret));
5707			goto wash;
5708		}
5709		/* The regulator core took over the GPIO descriptor */
5710		dangling_cfg_gpiod = false;
5711		dangling_of_gpiod = false;
5712	}
5713
5714	ret = set_machine_constraints(rdev);
5715	if (ret == -EPROBE_DEFER && !resolved_early) {
5716		/* Regulator might be in bypass mode and so needs its supply
5717		 * to set the constraints
5718		 */
5719		/* FIXME: this currently triggers a chicken-and-egg problem
5720		 * when creating -SUPPLY symlink in sysfs to a regulator
5721		 * that is just being created
5722		 */
5723		rdev_dbg(rdev, "will resolve supply early: %s\n",
5724			 rdev->supply_name);
5725		ret = regulator_resolve_supply(rdev);
5726		if (!ret)
5727			ret = set_machine_constraints(rdev);
5728		else
5729			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5730				 ERR_PTR(ret));
5731	}
 
 
 
 
 
 
5732	if (ret < 0)
5733		goto wash;
5734
5735	ret = regulator_init_coupling(rdev);
 
5736	if (ret < 0)
5737		goto wash;
5738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5739	/* add consumers devices */
5740	if (init_data) {
5741		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5742			ret = set_consumer_device_supply(rdev,
5743				init_data->consumer_supplies[i].dev_name,
5744				init_data->consumer_supplies[i].supply);
5745			if (ret < 0) {
5746				dev_err(dev, "Failed to set supply %s\n",
5747					init_data->consumer_supplies[i].supply);
5748				goto unset_supplies;
5749			}
5750		}
5751	}
5752
5753	if (!rdev->desc->ops->get_voltage &&
5754	    !rdev->desc->ops->list_voltage &&
5755	    !rdev->desc->fixed_uV)
5756		rdev->is_switch = true;
5757
5758	ret = device_add(&rdev->dev);
5759	if (ret != 0)
5760		goto unset_supplies;
5761
5762	rdev_init_debugfs(rdev);
5763
5764	/* try to resolve regulators coupling since a new one was registered */
5765	mutex_lock(&regulator_list_mutex);
5766	regulator_resolve_coupling(rdev);
5767	mutex_unlock(&regulator_list_mutex);
5768
5769	/* try to resolve regulators supply since a new one was registered */
5770	class_for_each_device(&regulator_class, NULL, NULL,
5771			      regulator_register_resolve_supply);
5772	kfree(config);
5773	return rdev;
5774
5775unset_supplies:
5776	mutex_lock(&regulator_list_mutex);
5777	unset_regulator_supplies(rdev);
5778	regulator_remove_coupling(rdev);
5779	mutex_unlock(&regulator_list_mutex);
5780wash:
5781	regulator_put(rdev->supply);
5782	kfree(rdev->coupling_desc.coupled_rdevs);
5783	mutex_lock(&regulator_list_mutex);
5784	regulator_ena_gpio_free(rdev);
5785	mutex_unlock(&regulator_list_mutex);
 
 
 
 
 
 
5786clean:
5787	if (dangling_of_gpiod)
5788		gpiod_put(config->ena_gpiod);
5789	kfree(config);
5790	put_device(&rdev->dev);
5791rinse:
5792	if (dangling_cfg_gpiod)
5793		gpiod_put(cfg->ena_gpiod);
5794	return ERR_PTR(ret);
5795}
5796EXPORT_SYMBOL_GPL(regulator_register);
5797
5798/**
5799 * regulator_unregister - unregister regulator
5800 * @rdev: regulator to unregister
5801 *
5802 * Called by regulator drivers to unregister a regulator.
5803 */
5804void regulator_unregister(struct regulator_dev *rdev)
5805{
5806	if (rdev == NULL)
5807		return;
5808
5809	if (rdev->supply) {
5810		while (rdev->use_count--)
5811			regulator_disable(rdev->supply);
5812		regulator_put(rdev->supply);
5813	}
5814
5815	flush_work(&rdev->disable_work.work);
5816
5817	mutex_lock(&regulator_list_mutex);
5818
 
5819	WARN_ON(rdev->open_count);
5820	regulator_remove_coupling(rdev);
5821	unset_regulator_supplies(rdev);
5822	list_del(&rdev->list);
 
5823	regulator_ena_gpio_free(rdev);
5824	device_unregister(&rdev->dev);
5825
5826	mutex_unlock(&regulator_list_mutex);
5827}
5828EXPORT_SYMBOL_GPL(regulator_unregister);
5829
5830#ifdef CONFIG_SUSPEND
5831/**
5832 * regulator_suspend - prepare regulators for system wide suspend
5833 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5834 *
5835 * Configure each regulator with it's suspend operating parameters for state.
 
5836 */
5837static int regulator_suspend(struct device *dev)
5838{
5839	struct regulator_dev *rdev = dev_to_rdev(dev);
5840	suspend_state_t state = pm_suspend_target_state;
5841	int ret;
5842	const struct regulator_state *rstate;
5843
5844	rstate = regulator_get_suspend_state_check(rdev, state);
5845	if (!rstate)
5846		return 0;
 
 
 
5847
5848	regulator_lock(rdev);
5849	ret = __suspend_set_state(rdev, rstate);
5850	regulator_unlock(rdev);
5851
 
 
 
 
 
 
 
5852	return ret;
5853}
 
5854
5855static int regulator_resume(struct device *dev)
 
 
 
 
 
 
5856{
5857	suspend_state_t state = pm_suspend_target_state;
5858	struct regulator_dev *rdev = dev_to_rdev(dev);
5859	struct regulator_state *rstate;
5860	int ret = 0;
5861
5862	rstate = regulator_get_suspend_state(rdev, state);
5863	if (rstate == NULL)
5864		return 0;
5865
5866	/* Avoid grabbing the lock if we don't need to */
5867	if (!rdev->desc->ops->resume)
5868		return 0;
5869
5870	regulator_lock(rdev);
5871
5872	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5873	    rstate->enabled == DISABLE_IN_SUSPEND)
5874		ret = rdev->desc->ops->resume(rdev);
5875
5876	regulator_unlock(rdev);
5877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5878	return ret;
5879}
5880#else /* !CONFIG_SUSPEND */
5881
5882#define regulator_suspend	NULL
5883#define regulator_resume	NULL
5884
5885#endif /* !CONFIG_SUSPEND */
5886
5887#ifdef CONFIG_PM
5888static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5889	.suspend	= regulator_suspend,
5890	.resume		= regulator_resume,
5891};
5892#endif
5893
5894struct class regulator_class = {
5895	.name = "regulator",
5896	.dev_release = regulator_dev_release,
5897	.dev_groups = regulator_dev_groups,
5898#ifdef CONFIG_PM
5899	.pm = &regulator_pm_ops,
5900#endif
5901};
5902/**
5903 * regulator_has_full_constraints - the system has fully specified constraints
5904 *
5905 * Calling this function will cause the regulator API to disable all
5906 * regulators which have a zero use count and don't have an always_on
5907 * constraint in a late_initcall.
5908 *
5909 * The intention is that this will become the default behaviour in a
5910 * future kernel release so users are encouraged to use this facility
5911 * now.
5912 */
5913void regulator_has_full_constraints(void)
5914{
5915	has_full_constraints = 1;
5916}
5917EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5918
5919/**
5920 * rdev_get_drvdata - get rdev regulator driver data
5921 * @rdev: regulator
5922 *
5923 * Get rdev regulator driver private data. This call can be used in the
5924 * regulator driver context.
5925 */
5926void *rdev_get_drvdata(struct regulator_dev *rdev)
5927{
5928	return rdev->reg_data;
5929}
5930EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5931
5932/**
5933 * regulator_get_drvdata - get regulator driver data
5934 * @regulator: regulator
5935 *
5936 * Get regulator driver private data. This call can be used in the consumer
5937 * driver context when non API regulator specific functions need to be called.
5938 */
5939void *regulator_get_drvdata(struct regulator *regulator)
5940{
5941	return regulator->rdev->reg_data;
5942}
5943EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5944
5945/**
5946 * regulator_set_drvdata - set regulator driver data
5947 * @regulator: regulator
5948 * @data: data
5949 */
5950void regulator_set_drvdata(struct regulator *regulator, void *data)
5951{
5952	regulator->rdev->reg_data = data;
5953}
5954EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5955
5956/**
5957 * rdev_get_id - get regulator ID
5958 * @rdev: regulator
5959 */
5960int rdev_get_id(struct regulator_dev *rdev)
5961{
5962	return rdev->desc->id;
5963}
5964EXPORT_SYMBOL_GPL(rdev_get_id);
5965
5966struct device *rdev_get_dev(struct regulator_dev *rdev)
5967{
5968	return &rdev->dev;
5969}
5970EXPORT_SYMBOL_GPL(rdev_get_dev);
5971
5972struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5973{
5974	return rdev->regmap;
5975}
5976EXPORT_SYMBOL_GPL(rdev_get_regmap);
5977
5978void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5979{
5980	return reg_init_data->driver_data;
5981}
5982EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5983
5984#ifdef CONFIG_DEBUG_FS
5985static int supply_map_show(struct seq_file *sf, void *data)
 
5986{
 
 
5987	struct regulator_map *map;
5988
5989	list_for_each_entry(map, &regulator_map_list, list) {
5990		seq_printf(sf, "%s -> %s.%s\n",
5991				rdev_get_name(map->regulator), map->dev_name,
5992				map->supply);
5993	}
5994
5995	return 0;
5996}
5997DEFINE_SHOW_ATTRIBUTE(supply_map);
5998
5999struct summary_data {
6000	struct seq_file *s;
6001	struct regulator_dev *parent;
6002	int level;
6003};
6004
6005static void regulator_summary_show_subtree(struct seq_file *s,
6006					   struct regulator_dev *rdev,
6007					   int level);
6008
6009static int regulator_summary_show_children(struct device *dev, void *data)
6010{
6011	struct regulator_dev *rdev = dev_to_rdev(dev);
6012	struct summary_data *summary_data = data;
6013
6014	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6015		regulator_summary_show_subtree(summary_data->s, rdev,
6016					       summary_data->level + 1);
6017
6018	return 0;
6019}
6020
6021static void regulator_summary_show_subtree(struct seq_file *s,
6022					   struct regulator_dev *rdev,
6023					   int level)
6024{
6025	struct regulation_constraints *c;
6026	struct regulator *consumer;
6027	struct summary_data summary_data;
6028	unsigned int opmode;
6029
6030	if (!rdev)
6031		return;
6032
6033	opmode = _regulator_get_mode_unlocked(rdev);
6034	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6035		   level * 3 + 1, "",
6036		   30 - level * 3, rdev_get_name(rdev),
6037		   rdev->use_count, rdev->open_count, rdev->bypass_count,
6038		   regulator_opmode_to_str(opmode));
6039
6040	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6041	seq_printf(s, "%5dmA ",
6042		   _regulator_get_current_limit_unlocked(rdev) / 1000);
6043
6044	c = rdev->constraints;
6045	if (c) {
6046		switch (rdev->desc->type) {
6047		case REGULATOR_VOLTAGE:
6048			seq_printf(s, "%5dmV %5dmV ",
6049				   c->min_uV / 1000, c->max_uV / 1000);
6050			break;
6051		case REGULATOR_CURRENT:
6052			seq_printf(s, "%5dmA %5dmA ",
6053				   c->min_uA / 1000, c->max_uA / 1000);
6054			break;
6055		}
6056	}
6057
6058	seq_puts(s, "\n");
6059
6060	list_for_each_entry(consumer, &rdev->consumer_list, list) {
6061		if (consumer->dev && consumer->dev->class == &regulator_class)
6062			continue;
6063
6064		seq_printf(s, "%*s%-*s ",
6065			   (level + 1) * 3 + 1, "",
6066			   30 - (level + 1) * 3,
6067			   consumer->supply_name ? consumer->supply_name :
6068			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
6069
6070		switch (rdev->desc->type) {
6071		case REGULATOR_VOLTAGE:
6072			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6073				   consumer->enable_count,
6074				   consumer->uA_load / 1000,
6075				   consumer->uA_load && !consumer->enable_count ?
6076				   '*' : ' ',
6077				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6078				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6079			break;
6080		case REGULATOR_CURRENT:
6081			break;
6082		}
6083
6084		seq_puts(s, "\n");
6085	}
6086
6087	summary_data.s = s;
6088	summary_data.level = level;
6089	summary_data.parent = rdev;
6090
6091	class_for_each_device(&regulator_class, NULL, &summary_data,
6092			      regulator_summary_show_children);
6093}
6094
6095struct summary_lock_data {
6096	struct ww_acquire_ctx *ww_ctx;
6097	struct regulator_dev **new_contended_rdev;
6098	struct regulator_dev **old_contended_rdev;
6099};
6100
6101static int regulator_summary_lock_one(struct device *dev, void *data)
6102{
6103	struct regulator_dev *rdev = dev_to_rdev(dev);
6104	struct summary_lock_data *lock_data = data;
6105	int ret = 0;
6106
6107	if (rdev != *lock_data->old_contended_rdev) {
6108		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6109
6110		if (ret == -EDEADLK)
6111			*lock_data->new_contended_rdev = rdev;
6112		else
6113			WARN_ON_ONCE(ret);
6114	} else {
6115		*lock_data->old_contended_rdev = NULL;
6116	}
6117
6118	return ret;
6119}
6120
6121static int regulator_summary_unlock_one(struct device *dev, void *data)
6122{
6123	struct regulator_dev *rdev = dev_to_rdev(dev);
6124	struct summary_lock_data *lock_data = data;
6125
6126	if (lock_data) {
6127		if (rdev == *lock_data->new_contended_rdev)
6128			return -EDEADLK;
6129	}
6130
6131	regulator_unlock(rdev);
6132
6133	return 0;
6134}
6135
6136static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6137				      struct regulator_dev **new_contended_rdev,
6138				      struct regulator_dev **old_contended_rdev)
6139{
6140	struct summary_lock_data lock_data;
6141	int ret;
6142
6143	lock_data.ww_ctx = ww_ctx;
6144	lock_data.new_contended_rdev = new_contended_rdev;
6145	lock_data.old_contended_rdev = old_contended_rdev;
6146
6147	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6148				    regulator_summary_lock_one);
6149	if (ret)
6150		class_for_each_device(&regulator_class, NULL, &lock_data,
6151				      regulator_summary_unlock_one);
6152
6153	return ret;
6154}
 
6155
6156static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6157{
6158	struct regulator_dev *new_contended_rdev = NULL;
6159	struct regulator_dev *old_contended_rdev = NULL;
6160	int err;
6161
6162	mutex_lock(&regulator_list_mutex);
6163
6164	ww_acquire_init(ww_ctx, &regulator_ww_class);
6165
6166	do {
6167		if (new_contended_rdev) {
6168			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6169			old_contended_rdev = new_contended_rdev;
6170			old_contended_rdev->ref_cnt++;
6171			old_contended_rdev->mutex_owner = current;
6172		}
6173
6174		err = regulator_summary_lock_all(ww_ctx,
6175						 &new_contended_rdev,
6176						 &old_contended_rdev);
6177
6178		if (old_contended_rdev)
6179			regulator_unlock(old_contended_rdev);
6180
6181	} while (err == -EDEADLK);
6182
6183	ww_acquire_done(ww_ctx);
6184}
6185
6186static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6187{
6188	class_for_each_device(&regulator_class, NULL, NULL,
6189			      regulator_summary_unlock_one);
6190	ww_acquire_fini(ww_ctx);
6191
6192	mutex_unlock(&regulator_list_mutex);
6193}
6194
6195static int regulator_summary_show_roots(struct device *dev, void *data)
6196{
6197	struct regulator_dev *rdev = dev_to_rdev(dev);
6198	struct seq_file *s = data;
6199
6200	if (!rdev->supply)
6201		regulator_summary_show_subtree(s, rdev, 0);
6202
6203	return 0;
6204}
6205
6206static int regulator_summary_show(struct seq_file *s, void *data)
6207{
6208	struct ww_acquire_ctx ww_ctx;
6209
6210	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6211	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6212
6213	regulator_summary_lock(&ww_ctx);
6214
6215	class_for_each_device(&regulator_class, NULL, s,
6216			      regulator_summary_show_roots);
6217
6218	regulator_summary_unlock(&ww_ctx);
6219
6220	return 0;
6221}
6222DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6223#endif /* CONFIG_DEBUG_FS */
6224
6225static int __init regulator_init(void)
6226{
6227	int ret;
6228
6229	ret = class_register(&regulator_class);
6230
6231	debugfs_root = debugfs_create_dir("regulator", NULL);
6232	if (IS_ERR(debugfs_root))
6233		pr_debug("regulator: Failed to create debugfs directory\n");
6234
6235#ifdef CONFIG_DEBUG_FS
6236	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6237			    &supply_map_fops);
6238
6239	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6240			    NULL, &regulator_summary_fops);
6241#endif
6242	regulator_dummy_init();
6243
6244	regulator_coupler_register(&generic_regulator_coupler);
6245
6246	return ret;
6247}
6248
6249/* init early to allow our consumers to complete system booting */
6250core_initcall(regulator_init);
6251
6252static int regulator_late_cleanup(struct device *dev, void *data)
6253{
6254	struct regulator_dev *rdev = dev_to_rdev(dev);
6255	struct regulation_constraints *c = rdev->constraints;
6256	int ret;
 
6257
6258	if (c && c->always_on)
6259		return 0;
 
 
 
 
 
 
6260
6261	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6262		return 0;
6263
6264	regulator_lock(rdev);
 
 
 
 
 
