Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   5
   6#include <linux/module.h>
   7#include <linux/types.h>
   8#include <linux/init.h>
   9#include <linux/pci.h>
  10#include <linux/vmalloc.h>
  11#include <linux/pagemap.h>
  12#include <linux/delay.h>
  13#include <linux/netdevice.h>
  14#include <linux/interrupt.h>
  15#include <linux/tcp.h>
  16#include <linux/ipv6.h>
  17#include <linux/slab.h>
  18#include <net/checksum.h>
  19#include <net/ip6_checksum.h>
  20#include <linux/ethtool.h>
  21#include <linux/if_vlan.h>
  22#include <linux/cpu.h>
  23#include <linux/smp.h>
  24#include <linux/pm_qos.h>
  25#include <linux/pm_runtime.h>
 
  26#include <linux/prefetch.h>
  27#include <linux/suspend.h>
  28
  29#include "e1000.h"
  30#define CREATE_TRACE_POINTS
  31#include "e1000e_trace.h"
  32
 
 
 
  33char e1000e_driver_name[] = "e1000e";
 
  34
  35#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  36static int debug = -1;
  37module_param(debug, int, 0);
  38MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  39
  40static const struct e1000_info *e1000_info_tbl[] = {
  41	[board_82571]		= &e1000_82571_info,
  42	[board_82572]		= &e1000_82572_info,
  43	[board_82573]		= &e1000_82573_info,
  44	[board_82574]		= &e1000_82574_info,
  45	[board_82583]		= &e1000_82583_info,
  46	[board_80003es2lan]	= &e1000_es2_info,
  47	[board_ich8lan]		= &e1000_ich8_info,
  48	[board_ich9lan]		= &e1000_ich9_info,
  49	[board_ich10lan]	= &e1000_ich10_info,
  50	[board_pchlan]		= &e1000_pch_info,
  51	[board_pch2lan]		= &e1000_pch2_info,
  52	[board_pch_lpt]		= &e1000_pch_lpt_info,
  53	[board_pch_spt]		= &e1000_pch_spt_info,
  54	[board_pch_cnp]		= &e1000_pch_cnp_info,
  55	[board_pch_tgp]		= &e1000_pch_tgp_info,
  56	[board_pch_adp]		= &e1000_pch_adp_info,
  57	[board_pch_mtp]		= &e1000_pch_mtp_info,
  58};
  59
  60struct e1000_reg_info {
  61	u32 ofs;
  62	char *name;
  63};
  64
  65static const struct e1000_reg_info e1000_reg_info_tbl[] = {
  66	/* General Registers */
  67	{E1000_CTRL, "CTRL"},
  68	{E1000_STATUS, "STATUS"},
  69	{E1000_CTRL_EXT, "CTRL_EXT"},
  70
  71	/* Interrupt Registers */
  72	{E1000_ICR, "ICR"},
  73
  74	/* Rx Registers */
  75	{E1000_RCTL, "RCTL"},
  76	{E1000_RDLEN(0), "RDLEN"},
  77	{E1000_RDH(0), "RDH"},
  78	{E1000_RDT(0), "RDT"},
  79	{E1000_RDTR, "RDTR"},
  80	{E1000_RXDCTL(0), "RXDCTL"},
  81	{E1000_ERT, "ERT"},
  82	{E1000_RDBAL(0), "RDBAL"},
  83	{E1000_RDBAH(0), "RDBAH"},
  84	{E1000_RDFH, "RDFH"},
  85	{E1000_RDFT, "RDFT"},
  86	{E1000_RDFHS, "RDFHS"},
  87	{E1000_RDFTS, "RDFTS"},
  88	{E1000_RDFPC, "RDFPC"},
  89
  90	/* Tx Registers */
  91	{E1000_TCTL, "TCTL"},
  92	{E1000_TDBAL(0), "TDBAL"},
  93	{E1000_TDBAH(0), "TDBAH"},
  94	{E1000_TDLEN(0), "TDLEN"},
  95	{E1000_TDH(0), "TDH"},
  96	{E1000_TDT(0), "TDT"},
  97	{E1000_TIDV, "TIDV"},
  98	{E1000_TXDCTL(0), "TXDCTL"},
  99	{E1000_TADV, "TADV"},
 100	{E1000_TARC(0), "TARC"},
 101	{E1000_TDFH, "TDFH"},
 102	{E1000_TDFT, "TDFT"},
 103	{E1000_TDFHS, "TDFHS"},
 104	{E1000_TDFTS, "TDFTS"},
 105	{E1000_TDFPC, "TDFPC"},
 106
 107	/* List Terminator */
 108	{0, NULL}
 109};
 110
 111/**
 112 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
 113 * @hw: pointer to the HW structure
 114 *
 115 * When updating the MAC CSR registers, the Manageability Engine (ME) could
 116 * be accessing the registers at the same time.  Normally, this is handled in
 117 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
 118 * accesses later than it should which could result in the register to have
 119 * an incorrect value.  Workaround this by checking the FWSM register which
 120 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
 121 * and try again a number of times.
 122 **/
 123static void __ew32_prepare(struct e1000_hw *hw)
 124{
 125	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
 126
 127	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
 128		udelay(50);
 129}
 130
 131void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
 132{
 133	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 134		__ew32_prepare(hw);
 135
 136	writel(val, hw->hw_addr + reg);
 137}
 138
 139/**
 140 * e1000_regdump - register printout routine
 141 * @hw: pointer to the HW structure
 142 * @reginfo: pointer to the register info table
 143 **/
 144static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
 145{
 146	int n = 0;
 147	char rname[16];
 148	u32 regs[8];
 149
 150	switch (reginfo->ofs) {
 151	case E1000_RXDCTL(0):
 152		for (n = 0; n < 2; n++)
 153			regs[n] = __er32(hw, E1000_RXDCTL(n));
 154		break;
 155	case E1000_TXDCTL(0):
 156		for (n = 0; n < 2; n++)
 157			regs[n] = __er32(hw, E1000_TXDCTL(n));
 158		break;
 159	case E1000_TARC(0):
 160		for (n = 0; n < 2; n++)
 161			regs[n] = __er32(hw, E1000_TARC(n));
 162		break;
 163	default:
 164		pr_info("%-15s %08x\n",
 165			reginfo->name, __er32(hw, reginfo->ofs));
 166		return;
 167	}
 168
 169	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
 170	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
 171}
 172
 173static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
 174				 struct e1000_buffer *bi)
 175{
 176	int i;
 177	struct e1000_ps_page *ps_page;
 178
 179	for (i = 0; i < adapter->rx_ps_pages; i++) {
 180		ps_page = &bi->ps_pages[i];
 181
 182		if (ps_page->page) {
 183			pr_info("packet dump for ps_page %d:\n", i);
 184			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 185				       16, 1, page_address(ps_page->page),
 186				       PAGE_SIZE, true);
 187		}
 188	}
 189}
 190
 191/**
 192 * e1000e_dump - Print registers, Tx-ring and Rx-ring
 193 * @adapter: board private structure
 194 **/
 195static void e1000e_dump(struct e1000_adapter *adapter)
 196{
 197	struct net_device *netdev = adapter->netdev;
 198	struct e1000_hw *hw = &adapter->hw;
 199	struct e1000_reg_info *reginfo;
 200	struct e1000_ring *tx_ring = adapter->tx_ring;
 201	struct e1000_tx_desc *tx_desc;
 202	struct my_u0 {
 203		__le64 a;
 204		__le64 b;
 205	} *u0;
 206	struct e1000_buffer *buffer_info;
 207	struct e1000_ring *rx_ring = adapter->rx_ring;
 208	union e1000_rx_desc_packet_split *rx_desc_ps;
 209	union e1000_rx_desc_extended *rx_desc;
 210	struct my_u1 {
 211		__le64 a;
 212		__le64 b;
 213		__le64 c;
 214		__le64 d;
 215	} *u1;
 216	u32 staterr;
 217	int i = 0;
 218
 219	if (!netif_msg_hw(adapter))
 220		return;
 221
 222	/* Print netdevice Info */
 223	if (netdev) {
 224		dev_info(&adapter->pdev->dev, "Net device Info\n");
 225		pr_info("Device Name     state            trans_start\n");
 226		pr_info("%-15s %016lX %016lX\n", netdev->name,
 227			netdev->state, dev_trans_start(netdev));
 228	}
 229
 230	/* Print Registers */
 231	dev_info(&adapter->pdev->dev, "Register Dump\n");
 232	pr_info(" Register Name   Value\n");
 233	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
 234	     reginfo->name; reginfo++) {
 235		e1000_regdump(hw, reginfo);
 236	}
 237
 238	/* Print Tx Ring Summary */
 239	if (!netdev || !netif_running(netdev))
 240		return;
 241
 242	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
 243	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 244	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
 245	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
 246		0, tx_ring->next_to_use, tx_ring->next_to_clean,
 247		(unsigned long long)buffer_info->dma,
 248		buffer_info->length,
 249		buffer_info->next_to_watch,
 250		(unsigned long long)buffer_info->time_stamp);
 251
 252	/* Print Tx Ring */
 253	if (!netif_msg_tx_done(adapter))
 254		goto rx_ring_summary;
 255
 256	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
 257
 258	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
 259	 *
 260	 * Legacy Transmit Descriptor
 261	 *   +--------------------------------------------------------------+
 262	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
 263	 *   +--------------------------------------------------------------+
 264	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
 265	 *   +--------------------------------------------------------------+
 266	 *   63       48 47        36 35    32 31     24 23    16 15        0
 267	 *
 268	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
 269	 *   63      48 47    40 39       32 31             16 15    8 7      0
 270	 *   +----------------------------------------------------------------+
 271	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
 272	 *   +----------------------------------------------------------------+
 273	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
 274	 *   +----------------------------------------------------------------+
 275	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
 276	 *
 277	 * Extended Data Descriptor (DTYP=0x1)
 278	 *   +----------------------------------------------------------------+
 279	 * 0 |                     Buffer Address [63:0]                      |
 280	 *   +----------------------------------------------------------------+
 281	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
 282	 *   +----------------------------------------------------------------+
 283	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
 284	 */
 285	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
 286	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
 287	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
 288	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 289		const char *next_desc;
 290		tx_desc = E1000_TX_DESC(*tx_ring, i);
 291		buffer_info = &tx_ring->buffer_info[i];
 292		u0 = (struct my_u0 *)tx_desc;
 293		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
 294			next_desc = " NTC/U";
 295		else if (i == tx_ring->next_to_use)
 296			next_desc = " NTU";
 297		else if (i == tx_ring->next_to_clean)
 298			next_desc = " NTC";
 299		else
 300			next_desc = "";
 301		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
 302			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
 303			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
 304			i,
 305			(unsigned long long)le64_to_cpu(u0->a),
 306			(unsigned long long)le64_to_cpu(u0->b),
 307			(unsigned long long)buffer_info->dma,
 308			buffer_info->length, buffer_info->next_to_watch,
 309			(unsigned long long)buffer_info->time_stamp,
 310			buffer_info->skb, next_desc);
 311
 312		if (netif_msg_pktdata(adapter) && buffer_info->skb)
 313			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 314				       16, 1, buffer_info->skb->data,
 315				       buffer_info->skb->len, true);
 316	}
 317
 318	/* Print Rx Ring Summary */
 319rx_ring_summary:
 320	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
 321	pr_info("Queue [NTU] [NTC]\n");
 322	pr_info(" %5d %5X %5X\n",
 323		0, rx_ring->next_to_use, rx_ring->next_to_clean);
 324
 325	/* Print Rx Ring */
 326	if (!netif_msg_rx_status(adapter))
 327		return;
 328
 329	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
 330	switch (adapter->rx_ps_pages) {
 331	case 1:
 332	case 2:
 333	case 3:
 334		/* [Extended] Packet Split Receive Descriptor Format
 335		 *
 336		 *    +-----------------------------------------------------+
 337		 *  0 |                Buffer Address 0 [63:0]              |
 338		 *    +-----------------------------------------------------+
 339		 *  8 |                Buffer Address 1 [63:0]              |
 340		 *    +-----------------------------------------------------+
 341		 * 16 |                Buffer Address 2 [63:0]              |
 342		 *    +-----------------------------------------------------+
 343		 * 24 |                Buffer Address 3 [63:0]              |
 344		 *    +-----------------------------------------------------+
 345		 */
 346		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
 347		/* [Extended] Receive Descriptor (Write-Back) Format
 348		 *
 349		 *   63       48 47    32 31     13 12    8 7    4 3        0
 350		 *   +------------------------------------------------------+
 351		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
 352		 *   | Checksum | Ident  |         | Queue |      |  Type   |
 353		 *   +------------------------------------------------------+
 354		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 355		 *   +------------------------------------------------------+
 356		 *   63       48 47    32 31            20 19               0
 357		 */
 358		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
 359		for (i = 0; i < rx_ring->count; i++) {
 360			const char *next_desc;
 361			buffer_info = &rx_ring->buffer_info[i];
 362			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
 363			u1 = (struct my_u1 *)rx_desc_ps;
 364			staterr =
 365			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
 366
 367			if (i == rx_ring->next_to_use)
 368				next_desc = " NTU";
 369			else if (i == rx_ring->next_to_clean)
 370				next_desc = " NTC";
 371			else
 372				next_desc = "";
 373
 374			if (staterr & E1000_RXD_STAT_DD) {
 375				/* Descriptor Done */
 376				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
 377					"RWB", i,
 378					(unsigned long long)le64_to_cpu(u1->a),
 379					(unsigned long long)le64_to_cpu(u1->b),
 380					(unsigned long long)le64_to_cpu(u1->c),
 381					(unsigned long long)le64_to_cpu(u1->d),
 382					buffer_info->skb, next_desc);
 383			} else {
 384				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
 385					"R  ", i,
 386					(unsigned long long)le64_to_cpu(u1->a),
 387					(unsigned long long)le64_to_cpu(u1->b),
 388					(unsigned long long)le64_to_cpu(u1->c),
 389					(unsigned long long)le64_to_cpu(u1->d),
 390					(unsigned long long)buffer_info->dma,
 391					buffer_info->skb, next_desc);
 392
 393				if (netif_msg_pktdata(adapter))
 394					e1000e_dump_ps_pages(adapter,
 395							     buffer_info);
 396			}
 397		}
 398		break;
 399	default:
 400	case 0:
 401		/* Extended Receive Descriptor (Read) Format
 402		 *
 403		 *   +-----------------------------------------------------+
 404		 * 0 |                Buffer Address [63:0]                |
 405		 *   +-----------------------------------------------------+
 406		 * 8 |                      Reserved                       |
 407		 *   +-----------------------------------------------------+
 408		 */
 409		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
 410		/* Extended Receive Descriptor (Write-Back) Format
 411		 *
 412		 *   63       48 47    32 31    24 23            4 3        0
 413		 *   +------------------------------------------------------+
 414		 *   |     RSS Hash      |        |               |         |
 415		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
 416		 *   | Packet   | IP     |        |               |  Type   |
 417		 *   | Checksum | Ident  |        |               |         |
 418		 *   +------------------------------------------------------+
 419		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 420		 *   +------------------------------------------------------+
 421		 *   63       48 47    32 31            20 19               0
 422		 */
 423		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
 424
 425		for (i = 0; i < rx_ring->count; i++) {
 426			const char *next_desc;
 427
 428			buffer_info = &rx_ring->buffer_info[i];
 429			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 430			u1 = (struct my_u1 *)rx_desc;
 431			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 432
 433			if (i == rx_ring->next_to_use)
 434				next_desc = " NTU";
 435			else if (i == rx_ring->next_to_clean)
 436				next_desc = " NTC";
 437			else
 438				next_desc = "";
 439
 440			if (staterr & E1000_RXD_STAT_DD) {
 441				/* Descriptor Done */
 442				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
 443					"RWB", i,
 444					(unsigned long long)le64_to_cpu(u1->a),
 445					(unsigned long long)le64_to_cpu(u1->b),
 446					buffer_info->skb, next_desc);
 447			} else {
 448				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
 449					"R  ", i,
 450					(unsigned long long)le64_to_cpu(u1->a),
 451					(unsigned long long)le64_to_cpu(u1->b),
 452					(unsigned long long)buffer_info->dma,
 453					buffer_info->skb, next_desc);
 454
 455				if (netif_msg_pktdata(adapter) &&
 456				    buffer_info->skb)
 457					print_hex_dump(KERN_INFO, "",
 458						       DUMP_PREFIX_ADDRESS, 16,
 459						       1,
 460						       buffer_info->skb->data,
 461						       adapter->rx_buffer_len,
 462						       true);
 463			}
 464		}
 465	}
 466}
 467
 468/**
 469 * e1000_desc_unused - calculate if we have unused descriptors
 470 * @ring: pointer to ring struct to perform calculation on
 471 **/
 472static int e1000_desc_unused(struct e1000_ring *ring)
 473{
 474	if (ring->next_to_clean > ring->next_to_use)
 475		return ring->next_to_clean - ring->next_to_use - 1;
 476
 477	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
 478}
 479
 480/**
 481 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
 482 * @adapter: board private structure
 483 * @hwtstamps: time stamp structure to update
 484 * @systim: unsigned 64bit system time value.
 485 *
 486 * Convert the system time value stored in the RX/TXSTMP registers into a
 487 * hwtstamp which can be used by the upper level time stamping functions.
 488 *
 489 * The 'systim_lock' spinlock is used to protect the consistency of the
 490 * system time value. This is needed because reading the 64 bit time
 491 * value involves reading two 32 bit registers. The first read latches the
 492 * value.
 493 **/
 494static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
 495				      struct skb_shared_hwtstamps *hwtstamps,
 496				      u64 systim)
 497{
 498	u64 ns;
 499	unsigned long flags;
 500
 501	spin_lock_irqsave(&adapter->systim_lock, flags);
 502	ns = timecounter_cyc2time(&adapter->tc, systim);
 503	spin_unlock_irqrestore(&adapter->systim_lock, flags);
 504
 505	memset(hwtstamps, 0, sizeof(*hwtstamps));
 506	hwtstamps->hwtstamp = ns_to_ktime(ns);
 507}
 508
 509/**
 510 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
 511 * @adapter: board private structure
 512 * @status: descriptor extended error and status field
 513 * @skb: particular skb to include time stamp
 514 *
 515 * If the time stamp is valid, convert it into the timecounter ns value
 516 * and store that result into the shhwtstamps structure which is passed
 517 * up the network stack.
 518 **/
 519static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
 520			       struct sk_buff *skb)
 521{
 522	struct e1000_hw *hw = &adapter->hw;
 523	u64 rxstmp;
 524
 525	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
 526	    !(status & E1000_RXDEXT_STATERR_TST) ||
 527	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 528		return;
 529
 530	/* The Rx time stamp registers contain the time stamp.  No other
 531	 * received packet will be time stamped until the Rx time stamp
 532	 * registers are read.  Because only one packet can be time stamped
 533	 * at a time, the register values must belong to this packet and
 534	 * therefore none of the other additional attributes need to be
 535	 * compared.
 536	 */
 537	rxstmp = (u64)er32(RXSTMPL);
 538	rxstmp |= (u64)er32(RXSTMPH) << 32;
 539	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
 540
 541	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
 542}
 543
 544/**
 545 * e1000_receive_skb - helper function to handle Rx indications
 546 * @adapter: board private structure
 547 * @netdev: pointer to netdev struct
 548 * @staterr: descriptor extended error and status field as written by hardware
 549 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 550 * @skb: pointer to sk_buff to be indicated to stack
 551 **/
 552static void e1000_receive_skb(struct e1000_adapter *adapter,
 553			      struct net_device *netdev, struct sk_buff *skb,
 554			      u32 staterr, __le16 vlan)
 555{
 556	u16 tag = le16_to_cpu(vlan);
 557
 558	e1000e_rx_hwtstamp(adapter, staterr, skb);
 559
 560	skb->protocol = eth_type_trans(skb, netdev);
 561
 562	if (staterr & E1000_RXD_STAT_VP)
 563		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
 564
 565	napi_gro_receive(&adapter->napi, skb);
 566}
 567
 568/**
 569 * e1000_rx_checksum - Receive Checksum Offload
 570 * @adapter: board private structure
 571 * @status_err: receive descriptor status and error fields
 572 * @skb: socket buffer with received data
 
 573 **/
 574static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 575			      struct sk_buff *skb)
 576{
 577	u16 status = (u16)status_err;
 578	u8 errors = (u8)(status_err >> 24);
 579
 580	skb_checksum_none_assert(skb);
 581
 582	/* Rx checksum disabled */
 583	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
 584		return;
 585
 586	/* Ignore Checksum bit is set */
 587	if (status & E1000_RXD_STAT_IXSM)
 588		return;
 589
 590	/* TCP/UDP checksum error bit or IP checksum error bit is set */
 591	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
 592		/* let the stack verify checksum errors */
 593		adapter->hw_csum_err++;
 594		return;
 595	}
 596
 597	/* TCP/UDP Checksum has not been calculated */
 598	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
 599		return;
 600
 601	/* It must be a TCP or UDP packet with a valid checksum */
 602	skb->ip_summed = CHECKSUM_UNNECESSARY;
 603	adapter->hw_csum_good++;
 604}
 605
 606static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
 607{
 608	struct e1000_adapter *adapter = rx_ring->adapter;
 609	struct e1000_hw *hw = &adapter->hw;
 
 610
 611	__ew32_prepare(hw);
 612	writel(i, rx_ring->tail);
 613
 614	if (unlikely(i != readl(rx_ring->tail))) {
 615		u32 rctl = er32(RCTL);
 616
 617		ew32(RCTL, rctl & ~E1000_RCTL_EN);
 618		e_err("ME firmware caused invalid RDT - resetting\n");
 619		schedule_work(&adapter->reset_task);
 620	}
 621}
 622
 623static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
 624{
 625	struct e1000_adapter *adapter = tx_ring->adapter;
 626	struct e1000_hw *hw = &adapter->hw;
 
 627
 628	__ew32_prepare(hw);
 629	writel(i, tx_ring->tail);
 630
 631	if (unlikely(i != readl(tx_ring->tail))) {
 632		u32 tctl = er32(TCTL);
 633
 634		ew32(TCTL, tctl & ~E1000_TCTL_EN);
 635		e_err("ME firmware caused invalid TDT - resetting\n");
 636		schedule_work(&adapter->reset_task);
 637	}
 638}
 639
 640/**
 641 * e1000_alloc_rx_buffers - Replace used receive buffers
 642 * @rx_ring: Rx descriptor ring
 643 * @cleaned_count: number to reallocate
 644 * @gfp: flags for allocation
 645 **/
 646static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
 647				   int cleaned_count, gfp_t gfp)
 648{
 649	struct e1000_adapter *adapter = rx_ring->adapter;
 650	struct net_device *netdev = adapter->netdev;
 651	struct pci_dev *pdev = adapter->pdev;
 652	union e1000_rx_desc_extended *rx_desc;
 653	struct e1000_buffer *buffer_info;
 654	struct sk_buff *skb;
 655	unsigned int i;
 656	unsigned int bufsz = adapter->rx_buffer_len;
 657
 658	i = rx_ring->next_to_use;
 659	buffer_info = &rx_ring->buffer_info[i];
 660
 661	while (cleaned_count--) {
 662		skb = buffer_info->skb;
 663		if (skb) {
 664			skb_trim(skb, 0);
 665			goto map_skb;
 666		}
 667
 668		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 669		if (!skb) {
 670			/* Better luck next round */
 671			adapter->alloc_rx_buff_failed++;
 672			break;
 673		}
 674
 675		buffer_info->skb = skb;
 676map_skb:
 677		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 678						  adapter->rx_buffer_len,
 679						  DMA_FROM_DEVICE);
 680		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 681			dev_err(&pdev->dev, "Rx DMA map failed\n");
 682			adapter->rx_dma_failed++;
 683			break;
 684		}
 685
 686		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 687		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 688
 689		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 690			/* Force memory writes to complete before letting h/w
 691			 * know there are new descriptors to fetch.  (Only
 692			 * applicable for weak-ordered memory model archs,
 693			 * such as IA-64).
 694			 */
 695			wmb();
 696			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 697				e1000e_update_rdt_wa(rx_ring, i);
 698			else
 699				writel(i, rx_ring->tail);
 700		}
 701		i++;
 702		if (i == rx_ring->count)
 703			i = 0;
 704		buffer_info = &rx_ring->buffer_info[i];
 705	}
 706
 707	rx_ring->next_to_use = i;
 708}
 709
 710/**
 711 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 712 * @rx_ring: Rx descriptor ring
 713 * @cleaned_count: number to reallocate
 714 * @gfp: flags for allocation
 715 **/
 716static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
 717				      int cleaned_count, gfp_t gfp)
 718{
 719	struct e1000_adapter *adapter = rx_ring->adapter;
 720	struct net_device *netdev = adapter->netdev;
 721	struct pci_dev *pdev = adapter->pdev;
 722	union e1000_rx_desc_packet_split *rx_desc;
 723	struct e1000_buffer *buffer_info;
 724	struct e1000_ps_page *ps_page;
 725	struct sk_buff *skb;
 726	unsigned int i, j;
 727
 728	i = rx_ring->next_to_use;
 729	buffer_info = &rx_ring->buffer_info[i];
 730
 731	while (cleaned_count--) {
 732		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
 733
 734		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
 735			ps_page = &buffer_info->ps_pages[j];
 736			if (j >= adapter->rx_ps_pages) {
 737				/* all unused desc entries get hw null ptr */
 738				rx_desc->read.buffer_addr[j + 1] =
 739				    ~cpu_to_le64(0);
 740				continue;
 741			}
 742			if (!ps_page->page) {
 743				ps_page->page = alloc_page(gfp);
 744				if (!ps_page->page) {
 745					adapter->alloc_rx_buff_failed++;
 746					goto no_buffers;
 747				}
 748				ps_page->dma = dma_map_page(&pdev->dev,
 749							    ps_page->page,
 750							    0, PAGE_SIZE,
 751							    DMA_FROM_DEVICE);
 752				if (dma_mapping_error(&pdev->dev,
 753						      ps_page->dma)) {
 754					dev_err(&adapter->pdev->dev,
 755						"Rx DMA page map failed\n");
 756					adapter->rx_dma_failed++;
 757					goto no_buffers;
 758				}
 759			}
 760			/* Refresh the desc even if buffer_addrs
 761			 * didn't change because each write-back
 762			 * erases this info.
 763			 */
 764			rx_desc->read.buffer_addr[j + 1] =
 765			    cpu_to_le64(ps_page->dma);
 766		}
 767
 768		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
 769						  gfp);
 770
 771		if (!skb) {
 772			adapter->alloc_rx_buff_failed++;
 773			break;
 774		}
 775
 776		buffer_info->skb = skb;
 777		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 778						  adapter->rx_ps_bsize0,
 779						  DMA_FROM_DEVICE);
 780		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 781			dev_err(&pdev->dev, "Rx DMA map failed\n");
 782			adapter->rx_dma_failed++;
 783			/* cleanup skb */
 784			dev_kfree_skb_any(skb);
 785			buffer_info->skb = NULL;
 786			break;
 787		}
 788
 789		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
 790
 791		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 792			/* Force memory writes to complete before letting h/w
 793			 * know there are new descriptors to fetch.  (Only
 794			 * applicable for weak-ordered memory model archs,
 795			 * such as IA-64).
 796			 */
 797			wmb();
 798			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 799				e1000e_update_rdt_wa(rx_ring, i << 1);
 800			else
 801				writel(i << 1, rx_ring->tail);
 802		}
 803
 804		i++;
 805		if (i == rx_ring->count)
 806			i = 0;
 807		buffer_info = &rx_ring->buffer_info[i];
 808	}
 809
 810no_buffers:
 811	rx_ring->next_to_use = i;
 812}
 813
 814/**
 815 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 816 * @rx_ring: Rx descriptor ring
 817 * @cleaned_count: number of buffers to allocate this pass
 818 * @gfp: flags for allocation
 819 **/
 820
 821static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
 822					 int cleaned_count, gfp_t gfp)
 823{
 824	struct e1000_adapter *adapter = rx_ring->adapter;
 825	struct net_device *netdev = adapter->netdev;
 826	struct pci_dev *pdev = adapter->pdev;
 827	union e1000_rx_desc_extended *rx_desc;
 828	struct e1000_buffer *buffer_info;
 829	struct sk_buff *skb;
 830	unsigned int i;
 831	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
 832
 833	i = rx_ring->next_to_use;
 834	buffer_info = &rx_ring->buffer_info[i];
 835
 836	while (cleaned_count--) {
 837		skb = buffer_info->skb;
 838		if (skb) {
 839			skb_trim(skb, 0);
 840			goto check_page;
 841		}
 842
 843		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 844		if (unlikely(!skb)) {
 845			/* Better luck next round */
 846			adapter->alloc_rx_buff_failed++;
 847			break;
 848		}
 849
 850		buffer_info->skb = skb;
 851check_page:
 852		/* allocate a new page if necessary */
 853		if (!buffer_info->page) {
 854			buffer_info->page = alloc_page(gfp);
 855			if (unlikely(!buffer_info->page)) {
 856				adapter->alloc_rx_buff_failed++;
 857				break;
 858			}
 859		}
 860
 861		if (!buffer_info->dma) {
 862			buffer_info->dma = dma_map_page(&pdev->dev,
 863							buffer_info->page, 0,
 864							PAGE_SIZE,
 865							DMA_FROM_DEVICE);
 866			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 867				adapter->alloc_rx_buff_failed++;
 868				break;
 869			}
 870		}
 871
 872		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 873		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 874
 875		if (unlikely(++i == rx_ring->count))
 876			i = 0;
 877		buffer_info = &rx_ring->buffer_info[i];
 878	}
 879
 880	if (likely(rx_ring->next_to_use != i)) {
 881		rx_ring->next_to_use = i;
 882		if (unlikely(i-- == 0))
 883			i = (rx_ring->count - 1);
 884
 885		/* Force memory writes to complete before letting h/w
 886		 * know there are new descriptors to fetch.  (Only
 887		 * applicable for weak-ordered memory model archs,
 888		 * such as IA-64).
 889		 */
 890		wmb();
 891		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 892			e1000e_update_rdt_wa(rx_ring, i);
 893		else
 894			writel(i, rx_ring->tail);
 895	}
 896}
 897
 898static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
 899				 struct sk_buff *skb)
 900{
 901	if (netdev->features & NETIF_F_RXHASH)
 902		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
 903}
 904
 905/**
 906 * e1000_clean_rx_irq - Send received data up the network stack
 907 * @rx_ring: Rx descriptor ring
 908 * @work_done: output parameter for indicating completed work
 909 * @work_to_do: how many packets we can clean
 910 *
 911 * the return value indicates whether actual cleaning was done, there
 912 * is no guarantee that everything was cleaned
 913 **/
 914static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
 915			       int work_to_do)
 916{
 917	struct e1000_adapter *adapter = rx_ring->adapter;
 918	struct net_device *netdev = adapter->netdev;
 919	struct pci_dev *pdev = adapter->pdev;
 920	struct e1000_hw *hw = &adapter->hw;
 921	union e1000_rx_desc_extended *rx_desc, *next_rxd;
 922	struct e1000_buffer *buffer_info, *next_buffer;
 923	u32 length, staterr;
 924	unsigned int i;
 925	int cleaned_count = 0;
 926	bool cleaned = false;
 927	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 928
 929	i = rx_ring->next_to_clean;
 930	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 931	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 932	buffer_info = &rx_ring->buffer_info[i];
 933
 934	while (staterr & E1000_RXD_STAT_DD) {
 935		struct sk_buff *skb;
 936
 937		if (*work_done >= work_to_do)
 938			break;
 939		(*work_done)++;
 940		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
 941
 942		skb = buffer_info->skb;
 943		buffer_info->skb = NULL;
 944
 945		prefetch(skb->data - NET_IP_ALIGN);
 946
 947		i++;
 948		if (i == rx_ring->count)
 949			i = 0;
 950		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
 951		prefetch(next_rxd);
 952
 953		next_buffer = &rx_ring->buffer_info[i];
 954
 955		cleaned = true;
 956		cleaned_count++;
 957		dma_unmap_single(&pdev->dev, buffer_info->dma,
 958				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
 959		buffer_info->dma = 0;
 960
 961		length = le16_to_cpu(rx_desc->wb.upper.length);
 962
 963		/* !EOP means multiple descriptors were used to store a single
 964		 * packet, if that's the case we need to toss it.  In fact, we
 965		 * need to toss every packet with the EOP bit clear and the
 966		 * next frame that _does_ have the EOP bit set, as it is by
 967		 * definition only a frame fragment
 968		 */
 969		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
 970			adapter->flags2 |= FLAG2_IS_DISCARDING;
 971
 972		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
 973			/* All receives must fit into a single buffer */
 974			e_dbg("Receive packet consumed multiple buffers\n");
 975			/* recycle */
 976			buffer_info->skb = skb;
 977			if (staterr & E1000_RXD_STAT_EOP)
 978				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 979			goto next_desc;
 980		}
 981
 982		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
 983			     !(netdev->features & NETIF_F_RXALL))) {
 984			/* recycle */
 985			buffer_info->skb = skb;
 986			goto next_desc;
 987		}
 988
 989		/* adjust length to remove Ethernet CRC */
 990		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
 991			/* If configured to store CRC, don't subtract FCS,
 992			 * but keep the FCS bytes out of the total_rx_bytes
 993			 * counter
 994			 */
 995			if (netdev->features & NETIF_F_RXFCS)
 996				total_rx_bytes -= 4;
 997			else
 998				length -= 4;
 999		}
1000
1001		total_rx_bytes += length;
1002		total_rx_packets++;
1003
1004		/* code added for copybreak, this should improve
1005		 * performance for small packets with large amounts
1006		 * of reassembly being done in the stack
1007		 */
1008		if (length < copybreak) {
1009			struct sk_buff *new_skb =
1010				napi_alloc_skb(&adapter->napi, length);
1011			if (new_skb) {
1012				skb_copy_to_linear_data_offset(new_skb,
1013							       -NET_IP_ALIGN,
1014							       (skb->data -
1015								NET_IP_ALIGN),
1016							       (length +
1017								NET_IP_ALIGN));
1018				/* save the skb in buffer_info as good */
1019				buffer_info->skb = skb;
1020				skb = new_skb;
1021			}
1022			/* else just continue with the old one */
1023		}
1024		/* end copybreak code */
1025		skb_put(skb, length);
1026
1027		/* Receive Checksum Offload */
1028		e1000_rx_checksum(adapter, staterr, skb);
1029
1030		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1031
1032		e1000_receive_skb(adapter, netdev, skb, staterr,
1033				  rx_desc->wb.upper.vlan);
1034
1035next_desc:
1036		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1037
1038		/* return some buffers to hardware, one at a time is too slow */
1039		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1040			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1041					      GFP_ATOMIC);
1042			cleaned_count = 0;
1043		}
1044
1045		/* use prefetched values */
1046		rx_desc = next_rxd;
1047		buffer_info = next_buffer;
1048
1049		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1050	}
1051	rx_ring->next_to_clean = i;
1052
1053	cleaned_count = e1000_desc_unused(rx_ring);
1054	if (cleaned_count)
1055		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1056
1057	adapter->total_rx_bytes += total_rx_bytes;
1058	adapter->total_rx_packets += total_rx_packets;
1059	return cleaned;
1060}
1061
1062static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1063			    struct e1000_buffer *buffer_info,
1064			    bool drop)
1065{
1066	struct e1000_adapter *adapter = tx_ring->adapter;
1067
1068	if (buffer_info->dma) {
1069		if (buffer_info->mapped_as_page)
1070			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1071				       buffer_info->length, DMA_TO_DEVICE);
1072		else
1073			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1074					 buffer_info->length, DMA_TO_DEVICE);
1075		buffer_info->dma = 0;
1076	}
1077	if (buffer_info->skb) {
1078		if (drop)
1079			dev_kfree_skb_any(buffer_info->skb);
1080		else
1081			dev_consume_skb_any(buffer_info->skb);
1082		buffer_info->skb = NULL;
1083	}
1084	buffer_info->time_stamp = 0;
1085}
1086
1087static void e1000_print_hw_hang(struct work_struct *work)
1088{
1089	struct e1000_adapter *adapter = container_of(work,
1090						     struct e1000_adapter,
1091						     print_hang_task);
1092	struct net_device *netdev = adapter->netdev;
1093	struct e1000_ring *tx_ring = adapter->tx_ring;
1094	unsigned int i = tx_ring->next_to_clean;
1095	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1096	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1097	struct e1000_hw *hw = &adapter->hw;
1098	u16 phy_status, phy_1000t_status, phy_ext_status;
1099	u16 pci_status;
1100
1101	if (test_bit(__E1000_DOWN, &adapter->state))
1102		return;
1103
1104	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1105		/* May be block on write-back, flush and detect again
1106		 * flush pending descriptor writebacks to memory
1107		 */
1108		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1109		/* execute the writes immediately */
1110		e1e_flush();
1111		/* Due to rare timing issues, write to TIDV again to ensure
1112		 * the write is successful
1113		 */
1114		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115		/* execute the writes immediately */
1116		e1e_flush();
1117		adapter->tx_hang_recheck = true;
1118		return;
1119	}
1120	adapter->tx_hang_recheck = false;
1121
1122	if (er32(TDH(0)) == er32(TDT(0))) {
1123		e_dbg("false hang detected, ignoring\n");
1124		return;
1125	}
1126
1127	/* Real hang detected */
1128	netif_stop_queue(netdev);
1129
1130	e1e_rphy(hw, MII_BMSR, &phy_status);
1131	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1132	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1133
1134	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1135
1136	/* detected Hardware unit hang */
1137	e_err("Detected Hardware Unit Hang:\n"
1138	      "  TDH                  <%x>\n"
1139	      "  TDT                  <%x>\n"
1140	      "  next_to_use          <%x>\n"
1141	      "  next_to_clean        <%x>\n"
1142	      "buffer_info[next_to_clean]:\n"
1143	      "  time_stamp           <%lx>\n"
1144	      "  next_to_watch        <%x>\n"
1145	      "  jiffies              <%lx>\n"
1146	      "  next_to_watch.status <%x>\n"
1147	      "MAC Status             <%x>\n"
1148	      "PHY Status             <%x>\n"
1149	      "PHY 1000BASE-T Status  <%x>\n"
1150	      "PHY Extended Status    <%x>\n"
1151	      "PCI Status             <%x>\n",
1152	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1153	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1154	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1155	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1156
1157	e1000e_dump(adapter);
1158
1159	/* Suggest workaround for known h/w issue */
1160	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1161		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1162}
1163
1164/**
1165 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1166 * @work: pointer to work struct
1167 *
1168 * This work function polls the TSYNCTXCTL valid bit to determine when a
1169 * timestamp has been taken for the current stored skb.  The timestamp must
1170 * be for this skb because only one such packet is allowed in the queue.
1171 */
1172static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1173{
1174	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1175						     tx_hwtstamp_work);
1176	struct e1000_hw *hw = &adapter->hw;
1177
1178	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1179		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1180		struct skb_shared_hwtstamps shhwtstamps;
1181		u64 txstmp;
1182
1183		txstmp = er32(TXSTMPL);
1184		txstmp |= (u64)er32(TXSTMPH) << 32;
1185
1186		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1187
1188		/* Clear the global tx_hwtstamp_skb pointer and force writes
1189		 * prior to notifying the stack of a Tx timestamp.
1190		 */
1191		adapter->tx_hwtstamp_skb = NULL;
1192		wmb(); /* force write prior to skb_tstamp_tx */
1193
1194		skb_tstamp_tx(skb, &shhwtstamps);
1195		dev_consume_skb_any(skb);
1196	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197			      + adapter->tx_timeout_factor * HZ)) {
1198		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199		adapter->tx_hwtstamp_skb = NULL;
1200		adapter->tx_hwtstamp_timeouts++;
1201		e_warn("clearing Tx timestamp hang\n");
1202	} else {
1203		/* reschedule to check later */
1204		schedule_work(&adapter->tx_hwtstamp_work);
1205	}
1206}
1207
1208/**
1209 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210 * @tx_ring: Tx descriptor ring
1211 *
1212 * the return value indicates whether actual cleaning was done, there
1213 * is no guarantee that everything was cleaned
1214 **/
1215static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1216{
1217	struct e1000_adapter *adapter = tx_ring->adapter;
1218	struct net_device *netdev = adapter->netdev;
1219	struct e1000_hw *hw = &adapter->hw;
1220	struct e1000_tx_desc *tx_desc, *eop_desc;
1221	struct e1000_buffer *buffer_info;
1222	unsigned int i, eop;
1223	unsigned int count = 0;
1224	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225	unsigned int bytes_compl = 0, pkts_compl = 0;
1226
1227	i = tx_ring->next_to_clean;
1228	eop = tx_ring->buffer_info[i].next_to_watch;
1229	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230
1231	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232	       (count < tx_ring->count)) {
1233		bool cleaned = false;
1234
1235		dma_rmb();		/* read buffer_info after eop_desc */
1236		for (; !cleaned; count++) {
1237			tx_desc = E1000_TX_DESC(*tx_ring, i);
1238			buffer_info = &tx_ring->buffer_info[i];
1239			cleaned = (i == eop);
1240
1241			if (cleaned) {
1242				total_tx_packets += buffer_info->segs;
1243				total_tx_bytes += buffer_info->bytecount;
1244				if (buffer_info->skb) {
1245					bytes_compl += buffer_info->skb->len;
1246					pkts_compl++;
1247				}
1248			}
1249
1250			e1000_put_txbuf(tx_ring, buffer_info, false);
1251			tx_desc->upper.data = 0;
1252
1253			i++;
1254			if (i == tx_ring->count)
1255				i = 0;
1256		}
1257
1258		if (i == tx_ring->next_to_use)
1259			break;
1260		eop = tx_ring->buffer_info[i].next_to_watch;
1261		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1262	}
1263
1264	tx_ring->next_to_clean = i;
1265
1266	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267
1268#define TX_WAKE_THRESHOLD 32
1269	if (count && netif_carrier_ok(netdev) &&
1270	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271		/* Make sure that anybody stopping the queue after this
1272		 * sees the new next_to_clean.
1273		 */
1274		smp_mb();
1275
1276		if (netif_queue_stopped(netdev) &&
1277		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1278			netif_wake_queue(netdev);
1279			++adapter->restart_queue;
1280		}
1281	}
1282
1283	if (adapter->detect_tx_hung) {
1284		/* Detect a transmit hang in hardware, this serializes the
1285		 * check with the clearing of time_stamp and movement of i
1286		 */
1287		adapter->detect_tx_hung = false;
1288		if (tx_ring->buffer_info[i].time_stamp &&
1289		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290			       + (adapter->tx_timeout_factor * HZ)) &&
1291		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1292			schedule_work(&adapter->print_hang_task);
1293		else
1294			adapter->tx_hang_recheck = false;
1295	}
1296	adapter->total_tx_bytes += total_tx_bytes;
1297	adapter->total_tx_packets += total_tx_packets;
1298	return count < tx_ring->count;
1299}
1300
1301/**
1302 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303 * @rx_ring: Rx descriptor ring
1304 * @work_done: output parameter for indicating completed work
1305 * @work_to_do: how many packets we can clean
1306 *
1307 * the return value indicates whether actual cleaning was done, there
1308 * is no guarantee that everything was cleaned
1309 **/
1310static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1311				  int work_to_do)
1312{
1313	struct e1000_adapter *adapter = rx_ring->adapter;
1314	struct e1000_hw *hw = &adapter->hw;
1315	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1316	struct net_device *netdev = adapter->netdev;
1317	struct pci_dev *pdev = adapter->pdev;
1318	struct e1000_buffer *buffer_info, *next_buffer;
1319	struct e1000_ps_page *ps_page;
1320	struct sk_buff *skb;
1321	unsigned int i, j;
1322	u32 length, staterr;
1323	int cleaned_count = 0;
1324	bool cleaned = false;
1325	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1326
1327	i = rx_ring->next_to_clean;
1328	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1329	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1330	buffer_info = &rx_ring->buffer_info[i];
1331
1332	while (staterr & E1000_RXD_STAT_DD) {
1333		if (*work_done >= work_to_do)
1334			break;
1335		(*work_done)++;
1336		skb = buffer_info->skb;
1337		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1338
1339		/* in the packet split case this is header only */
1340		prefetch(skb->data - NET_IP_ALIGN);
1341
1342		i++;
1343		if (i == rx_ring->count)
1344			i = 0;
1345		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1346		prefetch(next_rxd);
1347
1348		next_buffer = &rx_ring->buffer_info[i];
1349
1350		cleaned = true;
1351		cleaned_count++;
1352		dma_unmap_single(&pdev->dev, buffer_info->dma,
1353				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1354		buffer_info->dma = 0;
1355
1356		/* see !EOP comment in other Rx routine */
1357		if (!(staterr & E1000_RXD_STAT_EOP))
1358			adapter->flags2 |= FLAG2_IS_DISCARDING;
1359
1360		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1361			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1362			dev_kfree_skb_irq(skb);
1363			if (staterr & E1000_RXD_STAT_EOP)
1364				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1365			goto next_desc;
1366		}
1367
1368		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1369			     !(netdev->features & NETIF_F_RXALL))) {
1370			dev_kfree_skb_irq(skb);
1371			goto next_desc;
1372		}
1373
1374		length = le16_to_cpu(rx_desc->wb.middle.length0);
1375
1376		if (!length) {
1377			e_dbg("Last part of the packet spanning multiple descriptors\n");
1378			dev_kfree_skb_irq(skb);
1379			goto next_desc;
1380		}
1381
1382		/* Good Receive */
1383		skb_put(skb, length);
1384
1385		{
1386			/* this looks ugly, but it seems compiler issues make
1387			 * it more efficient than reusing j
1388			 */
1389			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1390
1391			/* page alloc/put takes too long and effects small
1392			 * packet throughput, so unsplit small packets and
1393			 * save the alloc/put
 