 
6265
6266	if (rdev->use_count)
6267		goto unlock;
6268
6269	/* If reading the status failed, assume that it's off. */
6270	if (_regulator_is_enabled(rdev) <= 0)
6271		goto unlock;
6272
6273	if (have_full_constraints()) {
6274		/* We log since this may kill the system if it goes
6275		 * wrong.
6276		 */
6277		rdev_info(rdev, "disabling\n");
6278		ret = _regulator_do_disable(rdev);
6279		if (ret != 0)
6280			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6281	} else {
6282		/* The intention is that in future we will
6283		 * assume that full constraints are provided
6284		 * so warn even if we aren't going to do
6285		 * anything here.
6286		 */
6287		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6288	}
6289
6290unlock:
6291	regulator_unlock(rdev);
6292
6293	return 0;
6294}
 
 
 
6295
6296static bool regulator_ignore_unused;
6297static int __init regulator_ignore_unused_setup(char *__unused)
6298{
6299	regulator_ignore_unused = true;
6300	return 1;
6301}
6302__setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6303
6304static void regulator_init_complete_work_function(struct work_struct *work)
6305{
6306	/*
6307	 * Regulators may had failed to resolve their input supplies
6308	 * when were registered, either because the input supply was
6309	 * not registered yet or because its parent device was not
6310	 * bound yet. So attempt to resolve the input supplies for
6311	 * pending regulators before trying to disable unused ones.
6312	 */
6313	class_for_each_device(&regulator_class, NULL, NULL,
6314			      regulator_register_resolve_supply);
 
 
 
 
6315
6316	/*
6317	 * For debugging purposes, it may be useful to prevent unused
6318	 * regulators from being disabled.
6319	 */
6320	if (regulator_ignore_unused) {
6321		pr_warn("regulator: Not disabling unused regulators\n");
6322		return;
6323	}
6324
6325	/* If we have a full configuration then disable any regulators
6326	 * we have permission to change the status for and which are
6327	 * not in use or always_on.  This is effectively the default
6328	 * for DT and ACPI as they have full constraints.
6329	 */
6330	class_for_each_device(&regulator_class, NULL, NULL,
6331			      regulator_late_cleanup);
6332}
6333
6334static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6335			    regulator_init_complete_work_function);
6336
6337static int __init regulator_init_complete(void)
6338{
6339	/*
6340	 * Since DT doesn't provide an idiomatic mechanism for
6341	 * enabling full constraints and since it's much more natural
6342	 * with DT to provide them just assume that a DT enabled
6343	 * system has full constraints.
6344	 */
6345	if (of_have_populated_dt())
6346		has_full_constraints = true;
6347
6348	/*
6349	 * We punt completion for an arbitrary amount of time since
6350	 * systems like distros will load many drivers from userspace
6351	 * so consumers might not always be ready yet, this is
6352	 * particularly an issue with laptops where this might bounce
6353	 * the display off then on.  Ideally we'd get a notification
6354	 * from userspace when this happens but we don't so just wait
6355	 * a bit and hope we waited long enough.  It'd be better if
6356	 * we'd only do this on systems that need it, and a kernel
6357	 * command line option might be useful.
6358	 */
6359	schedule_delayed_work(&regulator_init_complete_work,
6360			      msecs_to_jiffies(30000));
6361
6362	return 0;
6363}
6364late_initcall_sync(regulator_init_complete);
v3.15
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/debugfs.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/async.h>
  22#include <linux/err.h>
  23#include <linux/mutex.h>
  24#include <linux/suspend.h>
  25#include <linux/delay.h>
  26#include <linux/gpio.h>
  27#include <linux/of.h>
 
  28#include <linux/regmap.h>
  29#include <linux/regulator/of_regulator.h>
  30#include <linux/regulator/consumer.h>
 
  31#include <linux/regulator/driver.h>
  32#include <linux/regulator/machine.h>
  33#include <linux/module.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/regulator.h>
  37
  38#include "dummy.h"
  39#include "internal.h"
 
  40
  41#define rdev_crit(rdev, fmt, ...)					\
  42	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  43#define rdev_err(rdev, fmt, ...)					\
  44	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  45#define rdev_warn(rdev, fmt, ...)					\
  46	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  47#define rdev_info(rdev, fmt, ...)					\
  48	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  49#define rdev_dbg(rdev, fmt, ...)					\
  50	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  51
  52static DEFINE_MUTEX(regulator_list_mutex);
  53static LIST_HEAD(regulator_list);
  54static LIST_HEAD(regulator_map_list);
  55static LIST_HEAD(regulator_ena_gpio_list);
  56static LIST_HEAD(regulator_supply_alias_list);
 
  57static bool has_full_constraints;
  58
  59static struct dentry *debugfs_root;
  60
  61/*
  62 * struct regulator_map
  63 *
  64 * Used to provide symbolic supply names to devices.
  65 */
  66struct regulator_map {
  67	struct list_head list;
  68	const char *dev_name;   /* The dev_name() for the consumer */
  69	const char *supply;
  70	struct regulator_dev *regulator;
  71};
  72
  73/*
  74 * struct regulator_enable_gpio
  75 *
  76 * Management for shared enable GPIO pin
  77 */
  78struct regulator_enable_gpio {
  79	struct list_head list;
  80	int gpio;
  81	u32 enable_count;	/* a number of enabled shared GPIO */
  82	u32 request_count;	/* a number of requested shared GPIO */
  83	unsigned int ena_gpio_invert:1;
  84};
  85
  86/*
  87 * struct regulator_supply_alias
  88 *
  89 * Used to map lookups for a supply onto an alternative device.
  90 */
  91struct regulator_supply_alias {
  92	struct list_head list;
  93	struct device *src_dev;
  94	const char *src_supply;
  95	struct device *alias_dev;
  96	const char *alias_supply;
  97};
  98
  99static int _regulator_is_enabled(struct regulator_dev *rdev);
 100static int _regulator_disable(struct regulator_dev *rdev);
 101static int _regulator_get_voltage(struct regulator_dev *rdev);
 102static int _regulator_get_current_limit(struct regulator_dev *rdev);
 103static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
 104static void _notifier_call_chain(struct regulator_dev *rdev,
 105				  unsigned long event, void *data);
 106static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 107				     int min_uV, int max_uV);
 
 
 108static struct regulator *create_regulator(struct regulator_dev *rdev,
 109					  struct device *dev,
 110					  const char *supply_name);
 
 
 111
 112static const char *rdev_get_name(struct regulator_dev *rdev)
 113{
 114	if (rdev->constraints && rdev->constraints->name)
 115		return rdev->constraints->name;
 116	else if (rdev->desc->name)
 117		return rdev->desc->name;
 118	else
 119		return "";
 120}
 
 121
 122static bool have_full_constraints(void)
 123{
 124	return has_full_constraints || of_have_populated_dt();
 125}
 126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127/**
 128 * of_get_regulator - get a regulator device node based on supply name
 129 * @dev: Device pointer for the consumer (of regulator) device
 130 * @supply: regulator supply name
 131 *
 132 * Extract the regulator device node corresponding to the supply name.
 133 * returns the device node corresponding to the regulator if found, else
 134 * returns NULL.
 135 */
 136static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 137{
 138	struct device_node *regnode = NULL;
 139	char prop_name[32]; /* 32 is max size of property name */
 140
 141	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 142
 143	snprintf(prop_name, 32, "%s-supply", supply);
 144	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 145
 146	if (!regnode) {
 147		dev_dbg(dev, "Looking up %s property in node %s failed",
 148				prop_name, dev->of_node->full_name);
 
 
 
 
 149		return NULL;
 150	}
 151	return regnode;
 152}
 153
 154static int _regulator_can_change_status(struct regulator_dev *rdev)
 155{
 156	if (!rdev->constraints)
 157		return 0;
 158
 159	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
 160		return 1;
 161	else
 162		return 0;
 163}
 164
 165/* Platform voltage constraint check */
 166static int regulator_check_voltage(struct regulator_dev *rdev,
 167				   int *min_uV, int *max_uV)
 168{
 169	BUG_ON(*min_uV > *max_uV);
 170
 171	if (!rdev->constraints) {
 172		rdev_err(rdev, "no constraints\n");
 173		return -ENODEV;
 174	}
 175	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 176		rdev_err(rdev, "operation not allowed\n");
 177		return -EPERM;
 178	}
 179
 180	if (*max_uV > rdev->constraints->max_uV)
 181		*max_uV = rdev->constraints->max_uV;
 182	if (*min_uV < rdev->constraints->min_uV)
 183		*min_uV = rdev->constraints->min_uV;
 184
 185	if (*min_uV > *max_uV) {
 186		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 187			 *min_uV, *max_uV);
 188		return -EINVAL;
 189	}
 190
 191	return 0;
 192}
 193
 
 
 
 
 
 
 194/* Make sure we select a voltage that suits the needs of all
 195 * regulator consumers
 196 */
 197static int regulator_check_consumers(struct regulator_dev *rdev,
 198				     int *min_uV, int *max_uV)
 
 199{
 200	struct regulator *regulator;
 
 201
 202	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 
 203		/*
 204		 * Assume consumers that didn't say anything are OK
 205		 * with anything in the constraint range.
 206		 */
 207		if (!regulator->min_uV && !regulator->max_uV)
 208			continue;
 209
 210		if (*max_uV > regulator->max_uV)
 211			*max_uV = regulator->max_uV;
 212		if (*min_uV < regulator->min_uV)
 213			*min_uV = regulator->min_uV;
 214	}
 215
 216	if (*min_uV > *max_uV) {
 217		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 218			*min_uV, *max_uV);
 219		return -EINVAL;
 220	}
 221
 222	return 0;
 223}
 224
 225/* current constraint check */
 226static int regulator_check_current_limit(struct regulator_dev *rdev,
 227					int *min_uA, int *max_uA)
 228{
 229	BUG_ON(*min_uA > *max_uA);
 230
 231	if (!rdev->constraints) {
 232		rdev_err(rdev, "no constraints\n");
 233		return -ENODEV;
 234	}
 235	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 236		rdev_err(rdev, "operation not allowed\n");
 237		return -EPERM;
 238	}
 239
 240	if (*max_uA > rdev->constraints->max_uA)
 241		*max_uA = rdev->constraints->max_uA;
 242	if (*min_uA < rdev->constraints->min_uA)
 243		*min_uA = rdev->constraints->min_uA;
 244
 245	if (*min_uA > *max_uA) {
 246		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 247			 *min_uA, *max_uA);
 248		return -EINVAL;
 249	}
 250
 251	return 0;
 252}
 253
 254/* operating mode constraint check */
 255static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 
 256{
 257	switch (*mode) {
 258	case REGULATOR_MODE_FAST:
 259	case REGULATOR_MODE_NORMAL:
 260	case REGULATOR_MODE_IDLE:
 261	case REGULATOR_MODE_STANDBY:
 262		break;
 263	default:
 264		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 265		return -EINVAL;
 266	}
 267
 268	if (!rdev->constraints) {
 269		rdev_err(rdev, "no constraints\n");
 270		return -ENODEV;
 271	}
 272	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 273		rdev_err(rdev, "operation not allowed\n");
 274		return -EPERM;
 275	}
 276
 277	/* The modes are bitmasks, the most power hungry modes having
 278	 * the lowest values. If the requested mode isn't supported
 279	 * try higher modes. */
 
 280	while (*mode) {
 281		if (rdev->constraints->valid_modes_mask & *mode)
 282			return 0;
 283		*mode /= 2;
 284	}
 285
 286	return -EINVAL;
 287}
 288
 289/* dynamic regulator mode switching constraint check */
 290static int regulator_check_drms(struct regulator_dev *rdev)
 291{
 292	if (!rdev->constraints) {
 293		rdev_err(rdev, "no constraints\n");
 294		return -ENODEV;
 
 
 
 
 
 
 
 
 
 295	}
 296	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 297		rdev_err(rdev, "operation not allowed\n");
 298		return -EPERM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 299	}
 300	return 0;
 
 301}
 302
 303static ssize_t regulator_uV_show(struct device *dev,
 304				struct device_attribute *attr, char *buf)
 305{
 306	struct regulator_dev *rdev = dev_get_drvdata(dev);
 307	ssize_t ret;
 308
 309	mutex_lock(&rdev->mutex);
 310	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 311	mutex_unlock(&rdev->mutex);
 312
 313	return ret;
 
 
 314}
 315static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 316
 317static ssize_t regulator_uA_show(struct device *dev,
 318				struct device_attribute *attr, char *buf)
 319{
 320	struct regulator_dev *rdev = dev_get_drvdata(dev);
 321
 322	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 323}
 324static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 325
 326static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 327			 char *buf)
 328{
 329	struct regulator_dev *rdev = dev_get_drvdata(dev);
 330
 331	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 332}
 333static DEVICE_ATTR_RO(name);
 334
 335static ssize_t regulator_print_opmode(char *buf, int mode)
 336{
 337	switch (mode) {
 338	case REGULATOR_MODE_FAST:
 339		return sprintf(buf, "fast\n");
 340	case REGULATOR_MODE_NORMAL:
 341		return sprintf(buf, "normal\n");
 342	case REGULATOR_MODE_IDLE:
 343		return sprintf(buf, "idle\n");
 344	case REGULATOR_MODE_STANDBY:
 345		return sprintf(buf, "standby\n");
 346	}
 347	return sprintf(buf, "unknown\n");
 
 
 
 
 
 348}
 349
 350static ssize_t regulator_opmode_show(struct device *dev,
 351				    struct device_attribute *attr, char *buf)
 352{
 353	struct regulator_dev *rdev = dev_get_drvdata(dev);
 354
 355	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 356}
 357static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 358
 359static ssize_t regulator_print_state(char *buf, int state)
 360{
 361	if (state > 0)
 362		return sprintf(buf, "enabled\n");
 363	else if (state == 0)
 364		return sprintf(buf, "disabled\n");
 365	else
 366		return sprintf(buf, "unknown\n");
 367}
 368
 369static ssize_t regulator_state_show(struct device *dev,
 370				   struct device_attribute *attr, char *buf)
 371{
 372	struct regulator_dev *rdev = dev_get_drvdata(dev);
 373	ssize_t ret;
 374
 375	mutex_lock(&rdev->mutex);
 376	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 377	mutex_unlock(&rdev->mutex);
 378
 379	return ret;
 380}
 381static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 382
 383static ssize_t regulator_status_show(struct device *dev,
 384				   struct device_attribute *attr, char *buf)
 385{
 386	struct regulator_dev *rdev = dev_get_drvdata(dev);
 387	int status;
 388	char *label;
 389
 390	status = rdev->desc->ops->get_status(rdev);
 391	if (status < 0)
 392		return status;
 393
 394	switch (status) {
 395	case REGULATOR_STATUS_OFF:
 396		label = "off";
 397		break;
 398	case REGULATOR_STATUS_ON:
 399		label = "on";
 400		break;
 401	case REGULATOR_STATUS_ERROR:
 402		label = "error";
 403		break;
 404	case REGULATOR_STATUS_FAST:
 405		label = "fast";
 406		break;
 407	case REGULATOR_STATUS_NORMAL:
 408		label = "normal";
 409		break;
 410	case REGULATOR_STATUS_IDLE:
 411		label = "idle";
 412		break;
 413	case REGULATOR_STATUS_STANDBY:
 414		label = "standby";
 415		break;
 416	case REGULATOR_STATUS_BYPASS:
 417		label = "bypass";
 418		break;
 419	case REGULATOR_STATUS_UNDEFINED:
 420		label = "undefined";
 421		break;
 422	default:
 423		return -ERANGE;
 424	}
 425
 426	return sprintf(buf, "%s\n", label);
 427}
 428static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 429
 430static ssize_t regulator_min_uA_show(struct device *dev,
 431				    struct device_attribute *attr, char *buf)
 432{
 433	struct regulator_dev *rdev = dev_get_drvdata(dev);
 434
 435	if (!rdev->constraints)
 436		return sprintf(buf, "constraint not defined\n");
 437
 438	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 439}
 440static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 441
 442static ssize_t regulator_max_uA_show(struct device *dev,
 443				    struct device_attribute *attr, char *buf)
 444{
 445	struct regulator_dev *rdev = dev_get_drvdata(dev);
 446
 447	if (!rdev->constraints)
 448		return sprintf(buf, "constraint not defined\n");
 449
 450	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 451}
 452static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 453
 454static ssize_t regulator_min_uV_show(struct device *dev,
 455				    struct device_attribute *attr, char *buf)
 456{
 457	struct regulator_dev *rdev = dev_get_drvdata(dev);
 458
 459	if (!rdev->constraints)
 460		return sprintf(buf, "constraint not defined\n");
 461
 462	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 463}
 464static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 465
 466static ssize_t regulator_max_uV_show(struct device *dev,
 467				    struct device_attribute *attr, char *buf)
 468{
 469	struct regulator_dev *rdev = dev_get_drvdata(dev);
 470
 471	if (!rdev->constraints)
 472		return sprintf(buf, "constraint not defined\n");
 473
 474	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 475}
 476static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 477
 478static ssize_t regulator_total_uA_show(struct device *dev,
 479				      struct device_attribute *attr, char *buf)
 480{
 481	struct regulator_dev *rdev = dev_get_drvdata(dev);
 482	struct regulator *regulator;
 483	int uA = 0;
 484
 485	mutex_lock(&rdev->mutex);
 486	list_for_each_entry(regulator, &rdev->consumer_list, list)
 487		uA += regulator->uA_load;
 488	mutex_unlock(&rdev->mutex);
 
 
 489	return sprintf(buf, "%d\n", uA);
 490}
 491static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 492
 493static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 494			      char *buf)
 495{
 496	struct regulator_dev *rdev = dev_get_drvdata(dev);
 497	return sprintf(buf, "%d\n", rdev->use_count);
 498}
 499static DEVICE_ATTR_RO(num_users);
 500
 501static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 502			 char *buf)
 503{
 504	struct regulator_dev *rdev = dev_get_drvdata(dev);
 505
 506	switch (rdev->desc->type) {
 507	case REGULATOR_VOLTAGE:
 508		return sprintf(buf, "voltage\n");
 509	case REGULATOR_CURRENT:
 510		return sprintf(buf, "current\n");
 511	}
 512	return sprintf(buf, "unknown\n");
 513}
 514static DEVICE_ATTR_RO(type);
 515
 516static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 517				struct device_attribute *attr, char *buf)
 518{
 519	struct regulator_dev *rdev = dev_get_drvdata(dev);
 520
 521	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 522}
 523static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 524		regulator_suspend_mem_uV_show, NULL);
 525
 526static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 527				struct device_attribute *attr, char *buf)
 528{
 529	struct regulator_dev *rdev = dev_get_drvdata(dev);
 530
 531	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 532}
 533static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 534		regulator_suspend_disk_uV_show, NULL);
 535
 536static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 537				struct device_attribute *attr, char *buf)
 538{
 539	struct regulator_dev *rdev = dev_get_drvdata(dev);
 540
 541	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 542}
 543static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 544		regulator_suspend_standby_uV_show, NULL);
 545
 546static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 547				struct device_attribute *attr, char *buf)
 548{
 549	struct regulator_dev *rdev = dev_get_drvdata(dev);
 550
 551	return regulator_print_opmode(buf,
 552		rdev->constraints->state_mem.mode);
 553}
 554static DEVICE_ATTR(suspend_mem_mode, 0444,
 555		regulator_suspend_mem_mode_show, NULL);
 556
 557static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 558				struct device_attribute *attr, char *buf)
 559{
 560	struct regulator_dev *rdev = dev_get_drvdata(dev);
 561
 562	return regulator_print_opmode(buf,
 563		rdev->constraints->state_disk.mode);
 564}
 565static DEVICE_ATTR(suspend_disk_mode, 0444,
 566		regulator_suspend_disk_mode_show, NULL);
 567
 568static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 569				struct device_attribute *attr, char *buf)
 570{
 571	struct regulator_dev *rdev = dev_get_drvdata(dev);
 572
 573	return regulator_print_opmode(buf,
 574		rdev->constraints->state_standby.mode);
 575}
 576static DEVICE_ATTR(suspend_standby_mode, 0444,
 577		regulator_suspend_standby_mode_show, NULL);
 578
 579static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 580				   struct device_attribute *attr, char *buf)
 581{
 582	struct regulator_dev *rdev = dev_get_drvdata(dev);
 583
 584	return regulator_print_state(buf,
 585			rdev->constraints->state_mem.enabled);
 586}
 587static DEVICE_ATTR(suspend_mem_state, 0444,
 588		regulator_suspend_mem_state_show, NULL);
 589
 590static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 591				   struct device_attribute *attr, char *buf)
 592{
 593	struct regulator_dev *rdev = dev_get_drvdata(dev);
 594
 595	return regulator_print_state(buf,
 596			rdev->constraints->state_disk.enabled);
 597}
 598static DEVICE_ATTR(suspend_disk_state, 0444,
 599		regulator_suspend_disk_state_show, NULL);
 600
 601static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 602				   struct device_attribute *attr, char *buf)
 603{
 604	struct regulator_dev *rdev = dev_get_drvdata(dev);
 605
 606	return regulator_print_state(buf,
 607			rdev->constraints->state_standby.enabled);
 608}
 609static DEVICE_ATTR(suspend_standby_state, 0444,
 610		regulator_suspend_standby_state_show, NULL);
 611
 612static ssize_t regulator_bypass_show(struct device *dev,
 613				     struct device_attribute *attr, char *buf)
 614{
 615	struct regulator_dev *rdev = dev_get_drvdata(dev);
 616	const char *report;
 617	bool bypass;
 618	int ret;
 619
 620	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 621
 622	if (ret != 0)
 623		report = "unknown";
 624	else if (bypass)
 625		report = "enabled";
 626	else
 627		report = "disabled";
 628
 629	return sprintf(buf, "%s\n", report);
 630}
 631static DEVICE_ATTR(bypass, 0444,
 632		   regulator_bypass_show, NULL);
 633
 634/*
 635 * These are the only attributes are present for all regulators.
 636 * Other attributes are a function of regulator functionality.
 637 */
 638static struct attribute *regulator_dev_attrs[] = {
 639	&dev_attr_name.attr,
 640	&dev_attr_num_users.attr,
 641	&dev_attr_type.attr,
 642	NULL,
 643};
 644ATTRIBUTE_GROUPS(regulator_dev);
 645
 646static void regulator_dev_release(struct device *dev)
 647{
 648	struct regulator_dev *rdev = dev_get_drvdata(dev);
 649	kfree(rdev);
 650}
 651
 652static struct class regulator_class = {
 653	.name = "regulator",
 654	.dev_release = regulator_dev_release,
 655	.dev_groups = regulator_dev_groups,
 656};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657
 658/* Calculate the new optimum regulator operating mode based on the new total
 659 * consumer load. All locks held by caller */
 660static void drms_uA_update(struct regulator_dev *rdev)
 
 661{
 662	struct regulator *sibling;
 663	int current_uA = 0, output_uV, input_uV, err;
 664	unsigned int mode;
 665
 666	err = regulator_check_drms(rdev);
 667	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
 668	    (!rdev->desc->ops->get_voltage &&
 669	     !rdev->desc->ops->get_voltage_sel) ||
 670	    !rdev->desc->ops->set_mode)
 671		return;
 
 
 672
 673	/* get output voltage */
 674	output_uV = _regulator_get_voltage(rdev);
 675	if (output_uV <= 0)
 676		return;
 677
 678	/* get input voltage */
 679	input_uV = 0;
 680	if (rdev->supply)
 681		input_uV = regulator_get_voltage(rdev->supply);
 682	if (input_uV <= 0)
 683		input_uV = rdev->constraints->input_uV;
 684	if (input_uV <= 0)
 685		return;
 686
 687	/* calc total requested load */
 688	list_for_each_entry(sibling, &rdev->consumer_list, list)
 689		current_uA += sibling->uA_load;
 
 
 690
 691	/* now get the optimum mode for our new total regulator load */
 692	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 693						  output_uV, current_uA);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 694
 695	/* check the new mode is allowed */
 696	err = regulator_mode_constrain(rdev, &mode);
 697	if (err == 0)
 698		rdev->desc->ops->set_mode(rdev, mode);
 699}
 700
 701static int suspend_set_state(struct regulator_dev *rdev,
 702	struct regulator_state *rstate)
 703{
 704	int ret = 0;
 705
 706	/* If we have no suspend mode configration don't set anything;
 707	 * only warn if the driver implements set_suspend_voltage or
 708	 * set_suspend_mode callback.
 709	 */
 710	if (!rstate->enabled && !rstate->disabled) {
 711		if (rdev->desc->ops->set_suspend_voltage ||
 712		    rdev->desc->ops->set_suspend_mode)
 713			rdev_warn(rdev, "No configuration\n");
 714		return 0;
 715	}
 716
 717	if (rstate->enabled && rstate->disabled) {
 718		rdev_err(rdev, "invalid configuration\n");
 719		return -EINVAL;
 720	}
 721
 722	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
 723		ret = rdev->desc->ops->set_suspend_enable(rdev);
 724	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
 
 725		ret = rdev->desc->ops->set_suspend_disable(rdev);
 726	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
 727		ret = 0;
 728
 729	if (ret < 0) {
 730		rdev_err(rdev, "failed to enabled/disable\n");
 731		return ret;
 732	}
 733
 734	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 735		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 736		if (ret < 0) {
 737			rdev_err(rdev, "failed to set voltage\n");
 738			return ret;
 739		}
 740	}
 741
 742	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 743		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 744		if (ret < 0) {
 745			rdev_err(rdev, "failed to set mode\n");
 746			return ret;
 747		}
 748	}
 
 749	return ret;
 750}
 751
 752/* locks held by caller */
 753static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 754{
 755	if (!rdev->constraints)
 756		return -EINVAL;
 
 
 
 
 757
 758	switch (state) {
 759	case PM_SUSPEND_STANDBY:
 760		return suspend_set_state(rdev,
 761			&rdev->constraints->state_standby);
 762	case PM_SUSPEND_MEM:
 763		return suspend_set_state(rdev,
 764			&rdev->constraints->state_mem);
 765	case PM_SUSPEND_MAX:
 766		return suspend_set_state(rdev,
 767			&rdev->constraints->state_disk);
 768	default:
 769		return -EINVAL;
 770	}
 771}
 772
 773static void print_constraints(struct regulator_dev *rdev)
 
 774{
 775	struct regulation_constraints *constraints = rdev->constraints;
 776	char buf[80] = "";
 
 777	int count = 0;
 778	int ret;
 779
 780	if (constraints->min_uV && constraints->max_uV) {
 781		if (constraints->min_uV == constraints->max_uV)
 782			count += sprintf(buf + count, "%d mV ",
 783					 constraints->min_uV / 1000);
 784		else
 785			count += sprintf(buf + count, "%d <--> %d mV ",
 786					 constraints->min_uV / 1000,
 787					 constraints->max_uV / 1000);
 
 788	}
 789
 790	if (!constraints->min_uV ||
 791	    constraints->min_uV != constraints->max_uV) {
 792		ret = _regulator_get_voltage(rdev);
 793		if (ret > 0)
 794			count += sprintf(buf + count, "at %d mV ", ret / 1000);
 
 795	}
 796
 797	if (constraints->uV_offset)
 798		count += sprintf(buf, "%dmV offset ",
 799				 constraints->uV_offset / 1000);
 800
 801	if (constraints->min_uA && constraints->max_uA) {
 802		if (constraints->min_uA == constraints->max_uA)
 803			count += sprintf(buf + count, "%d mA ",
 804					 constraints->min_uA / 1000);
 805		else
 806			count += sprintf(buf + count, "%d <--> %d mA ",
 807					 constraints->min_uA / 1000,
 808					 constraints->max_uA / 1000);
 
 809	}
 810
 811	if (!constraints->min_uA ||
 812	    constraints->min_uA != constraints->max_uA) {
 813		ret = _regulator_get_current_limit(rdev);
 814		if (ret > 0)
 815			count += sprintf(buf + count, "at %d mA ", ret / 1000);
 
 816	}
 817
 818	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 819		count += sprintf(buf + count, "fast ");
 820	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 821		count += sprintf(buf + count, "normal ");
 822	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 823		count += sprintf(buf + count, "idle ");
 824	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 825		count += sprintf(buf + count, "standby");
 826
 827	if (!count)
 828		sprintf(buf, "no parameters");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 829
 830	rdev_info(rdev, "%s\n", buf);
 831
 832	if ((constraints->min_uV != constraints->max_uV) &&
 833	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
 834		rdev_warn(rdev,
 835			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
 836}
 837
 838static int machine_constraints_voltage(struct regulator_dev *rdev,
 839	struct regulation_constraints *constraints)
 840{
 841	struct regulator_ops *ops = rdev->desc->ops;
 842	int ret;
 843
 844	/* do we need to apply the constraint voltage */
 845	if (rdev->constraints->apply_uV &&
 846	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
 847		ret = _regulator_do_set_voltage(rdev,
 848						rdev->constraints->min_uV,
 849						rdev->constraints->max_uV);
 850		if (ret < 0) {
 851			rdev_err(rdev, "failed to apply %duV constraint\n",
 852				 rdev->constraints->min_uV);
 853			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854		}
 855	}
 856
 857	/* constrain machine-level voltage specs to fit
 858	 * the actual range supported by this regulator.
 859	 */
 860	if (ops->list_voltage && rdev->desc->n_voltages) {
 861		int	count = rdev->desc->n_voltages;
 862		int	i;
 863		int	min_uV = INT_MAX;
 864		int	max_uV = INT_MIN;
 865		int	cmin = constraints->min_uV;
 866		int	cmax = constraints->max_uV;
 867
 868		/* it's safe to autoconfigure fixed-voltage supplies
 869		   and the constraints are used by list_voltage. */
 
 870		if (count == 1 && !cmin) {
 871			cmin = 1;
 872			cmax = INT_MAX;
 873			constraints->min_uV = cmin;
 874			constraints->max_uV = cmax;
 875		}
 876
 877		/* voltage constraints are optional */
 878		if ((cmin == 0) && (cmax == 0))
 879			return 0;
 880
 881		/* else require explicit machine-level constraints */
 882		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 883			rdev_err(rdev, "invalid voltage constraints\n");
 884			return -EINVAL;
 885		}
 886
 
 
 
 
 887		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 888		for (i = 0; i < count; i++) {
 889			int	value;
 890
 891			value = ops->list_voltage(rdev, i);
 892			if (value <= 0)
 893				continue;
 894
 895			/* maybe adjust [min_uV..max_uV] */
 896			if (value >= cmin && value < min_uV)
 897				min_uV = value;
 898			if (value <= cmax && value > max_uV)
 899				max_uV = value;
 900		}
 901
 902		/* final: [min_uV..max_uV] valid iff constraints valid */
 903		if (max_uV < min_uV) {
 904			rdev_err(rdev,
 905				 "unsupportable voltage constraints %u-%uuV\n",
 906				 min_uV, max_uV);
 907			return -EINVAL;
 908		}
 909
 910		/* use regulator's subset of machine constraints */
 911		if (constraints->min_uV < min_uV) {
 912			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 913				 constraints->min_uV, min_uV);
 914			constraints->min_uV = min_uV;
 915		}
 916		if (constraints->max_uV > max_uV) {
 917			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 918				 constraints->max_uV, max_uV);
 919			constraints->max_uV = max_uV;
 920		}
 921	}
 922
 923	return 0;
 924}
 925
 926static int machine_constraints_current(struct regulator_dev *rdev,
 927	struct regulation_constraints *constraints)
 928{
 929	struct regulator_ops *ops = rdev->desc->ops;
 930	int ret;
 931
 932	if (!constraints->min_uA && !constraints->max_uA)
 933		return 0;
 934
 935	if (constraints->min_uA > constraints->max_uA) {
 936		rdev_err(rdev, "Invalid current constraints\n");
 937		return -EINVAL;
 938	}
 939
 940	if (!ops->set_current_limit || !ops->get_current_limit) {
 941		rdev_warn(rdev, "Operation of current configuration missing\n");
 942		return 0;
 943	}
 944
 945	/* Set regulator current in constraints range */
 946	ret = ops->set_current_limit(rdev, constraints->min_uA,
 947			constraints->max_uA);
 948	if (ret < 0) {
 949		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
 950		return ret;
 951	}
 952
 953	return 0;
 954}
 955
 956static int _regulator_do_enable(struct regulator_dev *rdev);
 957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 958/**
 959 * set_machine_constraints - sets regulator constraints
 960 * @rdev: regulator source
 961 * @constraints: constraints to apply
 962 *
 963 * Allows platform initialisation code to define and constrain
 964 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 965 * Constraints *must* be set by platform code in order for some
 966 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 967 * set_mode.
 968 */
 969static int set_machine_constraints(struct regulator_dev *rdev,
 970	const struct regulation_constraints *constraints)
 971{
 972	int ret = 0;
 973	struct regulator_ops *ops = rdev->desc->ops;
 974
 975	if (constraints)
 976		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
 977					    GFP_KERNEL);
 978	else
 979		rdev->constraints = kzalloc(sizeof(*constraints),
 980					    GFP_KERNEL);
 981	if (!rdev->constraints)
 982		return -ENOMEM;
 983
 984	ret = machine_constraints_voltage(rdev, rdev->constraints);
 985	if (ret != 0)
 986		goto out;
 987
 988	ret = machine_constraints_current(rdev, rdev->constraints);
 989	if (ret != 0)
 990		goto out;
 
 
 
 
 
 
 
 
 
 991
 992	/* do we need to setup our suspend state */
 993	if (rdev->constraints->initial_state) {
 994		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
 995		if (ret < 0) {
 996			rdev_err(rdev, "failed to set suspend state\n");
 997			goto out;
 998		}
 999	}
1000
1001	if (rdev->constraints->initial_mode) {
1002		if (!ops->set_mode) {
1003			rdev_err(rdev, "no set_mode operation\n");
1004			ret = -EINVAL;
1005			goto out;
1006		}
1007
1008		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1009		if (ret < 0) {
1010			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1011			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012		}
1013	}
1014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015	/* If the constraints say the regulator should be on at this point
1016	 * and we have control then make sure it is enabled.
1017	 */
1018	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1019		ret = _regulator_do_enable(rdev);
1020		if (ret < 0 && ret != -EINVAL) {
1021			rdev_err(rdev, "failed to enable\n");
1022			goto out;
1023		}
1024	}
1025
1026	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1027		&& ops->set_ramp_delay) {
1028		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1029		if (ret < 0) {
1030			rdev_err(rdev, "failed to set ramp_delay\n");
1031			goto out;
1032		}
1033	}
1034
1035	print_constraints(rdev);
1036	return 0;
1037out:
1038	kfree(rdev->constraints);
1039	rdev->constraints = NULL;
1040	return ret;
1041}
1042
1043/**
1044 * set_supply - set regulator supply regulator
1045 * @rdev: regulator name
1046 * @supply_rdev: supply regulator name
1047 *
1048 * Called by platform initialisation code to set the supply regulator for this
1049 * regulator. This ensures that a regulators supply will also be enabled by the
1050 * core if it's child is enabled.
1051 */
1052static int set_supply(struct regulator_dev *rdev,
1053		      struct regulator_dev *supply_rdev)
1054{
1055	int err;
1056
1057	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
 