1394			 */
1395			if (l1 && (l1 <= copybreak) &&
1396			    ((length + l1) <= adapter->rx_ps_bsize0)) {
 
 
1397				ps_page = &buffer_info->ps_pages[0];
1398
 
 
 
 
1399				dma_sync_single_for_cpu(&pdev->dev,
1400							ps_page->dma,
1401							PAGE_SIZE,
1402							DMA_FROM_DEVICE);
1403				memcpy(skb_tail_pointer(skb),
1404				       page_address(ps_page->page), l1);
 
1405				dma_sync_single_for_device(&pdev->dev,
1406							   ps_page->dma,
1407							   PAGE_SIZE,
1408							   DMA_FROM_DEVICE);
1409
1410				/* remove the CRC */
1411				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1412					if (!(netdev->features & NETIF_F_RXFCS))
1413						l1 -= 4;
1414				}
1415
1416				skb_put(skb, l1);
1417				goto copydone;
1418			}	/* if */
1419		}
1420
1421		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1422			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1423			if (!length)
1424				break;
1425
1426			ps_page = &buffer_info->ps_pages[j];
1427			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1428				       DMA_FROM_DEVICE);
1429			ps_page->dma = 0;
1430			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1431			ps_page->page = NULL;
1432			skb->len += length;
1433			skb->data_len += length;
1434			skb->truesize += PAGE_SIZE;
1435		}
1436
1437		/* strip the ethernet crc, problem is we're using pages now so
1438		 * this whole operation can get a little cpu intensive
1439		 */
1440		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1441			if (!(netdev->features & NETIF_F_RXFCS))
1442				pskb_trim(skb, skb->len - 4);
1443		}
1444
1445copydone:
1446		total_rx_bytes += skb->len;
1447		total_rx_packets++;
1448
1449		e1000_rx_checksum(adapter, staterr, skb);
1450
1451		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1452
1453		if (rx_desc->wb.upper.header_status &
1454		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1455			adapter->rx_hdr_split++;
1456
1457		e1000_receive_skb(adapter, netdev, skb, staterr,
1458				  rx_desc->wb.middle.vlan);
1459
1460next_desc:
1461		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1462		buffer_info->skb = NULL;
1463
1464		/* return some buffers to hardware, one at a time is too slow */
1465		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1466			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1467					      GFP_ATOMIC);
1468			cleaned_count = 0;
1469		}
1470
1471		/* use prefetched values */
1472		rx_desc = next_rxd;
1473		buffer_info = next_buffer;
1474
1475		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1476	}
1477	rx_ring->next_to_clean = i;
1478
1479	cleaned_count = e1000_desc_unused(rx_ring);
1480	if (cleaned_count)
1481		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1482
1483	adapter->total_rx_bytes += total_rx_bytes;
1484	adapter->total_rx_packets += total_rx_packets;
1485	return cleaned;
1486}
1487
 
 
 
1488static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1489			       u16 length)
1490{
1491	bi->page = NULL;
1492	skb->len += length;
1493	skb->data_len += length;
1494	skb->truesize += PAGE_SIZE;
1495}
1496
1497/**
1498 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1499 * @rx_ring: Rx descriptor ring
1500 * @work_done: output parameter for indicating completed work
1501 * @work_to_do: how many packets we can clean
1502 *
1503 * the return value indicates whether actual cleaning was done, there
1504 * is no guarantee that everything was cleaned
1505 **/
1506static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1507				     int work_to_do)
1508{
1509	struct e1000_adapter *adapter = rx_ring->adapter;
1510	struct net_device *netdev = adapter->netdev;
1511	struct pci_dev *pdev = adapter->pdev;
1512	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1513	struct e1000_buffer *buffer_info, *next_buffer;
1514	u32 length, staterr;
1515	unsigned int i;
1516	int cleaned_count = 0;
1517	bool cleaned = false;
1518	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1519	struct skb_shared_info *shinfo;
1520
1521	i = rx_ring->next_to_clean;
1522	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1523	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1524	buffer_info = &rx_ring->buffer_info[i];
1525
1526	while (staterr & E1000_RXD_STAT_DD) {
1527		struct sk_buff *skb;
1528
1529		if (*work_done >= work_to_do)
1530			break;
1531		(*work_done)++;
1532		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1533
1534		skb = buffer_info->skb;
1535		buffer_info->skb = NULL;
1536
1537		++i;
1538		if (i == rx_ring->count)
1539			i = 0;
1540		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1541		prefetch(next_rxd);
1542
1543		next_buffer = &rx_ring->buffer_info[i];
1544
1545		cleaned = true;
1546		cleaned_count++;
1547		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1548			       DMA_FROM_DEVICE);
1549		buffer_info->dma = 0;
1550
1551		length = le16_to_cpu(rx_desc->wb.upper.length);
1552
1553		/* errors is only valid for DD + EOP descriptors */
1554		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1555			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1556			      !(netdev->features & NETIF_F_RXALL)))) {
1557			/* recycle both page and skb */
1558			buffer_info->skb = skb;
1559			/* an error means any chain goes out the window too */
1560			if (rx_ring->rx_skb_top)
1561				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1562			rx_ring->rx_skb_top = NULL;
1563			goto next_desc;
1564		}
1565#define rxtop (rx_ring->rx_skb_top)
1566		if (!(staterr & E1000_RXD_STAT_EOP)) {
1567			/* this descriptor is only the beginning (or middle) */
1568			if (!rxtop) {
1569				/* this is the beginning of a chain */
1570				rxtop = skb;
1571				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1572						   0, length);
1573			} else {
1574				/* this is the middle of a chain */
1575				shinfo = skb_shinfo(rxtop);
1576				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1577						   buffer_info->page, 0,
1578						   length);
1579				/* re-use the skb, only consumed the page */
1580				buffer_info->skb = skb;
1581			}
1582			e1000_consume_page(buffer_info, rxtop, length);
1583			goto next_desc;
1584		} else {
1585			if (rxtop) {
1586				/* end of the chain */
1587				shinfo = skb_shinfo(rxtop);
1588				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1589						   buffer_info->page, 0,
1590						   length);
1591				/* re-use the current skb, we only consumed the
1592				 * page
1593				 */
1594				buffer_info->skb = skb;
1595				skb = rxtop;
1596				rxtop = NULL;
1597				e1000_consume_page(buffer_info, skb, length);
1598			} else {
1599				/* no chain, got EOP, this buf is the packet
1600				 * copybreak to save the put_page/alloc_page
1601				 */
1602				if (length <= copybreak &&
1603				    skb_tailroom(skb) >= length) {
1604					memcpy(skb_tail_pointer(skb),
1605					       page_address(buffer_info->page),
 
1606					       length);
 
1607					/* re-use the page, so don't erase
1608					 * buffer_info->page
1609					 */
1610					skb_put(skb, length);
1611				} else {
1612					skb_fill_page_desc(skb, 0,
1613							   buffer_info->page, 0,
1614							   length);
1615					e1000_consume_page(buffer_info, skb,
1616							   length);
1617				}
1618			}
1619		}
1620
1621		/* Receive Checksum Offload */
1622		e1000_rx_checksum(adapter, staterr, skb);
1623
1624		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1625
1626		/* probably a little skewed due to removing CRC */
1627		total_rx_bytes += skb->len;
1628		total_rx_packets++;
1629
1630		/* eth type trans needs skb->data to point to something */
1631		if (!pskb_may_pull(skb, ETH_HLEN)) {
1632			e_err("pskb_may_pull failed.\n");
1633			dev_kfree_skb_irq(skb);
1634			goto next_desc;
1635		}
1636
1637		e1000_receive_skb(adapter, netdev, skb, staterr,
1638				  rx_desc->wb.upper.vlan);
1639
1640next_desc:
1641		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1642
1643		/* return some buffers to hardware, one at a time is too slow */
1644		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1645			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1646					      GFP_ATOMIC);
1647			cleaned_count = 0;
1648		}
1649
1650		/* use prefetched values */
1651		rx_desc = next_rxd;
1652		buffer_info = next_buffer;
1653
1654		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1655	}
1656	rx_ring->next_to_clean = i;
1657
1658	cleaned_count = e1000_desc_unused(rx_ring);
1659	if (cleaned_count)
1660		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1661
1662	adapter->total_rx_bytes += total_rx_bytes;
1663	adapter->total_rx_packets += total_rx_packets;
1664	return cleaned;
1665}
1666
1667/**
1668 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1669 * @rx_ring: Rx descriptor ring
1670 **/
1671static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1672{
1673	struct e1000_adapter *adapter = rx_ring->adapter;
1674	struct e1000_buffer *buffer_info;
1675	struct e1000_ps_page *ps_page;
1676	struct pci_dev *pdev = adapter->pdev;
1677	unsigned int i, j;
1678
1679	/* Free all the Rx ring sk_buffs */
1680	for (i = 0; i < rx_ring->count; i++) {
1681		buffer_info = &rx_ring->buffer_info[i];
1682		if (buffer_info->dma) {
1683			if (adapter->clean_rx == e1000_clean_rx_irq)
1684				dma_unmap_single(&pdev->dev, buffer_info->dma,
1685						 adapter->rx_buffer_len,
1686						 DMA_FROM_DEVICE);
1687			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1688				dma_unmap_page(&pdev->dev, buffer_info->dma,
1689					       PAGE_SIZE, DMA_FROM_DEVICE);
1690			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1691				dma_unmap_single(&pdev->dev, buffer_info->dma,
1692						 adapter->rx_ps_bsize0,
1693						 DMA_FROM_DEVICE);
1694			buffer_info->dma = 0;
1695		}
1696
1697		if (buffer_info->page) {
1698			put_page(buffer_info->page);
1699			buffer_info->page = NULL;
1700		}
1701
1702		if (buffer_info->skb) {
1703			dev_kfree_skb(buffer_info->skb);
1704			buffer_info->skb = NULL;
1705		}
1706
1707		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1708			ps_page = &buffer_info->ps_pages[j];
1709			if (!ps_page->page)
1710				break;
1711			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1712				       DMA_FROM_DEVICE);
1713			ps_page->dma = 0;
1714			put_page(ps_page->page);
1715			ps_page->page = NULL;
1716		}
1717	}
1718
1719	/* there also may be some cached data from a chained receive */
1720	if (rx_ring->rx_skb_top) {
1721		dev_kfree_skb(rx_ring->rx_skb_top);
1722		rx_ring->rx_skb_top = NULL;
1723	}
1724
1725	/* Zero out the descriptor ring */
1726	memset(rx_ring->desc, 0, rx_ring->size);
1727
1728	rx_ring->next_to_clean = 0;
1729	rx_ring->next_to_use = 0;
1730	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 
 
 
 
 
 
1731}
1732
1733static void e1000e_downshift_workaround(struct work_struct *work)
1734{
1735	struct e1000_adapter *adapter = container_of(work,
1736						     struct e1000_adapter,
1737						     downshift_task);
1738
1739	if (test_bit(__E1000_DOWN, &adapter->state))
1740		return;
1741
1742	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1743}
1744
1745/**
1746 * e1000_intr_msi - Interrupt Handler
1747 * @irq: interrupt number
1748 * @data: pointer to a network interface device structure
1749 **/
1750static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1751{
1752	struct net_device *netdev = data;
1753	struct e1000_adapter *adapter = netdev_priv(netdev);
1754	struct e1000_hw *hw = &adapter->hw;
1755	u32 icr = er32(ICR);
1756
1757	/* read ICR disables interrupts using IAM */
1758	if (icr & E1000_ICR_LSC) {
1759		hw->mac.get_link_status = true;
1760		/* ICH8 workaround-- Call gig speed drop workaround on cable
1761		 * disconnect (LSC) before accessing any PHY registers
1762		 */
1763		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1764		    (!(er32(STATUS) & E1000_STATUS_LU)))
1765			schedule_work(&adapter->downshift_task);
1766
1767		/* 80003ES2LAN workaround-- For packet buffer work-around on
1768		 * link down event; disable receives here in the ISR and reset
1769		 * adapter in watchdog
1770		 */
1771		if (netif_carrier_ok(netdev) &&
1772		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1773			/* disable receives */
1774			u32 rctl = er32(RCTL);
1775
1776			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1777			adapter->flags |= FLAG_RESTART_NOW;
1778		}
1779		/* guard against interrupt when we're going down */
1780		if (!test_bit(__E1000_DOWN, &adapter->state))
1781			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1782	}
1783
1784	/* Reset on uncorrectable ECC error */
1785	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1786		u32 pbeccsts = er32(PBECCSTS);
1787
1788		adapter->corr_errors +=
1789		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1790		adapter->uncorr_errors +=
1791		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
 
1792
1793		/* Do the reset outside of interrupt context */
1794		schedule_work(&adapter->reset_task);
1795
1796		/* return immediately since reset is imminent */
1797		return IRQ_HANDLED;
1798	}
1799
1800	if (napi_schedule_prep(&adapter->napi)) {
1801		adapter->total_tx_bytes = 0;
1802		adapter->total_tx_packets = 0;
1803		adapter->total_rx_bytes = 0;
1804		adapter->total_rx_packets = 0;
1805		__napi_schedule(&adapter->napi);
1806	}
1807
1808	return IRQ_HANDLED;
1809}
1810
1811/**
1812 * e1000_intr - Interrupt Handler
1813 * @irq: interrupt number
1814 * @data: pointer to a network interface device structure
1815 **/
1816static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1817{
1818	struct net_device *netdev = data;
1819	struct e1000_adapter *adapter = netdev_priv(netdev);
1820	struct e1000_hw *hw = &adapter->hw;
1821	u32 rctl, icr = er32(ICR);
1822
1823	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1824		return IRQ_NONE;	/* Not our interrupt */
1825
1826	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1827	 * not set, then the adapter didn't send an interrupt
1828	 */
1829	if (!(icr & E1000_ICR_INT_ASSERTED))
1830		return IRQ_NONE;
1831
1832	/* Interrupt Auto-Mask...upon reading ICR,
1833	 * interrupts are masked.  No need for the
1834	 * IMC write
1835	 */
1836
1837	if (icr & E1000_ICR_LSC) {
1838		hw->mac.get_link_status = true;
1839		/* ICH8 workaround-- Call gig speed drop workaround on cable
1840		 * disconnect (LSC) before accessing any PHY registers
1841		 */
1842		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1843		    (!(er32(STATUS) & E1000_STATUS_LU)))
1844			schedule_work(&adapter->downshift_task);
1845
1846		/* 80003ES2LAN workaround--
1847		 * For packet buffer work-around on link down event;
1848		 * disable receives here in the ISR and
1849		 * reset adapter in watchdog
1850		 */
1851		if (netif_carrier_ok(netdev) &&
1852		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1853			/* disable receives */
1854			rctl = er32(RCTL);
1855			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1856			adapter->flags |= FLAG_RESTART_NOW;
1857		}
1858		/* guard against interrupt when we're going down */
1859		if (!test_bit(__E1000_DOWN, &adapter->state))
1860			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1861	}
1862
1863	/* Reset on uncorrectable ECC error */
1864	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1865		u32 pbeccsts = er32(PBECCSTS);
1866
1867		adapter->corr_errors +=
1868		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1869		adapter->uncorr_errors +=
1870		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
 
1871
1872		/* Do the reset outside of interrupt context */
1873		schedule_work(&adapter->reset_task);
1874
1875		/* return immediately since reset is imminent */
1876		return IRQ_HANDLED;
1877	}
1878
1879	if (napi_schedule_prep(&adapter->napi)) {
1880		adapter->total_tx_bytes = 0;
1881		adapter->total_tx_packets = 0;
1882		adapter->total_rx_bytes = 0;
1883		adapter->total_rx_packets = 0;
1884		__napi_schedule(&adapter->napi);
1885	}
1886
1887	return IRQ_HANDLED;
1888}
1889
1890static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1891{
1892	struct net_device *netdev = data;
1893	struct e1000_adapter *adapter = netdev_priv(netdev);
1894	struct e1000_hw *hw = &adapter->hw;
1895	u32 icr = er32(ICR);
1896
 
 
 
 
 
 
1897	if (icr & adapter->eiac_mask)
1898		ew32(ICS, (icr & adapter->eiac_mask));
1899
1900	if (icr & E1000_ICR_LSC) {
 
 
1901		hw->mac.get_link_status = true;
1902		/* guard against interrupt when we're going down */
1903		if (!test_bit(__E1000_DOWN, &adapter->state))
1904			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1905	}
1906
 
1907	if (!test_bit(__E1000_DOWN, &adapter->state))
1908		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1909
1910	return IRQ_HANDLED;
1911}
1912
1913static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1914{
1915	struct net_device *netdev = data;
1916	struct e1000_adapter *adapter = netdev_priv(netdev);
1917	struct e1000_hw *hw = &adapter->hw;
1918	struct e1000_ring *tx_ring = adapter->tx_ring;
1919
1920	adapter->total_tx_bytes = 0;
1921	adapter->total_tx_packets = 0;
1922
1923	if (!e1000_clean_tx_irq(tx_ring))
1924		/* Ring was not completely cleaned, so fire another interrupt */
1925		ew32(ICS, tx_ring->ims_val);
1926
1927	if (!test_bit(__E1000_DOWN, &adapter->state))
1928		ew32(IMS, adapter->tx_ring->ims_val);
1929
1930	return IRQ_HANDLED;
1931}
1932
1933static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1934{
1935	struct net_device *netdev = data;
1936	struct e1000_adapter *adapter = netdev_priv(netdev);
1937	struct e1000_ring *rx_ring = adapter->rx_ring;
1938
1939	/* Write the ITR value calculated at the end of the
1940	 * previous interrupt.
1941	 */
1942	if (rx_ring->set_itr) {
1943		u32 itr = rx_ring->itr_val ?
1944			  1000000000 / (rx_ring->itr_val * 256) : 0;
1945
1946		writel(itr, rx_ring->itr_register);
1947		rx_ring->set_itr = 0;
1948	}
1949
1950	if (napi_schedule_prep(&adapter->napi)) {
1951		adapter->total_rx_bytes = 0;
1952		adapter->total_rx_packets = 0;
1953		__napi_schedule(&adapter->napi);
1954	}
1955	return IRQ_HANDLED;
1956}
1957
1958/**
1959 * e1000_configure_msix - Configure MSI-X hardware
1960 * @adapter: board private structure
1961 *
1962 * e1000_configure_msix sets up the hardware to properly
1963 * generate MSI-X interrupts.
1964 **/
1965static void e1000_configure_msix(struct e1000_adapter *adapter)
1966{
1967	struct e1000_hw *hw = &adapter->hw;
1968	struct e1000_ring *rx_ring = adapter->rx_ring;
1969	struct e1000_ring *tx_ring = adapter->tx_ring;
1970	int vector = 0;
1971	u32 ctrl_ext, ivar = 0;
1972
1973	adapter->eiac_mask = 0;
1974
1975	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1976	if (hw->mac.type == e1000_82574) {
1977		u32 rfctl = er32(RFCTL);
1978
1979		rfctl |= E1000_RFCTL_ACK_DIS;
1980		ew32(RFCTL, rfctl);
1981	}
1982
1983	/* Configure Rx vector */
1984	rx_ring->ims_val = E1000_IMS_RXQ0;
1985	adapter->eiac_mask |= rx_ring->ims_val;
1986	if (rx_ring->itr_val)
1987		writel(1000000000 / (rx_ring->itr_val * 256),
1988		       rx_ring->itr_register);
1989	else
1990		writel(1, rx_ring->itr_register);
1991	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1992
1993	/* Configure Tx vector */
1994	tx_ring->ims_val = E1000_IMS_TXQ0;
1995	vector++;
1996	if (tx_ring->itr_val)
1997		writel(1000000000 / (tx_ring->itr_val * 256),
1998		       tx_ring->itr_register);
1999	else
2000		writel(1, tx_ring->itr_register);
2001	adapter->eiac_mask |= tx_ring->ims_val;
2002	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2003
2004	/* set vector for Other Causes, e.g. link changes */
2005	vector++;
2006	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2007	if (rx_ring->itr_val)
2008		writel(1000000000 / (rx_ring->itr_val * 256),
2009		       hw->hw_addr + E1000_EITR_82574(vector));
2010	else
2011		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2012
2013	/* Cause Tx interrupts on every write back */
2014	ivar |= BIT(31);
2015
2016	ew32(IVAR, ivar);
2017
2018	/* enable MSI-X PBA support */
2019	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2020	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
 
 
 
 
2021	ew32(CTRL_EXT, ctrl_ext);
2022	e1e_flush();
2023}
2024
2025void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2026{
2027	if (adapter->msix_entries) {
2028		pci_disable_msix(adapter->pdev);
2029		kfree(adapter->msix_entries);
2030		adapter->msix_entries = NULL;
2031	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2032		pci_disable_msi(adapter->pdev);
2033		adapter->flags &= ~FLAG_MSI_ENABLED;
2034	}
2035}
2036
2037/**
2038 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2039 * @adapter: board private structure
2040 *
2041 * Attempt to configure interrupts using the best available
2042 * capabilities of the hardware and kernel.
2043 **/
2044void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2045{
2046	int err;
2047	int i;
2048
2049	switch (adapter->int_mode) {
2050	case E1000E_INT_MODE_MSIX:
2051		if (adapter->flags & FLAG_HAS_MSIX) {
2052			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2053			adapter->msix_entries = kcalloc(adapter->num_vectors,
2054							sizeof(struct
2055							       msix_entry),
2056							GFP_KERNEL);
2057			if (adapter->msix_entries) {
2058				struct e1000_adapter *a = adapter;
2059
2060				for (i = 0; i < adapter->num_vectors; i++)
2061					adapter->msix_entries[i].entry = i;
2062
2063				err = pci_enable_msix_range(a->pdev,
2064							    a->msix_entries,
2065							    a->num_vectors,
2066							    a->num_vectors);
2067				if (err > 0)
2068					return;
2069			}
2070			/* MSI-X failed, so fall through and try MSI */
2071			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2072			e1000e_reset_interrupt_capability(adapter);
2073		}
2074		adapter->int_mode = E1000E_INT_MODE_MSI;
2075		fallthrough;
2076	case E1000E_INT_MODE_MSI:
2077		if (!pci_enable_msi(adapter->pdev)) {
2078			adapter->flags |= FLAG_MSI_ENABLED;
2079		} else {
2080			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2081			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2082		}
2083		fallthrough;
2084	case E1000E_INT_MODE_LEGACY:
2085		/* Don't do anything; this is the system default */
2086		break;
2087	}
2088
2089	/* store the number of vectors being used */
2090	adapter->num_vectors = 1;
2091}
2092
2093/**
2094 * e1000_request_msix - Initialize MSI-X interrupts
2095 * @adapter: board private structure
2096 *
2097 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2098 * kernel.
2099 **/
2100static int e1000_request_msix(struct e1000_adapter *adapter)
2101{
2102	struct net_device *netdev = adapter->netdev;
2103	int err = 0, vector = 0;
2104
2105	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2106		snprintf(adapter->rx_ring->name,
2107			 sizeof(adapter->rx_ring->name) - 1,
2108			 "%.14s-rx-0", netdev->name);
2109	else
2110		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2111	err = request_irq(adapter->msix_entries[vector].vector,
2112			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2113			  netdev);
2114	if (err)
2115		return err;
2116	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2117	    E1000_EITR_82574(vector);
2118	adapter->rx_ring->itr_val = adapter->itr;
2119	vector++;
2120
2121	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2122		snprintf(adapter->tx_ring->name,
2123			 sizeof(adapter->tx_ring->name) - 1,
2124			 "%.14s-tx-0", netdev->name);
2125	else
2126		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2127	err = request_irq(adapter->msix_entries[vector].vector,
2128			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2129			  netdev);
2130	if (err)
2131		return err;
2132	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2133	    E1000_EITR_82574(vector);
2134	adapter->tx_ring->itr_val = adapter->itr;
2135	vector++;
2136
2137	err = request_irq(adapter->msix_entries[vector].vector,
2138			  e1000_msix_other, 0, netdev->name, netdev);
2139	if (err)
2140		return err;
2141
2142	e1000_configure_msix(adapter);
2143
2144	return 0;
2145}
2146
2147/**
2148 * e1000_request_irq - initialize interrupts
2149 * @adapter: board private structure
2150 *
2151 * Attempts to configure interrupts using the best available
2152 * capabilities of the hardware and kernel.
2153 **/
2154static int e1000_request_irq(struct e1000_adapter *adapter)
2155{
2156	struct net_device *netdev = adapter->netdev;
2157	int err;
2158
2159	if (adapter->msix_entries) {
2160		err = e1000_request_msix(adapter);
2161		if (!err)
2162			return err;
2163		/* fall back to MSI */
2164		e1000e_reset_interrupt_capability(adapter);
2165		adapter->int_mode = E1000E_INT_MODE_MSI;
2166		e1000e_set_interrupt_capability(adapter);
2167	}
2168	if (adapter->flags & FLAG_MSI_ENABLED) {
2169		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2170				  netdev->name, netdev);
2171		if (!err)
2172			return err;
2173
2174		/* fall back to legacy interrupt */
2175		e1000e_reset_interrupt_capability(adapter);
2176		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2177	}
2178
2179	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2180			  netdev->name, netdev);
2181	if (err)
2182		e_err("Unable to allocate interrupt, Error: %d\n", err);
2183
2184	return err;
2185}
2186
2187static void e1000_free_irq(struct e1000_adapter *adapter)
2188{
2189	struct net_device *netdev = adapter->netdev;
2190
2191	if (adapter->msix_entries) {
2192		int vector = 0;
2193
2194		free_irq(adapter->msix_entries[vector].vector, netdev);
2195		vector++;
2196
2197		free_irq(adapter->msix_entries[vector].vector, netdev);
2198		vector++;
2199
2200		/* Other Causes interrupt vector */
2201		free_irq(adapter->msix_entries[vector].vector, netdev);
2202		return;
2203	}
2204
2205	free_irq(adapter->pdev->irq, netdev);
2206}
2207
2208/**
2209 * e1000_irq_disable - Mask off interrupt generation on the NIC
2210 * @adapter: board private structure
2211 **/
2212static void e1000_irq_disable(struct e1000_adapter *adapter)
2213{
2214	struct e1000_hw *hw = &adapter->hw;
2215
2216	ew32(IMC, ~0);
2217	if (adapter->msix_entries)
2218		ew32(EIAC_82574, 0);
2219	e1e_flush();
2220
2221	if (adapter->msix_entries) {
2222		int i;
2223
2224		for (i = 0; i < adapter->num_vectors; i++)
2225			synchronize_irq(adapter->msix_entries[i].vector);
2226	} else {
2227		synchronize_irq(adapter->pdev->irq);
2228	}
2229}
2230
2231/**
2232 * e1000_irq_enable - Enable default interrupt generation settings
2233 * @adapter: board private structure
2234 **/
2235static void e1000_irq_enable(struct e1000_adapter *adapter)
2236{
2237	struct e1000_hw *hw = &adapter->hw;
2238
2239	if (adapter->msix_entries) {
2240		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2241		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2242		     IMS_OTHER_MASK);
2243	} else if (hw->mac.type >= e1000_pch_lpt) {
2244		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2245	} else {
2246		ew32(IMS, IMS_ENABLE_MASK);
2247	}
2248	e1e_flush();
2249}
2250
2251/**
2252 * e1000e_get_hw_control - get control of the h/w from f/w
2253 * @adapter: address of board private structure
2254 *
2255 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2256 * For ASF and Pass Through versions of f/w this means that
2257 * the driver is loaded. For AMT version (only with 82573)
2258 * of the f/w this means that the network i/f is open.
2259 **/
2260void e1000e_get_hw_control(struct e1000_adapter *adapter)
2261{
2262	struct e1000_hw *hw = &adapter->hw;
2263	u32 ctrl_ext;
2264	u32 swsm;
2265
2266	/* Let firmware know the driver has taken over */
2267	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2268		swsm = er32(SWSM);
2269		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2270	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2271		ctrl_ext = er32(CTRL_EXT);
2272		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2273	}
2274}
2275
2276/**
2277 * e1000e_release_hw_control - release control of the h/w to f/w
2278 * @adapter: address of board private structure
2279 *
2280 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2281 * For ASF and Pass Through versions of f/w this means that the
2282 * driver is no longer loaded. For AMT version (only with 82573) i
2283 * of the f/w this means that the network i/f is closed.
2284 *
2285 **/
2286void e1000e_release_hw_control(struct e1000_adapter *adapter)
2287{
2288	struct e1000_hw *hw = &adapter->hw;
2289	u32 ctrl_ext;
2290	u32 swsm;
2291
2292	/* Let firmware taken over control of h/w */
2293	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2294		swsm = er32(SWSM);
2295		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2296	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2297		ctrl_ext = er32(CTRL_EXT);
2298		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2299	}
2300}
2301
2302/**
2303 * e1000_alloc_ring_dma - allocate memory for a ring structure
2304 * @adapter: board private structure
2305 * @ring: ring struct for which to allocate dma
2306 **/
2307static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2308				struct e1000_ring *ring)
2309{
2310	struct pci_dev *pdev = adapter->pdev;
2311
2312	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2313					GFP_KERNEL);
2314	if (!ring->desc)
2315		return -ENOMEM;
2316
2317	return 0;
2318}
2319
2320/**
2321 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2322 * @tx_ring: Tx descriptor ring
2323 *
2324 * Return 0 on success, negative on failure
2325 **/
2326int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2327{
2328	struct e1000_adapter *adapter = tx_ring->adapter;
2329	int err = -ENOMEM, size;
2330
2331	size = sizeof(struct e1000_buffer) * tx_ring->count;
2332	tx_ring->buffer_info = vzalloc(size);
2333	if (!tx_ring->buffer_info)
2334		goto err;
2335
2336	/* round up to nearest 4K */
2337	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2338	tx_ring->size = ALIGN(tx_ring->size, 4096);
2339
2340	err = e1000_alloc_ring_dma(adapter, tx_ring);
2341	if (err)
2342		goto err;
2343
2344	tx_ring->next_to_use = 0;
2345	tx_ring->next_to_clean = 0;
2346
2347	return 0;
2348err:
2349	vfree(tx_ring->buffer_info);
2350	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2351	return err;
2352}
2353
2354/**
2355 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2356 * @rx_ring: Rx descriptor ring
2357 *
2358 * Returns 0 on success, negative on failure
2359 **/
2360int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2361{
2362	struct e1000_adapter *adapter = rx_ring->adapter;
2363	struct e1000_buffer *buffer_info;
2364	int i, size, desc_len, err = -ENOMEM;
2365
2366	size = sizeof(struct e1000_buffer) * rx_ring->count;
2367	rx_ring->buffer_info = vzalloc(size);
2368	if (!rx_ring->buffer_info)
2369		goto err;
2370
2371	for (i = 0; i < rx_ring->count; i++) {
2372		buffer_info = &rx_ring->buffer_info[i];
2373		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2374						sizeof(struct e1000_ps_page),
2375						GFP_KERNEL);
2376		if (!buffer_info->ps_pages)
2377			goto err_pages;
2378	}
2379
2380	desc_len = sizeof(union e1000_rx_desc_packet_split);
2381
2382	/* Round up to nearest 4K */
2383	rx_ring->size = rx_ring->count * desc_len;
2384	rx_ring->size = ALIGN(rx_ring->size, 4096);
2385
2386	err = e1000_alloc_ring_dma(adapter, rx_ring);
2387	if (err)
2388		goto err_pages;
2389
2390	rx_ring->next_to_clean = 0;
2391	rx_ring->next_to_use = 0;
2392	rx_ring->rx_skb_top = NULL;
2393
2394	return 0;
2395
2396err_pages:
2397	for (i = 0; i < rx_ring->count; i++) {
2398		buffer_info = &rx_ring->buffer_info[i];
2399		kfree(buffer_info->ps_pages);
2400	}
2401err:
2402	vfree(rx_ring->buffer_info);
2403	e_err("Unable to allocate memory for the receive descriptor ring\n");
2404	return err;
2405}
2406
2407/**
2408 * e1000_clean_tx_ring - Free Tx Buffers
2409 * @tx_ring: Tx descriptor ring
2410 **/
2411static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2412{
2413	struct e1000_adapter *adapter = tx_ring->adapter;
2414	struct e1000_buffer *buffer_info;
2415	unsigned long size;
2416	unsigned int i;
2417
2418	for (i = 0; i < tx_ring->count; i++) {
2419		buffer_info = &tx_ring->buffer_info[i];
2420		e1000_put_txbuf(tx_ring, buffer_info, false);
2421	}
2422
2423	netdev_reset_queue(adapter->netdev);
2424	size = sizeof(struct e1000_buffer) * tx_ring->count;
2425	memset(tx_ring->buffer_info, 0, size);
2426
2427	memset(tx_ring->desc, 0, tx_ring->size);
2428
2429	tx_ring->next_to_use = 0;
2430	tx_ring->next_to_clean = 0;
 
 
 
 
 
 
2431}
2432
2433/**
2434 * e1000e_free_tx_resources - Free Tx Resources per Queue
2435 * @tx_ring: Tx descriptor ring
2436 *
2437 * Free all transmit software resources
2438 **/
2439void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2440{
2441	struct e1000_adapter *adapter = tx_ring->adapter;
2442	struct pci_dev *pdev = adapter->pdev;
2443
2444	e1000_clean_tx_ring(tx_ring);
2445
2446	vfree(tx_ring->buffer_info);
2447	tx_ring->buffer_info = NULL;
2448
2449	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2450			  tx_ring->dma);
2451	tx_ring->desc = NULL;
2452}
2453
2454/**
2455 * e1000e_free_rx_resources - Free Rx Resources
2456 * @rx_ring: Rx descriptor ring
2457 *
2458 * Free all receive software resources
2459 **/
2460void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2461{
2462	struct e1000_adapter *adapter = rx_ring->adapter;
2463	struct pci_dev *pdev = adapter->pdev;
2464	int i;
2465
2466	e1000_clean_rx_ring(rx_ring);
2467
2468	for (i = 0; i < rx_ring->count; i++)
2469		kfree(rx_ring->buffer_info[i].ps_pages);
2470
2471	vfree(rx_ring->buffer_info);
2472	rx_ring->buffer_info = NULL;
2473
2474	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2475			  rx_ring->dma);
2476	rx_ring->desc = NULL;
2477}
2478
2479/**
2480 * e1000_update_itr - update the dynamic ITR value based on statistics
 
2481 * @itr_setting: current adapter->itr
2482 * @packets: the number of packets during this measurement interval
2483 * @bytes: the number of bytes during this measurement interval
2484 *
2485 *      Stores a new ITR value based on packets and byte
2486 *      counts during the last interrupt.  The advantage of per interrupt
2487 *      computation is faster updates and more accurate ITR for the current
2488 *      traffic pattern.  Constants in this function were computed
2489 *      based on theoretical maximum wire speed and thresholds were set based
2490 *      on testing data as well as attempting to minimize response time
2491 *      while increasing bulk throughput.  This functionality is controlled
2492 *      by the InterruptThrottleRate module parameter.
2493 **/
2494static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2495{
2496	unsigned int retval = itr_setting;
2497
2498	if (packets == 0)
2499		return itr_setting;
2500
2501	switch (itr_setting) {
2502	case lowest_latency:
2503		/* handle TSO and jumbo frames */
2504		if (bytes / packets > 8000)
2505			retval = bulk_latency;
2506		else if ((packets < 5) && (bytes > 512))
2507			retval = low_latency;
2508		break;
2509	case low_latency:	/* 50 usec aka 20000 ints/s */
2510		if (bytes > 10000) {
2511			/* this if handles the TSO accounting */
2512			if (bytes / packets > 8000)
2513				retval = bulk_latency;
2514			else if ((packets < 10) || ((bytes / packets) > 1200))
2515				retval = bulk_latency;
2516			else if ((packets > 35))
2517				retval = lowest_latency;
2518		} else if (bytes / packets > 2000) {
2519			retval = bulk_latency;
2520		} else if (packets <= 2 && bytes < 512) {
2521			retval = lowest_latency;
2522		}
2523		break;
2524	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2525		if (bytes > 25000) {
2526			if (packets > 35)
2527				retval = low_latency;
2528		} else if (bytes < 6000) {
2529			retval = low_latency;
2530		}
2531		break;
2532	}
2533
2534	return retval;
2535}
2536
2537static void e1000_set_itr(struct e1000_adapter *adapter)
2538{
2539	u16 current_itr;
2540	u32 new_itr = adapter->itr;
2541
2542	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2543	if (adapter->link_speed != SPEED_1000) {
 
2544		new_itr = 4000;
2545		goto set_itr_now;
2546	}
2547
2548	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2549		new_itr = 0;
2550		goto set_itr_now;
2551	}
2552
2553	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2554					   adapter->total_tx_packets,
2555					   adapter->total_tx_bytes);
2556	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2557	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2558		adapter->tx_itr = low_latency;
2559
2560	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2561					   adapter->total_rx_packets,
2562					   adapter->total_rx_bytes);
2563	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2564	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2565		adapter->rx_itr = low_latency;
2566
2567	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2568
2569	/* counts and packets in update_itr are dependent on these numbers */
2570	switch (current_itr) {
2571	case lowest_latency:
2572		new_itr = 70000;
2573		break;
2574	case low_latency:
2575		new_itr = 20000;	/* aka hwitr = ~200 */
2576		break;
2577	case bulk_latency:
2578		new_itr = 4000;
2579		break;
2580	default:
2581		break;
2582	}
2583
2584set_itr_now:
2585	if (new_itr != adapter->itr) {
2586		/* this attempts to bias the interrupt rate towards Bulk
2587		 * by adding intermediate steps when interrupt rate is
2588		 * increasing
2589		 */
2590		new_itr = new_itr > adapter->itr ?
2591		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2592		adapter->itr = new_itr;
2593		adapter->rx_ring->itr_val = new_itr;
2594		if (adapter->msix_entries)
2595			adapter->rx_ring->set_itr = 1;
2596		else
2597			e1000e_write_itr(adapter, new_itr);
2598	}
2599}
2600
2601/**
2602 * e1000e_write_itr - write the ITR value to the appropriate registers
2603 * @adapter: address of board private structure
2604 * @itr: new ITR value to program
2605 *
2606 * e1000e_write_itr determines if the adapter is in MSI-X mode
2607 * and, if so, writes the EITR registers with the ITR value.
2608 * Otherwise, it writes the ITR value into the ITR register.
2609 **/
2610void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2611{
2612	struct e1000_hw *hw = &adapter->hw;
2613	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2614
2615	if (adapter->msix_entries) {
2616		int vector;
2617
2618		for (vector = 0; vector < adapter->num_vectors; vector++)
2619			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2620	} else {
2621		ew32(ITR, new_itr);
2622	}
2623}
2624
2625/**
2626 * e1000_alloc_queues - Allocate memory for all rings
2627 * @adapter: board private structure to initialize
2628 **/
2629static int e1000_alloc_queues(struct e1000_adapter *adapter)
2630{
2631	int size = sizeof(struct e1000_ring);
2632
2633	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2634	if (!adapter->tx_ring)
2635		goto err;
2636	adapter->tx_ring->count = adapter->tx_ring_count;
2637	adapter->tx_ring->adapter = adapter;
2638
2639	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2640	if (!adapter->rx_ring)
2641		goto err;
2642	adapter->rx_ring->count = adapter->rx_ring_count;
2643	adapter->rx_ring->adapter = adapter;
2644
2645	return 0;
2646err:
2647	e_err("Unable to allocate memory for queues\n");
2648	kfree(adapter->rx_ring);
2649	kfree(adapter->tx_ring);
2650	return -ENOMEM;
2651}
2652
2653/**
2654 * e1000e_poll - NAPI Rx polling callback
2655 * @napi: struct associated with this polling callback
2656 * @budget: number of packets driver is allowed to process this poll
2657 **/
2658static int e1000e_poll(struct napi_struct *napi, int budget)
2659{
2660	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2661						     napi);
2662	struct e1000_hw *hw = &adapter->hw;
2663	struct net_device *poll_dev = adapter->netdev;
2664	int tx_cleaned = 1, work_done = 0;
2665
2666	adapter = netdev_priv(poll_dev);
2667
2668	if (!adapter->msix_entries ||
2669	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2670		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2671
2672	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2673
2674	if (!tx_cleaned || work_done == budget)
2675		return budget;
2676
2677	/* Exit the polling mode, but don't re-enable interrupts if stack might
2678	 * poll us due to busy-polling
2679	 */
2680	if (likely(napi_complete_done(napi, work_done))) {
2681		if (adapter->itr_setting & 3)
2682			e1000_set_itr(adapter);
 
2683		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2684			if (adapter->msix_entries)
2685				ew32(IMS, adapter->rx_ring->ims_val);
2686			else
2687				e1000_irq_enable(adapter);
2688		}
2689	}
2690
2691	return work_done;
2692}
2693
2694static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2695				 __always_unused __be16 proto, u16 vid)
2696{
2697	struct e1000_adapter *adapter = netdev_priv(netdev);
2698	struct e1000_hw *hw = &adapter->hw;
2699	u32 vfta, index;
2700
2701	/* don't update vlan cookie if already programmed */
2702	if ((adapter->hw.mng_cookie.status &
2703	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2704	    (vid == adapter->mng_vlan_id))
2705		return 0;
2706
2707	/* add VID to filter table */
2708	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2709		index = (vid >> 5) & 0x7F;
2710		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2711		vfta |= BIT((vid & 0x1F));
2712		hw->mac.ops.write_vfta(hw, index, vfta);
2713	}
2714
2715	set_bit(vid, adapter->active_vlans);
2716
2717	return 0;
2718}
2719
2720static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2721				  __always_unused __be16 proto, u16 vid)
2722{
2723	struct e1000_adapter *adapter = netdev_priv(netdev);
2724	struct e1000_hw *hw = &adapter->hw;
2725	u32 vfta, index;
2726
2727	if ((adapter->hw.mng_cookie.status &
2728	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2729	    (vid == adapter->mng_vlan_id)) {
2730		/* release control to f/w */
2731		e1000e_release_hw_control(adapter);
2732		return 0;
2733	}
2734
2735	/* remove VID from filter table */
2736	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2737		index = (vid >> 5) & 0x7F;
2738		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2739		vfta &= ~BIT((vid & 0x1F));
2740		hw->mac.ops.write_vfta(hw, index, vfta);
2741	}
2742
2743	clear_bit(vid, adapter->active_vlans);
2744
2745	return 0;
2746}
2747
2748/**
2749 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2750 * @adapter: board private structure to initialize
2751 **/
2752static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2753{
2754	struct net_device *netdev = adapter->netdev;
2755	struct e1000_hw *hw = &adapter->hw;
2756	u32 rctl;
2757
2758	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2759		/* disable VLAN receive filtering */
2760		rctl = er32(RCTL);
2761		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2762		ew32(RCTL, rctl);
2763
2764		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2765			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2766					       adapter->mng_vlan_id);
2767			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2768		}
2769	}
2770}
2771
2772/**
2773 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2774 * @adapter: board private structure to initialize
2775 **/
2776static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2777{
2778	struct e1000_hw *hw = &adapter->hw;
2779	u32 rctl;
2780
2781	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2782		/* enable VLAN receive filtering */
2783		rctl = er32(RCTL);
2784		rctl |= E1000_RCTL_VFE;
2785		rctl &= ~E1000_RCTL_CFIEN;
2786		ew32(RCTL, rctl);
2787	}
2788}
2789
2790/**
2791 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2792 * @adapter: board private structure to initialize
2793 **/
2794static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2795{
2796	struct e1000_hw *hw = &adapter->hw;
2797	u32 ctrl;
2798
2799	/* disable VLAN tag insert/strip */
2800	ctrl = er32(CTRL);
2801	ctrl &= ~E1000_CTRL_VME;
2802	ew32(CTRL, ctrl);
2803}
2804
2805/**
2806 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2807 * @adapter: board private structure to initialize
2808 **/
2809static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2810{
2811	struct e1000_hw *hw = &adapter->hw;
2812	u32 ctrl;
2813
2814	/* enable VLAN tag insert/strip */
2815	ctrl = er32(CTRL);
2816	ctrl |= E1000_CTRL_VME;
2817	ew32(CTRL, ctrl);
2818}
2819
2820static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2821{
2822	struct net_device *netdev = adapter->netdev;
2823	u16 vid = adapter->hw.mng_cookie.vlan_id;
2824	u16 old_vid = adapter->mng_vlan_id;
2825
2826	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2827		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2828		adapter->mng_vlan_id = vid;
2829	}
2830
2831	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2832		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2833}
2834
2835static void e1000_restore_vlan(struct e1000_adapter *adapter)
2836{
2837	u16 vid;
2838
2839	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2840
2841	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2842	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2843}
2844
2845static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2846{
2847	struct e1000_hw *hw = &adapter->hw;
2848	u32 manc, manc2h, mdef, i, j;
2849
2850	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2851		return;
2852
2853	manc = er32(MANC);
2854
2855	/* enable receiving management packets to the host. this will probably
2856	 * generate destination unreachable messages from the host OS, but
2857	 * the packets will be handled on SMBUS
2858	 */
2859	manc |= E1000_MANC_EN_MNG2HOST;
2860	manc2h = er32(MANC2H);
2861
2862	switch (hw->mac.type) {
2863	default:
2864		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2865		break;
2866	case e1000_82574:
2867	case e1000_82583:
2868		/* Check if IPMI pass-through decision filter already exists;
2869		 * if so, enable it.
2870		 */
2871		for (i = 0, j = 0; i < 8; i++) {
2872			mdef = er32(MDEF(i));
2873
2874			/* Ignore filters with anything other than IPMI ports */
2875			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2876				continue;
2877
2878			/* Enable this decision filter in MANC2H */
2879			if (mdef)
2880				manc2h |= BIT(i);
2881
2882			j |= mdef;
2883		}
2884
2885		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2886			break;
2887
2888		/* Create new decision filter in an empty filter */
2889		for (i = 0, j = 0; i < 8; i++)
2890			if (er32(MDEF(i)) == 0) {
2891				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2892					       E1000_MDEF_PORT_664));
2893				manc2h |= BIT(1);
2894				j++;
2895				break;
2896			}
2897
2898		if (!j)
2899			e_warn("Unable to create IPMI pass-through filter\n");
2900		break;
2901	}
2902
2903	ew32(MANC2H, manc2h);
2904	ew32(MANC, manc);
2905}
2906
2907/**
2908 * e1000_configure_tx - Configure Transmit Unit after Reset
2909 * @adapter: board private structure
2910 *
2911 * Configure the Tx unit of the MAC after a reset.
2912 **/
2913static void e1000_configure_tx(struct e1000_adapter *adapter)
2914{
2915	struct e1000_hw *hw = &adapter->hw;
2916	struct e1000_ring *tx_ring = adapter->tx_ring;
2917	u64 tdba;
2918	u32 tdlen, tctl, tarc;
2919
2920	/* Setup the HW Tx Head and Tail descriptor pointers */
2921	tdba = tx_ring->dma;
2922	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2923	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2924	ew32(TDBAH(0), (tdba >> 32));
2925	ew32(TDLEN(0), tdlen);
2926	ew32(TDH(0), 0);
2927	ew32(TDT(0), 0);
2928	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2929	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2930
2931	writel(0, tx_ring->head);
2932	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2933		e1000e_update_tdt_wa(tx_ring, 0);
2934	else
2935		writel(0, tx_ring->tail);
2936
2937	/* Set the Tx Interrupt Delay register */
2938	ew32(TIDV, adapter->tx_int_delay);
2939	/* Tx irq moderation */
2940	ew32(TADV, adapter->tx_abs_int_delay);
2941
2942	if (adapter->flags2 & FLAG2_DMA_BURST) {
2943		u32 txdctl = er32(TXDCTL(0));
2944
2945		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2946			    E1000_TXDCTL_WTHRESH);
2947		/* set up some performance related parameters to encourage the
2948		 * hardware to use the bus more efficiently in bursts, depends
2949		 * on the tx_int_delay to be enabled,
2950		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2951		 * hthresh = 1 ==> prefetch when one or more available
2952		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2953		 * BEWARE: this seems to work but should be considered first if
2954		 * there are Tx hangs or other Tx related bugs
2955		 */
2956		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2957		ew32(TXDCTL(0), txdctl);
2958	}
2959	/* erratum work around: set txdctl the same for both queues */
2960	ew32(TXDCTL(1), er32(TXDCTL(0)));
2961
2962	/* Program the Transmit Control Register */
2963	tctl = er32(TCTL);
2964	tctl &= ~E1000_TCTL_CT;
2965	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2966		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2967
2968	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2969		tarc = er32(TARC(0));
2970		/* set the speed mode bit, we'll clear it if we're not at
2971		 * gigabit link later
2972		 */
2973#define SPEED_MODE_BIT BIT(21)
2974		tarc |= SPEED_MODE_BIT;
2975		ew32(TARC(0), tarc);
2976	}
2977
2978	/* errata: program both queues to unweighted RR */
2979	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2980		tarc = er32(TARC(0));
2981		tarc |= 1;
2982		ew32(TARC(0), tarc);
2983		tarc = er32(TARC(1));
2984		tarc |= 1;
2985		ew32(TARC(1), tarc);
2986	}
2987
2988	/* Setup Transmit Descriptor Settings for eop descriptor */
2989	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2990
2991	/* only set IDE if we are delaying interrupts using the timers */
2992	if (adapter->tx_int_delay)
2993		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2994
2995	/* enable Report Status bit */
2996	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2997
2998	ew32(TCTL, tctl);
2999
3000	hw->mac.ops.config_collision_dist(hw);
3001
3002	/* SPT and KBL Si errata workaround to avoid data corruption */
3003	if (hw->mac.type == e1000_pch_spt) {
3004		u32 reg_val;
3005
3006		reg_val = er32(IOSFPC);
3007		reg_val |= E1000_RCTL_RDMTS_HEX;
3008		ew32(IOSFPC, reg_val);
3009
3010		reg_val = er32(TARC(0));
3011		/* SPT and KBL Si errata workaround to avoid Tx hang.
3012		 * Dropping the number of outstanding requests from
3013		 * 3 to 2 in order to avoid a buffer overrun.
3014		 */
3015		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3016		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3017		ew32(TARC(0), reg_val);
3018	}
3019}
3020
3021#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3022			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3023
3024/**
3025 * e1000_setup_rctl - configure the receive control registers
3026 * @adapter: Board private structure
3027 **/
 
 
3028static void e1000_setup_rctl(struct e1000_adapter *adapter)
3029{
3030	struct e1000_hw *hw = &adapter->hw;
3031	u32 rctl, rfctl;
3032	u32 pages = 0;
3033
3034	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3035	 * If jumbo frames not set, program related MAC/PHY registers
3036	 * to h/w defaults
3037	 */
3038	if (hw->mac.type >= e1000_pch2lan) {
3039		s32 ret_val;
3040
3041		if (adapter->netdev->mtu > ETH_DATA_LEN)
3042			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3043		else
3044			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3045
3046		if (ret_val)
3047			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3048	}
3049
3050	/* Program MC offset vector base */
3051	rctl = er32(RCTL);
3052	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3053	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3054	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3055	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3056
3057	/* Do not Store bad packets */
3058	rctl &= ~E1000_RCTL_SBP;
3059
3060	/* Enable Long Packet receive */
3061	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3062		rctl &= ~E1000_RCTL_LPE;
3063	else
3064		rctl |= E1000_RCTL_LPE;
3065
3066	/* Some systems expect that the CRC is included in SMBUS traffic. The
3067	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3068	 * host memory when this is enabled
3069	 */
3070	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3071		rctl |= E1000_RCTL_SECRC;
3072
3073	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3074	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3075		u16 phy_data;
3076
3077		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3078		phy_data &= 0xfff8;
3079		phy_data |= BIT(2);
3080		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3081
3082		e1e_rphy(hw, 22, &phy_data);
3083		phy_data &= 0x0fff;
3084		phy_data |= BIT(14);
3085		e1e_wphy(hw, 0x10, 0x2823);
3086		e1e_wphy(hw, 0x11, 0x0003);
3087		e1e_wphy(hw, 22, phy_data);
3088	}
3089
3090	/* Setup buffer sizes */
3091	rctl &= ~E1000_RCTL_SZ_4096;
3092	rctl |= E1000_RCTL_BSEX;
3093	switch (adapter->rx_buffer_len) {
3094	case 2048:
3095	default:
3096		rctl |= E1000_RCTL_SZ_2048;
3097		rctl &= ~E1000_RCTL_BSEX;
3098		break;
3099	case 4096:
3100		rctl |= E1000_RCTL_SZ_4096;
3101		break;
3102	case 8192:
3103		rctl |= E1000_RCTL_SZ_8192;
3104		break;
3105	case 16384:
3106		rctl |= E1000_RCTL_SZ_16384;
3107		break;
3108	}
3109
3110	/* Enable Extended Status in all Receive Descriptors */
3111	rfctl = er32(RFCTL);
3112	rfctl |= E1000_RFCTL_EXTEN;
3113	ew32(RFCTL, rfctl);
3114
3115	/* 82571 and greater support packet-split where the protocol
3116	 * header is placed in skb->data and the packet data is
3117	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3118	 * In the case of a non-split, skb->data is linearly filled,
3119	 * followed by the page buffers.  Therefore, skb->data is
3120	 * sized to hold the largest protocol header.
3121	 *
3122	 * allocations using alloc_page take too long for regular MTU
3123	 * so only enable packet split for jumbo frames
3124	 *
3125	 * Using pages when the page size is greater than 16k wastes
3126	 * a lot of memory, since we allocate 3 pages at all times
3127	 * per packet.
3128	 */
3129	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3130	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3131		adapter->rx_ps_pages = pages;
3132	else
3133		adapter->rx_ps_pages = 0;
3134
3135	if (adapter->rx_ps_pages) {
3136		u32 psrctl = 0;
3137
3138		/* Enable Packet split descriptors */
3139		rctl |= E1000_RCTL_DTYP_PS;
3140
3141		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3142
3143		switch (adapter->rx_ps_pages) {
3144		case 3:
3145			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3146			fallthrough;
3147		case 2:
3148			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3149			fallthrough;
3150		case 1:
3151			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3152			break;
3153		}
3154
3155		ew32(PSRCTL, psrctl);
3156	}
3157
3158	/* This is useful for sniffing bad packets. */
3159	if (adapter->netdev->features & NETIF_F_RXALL) {
3160		/* UPE and MPE will be handled by normal PROMISC logic
3161		 * in e1000e_set_rx_mode
3162		 */
3163		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3164			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3165			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3166
3167		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3168			  E1000_RCTL_DPF |	/* Allow filtered pause */
3169			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3170		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3171		 * and that breaks VLANs.
3172		 */
3173	}
3174
3175	ew32(RCTL, rctl);
3176	/* just started the receive unit, no need to restart */
3177	adapter->flags &= ~FLAG_RESTART_NOW;
3178}
3179
3180/**
3181 * e1000_configure_rx - Configure Receive Unit after Reset
3182 * @adapter: board private structure
3183 *
3184 * Configure the Rx unit of the MAC after a reset.
3185 **/
3186static void e1000_configure_rx(struct e1000_adapter *adapter)
3187{
3188	struct e1000_hw *hw = &adapter->hw;
3189	struct e1000_ring *rx_ring = adapter->rx_ring;
3190	u64 rdba;
3191	u32 rdlen, rctl, rxcsum, ctrl_ext;
3192
3193	if (adapter->rx_ps_pages) {
3194		/* this is a 32 byte descriptor */
3195		rdlen = rx_ring->count *
3196		    sizeof(union e1000_rx_desc_packet_split);
3197		adapter->clean_rx = e1000_clean_rx_irq_ps;
3198		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3199	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3200		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3201		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3202		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3203	} else {
3204		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3205		adapter->clean_rx = e1000_clean_rx_irq;
3206		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3207	}
3208
3209	/* disable receives while setting up the descriptors */
3210	rctl = er32(RCTL);
3211	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3212		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3213	e1e_flush();
3214	usleep_range(10000, 11000);
3215
3216	if (adapter->flags2 & FLAG2_DMA_BURST) {
3217		/* set the writeback threshold (only takes effect if the RDTR
3218		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3219		 * enable prefetching of 0x20 Rx descriptors
3220		 * granularity = 01
3221		 * wthresh = 04,
3222		 * hthresh = 04,
3223		 * pthresh = 0x20
3224		 */
3225		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3226		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
 
 
 
 
 
 
 
 
3227	}
3228
3229	/* set the Receive Delay Timer Register */
3230	ew32(RDTR, adapter->rx_int_delay);
3231
3232	/* irq moderation */
3233	ew32(RADV, adapter->rx_abs_int_delay);
3234	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3235		e1000e_write_itr(adapter, adapter->itr);
3236
3237	ctrl_ext = er32(CTRL_EXT);
3238	/* Auto-Mask interrupts upon ICR access */
3239	ctrl_ext |= E1000_CTRL_EXT_IAME;
3240	ew32(IAM, 0xffffffff);
3241	ew32(CTRL_EXT, ctrl_ext);
3242	e1e_flush();
3243
3244	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3245	 * the Base and Length of the Rx Descriptor Ring
3246	 */
3247	rdba = rx_ring->dma;
3248	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3249	ew32(RDBAH(0), (rdba >> 32));
3250	ew32(RDLEN(0), rdlen);
3251	ew32(RDH(0), 0);
3252	ew32(RDT(0), 0);
3253	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3254	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3255
3256	writel(0, rx_ring->head);
3257	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3258		e1000e_update_rdt_wa(rx_ring, 0);
3259	else
3260		writel(0, rx_ring->tail);
3261
3262	/* Enable Receive Checksum Offload for TCP and UDP */
3263	rxcsum = er32(RXCSUM);
3264	if (adapter->netdev->features & NETIF_F_RXCSUM)
3265		rxcsum |= E1000_RXCSUM_TUOFL;
3266	else
3267		rxcsum &= ~E1000_RXCSUM_TUOFL;
3268	ew32(RXCSUM, rxcsum);
3269
3270	/* With jumbo frames, excessive C-state transition latencies result
3271	 * in dropped transactions.
3272	 */
3273	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3274		u32 lat =
3275		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3276		     adapter->max_frame_size) * 8 / 1000;
3277
3278		if (adapter->flags & FLAG_IS_ICH) {
3279			u32 rxdctl = er32(RXDCTL(0));
3280
3281			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3282		}
3283
3284		dev_info(&adapter->pdev->dev,
3285			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3286		cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3287	} else {
3288		cpu_latency_qos_update_request(&adapter->pm_qos_req,
3289					       PM_QOS_DEFAULT_VALUE);
3290	}
3291
3292	/* Enable Receives */
3293	ew32(RCTL, rctl);
3294}
3295
3296/**
3297 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3298 * @netdev: network interface device structure
3299 *
3300 * Writes multicast address list to the MTA hash table.
3301 * Returns: -ENOMEM on failure
3302 *                0 on no addresses written
3303 *                X on writing X addresses to MTA
3304 */
3305static int e1000e_write_mc_addr_list(struct net_device *netdev)
3306{
3307	struct e1000_adapter *adapter = netdev_priv(netdev);
3308	struct e1000_hw *hw = &adapter->hw;
3309	struct netdev_hw_addr *ha;
3310	u8 *mta_list;
3311	int i;
3312
3313	if (netdev_mc_empty(netdev)) {
3314		/* nothing to program, so clear mc list */
3315		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3316		return 0;
3317	}
3318
3319	mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3320	if (!mta_list)
3321		return -ENOMEM;
3322
3323	/* update_mc_addr_list expects a packed array of only addresses. */
3324	i = 0;
3325	netdev_for_each_mc_addr(ha, netdev)
3326	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3327
3328	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3329	kfree(mta_list);
3330
3331	return netdev_mc_count(netdev);
3332}
3333
3334/**
3335 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3336 * @netdev: network interface device structure
3337 *
3338 * Writes unicast address list to the RAR table.
3339 * Returns: -ENOMEM on failure/insufficient address space
3340 *                0 on no addresses written
3341 *                X on writing X addresses to the RAR table
3342 **/
3343static int e1000e_write_uc_addr_list(struct net_device *netdev)
3344{
3345	struct e1000_adapter *adapter = netdev_priv(netdev);
3346	struct e1000_hw *hw = &adapter->hw;
3347	unsigned int rar_entries;
3348	int count = 0;
3349
3350	rar_entries = hw->mac.ops.rar_get_count(hw);
3351
3352	/* save a rar entry for our hardware address */
3353	rar_entries--;
3354
3355	/* save a rar entry for the LAA workaround */
3356	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3357		rar_entries--;
3358
3359	/* return ENOMEM indicating insufficient memory for addresses */
3360	if (netdev_uc_count(netdev) > rar_entries)
3361		return -ENOMEM;
3362
3363	if (!netdev_uc_empty(netdev) && rar_entries) {
3364		struct netdev_hw_addr *ha;
3365
3366		/* write the addresses in reverse order to avoid write
3367		 * combining
3368		 */
3369		netdev_for_each_uc_addr(ha, netdev) {
3370			int ret_val;
3371
3372			if (!rar_entries)
3373				break;
3374			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3375			if (ret_val < 0)
3376				return -ENOMEM;
3377			count++;
3378		}
3379	}
3380
3381	/* zero out the remaining RAR entries not used above */
3382	for (; rar_entries > 0; rar_entries--) {
3383		ew32(RAH(rar_entries), 0);
3384		ew32(RAL(rar_entries), 0);
3385	}
3386	e1e_flush();
3387
3388	return count;
3389}
3390
3391/**
3392 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3393 * @netdev: network interface device structure
3394 *
3395 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3396 * address list or the network interface flags are updated.  This routine is
3397 * responsible for configuring the hardware for proper unicast, multicast,
3398 * promiscuous mode, and all-multi behavior.
3399 **/
3400static void e1000e_set_rx_mode(struct net_device *netdev)
3401{
3402	struct e1000_adapter *adapter = netdev_priv(netdev);
3403	struct e1000_hw *hw = &adapter->hw;
3404	u32 rctl;
3405
3406	if (pm_runtime_suspended(netdev->dev.parent))
3407		return;
3408
3409	/* Check for Promiscuous and All Multicast modes */
3410	rctl = er32(RCTL);
3411
3412	/* clear the affected bits */
3413	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3414
3415	if (netdev->flags & IFF_PROMISC) {
3416		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3417		/* Do not hardware filter VLANs in promisc mode */
3418		e1000e_vlan_filter_disable(adapter);
3419	} else {
3420		int count;
3421
3422		if (netdev->flags & IFF_ALLMULTI) {
3423			rctl |= E1000_RCTL_MPE;
3424		} else {
3425			/* Write addresses to the MTA, if the attempt fails
3426			 * then we should just turn on promiscuous mode so
3427			 * that we can at least receive multicast traffic
3428			 */
3429			count = e1000e_write_mc_addr_list(netdev);
3430			if (count < 0)
3431				rctl |= E1000_RCTL_MPE;
3432		}
3433		e1000e_vlan_filter_enable(adapter);
3434		/* Write addresses to available RAR registers, if there is not
3435		 * sufficient space to store all the addresses then enable
3436		 * unicast promiscuous mode
3437		 */
3438		count = e1000e_write_uc_addr_list(netdev);
3439		if (count < 0)
3440			rctl |= E1000_RCTL_UPE;
3441	}
3442
3443	ew32(RCTL, rctl);
3444
3445	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3446		e1000e_vlan_strip_enable(adapter);
3447	else
3448		e1000e_vlan_strip_disable(adapter);
3449}
3450
3451static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3452{
3453	struct e1000_hw *hw = &adapter->hw;
3454	u32 mrqc, rxcsum;
3455	u32 rss_key[10];
3456	int i;
 
 
 
 
3457
3458	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3459	for (i = 0; i < 10; i++)
3460		ew32(RSSRK(i), rss_key[i]);
3461
3462	/* Direct all traffic to queue 0 */
3463	for (i = 0; i < 32; i++)
3464		ew32(RETA(i), 0);
3465
3466	/* Disable raw packet checksumming so that RSS hash is placed in
3467	 * descriptor on writeback.
3468	 */
3469	rxcsum = er32(RXCSUM);
3470	rxcsum |= E1000_RXCSUM_PCSD;
3471
3472	ew32(RXCSUM, rxcsum);
3473
3474	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3475		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3476		E1000_MRQC_RSS_FIELD_IPV6 |
3477		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3478		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3479
3480	ew32(MRQC, mrqc);
3481}
3482
3483/**
3484 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3485 * @adapter: board private structure
3486 * @timinca: pointer to returned time increment attributes
3487 *
3488 * Get attributes for incrementing the System Time Register SYSTIML/H at
3489 * the default base frequency, and set the cyclecounter shift value.
3490 **/
3491s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3492{
3493	struct e1000_hw *hw = &adapter->hw;
3494	u32 incvalue, incperiod, shift;
3495
3496	/* Make sure clock is enabled on I217/I218/I219  before checking
3497	 * the frequency
3498	 */
3499	if ((hw->mac.type >= e1000_pch_lpt) &&
3500	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3501	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3502		u32 fextnvm7 = er32(FEXTNVM7);
3503
3504		if (!(fextnvm7 & BIT(0))) {
3505			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3506			e1e_flush();
3507		}
3508	}
3509
3510	switch (hw->mac.type) {
3511	case e1000_pch2lan:
3512		/* Stable 96MHz frequency */
3513		incperiod = INCPERIOD_96MHZ;
3514		incvalue = INCVALUE_96MHZ;
3515		shift = INCVALUE_SHIFT_96MHZ;
3516		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3517		break;
3518	case e1000_pch_lpt:
3519		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
 
 
 