 
 
1058
1059	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1060	if (rdev->supply == NULL) {
 
1061		err = -ENOMEM;
1062		return err;
1063	}
1064	supply_rdev->open_count++;
1065
1066	return 0;
1067}
1068
1069/**
1070 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1071 * @rdev:         regulator source
1072 * @consumer_dev_name: dev_name() string for device supply applies to
1073 * @supply:       symbolic name for supply
1074 *
1075 * Allows platform initialisation code to map physical regulator
1076 * sources to symbolic names for supplies for use by devices.  Devices
1077 * should use these symbolic names to request regulators, avoiding the
1078 * need to provide board-specific regulator names as platform data.
1079 */
1080static int set_consumer_device_supply(struct regulator_dev *rdev,
1081				      const char *consumer_dev_name,
1082				      const char *supply)
1083{
1084	struct regulator_map *node;
1085	int has_dev;
1086
1087	if (supply == NULL)
1088		return -EINVAL;
1089
1090	if (consumer_dev_name != NULL)
1091		has_dev = 1;
1092	else
1093		has_dev = 0;
1094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1095	list_for_each_entry(node, &regulator_map_list, list) {
1096		if (node->dev_name && consumer_dev_name) {
1097			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1098				continue;
1099		} else if (node->dev_name || consumer_dev_name) {
1100			continue;
1101		}
1102
1103		if (strcmp(node->supply, supply) != 0)
1104			continue;
1105
1106		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1107			 consumer_dev_name,
1108			 dev_name(&node->regulator->dev),
1109			 node->regulator->desc->name,
1110			 supply,
1111			 dev_name(&rdev->dev), rdev_get_name(rdev));
1112		return -EBUSY;
1113	}
1114
1115	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1116	if (node == NULL)
1117		return -ENOMEM;
1118
1119	node->regulator = rdev;
1120	node->supply = supply;
1121
1122	if (has_dev) {
1123		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1124		if (node->dev_name == NULL) {
1125			kfree(node);
1126			return -ENOMEM;
1127		}
1128	}
1129
1130	list_add(&node->list, &regulator_map_list);
1131	return 0;
1132}
1133
1134static void unset_regulator_supplies(struct regulator_dev *rdev)
1135{
1136	struct regulator_map *node, *n;
1137
1138	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1139		if (rdev == node->regulator) {
1140			list_del(&node->list);
1141			kfree(node->dev_name);
1142			kfree(node);
1143		}
1144	}
1145}
1146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147#define REG_STR_SIZE	64
1148
1149static struct regulator *create_regulator(struct regulator_dev *rdev,
1150					  struct device *dev,
1151					  const char *supply_name)
1152{
1153	struct regulator *regulator;
1154	char buf[REG_STR_SIZE];
1155	int err, size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1156
1157	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1158	if (regulator == NULL)
 
1159		return NULL;
 
1160
1161	mutex_lock(&rdev->mutex);
1162	regulator->rdev = rdev;
 
 
1163	list_add(&regulator->list, &rdev->consumer_list);
1164
1165	if (dev) {
1166		regulator->dev = dev;
1167
1168		/* Add a link to the device sysfs entry */
1169		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1170				 dev->kobj.name, supply_name);
1171		if (size >= REG_STR_SIZE)
1172			goto overflow_err;
1173
1174		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1175		if (regulator->supply_name == NULL)
1176			goto overflow_err;
1177
1178		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1179					buf);
1180		if (err) {
1181			rdev_warn(rdev, "could not add device link %s err %d\n",
1182				  dev->kobj.name, err);
1183			/* non-fatal */
1184		}
1185	} else {
1186		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1187		if (regulator->supply_name == NULL)
1188			goto overflow_err;
1189	}
1190
1191	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1192						rdev->debugfs);
1193	if (!regulator->debugfs) {
1194		rdev_warn(rdev, "Failed to create debugfs directory\n");
1195	} else {
1196		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1197				   &regulator->uA_load);
1198		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1199				   &regulator->min_uV);
1200		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1201				   &regulator->max_uV);
1202	}
 
1203
1204	/*
1205	 * Check now if the regulator is an always on regulator - if
1206	 * it is then we don't need to do nearly so much work for
1207	 * enable/disable calls.
1208	 */
1209	if (!_regulator_can_change_status(rdev) &&
1210	    _regulator_is_enabled(rdev))
1211		regulator->always_on = true;
1212
1213	mutex_unlock(&rdev->mutex);
1214	return regulator;
1215overflow_err:
1216	list_del(&regulator->list);
1217	kfree(regulator);
1218	mutex_unlock(&rdev->mutex);
1219	return NULL;
1220}
1221
1222static int _regulator_get_enable_time(struct regulator_dev *rdev)
1223{
1224	if (rdev->constraints && rdev->constraints->enable_time)
1225		return rdev->constraints->enable_time;
1226	if (!rdev->desc->ops->enable_time)
1227		return rdev->desc->enable_time;
1228	return rdev->desc->ops->enable_time(rdev);
1229}
1230
1231static struct regulator_supply_alias *regulator_find_supply_alias(
1232		struct device *dev, const char *supply)
1233{
1234	struct regulator_supply_alias *map;
1235
1236	list_for_each_entry(map, &regulator_supply_alias_list, list)
1237		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1238			return map;
1239
1240	return NULL;
1241}
1242
1243static void regulator_supply_alias(struct device **dev, const char **supply)
1244{
1245	struct regulator_supply_alias *map;
1246
1247	map = regulator_find_supply_alias(*dev, *supply);
1248	if (map) {
1249		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1250				*supply, map->alias_supply,
1251				dev_name(map->alias_dev));
1252		*dev = map->alias_dev;
1253		*supply = map->alias_supply;
1254	}
1255}
1256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1257static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1258						  const char *supply,
1259						  int *ret)
1260{
1261	struct regulator_dev *r;
1262	struct device_node *node;
1263	struct regulator_map *map;
1264	const char *devname = NULL;
1265
1266	regulator_supply_alias(&dev, &supply);
1267
1268	/* first do a dt based lookup */
1269	if (dev && dev->of_node) {
1270		node = of_get_regulator(dev, supply);
1271		if (node) {
1272			list_for_each_entry(r, &regulator_list, list)
1273				if (r->dev.parent &&
1274					node == r->dev.of_node)
1275					return r;
1276			*ret = -EPROBE_DEFER;
1277			return NULL;
1278		} else {
1279			/*
1280			 * If we couldn't even get the node then it's
1281			 * not just that the device didn't register
1282			 * yet, there's no node and we'll never
1283			 * succeed.
1284			 */
1285			*ret = -ENODEV;
1286		}
1287	}
1288
1289	/* if not found, try doing it non-dt way */
1290	if (dev)
1291		devname = dev_name(dev);
1292
1293	list_for_each_entry(r, &regulator_list, list)
1294		if (strcmp(rdev_get_name(r), supply) == 0)
1295			return r;
1296
1297	list_for_each_entry(map, &regulator_map_list, list) {
1298		/* If the mapping has a device set up it must match */
1299		if (map->dev_name &&
1300		    (!devname || strcmp(map->dev_name, devname)))
1301			continue;
1302
1303		if (strcmp(map->supply, supply) == 0)
1304			return map->regulator;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1305	}
1306
 
 
 
 
 
 
 
 
 
 
1307
1308	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1309}
1310
1311/* Internal regulator request function */
1312static struct regulator *_regulator_get(struct device *dev, const char *id,
1313					bool exclusive, bool allow_dummy)
1314{
1315	struct regulator_dev *rdev;
1316	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1317	const char *devname = NULL;
1318	int ret;
1319
 
 
 
 
 
1320	if (id == NULL) {
1321		pr_err("get() with no identifier\n");
1322		return ERR_PTR(-EINVAL);
1323	}
1324
1325	if (dev)
1326		devname = dev_name(dev);
 
1327
1328	if (have_full_constraints())
1329		ret = -ENODEV;
1330	else
1331		ret = -EPROBE_DEFER;
 
 
1332
1333	mutex_lock(&regulator_list_mutex);
 
 
 
 
1334
1335	rdev = regulator_dev_lookup(dev, id, &ret);
1336	if (rdev)
1337		goto found;
 
 
 
 
 
 
 
 
1338
1339	regulator = ERR_PTR(ret);
 
 
 
1340
1341	/*
1342	 * If we have return value from dev_lookup fail, we do not expect to
1343	 * succeed, so, quit with appropriate error value
1344	 */
1345	if (ret && ret != -ENODEV)
1346		goto out;
1347
1348	if (!devname)
1349		devname = "deviceless";
 
 
 
1350
1351	/*
1352	 * Assume that a regulator is physically present and enabled
1353	 * even if it isn't hooked up and just provide a dummy.
1354	 */
1355	if (have_full_constraints() && allow_dummy) {
1356		pr_warn("%s supply %s not found, using dummy regulator\n",
1357			devname, id);
1358
1359		rdev = dummy_regulator_rdev;
1360		goto found;
1361	/* Don't log an error when called from regulator_get_optional() */
1362	} else if (!have_full_constraints() || exclusive) {
1363		dev_warn(dev, "dummy supplies not allowed\n");
1364	}
1365
 
 
1366	mutex_unlock(&regulator_list_mutex);
1367	return regulator;
1368
1369found:
1370	if (rdev->exclusive) {
1371		regulator = ERR_PTR(-EPERM);
1372		goto out;
1373	}
1374
1375	if (exclusive && rdev->open_count) {
1376		regulator = ERR_PTR(-EBUSY);
1377		goto out;
 
 
1378	}
1379
1380	if (!try_module_get(rdev->owner))
1381		goto out;
 
 
 
1382
 
1383	regulator = create_regulator(rdev, dev, id);
 
1384	if (regulator == NULL) {
1385		regulator = ERR_PTR(-ENOMEM);
1386		module_put(rdev->owner);
1387		goto out;
 
1388	}
1389
1390	rdev->open_count++;
1391	if (exclusive) {
1392		rdev->exclusive = 1;
1393
1394		ret = _regulator_is_enabled(rdev);
1395		if (ret > 0)
1396			rdev->use_count = 1;
1397		else
 
1398			rdev->use_count = 0;
 
 
1399	}
1400
1401out:
1402	mutex_unlock(&regulator_list_mutex);
 
1403
1404	return regulator;
1405}
1406
1407/**
1408 * regulator_get - lookup and obtain a reference to a regulator.
1409 * @dev: device for regulator "consumer"
1410 * @id: Supply name or regulator ID.
1411 *
1412 * Returns a struct regulator corresponding to the regulator producer,
1413 * or IS_ERR() condition containing errno.
1414 *
1415 * Use of supply names configured via regulator_set_device_supply() is
1416 * strongly encouraged.  It is recommended that the supply name used
1417 * should match the name used for the supply and/or the relevant
1418 * device pins in the datasheet.
1419 */
1420struct regulator *regulator_get(struct device *dev, const char *id)
1421{
1422	return _regulator_get(dev, id, false, true);
1423}
1424EXPORT_SYMBOL_GPL(regulator_get);
1425
1426/**
1427 * regulator_get_exclusive - obtain exclusive access to a regulator.
1428 * @dev: device for regulator "consumer"
1429 * @id: Supply name or regulator ID.
1430 *
1431 * Returns a struct regulator corresponding to the regulator producer,
1432 * or IS_ERR() condition containing errno.  Other consumers will be
1433 * unable to obtain this reference is held and the use count for the
1434 * regulator will be initialised to reflect the current state of the
1435 * regulator.
1436 *
1437 * This is intended for use by consumers which cannot tolerate shared
1438 * use of the regulator such as those which need to force the
1439 * regulator off for correct operation of the hardware they are
1440 * controlling.
1441 *
1442 * Use of supply names configured via regulator_set_device_supply() is
1443 * strongly encouraged.  It is recommended that the supply name used
1444 * should match the name used for the supply and/or the relevant
1445 * device pins in the datasheet.
1446 */
1447struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1448{
1449	return _regulator_get(dev, id, true, false);
1450}
1451EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1452
1453/**
1454 * regulator_get_optional - obtain optional access to a regulator.
1455 * @dev: device for regulator "consumer"
1456 * @id: Supply name or regulator ID.
1457 *
1458 * Returns a struct regulator corresponding to the regulator producer,
1459 * or IS_ERR() condition containing errno.  Other consumers will be
1460 * unable to obtain this reference is held and the use count for the
1461 * regulator will be initialised to reflect the current state of the
1462 * regulator.
1463 *
1464 * This is intended for use by consumers for devices which can have
1465 * some supplies unconnected in normal use, such as some MMC devices.
1466 * It can allow the regulator core to provide stub supplies for other
1467 * supplies requested using normal regulator_get() calls without
1468 * disrupting the operation of drivers that can handle absent
1469 * supplies.
1470 *
1471 * Use of supply names configured via regulator_set_device_supply() is
1472 * strongly encouraged.  It is recommended that the supply name used
1473 * should match the name used for the supply and/or the relevant
1474 * device pins in the datasheet.
1475 */
1476struct regulator *regulator_get_optional(struct device *dev, const char *id)
1477{
1478	return _regulator_get(dev, id, false, false);
1479}
1480EXPORT_SYMBOL_GPL(regulator_get_optional);
1481
1482/* Locks held by regulator_put() */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1483static void _regulator_put(struct regulator *regulator)
1484{
1485	struct regulator_dev *rdev;
1486
1487	if (regulator == NULL || IS_ERR(regulator))
1488		return;
1489
1490	rdev = regulator->rdev;
1491
1492	debugfs_remove_recursive(regulator->debugfs);
 
1493
1494	/* remove any sysfs entries */
1495	if (regulator->dev)
1496		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1497	kfree(regulator->supply_name);
1498	list_del(&regulator->list);
1499	kfree(regulator);
1500
1501	rdev->open_count--;
1502	rdev->exclusive = 0;
1503
1504	module_put(rdev->owner);
 
1505}
1506
1507/**
1508 * regulator_put - "free" the regulator source
1509 * @regulator: regulator source
1510 *
1511 * Note: drivers must ensure that all regulator_enable calls made on this
1512 * regulator source are balanced by regulator_disable calls prior to calling
1513 * this function.
1514 */
1515void regulator_put(struct regulator *regulator)
1516{
1517	mutex_lock(&regulator_list_mutex);
1518	_regulator_put(regulator);
1519	mutex_unlock(&regulator_list_mutex);
1520}
1521EXPORT_SYMBOL_GPL(regulator_put);
1522
1523/**
1524 * regulator_register_supply_alias - Provide device alias for supply lookup
1525 *
1526 * @dev: device that will be given as the regulator "consumer"
1527 * @id: Supply name or regulator ID
1528 * @alias_dev: device that should be used to lookup the supply
1529 * @alias_id: Supply name or regulator ID that should be used to lookup the
1530 * supply
1531 *
1532 * All lookups for id on dev will instead be conducted for alias_id on
1533 * alias_dev.
1534 */
1535int regulator_register_supply_alias(struct device *dev, const char *id,
1536				    struct device *alias_dev,
1537				    const char *alias_id)
1538{
1539	struct regulator_supply_alias *map;
1540
1541	map = regulator_find_supply_alias(dev, id);
1542	if (map)
1543		return -EEXIST;
1544
1545	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1546	if (!map)
1547		return -ENOMEM;
1548
1549	map->src_dev = dev;
1550	map->src_supply = id;
1551	map->alias_dev = alias_dev;
1552	map->alias_supply = alias_id;
1553
1554	list_add(&map->list, &regulator_supply_alias_list);
1555
1556	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1557		id, dev_name(dev), alias_id, dev_name(alias_dev));
1558
1559	return 0;
1560}
1561EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1562
1563/**
1564 * regulator_unregister_supply_alias - Remove device alias
1565 *
1566 * @dev: device that will be given as the regulator "consumer"
1567 * @id: Supply name or regulator ID
1568 *
1569 * Remove a lookup alias if one exists for id on dev.
1570 */
1571void regulator_unregister_supply_alias(struct device *dev, const char *id)
1572{
1573	struct regulator_supply_alias *map;
1574
1575	map = regulator_find_supply_alias(dev, id);
1576	if (map) {
1577		list_del(&map->list);
1578		kfree(map);
1579	}
1580}
1581EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1582
1583/**
1584 * regulator_bulk_register_supply_alias - register multiple aliases
1585 *
1586 * @dev: device that will be given as the regulator "consumer"
1587 * @id: List of supply names or regulator IDs
1588 * @alias_dev: device that should be used to lookup the supply
1589 * @alias_id: List of supply names or regulator IDs that should be used to
1590 * lookup the supply
1591 * @num_id: Number of aliases to register
1592 *
1593 * @return 0 on success, an errno on failure.
1594 *
1595 * This helper function allows drivers to register several supply
1596 * aliases in one operation.  If any of the aliases cannot be
1597 * registered any aliases that were registered will be removed
1598 * before returning to the caller.
1599 */
1600int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
 
1601					 struct device *alias_dev,
1602					 const char **alias_id,
1603					 int num_id)
1604{
1605	int i;
1606	int ret;
1607
1608	for (i = 0; i < num_id; ++i) {
1609		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1610						      alias_id[i]);
1611		if (ret < 0)
1612			goto err;
1613	}
1614
1615	return 0;
1616
1617err:
1618	dev_err(dev,
1619		"Failed to create supply alias %s,%s -> %s,%s\n",
1620		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1621
1622	while (--i >= 0)
1623		regulator_unregister_supply_alias(dev, id[i]);
1624
1625	return ret;
1626}
1627EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1628
1629/**
1630 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1631 *
1632 * @dev: device that will be given as the regulator "consumer"
1633 * @id: List of supply names or regulator IDs
1634 * @num_id: Number of aliases to unregister
1635 *
1636 * This helper function allows drivers to unregister several supply
1637 * aliases in one operation.
1638 */
1639void regulator_bulk_unregister_supply_alias(struct device *dev,
1640					    const char **id,
1641					    int num_id)
1642{
1643	int i;
1644
1645	for (i = 0; i < num_id; ++i)
1646		regulator_unregister_supply_alias(dev, id[i]);
1647}
1648EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1649
1650
1651/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1652static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1653				const struct regulator_config *config)
1654{
1655	struct regulator_enable_gpio *pin;
1656	int ret;
 
 
 
 
 
1657
1658	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1659		if (pin->gpio == config->ena_gpio) {
1660			rdev_dbg(rdev, "GPIO %d is already used\n",
1661				config->ena_gpio);
1662			goto update_ena_gpio_to_rdev;
1663		}
1664	}
1665
1666	ret = gpio_request_one(config->ena_gpio,
1667				GPIOF_DIR_OUT | config->ena_gpio_flags,
1668				rdev_get_name(rdev));
1669	if (ret)
1670		return ret;
1671
1672	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1673	if (pin == NULL) {
1674		gpio_free(config->ena_gpio);
1675		return -ENOMEM;
1676	}
1677
1678	pin->gpio = config->ena_gpio;
1679	pin->ena_gpio_invert = config->ena_gpio_invert;
 
 
1680	list_add(&pin->list, &regulator_ena_gpio_list);
1681
1682update_ena_gpio_to_rdev:
1683	pin->request_count++;
1684	rdev->ena_pin = pin;
 
 
 
 
1685	return 0;
1686}
1687
1688static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1689{
1690	struct regulator_enable_gpio *pin, *n;
1691
1692	if (!rdev->ena_pin)
1693		return;
1694
1695	/* Free the GPIO only in case of no use */
1696	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1697		if (pin->gpio == rdev->ena_pin->gpio) {
1698			if (pin->request_count <= 1) {
1699				pin->request_count = 0;
1700				gpio_free(pin->gpio);
1701				list_del(&pin->list);
1702				kfree(pin);
1703			} else {
1704				pin->request_count--;
1705			}
1706		}
1707	}
 
 
1708}
1709
1710/**
1711 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1712 * @rdev: regulator_dev structure
1713 * @enable: enable GPIO at initial use?
1714 *
1715 * GPIO is enabled in case of initial use. (enable_count is 0)
1716 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1717 */
1718static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1719{
1720	struct regulator_enable_gpio *pin = rdev->ena_pin;
1721
1722	if (!pin)
1723		return -EINVAL;
1724
1725	if (enable) {
1726		/* Enable GPIO at initial use */
1727		if (pin->enable_count == 0)
1728			gpio_set_value_cansleep(pin->gpio,
1729						!pin->ena_gpio_invert);
1730
1731		pin->enable_count++;
1732	} else {
1733		if (pin->enable_count > 1) {
1734			pin->enable_count--;
1735			return 0;
1736		}
1737
1738		/* Disable GPIO if not used */
1739		if (pin->enable_count <= 1) {
1740			gpio_set_value_cansleep(pin->gpio,
1741						pin->ena_gpio_invert);
1742			pin->enable_count = 0;
1743		}
1744	}
1745
1746	return 0;
1747}
1748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1749static int _regulator_do_enable(struct regulator_dev *rdev)
1750{
1751	int ret, delay;
1752
1753	/* Query before enabling in case configuration dependent.  */
1754	ret = _regulator_get_enable_time(rdev);
1755	if (ret >= 0) {
1756		delay = ret;
1757	} else {
1758		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1759		delay = 0;
1760	}
1761
1762	trace_regulator_enable(rdev_get_name(rdev));
1763
 
 
 
 
 
 
 
 
 
 
 
1764	if (rdev->ena_pin) {
1765		ret = regulator_ena_gpio_ctrl(rdev, true);
1766		if (ret < 0)
1767			return ret;
1768		rdev->ena_gpio_state = 1;
 
 
1769	} else if (rdev->desc->ops->enable) {
1770		ret = rdev->desc->ops->enable(rdev);
1771		if (ret < 0)
1772			return ret;
1773	} else {
1774		return -EINVAL;
1775	}
1776
1777	/* Allow the regulator to ramp; it would be useful to extend
1778	 * this for bulk operations so that the regulators can ramp
1779	 * together.  */
 
1780	trace_regulator_enable_delay(rdev_get_name(rdev));
1781
1782	/*
1783	 * Delay for the requested amount of time as per the guidelines in:
1784	 *
1785	 *     Documentation/timers/timers-howto.txt
1786	 *
1787	 * The assumption here is that regulators will never be enabled in
1788	 * atomic context and therefore sleeping functions can be used.
1789	 */
1790	if (delay) {
1791		unsigned int ms = delay / 1000;
1792		unsigned int us = delay % 1000;
 
 
1793
1794		if (ms > 0) {
1795			/*
1796			 * For small enough values, handle super-millisecond
1797			 * delays in the usleep_range() call below.
1798			 */
1799			if (ms < 20)
1800				us += ms * 1000;
1801			else
1802				msleep(ms);
 
 
 
 
 
 
1803		}
 
 
 
1804
1805		/*
1806		 * Give the scheduler some room to coalesce with any other
1807		 * wakeup sources. For delays shorter than 10 us, don't even
1808		 * bother setting up high-resolution timers and just busy-
1809		 * loop.
1810		 */
1811		if (us >= 10)
1812			usleep_range(us, us + 100);
1813		else
1814			udelay(us);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815	}
1816
1817	trace_regulator_enable_complete(rdev_get_name(rdev));
 
 
1818
1819	return 0;
1820}
1821
1822/* locks held by regulator_enable() */
1823static int _regulator_enable(struct regulator_dev *rdev)
1824{
 
1825	int ret;
1826
1827	/* check voltage and requested load before enabling */
1828	if (rdev->constraints &&
1829	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1830		drms_uA_update(rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1831
1832	if (rdev->use_count == 0) {
1833		/* The regulator may on if it's not switchable or left on */
 
 
 
1834		ret = _regulator_is_enabled(rdev);
1835		if (ret == -EINVAL || ret == 0) {
1836			if (!_regulator_can_change_status(rdev))
1837				return -EPERM;
 
 
 
1838
1839			ret = _regulator_do_enable(rdev);
1840			if (ret < 0)
1841				return ret;
1842
 
 
1843		} else if (ret < 0) {
1844			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1845			return ret;
1846		}
1847		/* Fallthrough on positive return values - already enabled */
1848	}
1849
1850	rdev->use_count++;
 
1851
1852	return 0;
 
 
 
 
 
 
 
 
 
1853}
1854
1855/**
1856 * regulator_enable - enable regulator output
1857 * @regulator: regulator source
1858 *
1859 * Request that the regulator be enabled with the regulator output at
1860 * the predefined voltage or current value.  Calls to regulator_enable()
1861 * must be balanced with calls to regulator_disable().
1862 *
1863 * NOTE: the output value can be set by other drivers, boot loader or may be
1864 * hardwired in the regulator.
1865 */
1866int regulator_enable(struct regulator *regulator)
1867{
1868	struct regulator_dev *rdev = regulator->rdev;
1869	int ret = 0;
 
1870
1871	if (regulator->always_on)
1872		return 0;
1873
1874	if (rdev->supply) {
1875		ret = regulator_enable(rdev->supply);
1876		if (ret != 0)
1877			return ret;
1878	}
1879
1880	mutex_lock(&rdev->mutex);
1881	ret = _regulator_enable(rdev);
1882	mutex_unlock(&rdev->mutex);
1883
1884	if (ret != 0 && rdev->supply)
1885		regulator_disable(rdev->supply);
1886
1887	return ret;
1888}
1889EXPORT_SYMBOL_GPL(regulator_enable);
1890
1891static int _regulator_do_disable(struct regulator_dev *rdev)
1892{
1893	int ret;
1894
1895	trace_regulator_disable(rdev_get_name(rdev));
1896
1897	if (rdev->ena_pin) {
1898		ret = regulator_ena_gpio_ctrl(rdev, false);
1899		if (ret < 0)
1900			return ret;
1901		rdev->ena_gpio_state = 0;
 
 
1902
1903	} else if (rdev->desc->ops->disable) {
1904		ret = rdev->desc->ops->disable(rdev);
1905		if (ret != 0)
1906			return ret;
1907	}
1908
 
 
 
1909	trace_regulator_disable_complete(rdev_get_name(rdev));
1910
1911	return 0;
1912}
1913
1914/* locks held by regulator_disable() */
1915static int _regulator_disable(struct regulator_dev *rdev)
1916{
 
1917	int ret = 0;
1918
1919	if (WARN(rdev->use_count <= 0,
 
 
1920		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1921		return -EIO;
1922
1923	/* are we the last user and permitted to disable ? */
1924	if (rdev->use_count == 1 &&
1925	    (rdev->constraints && !rdev->constraints->always_on)) {
1926
1927		/* we are last user */
1928		if (_regulator_can_change_status(rdev)) {
1929			ret = _regulator_do_disable(rdev);
1930			if (ret < 0) {
1931				rdev_err(rdev, "failed to disable\n");
1932				return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1933			}
1934			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1935					NULL);
 
 
1936		}
 
1937
1938		rdev->use_count = 0;
1939	} else if (rdev->use_count > 1) {
1940
1941		if (rdev->constraints &&
1942			(rdev->constraints->valid_ops_mask &
1943			REGULATOR_CHANGE_DRMS))
1944			drms_uA_update(rdev);
1945
1946		rdev->use_count--;
1947	}
1948
1949	return ret;
1950}
1951
1952/**
1953 * regulator_disable - disable regulator output
1954 * @regulator: regulator source
1955 *
1956 * Disable the regulator output voltage or current.  Calls to
1957 * regulator_enable() must be balanced with calls to
1958 * regulator_disable().
1959 *
1960 * NOTE: this will only disable the regulator output if no other consumer
1961 * devices have it enabled, the regulator device supports disabling and
1962 * machine constraints permit this operation.
1963 */
1964int regulator_disable(struct regulator *regulator)
1965{
1966	struct regulator_dev *rdev = regulator->rdev;
1967	int ret = 0;
 
1968
1969	if (regulator->always_on)
1970		return 0;
1971
1972	mutex_lock(&rdev->mutex);
1973	ret = _regulator_disable(rdev);
1974	mutex_unlock(&rdev->mutex);
1975
1976	if (ret == 0 && rdev->supply)
1977		regulator_disable(rdev->supply);
1978
1979	return ret;
1980}
1981EXPORT_SYMBOL_GPL(regulator_disable);
1982
1983/* locks held by regulator_force_disable() */
1984static int _regulator_force_disable(struct regulator_dev *rdev)
1985{
1986	int ret = 0;
1987
 
 
 
 
 
 
 
1988	ret = _regulator_do_disable(rdev);
1989	if (ret < 0) {
1990		rdev_err(rdev, "failed to force disable\n");
 
 
1991		return ret;
1992	}
1993
1994	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1995			REGULATOR_EVENT_DISABLE, NULL);
1996
1997	return 0;
1998}
1999
2000/**
2001 * regulator_force_disable - force disable regulator output
2002 * @regulator: regulator source
2003 *
2004 * Forcibly disable the regulator output voltage or current.
2005 * NOTE: this *will* disable the regulator output even if other consumer
2006 * devices have it enabled. This should be used for situations when device
2007 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2008 */
2009int regulator_force_disable(struct regulator *regulator)
2010{
2011	struct regulator_dev *rdev = regulator->rdev;
 
2012	int ret;
2013
2014	mutex_lock(&rdev->mutex);
2015	regulator->uA_load = 0;
2016	ret = _regulator_force_disable(regulator->rdev);
2017	mutex_unlock(&rdev->mutex);
2018
2019	if (rdev->supply)
2020		while (rdev->open_count--)
2021			regulator_disable(rdev->supply);
 
 
 
 
 
 
 
 
 
2022
2023	return ret;
2024}
2025EXPORT_SYMBOL_GPL(regulator_force_disable);
2026
2027static void regulator_disable_work(struct work_struct *work)
2028{
2029	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2030						  disable_work.work);
 
2031	int count, i, ret;
 
 
2032
2033	mutex_lock(&rdev->mutex);
2034
2035	BUG_ON(!rdev->deferred_disables);
 
 
 
 
 
 
2036
2037	count = rdev->deferred_disables;
2038	rdev->deferred_disables = 0;
2039
2040	for (i = 0; i < count; i++) {
2041		ret = _regulator_disable(rdev);
2042		if (ret != 0)
2043			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2044	}
2045
2046	mutex_unlock(&rdev->mutex);
 
2047
2048	if (rdev->supply) {
2049		for (i = 0; i < count; i++) {
2050			ret = regulator_disable(rdev->supply);
2051			if (ret != 0) {
2052				rdev_err(rdev,
2053					 "Supply disable failed: %d\n", ret);
2054			}
2055		}
2056	}
 
 
 
 
 
 
2057}
2058
2059/**
2060 * regulator_disable_deferred - disable regulator output with delay
2061 * @regulator: regulator source
2062 * @ms: miliseconds until the regulator is disabled
2063 *
2064 * Execute regulator_disable() on the regulator after a delay.  This
2065 * is intended for use with devices that require some time to quiesce.
2066 *
2067 * NOTE: this will only disable the regulator output if no other consumer
2068 * devices have it enabled, the regulator device supports disabling and
2069 * machine constraints permit this operation.
2070 */
2071int regulator_disable_deferred(struct regulator *regulator, int ms)
2072{
2073	struct regulator_dev *rdev = regulator->rdev;
2074	int ret;
2075
2076	if (regulator->always_on)
2077		return 0;
2078
2079	if (!ms)
2080		return regulator_disable(regulator);
2081
2082	mutex_lock(&rdev->mutex);
2083	rdev->deferred_disables++;
2084	mutex_unlock(&rdev->mutex);
2085
2086	ret = queue_delayed_work(system_power_efficient_wq,
2087				 &rdev->disable_work,
2088				 msecs_to_jiffies(ms));
2089	if (ret < 0)
2090		return ret;
2091	else
2092		return 0;
2093}
2094EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2095
2096static int _regulator_is_enabled(struct regulator_dev *rdev)
2097{
2098	/* A GPIO control always takes precedence */
2099	if (rdev->ena_pin)
2100		return rdev->ena_gpio_state;
2101
2102	/* If we don't know then assume that the regulator is always on */
2103	if (!rdev->desc->ops->is_enabled)
2104		return 1;
2105
2106	return rdev->desc->ops->is_enabled(rdev);
2107}
2108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2109/**
2110 * regulator_is_enabled - is the regulator output enabled
2111 * @regulator: regulator source
2112 *
2113 * Returns positive if the regulator driver backing the source/client
2114 * has requested that the device be enabled, zero if it hasn't, else a
2115 * negative errno code.
2116 *
2117 * Note that the device backing this regulator handle can have multiple
2118 * users, so it might be enabled even if regulator_enable() was never
2119 * called for this particular source.
2120 */
2121int regulator_is_enabled(struct regulator *regulator)
2122{
2123	int ret;
2124
2125	if (regulator->always_on)
2126		return 1;
2127
2128	mutex_lock(&regulator->rdev->mutex);
2129	ret = _regulator_is_enabled(regulator->rdev);
2130	mutex_unlock(&regulator->rdev->mutex);
2131
2132	return ret;
2133}
2134EXPORT_SYMBOL_GPL(regulator_is_enabled);
2135
2136/**
2137 * regulator_can_change_voltage - check if regulator can change voltage
2138 * @regulator: regulator source
2139 *
2140 * Returns positive if the regulator driver backing the source/client
2141 * can change its voltage, false otherwise. Useful for detecting fixed
2142 * or dummy regulators and disabling voltage change logic in the client
2143 * driver.
2144 */
2145int regulator_can_change_voltage(struct regulator *regulator)
2146{
2147	struct regulator_dev	*rdev = regulator->rdev;
2148
2149	if (rdev->constraints &&
2150	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2151		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2152			return 1;
2153
2154		if (rdev->desc->continuous_voltage_range &&
2155		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2156		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2157			return 1;
2158	}
2159
2160	return 0;
2161}
2162EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2163
2164/**
2165 * regulator_count_voltages - count regulator_list_voltage() selectors
2166 * @regulator: regulator source
2167 *
2168 * Returns number of selectors, or negative errno.  Selectors are
2169 * numbered starting at zero, and typically correspond to bitfields
2170 * in hardware registers.
2171 */
2172int regulator_count_voltages(struct regulator *regulator)
2173{
2174	struct regulator_dev	*rdev = regulator->rdev;
2175
2176	return rdev->desc->n_voltages ? : -EINVAL;
 
 
 
 
 