 
3520			/* Stable 96MHz frequency */
3521			incperiod = INCPERIOD_96MHZ;
3522			incvalue = INCVALUE_96MHZ;
3523			shift = INCVALUE_SHIFT_96MHZ;
3524			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3525		} else {
3526			/* Stable 25MHz frequency */
3527			incperiod = INCPERIOD_25MHZ;
3528			incvalue = INCVALUE_25MHZ;
3529			shift = INCVALUE_SHIFT_25MHZ;
3530			adapter->cc.shift = shift;
3531		}
3532		break;
3533	case e1000_pch_spt:
3534		/* Stable 24MHz frequency */
3535		incperiod = INCPERIOD_24MHZ;
3536		incvalue = INCVALUE_24MHZ;
3537		shift = INCVALUE_SHIFT_24MHZ;
3538		adapter->cc.shift = shift;
3539		break;
3540	case e1000_pch_cnp:
3541	case e1000_pch_tgp:
3542	case e1000_pch_adp:
3543	case e1000_pch_mtp:
3544	case e1000_pch_lnp:
3545	case e1000_pch_ptp:
3546	case e1000_pch_nvp:
3547		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3548			/* Stable 24MHz frequency */
3549			incperiod = INCPERIOD_24MHZ;
3550			incvalue = INCVALUE_24MHZ;
3551			shift = INCVALUE_SHIFT_24MHZ;
3552			adapter->cc.shift = shift;
3553		} else {
3554			/* Stable 38400KHz frequency */
3555			incperiod = INCPERIOD_38400KHZ;
3556			incvalue = INCVALUE_38400KHZ;
3557			shift = INCVALUE_SHIFT_38400KHZ;
3558			adapter->cc.shift = shift;
3559		}
3560		break;
3561	case e1000_82574:
3562	case e1000_82583:
3563		/* Stable 25MHz frequency */
3564		incperiod = INCPERIOD_25MHZ;
3565		incvalue = INCVALUE_25MHZ;
3566		shift = INCVALUE_SHIFT_25MHZ;
3567		adapter->cc.shift = shift;
3568		break;
3569	default:
3570		return -EINVAL;
3571	}
3572
3573	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3574		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3575
3576	return 0;
3577}
3578
3579/**
3580 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3581 * @adapter: board private structure
3582 * @config: timestamp configuration
3583 *
3584 * Outgoing time stamping can be enabled and disabled. Play nice and
3585 * disable it when requested, although it shouldn't cause any overhead
3586 * when no packet needs it. At most one packet in the queue may be
3587 * marked for time stamping, otherwise it would be impossible to tell
3588 * for sure to which packet the hardware time stamp belongs.
3589 *
3590 * Incoming time stamping has to be configured via the hardware filters.
3591 * Not all combinations are supported, in particular event type has to be
3592 * specified. Matching the kind of event packet is not supported, with the
3593 * exception of "all V2 events regardless of level 2 or 4".
3594 **/
3595static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3596				  struct hwtstamp_config *config)
3597{
3598	struct e1000_hw *hw = &adapter->hw;
3599	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3600	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3601	u32 rxmtrl = 0;
3602	u16 rxudp = 0;
3603	bool is_l4 = false;
3604	bool is_l2 = false;
3605	u32 regval;
 
3606
3607	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3608		return -EINVAL;
3609
 
 
 
 
3610	switch (config->tx_type) {
3611	case HWTSTAMP_TX_OFF:
3612		tsync_tx_ctl = 0;
3613		break;
3614	case HWTSTAMP_TX_ON:
3615		break;
3616	default:
3617		return -ERANGE;
3618	}
3619
3620	switch (config->rx_filter) {
3621	case HWTSTAMP_FILTER_NONE:
3622		tsync_rx_ctl = 0;
3623		break;
3624	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3625		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3626		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3627		is_l4 = true;
3628		break;
3629	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3630		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3631		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3632		is_l4 = true;
3633		break;
3634	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3635		/* Also time stamps V2 L2 Path Delay Request/Response */
3636		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3637		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3638		is_l2 = true;
3639		break;
3640	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3641		/* Also time stamps V2 L2 Path Delay Request/Response. */
3642		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3643		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3644		is_l2 = true;
3645		break;
3646	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3647		/* Hardware cannot filter just V2 L4 Sync messages */
3648		fallthrough;
 
3649	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3650		/* Also time stamps V2 Path Delay Request/Response. */
3651		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3652		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3653		is_l2 = true;
3654		is_l4 = true;
3655		break;
3656	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3657		/* Hardware cannot filter just V2 L4 Delay Request messages */
3658		fallthrough;
 
3659	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3660		/* Also time stamps V2 Path Delay Request/Response. */
3661		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3662		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3663		is_l2 = true;
3664		is_l4 = true;
3665		break;
3666	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3667	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3668		/* Hardware cannot filter just V2 L4 or L2 Event messages */
3669		fallthrough;
 
3670	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3671		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3672		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3673		is_l2 = true;
3674		is_l4 = true;
3675		break;
3676	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3677		/* For V1, the hardware can only filter Sync messages or
3678		 * Delay Request messages but not both so fall-through to
3679		 * time stamp all packets.
3680		 */
3681		fallthrough;
3682	case HWTSTAMP_FILTER_NTP_ALL:
3683	case HWTSTAMP_FILTER_ALL:
3684		is_l2 = true;
3685		is_l4 = true;
3686		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3687		config->rx_filter = HWTSTAMP_FILTER_ALL;
3688		break;
3689	default:
3690		return -ERANGE;
3691	}
3692
3693	adapter->hwtstamp_config = *config;
3694
3695	/* enable/disable Tx h/w time stamping */
3696	regval = er32(TSYNCTXCTL);
3697	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3698	regval |= tsync_tx_ctl;
3699	ew32(TSYNCTXCTL, regval);
3700	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3701	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3702		e_err("Timesync Tx Control register not set as expected\n");
3703		return -EAGAIN;
3704	}
3705
3706	/* enable/disable Rx h/w time stamping */
3707	regval = er32(TSYNCRXCTL);
3708	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3709	regval |= tsync_rx_ctl;
3710	ew32(TSYNCRXCTL, regval);
3711	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3712				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3713	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3714		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3715		e_err("Timesync Rx Control register not set as expected\n");
3716		return -EAGAIN;
3717	}
3718
3719	/* L2: define ethertype filter for time stamped packets */
3720	if (is_l2)
3721		rxmtrl |= ETH_P_1588;
3722
3723	/* define which PTP packets get time stamped */
3724	ew32(RXMTRL, rxmtrl);
3725
3726	/* Filter by destination port */
3727	if (is_l4) {
3728		rxudp = PTP_EV_PORT;
3729		cpu_to_be16s(&rxudp);
3730	}
3731	ew32(RXUDP, rxudp);
3732
3733	e1e_flush();
3734
3735	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3736	er32(RXSTMPH);
3737	er32(TXSTMPH);
3738
 
 
 
 
 
 
 
 
 
 
3739	return 0;
3740}
3741
3742/**
3743 * e1000_configure - configure the hardware for Rx and Tx
3744 * @adapter: private board structure
3745 **/
3746static void e1000_configure(struct e1000_adapter *adapter)
3747{
3748	struct e1000_ring *rx_ring = adapter->rx_ring;
3749
3750	e1000e_set_rx_mode(adapter->netdev);
3751
3752	e1000_restore_vlan(adapter);
3753	e1000_init_manageability_pt(adapter);
3754
3755	e1000_configure_tx(adapter);
3756
3757	if (adapter->netdev->features & NETIF_F_RXHASH)
3758		e1000e_setup_rss_hash(adapter);
3759	e1000_setup_rctl(adapter);
3760	e1000_configure_rx(adapter);
3761	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3762}
3763
3764/**
3765 * e1000e_power_up_phy - restore link in case the phy was powered down
3766 * @adapter: address of board private structure
3767 *
3768 * The phy may be powered down to save power and turn off link when the
3769 * driver is unloaded and wake on lan is not enabled (among others)
3770 * *** this routine MUST be followed by a call to e1000e_reset ***
3771 **/
3772void e1000e_power_up_phy(struct e1000_adapter *adapter)
3773{
3774	if (adapter->hw.phy.ops.power_up)
3775		adapter->hw.phy.ops.power_up(&adapter->hw);
3776
3777	adapter->hw.mac.ops.setup_link(&adapter->hw);
3778}
3779
3780/**
3781 * e1000_power_down_phy - Power down the PHY
3782 * @adapter: board private structure
3783 *
3784 * Power down the PHY so no link is implied when interface is down.
3785 * The PHY cannot be powered down if management or WoL is active.
3786 */
3787static void e1000_power_down_phy(struct e1000_adapter *adapter)
3788{
3789	if (adapter->hw.phy.ops.power_down)
3790		adapter->hw.phy.ops.power_down(&adapter->hw);
3791}
3792
3793/**
3794 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3795 * @adapter: board private structure
3796 *
3797 * We want to clear all pending descriptors from the TX ring.
3798 * zeroing happens when the HW reads the regs. We  assign the ring itself as
3799 * the data of the next descriptor. We don't care about the data we are about
3800 * to reset the HW.
3801 */
3802static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3803{
3804	struct e1000_hw *hw = &adapter->hw;
3805	struct e1000_ring *tx_ring = adapter->tx_ring;
3806	struct e1000_tx_desc *tx_desc = NULL;
3807	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3808	u16 size = 512;
3809
3810	tctl = er32(TCTL);
3811	ew32(TCTL, tctl | E1000_TCTL_EN);
3812	tdt = er32(TDT(0));
3813	BUG_ON(tdt != tx_ring->next_to_use);
3814	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3815	tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3816
3817	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3818	tx_desc->upper.data = 0;
3819	/* flush descriptors to memory before notifying the HW */
3820	wmb();
3821	tx_ring->next_to_use++;
3822	if (tx_ring->next_to_use == tx_ring->count)
3823		tx_ring->next_to_use = 0;
3824	ew32(TDT(0), tx_ring->next_to_use);
3825	usleep_range(200, 250);
3826}
3827
3828/**
3829 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3830 * @adapter: board private structure
3831 *
3832 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3833 */
3834static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3835{
3836	u32 rctl, rxdctl;
3837	struct e1000_hw *hw = &adapter->hw;
3838
3839	rctl = er32(RCTL);
3840	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3841	e1e_flush();
3842	usleep_range(100, 150);
3843
3844	rxdctl = er32(RXDCTL(0));
3845	/* zero the lower 14 bits (prefetch and host thresholds) */
3846	rxdctl &= 0xffffc000;
3847
3848	/* update thresholds: prefetch threshold to 31, host threshold to 1
3849	 * and make sure the granularity is "descriptors" and not "cache lines"
3850	 */
3851	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3852
3853	ew32(RXDCTL(0), rxdctl);
3854	/* momentarily enable the RX ring for the changes to take effect */
3855	ew32(RCTL, rctl | E1000_RCTL_EN);
3856	e1e_flush();
3857	usleep_range(100, 150);
3858	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3859}
3860
3861/**
3862 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3863 * @adapter: board private structure
3864 *
3865 * In i219, the descriptor rings must be emptied before resetting the HW
3866 * or before changing the device state to D3 during runtime (runtime PM).
3867 *
3868 * Failure to do this will cause the HW to enter a unit hang state which can
3869 * only be released by PCI reset on the device
3870 *
3871 */
3872
3873static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3874{
3875	u16 hang_state;
3876	u32 fext_nvm11, tdlen;
3877	struct e1000_hw *hw = &adapter->hw;
3878
3879	/* First, disable MULR fix in FEXTNVM11 */
3880	fext_nvm11 = er32(FEXTNVM11);
3881	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3882	ew32(FEXTNVM11, fext_nvm11);
3883	/* do nothing if we're not in faulty state, or if the queue is empty */
3884	tdlen = er32(TDLEN(0));
3885	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3886			     &hang_state);
3887	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3888		return;
3889	e1000_flush_tx_ring(adapter);
3890	/* recheck, maybe the fault is caused by the rx ring */
3891	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3892			     &hang_state);
3893	if (hang_state & FLUSH_DESC_REQUIRED)
3894		e1000_flush_rx_ring(adapter);
3895}
3896
3897/**
3898 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3899 * @adapter: board private structure
3900 *
3901 * When the MAC is reset, all hardware bits for timesync will be reset to the
3902 * default values. This function will restore the settings last in place.
3903 * Since the clock SYSTIME registers are reset, we will simply restore the
3904 * cyclecounter to the kernel real clock time.
3905 **/
3906static void e1000e_systim_reset(struct e1000_adapter *adapter)
3907{
3908	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3909	struct e1000_hw *hw = &adapter->hw;
3910	unsigned long flags;
3911	u32 timinca;
3912	s32 ret_val;
3913
3914	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3915		return;
3916
3917	if (info->adjfine) {
3918		/* restore the previous ptp frequency delta */
3919		ret_val = info->adjfine(info, adapter->ptp_delta);
3920	} else {
3921		/* set the default base frequency if no adjustment possible */
3922		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3923		if (!ret_val)
3924			ew32(TIMINCA, timinca);
3925	}
3926
3927	if (ret_val) {
3928		dev_warn(&adapter->pdev->dev,
3929			 "Failed to restore TIMINCA clock rate delta: %d\n",
3930			 ret_val);
3931		return;
3932	}
3933
3934	/* reset the systim ns time counter */
3935	spin_lock_irqsave(&adapter->systim_lock, flags);
3936	timecounter_init(&adapter->tc, &adapter->cc,
3937			 ktime_to_ns(ktime_get_real()));
3938	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3939
3940	/* restore the previous hwtstamp configuration settings */
3941	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3942}
3943
3944/**
3945 * e1000e_reset - bring the hardware into a known good state
3946 * @adapter: board private structure
3947 *
3948 * This function boots the hardware and enables some settings that
3949 * require a configuration cycle of the hardware - those cannot be
3950 * set/changed during runtime. After reset the device needs to be
3951 * properly configured for Rx, Tx etc.
3952 */
3953void e1000e_reset(struct e1000_adapter *adapter)
3954{
3955	struct e1000_mac_info *mac = &adapter->hw.mac;
3956	struct e1000_fc_info *fc = &adapter->hw.fc;
3957	struct e1000_hw *hw = &adapter->hw;
3958	u32 tx_space, min_tx_space, min_rx_space;
3959	u32 pba = adapter->pba;
3960	u16 hwm;
3961
3962	/* reset Packet Buffer Allocation to default */
3963	ew32(PBA, pba);
3964
3965	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3966		/* To maintain wire speed transmits, the Tx FIFO should be
3967		 * large enough to accommodate two full transmit packets,
3968		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3969		 * the Rx FIFO should be large enough to accommodate at least
3970		 * one full receive packet and is similarly rounded up and
3971		 * expressed in KB.
3972		 */
3973		pba = er32(PBA);
3974		/* upper 16 bits has Tx packet buffer allocation size in KB */
3975		tx_space = pba >> 16;
3976		/* lower 16 bits has Rx packet buffer allocation size in KB */
3977		pba &= 0xffff;
3978		/* the Tx fifo also stores 16 bytes of information about the Tx
3979		 * but don't include ethernet FCS because hardware appends it
3980		 */
3981		min_tx_space = (adapter->max_frame_size +
3982				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3983		min_tx_space = ALIGN(min_tx_space, 1024);
3984		min_tx_space >>= 10;
3985		/* software strips receive CRC, so leave room for it */
3986		min_rx_space = adapter->max_frame_size;
3987		min_rx_space = ALIGN(min_rx_space, 1024);
3988		min_rx_space >>= 10;
3989
3990		/* If current Tx allocation is less than the min Tx FIFO size,
3991		 * and the min Tx FIFO size is less than the current Rx FIFO
3992		 * allocation, take space away from current Rx allocation
3993		 */
3994		if ((tx_space < min_tx_space) &&
3995		    ((min_tx_space - tx_space) < pba)) {
3996			pba -= min_tx_space - tx_space;
3997
3998			/* if short on Rx space, Rx wins and must trump Tx
3999			 * adjustment
4000			 */
4001			if (pba < min_rx_space)
4002				pba = min_rx_space;
4003		}
4004
4005		ew32(PBA, pba);
4006	}
4007
4008	/* flow control settings
4009	 *
4010	 * The high water mark must be low enough to fit one full frame
4011	 * (or the size used for early receive) above it in the Rx FIFO.
4012	 * Set it to the lower of:
4013	 * - 90% of the Rx FIFO size, and
4014	 * - the full Rx FIFO size minus one full frame
4015	 */
4016	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4017		fc->pause_time = 0xFFFF;
4018	else
4019		fc->pause_time = E1000_FC_PAUSE_TIME;
4020	fc->send_xon = true;
4021	fc->current_mode = fc->requested_mode;
4022
4023	switch (hw->mac.type) {
4024	case e1000_ich9lan:
4025	case e1000_ich10lan:
4026		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4027			pba = 14;
4028			ew32(PBA, pba);
4029			fc->high_water = 0x2800;
4030			fc->low_water = fc->high_water - 8;
4031			break;
4032		}
4033		fallthrough;
4034	default:
4035		hwm = min(((pba << 10) * 9 / 10),
4036			  ((pba << 10) - adapter->max_frame_size));
4037
4038		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4039		fc->low_water = fc->high_water - 8;
4040		break;
4041	case e1000_pchlan:
4042		/* Workaround PCH LOM adapter hangs with certain network
4043		 * loads.  If hangs persist, try disabling Tx flow control.
4044		 */
4045		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4046			fc->high_water = 0x3500;
4047			fc->low_water = 0x1500;
4048		} else {
4049			fc->high_water = 0x5000;
4050			fc->low_water = 0x3000;
4051		}
4052		fc->refresh_time = 0x1000;
4053		break;
4054	case e1000_pch2lan:
4055	case e1000_pch_lpt:
4056	case e1000_pch_spt:
4057	case e1000_pch_cnp:
4058	case e1000_pch_tgp:
4059	case e1000_pch_adp:
4060	case e1000_pch_mtp:
4061	case e1000_pch_lnp:
4062	case e1000_pch_ptp:
4063	case e1000_pch_nvp:
4064		fc->refresh_time = 0xFFFF;
4065		fc->pause_time = 0xFFFF;
4066
4067		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4068			fc->high_water = 0x05C20;
4069			fc->low_water = 0x05048;
 
4070			break;
4071		}
4072
4073		pba = 14;
4074		ew32(PBA, pba);
4075		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4076		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4077		break;
4078	}
4079
4080	/* Alignment of Tx data is on an arbitrary byte boundary with the
4081	 * maximum size per Tx descriptor limited only to the transmit
4082	 * allocation of the packet buffer minus 96 bytes with an upper
4083	 * limit of 24KB due to receive synchronization limitations.
4084	 */
4085	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4086				       24 << 10);
4087
4088	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4089	 * fit in receive buffer.
4090	 */
4091	if (adapter->itr_setting & 0x3) {
4092		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4093			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4094				dev_info(&adapter->pdev->dev,
4095					 "Interrupt Throttle Rate off\n");
4096				adapter->flags2 |= FLAG2_DISABLE_AIM;
4097				e1000e_write_itr(adapter, 0);
4098			}
4099		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4100			dev_info(&adapter->pdev->dev,
4101				 "Interrupt Throttle Rate on\n");
4102			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4103			adapter->itr = 20000;
4104			e1000e_write_itr(adapter, adapter->itr);
4105		}
4106	}
4107
4108	if (hw->mac.type >= e1000_pch_spt)
4109		e1000_flush_desc_rings(adapter);
4110	/* Allow time for pending master requests to run */
4111	mac->ops.reset_hw(hw);
4112
4113	/* For parts with AMT enabled, let the firmware know
4114	 * that the network interface is in control
4115	 */
4116	if (adapter->flags & FLAG_HAS_AMT)
4117		e1000e_get_hw_control(adapter);
4118
4119	ew32(WUC, 0);
4120
4121	if (mac->ops.init_hw(hw))
4122		e_err("Hardware Error\n");
4123
4124	e1000_update_mng_vlan(adapter);
4125
4126	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4127	ew32(VET, ETH_P_8021Q);
4128
4129	e1000e_reset_adaptive(hw);
4130
4131	/* restore systim and hwtstamp settings */
4132	e1000e_systim_reset(adapter);
4133
4134	/* Set EEE advertisement as appropriate */
4135	if (adapter->flags2 & FLAG2_HAS_EEE) {
4136		s32 ret_val;
4137		u16 adv_addr;
4138
4139		switch (hw->phy.type) {
4140		case e1000_phy_82579:
4141			adv_addr = I82579_EEE_ADVERTISEMENT;
4142			break;
4143		case e1000_phy_i217:
4144			adv_addr = I217_EEE_ADVERTISEMENT;
4145			break;
4146		default:
4147			dev_err(&adapter->pdev->dev,
4148				"Invalid PHY type setting EEE advertisement\n");
4149			return;
4150		}
4151
4152		ret_val = hw->phy.ops.acquire(hw);
4153		if (ret_val) {
4154			dev_err(&adapter->pdev->dev,
4155				"EEE advertisement - unable to acquire PHY\n");
4156			return;
4157		}
4158
4159		e1000_write_emi_reg_locked(hw, adv_addr,
4160					   hw->dev_spec.ich8lan.eee_disable ?
4161					   0 : adapter->eee_advert);
4162
4163		hw->phy.ops.release(hw);
4164	}
4165
4166	if (!netif_running(adapter->netdev) &&
4167	    !test_bit(__E1000_TESTING, &adapter->state))
4168		e1000_power_down_phy(adapter);
4169
4170	e1000_get_phy_info(hw);
4171
4172	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4173	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4174		u16 phy_data = 0;
4175		/* speed up time to link by disabling smart power down, ignore
4176		 * the return value of this function because there is nothing
4177		 * different we would do if it failed
4178		 */
4179		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4180		phy_data &= ~IGP02E1000_PM_SPD;
4181		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4182	}
4183	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4184		u32 reg;
4185
4186		/* Fextnvm7 @ 0xe4[2] = 1 */
4187		reg = er32(FEXTNVM7);
4188		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4189		ew32(FEXTNVM7, reg);
4190		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4191		reg = er32(FEXTNVM9);
4192		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4193		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4194		ew32(FEXTNVM9, reg);
4195	}
4196
4197}
4198
4199/**
4200 * e1000e_trigger_lsc - trigger an LSC interrupt
4201 * @adapter: board private structure
4202 *
4203 * Fire a link status change interrupt to start the watchdog.
4204 **/
4205static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4206{
4207	struct e1000_hw *hw = &adapter->hw;
4208
4209	if (adapter->msix_entries)
4210		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4211	else
4212		ew32(ICS, E1000_ICS_LSC);
4213}
4214
4215void e1000e_up(struct e1000_adapter *adapter)
4216{
4217	/* hardware has been reset, we need to reload some things */
4218	e1000_configure(adapter);
4219
4220	clear_bit(__E1000_DOWN, &adapter->state);
4221
4222	if (adapter->msix_entries)
4223		e1000_configure_msix(adapter);
4224	e1000_irq_enable(adapter);
4225
4226	/* Tx queue started by watchdog timer when link is up */
4227
4228	e1000e_trigger_lsc(adapter);
 
 
 
 
 
 
4229}
4230
4231static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4232{
4233	struct e1000_hw *hw = &adapter->hw;
4234
4235	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4236		return;
4237
4238	/* flush pending descriptor writebacks to memory */
4239	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4240	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4241
4242	/* execute the writes immediately */
4243	e1e_flush();
4244
4245	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4246	 * write is successful
4247	 */
4248	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4249	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4250
4251	/* execute the writes immediately */
4252	e1e_flush();
4253}
4254
4255static void e1000e_update_stats(struct e1000_adapter *adapter);
4256
4257/**
4258 * e1000e_down - quiesce the device and optionally reset the hardware
4259 * @adapter: board private structure
4260 * @reset: boolean flag to reset the hardware or not
4261 */
4262void e1000e_down(struct e1000_adapter *adapter, bool reset)
4263{
4264	struct net_device *netdev = adapter->netdev;
4265	struct e1000_hw *hw = &adapter->hw;
4266	u32 tctl, rctl;
4267
4268	/* signal that we're down so the interrupt handler does not
4269	 * reschedule our watchdog timer
4270	 */
4271	set_bit(__E1000_DOWN, &adapter->state);
4272
4273	netif_carrier_off(netdev);
4274
4275	/* disable receives in the hardware */
4276	rctl = er32(RCTL);
4277	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4278		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4279	/* flush and sleep below */
4280
4281	netif_stop_queue(netdev);
4282
4283	/* disable transmits in the hardware */
4284	tctl = er32(TCTL);
4285	tctl &= ~E1000_TCTL_EN;
4286	ew32(TCTL, tctl);
4287
4288	/* flush both disables and wait for them to finish */
4289	e1e_flush();
4290	usleep_range(10000, 11000);
4291
4292	e1000_irq_disable(adapter);
4293
4294	napi_synchronize(&adapter->napi);
4295
4296	del_timer_sync(&adapter->watchdog_timer);
4297	del_timer_sync(&adapter->phy_info_timer);
4298
 
 
4299	spin_lock(&adapter->stats64_lock);
4300	e1000e_update_stats(adapter);
4301	spin_unlock(&adapter->stats64_lock);
4302
4303	e1000e_flush_descriptors(adapter);
 
 
4304
4305	adapter->link_speed = 0;
4306	adapter->link_duplex = 0;
4307
4308	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4309	if ((hw->mac.type >= e1000_pch2lan) &&
4310	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4311	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4312		e_dbg("failed to disable jumbo frame workaround mode\n");
4313
4314	if (!pci_channel_offline(adapter->pdev)) {
4315		if (reset)
4316			e1000e_reset(adapter);
4317		else if (hw->mac.type >= e1000_pch_spt)
4318			e1000_flush_desc_rings(adapter);
4319	}
4320	e1000_clean_tx_ring(adapter->tx_ring);
4321	e1000_clean_rx_ring(adapter->rx_ring);
4322}
4323
4324void e1000e_reinit_locked(struct e1000_adapter *adapter)
4325{
4326	might_sleep();
4327	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4328		usleep_range(1000, 1100);
4329	e1000e_down(adapter, true);
4330	e1000e_up(adapter);
4331	clear_bit(__E1000_RESETTING, &adapter->state);
4332}
4333
4334/**
4335 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4336 * @hw: pointer to the HW structure
4337 * @systim: PHC time value read, sanitized and returned
4338 * @sts: structure to hold system time before and after reading SYSTIML,
4339 * may be NULL
4340 *
4341 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4342 * check to see that the time is incrementing at a reasonable
4343 * rate and is a multiple of incvalue.
4344 **/
4345static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4346				  struct ptp_system_timestamp *sts)
4347{
4348	u64 time_delta, rem, temp;
4349	u64 systim_next;
4350	u32 incvalue;
4351	int i;
4352
4353	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4354	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4355		/* latch SYSTIMH on read of SYSTIML */
4356		ptp_read_system_prets(sts);
4357		systim_next = (u64)er32(SYSTIML);
4358		ptp_read_system_postts(sts);
4359		systim_next |= (u64)er32(SYSTIMH) << 32;
4360
4361		time_delta = systim_next - systim;
4362		temp = time_delta;
4363		/* VMWare users have seen incvalue of zero, don't div / 0 */
4364		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4365
4366		systim = systim_next;
4367
4368		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4369			break;
4370	}
4371
4372	return systim;
4373}
4374
4375/**
4376 * e1000e_read_systim - read SYSTIM register
4377 * @adapter: board private structure
4378 * @sts: structure which will contain system time before and after reading
4379 * SYSTIML, may be NULL
4380 **/
4381u64 e1000e_read_systim(struct e1000_adapter *adapter,
4382		       struct ptp_system_timestamp *sts)
4383{
4384	struct e1000_hw *hw = &adapter->hw;
4385	u32 systimel, systimel_2, systimeh;
4386	u64 systim;
4387	/* SYSTIMH latching upon SYSTIML read does not work well.
4388	 * This means that if SYSTIML overflows after we read it but before
4389	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4390	 * will experience a huge non linear increment in the systime value
4391	 * to fix that we test for overflow and if true, we re-read systime.
4392	 */
4393	ptp_read_system_prets(sts);
4394	systimel = er32(SYSTIML);
4395	ptp_read_system_postts(sts);
4396	systimeh = er32(SYSTIMH);
4397	/* Is systimel is so large that overflow is possible? */
4398	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4399		ptp_read_system_prets(sts);
4400		systimel_2 = er32(SYSTIML);
4401		ptp_read_system_postts(sts);
4402		if (systimel > systimel_2) {
4403			/* There was an overflow, read again SYSTIMH, and use
4404			 * systimel_2
4405			 */
4406			systimeh = er32(SYSTIMH);
4407			systimel = systimel_2;
4408		}
4409	}
4410	systim = (u64)systimel;
4411	systim |= (u64)systimeh << 32;
4412
4413	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4414		systim = e1000e_sanitize_systim(hw, systim, sts);
4415
4416	return systim;
4417}
4418
4419/**
4420 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4421 * @cc: cyclecounter structure
4422 **/
4423static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4424{
4425	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4426						     cc);
 
 
4427
4428	return e1000e_read_systim(adapter, NULL);
 
 
 
 
4429}
4430
4431/**
4432 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4433 * @adapter: board private structure to initialize
4434 *
4435 * e1000_sw_init initializes the Adapter private data structure.
4436 * Fields are initialized based on PCI device information and
4437 * OS network device settings (MTU size).
4438 **/
4439static int e1000_sw_init(struct e1000_adapter *adapter)
4440{
4441	struct net_device *netdev = adapter->netdev;
4442
4443	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4444	adapter->rx_ps_bsize0 = 128;
4445	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4446	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4447	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4448	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4449
4450	spin_lock_init(&adapter->stats64_lock);
4451
4452	e1000e_set_interrupt_capability(adapter);
4453
4454	if (e1000_alloc_queues(adapter))
4455		return -ENOMEM;
4456
4457	/* Setup hardware time stamping cyclecounter */
4458	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4459		adapter->cc.read = e1000e_cyclecounter_read;
4460		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4461		adapter->cc.mult = 1;
4462		/* cc.shift set in e1000e_get_base_tininca() */
4463
4464		spin_lock_init(&adapter->systim_lock);
4465		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4466	}
4467
4468	/* Explicitly disable IRQ since the NIC can be in any state. */
4469	e1000_irq_disable(adapter);
4470
4471	set_bit(__E1000_DOWN, &adapter->state);
4472	return 0;
4473}
4474
4475/**
4476 * e1000_intr_msi_test - Interrupt Handler
4477 * @irq: interrupt number
4478 * @data: pointer to a network interface device structure
4479 **/
4480static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4481{
4482	struct net_device *netdev = data;
4483	struct e1000_adapter *adapter = netdev_priv(netdev);
4484	struct e1000_hw *hw = &adapter->hw;
4485	u32 icr = er32(ICR);
4486
4487	e_dbg("icr is %08X\n", icr);
4488	if (icr & E1000_ICR_RXSEQ) {
4489		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4490		/* Force memory writes to complete before acknowledging the
4491		 * interrupt is handled.
4492		 */
4493		wmb();
4494	}
4495
4496	return IRQ_HANDLED;
4497}
4498
4499/**
4500 * e1000_test_msi_interrupt - Returns 0 for successful test
4501 * @adapter: board private struct
4502 *
4503 * code flow taken from tg3.c
4504 **/
4505static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4506{
4507	struct net_device *netdev = adapter->netdev;
4508	struct e1000_hw *hw = &adapter->hw;
4509	int err;
4510
4511	/* poll_enable hasn't been called yet, so don't need disable */
4512	/* clear any pending events */
4513	er32(ICR);
4514
4515	/* free the real vector and request a test handler */
4516	e1000_free_irq(adapter);
4517	e1000e_reset_interrupt_capability(adapter);
4518
4519	/* Assume that the test fails, if it succeeds then the test
4520	 * MSI irq handler will unset this flag
4521	 */
4522	adapter->flags |= FLAG_MSI_TEST_FAILED;
4523
4524	err = pci_enable_msi(adapter->pdev);
4525	if (err)
4526		goto msi_test_failed;
4527
4528	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4529			  netdev->name, netdev);
4530	if (err) {
4531		pci_disable_msi(adapter->pdev);
4532		goto msi_test_failed;
4533	}
4534
4535	/* Force memory writes to complete before enabling and firing an
4536	 * interrupt.
4537	 */
4538	wmb();
4539
4540	e1000_irq_enable(adapter);
4541
4542	/* fire an unusual interrupt on the test handler */
4543	ew32(ICS, E1000_ICS_RXSEQ);
4544	e1e_flush();
4545	msleep(100);
4546
4547	e1000_irq_disable(adapter);
4548
4549	rmb();			/* read flags after interrupt has been fired */
4550
4551	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4552		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4553		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4554	} else {
4555		e_dbg("MSI interrupt test succeeded!\n");
4556	}
4557
4558	free_irq(adapter->pdev->irq, netdev);
4559	pci_disable_msi(adapter->pdev);
4560
4561msi_test_failed:
4562	e1000e_set_interrupt_capability(adapter);
4563	return e1000_request_irq(adapter);
4564}
4565
4566/**
4567 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4568 * @adapter: board private struct
4569 *
4570 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4571 **/
4572static int e1000_test_msi(struct e1000_adapter *adapter)
4573{
4574	int err;
4575	u16 pci_cmd;
4576
4577	if (!(adapter->flags & FLAG_MSI_ENABLED))
4578		return 0;
4579
4580	/* disable SERR in case the MSI write causes a master abort */
4581	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4582	if (pci_cmd & PCI_COMMAND_SERR)
4583		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4584				      pci_cmd & ~PCI_COMMAND_SERR);
4585
4586	err = e1000_test_msi_interrupt(adapter);
4587
4588	/* re-enable SERR */
4589	if (pci_cmd & PCI_COMMAND_SERR) {
4590		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4591		pci_cmd |= PCI_COMMAND_SERR;
4592		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4593	}
4594
4595	return err;
4596}
4597
4598/**
4599 * e1000e_open - Called when a network interface is made active
4600 * @netdev: network interface device structure
4601 *
4602 * Returns 0 on success, negative value on failure
4603 *
4604 * The open entry point is called when a network interface is made
4605 * active by the system (IFF_UP).  At this point all resources needed
4606 * for transmit and receive operations are allocated, the interrupt
4607 * handler is registered with the OS, the watchdog timer is started,
4608 * and the stack is notified that the interface is ready.
4609 **/
4610int e1000e_open(struct net_device *netdev)
4611{
4612	struct e1000_adapter *adapter = netdev_priv(netdev);
4613	struct e1000_hw *hw = &adapter->hw;
4614	struct pci_dev *pdev = adapter->pdev;
4615	int err;
4616
4617	/* disallow open during test */
4618	if (test_bit(__E1000_TESTING, &adapter->state))
4619		return -EBUSY;
4620
4621	pm_runtime_get_sync(&pdev->dev);
4622
4623	netif_carrier_off(netdev);
4624	netif_stop_queue(netdev);
4625
4626	/* allocate transmit descriptors */
4627	err = e1000e_setup_tx_resources(adapter->tx_ring);
4628	if (err)
4629		goto err_setup_tx;
4630
4631	/* allocate receive descriptors */
4632	err = e1000e_setup_rx_resources(adapter->rx_ring);
4633	if (err)
4634		goto err_setup_rx;
4635
4636	/* If AMT is enabled, let the firmware know that the network
4637	 * interface is now open and reset the part to a known state.
4638	 */
4639	if (adapter->flags & FLAG_HAS_AMT) {
4640		e1000e_get_hw_control(adapter);
4641		e1000e_reset(adapter);
4642	}
4643
4644	e1000e_power_up_phy(adapter);
4645
4646	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4647	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4648		e1000_update_mng_vlan(adapter);
4649
4650	/* DMA latency requirement to workaround jumbo issue */
4651	cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
 
4652
4653	/* before we allocate an interrupt, we must be ready to handle it.
4654	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4655	 * as soon as we call pci_request_irq, so we have to setup our
4656	 * clean_rx handler before we do so.
4657	 */
4658	e1000_configure(adapter);
4659
4660	err = e1000_request_irq(adapter);
4661	if (err)
4662		goto err_req_irq;
4663
4664	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4665	 * ignore e1000e MSI messages, which means we need to test our MSI
4666	 * interrupt now
4667	 */
4668	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4669		err = e1000_test_msi(adapter);
4670		if (err) {
4671			e_err("Interrupt allocation failed\n");
4672			goto err_req_irq;
4673		}
4674	}
4675
4676	/* From here on the code is the same as e1000e_up() */
4677	clear_bit(__E1000_DOWN, &adapter->state);
4678
4679	napi_enable(&adapter->napi);
4680
4681	e1000_irq_enable(adapter);
4682
4683	adapter->tx_hang_recheck = false;
 
4684
4685	hw->mac.get_link_status = true;
4686	pm_runtime_put(&pdev->dev);
4687
4688	e1000e_trigger_lsc(adapter);
 
 
 