 
2177}
2178EXPORT_SYMBOL_GPL(regulator_count_voltages);
2179
2180/**
2181 * regulator_list_voltage - enumerate supported voltages
2182 * @regulator: regulator source
2183 * @selector: identify voltage to list
2184 * Context: can sleep
2185 *
2186 * Returns a voltage that can be passed to @regulator_set_voltage(),
2187 * zero if this selector code can't be used on this system, or a
2188 * negative errno.
2189 */
2190int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2191{
2192	struct regulator_dev	*rdev = regulator->rdev;
2193	struct regulator_ops	*ops = rdev->desc->ops;
2194	int			ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2195
2196	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2197		return rdev->desc->fixed_uV;
2198
2199	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2200		return -EINVAL;
2201
2202	mutex_lock(&rdev->mutex);
2203	ret = ops->list_voltage(rdev, selector);
2204	mutex_unlock(&rdev->mutex);
2205
2206	if (ret > 0) {
2207		if (ret < rdev->constraints->min_uV)
2208			ret = 0;
2209		else if (ret > rdev->constraints->max_uV)
2210			ret = 0;
2211	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2212
2213	return ret;
2214}
2215EXPORT_SYMBOL_GPL(regulator_list_voltage);
2216
2217/**
2218 * regulator_get_linear_step - return the voltage step size between VSEL values
2219 * @regulator: regulator source
2220 *
2221 * Returns the voltage step size between VSEL values for linear
2222 * regulators, or return 0 if the regulator isn't a linear regulator.
2223 */
2224unsigned int regulator_get_linear_step(struct regulator *regulator)
2225{
2226	struct regulator_dev *rdev = regulator->rdev;
2227
2228	return rdev->desc->uV_step;
2229}
2230EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2231
2232/**
2233 * regulator_is_supported_voltage - check if a voltage range can be supported
2234 *
2235 * @regulator: Regulator to check.
2236 * @min_uV: Minimum required voltage in uV.
2237 * @max_uV: Maximum required voltage in uV.
2238 *
2239 * Returns a boolean or a negative error code.
2240 */
2241int regulator_is_supported_voltage(struct regulator *regulator,
2242				   int min_uV, int max_uV)
2243{
2244	struct regulator_dev *rdev = regulator->rdev;
2245	int i, voltages, ret;
2246
2247	/* If we can't change voltage check the current voltage */
2248	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2249		ret = regulator_get_voltage(regulator);
2250		if (ret >= 0)
2251			return min_uV <= ret && ret <= max_uV;
2252		else
2253			return ret;
2254	}
2255
2256	/* Any voltage within constrains range is fine? */
2257	if (rdev->desc->continuous_voltage_range)
2258		return min_uV >= rdev->constraints->min_uV &&
2259				max_uV <= rdev->constraints->max_uV;
2260
2261	ret = regulator_count_voltages(regulator);
2262	if (ret < 0)
2263		return ret;
2264	voltages = ret;
2265
2266	for (i = 0; i < voltages; i++) {
2267		ret = regulator_list_voltage(regulator, i);
2268
2269		if (ret >= min_uV && ret <= max_uV)
2270			return 1;
2271	}
2272
2273	return 0;
2274}
2275EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2277static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2278				     int min_uV, int max_uV)
2279{
2280	int ret;
2281	int delay = 0;
2282	int best_val = 0;
2283	unsigned int selector;
2284	int old_selector = -1;
 
 
2285
2286	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2287
2288	min_uV += rdev->constraints->uV_offset;
2289	max_uV += rdev->constraints->uV_offset;
2290
2291	/*
2292	 * If we can't obtain the old selector there is not enough
2293	 * info to call set_voltage_time_sel().
2294	 */
2295	if (_regulator_is_enabled(rdev) &&
2296	    rdev->desc->ops->set_voltage_time_sel &&
2297	    rdev->desc->ops->get_voltage_sel) {
2298		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2299		if (old_selector < 0)
2300			return old_selector;
2301	}
2302
2303	if (rdev->desc->ops->set_voltage) {
2304		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2305						   &selector);
2306
2307		if (ret >= 0) {
2308			if (rdev->desc->ops->list_voltage)
2309				best_val = rdev->desc->ops->list_voltage(rdev,
2310									 selector);
2311			else
2312				best_val = _regulator_get_voltage(rdev);
2313		}
2314
2315	} else if (rdev->desc->ops->set_voltage_sel) {
2316		if (rdev->desc->ops->map_voltage) {
2317			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2318							   max_uV);
2319		} else {
2320			if (rdev->desc->ops->list_voltage ==
2321			    regulator_list_voltage_linear)
2322				ret = regulator_map_voltage_linear(rdev,
2323								min_uV, max_uV);
2324			else
2325				ret = regulator_map_voltage_iterate(rdev,
2326								min_uV, max_uV);
2327		}
2328
 
 
2329		if (ret >= 0) {
2330			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2331			if (min_uV <= best_val && max_uV >= best_val) {
2332				selector = ret;
2333				if (old_selector == selector)
2334					ret = 0;
 
 
 
2335				else
2336					ret = rdev->desc->ops->set_voltage_sel(
2337								rdev, ret);
2338			} else {
2339				ret = -EINVAL;
2340			}
2341		}
2342	} else {
2343		ret = -EINVAL;
2344	}
2345
2346	/* Call set_voltage_time_sel if successfully obtained old_selector */
2347	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2348		&& old_selector != selector) {
2349
2350		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2351						old_selector, selector);
2352		if (delay < 0) {
2353			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2354				  delay);
2355			delay = 0;
 
 
 
 
 
 
 
 
 
 
 
2356		}
 
2357
2358		/* Insert any necessary delays */
2359		if (delay >= 1000) {
2360			mdelay(delay / 1000);
2361			udelay(delay % 1000);
2362		} else if (delay) {
2363			udelay(delay);
2364		}
2365	}
2366
2367	if (ret == 0 && best_val >= 0) {
 
 
 
2368		unsigned long data = best_val;
2369
2370		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2371				     (void *)data);
2372	}
2373
 
2374	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2375
2376	return ret;
2377}
2378
2379/**
2380 * regulator_set_voltage - set regulator output voltage
2381 * @regulator: regulator source
2382 * @min_uV: Minimum required voltage in uV
2383 * @max_uV: Maximum acceptable voltage in uV
2384 *
2385 * Sets a voltage regulator to the desired output voltage. This can be set
2386 * during any regulator state. IOW, regulator can be disabled or enabled.
2387 *
2388 * If the regulator is enabled then the voltage will change to the new value
2389 * immediately otherwise if the regulator is disabled the regulator will
2390 * output at the new voltage when enabled.
2391 *
2392 * NOTE: If the regulator is shared between several devices then the lowest
2393 * request voltage that meets the system constraints will be used.
2394 * Regulator system constraints must be set for this regulator before
2395 * calling this function otherwise this call will fail.
2396 */
2397int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
 
 
 
 
 
 
 
 
 
 
2398{
2399	struct regulator_dev *rdev = regulator->rdev;
 
2400	int ret = 0;
2401	int old_min_uV, old_max_uV;
2402	int current_uV;
2403
2404	mutex_lock(&rdev->mutex);
2405
2406	/* If we're setting the same range as last time the change
2407	 * should be a noop (some cpufreq implementations use the same
2408	 * voltage for multiple frequencies, for example).
2409	 */
2410	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2411		goto out;
2412
2413	/* If we're trying to set a range that overlaps the current voltage,
2414	 * return succesfully even though the regulator does not support
2415	 * changing the voltage.
2416	 */
2417	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2418		current_uV = _regulator_get_voltage(rdev);
2419		if (min_uV <= current_uV && current_uV <= max_uV) {
2420			regulator->min_uV = min_uV;
2421			regulator->max_uV = max_uV;
2422			goto out;
2423		}
2424	}
2425
2426	/* sanity check */
2427	if (!rdev->desc->ops->set_voltage &&
2428	    !rdev->desc->ops->set_voltage_sel) {
2429		ret = -EINVAL;
2430		goto out;
2431	}
2432
2433	/* constraints check */
2434	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2435	if (ret < 0)
2436		goto out;
2437
2438	/* restore original values in case of error */
2439	old_min_uV = regulator->min_uV;
2440	old_max_uV = regulator->max_uV;
2441	regulator->min_uV = min_uV;
2442	regulator->max_uV = max_uV;
2443
2444	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2445	if (ret < 0)
2446		goto out2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2447
2448	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2449	if (ret < 0)
2450		goto out2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2451
2452out:
2453	mutex_unlock(&rdev->mutex);
2454	return ret;
2455out2:
2456	regulator->min_uV = old_min_uV;
2457	regulator->max_uV = old_max_uV;
2458	mutex_unlock(&rdev->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2459	return ret;
2460}
2461EXPORT_SYMBOL_GPL(regulator_set_voltage);
2462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2463/**
2464 * regulator_set_voltage_time - get raise/fall time
2465 * @regulator: regulator source
2466 * @old_uV: starting voltage in microvolts
2467 * @new_uV: target voltage in microvolts
2468 *
2469 * Provided with the starting and ending voltage, this function attempts to
2470 * calculate the time in microseconds required to rise or fall to this new
2471 * voltage.
2472 */
2473int regulator_set_voltage_time(struct regulator *regulator,
2474			       int old_uV, int new_uV)
2475{
2476	struct regulator_dev	*rdev = regulator->rdev;
2477	struct regulator_ops	*ops = rdev->desc->ops;
2478	int old_sel = -1;
2479	int new_sel = -1;
2480	int voltage;
2481	int i;
2482
 
 
 
 
 
2483	/* Currently requires operations to do this */
2484	if (!ops->list_voltage || !ops->set_voltage_time_sel
2485	    || !rdev->desc->n_voltages)
2486		return -EINVAL;
2487
2488	for (i = 0; i < rdev->desc->n_voltages; i++) {
2489		/* We only look for exact voltage matches here */
 
 
 
 
 
 
2490		voltage = regulator_list_voltage(regulator, i);
2491		if (voltage < 0)
2492			return -EINVAL;
2493		if (voltage == 0)
2494			continue;
2495		if (voltage == old_uV)
2496			old_sel = i;
2497		if (voltage == new_uV)
2498			new_sel = i;
2499	}
2500
2501	if (old_sel < 0 || new_sel < 0)
2502		return -EINVAL;
2503
2504	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2505}
2506EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2507
2508/**
2509 * regulator_set_voltage_time_sel - get raise/fall time
2510 * @rdev: regulator source device
2511 * @old_selector: selector for starting voltage
2512 * @new_selector: selector for target voltage
2513 *
2514 * Provided with the starting and target voltage selectors, this function
2515 * returns time in microseconds required to rise or fall to this new voltage
2516 *
2517 * Drivers providing ramp_delay in regulation_constraints can use this as their
2518 * set_voltage_time_sel() operation.
2519 */
2520int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2521				   unsigned int old_selector,
2522				   unsigned int new_selector)
2523{
2524	unsigned int ramp_delay = 0;
2525	int old_volt, new_volt;
2526
2527	if (rdev->constraints->ramp_delay)
2528		ramp_delay = rdev->constraints->ramp_delay;
2529	else if (rdev->desc->ramp_delay)
2530		ramp_delay = rdev->desc->ramp_delay;
2531
2532	if (ramp_delay == 0) {
2533		rdev_warn(rdev, "ramp_delay not set\n");
2534		return 0;
2535	}
2536
2537	/* sanity check */
2538	if (!rdev->desc->ops->list_voltage)
2539		return -EINVAL;
2540
2541	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2542	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2543
2544	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
 
 
 
 
2545}
2546EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2548/**
2549 * regulator_sync_voltage - re-apply last regulator output voltage
2550 * @regulator: regulator source
2551 *
2552 * Re-apply the last configured voltage.  This is intended to be used
2553 * where some external control source the consumer is cooperating with
2554 * has caused the configured voltage to change.
2555 */
2556int regulator_sync_voltage(struct regulator *regulator)
2557{
2558	struct regulator_dev *rdev = regulator->rdev;
 
2559	int ret, min_uV, max_uV;
2560
2561	mutex_lock(&rdev->mutex);
 
 
 
2562
2563	if (!rdev->desc->ops->set_voltage &&
2564	    !rdev->desc->ops->set_voltage_sel) {
2565		ret = -EINVAL;
2566		goto out;
2567	}
2568
2569	/* This is only going to work if we've had a voltage configured. */
2570	if (!regulator->min_uV && !regulator->max_uV) {
2571		ret = -EINVAL;
2572		goto out;
2573	}
2574
2575	min_uV = regulator->min_uV;
2576	max_uV = regulator->max_uV;
2577
2578	/* This should be a paranoia check... */
2579	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2580	if (ret < 0)
2581		goto out;
2582
2583	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2584	if (ret < 0)
2585		goto out;
2586
2587	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
 
 
 
 
2588
2589out:
2590	mutex_unlock(&rdev->mutex);
2591	return ret;
2592}
2593EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2594
2595static int _regulator_get_voltage(struct regulator_dev *rdev)
2596{
2597	int sel, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2598
2599	if (rdev->desc->ops->get_voltage_sel) {
2600		sel = rdev->desc->ops->get_voltage_sel(rdev);
2601		if (sel < 0)
2602			return sel;
2603		ret = rdev->desc->ops->list_voltage(rdev, sel);
2604	} else if (rdev->desc->ops->get_voltage) {
2605		ret = rdev->desc->ops->get_voltage(rdev);
2606	} else if (rdev->desc->ops->list_voltage) {
2607		ret = rdev->desc->ops->list_voltage(rdev, 0);
2608	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2609		ret = rdev->desc->fixed_uV;
 
 
 
 
2610	} else {
2611		return -EINVAL;
2612	}
2613
2614	if (ret < 0)
2615		return ret;
2616	return ret - rdev->constraints->uV_offset;
2617}
 
2618
2619/**
2620 * regulator_get_voltage - get regulator output voltage
2621 * @regulator: regulator source
2622 *
2623 * This returns the current regulator voltage in uV.
2624 *
2625 * NOTE: If the regulator is disabled it will return the voltage value. This
2626 * function should not be used to determine regulator state.
2627 */
2628int regulator_get_voltage(struct regulator *regulator)
2629{
 
2630	int ret;
2631
2632	mutex_lock(&regulator->rdev->mutex);
2633
2634	ret = _regulator_get_voltage(regulator->rdev);
2635
2636	mutex_unlock(&regulator->rdev->mutex);
2637
2638	return ret;
2639}
2640EXPORT_SYMBOL_GPL(regulator_get_voltage);
2641
2642/**
2643 * regulator_set_current_limit - set regulator output current limit
2644 * @regulator: regulator source
2645 * @min_uA: Minimum supported current in uA
2646 * @max_uA: Maximum supported current in uA
2647 *
2648 * Sets current sink to the desired output current. This can be set during
2649 * any regulator state. IOW, regulator can be disabled or enabled.
2650 *
2651 * If the regulator is enabled then the current will change to the new value
2652 * immediately otherwise if the regulator is disabled the regulator will
2653 * output at the new current when enabled.
2654 *
2655 * NOTE: Regulator system constraints must be set for this regulator before
2656 * calling this function otherwise this call will fail.
2657 */
2658int regulator_set_current_limit(struct regulator *regulator,
2659			       int min_uA, int max_uA)
2660{
2661	struct regulator_dev *rdev = regulator->rdev;
2662	int ret;
2663
2664	mutex_lock(&rdev->mutex);
2665
2666	/* sanity check */
2667	if (!rdev->desc->ops->set_current_limit) {
2668		ret = -EINVAL;
2669		goto out;
2670	}
2671
2672	/* constraints check */
2673	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2674	if (ret < 0)
2675		goto out;
2676
2677	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2678out:
2679	mutex_unlock(&rdev->mutex);
2680	return ret;
2681}
2682EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2683
 
 
 
 
 
 
 
 
 
2684static int _regulator_get_current_limit(struct regulator_dev *rdev)
2685{
2686	int ret;
2687
2688	mutex_lock(&rdev->mutex);
 
 
2689
2690	/* sanity check */
2691	if (!rdev->desc->ops->get_current_limit) {
2692		ret = -EINVAL;
2693		goto out;
2694	}
2695
2696	ret = rdev->desc->ops->get_current_limit(rdev);
2697out:
2698	mutex_unlock(&rdev->mutex);
2699	return ret;
2700}
2701
2702/**
2703 * regulator_get_current_limit - get regulator output current
2704 * @regulator: regulator source
2705 *
2706 * This returns the current supplied by the specified current sink in uA.
2707 *
2708 * NOTE: If the regulator is disabled it will return the current value. This
2709 * function should not be used to determine regulator state.
2710 */
2711int regulator_get_current_limit(struct regulator *regulator)
2712{
2713	return _regulator_get_current_limit(regulator->rdev);
2714}
2715EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2716
2717/**
2718 * regulator_set_mode - set regulator operating mode
2719 * @regulator: regulator source
2720 * @mode: operating mode - one of the REGULATOR_MODE constants
2721 *
2722 * Set regulator operating mode to increase regulator efficiency or improve
2723 * regulation performance.
2724 *
2725 * NOTE: Regulator system constraints must be set for this regulator before
2726 * calling this function otherwise this call will fail.
2727 */
2728int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2729{
2730	struct regulator_dev *rdev = regulator->rdev;
2731	int ret;
2732	int regulator_curr_mode;
2733
2734	mutex_lock(&rdev->mutex);
2735
2736	/* sanity check */
2737	if (!rdev->desc->ops->set_mode) {
2738		ret = -EINVAL;
2739		goto out;
2740	}
2741
2742	/* return if the same mode is requested */
2743	if (rdev->desc->ops->get_mode) {
2744		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2745		if (regulator_curr_mode == mode) {
2746			ret = 0;
2747			goto out;
2748		}
2749	}
2750
2751	/* constraints check */
2752	ret = regulator_mode_constrain(rdev, &mode);
2753	if (ret < 0)
2754		goto out;
2755
2756	ret = rdev->desc->ops->set_mode(rdev, mode);
2757out:
2758	mutex_unlock(&rdev->mutex);
2759	return ret;
2760}
2761EXPORT_SYMBOL_GPL(regulator_set_mode);
2762
 
 
 
 
 
 
 
 
 
2763static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2764{
2765	int ret;
2766
2767	mutex_lock(&rdev->mutex);
 
 
2768
2769	/* sanity check */
2770	if (!rdev->desc->ops->get_mode) {
2771		ret = -EINVAL;
2772		goto out;
2773	}
2774
2775	ret = rdev->desc->ops->get_mode(rdev);
2776out:
2777	mutex_unlock(&rdev->mutex);
2778	return ret;
2779}
2780
2781/**
2782 * regulator_get_mode - get regulator operating mode
2783 * @regulator: regulator source
2784 *
2785 * Get the current regulator operating mode.
2786 */
2787unsigned int regulator_get_mode(struct regulator *regulator)
2788{
2789	return _regulator_get_mode(regulator->rdev);
2790}
2791EXPORT_SYMBOL_GPL(regulator_get_mode);
2792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2793/**
2794 * regulator_set_optimum_mode - set regulator optimum operating mode
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2795 * @regulator: regulator source
2796 * @uA_load: load current
2797 *
2798 * Notifies the regulator core of a new device load. This is then used by
2799 * DRMS (if enabled by constraints) to set the most efficient regulator
2800 * operating mode for the new regulator loading.
2801 *
2802 * Consumer devices notify their supply regulator of the maximum power
2803 * they will require (can be taken from device datasheet in the power
2804 * consumption tables) when they change operational status and hence power
2805 * state. Examples of operational state changes that can affect power
2806 * consumption are :-
2807 *
2808 *    o Device is opened / closed.
2809 *    o Device I/O is about to begin or has just finished.
2810 *    o Device is idling in between work.
2811 *
2812 * This information is also exported via sysfs to userspace.
2813 *
2814 * DRMS will sum the total requested load on the regulator and change
2815 * to the most efficient operating mode if platform constraints allow.
2816 *
2817 * Returns the new regulator mode or error.
 
 
 
 
 
 
 
 
2818 */
2819int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2820{
2821	struct regulator_dev *rdev = regulator->rdev;
2822	struct regulator *consumer;
2823	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2824	unsigned int mode;
2825
2826	if (rdev->supply)
2827		input_uV = regulator_get_voltage(rdev->supply);
2828
2829	mutex_lock(&rdev->mutex);
2830
2831	/*
2832	 * first check to see if we can set modes at all, otherwise just
2833	 * tell the consumer everything is OK.
2834	 */
2835	regulator->uA_load = uA_load;
2836	ret = regulator_check_drms(rdev);
2837	if (ret < 0) {
2838		ret = 0;
2839		goto out;
2840	}
2841
2842	if (!rdev->desc->ops->get_optimum_mode)
2843		goto out;
2844
2845	/*
2846	 * we can actually do this so any errors are indicators of
2847	 * potential real failure.
2848	 */
2849	ret = -EINVAL;
2850
2851	if (!rdev->desc->ops->set_mode)
2852		goto out;
2853
2854	/* get output voltage */
2855	output_uV = _regulator_get_voltage(rdev);
2856	if (output_uV <= 0) {
2857		rdev_err(rdev, "invalid output voltage found\n");
2858		goto out;
2859	}
2860
2861	/* No supply? Use constraint voltage */
2862	if (input_uV <= 0)
2863		input_uV = rdev->constraints->input_uV;
2864	if (input_uV <= 0) {
2865		rdev_err(rdev, "invalid input voltage found\n");
2866		goto out;
2867	}
2868
2869	/* calc total requested load for this regulator */
2870	list_for_each_entry(consumer, &rdev->consumer_list, list)
2871		total_uA_load += consumer->uA_load;
2872
2873	mode = rdev->desc->ops->get_optimum_mode(rdev,
2874						 input_uV, output_uV,
2875						 total_uA_load);
2876	ret = regulator_mode_constrain(rdev, &mode);
2877	if (ret < 0) {
2878		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2879			 total_uA_load, input_uV, output_uV);
2880		goto out;
2881	}
 
2882
2883	ret = rdev->desc->ops->set_mode(rdev, mode);
2884	if (ret < 0) {
2885		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2886		goto out;
2887	}
2888	ret = mode;
2889out:
2890	mutex_unlock(&rdev->mutex);
2891	return ret;
2892}
2893EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2894
2895/**
2896 * regulator_allow_bypass - allow the regulator to go into bypass mode
2897 *
2898 * @regulator: Regulator to configure
2899 * @enable: enable or disable bypass mode
2900 *
2901 * Allow the regulator to go into bypass mode if all other consumers
2902 * for the regulator also enable bypass mode and the machine
2903 * constraints allow this.  Bypass mode means that the regulator is
2904 * simply passing the input directly to the output with no regulation.
2905 */
2906int regulator_allow_bypass(struct regulator *regulator, bool enable)
2907{
2908	struct regulator_dev *rdev = regulator->rdev;
 
2909	int ret = 0;
2910
2911	if (!rdev->desc->ops->set_bypass)
2912		return 0;
2913
2914	if (rdev->constraints &&
2915	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2916		return 0;
2917
2918	mutex_lock(&rdev->mutex);
2919
2920	if (enable && !regulator->bypass) {
2921		rdev->bypass_count++;
2922
2923		if (rdev->bypass_count == rdev->open_count) {
 
 
2924			ret = rdev->desc->ops->set_bypass(rdev, enable);
2925			if (ret != 0)
2926				rdev->bypass_count--;
 
 
2927		}
2928
2929	} else if (!enable && regulator->bypass) {
2930		rdev->bypass_count--;
2931
2932		if (rdev->bypass_count != rdev->open_count) {
 
 
2933			ret = rdev->desc->ops->set_bypass(rdev, enable);
2934			if (ret != 0)
2935				rdev->bypass_count++;
 
 
2936		}
2937	}
2938
2939	if (ret == 0)
2940		regulator->bypass = enable;
2941
2942	mutex_unlock(&rdev->mutex);
2943
2944	return ret;
2945}
2946EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2947
2948/**
2949 * regulator_register_notifier - register regulator event notifier
2950 * @regulator: regulator source
2951 * @nb: notifier block
2952 *
2953 * Register notifier block to receive regulator events.
2954 */
2955int regulator_register_notifier(struct regulator *regulator,
2956			      struct notifier_block *nb)
2957{
2958	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2959						nb);
2960}
2961EXPORT_SYMBOL_GPL(regulator_register_notifier);
2962
2963/**
2964 * regulator_unregister_notifier - unregister regulator event notifier
2965 * @regulator: regulator source
2966 * @nb: notifier block
2967 *
2968 * Unregister regulator event notifier block.
2969 */
2970int regulator_unregister_notifier(struct regulator *regulator,
2971				struct notifier_block *nb)
2972{
2973	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2974						  nb);
2975}
2976EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2977
2978/* notify regulator consumers and downstream regulator consumers.
2979 * Note mutex must be held by caller.
2980 */
2981static void _notifier_call_chain(struct regulator_dev *rdev,
2982				  unsigned long event, void *data)
2983{
2984	/* call rdev chain first */
2985	blocking_notifier_call_chain(&rdev->notifier, event, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2986}
2987
2988/**
2989 * regulator_bulk_get - get multiple regulator consumers
2990 *
2991 * @dev:           Device to supply
2992 * @num_consumers: Number of consumers to register
2993 * @consumers:     Configuration of consumers; clients are stored here.
2994 *
2995 * @return 0 on success, an errno on failure.
2996 *
2997 * This helper function allows drivers to get several regulator
2998 * consumers in one operation.  If any of the regulators cannot be
2999 * acquired then any regulators that were allocated will be freed
3000 * before returning to the caller.
3001 */
3002int regulator_bulk_get(struct device *dev, int num_consumers,
3003		       struct regulator_bulk_data *consumers)
3004{
3005	int i;
3006	int ret;
3007
3008	for (i = 0; i < num_consumers; i++)
3009		consumers[i].consumer = NULL;
3010
3011	for (i = 0; i < num_consumers; i++) {
3012		consumers[i].consumer = regulator_get(dev,
3013						      consumers[i].supply);
3014		if (IS_ERR(consumers[i].consumer)) {
3015			ret = PTR_ERR(consumers[i].consumer);
3016			dev_err(dev, "Failed to get supply '%s': %d\n",
3017				consumers[i].supply, ret);
3018			consumers[i].consumer = NULL;
3019			goto err;
3020		}
 
 
 
 
 
 
 
 
 
3021	}
3022
3023	return 0;
3024
3025err:
3026	while (--i >= 0)
3027		regulator_put(consumers[i].consumer);
3028
3029	return ret;
3030}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3031EXPORT_SYMBOL_GPL(regulator_bulk_get);
3032
3033static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3034{
3035	struct regulator_bulk_data *bulk = data;
3036
3037	bulk->ret = regulator_enable(bulk->consumer);
3038}
3039
3040/**
3041 * regulator_bulk_enable - enable multiple regulator consumers
3042 *
3043 * @num_consumers: Number of consumers
3044 * @consumers:     Consumer data; clients are stored here.
3045 * @return         0 on success, an errno on failure
3046 *
3047 * This convenience API allows consumers to enable multiple regulator
3048 * clients in a single API call.  If any consumers cannot be enabled
3049 * then any others that were enabled will be disabled again prior to
3050 * return.
3051 */
3052int regulator_bulk_enable(int num_consumers,
3053			  struct regulator_bulk_data *consumers)
3054{
3055	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3056	int i;
3057	int ret = 0;
3058
3059	for (i = 0; i < num_consumers; i++) {
3060		if (consumers[i].consumer->always_on)
3061			consumers[i].ret = 0;
3062		else
3063			async_schedule_domain(regulator_bulk_enable_async,
3064					      &consumers[i], &async_domain);
3065	}
3066
3067	async_synchronize_full_domain(&async_domain);
3068
3069	/* If any consumer failed we need to unwind any that succeeded */
3070	for (i = 0; i < num_consumers; i++) {
3071		if (consumers[i].ret != 0) {
3072			ret = consumers[i].ret;
3073			goto err;
3074		}
3075	}
3076
3077	return 0;
3078
3079err:
3080	for (i = 0; i < num_consumers; i++) {
3081		if (consumers[i].ret < 0)
3082			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3083			       consumers[i].ret);
3084		else
3085			regulator_disable(consumers[i].consumer);
3086	}
3087
3088	return ret;
3089}
3090EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3091
3092/**
3093 * regulator_bulk_disable - disable multiple regulator consumers
3094 *
3095 * @num_consumers: Number of consumers
3096 * @consumers:     Consumer data; clients are stored here.
3097 * @return         0 on success, an errno on failure
3098 *
3099 * This convenience API allows consumers to disable multiple regulator
3100 * clients in a single API call.  If any consumers cannot be disabled
3101 * then any others that were disabled will be enabled again prior to
3102 * return.
3103 */
3104int regulator_bulk_disable(int num_consumers,
3105			   struct regulator_bulk_data *consumers)
3106{
3107	int i;
3108	int ret, r;
3109
3110	for (i = num_consumers - 1; i >= 0; --i) {
3111		ret = regulator_disable(consumers[i].consumer);
3112		if (ret != 0)
3113			goto err;
3114	}
3115
3116	return 0;
3117
3118err:
3119	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3120	for (++i; i < num_consumers; ++i) {
3121		r = regulator_enable(consumers[i].consumer);
3122		if (r != 0)
3123			pr_err("Failed to reename %s: %d\n",
3124			       consumers[i].supply, r);
3125	}
3126
3127	return ret;
3128}
3129EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3130
3131/**
3132 * regulator_bulk_force_disable - force disable multiple regulator consumers
3133 *
3134 * @num_consumers: Number of consumers
3135 * @consumers:     Consumer data; clients are stored here.
3136 * @return         0 on success, an errno on failure
3137 *
3138 * This convenience API allows consumers to forcibly disable multiple regulator
3139 * clients in a single API call.
3140 * NOTE: This should be used for situations when device damage will
3141 * likely occur if the regulators are not disabled (e.g. over temp).
3142 * Although regulator_force_disable function call for some consumers can
3143 * return error numbers, the function is called for all consumers.
3144 */
3145int regulator_bulk_force_disable(int num_consumers,
3146			   struct regulator_bulk_data *consumers)
3147{
3148	int i;
3149	int ret;
3150
3151	for (i = 0; i < num_consumers; i++)
3152		consumers[i].ret =
3153			    regulator_force_disable(consumers[i].consumer);
3154
3155	for (i = 0; i < num_consumers; i++) {
3156		if (consumers[i].ret != 0) {
3157			ret = consumers[i].ret;
3158			goto out;
3159		}
3160	}
3161
3162	return 0;
3163out:
3164	return ret;
3165}
3166EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3167
3168/**
3169 * regulator_bulk_free - free multiple regulator consumers
3170 *
3171 * @num_consumers: Number of consumers
3172 * @consumers:     Consumer data; clients are stored here.
3173 *
3174 * This convenience API allows consumers to free multiple regulator
3175 * clients in a single API call.
3176 */
3177void regulator_bulk_free(int num_consumers,
3178			 struct regulator_bulk_data *consumers)
3179{
3180	int i;
3181
3182	for (i = 0; i < num_consumers; i++) {
3183		regulator_put(consumers[i].consumer);
3184		consumers[i].consumer = NULL;
3185	}
3186}
3187EXPORT_SYMBOL_GPL(regulator_bulk_free);
3188
3189/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3190 * regulator_notifier_call_chain - call regulator event notifier
3191 * @rdev: regulator source
3192 * @event: notifier block
3193 * @data: callback-specific data.
3194 *
3195 * Called by regulator drivers to notify clients a regulator event has
3196 * occurred. We also notify regulator clients downstream.
3197 * Note lock must be held by caller.
3198 */
3199int regulator_notifier_call_chain(struct regulator_dev *rdev,
3200				  unsigned long event, void *data)
3201{
 
 
3202	_notifier_call_chain(rdev, event, data);
3203	return NOTIFY_DONE;
3204
3205}
3206EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3207
3208/**
3209 * regulator_mode_to_status - convert a regulator mode into a status
3210 *
3211 * @mode: Mode to convert
3212 *
3213 * Convert a regulator mode into a status.
3214 */
3215int regulator_mode_to_status(unsigned int mode)
3216{
3217	switch (mode) {
3218	case REGULATOR_MODE_FAST:
3219		return REGULATOR_STATUS_FAST;
3220	case REGULATOR_MODE_NORMAL:
3221		return REGULATOR_STATUS_NORMAL;
3222	case REGULATOR_MODE_IDLE:
3223		return REGULATOR_STATUS_IDLE;
3224	case REGULATOR_MODE_STANDBY:
3225		return REGULATOR_STATUS_STANDBY;
3226	default:
3227		return REGULATOR_STATUS_UNDEFINED;
3228	}
3229}
3230EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3232/*
3233 * To avoid cluttering sysfs (and memory) with useless state, only
3234 * create attributes that can be meaningfully displayed.
3235 */
3236static int add_regulator_attributes(struct regulator_dev *rdev)
 
3237{
3238	struct device		*dev = &rdev->dev;
3239	struct regulator_ops	*ops = rdev->desc->ops;
3240	int			status = 0;
 
 
 
 
 
 
 
3241
3242	/* some attributes need specific methods to be displayed */
3243	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3244	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3245	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3246		(rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3247		status = device_create_file(dev, &dev_attr_microvolts);
3248		if (status < 0)
3249			return status;
3250	}
3251	if (ops->get_current_limit) {
3252		status = device_create_file(dev, &dev_attr_microamps);
3253		if (status < 0)
3254			return status;
3255	}
3256	if (ops->get_mode) {
3257		status = device_create_file(dev, &dev_attr_opmode);
3258		if (status < 0)
3259			return status;
3260	}
3261	if (rdev->ena_pin || ops->is_enabled) {
3262		status = device_create_file(dev, &dev_attr_state);
3263		if (status < 0)
3264			return status;
3265	}
3266	if (ops->get_status) {
3267		status = device_create_file(dev, &dev_attr_status);
3268		if (status < 0)
3269			return status;
3270	}
3271	if (ops->get_bypass) {
3272		status = device_create_file(dev, &dev_attr_bypass);
3273		if (status < 0)
3274			return status;
3275	}
3276
3277	/* some attributes are type-specific */
3278	if (rdev->desc->type == REGULATOR_CURRENT) {
3279		status = device_create_file(dev, &dev_attr_requested_microamps);
3280		if (status < 0)
3281			return status;
3282	}
3283
3284	/* all the other attributes exist to support constraints;
3285	 * don't show them if there are no constraints, or if the
3286	 * relevant supporting methods are missing.
3287	 */
3288	if (!rdev->constraints)
3289		return status;
3290
3291	/* constraints need specific supporting methods */
3292	if (ops->set_voltage || ops->set_voltage_sel) {
3293		status = device_create_file(dev, &dev_attr_min_microvolts);
3294		if (status < 0)
3295			return status;
3296		status = device_create_file(dev, &dev_attr_max_microvolts);
3297		if (status < 0)
3298			return status;
3299	}
3300	if (ops->set_current_limit) {
3301		status = device_create_file(dev, &dev_attr_min_microamps);
3302		if (status < 0)
3303			return status;
3304		status = device_create_file(dev, &dev_attr_max_microamps);
3305		if (status < 0)
3306			return status;
3307	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3308
3309	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3310	if (status < 0)
3311		return status;
3312	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3313	if (status < 0)
3314		return status;
3315	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3316	if (status < 0)
3317		return status;
3318
3319	if (ops->set_suspend_voltage) {
3320		status = device_create_file(dev,
3321				&dev_attr_suspend_standby_microvolts);
3322		if (status < 0)
3323			return status;
3324		status = device_create_file(dev,
3325				&dev_attr_suspend_mem_microvolts);
3326		if (status < 0)
3327			return status;
3328		status = device_create_file(dev,
3329				&dev_attr_suspend_disk_microvolts);
3330		if (status < 0)
3331			return status;
3332	}
3333
3334	if (ops->set_suspend_mode) {
3335		status = device_create_file(dev,
3336				&dev_attr_suspend_standby_mode);
3337		if (status < 0)
3338			return status;
3339		status = device_create_file(dev,
3340				&dev_attr_suspend_mem_mode);
3341		if (status < 0)
3342			return status;
3343		status = device_create_file(dev,
3344				&dev_attr_suspend_disk_mode);
3345		if (status < 0)
3346			return status;
3347	}
3348
3349	return status;
 