 
4689
4690	return 0;
4691
4692err_req_irq:
4693	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4694	e1000e_release_hw_control(adapter);
4695	e1000_power_down_phy(adapter);
4696	e1000e_free_rx_resources(adapter->rx_ring);
4697err_setup_rx:
4698	e1000e_free_tx_resources(adapter->tx_ring);
4699err_setup_tx:
4700	e1000e_reset(adapter);
4701	pm_runtime_put_sync(&pdev->dev);
4702
4703	return err;
4704}
4705
4706/**
4707 * e1000e_close - Disables a network interface
4708 * @netdev: network interface device structure
4709 *
4710 * Returns 0, this is not allowed to fail
4711 *
4712 * The close entry point is called when an interface is de-activated
4713 * by the OS.  The hardware is still under the drivers control, but
4714 * needs to be disabled.  A global MAC reset is issued to stop the
4715 * hardware, and all transmit and receive resources are freed.
4716 **/
4717int e1000e_close(struct net_device *netdev)
4718{
4719	struct e1000_adapter *adapter = netdev_priv(netdev);
4720	struct pci_dev *pdev = adapter->pdev;
4721	int count = E1000_CHECK_RESET_COUNT;
4722
4723	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4724		usleep_range(10000, 11000);
4725
4726	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4727
4728	pm_runtime_get_sync(&pdev->dev);
4729
4730	if (netif_device_present(netdev)) {
4731		e1000e_down(adapter, true);
4732		e1000_free_irq(adapter);
4733
4734		/* Link status message must follow this format */
4735		netdev_info(netdev, "NIC Link is Down\n");
4736	}
4737
4738	napi_disable(&adapter->napi);
4739
4740	e1000e_free_tx_resources(adapter->tx_ring);
4741	e1000e_free_rx_resources(adapter->rx_ring);
4742
4743	/* kill manageability vlan ID if supported, but not if a vlan with
4744	 * the same ID is registered on the host OS (let 8021q kill it)
4745	 */
4746	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4747		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4748				       adapter->mng_vlan_id);
4749
4750	/* If AMT is enabled, let the firmware know that the network
4751	 * interface is now closed
4752	 */
4753	if ((adapter->flags & FLAG_HAS_AMT) &&
4754	    !test_bit(__E1000_TESTING, &adapter->state))
4755		e1000e_release_hw_control(adapter);
4756
4757	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4758
4759	pm_runtime_put_sync(&pdev->dev);
4760
4761	return 0;
4762}
4763
4764/**
4765 * e1000_set_mac - Change the Ethernet Address of the NIC
4766 * @netdev: network interface device structure
4767 * @p: pointer to an address structure
4768 *
4769 * Returns 0 on success, negative on failure
4770 **/
4771static int e1000_set_mac(struct net_device *netdev, void *p)
4772{
4773	struct e1000_adapter *adapter = netdev_priv(netdev);
4774	struct e1000_hw *hw = &adapter->hw;
4775	struct sockaddr *addr = p;
4776
4777	if (!is_valid_ether_addr(addr->sa_data))
4778		return -EADDRNOTAVAIL;
4779
4780	eth_hw_addr_set(netdev, addr->sa_data);
4781	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4782
4783	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4784
4785	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4786		/* activate the work around */
4787		e1000e_set_laa_state_82571(&adapter->hw, 1);
4788
4789		/* Hold a copy of the LAA in RAR[14] This is done so that
4790		 * between the time RAR[0] gets clobbered  and the time it
4791		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4792		 * of the RARs and no incoming packets directed to this port
4793		 * are dropped. Eventually the LAA will be in RAR[0] and
4794		 * RAR[14]
4795		 */
4796		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4797				    adapter->hw.mac.rar_entry_count - 1);
4798	}
4799
4800	return 0;
4801}
4802
4803/**
4804 * e1000e_update_phy_task - work thread to update phy
4805 * @work: pointer to our work struct
4806 *
4807 * this worker thread exists because we must acquire a
4808 * semaphore to read the phy, which we could msleep while
4809 * waiting for it, and we can't msleep in a timer.
4810 **/
4811static void e1000e_update_phy_task(struct work_struct *work)
4812{
4813	struct e1000_adapter *adapter = container_of(work,
4814						     struct e1000_adapter,
4815						     update_phy_task);
4816	struct e1000_hw *hw = &adapter->hw;
4817
4818	if (test_bit(__E1000_DOWN, &adapter->state))
4819		return;
4820
4821	e1000_get_phy_info(hw);
4822
4823	/* Enable EEE on 82579 after link up */
4824	if (hw->phy.type >= e1000_phy_82579)
4825		e1000_set_eee_pchlan(hw);
4826}
4827
4828/**
4829 * e1000_update_phy_info - timre call-back to update PHY info
4830 * @t: pointer to timer_list containing private info adapter
4831 *
4832 * Need to wait a few seconds after link up to get diagnostic information from
4833 * the phy
4834 **/
4835static void e1000_update_phy_info(struct timer_list *t)
4836{
4837	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4838
4839	if (test_bit(__E1000_DOWN, &adapter->state))
4840		return;
4841
4842	schedule_work(&adapter->update_phy_task);
4843}
4844
4845/**
4846 * e1000e_update_phy_stats - Update the PHY statistics counters
4847 * @adapter: board private structure
4848 *
4849 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4850 **/
4851static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4852{
4853	struct e1000_hw *hw = &adapter->hw;
4854	s32 ret_val;
4855	u16 phy_data;
4856
4857	ret_val = hw->phy.ops.acquire(hw);
4858	if (ret_val)
4859		return;
4860
4861	/* A page set is expensive so check if already on desired page.
4862	 * If not, set to the page with the PHY status registers.
4863	 */
4864	hw->phy.addr = 1;
4865	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4866					   &phy_data);
4867	if (ret_val)
4868		goto release;
4869	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4870		ret_val = hw->phy.ops.set_page(hw,
4871					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4872		if (ret_val)
4873			goto release;
4874	}
4875
4876	/* Single Collision Count */
4877	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4878	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4879	if (!ret_val)
4880		adapter->stats.scc += phy_data;
4881
4882	/* Excessive Collision Count */
4883	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4884	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4885	if (!ret_val)
4886		adapter->stats.ecol += phy_data;
4887
4888	/* Multiple Collision Count */
4889	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4890	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4891	if (!ret_val)
4892		adapter->stats.mcc += phy_data;
4893
4894	/* Late Collision Count */
4895	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4896	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4897	if (!ret_val)
4898		adapter->stats.latecol += phy_data;
4899
4900	/* Collision Count - also used for adaptive IFS */
4901	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4902	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4903	if (!ret_val)
4904		hw->mac.collision_delta = phy_data;
4905
4906	/* Defer Count */
4907	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4908	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4909	if (!ret_val)
4910		adapter->stats.dc += phy_data;
4911
4912	/* Transmit with no CRS */
4913	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4914	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4915	if (!ret_val)
4916		adapter->stats.tncrs += phy_data;
4917
4918release:
4919	hw->phy.ops.release(hw);
4920}
4921
4922/**
4923 * e1000e_update_stats - Update the board statistics counters
4924 * @adapter: board private structure
4925 **/
4926static void e1000e_update_stats(struct e1000_adapter *adapter)
4927{
4928	struct net_device *netdev = adapter->netdev;
4929	struct e1000_hw *hw = &adapter->hw;
4930	struct pci_dev *pdev = adapter->pdev;
4931
4932	/* Prevent stats update while adapter is being reset, or if the pci
4933	 * connection is down.
4934	 */
4935	if (adapter->link_speed == 0)
4936		return;
4937	if (pci_channel_offline(pdev))
4938		return;
4939
4940	adapter->stats.crcerrs += er32(CRCERRS);
4941	adapter->stats.gprc += er32(GPRC);
4942	adapter->stats.gorc += er32(GORCL);
4943	er32(GORCH);		/* Clear gorc */
4944	adapter->stats.bprc += er32(BPRC);
4945	adapter->stats.mprc += er32(MPRC);
4946	adapter->stats.roc += er32(ROC);
4947
4948	adapter->stats.mpc += er32(MPC);
4949
4950	/* Half-duplex statistics */
4951	if (adapter->link_duplex == HALF_DUPLEX) {
4952		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4953			e1000e_update_phy_stats(adapter);
4954		} else {
4955			adapter->stats.scc += er32(SCC);
4956			adapter->stats.ecol += er32(ECOL);
4957			adapter->stats.mcc += er32(MCC);
4958			adapter->stats.latecol += er32(LATECOL);
4959			adapter->stats.dc += er32(DC);
4960
4961			hw->mac.collision_delta = er32(COLC);
4962
4963			if ((hw->mac.type != e1000_82574) &&
4964			    (hw->mac.type != e1000_82583))
4965				adapter->stats.tncrs += er32(TNCRS);
4966		}
4967		adapter->stats.colc += hw->mac.collision_delta;
4968	}
4969
4970	adapter->stats.xonrxc += er32(XONRXC);
4971	adapter->stats.xontxc += er32(XONTXC);
4972	adapter->stats.xoffrxc += er32(XOFFRXC);
4973	adapter->stats.xofftxc += er32(XOFFTXC);
4974	adapter->stats.gptc += er32(GPTC);
4975	adapter->stats.gotc += er32(GOTCL);
4976	er32(GOTCH);		/* Clear gotc */
4977	adapter->stats.rnbc += er32(RNBC);
4978	adapter->stats.ruc += er32(RUC);
4979
4980	adapter->stats.mptc += er32(MPTC);
4981	adapter->stats.bptc += er32(BPTC);
4982
4983	/* used for adaptive IFS */
4984
4985	hw->mac.tx_packet_delta = er32(TPT);
4986	adapter->stats.tpt += hw->mac.tx_packet_delta;
4987
4988	adapter->stats.algnerrc += er32(ALGNERRC);
4989	adapter->stats.rxerrc += er32(RXERRC);
4990	adapter->stats.cexterr += er32(CEXTERR);
4991	adapter->stats.tsctc += er32(TSCTC);
4992	adapter->stats.tsctfc += er32(TSCTFC);
4993
4994	/* Fill out the OS statistics structure */
4995	netdev->stats.multicast = adapter->stats.mprc;
4996	netdev->stats.collisions = adapter->stats.colc;
4997
4998	/* Rx Errors */
4999
5000	/* RLEC on some newer hardware can be incorrect so build
5001	 * our own version based on RUC and ROC
5002	 */
5003	netdev->stats.rx_errors = adapter->stats.rxerrc +
5004	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5005	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5006	netdev->stats.rx_length_errors = adapter->stats.ruc +
5007	    adapter->stats.roc;
5008	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5009	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5010	netdev->stats.rx_missed_errors = adapter->stats.mpc;
5011
5012	/* Tx Errors */
5013	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5014	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5015	netdev->stats.tx_window_errors = adapter->stats.latecol;
5016	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5017
5018	/* Tx Dropped needs to be maintained elsewhere */
5019
5020	/* Management Stats */
5021	adapter->stats.mgptc += er32(MGTPTC);
5022	adapter->stats.mgprc += er32(MGTPRC);
5023	adapter->stats.mgpdc += er32(MGTPDC);
5024
5025	/* Correctable ECC Errors */
5026	if (hw->mac.type >= e1000_pch_lpt) {
5027		u32 pbeccsts = er32(PBECCSTS);
5028
5029		adapter->corr_errors +=
5030		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5031		adapter->uncorr_errors +=
5032		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
 
5033	}
5034}
5035
5036/**
5037 * e1000_phy_read_status - Update the PHY register status snapshot
5038 * @adapter: board private structure
5039 **/
5040static void e1000_phy_read_status(struct e1000_adapter *adapter)
5041{
5042	struct e1000_hw *hw = &adapter->hw;
5043	struct e1000_phy_regs *phy = &adapter->phy_regs;
5044
5045	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5046	    (er32(STATUS) & E1000_STATUS_LU) &&
5047	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5048		int ret_val;
5049
5050		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5051		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5052		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5053		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5054		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5055		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5056		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5057		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5058		if (ret_val)
5059			e_warn("Error reading PHY register\n");
5060	} else {
5061		/* Do not read PHY registers if link is not up
5062		 * Set values to typical power-on defaults
5063		 */
5064		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5065		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5066			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5067			     BMSR_ERCAP);
5068		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5069				  ADVERTISE_ALL | ADVERTISE_CSMA);
5070		phy->lpa = 0;
5071		phy->expansion = EXPANSION_ENABLENPAGE;
5072		phy->ctrl1000 = ADVERTISE_1000FULL;
5073		phy->stat1000 = 0;
5074		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5075	}
5076}
5077
5078static void e1000_print_link_info(struct e1000_adapter *adapter)
5079{
5080	struct e1000_hw *hw = &adapter->hw;
5081	u32 ctrl = er32(CTRL);
5082
5083	/* Link status message must follow this format for user tools */
5084	netdev_info(adapter->netdev,
5085		    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5086		    adapter->link_speed,
5087		    adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5088		    (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5089		    (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5090		    (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5091}
5092
5093static bool e1000e_has_link(struct e1000_adapter *adapter)
5094{
5095	struct e1000_hw *hw = &adapter->hw;
5096	bool link_active = false;
5097	s32 ret_val = 0;
5098
5099	/* get_link_status is set on LSC (link status) interrupt or
5100	 * Rx sequence error interrupt.  get_link_status will stay
5101	 * true until the check_for_link establishes link
5102	 * for copper adapters ONLY
5103	 */
5104	switch (hw->phy.media_type) {
5105	case e1000_media_type_copper:
5106		if (hw->mac.get_link_status) {
5107			ret_val = hw->mac.ops.check_for_link(hw);
5108			link_active = !hw->mac.get_link_status;
5109		} else {
5110			link_active = true;
5111		}
5112		break;
5113	case e1000_media_type_fiber:
5114		ret_val = hw->mac.ops.check_for_link(hw);
5115		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5116		break;
5117	case e1000_media_type_internal_serdes:
5118		ret_val = hw->mac.ops.check_for_link(hw);
5119		link_active = hw->mac.serdes_has_link;
5120		break;
5121	default:
5122	case e1000_media_type_unknown:
5123		break;
5124	}
5125
5126	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5127	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5128		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5129		e_info("Gigabit has been disabled, downgrading speed\n");
5130	}
5131
5132	return link_active;
5133}
5134
5135static void e1000e_enable_receives(struct e1000_adapter *adapter)
5136{
5137	/* make sure the receive unit is started */
5138	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5139	    (adapter->flags & FLAG_RESTART_NOW)) {
5140		struct e1000_hw *hw = &adapter->hw;
5141		u32 rctl = er32(RCTL);
5142
5143		ew32(RCTL, rctl | E1000_RCTL_EN);
5144		adapter->flags &= ~FLAG_RESTART_NOW;
5145	}
5146}
5147
5148static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5149{
5150	struct e1000_hw *hw = &adapter->hw;
5151
5152	/* With 82574 controllers, PHY needs to be checked periodically
5153	 * for hung state and reset, if two calls return true
5154	 */
5155	if (e1000_check_phy_82574(hw))
5156		adapter->phy_hang_count++;
5157	else
5158		adapter->phy_hang_count = 0;
5159
5160	if (adapter->phy_hang_count > 1) {
5161		adapter->phy_hang_count = 0;
5162		e_dbg("PHY appears hung - resetting\n");
5163		schedule_work(&adapter->reset_task);
5164	}
5165}
5166
5167/**
5168 * e1000_watchdog - Timer Call-back
5169 * @t: pointer to timer_list containing private info adapter
5170 **/
5171static void e1000_watchdog(struct timer_list *t)
5172{
5173	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5174
5175	/* Do the rest outside of interrupt context */
5176	schedule_work(&adapter->watchdog_task);
5177
5178	/* TODO: make this use queue_delayed_work() */
5179}
5180
5181static void e1000_watchdog_task(struct work_struct *work)
5182{
5183	struct e1000_adapter *adapter = container_of(work,
5184						     struct e1000_adapter,
5185						     watchdog_task);
5186	struct net_device *netdev = adapter->netdev;
5187	struct e1000_mac_info *mac = &adapter->hw.mac;
5188	struct e1000_phy_info *phy = &adapter->hw.phy;
5189	struct e1000_ring *tx_ring = adapter->tx_ring;
5190	u32 dmoff_exit_timeout = 100, tries = 0;
5191	struct e1000_hw *hw = &adapter->hw;
5192	u32 link, tctl, pcim_state;
5193
5194	if (test_bit(__E1000_DOWN, &adapter->state))
5195		return;
5196
5197	link = e1000e_has_link(adapter);
5198	if ((netif_carrier_ok(netdev)) && link) {
5199		/* Cancel scheduled suspend requests. */
5200		pm_runtime_resume(netdev->dev.parent);
5201
5202		e1000e_enable_receives(adapter);
5203		goto link_up;
5204	}
5205
5206	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5207	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5208		e1000_update_mng_vlan(adapter);
5209
5210	if (link) {
5211		if (!netif_carrier_ok(netdev)) {
5212			bool txb2b = true;
5213
5214			/* Cancel scheduled suspend requests. */
5215			pm_runtime_resume(netdev->dev.parent);
5216
5217			/* Checking if MAC is in DMoff state*/
5218			if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5219				pcim_state = er32(STATUS);
5220				while (pcim_state & E1000_STATUS_PCIM_STATE) {
5221					if (tries++ == dmoff_exit_timeout) {
5222						e_dbg("Error in exiting dmoff\n");
5223						break;
5224					}
5225					usleep_range(10000, 20000);
5226					pcim_state = er32(STATUS);
5227
5228					/* Checking if MAC exited DMoff state */
5229					if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5230						e1000_phy_hw_reset(&adapter->hw);
5231				}
5232			}
5233
5234			/* update snapshot of PHY registers on LSC */
5235			e1000_phy_read_status(adapter);
5236			mac->ops.get_link_up_info(&adapter->hw,
5237						  &adapter->link_speed,
5238						  &adapter->link_duplex);
5239			e1000_print_link_info(adapter);
5240
5241			/* check if SmartSpeed worked */
5242			e1000e_check_downshift(hw);
5243			if (phy->speed_downgraded)
5244				netdev_warn(netdev,
5245					    "Link Speed was downgraded by SmartSpeed\n");
5246
5247			/* On supported PHYs, check for duplex mismatch only
5248			 * if link has autonegotiated at 10/100 half
5249			 */
5250			if ((hw->phy.type == e1000_phy_igp_3 ||
5251			     hw->phy.type == e1000_phy_bm) &&
5252			    hw->mac.autoneg &&
5253			    (adapter->link_speed == SPEED_10 ||
5254			     adapter->link_speed == SPEED_100) &&
5255			    (adapter->link_duplex == HALF_DUPLEX)) {
5256				u16 autoneg_exp;
5257
5258				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5259
5260				if (!(autoneg_exp & EXPANSION_NWAY))
5261					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5262			}
5263
5264			/* adjust timeout factor according to speed/duplex */
5265			adapter->tx_timeout_factor = 1;
5266			switch (adapter->link_speed) {
5267			case SPEED_10:
5268				txb2b = false;
5269				adapter->tx_timeout_factor = 16;
5270				break;
5271			case SPEED_100:
5272				txb2b = false;
5273				adapter->tx_timeout_factor = 10;
5274				break;
5275			}
5276
5277			/* workaround: re-program speed mode bit after
5278			 * link-up event
5279			 */
5280			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5281			    !txb2b) {
5282				u32 tarc0;
5283
5284				tarc0 = er32(TARC(0));
5285				tarc0 &= ~SPEED_MODE_BIT;
5286				ew32(TARC(0), tarc0);
5287			}
5288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5289			/* enable transmits in the hardware, need to do this
5290			 * after setting TARC(0)
5291			 */
5292			tctl = er32(TCTL);
5293			tctl |= E1000_TCTL_EN;
5294			ew32(TCTL, tctl);
5295
5296			/* Perform any post-link-up configuration before
5297			 * reporting link up.
5298			 */
5299			if (phy->ops.cfg_on_link_up)
5300				phy->ops.cfg_on_link_up(hw);
5301
5302			netif_wake_queue(netdev);
5303			netif_carrier_on(netdev);
5304
5305			if (!test_bit(__E1000_DOWN, &adapter->state))
5306				mod_timer(&adapter->phy_info_timer,
5307					  round_jiffies(jiffies + 2 * HZ));
5308		}
5309	} else {
5310		if (netif_carrier_ok(netdev)) {
5311			adapter->link_speed = 0;
5312			adapter->link_duplex = 0;
5313			/* Link status message must follow this format */
5314			netdev_info(netdev, "NIC Link is Down\n");
5315			netif_carrier_off(netdev);
5316			netif_stop_queue(netdev);
5317			if (!test_bit(__E1000_DOWN, &adapter->state))
5318				mod_timer(&adapter->phy_info_timer,
5319					  round_jiffies(jiffies + 2 * HZ));
5320
5321			/* 8000ES2LAN requires a Rx packet buffer work-around
5322			 * on link down event; reset the controller to flush
5323			 * the Rx packet buffer.
5324			 */
5325			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5326				adapter->flags |= FLAG_RESTART_NOW;
5327			else
5328				pm_schedule_suspend(netdev->dev.parent,
5329						    LINK_TIMEOUT);
5330		}
5331	}
5332
5333link_up:
5334	spin_lock(&adapter->stats64_lock);
5335	e1000e_update_stats(adapter);
5336
5337	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5338	adapter->tpt_old = adapter->stats.tpt;
5339	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5340	adapter->colc_old = adapter->stats.colc;
5341
5342	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5343	adapter->gorc_old = adapter->stats.gorc;
5344	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5345	adapter->gotc_old = adapter->stats.gotc;
5346	spin_unlock(&adapter->stats64_lock);
5347
5348	/* If the link is lost the controller stops DMA, but
5349	 * if there is queued Tx work it cannot be done.  So
5350	 * reset the controller to flush the Tx packet buffers.
5351	 */
5352	if (!netif_carrier_ok(netdev) &&
5353	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5354		adapter->flags |= FLAG_RESTART_NOW;
5355
5356	/* If reset is necessary, do it outside of interrupt context. */
5357	if (adapter->flags & FLAG_RESTART_NOW) {
5358		schedule_work(&adapter->reset_task);
5359		/* return immediately since reset is imminent */
5360		return;
5361	}
5362
5363	e1000e_update_adaptive(&adapter->hw);
5364
5365	/* Simple mode for Interrupt Throttle Rate (ITR) */
5366	if (adapter->itr_setting == 4) {
5367		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5368		 * Total asymmetrical Tx or Rx gets ITR=8000;
5369		 * everyone else is between 2000-8000.
5370		 */
5371		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5372		u32 dif = (adapter->gotc > adapter->gorc ?
5373			   adapter->gotc - adapter->gorc :
5374			   adapter->gorc - adapter->gotc) / 10000;
5375		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5376
5377		e1000e_write_itr(adapter, itr);
5378	}
5379
5380	/* Cause software interrupt to ensure Rx ring is cleaned */
5381	if (adapter->msix_entries)
5382		ew32(ICS, adapter->rx_ring->ims_val);
5383	else
5384		ew32(ICS, E1000_ICS_RXDMT0);
5385
5386	/* flush pending descriptors to memory before detecting Tx hang */
5387	e1000e_flush_descriptors(adapter);
5388
5389	/* Force detection of hung controller every watchdog period */
5390	adapter->detect_tx_hung = true;
5391
5392	/* With 82571 controllers, LAA may be overwritten due to controller
5393	 * reset from the other port. Set the appropriate LAA in RAR[0]
5394	 */
5395	if (e1000e_get_laa_state_82571(hw))
5396		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5397
5398	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5399		e1000e_check_82574_phy_workaround(adapter);
5400
5401	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5402	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5403		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5404		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5405			er32(RXSTMPH);
5406			adapter->rx_hwtstamp_cleared++;
5407		} else {
5408			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5409		}
5410	}
5411
5412	/* Reset the timer */
5413	if (!test_bit(__E1000_DOWN, &adapter->state))
5414		mod_timer(&adapter->watchdog_timer,
5415			  round_jiffies(jiffies + 2 * HZ));
5416}
5417
5418#define E1000_TX_FLAGS_CSUM		0x00000001
5419#define E1000_TX_FLAGS_VLAN		0x00000002
5420#define E1000_TX_FLAGS_TSO		0x00000004
5421#define E1000_TX_FLAGS_IPV4		0x00000008
5422#define E1000_TX_FLAGS_NO_FCS		0x00000010
5423#define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5424#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5425#define E1000_TX_FLAGS_VLAN_SHIFT	16
5426
5427static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5428		     __be16 protocol)
5429{
5430	struct e1000_context_desc *context_desc;
5431	struct e1000_buffer *buffer_info;
5432	unsigned int i;
5433	u32 cmd_length = 0;
5434	u16 ipcse = 0, mss;
5435	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5436	int err;
5437
5438	if (!skb_is_gso(skb))
5439		return 0;
5440
5441	err = skb_cow_head(skb, 0);
5442	if (err < 0)
5443		return err;
5444
5445	hdr_len = skb_tcp_all_headers(skb);
5446	mss = skb_shinfo(skb)->gso_size;
5447	if (protocol == htons(ETH_P_IP)) {
5448		struct iphdr *iph = ip_hdr(skb);
5449		iph->tot_len = 0;
5450		iph->check = 0;
5451		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5452							 0, IPPROTO_TCP, 0);
5453		cmd_length = E1000_TXD_CMD_IP;
5454		ipcse = skb_transport_offset(skb) - 1;
5455	} else if (skb_is_gso_v6(skb)) {
5456		tcp_v6_gso_csum_prep(skb);
 
 
 
5457		ipcse = 0;
5458	}
5459	ipcss = skb_network_offset(skb);
5460	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5461	tucss = skb_transport_offset(skb);
5462	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5463
5464	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5465		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5466
5467	i = tx_ring->next_to_use;
5468	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5469	buffer_info = &tx_ring->buffer_info[i];
5470
5471	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5472	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5473	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5474	context_desc->upper_setup.tcp_fields.tucss = tucss;
5475	context_desc->upper_setup.tcp_fields.tucso = tucso;
5476	context_desc->upper_setup.tcp_fields.tucse = 0;
5477	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5478	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5479	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5480
5481	buffer_info->time_stamp = jiffies;
5482	buffer_info->next_to_watch = i;
5483
5484	i++;
5485	if (i == tx_ring->count)
5486		i = 0;
5487	tx_ring->next_to_use = i;
5488
5489	return 1;
5490}
5491
5492static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5493			  __be16 protocol)
5494{
5495	struct e1000_adapter *adapter = tx_ring->adapter;
5496	struct e1000_context_desc *context_desc;
5497	struct e1000_buffer *buffer_info;
5498	unsigned int i;
5499	u8 css;
5500	u32 cmd_len = E1000_TXD_CMD_DEXT;
 
5501
5502	if (skb->ip_summed != CHECKSUM_PARTIAL)
5503		return false;
 
 
 
 
 
5504
5505	switch (protocol) {
5506	case cpu_to_be16(ETH_P_IP):
5507		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5508			cmd_len |= E1000_TXD_CMD_TCP;
5509		break;
5510	case cpu_to_be16(ETH_P_IPV6):
5511		/* XXX not handling all IPV6 headers */
5512		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5513			cmd_len |= E1000_TXD_CMD_TCP;
5514		break;
5515	default:
5516		if (unlikely(net_ratelimit()))
5517			e_warn("checksum_partial proto=%x!\n",
5518			       be16_to_cpu(protocol));
5519		break;
5520	}
5521
5522	css = skb_checksum_start_offset(skb);
5523
5524	i = tx_ring->next_to_use;
5525	buffer_info = &tx_ring->buffer_info[i];
5526	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5527
5528	context_desc->lower_setup.ip_config = 0;
5529	context_desc->upper_setup.tcp_fields.tucss = css;
5530	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5531	context_desc->upper_setup.tcp_fields.tucse = 0;
5532	context_desc->tcp_seg_setup.data = 0;
5533	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5534
5535	buffer_info->time_stamp = jiffies;
5536	buffer_info->next_to_watch = i;
5537
5538	i++;
5539	if (i == tx_ring->count)
5540		i = 0;
5541	tx_ring->next_to_use = i;
5542
5543	return true;
5544}
5545
5546static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5547			unsigned int first, unsigned int max_per_txd,
5548			unsigned int nr_frags)
5549{
5550	struct e1000_adapter *adapter = tx_ring->adapter;
5551	struct pci_dev *pdev = adapter->pdev;
5552	struct e1000_buffer *buffer_info;
5553	unsigned int len = skb_headlen(skb);
5554	unsigned int offset = 0, size, count = 0, i;
5555	unsigned int f, bytecount, segs;
5556
5557	i = tx_ring->next_to_use;
5558
5559	while (len) {
5560		buffer_info = &tx_ring->buffer_info[i];
5561		size = min(len, max_per_txd);
5562
5563		buffer_info->length = size;
5564		buffer_info->time_stamp = jiffies;
5565		buffer_info->next_to_watch = i;
5566		buffer_info->dma = dma_map_single(&pdev->dev,
5567						  skb->data + offset,
5568						  size, DMA_TO_DEVICE);
5569		buffer_info->mapped_as_page = false;
5570		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5571			goto dma_error;
5572
5573		len -= size;
5574		offset += size;
5575		count++;
5576
5577		if (len) {
5578			i++;
5579			if (i == tx_ring->count)
5580				i = 0;
5581		}
5582	}
5583
5584	for (f = 0; f < nr_frags; f++) {
5585		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5586
 
5587		len = skb_frag_size(frag);
5588		offset = 0;
5589
5590		while (len) {
5591			i++;
5592			if (i == tx_ring->count)
5593				i = 0;
5594
5595			buffer_info = &tx_ring->buffer_info[i];
5596			size = min(len, max_per_txd);
5597
5598			buffer_info->length = size;
5599			buffer_info->time_stamp = jiffies;
5600			buffer_info->next_to_watch = i;
5601			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5602							    offset, size,
5603							    DMA_TO_DEVICE);
5604			buffer_info->mapped_as_page = true;
5605			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5606				goto dma_error;
5607
5608			len -= size;
5609			offset += size;
5610			count++;
5611		}
5612	}
5613
5614	segs = skb_shinfo(skb)->gso_segs ? : 1;
5615	/* multiply data chunks by size of headers */
5616	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5617
5618	tx_ring->buffer_info[i].skb = skb;
5619	tx_ring->buffer_info[i].segs = segs;
5620	tx_ring->buffer_info[i].bytecount = bytecount;
5621	tx_ring->buffer_info[first].next_to_watch = i;
5622
5623	return count;
5624
5625dma_error:
5626	dev_err(&pdev->dev, "Tx DMA map failed\n");
5627	buffer_info->dma = 0;
5628	if (count)
5629		count--;
5630
5631	while (count--) {
5632		if (i == 0)
5633			i += tx_ring->count;
5634		i--;
5635		buffer_info = &tx_ring->buffer_info[i];
5636		e1000_put_txbuf(tx_ring, buffer_info, true);
5637	}
5638
5639	return 0;
5640}
5641
5642static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5643{
5644	struct e1000_adapter *adapter = tx_ring->adapter;
5645	struct e1000_tx_desc *tx_desc = NULL;
5646	struct e1000_buffer *buffer_info;
5647	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5648	unsigned int i;
5649
5650	if (tx_flags & E1000_TX_FLAGS_TSO) {
5651		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5652		    E1000_TXD_CMD_TSE;
5653		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5654
5655		if (tx_flags & E1000_TX_FLAGS_IPV4)
5656			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5657	}
5658
5659	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5660		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5661		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5662	}
5663
5664	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5665		txd_lower |= E1000_TXD_CMD_VLE;
5666		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5667	}
5668
5669	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5670		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5671
5672	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5673		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5674		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5675	}
5676
5677	i = tx_ring->next_to_use;
5678
5679	do {
5680		buffer_info = &tx_ring->buffer_info[i];
5681		tx_desc = E1000_TX_DESC(*tx_ring, i);
5682		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5683		tx_desc->lower.data = cpu_to_le32(txd_lower |
5684						  buffer_info->length);
5685		tx_desc->upper.data = cpu_to_le32(txd_upper);
5686
5687		i++;
5688		if (i == tx_ring->count)
5689			i = 0;
5690	} while (--count > 0);
5691
5692	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5693
5694	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5695	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5696		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5697
5698	/* Force memory writes to complete before letting h/w
5699	 * know there are new descriptors to fetch.  (Only
5700	 * applicable for weak-ordered memory model archs,
5701	 * such as IA-64).
5702	 */
5703	wmb();
5704
5705	tx_ring->next_to_use = i;
 
 
 
 
 
 
 
 
 
 
5706}
5707
5708#define MINIMUM_DHCP_PACKET_SIZE 282
5709static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5710				    struct sk_buff *skb)
5711{
5712	struct e1000_hw *hw = &adapter->hw;
5713	u16 length, offset;
5714
5715	if (skb_vlan_tag_present(skb) &&
5716	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5717	      (adapter->hw.mng_cookie.status &
5718	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5719		return 0;
5720
5721	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5722		return 0;
5723
5724	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5725		return 0;
5726
5727	{
5728		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5729		struct udphdr *udp;
5730
5731		if (ip->protocol != IPPROTO_UDP)
5732			return 0;
5733
5734		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5735		if (ntohs(udp->dest) != 67)
5736			return 0;
5737
5738		offset = (u8 *)udp + 8 - skb->data;
5739		length = skb->len - offset;
5740		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5741	}
5742
5743	return 0;
5744}
5745
5746static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5747{
5748	struct e1000_adapter *adapter = tx_ring->adapter;
5749
5750	netif_stop_queue(adapter->netdev);
5751	/* Herbert's original patch had:
5752	 *  smp_mb__after_netif_stop_queue();
5753	 * but since that doesn't exist yet, just open code it.
5754	 */
5755	smp_mb();
5756
5757	/* We need to check again in a case another CPU has just
5758	 * made room available.
5759	 */
5760	if (e1000_desc_unused(tx_ring) < size)
5761		return -EBUSY;
5762
5763	/* A reprieve! */
5764	netif_start_queue(adapter->netdev);
5765	++adapter->restart_queue;
5766	return 0;
5767}
5768
5769static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5770{
5771	BUG_ON(size > tx_ring->count);
5772
5773	if (e1000_desc_unused(tx_ring) >= size)
5774		return 0;
5775	return __e1000_maybe_stop_tx(tx_ring, size);
5776}
5777
5778static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5779				    struct net_device *netdev)
5780{
5781	struct e1000_adapter *adapter = netdev_priv(netdev);
5782	struct e1000_ring *tx_ring = adapter->tx_ring;
5783	unsigned int first;
5784	unsigned int tx_flags = 0;
5785	unsigned int len = skb_headlen(skb);
5786	unsigned int nr_frags;
5787	unsigned int mss;
5788	int count = 0;
5789	int tso;
5790	unsigned int f;
5791	__be16 protocol = vlan_get_protocol(skb);
5792
5793	if (test_bit(__E1000_DOWN, &adapter->state)) {
5794		dev_kfree_skb_any(skb);
5795		return NETDEV_TX_OK;
5796	}
5797
5798	if (skb->len <= 0) {
5799		dev_kfree_skb_any(skb);
5800		return NETDEV_TX_OK;
5801	}
5802
5803	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5804	 * pad skb in order to meet this minimum size requirement
5805	 */
5806	if (skb_put_padto(skb, 17))
5807		return NETDEV_TX_OK;
 
 
 
 
5808
5809	mss = skb_shinfo(skb)->gso_size;
5810	if (mss) {
5811		u8 hdr_len;
5812
5813		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5814		 * points to just header, pull a few bytes of payload from
5815		 * frags into skb->data
5816		 */
5817		hdr_len = skb_tcp_all_headers(skb);
5818		/* we do this workaround for ES2LAN, but it is un-necessary,
5819		 * avoiding it could save a lot of cycles
5820		 */
5821		if (skb->data_len && (hdr_len == len)) {
5822			unsigned int pull_size;
5823
5824			pull_size = min_t(unsigned int, 4, skb->data_len);
5825			if (!__pskb_pull_tail(skb, pull_size)) {
5826				e_err("__pskb_pull_tail failed.\n");
5827				dev_kfree_skb_any(skb);
5828				return NETDEV_TX_OK;
5829			}
5830			len = skb_headlen(skb);
5831		}
5832	}
5833
5834	/* reserve a descriptor for the offload context */
5835	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5836		count++;
5837	count++;
5838
5839	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5840
5841	nr_frags = skb_shinfo(skb)->nr_frags;
5842	for (f = 0; f < nr_frags; f++)
5843		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5844				      adapter->tx_fifo_limit);
5845
5846	if (adapter->hw.mac.tx_pkt_filtering)
5847		e1000_transfer_dhcp_info(adapter, skb);
5848
5849	/* need: count + 2 desc gap to keep tail from touching
5850	 * head, otherwise try next time
5851	 */
5852	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5853		return NETDEV_TX_BUSY;
5854
5855	if (skb_vlan_tag_present(skb)) {
5856		tx_flags |= E1000_TX_FLAGS_VLAN;
5857		tx_flags |= (skb_vlan_tag_get(skb) <<
5858			     E1000_TX_FLAGS_VLAN_SHIFT);
5859	}
5860
5861	first = tx_ring->next_to_use;
5862
5863	tso = e1000_tso(tx_ring, skb, protocol);
5864	if (tso < 0) {
5865		dev_kfree_skb_any(skb);
5866		return NETDEV_TX_OK;
5867	}
5868
5869	if (tso)
5870		tx_flags |= E1000_TX_FLAGS_TSO;
5871	else if (e1000_tx_csum(tx_ring, skb, protocol))
5872		tx_flags |= E1000_TX_FLAGS_CSUM;
5873
5874	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5875	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5876	 * no longer assume, we must.
5877	 */
5878	if (protocol == htons(ETH_P_IP))
5879		tx_flags |= E1000_TX_FLAGS_IPV4;
5880
5881	if (unlikely(skb->no_fcs))
5882		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5883
5884	/* if count is 0 then mapping error has occurred */
5885	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5886			     nr_frags);
5887	if (count) {
5888		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5889		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5890			if (!adapter->tx_hwtstamp_skb) {
5891				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5892				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5893				adapter->tx_hwtstamp_skb = skb_get(skb);
5894				adapter->tx_hwtstamp_start = jiffies;
5895				schedule_work(&adapter->tx_hwtstamp_work);
5896			} else {
5897				adapter->tx_hwtstamp_skipped++;
5898			}
5899		}
5900
5901		skb_tx_timestamp(skb);
5902
5903		netdev_sent_queue(netdev, skb->len);
5904		e1000_tx_queue(tx_ring, tx_flags, count);
5905		/* Make sure there is space in the ring for the next send. */
5906		e1000_maybe_stop_tx(tx_ring,
5907				    ((MAX_SKB_FRAGS + 1) *
5908				     DIV_ROUND_UP(PAGE_SIZE,
5909						  adapter->tx_fifo_limit) + 4));
5910
5911		if (!netdev_xmit_more() ||
5912		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5913			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5914				e1000e_update_tdt_wa(tx_ring,
5915						     tx_ring->next_to_use);
5916			else
5917				writel(tx_ring->next_to_use, tx_ring->tail);
5918		}
5919	} else {
5920		dev_kfree_skb_any(skb);
5921		tx_ring->buffer_info[first].time_stamp = 0;
5922		tx_ring->next_to_use = first;
5923	}
5924
5925	return NETDEV_TX_OK;
5926}
5927
5928/**
5929 * e1000_tx_timeout - Respond to a Tx Hang
5930 * @netdev: network interface device structure
5931 * @txqueue: index of the hung queue (unused)
5932 **/
5933static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5934{
5935	struct e1000_adapter *adapter = netdev_priv(netdev);
5936
5937	/* Do the reset outside of interrupt context */
5938	adapter->tx_timeout_count++;
5939	schedule_work(&adapter->reset_task);
5940}
5941
5942static void e1000_reset_task(struct work_struct *work)
5943{
5944	struct e1000_adapter *adapter;
5945	adapter = container_of(work, struct e1000_adapter, reset_task);
5946
5947	rtnl_lock();
5948	/* don't run the task if already down */
5949	if (test_bit(__E1000_DOWN, &adapter->state)) {
5950		rtnl_unlock();
5951		return;
5952	}
5953
5954	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5955		e1000e_dump(adapter);
5956		e_err("Reset adapter unexpectedly\n");
5957	}
5958	e1000e_reinit_locked(adapter);
5959	rtnl_unlock();
5960}
5961
5962/**
5963 * e1000e_get_stats64 - Get System Network Statistics
5964 * @netdev: network interface device structure
5965 * @stats: rtnl_link_stats64 pointer
5966 *
5967 * Returns the address of the device statistics structure.
5968 **/
5969void e1000e_get_stats64(struct net_device *netdev,
5970			struct rtnl_link_stats64 *stats)
5971{
5972	struct e1000_adapter *adapter = netdev_priv(netdev);
5973
 