 
 
3350}
3351
3352static void rdev_init_debugfs(struct regulator_dev *rdev)
3353{
3354	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3355	if (!rdev->debugfs) {
3356		rdev_warn(rdev, "Failed to create debugfs directory\n");
3357		return;
 
 
 
 
 
3358	}
3359
 
 
 
 
3360	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3361			   &rdev->use_count);
3362	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3363			   &rdev->open_count);
3364	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3365			   &rdev->bypass_count);
3366}
3367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3368/**
3369 * regulator_register - register regulator
 
3370 * @regulator_desc: regulator to register
3371 * @config: runtime configuration for regulator
3372 *
3373 * Called by regulator drivers to register a regulator.
3374 * Returns a valid pointer to struct regulator_dev on success
3375 * or an ERR_PTR() on error.
3376 */
3377struct regulator_dev *
3378regulator_register(const struct regulator_desc *regulator_desc,
3379		   const struct regulator_config *config)
 
3380{
3381	const struct regulation_constraints *constraints = NULL;
3382	const struct regulator_init_data *init_data;
3383	static atomic_t regulator_no = ATOMIC_INIT(0);
 
3384	struct regulator_dev *rdev;
3385	struct device *dev;
 
3386	int ret, i;
3387	const char *supply = NULL;
3388
3389	if (regulator_desc == NULL || config == NULL)
3390		return ERR_PTR(-EINVAL);
 
 
 
 
 
 
3391
3392	dev = config->dev;
3393	WARN_ON(!dev);
3394
3395	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3396		return ERR_PTR(-EINVAL);
 
 
3397
3398	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3399	    regulator_desc->type != REGULATOR_CURRENT)
3400		return ERR_PTR(-EINVAL);
 
 
3401
3402	/* Only one of each should be implemented */
3403	WARN_ON(regulator_desc->ops->get_voltage &&
3404		regulator_desc->ops->get_voltage_sel);
3405	WARN_ON(regulator_desc->ops->set_voltage &&
3406		regulator_desc->ops->set_voltage_sel);
3407
3408	/* If we're using selectors we must implement list_voltage. */
3409	if (regulator_desc->ops->get_voltage_sel &&
3410	    !regulator_desc->ops->list_voltage) {
3411		return ERR_PTR(-EINVAL);
 
3412	}
3413	if (regulator_desc->ops->set_voltage_sel &&
3414	    !regulator_desc->ops->list_voltage) {
3415		return ERR_PTR(-EINVAL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3416	}
3417
3418	init_data = config->init_data;
 
3419
3420	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3421	if (rdev == NULL)
3422		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
3423
3424	mutex_lock(&regulator_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
3425
3426	mutex_init(&rdev->mutex);
3427	rdev->reg_data = config->driver_data;
3428	rdev->owner = regulator_desc->owner;
3429	rdev->desc = regulator_desc;
3430	if (config->regmap)
3431		rdev->regmap = config->regmap;
3432	else if (dev_get_regmap(dev, NULL))
3433		rdev->regmap = dev_get_regmap(dev, NULL);
3434	else if (dev->parent)
3435		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3436	INIT_LIST_HEAD(&rdev->consumer_list);
3437	INIT_LIST_HEAD(&rdev->list);
3438	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3439	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3440
3441	/* preform any regulator specific init */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3442	if (init_data && init_data->regulator_init) {
3443		ret = init_data->regulator_init(rdev->reg_data);
3444		if (ret < 0)
3445			goto clean;
3446	}
3447
3448	/* register with sysfs */
3449	rdev->dev.class = &regulator_class;
3450	rdev->dev.of_node = config->of_node;
3451	rdev->dev.parent = dev;
3452	dev_set_name(&rdev->dev, "regulator.%d",
3453		     atomic_inc_return(&regulator_no) - 1);
3454	ret = device_register(&rdev->dev);
3455	if (ret != 0) {
3456		put_device(&rdev->dev);
3457		goto clean;
3458	}
3459
3460	dev_set_drvdata(&rdev->dev, rdev);
3461
3462	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3463		ret = regulator_ena_gpio_request(rdev, config);
3464		if (ret != 0) {
3465			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3466				 config->ena_gpio, ret);
3467			goto wash;
3468		}
 
 
 
 
3469
3470		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3471			rdev->ena_gpio_state = 1;
3472
3473		if (config->ena_gpio_invert)
3474			rdev->ena_gpio_state = !rdev->ena_gpio_state;
 
 
 
 
 
 
 
 
 
 
 
 
3475	}
3476
3477	/* set regulator constraints */
3478	if (init_data)
3479		constraints = &init_data->constraints;
3480
3481	ret = set_machine_constraints(rdev, constraints);
3482	if (ret < 0)
3483		goto scrub;
3484
3485	/* add attributes supported by this regulator */
3486	ret = add_regulator_attributes(rdev);
3487	if (ret < 0)
3488		goto scrub;
3489
3490	if (init_data && init_data->supply_regulator)
3491		supply = init_data->supply_regulator;
3492	else if (regulator_desc->supply_name)
3493		supply = regulator_desc->supply_name;
3494
3495	if (supply) {
3496		struct regulator_dev *r;
3497
3498		r = regulator_dev_lookup(dev, supply, &ret);
3499
3500		if (ret == -ENODEV) {
3501			/*
3502			 * No supply was specified for this regulator and
3503			 * there will never be one.
3504			 */
3505			ret = 0;
3506			goto add_dev;
3507		} else if (!r) {
3508			dev_err(dev, "Failed to find supply %s\n", supply);
3509			ret = -EPROBE_DEFER;
3510			goto scrub;
3511		}
3512
3513		ret = set_supply(rdev, r);
3514		if (ret < 0)
3515			goto scrub;
3516
3517		/* Enable supply if rail is enabled */
3518		if (_regulator_is_enabled(rdev)) {
3519			ret = regulator_enable(rdev->supply);
3520			if (ret < 0)
3521				goto scrub;
3522		}
3523	}
3524
3525add_dev:
3526	/* add consumers devices */
3527	if (init_data) {
3528		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3529			ret = set_consumer_device_supply(rdev,
3530				init_data->consumer_supplies[i].dev_name,
3531				init_data->consumer_supplies[i].supply);
3532			if (ret < 0) {
3533				dev_err(dev, "Failed to set supply %s\n",
3534					init_data->consumer_supplies[i].supply);
3535				goto unset_supplies;
3536			}
3537		}
3538	}
3539
3540	list_add(&rdev->list, &regulator_list);
 
 
 
 
 
 
 
3541
3542	rdev_init_debugfs(rdev);
3543out:
 
 
 
3544	mutex_unlock(&regulator_list_mutex);
 
 
 
 
 
3545	return rdev;
3546
3547unset_supplies:
 
3548	unset_regulator_supplies(rdev);
3549
3550scrub:
3551	if (rdev->supply)
3552		_regulator_put(rdev->supply);
 
 
3553	regulator_ena_gpio_free(rdev);
3554	kfree(rdev->constraints);
3555wash:
3556	device_unregister(&rdev->dev);
3557	/* device core frees rdev */
3558	rdev = ERR_PTR(ret);
3559	goto out;
3560
3561clean:
3562	kfree(rdev);
3563	rdev = ERR_PTR(ret);
3564	goto out;
 
 
 
 
 
3565}
3566EXPORT_SYMBOL_GPL(regulator_register);
3567
3568/**
3569 * regulator_unregister - unregister regulator
3570 * @rdev: regulator to unregister
3571 *
3572 * Called by regulator drivers to unregister a regulator.
3573 */
3574void regulator_unregister(struct regulator_dev *rdev)
3575{
3576	if (rdev == NULL)
3577		return;
3578
3579	if (rdev->supply) {
3580		while (rdev->use_count--)
3581			regulator_disable(rdev->supply);
3582		regulator_put(rdev->supply);
3583	}
 
 
 
3584	mutex_lock(&regulator_list_mutex);
3585	debugfs_remove_recursive(rdev->debugfs);
3586	flush_work(&rdev->disable_work.work);
3587	WARN_ON(rdev->open_count);
 
3588	unset_regulator_supplies(rdev);
3589	list_del(&rdev->list);
3590	kfree(rdev->constraints);
3591	regulator_ena_gpio_free(rdev);
3592	device_unregister(&rdev->dev);
 
3593	mutex_unlock(&regulator_list_mutex);
3594}
3595EXPORT_SYMBOL_GPL(regulator_unregister);
3596
 
3597/**
3598 * regulator_suspend_prepare - prepare regulators for system wide suspend
3599 * @state: system suspend state
3600 *
3601 * Configure each regulator with it's suspend operating parameters for state.
3602 * This will usually be called by machine suspend code prior to supending.
3603 */
3604int regulator_suspend_prepare(suspend_state_t state)
3605{
3606	struct regulator_dev *rdev;
3607	int ret = 0;
 
 
3608
3609	/* ON is handled by regulator active state */
3610	if (state == PM_SUSPEND_ON)
3611		return -EINVAL;
3612
3613	mutex_lock(&regulator_list_mutex);
3614	list_for_each_entry(rdev, &regulator_list, list) {
3615
3616		mutex_lock(&rdev->mutex);
3617		ret = suspend_prepare(rdev, state);
3618		mutex_unlock(&rdev->mutex);
3619
3620		if (ret < 0) {
3621			rdev_err(rdev, "failed to prepare\n");
3622			goto out;
3623		}
3624	}
3625out:
3626	mutex_unlock(&regulator_list_mutex);
3627	return ret;
3628}
3629EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3630
3631/**
3632 * regulator_suspend_finish - resume regulators from system wide suspend
3633 *
3634 * Turn on regulators that might be turned off by regulator_suspend_prepare
3635 * and that should be turned on according to the regulators properties.
3636 */
3637int regulator_suspend_finish(void)
3638{
3639	struct regulator_dev *rdev;
3640	int ret = 0, error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3641
3642	mutex_lock(&regulator_list_mutex);
3643	list_for_each_entry(rdev, &regulator_list, list) {
3644		mutex_lock(&rdev->mutex);
3645		if (rdev->use_count > 0  || rdev->constraints->always_on) {
3646			error = _regulator_do_enable(rdev);
3647			if (error)
3648				ret = error;
3649		} else {
3650			if (!have_full_constraints())
3651				goto unlock;
3652			if (!_regulator_is_enabled(rdev))
3653				goto unlock;
3654
3655			error = _regulator_do_disable(rdev);
3656			if (error)
3657				ret = error;
3658		}
3659unlock:
3660		mutex_unlock(&rdev->mutex);
3661	}
3662	mutex_unlock(&regulator_list_mutex);
3663	return ret;
3664}
3665EXPORT_SYMBOL_GPL(regulator_suspend_finish);
 
 
 
 
 
 
 
 
 
 
 
 
3666
 
 
 
 
 
 
 
 
3667/**
3668 * regulator_has_full_constraints - the system has fully specified constraints
3669 *
3670 * Calling this function will cause the regulator API to disable all
3671 * regulators which have a zero use count and don't have an always_on
3672 * constraint in a late_initcall.
3673 *
3674 * The intention is that this will become the default behaviour in a
3675 * future kernel release so users are encouraged to use this facility
3676 * now.
3677 */
3678void regulator_has_full_constraints(void)
3679{
3680	has_full_constraints = 1;
3681}
3682EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3683
3684/**
3685 * rdev_get_drvdata - get rdev regulator driver data
3686 * @rdev: regulator
3687 *
3688 * Get rdev regulator driver private data. This call can be used in the
3689 * regulator driver context.
3690 */
3691void *rdev_get_drvdata(struct regulator_dev *rdev)
3692{
3693	return rdev->reg_data;
3694}
3695EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3696
3697/**
3698 * regulator_get_drvdata - get regulator driver data
3699 * @regulator: regulator
3700 *
3701 * Get regulator driver private data. This call can be used in the consumer
3702 * driver context when non API regulator specific functions need to be called.
3703 */
3704void *regulator_get_drvdata(struct regulator *regulator)
3705{
3706	return regulator->rdev->reg_data;
3707}
3708EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3709
3710/**
3711 * regulator_set_drvdata - set regulator driver data
3712 * @regulator: regulator
3713 * @data: data
3714 */
3715void regulator_set_drvdata(struct regulator *regulator, void *data)
3716{
3717	regulator->rdev->reg_data = data;
3718}
3719EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3720
3721/**
3722 * regulator_get_id - get regulator ID
3723 * @rdev: regulator
3724 */
3725int rdev_get_id(struct regulator_dev *rdev)
3726{
3727	return rdev->desc->id;
3728}
3729EXPORT_SYMBOL_GPL(rdev_get_id);
3730
3731struct device *rdev_get_dev(struct regulator_dev *rdev)
3732{
3733	return &rdev->dev;
3734}
3735EXPORT_SYMBOL_GPL(rdev_get_dev);
3736
 
 
 
 
 
 
3737void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3738{
3739	return reg_init_data->driver_data;
3740}
3741EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3742
3743#ifdef CONFIG_DEBUG_FS
3744static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3745				    size_t count, loff_t *ppos)
3746{
3747	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3748	ssize_t len, ret = 0;
3749	struct regulator_map *map;
3750
3751	if (!buf)
3752		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3753
3754	list_for_each_entry(map, &regulator_map_list, list) {
3755		len = snprintf(buf + ret, PAGE_SIZE - ret,
3756			       "%s -> %s.%s\n",
3757			       rdev_get_name(map->regulator), map->dev_name,
3758			       map->supply);
3759		if (len >= 0)
3760			ret += len;
3761		if (ret > PAGE_SIZE) {
3762			ret = PAGE_SIZE;
 
 
 
 
 
 
 
 
3763			break;
3764		}
 
 
3765	}
3766
3767	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3768
3769	kfree(buf);
 
 
 
 
3770
3771	return ret;
3772}
3773#endif
3774
3775static const struct file_operations supply_map_fops = {
3776#ifdef CONFIG_DEBUG_FS
3777	.read = supply_map_read_file,
3778	.llseek = default_llseek,
3779#endif
3780};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3781
3782static int __init regulator_init(void)
3783{
3784	int ret;
3785
3786	ret = class_register(&regulator_class);
3787
3788	debugfs_root = debugfs_create_dir("regulator", NULL);
3789	if (!debugfs_root)
3790		pr_warn("regulator: Failed to create debugfs directory\n");
3791
 
3792	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3793			    &supply_map_fops);
3794
 
 
 
3795	regulator_dummy_init();
3796
 
 
3797	return ret;
3798}
3799
3800/* init early to allow our consumers to complete system booting */
3801core_initcall(regulator_init);
3802
3803static int __init regulator_init_complete(void)
3804{
3805	struct regulator_dev *rdev;
3806	struct regulator_ops *ops;
3807	struct regulation_constraints *c;
3808	int enabled, ret;
3809
3810	/*
3811	 * Since DT doesn't provide an idiomatic mechanism for
3812	 * enabling full constraints and since it's much more natural
3813	 * with DT to provide them just assume that a DT enabled
3814	 * system has full constraints.
3815	 */
3816	if (of_have_populated_dt())
3817		has_full_constraints = true;
3818
3819	mutex_lock(&regulator_list_mutex);
 
3820
3821	/* If we have a full configuration then disable any regulators
3822	 * which are not in use or always_on.  This will become the
3823	 * default behaviour in the future.
3824	 */
3825	list_for_each_entry(rdev, &regulator_list, list) {
3826		ops = rdev->desc->ops;
3827		c = rdev->constraints;
3828
3829		if (c && c->always_on)
3830			continue;
3831
3832		mutex_lock(&rdev->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3833
3834		if (rdev->use_count)
3835			goto unlock;
3836
3837		/* If we can't read the status assume it's on. */
3838		if (ops->is_enabled)
3839			enabled = ops->is_enabled(rdev);
3840		else
3841			enabled = 1;
3842
3843		if (!enabled)
3844			goto unlock;
 
 
 
 
 
3845
3846		if (have_full_constraints()) {
3847			/* We log since this may kill the system if it
3848			 * goes wrong. */
3849			rdev_info(rdev, "disabling\n");
3850			ret = _regulator_do_disable(rdev);
3851			if (ret != 0)
3852				rdev_err(rdev, "couldn't disable: %d\n", ret);
3853		} else {
3854			/* The intention is that in future we will
3855			 * assume that full constraints are provided
3856			 * so warn even if we aren't going to do
3857			 * anything here.
3858			 */
3859			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3860		}
3861
3862unlock:
3863		mutex_unlock(&rdev->mutex);
 
 
 
 
 
3864	}
3865
3866	mutex_unlock(&regulator_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3867
3868	return 0;
3869}
3870late_initcall(regulator_init_complete);