5974	spin_lock(&adapter->stats64_lock);
5975	e1000e_update_stats(adapter);
5976	/* Fill out the OS statistics structure */
5977	stats->rx_bytes = adapter->stats.gorc;
5978	stats->rx_packets = adapter->stats.gprc;
5979	stats->tx_bytes = adapter->stats.gotc;
5980	stats->tx_packets = adapter->stats.gptc;
5981	stats->multicast = adapter->stats.mprc;
5982	stats->collisions = adapter->stats.colc;
5983
5984	/* Rx Errors */
5985
5986	/* RLEC on some newer hardware can be incorrect so build
5987	 * our own version based on RUC and ROC
5988	 */
5989	stats->rx_errors = adapter->stats.rxerrc +
5990	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5991	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5992	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5993	stats->rx_crc_errors = adapter->stats.crcerrs;
5994	stats->rx_frame_errors = adapter->stats.algnerrc;
5995	stats->rx_missed_errors = adapter->stats.mpc;
5996
5997	/* Tx Errors */
5998	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5999	stats->tx_aborted_errors = adapter->stats.ecol;
6000	stats->tx_window_errors = adapter->stats.latecol;
6001	stats->tx_carrier_errors = adapter->stats.tncrs;
6002
6003	/* Tx Dropped needs to be maintained elsewhere */
6004
6005	spin_unlock(&adapter->stats64_lock);
 
6006}
6007
6008/**
6009 * e1000_change_mtu - Change the Maximum Transfer Unit
6010 * @netdev: network interface device structure
6011 * @new_mtu: new value for maximum frame size
6012 *
6013 * Returns 0 on success, negative on failure
6014 **/
6015static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6016{
6017	struct e1000_adapter *adapter = netdev_priv(netdev);
6018	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6019
6020	/* Jumbo frame support */
6021	if ((new_mtu > ETH_DATA_LEN) &&
6022	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6023		e_err("Jumbo Frames not supported.\n");
6024		return -EINVAL;
6025	}
6026
 
 
 
 
 
 
 
6027	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6028	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6029	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6030	    (new_mtu > ETH_DATA_LEN)) {
6031		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6032		return -EINVAL;
6033	}
6034
6035	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6036		usleep_range(1000, 1100);
6037	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6038	adapter->max_frame_size = max_frame;
6039	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6040		   netdev->mtu, new_mtu);
6041	netdev->mtu = new_mtu;
6042
6043	pm_runtime_get_sync(netdev->dev.parent);
6044
6045	if (netif_running(netdev))
6046		e1000e_down(adapter, true);
6047
6048	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6049	 * means we reserve 2 more, this pushes us to allocate from the next
6050	 * larger slab size.
6051	 * i.e. RXBUFFER_2048 --> size-4096 slab
6052	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6053	 * fragmented skbs
6054	 */
6055
6056	if (max_frame <= 2048)
6057		adapter->rx_buffer_len = 2048;
6058	else
6059		adapter->rx_buffer_len = 4096;
6060
6061	/* adjust allocation if LPE protects us, and we aren't using SBP */
6062	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6063		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
 
 
6064
6065	if (netif_running(netdev))
6066		e1000e_up(adapter);
6067	else
6068		e1000e_reset(adapter);
6069
6070	pm_runtime_put_sync(netdev->dev.parent);
6071
6072	clear_bit(__E1000_RESETTING, &adapter->state);
6073
6074	return 0;
6075}
6076
6077static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6078			   int cmd)
6079{
6080	struct e1000_adapter *adapter = netdev_priv(netdev);
6081	struct mii_ioctl_data *data = if_mii(ifr);
6082
6083	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6084		return -EOPNOTSUPP;
6085
6086	switch (cmd) {
6087	case SIOCGMIIPHY:
6088		data->phy_id = adapter->hw.phy.addr;
6089		break;
6090	case SIOCGMIIREG:
6091		e1000_phy_read_status(adapter);
6092
6093		switch (data->reg_num & 0x1F) {
6094		case MII_BMCR:
6095			data->val_out = adapter->phy_regs.bmcr;
6096			break;
6097		case MII_BMSR:
6098			data->val_out = adapter->phy_regs.bmsr;
6099			break;
6100		case MII_PHYSID1:
6101			data->val_out = (adapter->hw.phy.id >> 16);
6102			break;
6103		case MII_PHYSID2:
6104			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6105			break;
6106		case MII_ADVERTISE:
6107			data->val_out = adapter->phy_regs.advertise;
6108			break;
6109		case MII_LPA:
6110			data->val_out = adapter->phy_regs.lpa;
6111			break;
6112		case MII_EXPANSION:
6113			data->val_out = adapter->phy_regs.expansion;
6114			break;
6115		case MII_CTRL1000:
6116			data->val_out = adapter->phy_regs.ctrl1000;
6117			break;
6118		case MII_STAT1000:
6119			data->val_out = adapter->phy_regs.stat1000;
6120			break;
6121		case MII_ESTATUS:
6122			data->val_out = adapter->phy_regs.estatus;
6123			break;
6124		default:
6125			return -EIO;
6126		}
6127		break;
6128	case SIOCSMIIREG:
6129	default:
6130		return -EOPNOTSUPP;
6131	}
6132	return 0;
6133}
6134
6135/**
6136 * e1000e_hwtstamp_set - control hardware time stamping
6137 * @netdev: network interface device structure
6138 * @ifr: interface request
6139 *
6140 * Outgoing time stamping can be enabled and disabled. Play nice and
6141 * disable it when requested, although it shouldn't cause any overhead
6142 * when no packet needs it. At most one packet in the queue may be
6143 * marked for time stamping, otherwise it would be impossible to tell
6144 * for sure to which packet the hardware time stamp belongs.
6145 *
6146 * Incoming time stamping has to be configured via the hardware filters.
6147 * Not all combinations are supported, in particular event type has to be
6148 * specified. Matching the kind of event packet is not supported, with the
6149 * exception of "all V2 events regardless of level 2 or 4".
6150 **/
6151static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6152{
6153	struct e1000_adapter *adapter = netdev_priv(netdev);
6154	struct hwtstamp_config config;
6155	int ret_val;
6156
6157	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6158		return -EFAULT;
6159
6160	ret_val = e1000e_config_hwtstamp(adapter, &config);
6161	if (ret_val)
6162		return ret_val;
6163
6164	switch (config.rx_filter) {
6165	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6166	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6167	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6168	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6169	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6170	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6171		/* With V2 type filters which specify a Sync or Delay Request,
6172		 * Path Delay Request/Response messages are also time stamped
6173		 * by hardware so notify the caller the requested packets plus
6174		 * some others are time stamped.
6175		 */
6176		config.rx_filter = HWTSTAMP_FILTER_SOME;
6177		break;
6178	default:
6179		break;
6180	}
6181
6182	return copy_to_user(ifr->ifr_data, &config,
6183			    sizeof(config)) ? -EFAULT : 0;
6184}
6185
6186static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6187{
6188	struct e1000_adapter *adapter = netdev_priv(netdev);
6189
6190	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6191			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6192}
6193
6194static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6195{
6196	switch (cmd) {
6197	case SIOCGMIIPHY:
6198	case SIOCGMIIREG:
6199	case SIOCSMIIREG:
6200		return e1000_mii_ioctl(netdev, ifr, cmd);
6201	case SIOCSHWTSTAMP:
6202		return e1000e_hwtstamp_set(netdev, ifr);
6203	case SIOCGHWTSTAMP:
6204		return e1000e_hwtstamp_get(netdev, ifr);
6205	default:
6206		return -EOPNOTSUPP;
6207	}
6208}
6209
6210static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6211{
6212	struct e1000_hw *hw = &adapter->hw;
6213	u32 i, mac_reg, wuc;
6214	u16 phy_reg, wuc_enable;
6215	int retval;
6216
6217	/* copy MAC RARs to PHY RARs */
6218	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6219
6220	retval = hw->phy.ops.acquire(hw);
6221	if (retval) {
6222		e_err("Could not acquire PHY\n");
6223		return retval;
6224	}
6225
6226	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6227	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6228	if (retval)
6229		goto release;
6230
6231	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6232	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6233		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6234		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6235					   (u16)(mac_reg & 0xFFFF));
6236		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6237					   (u16)((mac_reg >> 16) & 0xFFFF));
6238	}
6239
6240	/* configure PHY Rx Control register */
6241	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6242	mac_reg = er32(RCTL);
6243	if (mac_reg & E1000_RCTL_UPE)
6244		phy_reg |= BM_RCTL_UPE;
6245	if (mac_reg & E1000_RCTL_MPE)
6246		phy_reg |= BM_RCTL_MPE;
6247	phy_reg &= ~(BM_RCTL_MO_MASK);
6248	if (mac_reg & E1000_RCTL_MO_3)
6249		phy_reg |= (FIELD_GET(E1000_RCTL_MO_3, mac_reg)
6250			    << BM_RCTL_MO_SHIFT);
6251	if (mac_reg & E1000_RCTL_BAM)
6252		phy_reg |= BM_RCTL_BAM;
6253	if (mac_reg & E1000_RCTL_PMCF)
6254		phy_reg |= BM_RCTL_PMCF;
6255	mac_reg = er32(CTRL);
6256	if (mac_reg & E1000_CTRL_RFCE)
6257		phy_reg |= BM_RCTL_RFCE;
6258	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6259
6260	wuc = E1000_WUC_PME_EN;
6261	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6262		wuc |= E1000_WUC_APME;
6263
6264	/* enable PHY wakeup in MAC register */
6265	ew32(WUFC, wufc);
6266	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6267		   E1000_WUC_PME_STATUS | wuc));
6268
6269	/* configure and enable PHY wakeup in PHY registers */
6270	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6271	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6272
6273	/* activate PHY wakeup */
6274	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6275	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6276	if (retval)
6277		e_err("Could not set PHY Host Wakeup bit\n");
6278release:
6279	hw->phy.ops.release(hw);
6280
6281	return retval;
6282}
6283
6284static void e1000e_flush_lpic(struct pci_dev *pdev)
6285{
6286	struct net_device *netdev = pci_get_drvdata(pdev);
6287	struct e1000_adapter *adapter = netdev_priv(netdev);
6288	struct e1000_hw *hw = &adapter->hw;
6289	u32 ret_val;
6290
6291	pm_runtime_get_sync(netdev->dev.parent);
6292
6293	ret_val = hw->phy.ops.acquire(hw);
6294	if (ret_val)
6295		goto fl_out;
6296
6297	pr_info("EEE TX LPI TIMER: %08X\n",
6298		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6299
6300	hw->phy.ops.release(hw);
6301
6302fl_out:
6303	pm_runtime_put_sync(netdev->dev.parent);
6304}
6305
6306/* S0ix implementation */
6307static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6308{
6309	struct e1000_hw *hw = &adapter->hw;
6310	u32 mac_data;
6311	u16 phy_data;
6312
6313	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6314	    hw->mac.type >= e1000_pch_adp) {
6315		/* Request ME configure the device for S0ix */
6316		mac_data = er32(H2ME);
6317		mac_data |= E1000_H2ME_START_DPG;
6318		mac_data &= ~E1000_H2ME_EXIT_DPG;
6319		trace_e1000e_trace_mac_register(mac_data);
6320		ew32(H2ME, mac_data);
6321	} else {
6322		/* Request driver configure the device to S0ix */
6323		/* Disable the periodic inband message,
6324		 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6325		 */
6326		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6327		phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6328		phy_data |= BIT(10);
6329		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6330
6331		/* Make sure we don't exit K1 every time a new packet arrives
6332		 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6333		 */
6334		e1e_rphy(hw, I217_CGFREG, &phy_data);
6335		phy_data |= BIT(5);
6336		e1e_wphy(hw, I217_CGFREG, phy_data);
6337
6338		/* Change the MAC/PHY interface to SMBus
6339		 * Force the SMBus in PHY page769_23[0] = 1
6340		 * Force the SMBus in MAC CTRL_EXT[11] = 1
6341		 */
6342		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6343		phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6344		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6345		mac_data = er32(CTRL_EXT);
6346		mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6347		ew32(CTRL_EXT, mac_data);
6348
6349		/* DFT control: PHY bit: page769_20[0] = 1
6350		 * page769_20[7] - PHY PLL stop
6351		 * page769_20[8] - PHY go to the electrical idle
6352		 * page769_20[9] - PHY serdes disable
6353		 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6354		 */
6355		e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6356		phy_data |= BIT(0);
6357		phy_data |= BIT(7);
6358		phy_data |= BIT(8);
6359		phy_data |= BIT(9);
6360		e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6361
6362		mac_data = er32(EXTCNF_CTRL);
6363		mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6364		ew32(EXTCNF_CTRL, mac_data);
6365
6366		/* Enable the Dynamic Power Gating in the MAC */
6367		mac_data = er32(FEXTNVM7);
6368		mac_data |= BIT(22);
6369		ew32(FEXTNVM7, mac_data);
6370
6371		/* Disable disconnected cable conditioning for Power Gating */
6372		mac_data = er32(DPGFR);
6373		mac_data |= BIT(2);
6374		ew32(DPGFR, mac_data);
6375
6376		/* Don't wake from dynamic Power Gating with clock request */
6377		mac_data = er32(FEXTNVM12);
6378		mac_data |= BIT(12);
6379		ew32(FEXTNVM12, mac_data);
6380
6381		/* Ungate PGCB clock */
6382		mac_data = er32(FEXTNVM9);
6383		mac_data &= ~BIT(28);
6384		ew32(FEXTNVM9, mac_data);
6385
6386		/* Enable K1 off to enable mPHY Power Gating */
6387		mac_data = er32(FEXTNVM6);
6388		mac_data |= BIT(31);
6389		ew32(FEXTNVM6, mac_data);
6390
6391		/* Enable mPHY power gating for any link and speed */
6392		mac_data = er32(FEXTNVM8);
6393		mac_data |= BIT(9);
6394		ew32(FEXTNVM8, mac_data);
6395
6396		/* Enable the Dynamic Clock Gating in the DMA and MAC */
6397		mac_data = er32(CTRL_EXT);
6398		mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6399		ew32(CTRL_EXT, mac_data);
6400
6401		/* No MAC DPG gating SLP_S0 in modern standby
6402		 * Switch the logic of the lanphypc to use PMC counter
6403		 */
6404		mac_data = er32(FEXTNVM5);
6405		mac_data |= BIT(7);
6406		ew32(FEXTNVM5, mac_data);
6407	}
6408
6409	/* Disable the time synchronization clock */
6410	mac_data = er32(FEXTNVM7);
6411	mac_data |= BIT(31);
6412	mac_data &= ~BIT(0);
6413	ew32(FEXTNVM7, mac_data);
6414
6415	/* Dynamic Power Gating Enable */
6416	mac_data = er32(CTRL_EXT);
6417	mac_data |= BIT(3);
6418	ew32(CTRL_EXT, mac_data);
6419
6420	/* Check MAC Tx/Rx packet buffer pointers.
6421	 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6422	 * pending traffic indication that would prevent power gating.
6423	 */
6424	mac_data = er32(TDFH);
6425	if (mac_data)
6426		ew32(TDFH, 0);
6427	mac_data = er32(TDFT);
6428	if (mac_data)
6429		ew32(TDFT, 0);
6430	mac_data = er32(TDFHS);
6431	if (mac_data)
6432		ew32(TDFHS, 0);
6433	mac_data = er32(TDFTS);
6434	if (mac_data)
6435		ew32(TDFTS, 0);
6436	mac_data = er32(TDFPC);
6437	if (mac_data)
6438		ew32(TDFPC, 0);
6439	mac_data = er32(RDFH);
6440	if (mac_data)
6441		ew32(RDFH, 0);
6442	mac_data = er32(RDFT);
6443	if (mac_data)
6444		ew32(RDFT, 0);
6445	mac_data = er32(RDFHS);
6446	if (mac_data)
6447		ew32(RDFHS, 0);
6448	mac_data = er32(RDFTS);
6449	if (mac_data)
6450		ew32(RDFTS, 0);
6451	mac_data = er32(RDFPC);
6452	if (mac_data)
6453		ew32(RDFPC, 0);
6454}
6455
6456static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6457{
6458	struct e1000_hw *hw = &adapter->hw;
6459	bool firmware_bug = false;
6460	u32 mac_data;
6461	u16 phy_data;
6462	u32 i = 0;
6463
6464	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6465	    hw->mac.type >= e1000_pch_adp) {
6466		/* Keep the GPT clock enabled for CSME */
6467		mac_data = er32(FEXTNVM);
6468		mac_data |= BIT(3);
6469		ew32(FEXTNVM, mac_data);
6470		/* Request ME unconfigure the device from S0ix */
6471		mac_data = er32(H2ME);
6472		mac_data &= ~E1000_H2ME_START_DPG;
6473		mac_data |= E1000_H2ME_EXIT_DPG;
6474		trace_e1000e_trace_mac_register(mac_data);
6475		ew32(H2ME, mac_data);
6476
6477		/* Poll up to 2.5 seconds for ME to unconfigure DPG.
6478		 * If this takes more than 1 second, show a warning indicating a
6479		 * firmware bug
6480		 */
6481		while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) {
6482			if (i > 100 && !firmware_bug)
6483				firmware_bug = true;
6484
6485			if (i++ == 250) {
6486				e_dbg("Timeout (firmware bug): %d msec\n",
6487				      i * 10);
6488				break;
6489			}
6490
6491			usleep_range(10000, 11000);
6492		}
6493		if (firmware_bug)
6494			e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
6495			       i * 10);
6496		else
6497			e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10);
6498	} else {
6499		/* Request driver unconfigure the device from S0ix */
6500
6501		/* Disable the Dynamic Power Gating in the MAC */
6502		mac_data = er32(FEXTNVM7);
6503		mac_data &= 0xFFBFFFFF;
6504		ew32(FEXTNVM7, mac_data);
6505
6506		/* Disable mPHY power gating for any link and speed */
6507		mac_data = er32(FEXTNVM8);
6508		mac_data &= ~BIT(9);
6509		ew32(FEXTNVM8, mac_data);
6510
6511		/* Disable K1 off */
6512		mac_data = er32(FEXTNVM6);
6513		mac_data &= ~BIT(31);
6514		ew32(FEXTNVM6, mac_data);
6515
6516		/* Disable Ungate PGCB clock */
6517		mac_data = er32(FEXTNVM9);
6518		mac_data |= BIT(28);
6519		ew32(FEXTNVM9, mac_data);
6520
6521		/* Cancel not waking from dynamic
6522		 * Power Gating with clock request
6523		 */
6524		mac_data = er32(FEXTNVM12);
6525		mac_data &= ~BIT(12);
6526		ew32(FEXTNVM12, mac_data);
6527
6528		/* Cancel disable disconnected cable conditioning
6529		 * for Power Gating
6530		 */
6531		mac_data = er32(DPGFR);
6532		mac_data &= ~BIT(2);
6533		ew32(DPGFR, mac_data);
6534
6535		/* Disable the Dynamic Clock Gating in the DMA and MAC */
6536		mac_data = er32(CTRL_EXT);
6537		mac_data &= 0xFFF7FFFF;
6538		ew32(CTRL_EXT, mac_data);
6539
6540		/* Revert the lanphypc logic to use the internal Gbe counter
6541		 * and not the PMC counter
6542		 */
6543		mac_data = er32(FEXTNVM5);
6544		mac_data &= 0xFFFFFF7F;
6545		ew32(FEXTNVM5, mac_data);
6546
6547		/* Enable the periodic inband message,
6548		 * Request PCIe clock in K1 page770_17[10:9] =01b
6549		 */
6550		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6551		phy_data &= 0xFBFF;
6552		phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6553		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6554
6555		/* Return back configuration
6556		 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6557		 */
6558		e1e_rphy(hw, I217_CGFREG, &phy_data);
6559		phy_data &= 0xFFDF;
6560		e1e_wphy(hw, I217_CGFREG, phy_data);
6561
6562		/* Change the MAC/PHY interface to Kumeran
6563		 * Unforce the SMBus in PHY page769_23[0] = 0
6564		 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6565		 */
6566		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6567		phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6568		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6569		mac_data = er32(CTRL_EXT);
6570		mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6571		ew32(CTRL_EXT, mac_data);
6572	}
6573
6574	/* Disable Dynamic Power Gating */
6575	mac_data = er32(CTRL_EXT);
6576	mac_data &= 0xFFFFFFF7;
6577	ew32(CTRL_EXT, mac_data);
6578
6579	/* Enable the time synchronization clock */
6580	mac_data = er32(FEXTNVM7);
6581	mac_data &= ~BIT(31);
6582	mac_data |= BIT(0);
6583	ew32(FEXTNVM7, mac_data);
6584}
6585
6586static int e1000e_pm_freeze(struct device *dev)
6587{
6588	struct net_device *netdev = dev_get_drvdata(dev);
6589	struct e1000_adapter *adapter = netdev_priv(netdev);
6590	bool present;
6591
6592	rtnl_lock();
6593
6594	present = netif_device_present(netdev);
6595	netif_device_detach(netdev);
6596
6597	if (present && netif_running(netdev)) {
6598		int count = E1000_CHECK_RESET_COUNT;
6599
6600		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6601			usleep_range(10000, 11000);
6602
6603		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6604
6605		/* Quiesce the device without resetting the hardware */
6606		e1000e_down(adapter, false);
6607		e1000_free_irq(adapter);
6608	}
6609	rtnl_unlock();
6610
6611	e1000e_reset_interrupt_capability(adapter);
6612
6613	/* Allow time for pending master requests to run */
6614	e1000e_disable_pcie_master(&adapter->hw);
6615
6616	return 0;
6617}
6618
6619static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6620{
6621	struct net_device *netdev = pci_get_drvdata(pdev);
6622	struct e1000_adapter *adapter = netdev_priv(netdev);
6623	struct e1000_hw *hw = &adapter->hw;
6624	u32 ctrl, ctrl_ext, rctl, status, wufc;
6625	int retval = 0;
6626
6627	/* Runtime suspend should only enable wakeup for link changes */
6628	if (runtime)
6629		wufc = E1000_WUFC_LNKC;
6630	else if (device_may_wakeup(&pdev->dev))
6631		wufc = adapter->wol;
6632	else
6633		wufc = 0;
6634
6635	status = er32(STATUS);
6636	if (status & E1000_STATUS_LU)
6637		wufc &= ~E1000_WUFC_LNKC;
6638
6639	if (wufc) {
6640		e1000_setup_rctl(adapter);
6641		e1000e_set_rx_mode(netdev);
6642
6643		/* turn on all-multi mode if wake on multicast is enabled */
6644		if (wufc & E1000_WUFC_MC) {
6645			rctl = er32(RCTL);
6646			rctl |= E1000_RCTL_MPE;
6647			ew32(RCTL, rctl);
6648		}
6649
6650		ctrl = er32(CTRL);
6651		ctrl |= E1000_CTRL_ADVD3WUC;
6652		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6653			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6654		ew32(CTRL, ctrl);
6655
6656		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6657		    adapter->hw.phy.media_type ==
6658		    e1000_media_type_internal_serdes) {
6659			/* keep the laser running in D3 */
6660			ctrl_ext = er32(CTRL_EXT);
6661			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6662			ew32(CTRL_EXT, ctrl_ext);
6663		}
6664
6665		if (!runtime)
6666			e1000e_power_up_phy(adapter);
6667
6668		if (adapter->flags & FLAG_IS_ICH)
6669			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6670
6671		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6672			/* enable wakeup by the PHY */
6673			retval = e1000_init_phy_wakeup(adapter, wufc);
6674			if (retval)
6675				return retval;
6676		} else {
6677			/* enable wakeup by the MAC */
6678			ew32(WUFC, wufc);
6679			ew32(WUC, E1000_WUC_PME_EN);
6680		}
6681	} else {
6682		ew32(WUC, 0);
6683		ew32(WUFC, 0);
6684
6685		e1000_power_down_phy(adapter);
6686	}
6687
6688	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6689		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6690	} else if (hw->mac.type >= e1000_pch_lpt) {
6691		if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6692			/* ULP does not support wake from unicast, multicast
6693			 * or broadcast.
6694			 */
6695			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6696
6697		if (retval)
6698			return retval;
6699	}
6700
6701	/* Ensure that the appropriate bits are set in LPI_CTRL
6702	 * for EEE in Sx
6703	 */
6704	if ((hw->phy.type >= e1000_phy_i217) &&
6705	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6706		u16 lpi_ctrl = 0;
6707
6708		retval = hw->phy.ops.acquire(hw);
6709		if (!retval) {
6710			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6711						 &lpi_ctrl);
6712			if (!retval) {
6713				if (adapter->eee_advert &
6714				    hw->dev_spec.ich8lan.eee_lp_ability &
6715				    I82579_EEE_100_SUPPORTED)
6716					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6717				if (adapter->eee_advert &
6718				    hw->dev_spec.ich8lan.eee_lp_ability &
6719				    I82579_EEE_1000_SUPPORTED)
6720					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6721
6722				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6723							 lpi_ctrl);
6724			}
6725		}
6726		hw->phy.ops.release(hw);
6727	}
6728
6729	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6730	 * would have already happened in close and is redundant.
6731	 */
6732	e1000e_release_hw_control(adapter);
6733
6734	pci_clear_master(pdev);
6735
6736	/* The pci-e switch on some quad port adapters will report a
6737	 * correctable error when the MAC transitions from D0 to D3.  To
6738	 * prevent this we need to mask off the correctable errors on the
6739	 * downstream port of the pci-e switch.
6740	 *
6741	 * We don't have the associated upstream bridge while assigning
6742	 * the PCI device into guest. For example, the KVM on power is
6743	 * one of the cases.
6744	 */
6745	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6746		struct pci_dev *us_dev = pdev->bus->self;
6747		u16 devctl;
6748
6749		if (!us_dev)
6750			return 0;
6751
6752		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6753		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6754					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6755
6756		pci_save_state(pdev);
6757		pci_prepare_to_sleep(pdev);
6758
6759		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6760	}
6761
6762	return 0;
6763}
6764
6765/**
6766 * __e1000e_disable_aspm - Disable ASPM states
6767 * @pdev: pointer to PCI device struct
6768 * @state: bit-mask of ASPM states to disable
6769 * @locked: indication if this context holds pci_bus_sem locked.
6770 *
6771 * Some devices *must* have certain ASPM states disabled per hardware errata.
6772 **/
6773static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6774{
6775	struct pci_dev *parent = pdev->bus->self;
6776	u16 aspm_dis_mask = 0;
6777	u16 pdev_aspmc, parent_aspmc;
6778
6779	switch (state) {
6780	case PCIE_LINK_STATE_L0S:
6781	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6782		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6783		fallthrough; /* can't have L1 without L0s */
6784	case PCIE_LINK_STATE_L1:
6785		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6786		break;
6787	default:
6788		return;
6789	}
6790
6791	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6792	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6793
6794	if (parent) {
6795		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6796					  &parent_aspmc);
6797		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6798	}
6799
6800	/* Nothing to do if the ASPM states to be disabled already are */
6801	if (!(pdev_aspmc & aspm_dis_mask) &&
6802	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6803		return;
6804
6805	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6806		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6807		 "L0s" : "",
6808		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6809		 "L1" : "");
6810
6811#ifdef CONFIG_PCIEASPM
6812	if (locked)
6813		pci_disable_link_state_locked(pdev, state);
6814	else
6815		pci_disable_link_state(pdev, state);
6816
6817	/* Double-check ASPM control.  If not disabled by the above, the
6818	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6819	 * not enabled); override by writing PCI config space directly.
6820	 */
6821	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6822	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6823
6824	if (!(aspm_dis_mask & pdev_aspmc))
6825		return;
6826#endif
6827
6828	/* Both device and parent should have the same ASPM setting.
6829	 * Disable ASPM in downstream component first and then upstream.
6830	 */
6831	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6832
6833	if (parent)
6834		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6835					   aspm_dis_mask);
6836}
6837
6838/**
6839 * e1000e_disable_aspm - Disable ASPM states.
6840 * @pdev: pointer to PCI device struct
6841 * @state: bit-mask of ASPM states to disable
6842 *
6843 * This function acquires the pci_bus_sem!
6844 * Some devices *must* have certain ASPM states disabled per hardware errata.
6845 **/
6846static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6847{
6848	__e1000e_disable_aspm(pdev, state, 0);
6849}
6850
6851/**
6852 * e1000e_disable_aspm_locked - Disable ASPM states.
6853 * @pdev: pointer to PCI device struct
6854 * @state: bit-mask of ASPM states to disable
6855 *
6856 * This function must be called with pci_bus_sem acquired!
6857 * Some devices *must* have certain ASPM states disabled per hardware errata.
6858 **/
6859static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6860{
6861	__e1000e_disable_aspm(pdev, state, 1);
6862}
6863
6864static int e1000e_pm_thaw(struct device *dev)
6865{
6866	struct net_device *netdev = dev_get_drvdata(dev);
6867	struct e1000_adapter *adapter = netdev_priv(netdev);
6868	int rc = 0;
6869
6870	e1000e_set_interrupt_capability(adapter);
6871
6872	rtnl_lock();
6873	if (netif_running(netdev)) {
6874		rc = e1000_request_irq(adapter);
6875		if (rc)
6876			goto err_irq;
6877
6878		e1000e_up(adapter);
6879	}
6880
6881	netif_device_attach(netdev);
6882err_irq:
6883	rtnl_unlock();
6884
6885	return rc;
6886}
6887
6888static int __e1000_resume(struct pci_dev *pdev)
6889{
6890	struct net_device *netdev = pci_get_drvdata(pdev);
6891	struct e1000_adapter *adapter = netdev_priv(netdev);
6892	struct e1000_hw *hw = &adapter->hw;
6893	u16 aspm_disable_flag = 0;
6894
6895	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6896		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6897	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6898		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6899	if (aspm_disable_flag)
6900		e1000e_disable_aspm(pdev, aspm_disable_flag);
6901
6902	pci_set_master(pdev);
6903
6904	if (hw->mac.type >= e1000_pch2lan)
6905		e1000_resume_workarounds_pchlan(&adapter->hw);
6906
6907	e1000e_power_up_phy(adapter);
6908
6909	/* report the system wakeup cause from S3/S4 */
6910	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6911		u16 phy_data;
6912
6913		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6914		if (phy_data) {
6915			e_info("PHY Wakeup cause - %s\n",
6916			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6917			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6918			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6919			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6920			       phy_data & E1000_WUS_LNKC ?
6921			       "Link Status Change" : "other");
6922		}
6923		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6924	} else {
6925		u32 wus = er32(WUS);
6926
6927		if (wus) {
6928			e_info("MAC Wakeup cause - %s\n",
6929			       wus & E1000_WUS_EX ? "Unicast Packet" :
6930			       wus & E1000_WUS_MC ? "Multicast Packet" :
6931			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6932			       wus & E1000_WUS_MAG ? "Magic Packet" :
6933			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6934			       "other");
6935		}
6936		ew32(WUS, ~0);
6937	}
6938
6939	e1000e_reset(adapter);
6940
6941	e1000_init_manageability_pt(adapter);
6942
6943	/* If the controller has AMT, do not set DRV_LOAD until the interface
6944	 * is up.  For all other cases, let the f/w know that the h/w is now
6945	 * under the control of the driver.
6946	 */
6947	if (!(adapter->flags & FLAG_HAS_AMT))
6948		e1000e_get_hw_control(adapter);
6949
6950	return 0;
6951}
6952
6953static __maybe_unused int e1000e_pm_prepare(struct device *dev)
6954{
6955	return pm_runtime_suspended(dev) &&
6956		pm_suspend_via_firmware();
6957}
6958
6959static __maybe_unused int e1000e_pm_suspend(struct device *dev)
6960{
6961	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6962	struct e1000_adapter *adapter = netdev_priv(netdev);
6963	struct pci_dev *pdev = to_pci_dev(dev);
6964	int rc;
6965
6966	e1000e_flush_lpic(pdev);
 
 
6967
6968	e1000e_pm_freeze(dev);
 
6969
6970	rc = __e1000_shutdown(pdev, false);
6971	if (rc) {
6972		e1000e_pm_thaw(dev);
6973	} else {
6974		/* Introduce S0ix implementation */
6975		if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6976			e1000e_s0ix_entry_flow(adapter);
6977	}
6978
6979	return rc;
 
 
6980}
6981
6982static __maybe_unused int e1000e_pm_resume(struct device *dev)
6983{
6984	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6985	struct e1000_adapter *adapter = netdev_priv(netdev);
6986	struct pci_dev *pdev = to_pci_dev(dev);
6987	int rc;
6988
6989	/* Introduce S0ix implementation */
6990	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6991		e1000e_s0ix_exit_flow(adapter);
 
 
 
 
 
 
6992
6993	rc = __e1000_resume(pdev);
6994	if (rc)
6995		return rc;
6996
6997	return e1000e_pm_thaw(dev);
6998}
 
6999
7000static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
 
7001{
7002	struct net_device *netdev = dev_get_drvdata(dev);
 
7003	struct e1000_adapter *adapter = netdev_priv(netdev);
7004	u16 eee_lp;
7005
7006	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
7007
7008	if (!e1000e_has_link(adapter)) {
7009		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
7010		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
7011	}
7012
7013	return -EBUSY;
7014}
7015
7016static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
7017{
7018	struct pci_dev *pdev = to_pci_dev(dev);
7019	struct net_device *netdev = pci_get_drvdata(pdev);
7020	struct e1000_adapter *adapter = netdev_priv(netdev);
7021	int rc;
7022
7023	pdev->pme_poll = true;
7024
7025	rc = __e1000_resume(pdev);
7026	if (rc)
7027		return rc;
7028
7029	if (netdev->flags & IFF_UP)
7030		e1000e_up(adapter);
7031
7032	return rc;
7033}
7034
7035static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
7036{
7037	struct pci_dev *pdev = to_pci_dev(dev);
7038	struct net_device *netdev = pci_get_drvdata(pdev);
7039	struct e1000_adapter *adapter = netdev_priv(netdev);
7040
7041	if (netdev->flags & IFF_UP) {
7042		int count = E1000_CHECK_RESET_COUNT;
7043
7044		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7045			usleep_range(10000, 11000);
7046
7047		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7048
7049		/* Down the device without resetting the hardware */
7050		e1000e_down(adapter, false);
7051	}
7052
7053	if (__e1000_shutdown(pdev, true)) {
7054		e1000e_pm_runtime_resume(dev);
7055		return -EBUSY;
7056	}
7057
7058	return 0;
7059}
 
 
7060
7061static void e1000_shutdown(struct pci_dev *pdev)
7062{
7063	e1000e_flush_lpic(pdev);
7064
7065	e1000e_pm_freeze(&pdev->dev);
7066
7067	__e1000_shutdown(pdev, false);
7068}
7069
7070#ifdef CONFIG_NET_POLL_CONTROLLER
7071
7072static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7073{
7074	struct net_device *netdev = data;
7075	struct e1000_adapter *adapter = netdev_priv(netdev);
7076
7077	if (adapter->msix_entries) {
7078		int vector, msix_irq;
7079
7080		vector = 0;
7081		msix_irq = adapter->msix_entries[vector].vector;
7082		if (disable_hardirq(msix_irq))
7083			e1000_intr_msix_rx(msix_irq, netdev);
7084		enable_irq(msix_irq);
7085
7086		vector++;
7087		msix_irq = adapter->msix_entries[vector].vector;
7088		if (disable_hardirq(msix_irq))
7089			e1000_intr_msix_tx(msix_irq, netdev);
7090		enable_irq(msix_irq);
7091
7092		vector++;
7093		msix_irq = adapter->msix_entries[vector].vector;
7094		if (disable_hardirq(msix_irq))
7095			e1000_msix_other(msix_irq, netdev);
7096		enable_irq(msix_irq);
7097	}
7098
7099	return IRQ_HANDLED;
7100}
7101
7102/**
7103 * e1000_netpoll
7104 * @netdev: network interface device structure
7105 *
7106 * Polling 'interrupt' - used by things like netconsole to send skbs
7107 * without having to re-enable interrupts. It's not called while
7108 * the interrupt routine is executing.
7109 */
7110static void e1000_netpoll(struct net_device *netdev)
7111{
7112	struct e1000_adapter *adapter = netdev_priv(netdev);
7113
7114	switch (adapter->int_mode) {
7115	case E1000E_INT_MODE_MSIX:
7116		e1000_intr_msix(adapter->pdev->irq, netdev);
7117		break;
7118	case E1000E_INT_MODE_MSI:
7119		if (disable_hardirq(adapter->pdev->irq))
7120			e1000_intr_msi(adapter->pdev->irq, netdev);
7121		enable_irq(adapter->pdev->irq);
7122		break;
7123	default:		/* E1000E_INT_MODE_LEGACY */
7124		if (disable_hardirq(adapter->pdev->irq))
7125			e1000_intr(adapter->pdev->irq, netdev);
7126		enable_irq(adapter->pdev->irq);
7127		break;
7128	}
7129}
7130#endif
7131
7132/**
7133 * e1000_io_error_detected - called when PCI error is detected
7134 * @pdev: Pointer to PCI device
7135 * @state: The current pci connection state
7136 *
7137 * This function is called after a PCI bus error affecting
7138 * this device has been detected.
7139 */
7140static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7141						pci_channel_state_t state)
7142{
7143	e1000e_pm_freeze(&pdev->dev);
 
 
 
7144
7145	if (state == pci_channel_io_perm_failure)
7146		return PCI_ERS_RESULT_DISCONNECT;
7147
 
 
7148	pci_disable_device(pdev);
7149
7150	/* Request a slot reset. */
7151	return PCI_ERS_RESULT_NEED_RESET;
7152}
7153
7154/**
7155 * e1000_io_slot_reset - called after the pci bus has been reset.
7156 * @pdev: Pointer to PCI device
7157 *
7158 * Restart the card from scratch, as if from a cold-boot. Implementation
7159 * resembles the first-half of the e1000e_pm_resume routine.
7160 */
7161static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7162{
7163	struct net_device *netdev = pci_get_drvdata(pdev);
7164	struct e1000_adapter *adapter = netdev_priv(netdev);
7165	struct e1000_hw *hw = &adapter->hw;
7166	u16 aspm_disable_flag = 0;
7167	int err;
7168	pci_ers_result_t result;
7169
7170	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7171		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7172	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7173		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7174	if (aspm_disable_flag)
7175		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7176
7177	err = pci_enable_device_mem(pdev);
7178	if (err) {
7179		dev_err(&pdev->dev,
7180			"Cannot re-enable PCI device after reset.\n");
7181		result = PCI_ERS_RESULT_DISCONNECT;
7182	} else {
7183		pdev->state_saved = true;
7184		pci_restore_state(pdev);
7185		pci_set_master(pdev);
7186
7187		pci_enable_wake(pdev, PCI_D3hot, 0);
7188		pci_enable_wake(pdev, PCI_D3cold, 0);
7189
7190		e1000e_reset(adapter);
7191		ew32(WUS, ~0);
7192		result = PCI_ERS_RESULT_RECOVERED;
7193	}
7194
 
 
7195	return result;
7196}
7197
7198/**
7199 * e1000_io_resume - called when traffic can start flowing again.
7200 * @pdev: Pointer to PCI device
7201 *
7202 * This callback is called when the error recovery driver tells us that
7203 * its OK to resume normal operation. Implementation resembles the
7204 * second-half of the e1000e_pm_resume routine.
7205 */
7206static void e1000_io_resume(struct pci_dev *pdev)
7207{
7208	struct net_device *netdev = pci_get_drvdata(pdev);
7209	struct e1000_adapter *adapter = netdev_priv(netdev);
7210
7211	e1000_init_manageability_pt(adapter);
7212
7213	e1000e_pm_thaw(&pdev->dev);
 
 
 
 
 
 
 
 
7214
7215	/* If the controller has AMT, do not set DRV_LOAD until the interface
7216	 * is up.  For all other cases, let the f/w know that the h/w is now
7217	 * under the control of the driver.
7218	 */
7219	if (!(adapter->flags & FLAG_HAS_AMT))
7220		e1000e_get_hw_control(adapter);
7221}
7222
7223static void e1000_print_device_info(struct e1000_adapter *adapter)
7224{
7225	struct e1000_hw *hw = &adapter->hw;
7226	struct net_device *netdev = adapter->netdev;
7227	u32 ret_val;
7228	u8 pba_str[E1000_PBANUM_LENGTH];
7229
7230	/* print bus type/speed/width info */
7231	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7232	       /* bus width */
7233	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7234		"Width x1"),
7235	       /* MAC address */
7236	       netdev->dev_addr);
7237	e_info("Intel(R) PRO/%s Network Connection\n",
7238	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7239	ret_val = e1000_read_pba_string_generic(hw, pba_str,
7240						E1000_PBANUM_LENGTH);
7241	if (ret_val)
7242		strscpy((char *)pba_str, "Unknown", sizeof(pba_str));
7243	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7244	       hw->mac.type, hw->phy.type, pba_str);
7245}
7246
7247static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7248{
7249	struct e1000_hw *hw = &adapter->hw;
7250	int ret_val;
7251	u16 buf = 0;
7252
7253	if (hw->mac.type != e1000_82573)
7254		return;
7255
7256	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7257	le16_to_cpus(&buf);
7258	if (!ret_val && (!(buf & BIT(0)))) {
7259		/* Deep Smart Power Down (DSPD) */
7260		dev_warn(&adapter->pdev->dev,
7261			 "Warning: detected DSPD enabled in EEPROM\n");
7262	}
7263}
7264
7265static netdev_features_t e1000_fix_features(struct net_device *netdev,
7266					    netdev_features_t features)
7267{
7268	struct e1000_adapter *adapter = netdev_priv(netdev);
7269	struct e1000_hw *hw = &adapter->hw;
7270
7271	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7272	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7273		features &= ~NETIF_F_RXFCS;
7274
7275	/* Since there is no support for separate Rx/Tx vlan accel
7276	 * enable/disable make sure Tx flag is always in same state as Rx.
7277	 */
7278	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7279		features |= NETIF_F_HW_VLAN_CTAG_TX;
7280	else
7281		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7282
7283	return features;
7284}
7285
7286static int e1000_set_features(struct net_device *netdev,
7287			      netdev_features_t features)
7288{
7289	struct e1000_adapter *adapter = netdev_priv(netdev);
7290	netdev_features_t changed = features ^ netdev->features;
7291
7292	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7293		adapter->flags |= FLAG_TSO_FORCE;
7294
7295	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7296			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7297			 NETIF_F_RXALL)))
7298		return 0;
7299
7300	if (changed & NETIF_F_RXFCS) {
7301		if (features & NETIF_F_RXFCS) {
7302			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7303		} else {
7304			/* We need to take it back to defaults, which might mean
7305			 * stripping is still disabled at the adapter level.
7306			 */
7307			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7308				adapter->flags2 |= FLAG2_CRC_STRIPPING;
7309			else
7310				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7311		}
7312	}
7313
7314	netdev->features = features;
7315
7316	if (netif_running(netdev))
7317		e1000e_reinit_locked(adapter);
7318	else
7319		e1000e_reset(adapter);
7320
7321	return 1;
7322}
7323
7324static const struct net_device_ops e1000e_netdev_ops = {
7325	.ndo_open		= e1000e_open,
7326	.ndo_stop		= e1000e_close,
7327	.ndo_start_xmit		= e1000_xmit_frame,
7328	.ndo_get_stats64	= e1000e_get_stats64,
7329	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7330	.ndo_set_mac_address	= e1000_set_mac,
7331	.ndo_change_mtu		= e1000_change_mtu,
7332	.ndo_eth_ioctl		= e1000_ioctl,
7333	.ndo_tx_timeout		= e1000_tx_timeout,
7334	.ndo_validate_addr	= eth_validate_addr,
7335
7336	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7337	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7338#ifdef CONFIG_NET_POLL_CONTROLLER
7339	.ndo_poll_controller	= e1000_netpoll,
7340#endif
7341	.ndo_set_features = e1000_set_features,
7342	.ndo_fix_features = e1000_fix_features,
7343	.ndo_features_check	= passthru_features_check,
7344};
7345
7346/**
7347 * e1000_probe - Device Initialization Routine
7348 * @pdev: PCI device information struct
7349 * @ent: entry in e1000_pci_tbl
7350 *
7351 * Returns 0 on success, negative on failure
7352 *
7353 * e1000_probe initializes an adapter identified by a pci_dev structure.
7354 * The OS initialization, configuring of the adapter private structure,
7355 * and a hardware reset occur.
7356 **/
7357static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7358{
7359	struct net_device *netdev;
7360	struct e1000_adapter *adapter;
7361	struct e1000_hw *hw;
7362	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7363	resource_size_t mmio_start, mmio_len;
7364	resource_size_t flash_start, flash_len;
7365	static int cards_found;
7366	u16 aspm_disable_flag = 0;
 
7367	u16 eeprom_data = 0;
7368	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7369	int bars, i, err;
7370	s32 ret_val = 0;
7371
7372	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7373		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7374	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7375		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7376	if (aspm_disable_flag)
7377		e1000e_disable_aspm(pdev, aspm_disable_flag);
7378
7379	err = pci_enable_device_mem(pdev);
7380	if (err)
7381		return err;
7382
 
7383	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7384	if (err) {
7385		dev_err(&pdev->dev,
7386			"No usable DMA configuration, aborting\n");
7387		goto err_dma;
 
 
 
 
 
7388	}
7389
7390	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7391	err = pci_request_selected_regions_exclusive(pdev, bars,
7392						     e1000e_driver_name);
7393	if (err)
7394		goto err_pci_reg;
7395
 
 
 
7396	pci_set_master(pdev);
7397	/* PCI config space info */
7398	err = pci_save_state(pdev);
7399	if (err)
7400		goto err_alloc_etherdev;
7401
7402	err = -ENOMEM;
7403	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7404	if (!netdev)
7405		goto err_alloc_etherdev;
7406
7407	SET_NETDEV_DEV(netdev, &pdev->dev);
7408
7409	netdev->irq = pdev->irq;
7410
7411	pci_set_drvdata(pdev, netdev);
7412	adapter = netdev_priv(netdev);
7413	hw = &adapter->hw;
7414	adapter->netdev = netdev;
7415	adapter->pdev = pdev;
7416	adapter->ei = ei;
7417	adapter->pba = ei->pba;
7418	adapter->flags = ei->flags;
7419	adapter->flags2 = ei->flags2;
7420	adapter->hw.adapter = adapter;
7421	adapter->hw.mac.type = ei->mac;
7422	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7423	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7424
7425	mmio_start = pci_resource_start(pdev, 0);
7426	mmio_len = pci_resource_len(pdev, 0);
7427
7428	err = -EIO;
7429	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7430	if (!adapter->hw.hw_addr)
7431		goto err_ioremap;
7432
7433	if ((adapter->flags & FLAG_HAS_FLASH) &&
7434	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7435	    (hw->mac.type < e1000_pch_spt)) {
7436		flash_start = pci_resource_start(pdev, 1);
7437		flash_len = pci_resource_len(pdev, 1);
7438		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7439		if (!adapter->hw.flash_address)
7440			goto err_flashmap;
7441	}
7442
7443	/* Set default EEE advertisement */
7444	if (adapter->flags2 & FLAG2_HAS_EEE)
7445		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7446
7447	/* construct the net_device struct */
7448	netdev->netdev_ops = &e1000e_netdev_ops;
7449	e1000e_set_ethtool_ops(netdev);
7450	netdev->watchdog_timeo = 5 * HZ;
7451	netif_napi_add(netdev, &adapter->napi, e1000e_poll);
7452	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7453
7454	netdev->mem_start = mmio_start;
7455	netdev->mem_end = mmio_start + mmio_len;
7456
7457	adapter->bd_number = cards_found++;
7458
7459	e1000e_check_options(adapter);
7460
7461	/* setup adapter struct */
7462	err = e1000_sw_init(adapter);
7463	if (err)
7464		goto err_sw_init;
7465
7466	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7467	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7468	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7469
7470	err = ei->get_variants(adapter);
7471	if (err)
7472		goto err_hw_init;
7473
7474	if ((adapter->flags & FLAG_IS_ICH) &&
7475	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7476	    (hw->mac.type < e1000_pch_spt))
7477		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7478
7479	hw->mac.ops.get_bus_info(&adapter->hw);
7480
7481	adapter->hw.phy.autoneg_wait_to_complete = 0;
7482
7483	/* Copper options */
7484	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7485		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7486		adapter->hw.phy.disable_polarity_correction = 0;
7487		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7488	}
7489
7490	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7491		dev_info(&pdev->dev,
7492			 "PHY reset is blocked due to SOL/IDER session.\n");
7493
7494	/* Set initial default active device features */
7495	netdev->features = (NETIF_F_SG |
7496			    NETIF_F_HW_VLAN_CTAG_RX |
7497			    NETIF_F_HW_VLAN_CTAG_TX |
7498			    NETIF_F_TSO |
7499			    NETIF_F_TSO6 |
7500			    NETIF_F_RXHASH |
7501			    NETIF_F_RXCSUM |
7502			    NETIF_F_HW_CSUM);
7503
7504	/* disable TSO for pcie and 10/100 speeds to avoid
7505	 * some hardware issues and for i219 to fix transfer
7506	 * speed being capped at 60%
7507	 */
7508	if (!(adapter->flags & FLAG_TSO_FORCE)) {
7509		switch (adapter->link_speed) {
7510		case SPEED_10:
7511		case SPEED_100:
7512			e_info("10/100 speed: disabling TSO\n");
7513			netdev->features &= ~NETIF_F_TSO;
7514			netdev->features &= ~NETIF_F_TSO6;
7515			break;
7516		case SPEED_1000:
7517			netdev->features |= NETIF_F_TSO;
7518			netdev->features |= NETIF_F_TSO6;
7519			break;
7520		default:
7521			/* oops */
7522			break;
7523		}
7524		if (hw->mac.type == e1000_pch_spt) {
7525			netdev->features &= ~NETIF_F_TSO;
7526			netdev->features &= ~NETIF_F_TSO6;
7527		}
7528	}
7529
7530	/* Set user-changeable features (subset of all device features) */
7531	netdev->hw_features = netdev->features;
7532	netdev->hw_features |= NETIF_F_RXFCS;
7533	netdev->priv_flags |= IFF_SUPP_NOFCS;
7534	netdev->hw_features |= NETIF_F_RXALL;
7535
7536	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7537		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7538
7539	netdev->vlan_features |= (NETIF_F_SG |
7540				  NETIF_F_TSO |
7541				  NETIF_F_TSO6 |
7542				  NETIF_F_HW_CSUM);
7543
7544	netdev->priv_flags |= IFF_UNICAST_FLT;
7545
7546	netdev->features |= NETIF_F_HIGHDMA;
7547	netdev->vlan_features |= NETIF_F_HIGHDMA;
7548
7549	/* MTU range: 68 - max_hw_frame_size */
7550	netdev->min_mtu = ETH_MIN_MTU;
7551	netdev->max_mtu = adapter->max_hw_frame_size -
7552			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7553
7554	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7555		adapter->flags |= FLAG_MNG_PT_ENABLED;
7556
7557	/* before reading the NVM, reset the controller to
7558	 * put the device in a known good starting state
7559	 */
7560	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7561
7562	/* systems with ASPM and others may see the checksum fail on the first
7563	 * attempt. Let's give it a few tries
7564	 */
7565	for (i = 0;; i++) {
7566		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7567			break;
7568		if (i == 2) {
7569			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7570			err = -EIO;
7571			goto err_eeprom;
7572		}
7573	}
7574
7575	e1000_eeprom_checks(adapter);
7576
7577	/* copy the MAC address */
7578	if (e1000e_read_mac_addr(&adapter->hw))
7579		dev_err(&pdev->dev,
7580			"NVM Read Error while reading MAC address\n");
7581
7582	eth_hw_addr_set(netdev, adapter->hw.mac.addr);
7583
7584	if (!is_valid_ether_addr(netdev->dev_addr)) {
7585		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7586			netdev->dev_addr);
7587		err = -EIO;
7588		goto err_eeprom;
7589	}
7590
7591	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7592	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
 
 
 
 
 
7593
7594	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7595	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7596	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7597	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7598	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7599
7600	/* Initialize link parameters. User can change them with ethtool */
7601	adapter->hw.mac.autoneg = 1;
7602	adapter->fc_autoneg = true;
7603	adapter->hw.fc.requested_mode = e1000_fc_default;
7604	adapter->hw.fc.current_mode = e1000_fc_default;
7605	adapter->hw.phy.autoneg_advertised = 0x2f;
7606
7607	/* Initial Wake on LAN setting - If APM wake is enabled in
7608	 * the EEPROM, enable the ACPI Magic Packet filter
7609	 */
7610	if (adapter->flags & FLAG_APME_IN_WUC) {
7611		/* APME bit in EEPROM is mapped to WUC.APME */
7612		eeprom_data = er32(WUC);
7613		eeprom_apme_mask = E1000_WUC_APME;
7614		if ((hw->mac.type > e1000_ich10lan) &&
7615		    (eeprom_data & E1000_WUC_PHY_WAKE))
7616			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7617	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7618		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7619		    (adapter->hw.bus.func == 1))
7620			ret_val = e1000_read_nvm(&adapter->hw,
7621					      NVM_INIT_CONTROL3_PORT_B,
7622					      1, &eeprom_data);
7623		else
7624			ret_val = e1000_read_nvm(&adapter->hw,
7625					      NVM_INIT_CONTROL3_PORT_A,
7626					      1, &eeprom_data);
7627	}
7628
7629	/* fetch WoL from EEPROM */
7630	if (ret_val)
7631		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7632	else if (eeprom_data & eeprom_apme_mask)
7633		adapter->eeprom_wol |= E1000_WUFC_MAG;
7634
7635	/* now that we have the eeprom settings, apply the special cases
7636	 * where the eeprom may be wrong or the board simply won't support
7637	 * wake on lan on a particular port
7638	 */
7639	if (!(adapter->flags & FLAG_HAS_WOL))
7640		adapter->eeprom_wol = 0;
7641
7642	/* initialize the wol settings based on the eeprom settings */
7643	adapter->wol = adapter->eeprom_wol;
7644
7645	/* make sure adapter isn't asleep if manageability is enabled */
7646	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7647	    (hw->mac.ops.check_mng_mode(hw)))
7648		device_wakeup_enable(&pdev->dev);
7649
7650	/* save off EEPROM version number */
7651	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7652
7653	if (ret_val) {
7654		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7655		adapter->eeprom_vers = 0;
7656	}
7657
7658	/* init PTP hardware clock */
7659	e1000e_ptp_init(adapter);
7660
7661	/* reset the hardware with the new settings */
7662	e1000e_reset(adapter);
7663
7664	/* If the controller has AMT, do not set DRV_LOAD until the interface
7665	 * is up.  For all other cases, let the f/w know that the h/w is now
7666	 * under the control of the driver.
7667	 */
7668	if (!(adapter->flags & FLAG_HAS_AMT))
7669		e1000e_get_hw_control(adapter);
7670
7671	if (hw->mac.type >= e1000_pch_cnp)
7672		adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7673
7674	strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7675	err = register_netdev(netdev);
7676	if (err)
7677		goto err_register;
7678
7679	/* carrier off reporting is important to ethtool even BEFORE open */
7680	netif_carrier_off(netdev);
7681
7682	e1000_print_device_info(adapter);
 
7683
7684	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7685
7686	if (pci_dev_run_wake(pdev))
7687		pm_runtime_put_noidle(&pdev->dev);
7688
7689	return 0;
7690
7691err_register:
7692	if (!(adapter->flags & FLAG_HAS_AMT))
7693		e1000e_release_hw_control(adapter);
7694err_eeprom:
7695	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7696		e1000_phy_hw_reset(&adapter->hw);
7697err_hw_init:
7698	kfree(adapter->tx_ring);
7699	kfree(adapter->rx_ring);
7700err_sw_init:
7701	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7702		iounmap(adapter->hw.flash_address);
7703	e1000e_reset_interrupt_capability(adapter);
7704err_flashmap:
7705	iounmap(adapter->hw.hw_addr);
7706err_ioremap:
7707	free_netdev(netdev);
7708err_alloc_etherdev:
7709	pci_release_mem_regions(pdev);
 
7710err_pci_reg:
7711err_dma:
7712	pci_disable_device(pdev);
7713	return err;
7714}
7715
7716/**
7717 * e1000_remove - Device Removal Routine
7718 * @pdev: PCI device information struct
7719 *
7720 * e1000_remove is called by the PCI subsystem to alert the driver
7721 * that it should release a PCI device.  This could be caused by a
7722 * Hot-Plug event, or because the driver is going to be removed from
7723 * memory.
7724 **/
7725static void e1000_remove(struct pci_dev *pdev)
7726{
7727	struct net_device *netdev = pci_get_drvdata(pdev);
7728	struct e1000_adapter *adapter = netdev_priv(netdev);
 
7729
7730	e1000e_ptp_remove(adapter);
7731
7732	/* The timers may be rescheduled, so explicitly disable them
7733	 * from being rescheduled.
7734	 */
7735	set_bit(__E1000_DOWN, &adapter->state);
 
7736	del_timer_sync(&adapter->watchdog_timer);
7737	del_timer_sync(&adapter->phy_info_timer);
7738
7739	cancel_work_sync(&adapter->reset_task);
7740	cancel_work_sync(&adapter->watchdog_task);
7741	cancel_work_sync(&adapter->downshift_task);
7742	cancel_work_sync(&adapter->update_phy_task);
7743	cancel_work_sync(&adapter->print_hang_task);
7744
7745	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7746		cancel_work_sync(&adapter->tx_hwtstamp_work);
7747		if (adapter->tx_hwtstamp_skb) {
7748			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7749			adapter->tx_hwtstamp_skb = NULL;
7750		}
7751	}
7752
 
 
 
7753	unregister_netdev(netdev);
7754
7755	if (pci_dev_run_wake(pdev))
7756		pm_runtime_get_noresume(&pdev->dev);
7757
7758	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7759	 * would have already happened in close and is redundant.
7760	 */
7761	e1000e_release_hw_control(adapter);
7762
7763	e1000e_reset_interrupt_capability(adapter);
7764	kfree(adapter->tx_ring);
7765	kfree(adapter->rx_ring);
7766
7767	iounmap(adapter->hw.hw_addr);
7768	if ((adapter->hw.flash_address) &&
7769	    (adapter->hw.mac.type < e1000_pch_spt))
7770		iounmap(adapter->hw.flash_address);
7771	pci_release_mem_regions(pdev);
 
7772
7773	free_netdev(netdev);
7774
 
 
 
7775	pci_disable_device(pdev);
7776}
7777
7778/* PCI Error Recovery (ERS) */
7779static const struct pci_error_handlers e1000_err_handler = {
7780	.error_detected = e1000_io_error_detected,
7781	.slot_reset = e1000_io_slot_reset,
7782	.resume = e1000_io_resume,
7783};
7784
7785static const struct pci_device_id e1000_pci_tbl[] = {
7786	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7787	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7788	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7789	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7790	  board_82571 },
7791	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7792	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7793	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7794	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7795	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7796
7797	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7798	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7799	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7800	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7801
7802	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7803	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7804	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7805
7806	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7807	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7808	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7809
7810	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7811	  board_80003es2lan },
7812	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7813	  board_80003es2lan },
7814	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7815	  board_80003es2lan },
7816	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7817	  board_80003es2lan },
7818
7819	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7820	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7821	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7822	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7823	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7824	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7825	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7826	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7827
7828	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7829	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7830	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7831	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7832	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7833	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7834	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7835	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7836	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7837
7838	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7839	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7840	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7841
7842	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7843	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7844	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7845
7846	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7847	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7848	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7849	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7850
7851	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7852	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7853
7854	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7855	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7856	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7857	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7858	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7859	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7860	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7861	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7862	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7863	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7864	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7865	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7866	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7867	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7868	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7869	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7870	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7871	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7872	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7873	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7874	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7875	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7876	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7877	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7878	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7879	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7880	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7881	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7882	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7883	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7884	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7885	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7886	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7887	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7888	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7889	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7890	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
7891	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_adp },
7892	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_adp },
7893	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_adp },
7894	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_adp },
7895	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_adp },
7896	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_adp },
7897	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_adp },
7898	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_adp },
7899	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_mtp },
7900	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_mtp },
7901	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM19), board_pch_mtp },
7902	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V19), board_pch_mtp },
7903	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_mtp },
7904	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_mtp },
7905	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_mtp },
7906	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_mtp },
7907	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_LM24), board_pch_mtp },
7908	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_V24), board_pch_mtp },
7909	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM25), board_pch_mtp },
7910	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V25), board_pch_mtp },
7911	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM26), board_pch_mtp },
7912	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V26), board_pch_mtp },
7913	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM27), board_pch_mtp },
7914	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V27), board_pch_mtp },
7915	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_LM29), board_pch_mtp },
7916	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_V29), board_pch_mtp },
7917
7918	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7919};
7920MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7921
7922static const struct dev_pm_ops e1000_pm_ops = {
7923#ifdef CONFIG_PM_SLEEP
7924	.prepare	= e1000e_pm_prepare,
7925	.suspend	= e1000e_pm_suspend,
7926	.resume		= e1000e_pm_resume,
7927	.freeze		= e1000e_pm_freeze,
7928	.thaw		= e1000e_pm_thaw,
7929	.poweroff	= e1000e_pm_suspend,
7930	.restore	= e1000e_pm_resume,
7931#endif
7932	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7933			   e1000e_pm_runtime_idle)
7934};
7935
7936/* PCI Device API Driver */
7937static struct pci_driver e1000_driver = {
7938	.name     = e1000e_driver_name,
7939	.id_table = e1000_pci_tbl,
7940	.probe    = e1000_probe,
7941	.remove   = e1000_remove,
7942	.driver   = {
7943		.pm = &e1000_pm_ops,
7944	},
7945	.shutdown = e1000_shutdown,
7946	.err_handler = &e1000_err_handler
7947};
7948
7949/**
7950 * e1000_init_module - Driver Registration Routine
7951 *
7952 * e1000_init_module is the first routine called when the driver is
7953 * loaded. All it does is register with the PCI subsystem.
7954 **/
7955static int __init e1000_init_module(void)
7956{
7957	pr_info("Intel(R) PRO/1000 Network Driver\n");
7958	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
 
 
 
7959
7960	return pci_register_driver(&e1000_driver);
7961}
7962module_init(e1000_init_module);
7963
7964/**
7965 * e1000_exit_module - Driver Exit Cleanup Routine
7966 *
7967 * e1000_exit_module is called just before the driver is removed
7968 * from memory.
7969 **/
7970static void __exit e1000_exit_module(void)
7971{
7972	pci_unregister_driver(&e1000_driver);
7973}
7974module_exit(e1000_exit_module);
7975
7976MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7977MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7978MODULE_LICENSE("GPL v2");
 
7979
7980/* netdev.c */
v3.15
   1/* Intel PRO/1000 Linux driver
   2 * Copyright(c) 1999 - 2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * Linux NICS <linux.nics@intel.com>
  18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20 */
  21
  22#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  23
  24#include <linux/module.h>
  25#include <linux/types.h>
  26#include <linux/init.h>
  27#include <linux/pci.h>
  28#include <linux/vmalloc.h>
  29#include <linux/pagemap.h>
  30#include <linux/delay.h>
  31#include <linux/netdevice.h>
  32#include <linux/interrupt.h>
  33#include <linux/tcp.h>
  34#include <linux/ipv6.h>
  35#include <linux/slab.h>
  36#include <net/checksum.h>
  37#include <net/ip6_checksum.h>
  38#include <linux/ethtool.h>
  39#include <linux/if_vlan.h>
  40#include <linux/cpu.h>
  41#include <linux/smp.h>
  42#include <linux/pm_qos.h>
  43#include <linux/pm_runtime.h>
  44#include <linux/aer.h>
  45#include <linux/prefetch.h>
 
  46
  47#include "e1000.h"
 
 
  48
  49#define DRV_EXTRAVERSION "-k"
  50
  51#define DRV_VERSION "2.3.2" DRV_EXTRAVERSION
  52char e1000e_driver_name[] = "e1000e";
  53const char e1000e_driver_version[] = DRV_VERSION;
  54
  55#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  56static int debug = -1;
  57module_param(debug, int, 0);
  58MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  59
  60static const struct e1000_info *e1000_info_tbl[] = {
  61	[board_82571]		= &e1000_82571_info,
  62	[board_82572]		= &e1000_82572_info,
  63	[board_82573]		= &e1000_82573_info,
  64	[board_82574]		= &e1000_82574_info,
  65	[board_82583]		= &e1000_82583_info,
  66	[board_80003es2lan]	= &e1000_es2_info,
  67	[board_ich8lan]		= &e1000_ich8_info,
  68	[board_ich9lan]		= &e1000_ich9_info,
  69	[board_ich10lan]	= &e1000_ich10_info,
  70	[board_pchlan]		= &e1000_pch_info,
  71	[board_pch2lan]		= &e1000_pch2_info,
  72	[board_pch_lpt]		= &e1000_pch_lpt_info,
 
 
 
 
 
  73};
  74
  75struct e1000_reg_info {
  76	u32 ofs;
  77	char *name;
  78};
  79
  80static const struct e1000_reg_info e1000_reg_info_tbl[] = {
  81	/* General Registers */
  82	{E1000_CTRL, "CTRL"},
  83	{E1000_STATUS, "STATUS"},
  84	{E1000_CTRL_EXT, "CTRL_EXT"},
  85
  86	/* Interrupt Registers */
  87	{E1000_ICR, "ICR"},
  88
  89	/* Rx Registers */
  90	{E1000_RCTL, "RCTL"},
  91	{E1000_RDLEN(0), "RDLEN"},
  92	{E1000_RDH(0), "RDH"},
  93	{E1000_RDT(0), "RDT"},
  94	{E1000_RDTR, "RDTR"},
  95	{E1000_RXDCTL(0), "RXDCTL"},
  96	{E1000_ERT, "ERT"},
  97	{E1000_RDBAL(0), "RDBAL"},
  98	{E1000_RDBAH(0), "RDBAH"},
  99	{E1000_RDFH, "RDFH"},
 100	{E1000_RDFT, "RDFT"},
 101	{E1000_RDFHS, "RDFHS"},
 102	{E1000_RDFTS, "RDFTS"},
 103	{E1000_RDFPC, "RDFPC"},
 104
 105	/* Tx Registers */
 106	{E1000_TCTL, "TCTL"},
 107	{E1000_TDBAL(0), "TDBAL"},
 108	{E1000_TDBAH(0), "TDBAH"},
 109	{E1000_TDLEN(0), "TDLEN"},
 110	{E1000_TDH(0), "TDH"},
 111	{E1000_TDT(0), "TDT"},
 112	{E1000_TIDV, "TIDV"},
 113	{E1000_TXDCTL(0), "TXDCTL"},
 114	{E1000_TADV, "TADV"},
 115	{E1000_TARC(0), "TARC"},
 116	{E1000_TDFH, "TDFH"},
 117	{E1000_TDFT, "TDFT"},
 118	{E1000_TDFHS, "TDFHS"},
 119	{E1000_TDFTS, "TDFTS"},
 120	{E1000_TDFPC, "TDFPC"},
 121
 122	/* List Terminator */
 123	{0, NULL}
 124};
 125
 126/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127 * e1000_regdump - register printout routine
 128 * @hw: pointer to the HW structure
 129 * @reginfo: pointer to the register info table
 130 **/
 131static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
 132{
 133	int n = 0;
 134	char rname[16];
 135	u32 regs[8];
 136
 137	switch (reginfo->ofs) {
 138	case E1000_RXDCTL(0):
 139		for (n = 0; n < 2; n++)
 140			regs[n] = __er32(hw, E1000_RXDCTL(n));
 141		break;
 142	case E1000_TXDCTL(0):
 143		for (n = 0; n < 2; n++)
 144			regs[n] = __er32(hw, E1000_TXDCTL(n));
 145		break;
 146	case E1000_TARC(0):
 147		for (n = 0; n < 2; n++)
 148			regs[n] = __er32(hw, E1000_TARC(n));
 149		break;
 150	default:
 151		pr_info("%-15s %08x\n",
 152			reginfo->name, __er32(hw, reginfo->ofs));
 153		return;
 154	}
 155
 156	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
 157	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
 158}
 159
 160static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
 161				 struct e1000_buffer *bi)
 162{
 163	int i;
 164	struct e1000_ps_page *ps_page;
 165
 166	for (i = 0; i < adapter->rx_ps_pages; i++) {
 167		ps_page = &bi->ps_pages[i];
 168
 169		if (ps_page->page) {
 170			pr_info("packet dump for ps_page %d:\n", i);
 171			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 172				       16, 1, page_address(ps_page->page),
 173				       PAGE_SIZE, true);
 174		}
 175	}
 176}
 177
 178/**
 179 * e1000e_dump - Print registers, Tx-ring and Rx-ring
 180 * @adapter: board private structure
 181 **/
 182static void e1000e_dump(struct e1000_adapter *adapter)
 183{
 184	struct net_device *netdev = adapter->netdev;
 185	struct e1000_hw *hw = &adapter->hw;
 186	struct e1000_reg_info *reginfo;
 187	struct e1000_ring *tx_ring = adapter->tx_ring;
 188	struct e1000_tx_desc *tx_desc;
 189	struct my_u0 {
 190		__le64 a;
 191		__le64 b;
 192	} *u0;
 193	struct e1000_buffer *buffer_info;
 194	struct e1000_ring *rx_ring = adapter->rx_ring;
 195	union e1000_rx_desc_packet_split *rx_desc_ps;
 196	union e1000_rx_desc_extended *rx_desc;
 197	struct my_u1 {
 198		__le64 a;
 199		__le64 b;
 200		__le64 c;
 201		__le64 d;
 202	} *u1;
 203	u32 staterr;
 204	int i = 0;
 205
 206	if (!netif_msg_hw(adapter))
 207		return;
 208
 209	/* Print netdevice Info */
 210	if (netdev) {
 211		dev_info(&adapter->pdev->dev, "Net device Info\n");
 212		pr_info("Device Name     state            trans_start      last_rx\n");
 213		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
 214			netdev->state, netdev->trans_start, netdev->last_rx);
 215	}
 216
 217	/* Print Registers */
 218	dev_info(&adapter->pdev->dev, "Register Dump\n");
 219	pr_info(" Register Name   Value\n");
 220	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
 221	     reginfo->name; reginfo++) {
 222		e1000_regdump(hw, reginfo);
 223	}
 224
 225	/* Print Tx Ring Summary */
 226	if (!netdev || !netif_running(netdev))
 227		return;
 228
 229	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
 230	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 231	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
 232	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
 233		0, tx_ring->next_to_use, tx_ring->next_to_clean,
 234		(unsigned long long)buffer_info->dma,
 235		buffer_info->length,
 236		buffer_info->next_to_watch,
 237		(unsigned long long)buffer_info->time_stamp);
 238
 239	/* Print Tx Ring */
 240	if (!netif_msg_tx_done(adapter))
 241		goto rx_ring_summary;
 242
 243	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
 244
 245	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
 246	 *
 247	 * Legacy Transmit Descriptor
 248	 *   +--------------------------------------------------------------+
 249	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
 250	 *   +--------------------------------------------------------------+
 251	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
 252	 *   +--------------------------------------------------------------+
 253	 *   63       48 47        36 35    32 31     24 23    16 15        0
 254	 *
 255	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
 256	 *   63      48 47    40 39       32 31             16 15    8 7      0
 257	 *   +----------------------------------------------------------------+
 258	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
 259	 *   +----------------------------------------------------------------+
 260	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
 261	 *   +----------------------------------------------------------------+
 262	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
 263	 *
 264	 * Extended Data Descriptor (DTYP=0x1)
 265	 *   +----------------------------------------------------------------+
 266	 * 0 |                     Buffer Address [63:0]                      |
 267	 *   +----------------------------------------------------------------+
 268	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
 269	 *   +----------------------------------------------------------------+
 270	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
 271	 */
 272	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
 273	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
 274	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
 275	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 276		const char *next_desc;
 277		tx_desc = E1000_TX_DESC(*tx_ring, i);
 278		buffer_info = &tx_ring->buffer_info[i];
 279		u0 = (struct my_u0 *)tx_desc;
 280		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
 281			next_desc = " NTC/U";
 282		else if (i == tx_ring->next_to_use)
 283			next_desc = " NTU";
 284		else if (i == tx_ring->next_to_clean)
 285			next_desc = " NTC";
 286		else
 287			next_desc = "";
 288		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
 289			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
 290			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
 291			i,
 292			(unsigned long long)le64_to_cpu(u0->a),
 293			(unsigned long long)le64_to_cpu(u0->b),
 294			(unsigned long long)buffer_info->dma,
 295			buffer_info->length, buffer_info->next_to_watch,
 296			(unsigned long long)buffer_info->time_stamp,
 297			buffer_info->skb, next_desc);
 298
 299		if (netif_msg_pktdata(adapter) && buffer_info->skb)
 300			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 301				       16, 1, buffer_info->skb->data,
 302				       buffer_info->skb->len, true);
 303	}
 304
 305	/* Print Rx Ring Summary */
 306rx_ring_summary:
 307	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
 308	pr_info("Queue [NTU] [NTC]\n");
 309	pr_info(" %5d %5X %5X\n",
 310		0, rx_ring->next_to_use, rx_ring->next_to_clean);
 311
 312	/* Print Rx Ring */
 313	if (!netif_msg_rx_status(adapter))
 314		return;
 315
 316	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
 317	switch (adapter->rx_ps_pages) {
 318	case 1:
 319	case 2:
 320	case 3:
 321		/* [Extended] Packet Split Receive Descriptor Format
 322		 *
 323		 *    +-----------------------------------------------------+
 324		 *  0 |                Buffer Address 0 [63:0]              |
 325		 *    +-----------------------------------------------------+
 326		 *  8 |                Buffer Address 1 [63:0]              |
 327		 *    +-----------------------------------------------------+
 328		 * 16 |                Buffer Address 2 [63:0]              |
 329		 *    +-----------------------------------------------------+
 330		 * 24 |                Buffer Address 3 [63:0]              |
 331		 *    +-----------------------------------------------------+
 332		 */
 333		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
 334		/* [Extended] Receive Descriptor (Write-Back) Format
 335		 *
 336		 *   63       48 47    32 31     13 12    8 7    4 3        0
 337		 *   +------------------------------------------------------+
 338		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
 339		 *   | Checksum | Ident  |         | Queue |      |  Type   |
 340		 *   +------------------------------------------------------+
 341		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 342		 *   +------------------------------------------------------+
 343		 *   63       48 47    32 31            20 19               0
 344		 */
 345		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
 346		for (i = 0; i < rx_ring->count; i++) {
 347			const char *next_desc;
 348			buffer_info = &rx_ring->buffer_info[i];
 349			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
 350			u1 = (struct my_u1 *)rx_desc_ps;
 351			staterr =
 352			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
 353
 354			if (i == rx_ring->next_to_use)
 355				next_desc = " NTU";
 356			else if (i == rx_ring->next_to_clean)
 357				next_desc = " NTC";
 358			else
 359				next_desc = "";
 360
 361			if (staterr & E1000_RXD_STAT_DD) {
 362				/* Descriptor Done */
 363				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
 364					"RWB", i,
 365					(unsigned long long)le64_to_cpu(u1->a),
 366					(unsigned long long)le64_to_cpu(u1->b),
 367					(unsigned long long)le64_to_cpu(u1->c),
 368					(unsigned long long)le64_to_cpu(u1->d),
 369					buffer_info->skb, next_desc);
 370			} else {
 371				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
 372					"R  ", i,
 373					(unsigned long long)le64_to_cpu(u1->a),
 374					(unsigned long long)le64_to_cpu(u1->b),
 375					(unsigned long long)le64_to_cpu(u1->c),
 376					(unsigned long long)le64_to_cpu(u1->d),
 377					(unsigned long long)buffer_info->dma,
 378					buffer_info->skb, next_desc);
 379
 380				if (netif_msg_pktdata(adapter))
 381					e1000e_dump_ps_pages(adapter,
 382							     buffer_info);
 383			}
 384		}
 385		break;
 386	default:
 387	case 0:
 388		/* Extended Receive Descriptor (Read) Format
 389		 *
 390		 *   +-----------------------------------------------------+
 391		 * 0 |                Buffer Address [63:0]                |
 392		 *   +-----------------------------------------------------+
 393		 * 8 |                      Reserved                       |
 394		 *   +-----------------------------------------------------+
 395		 */
 396		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
 397		/* Extended Receive Descriptor (Write-Back) Format
 398		 *
 399		 *   63       48 47    32 31    24 23            4 3        0
 400		 *   +------------------------------------------------------+
 401		 *   |     RSS Hash      |        |               |         |
 402		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
 403		 *   | Packet   | IP     |        |               |  Type   |
 404		 *   | Checksum | Ident  |        |               |         |
 405		 *   +------------------------------------------------------+
 406		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 407		 *   +------------------------------------------------------+
 408		 *   63       48 47    32 31            20 19               0
 409		 */
 410		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
 411
 412		for (i = 0; i < rx_ring->count; i++) {
 413			const char *next_desc;
 414
 415			buffer_info = &rx_ring->buffer_info[i];
 416			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 417			u1 = (struct my_u1 *)rx_desc;
 418			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 419
 420			if (i == rx_ring->next_to_use)
 421				next_desc = " NTU";
 422			else if (i == rx_ring->next_to_clean)
 423				next_desc = " NTC";
 424			else
 425				next_desc = "";
 426
 427			if (staterr & E1000_RXD_STAT_DD) {
 428				/* Descriptor Done */
 429				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
 430					"RWB", i,
 431					(unsigned long long)le64_to_cpu(u1->a),
 432					(unsigned long long)le64_to_cpu(u1->b),
 433					buffer_info->skb, next_desc);
 434			} else {
 435				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
 436					"R  ", i,
 437					(unsigned long long)le64_to_cpu(u1->a),
 438					(unsigned long long)le64_to_cpu(u1->b),
 439					(unsigned long long)buffer_info->dma,
 440					buffer_info->skb, next_desc);
 441
 442				if (netif_msg_pktdata(adapter) &&
 443				    buffer_info->skb)
 444					print_hex_dump(KERN_INFO, "",
 445						       DUMP_PREFIX_ADDRESS, 16,
 446						       1,
 447						       buffer_info->skb->data,
 448						       adapter->rx_buffer_len,
 449						       true);
 450			}
 451		}
 452	}
 453}
 454
 455/**
 456 * e1000_desc_unused - calculate if we have unused descriptors
 
 457 **/
 458static int e1000_desc_unused(struct e1000_ring *ring)
 459{
 460	if (ring->next_to_clean > ring->next_to_use)
 461		return ring->next_to_clean - ring->next_to_use - 1;
 462
 463	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
 464}
 465
 466/**
 467 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
 468 * @adapter: board private structure
 469 * @hwtstamps: time stamp structure to update
 470 * @systim: unsigned 64bit system time value.
 471 *
 472 * Convert the system time value stored in the RX/TXSTMP registers into a
 473 * hwtstamp which can be used by the upper level time stamping functions.
 474 *
 475 * The 'systim_lock' spinlock is used to protect the consistency of the
 476 * system time value. This is needed because reading the 64 bit time
 477 * value involves reading two 32 bit registers. The first read latches the
 478 * value.
 479 **/
 480static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
 481				      struct skb_shared_hwtstamps *hwtstamps,
 482				      u64 systim)
 483{
 484	u64 ns;
 485	unsigned long flags;
 486
 487	spin_lock_irqsave(&adapter->systim_lock, flags);
 488	ns = timecounter_cyc2time(&adapter->tc, systim);
 489	spin_unlock_irqrestore(&adapter->systim_lock, flags);
 490
 491	memset(hwtstamps, 0, sizeof(*hwtstamps));
 492	hwtstamps->hwtstamp = ns_to_ktime(ns);
 493}
 494
 495/**
 496 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
 497 * @adapter: board private structure
 498 * @status: descriptor extended error and status field
 499 * @skb: particular skb to include time stamp
 500 *
 501 * If the time stamp is valid, convert it into the timecounter ns value
 502 * and store that result into the shhwtstamps structure which is passed
 503 * up the network stack.
 504 **/
 505static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
 506			       struct sk_buff *skb)
 507{
 508	struct e1000_hw *hw = &adapter->hw;
 509	u64 rxstmp;
 510
 511	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
 512	    !(status & E1000_RXDEXT_STATERR_TST) ||
 513	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 514		return;
 515
 516	/* The Rx time stamp registers contain the time stamp.  No other
 517	 * received packet will be time stamped until the Rx time stamp
 518	 * registers are read.  Because only one packet can be time stamped
 519	 * at a time, the register values must belong to this packet and
 520	 * therefore none of the other additional attributes need to be
 521	 * compared.
 522	 */
 523	rxstmp = (u64)er32(RXSTMPL);
 524	rxstmp |= (u64)er32(RXSTMPH) << 32;
 525	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
 526
 527	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
 528}
 529
 530/**
 531 * e1000_receive_skb - helper function to handle Rx indications
 532 * @adapter: board private structure
 
 533 * @staterr: descriptor extended error and status field as written by hardware
 534 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 535 * @skb: pointer to sk_buff to be indicated to stack
 536 **/
 537static void e1000_receive_skb(struct e1000_adapter *adapter,
 538			      struct net_device *netdev, struct sk_buff *skb,
 539			      u32 staterr, __le16 vlan)
 540{
 541	u16 tag = le16_to_cpu(vlan);
 542
 543	e1000e_rx_hwtstamp(adapter, staterr, skb);
 544
 545	skb->protocol = eth_type_trans(skb, netdev);
 546
 547	if (staterr & E1000_RXD_STAT_VP)
 548		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
 549
 550	napi_gro_receive(&adapter->napi, skb);
 551}
 552
 553/**
 554 * e1000_rx_checksum - Receive Checksum Offload
 555 * @adapter: board private structure
 556 * @status_err: receive descriptor status and error fields
 557 * @csum: receive descriptor csum field
 558 * @sk_buff: socket buffer with received data
 559 **/
 560static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 561			      struct sk_buff *skb)
 562{
 563	u16 status = (u16)status_err;
 564	u8 errors = (u8)(status_err >> 24);
 565
 566	skb_checksum_none_assert(skb);
 567
 568	/* Rx checksum disabled */
 569	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
 570		return;
 571
 572	/* Ignore Checksum bit is set */
 573	if (status & E1000_RXD_STAT_IXSM)
 574		return;
 575
 576	/* TCP/UDP checksum error bit or IP checksum error bit is set */
 577	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
 578		/* let the stack verify checksum errors */
 579		adapter->hw_csum_err++;
 580		return;
 581	}
 582
 583	/* TCP/UDP Checksum has not been calculated */
 584	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
 585		return;
 586
 587	/* It must be a TCP or UDP packet with a valid checksum */
 588	skb->ip_summed = CHECKSUM_UNNECESSARY;
 589	adapter->hw_csum_good++;
 590}
 591
 592static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
 593{
 594	struct e1000_adapter *adapter = rx_ring->adapter;
 595	struct e1000_hw *hw = &adapter->hw;
 596	s32 ret_val = __ew32_prepare(hw);
 597
 
 598	writel(i, rx_ring->tail);
 599
 600	if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
 601		u32 rctl = er32(RCTL);
 
 602		ew32(RCTL, rctl & ~E1000_RCTL_EN);
 603		e_err("ME firmware caused invalid RDT - resetting\n");
 604		schedule_work(&adapter->reset_task);
 605	}
 606}
 607
 608static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
 609{
 610	struct e1000_adapter *adapter = tx_ring->adapter;
 611	struct e1000_hw *hw = &adapter->hw;
 612	s32 ret_val = __ew32_prepare(hw);
 613
 
 614	writel(i, tx_ring->tail);
 615
 616	if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
 617		u32 tctl = er32(TCTL);
 
 618		ew32(TCTL, tctl & ~E1000_TCTL_EN);
 619		e_err("ME firmware caused invalid TDT - resetting\n");
 620		schedule_work(&adapter->reset_task);
 621	}
 622}
 623
 624/**
 625 * e1000_alloc_rx_buffers - Replace used receive buffers
 626 * @rx_ring: Rx descriptor ring
 
 
 627 **/
 628static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
 629				   int cleaned_count, gfp_t gfp)
 630{
 631	struct e1000_adapter *adapter = rx_ring->adapter;
 632	struct net_device *netdev = adapter->netdev;
 633	struct pci_dev *pdev = adapter->pdev;
 634	union e1000_rx_desc_extended *rx_desc;
 635	struct e1000_buffer *buffer_info;
 636	struct sk_buff *skb;
 637	unsigned int i;
 638	unsigned int bufsz = adapter->rx_buffer_len;
 639
 640	i = rx_ring->next_to_use;
 641	buffer_info = &rx_ring->buffer_info[i];
 642
 643	while (cleaned_count--) {
 644		skb = buffer_info->skb;
 645		if (skb) {
 646			skb_trim(skb, 0);
 647			goto map_skb;
 648		}
 649
 650		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 651		if (!skb) {
 652			/* Better luck next round */
 653			adapter->alloc_rx_buff_failed++;
 654			break;
 655		}
 656
 657		buffer_info->skb = skb;
 658map_skb:
 659		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 660						  adapter->rx_buffer_len,
 661						  DMA_FROM_DEVICE);
 662		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 663			dev_err(&pdev->dev, "Rx DMA map failed\n");
 664			adapter->rx_dma_failed++;
 665			break;
 666		}
 667
 668		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 669		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 670
 671		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 672			/* Force memory writes to complete before letting h/w
 673			 * know there are new descriptors to fetch.  (Only
 674			 * applicable for weak-ordered memory model archs,
 675			 * such as IA-64).
 676			 */
 677			wmb();
 678			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 679				e1000e_update_rdt_wa(rx_ring, i);
 680			else
 681				writel(i, rx_ring->tail);
 682		}
 683		i++;
 684		if (i == rx_ring->count)
 685			i = 0;
 686		buffer_info = &rx_ring->buffer_info[i];
 687	}
 688
 689	rx_ring->next_to_use = i;
 690}
 691
 692/**
 693 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 694 * @rx_ring: Rx descriptor ring
 
 
 695 **/
 696static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
 697				      int cleaned_count, gfp_t gfp)
 698{
 699	struct e1000_adapter *adapter = rx_ring->adapter;
 700	struct net_device *netdev = adapter->netdev;
 701	struct pci_dev *pdev = adapter->pdev;
 702	union e1000_rx_desc_packet_split *rx_desc;
 703	struct e1000_buffer *buffer_info;
 704	struct e1000_ps_page *ps_page;
 705	struct sk_buff *skb;
 706	unsigned int i, j;
 707
 708	i = rx_ring->next_to_use;
 709	buffer_info = &rx_ring->buffer_info[i];
 710
 711	while (cleaned_count--) {
 712		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
 713
 714		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
 715			ps_page = &buffer_info->ps_pages[j];
 716			if (j >= adapter->rx_ps_pages) {
 717				/* all unused desc entries get hw null ptr */
 718				rx_desc->read.buffer_addr[j + 1] =
 719				    ~cpu_to_le64(0);
 720				continue;
 721			}
 722			if (!ps_page->page) {
 723				ps_page->page = alloc_page(gfp);
 724				if (!ps_page->page) {
 725					adapter->alloc_rx_buff_failed++;
 726					goto no_buffers;
 727				}
 728				ps_page->dma = dma_map_page(&pdev->dev,
 729							    ps_page->page,
 730							    0, PAGE_SIZE,
 731							    DMA_FROM_DEVICE);
 732				if (dma_mapping_error(&pdev->dev,
 733						      ps_page->dma)) {
 734					dev_err(&adapter->pdev->dev,
 735						"Rx DMA page map failed\n");
 736					adapter->rx_dma_failed++;
 737					goto no_buffers;
 738				}
 739			}
 740			/* Refresh the desc even if buffer_addrs
 741			 * didn't change because each write-back
 742			 * erases this info.
 743			 */
 744			rx_desc->read.buffer_addr[j + 1] =
 745			    cpu_to_le64(ps_page->dma);
 746		}
 747
 748		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
 749						  gfp);
 750
 751		if (!skb) {
 752			adapter->alloc_rx_buff_failed++;
 753			break;
 754		}
 755
 756		buffer_info->skb = skb;
 757		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 758						  adapter->rx_ps_bsize0,
 759						  DMA_FROM_DEVICE);
 760		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 761			dev_err(&pdev->dev, "Rx DMA map failed\n");
 762			adapter->rx_dma_failed++;
 763			/* cleanup skb */
 764			dev_kfree_skb_any(skb);
 765			buffer_info->skb = NULL;
 766			break;
 767		}
 768
 769		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
 770
 771		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 772			/* Force memory writes to complete before letting h/w
 773			 * know there are new descriptors to fetch.  (Only
 774			 * applicable for weak-ordered memory model archs,
 775			 * such as IA-64).
 776			 */
 777			wmb();
 778			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 779				e1000e_update_rdt_wa(rx_ring, i << 1);
 780			else
 781				writel(i << 1, rx_ring->tail);
 782		}
 783
 784		i++;
 785		if (i == rx_ring->count)
 786			i = 0;
 787		buffer_info = &rx_ring->buffer_info[i];
 788	}
 789
 790no_buffers:
 791	rx_ring->next_to_use = i;
 792}
 793
 794/**
 795 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 796 * @rx_ring: Rx descriptor ring
 797 * @cleaned_count: number of buffers to allocate this pass
 
 798 **/
 799
 800static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
 801					 int cleaned_count, gfp_t gfp)
 802{
 803	struct e1000_adapter *adapter = rx_ring->adapter;
 804	struct net_device *netdev = adapter->netdev;
 805	struct pci_dev *pdev = adapter->pdev;
 806	union e1000_rx_desc_extended *rx_desc;
 807	struct e1000_buffer *buffer_info;
 808	struct sk_buff *skb;
 809	unsigned int i;
 810	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
 811
 812	i = rx_ring->next_to_use;
 813	buffer_info = &rx_ring->buffer_info[i];
 814
 815	while (cleaned_count--) {
 816		skb = buffer_info->skb;
 817		if (skb) {
 818			skb_trim(skb, 0);
 819			goto check_page;
 820		}
 821
 822		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 823		if (unlikely(!skb)) {
 824			/* Better luck next round */
 825			adapter->alloc_rx_buff_failed++;
 826			break;
 827		}
 828
 829		buffer_info->skb = skb;
 830check_page:
 831		/* allocate a new page if necessary */
 832		if (!buffer_info->page) {
 833			buffer_info->page = alloc_page(gfp);
 834			if (unlikely(!buffer_info->page)) {
 835				adapter->alloc_rx_buff_failed++;
 836				break;
 837			}
 838		}
 839
 840		if (!buffer_info->dma) {
 841			buffer_info->dma = dma_map_page(&pdev->dev,
 842							buffer_info->page, 0,
 843							PAGE_SIZE,
 844							DMA_FROM_DEVICE);
 845			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 846				adapter->alloc_rx_buff_failed++;
 847				break;
 848			}
 849		}
 850
 851		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 852		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 853
 854		if (unlikely(++i == rx_ring->count))
 855			i = 0;
 856		buffer_info = &rx_ring->buffer_info[i];
 857	}
 858
 859	if (likely(rx_ring->next_to_use != i)) {
 860		rx_ring->next_to_use = i;
 861		if (unlikely(i-- == 0))
 862			i = (rx_ring->count - 1);
 863
 864		/* Force memory writes to complete before letting h/w
 865		 * know there are new descriptors to fetch.  (Only
 866		 * applicable for weak-ordered memory model archs,
 867		 * such as IA-64).
 868		 */
 869		wmb();
 870		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 871			e1000e_update_rdt_wa(rx_ring, i);
 872		else
 873			writel(i, rx_ring->tail);
 874	}
 875}
 876
 877static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
 878				 struct sk_buff *skb)
 879{
 880	if (netdev->features & NETIF_F_RXHASH)
 881		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
 882}
 883
 884/**
 885 * e1000_clean_rx_irq - Send received data up the network stack
 886 * @rx_ring: Rx descriptor ring
 
 
 887 *
 888 * the return value indicates whether actual cleaning was done, there
 889 * is no guarantee that everything was cleaned
 890 **/
 891static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
 892			       int work_to_do)
 893{
 894	struct e1000_adapter *adapter = rx_ring->adapter;
 895	struct net_device *netdev = adapter->netdev;
 896	struct pci_dev *pdev = adapter->pdev;
 897	struct e1000_hw *hw = &adapter->hw;
 898	union e1000_rx_desc_extended *rx_desc, *next_rxd;
 899	struct e1000_buffer *buffer_info, *next_buffer;
 900	u32 length, staterr;
 901	unsigned int i;
 902	int cleaned_count = 0;
 903	bool cleaned = false;
 904	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 905
 906	i = rx_ring->next_to_clean;
 907	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 908	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 909	buffer_info = &rx_ring->buffer_info[i];
 910
 911	while (staterr & E1000_RXD_STAT_DD) {
 912		struct sk_buff *skb;
 913
 914		if (*work_done >= work_to_do)
 915			break;
 916		(*work_done)++;
 917		rmb();	/* read descriptor and rx_buffer_info after status DD */
 918
 919		skb = buffer_info->skb;
 920		buffer_info->skb = NULL;
 921
 922		prefetch(skb->data - NET_IP_ALIGN);
 923
 924		i++;
 925		if (i == rx_ring->count)
 926			i = 0;
 927		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
 928		prefetch(next_rxd);
 929
 930		next_buffer = &rx_ring->buffer_info[i];
 931
 932		cleaned = true;
 933		cleaned_count++;
 934		dma_unmap_single(&pdev->dev, buffer_info->dma,
 935				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
 936		buffer_info->dma = 0;
 937
 938		length = le16_to_cpu(rx_desc->wb.upper.length);
 939
 940		/* !EOP means multiple descriptors were used to store a single
 941		 * packet, if that's the case we need to toss it.  In fact, we
 942		 * need to toss every packet with the EOP bit clear and the
 943		 * next frame that _does_ have the EOP bit set, as it is by
 944		 * definition only a frame fragment
 945		 */
 946		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
 947			adapter->flags2 |= FLAG2_IS_DISCARDING;
 948
 949		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
 950			/* All receives must fit into a single buffer */
 951			e_dbg("Receive packet consumed multiple buffers\n");
 952			/* recycle */
 953			buffer_info->skb = skb;
 954			if (staterr & E1000_RXD_STAT_EOP)
 955				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 956			goto next_desc;
 957		}
 958
 959		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
 960			     !(netdev->features & NETIF_F_RXALL))) {
 961			/* recycle */
 962			buffer_info->skb = skb;
 963			goto next_desc;
 964		}
 965
 966		/* adjust length to remove Ethernet CRC */
 967		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
 968			/* If configured to store CRC, don't subtract FCS,
 969			 * but keep the FCS bytes out of the total_rx_bytes
 970			 * counter
 971			 */
 972			if (netdev->features & NETIF_F_RXFCS)
 973				total_rx_bytes -= 4;
 974			else
 975				length -= 4;
 976		}
 977
 978		total_rx_bytes += length;
 979		total_rx_packets++;
 980
 981		/* code added for copybreak, this should improve
 982		 * performance for small packets with large amounts
 983		 * of reassembly being done in the stack
 984		 */
 985		if (length < copybreak) {
 986			struct sk_buff *new_skb =
 987			    netdev_alloc_skb_ip_align(netdev, length);
 988			if (new_skb) {
 989				skb_copy_to_linear_data_offset(new_skb,
 990							       -NET_IP_ALIGN,
 991							       (skb->data -
 992								NET_IP_ALIGN),
 993							       (length +
 994								NET_IP_ALIGN));
 995				/* save the skb in buffer_info as good */
 996				buffer_info->skb = skb;
 997				skb = new_skb;
 998			}
 999			/* else just continue with the old one */
1000		}
1001		/* end copybreak code */
1002		skb_put(skb, length);
1003
1004		/* Receive Checksum Offload */
1005		e1000_rx_checksum(adapter, staterr, skb);
1006
1007		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1008
1009		e1000_receive_skb(adapter, netdev, skb, staterr,
1010				  rx_desc->wb.upper.vlan);
1011
1012next_desc:
1013		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1014
1015		/* return some buffers to hardware, one at a time is too slow */
1016		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1017			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1018					      GFP_ATOMIC);
1019			cleaned_count = 0;
1020		}
1021
1022		/* use prefetched values */
1023		rx_desc = next_rxd;
1024		buffer_info = next_buffer;
1025
1026		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1027	}
1028	rx_ring->next_to_clean = i;
1029
1030	cleaned_count = e1000_desc_unused(rx_ring);
1031	if (cleaned_count)
1032		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1033
1034	adapter->total_rx_bytes += total_rx_bytes;
1035	adapter->total_rx_packets += total_rx_packets;
1036	return cleaned;
1037}
1038
1039static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1040			    struct e1000_buffer *buffer_info)
 
1041{
1042	struct e1000_adapter *adapter = tx_ring->adapter;
1043
1044	if (buffer_info->dma) {
1045		if (buffer_info->mapped_as_page)
1046			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1047				       buffer_info->length, DMA_TO_DEVICE);
1048		else
1049			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1050					 buffer_info->length, DMA_TO_DEVICE);
1051		buffer_info->dma = 0;
1052	}
1053	if (buffer_info->skb) {
1054		dev_kfree_skb_any(buffer_info->skb);
 
 
 
1055		buffer_info->skb = NULL;
1056	}
1057	buffer_info->time_stamp = 0;
1058}
1059
1060static void e1000_print_hw_hang(struct work_struct *work)
1061{
1062	struct e1000_adapter *adapter = container_of(work,
1063						     struct e1000_adapter,
1064						     print_hang_task);
1065	struct net_device *netdev = adapter->netdev;
1066	struct e1000_ring *tx_ring = adapter->tx_ring;
1067	unsigned int i = tx_ring->next_to_clean;
1068	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1069	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1070	struct e1000_hw *hw = &adapter->hw;
1071	u16 phy_status, phy_1000t_status, phy_ext_status;
1072	u16 pci_status;
1073
1074	if (test_bit(__E1000_DOWN, &adapter->state))
1075		return;
1076
1077	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1078		/* May be block on write-back, flush and detect again
1079		 * flush pending descriptor writebacks to memory
1080		 */
1081		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1082		/* execute the writes immediately */
1083		e1e_flush();
1084		/* Due to rare timing issues, write to TIDV again to ensure
1085		 * the write is successful
1086		 */
1087		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1088		/* execute the writes immediately */
1089		e1e_flush();
1090		adapter->tx_hang_recheck = true;
1091		return;
1092	}
1093	adapter->tx_hang_recheck = false;
1094
1095	if (er32(TDH(0)) == er32(TDT(0))) {
1096		e_dbg("false hang detected, ignoring\n");
1097		return;
1098	}
1099
1100	/* Real hang detected */
1101	netif_stop_queue(netdev);
1102
1103	e1e_rphy(hw, MII_BMSR, &phy_status);
1104	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1105	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1106
1107	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1108
1109	/* detected Hardware unit hang */
1110	e_err("Detected Hardware Unit Hang:\n"
1111	      "  TDH                  <%x>\n"
1112	      "  TDT                  <%x>\n"
1113	      "  next_to_use          <%x>\n"
1114	      "  next_to_clean        <%x>\n"
1115	      "buffer_info[next_to_clean]:\n"
1116	      "  time_stamp           <%lx>\n"
1117	      "  next_to_watch        <%x>\n"
1118	      "  jiffies              <%lx>\n"
1119	      "  next_to_watch.status <%x>\n"
1120	      "MAC Status             <%x>\n"
1121	      "PHY Status             <%x>\n"
1122	      "PHY 1000BASE-T Status  <%x>\n"
1123	      "PHY Extended Status    <%x>\n"
1124	      "PCI Status             <%x>\n",
1125	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1126	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1127	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1128	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1129
1130	e1000e_dump(adapter);
1131
1132	/* Suggest workaround for known h/w issue */
1133	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1134		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1135}
1136
1137/**
1138 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1139 * @work: pointer to work struct
1140 *
1141 * This work function polls the TSYNCTXCTL valid bit to determine when a
1142 * timestamp has been taken for the current stored skb.  The timestamp must
1143 * be for this skb because only one such packet is allowed in the queue.
1144 */
1145static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1146{
1147	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1148						     tx_hwtstamp_work);
1149	struct e1000_hw *hw = &adapter->hw;
1150
1151	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
 
1152		struct skb_shared_hwtstamps shhwtstamps;
1153		u64 txstmp;
1154
1155		txstmp = er32(TXSTMPL);
1156		txstmp |= (u64)er32(TXSTMPH) << 32;
1157
1158		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1159
1160		skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1161		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
 
1162		adapter->tx_hwtstamp_skb = NULL;
 
 
 
 
1163	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1164			      + adapter->tx_timeout_factor * HZ)) {
1165		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1166		adapter->tx_hwtstamp_skb = NULL;
1167		adapter->tx_hwtstamp_timeouts++;
1168		e_warn("clearing Tx timestamp hang\n");
1169	} else {
1170		/* reschedule to check later */
1171		schedule_work(&adapter->tx_hwtstamp_work);
1172	}
1173}
1174
1175/**
1176 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1177 * @tx_ring: Tx descriptor ring
1178 *
1179 * the return value indicates whether actual cleaning was done, there
1180 * is no guarantee that everything was cleaned
1181 **/
1182static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1183{
1184	struct e1000_adapter *adapter = tx_ring->adapter;
1185	struct net_device *netdev = adapter->netdev;
1186	struct e1000_hw *hw = &adapter->hw;
1187	struct e1000_tx_desc *tx_desc, *eop_desc;
1188	struct e1000_buffer *buffer_info;
1189	unsigned int i, eop;
1190	unsigned int count = 0;
1191	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1192	unsigned int bytes_compl = 0, pkts_compl = 0;
1193
1194	i = tx_ring->next_to_clean;
1195	eop = tx_ring->buffer_info[i].next_to_watch;
1196	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1197
1198	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1199	       (count < tx_ring->count)) {
1200		bool cleaned = false;
1201		rmb();		/* read buffer_info after eop_desc */
 
1202		for (; !cleaned; count++) {
1203			tx_desc = E1000_TX_DESC(*tx_ring, i);
1204			buffer_info = &tx_ring->buffer_info[i];
1205			cleaned = (i == eop);
1206
1207			if (cleaned) {
1208				total_tx_packets += buffer_info->segs;
1209				total_tx_bytes += buffer_info->bytecount;
1210				if (buffer_info->skb) {
1211					bytes_compl += buffer_info->skb->len;
1212					pkts_compl++;
1213				}
1214			}
1215
1216			e1000_put_txbuf(tx_ring, buffer_info);
1217			tx_desc->upper.data = 0;
1218
1219			i++;
1220			if (i == tx_ring->count)
1221				i = 0;
1222		}
1223
1224		if (i == tx_ring->next_to_use)
1225			break;
1226		eop = tx_ring->buffer_info[i].next_to_watch;
1227		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1228	}
1229
1230	tx_ring->next_to_clean = i;
1231
1232	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1233
1234#define TX_WAKE_THRESHOLD 32
1235	if (count && netif_carrier_ok(netdev) &&
1236	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1237		/* Make sure that anybody stopping the queue after this
1238		 * sees the new next_to_clean.
1239		 */
1240		smp_mb();
1241
1242		if (netif_queue_stopped(netdev) &&
1243		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1244			netif_wake_queue(netdev);
1245			++adapter->restart_queue;
1246		}
1247	}
1248
1249	if (adapter->detect_tx_hung) {
1250		/* Detect a transmit hang in hardware, this serializes the
1251		 * check with the clearing of time_stamp and movement of i
1252		 */
1253		adapter->detect_tx_hung = false;
1254		if (tx_ring->buffer_info[i].time_stamp &&
1255		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1256			       + (adapter->tx_timeout_factor * HZ)) &&
1257		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1258			schedule_work(&adapter->print_hang_task);
1259		else
1260			adapter->tx_hang_recheck = false;
1261	}
1262	adapter->total_tx_bytes += total_tx_bytes;
1263	adapter->total_tx_packets += total_tx_packets;
1264	return count < tx_ring->count;
1265}
1266
1267/**
1268 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1269 * @rx_ring: Rx descriptor ring
 
 
1270 *
1271 * the return value indicates whether actual cleaning was done, there
1272 * is no guarantee that everything was cleaned
1273 **/
1274static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1275				  int work_to_do)
1276{
1277	struct e1000_adapter *adapter = rx_ring->adapter;
1278	struct e1000_hw *hw = &adapter->hw;
1279	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1280	struct net_device *netdev = adapter->netdev;
1281	struct pci_dev *pdev = adapter->pdev;
1282	struct e1000_buffer *buffer_info, *next_buffer;
1283	struct e1000_ps_page *ps_page;
1284	struct sk_buff *skb;
1285	unsigned int i, j;
1286	u32 length, staterr;
1287	int cleaned_count = 0;
1288	bool cleaned = false;
1289	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1290
1291	i = rx_ring->next_to_clean;
1292	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1293	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1294	buffer_info = &rx_ring->buffer_info[i];
1295
1296	while (staterr & E1000_RXD_STAT_DD) {
1297		if (*work_done >= work_to_do)
1298			break;
1299		(*work_done)++;
1300		skb = buffer_info->skb;
1301		rmb();	/* read descriptor and rx_buffer_info after status DD */
1302
1303		/* in the packet split case this is header only */
1304		prefetch(skb->data - NET_IP_ALIGN);
1305
1306		i++;
1307		if (i == rx_ring->count)
1308			i = 0;
1309		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1310		prefetch(next_rxd);
1311
1312		next_buffer = &rx_ring->buffer_info[i];
1313
1314		cleaned = true;
1315		cleaned_count++;
1316		dma_unmap_single(&pdev->dev, buffer_info->dma,
1317				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1318		buffer_info->dma = 0;
1319
1320		/* see !EOP comment in other Rx routine */
1321		if (!(staterr & E1000_RXD_STAT_EOP))
1322			adapter->flags2 |= FLAG2_IS_DISCARDING;
1323
1324		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1325			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1326			dev_kfree_skb_irq(skb);
1327			if (staterr & E1000_RXD_STAT_EOP)
1328				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1329			goto next_desc;
1330		}
1331
1332		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1333			     !(netdev->features & NETIF_F_RXALL))) {
1334			dev_kfree_skb_irq(skb);
1335			goto next_desc;
1336		}
1337
1338		length = le16_to_cpu(rx_desc->wb.middle.length0);
1339
1340		if (!length) {
1341			e_dbg("Last part of the packet spanning multiple descriptors\n");
1342			dev_kfree_skb_irq(skb);
1343			goto next_desc;
1344		}
1345
1346		/* Good Receive */
1347		skb_put(skb, length);
1348
1349		{
1350			/* this looks ugly, but it seems compiler issues make
1351			 * it more efficient than reusing j
1352			 */
1353			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1354
1355			/* page alloc/put takes too long and effects small
1356			 * packet throughput, so unsplit small packets and
1357			 * save the alloc/put only valid in softirq (napi)
1358			 * context to call kmap_*
1359			 */
1360			if (l1 && (l1 <= copybreak) &&
1361			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1362				u8 *vaddr;
1363
1364				ps_page = &buffer_info->ps_pages[0];
1365
1366				/* there is no documentation about how to call
1367				 * kmap_atomic, so we can't hold the mapping
1368				 * very long
1369				 */
1370				dma_sync_single_for_cpu(&pdev->dev,
1371							ps_page->dma,
1372							PAGE_SIZE,
1373							DMA_FROM_DEVICE);
1374				vaddr = kmap_atomic(ps_page->page);
1375				memcpy(skb_tail_pointer(skb), vaddr, l1);
1376				kunmap_atomic(vaddr);
1377				dma_sync_single_for_device(&pdev->dev,
1378							   ps_page->dma,
1379							   PAGE_SIZE,
1380							   DMA_FROM_DEVICE);
1381
1382				/* remove the CRC */
1383				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1384					if (!(netdev->features & NETIF_F_RXFCS))
1385						l1 -= 4;
1386				}
1387
1388				skb_put(skb, l1);
1389				goto copydone;
1390			}	/* if */
1391		}
1392
1393		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1394			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1395			if (!length)
1396				break;
1397
1398			ps_page = &buffer_info->ps_pages[j];
1399			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1400				       DMA_FROM_DEVICE);
1401			ps_page->dma = 0;
1402			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1403			ps_page->page = NULL;
1404			skb->len += length;
1405			skb->data_len += length;
1406			skb->truesize += PAGE_SIZE;
1407		}
1408
1409		/* strip the ethernet crc, problem is we're using pages now so
1410		 * this whole operation can get a little cpu intensive
1411		 */
1412		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1413			if (!(netdev->features & NETIF_F_RXFCS))
1414				pskb_trim(skb, skb->len - 4);
1415		}
1416
1417copydone:
1418		total_rx_bytes += skb->len;
1419		total_rx_packets++;
1420
1421		e1000_rx_checksum(adapter, staterr, skb);
1422
1423		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1424
1425		if (rx_desc->wb.upper.header_status &
1426		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1427			adapter->rx_hdr_split++;
1428
1429		e1000_receive_skb(adapter, netdev, skb, staterr,
1430				  rx_desc->wb.middle.vlan);
1431
1432next_desc:
1433		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1434		buffer_info->skb = NULL;
1435
1436		/* return some buffers to hardware, one at a time is too slow */
1437		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1438			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1439					      GFP_ATOMIC);
1440			cleaned_count = 0;
1441		}
1442
1443		/* use prefetched values */
1444		rx_desc = next_rxd;
1445		buffer_info = next_buffer;
1446
1447		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1448	}
1449	rx_ring->next_to_clean = i;
1450
1451	cleaned_count = e1000_desc_unused(rx_ring);
1452	if (cleaned_count)
1453		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1454
1455	adapter->total_rx_bytes += total_rx_bytes;
1456	adapter->total_rx_packets += total_rx_packets;
1457	return cleaned;
1458}
1459
1460/**
1461 * e1000_consume_page - helper function
1462 **/
1463static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1464			       u16 length)
1465{
1466	bi->page = NULL;
1467	skb->len += length;
1468	skb->data_len += length;
1469	skb->truesize += PAGE_SIZE;
1470}
1471
1472/**
1473 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1474 * @adapter: board private structure
 
 
1475 *
1476 * the return value indicates whether actual cleaning was done, there
1477 * is no guarantee that everything was cleaned
1478 **/
1479static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1480				     int work_to_do)
1481{
1482	struct e1000_adapter *adapter = rx_ring->adapter;
1483	struct net_device *netdev = adapter->netdev;
1484	struct pci_dev *pdev = adapter->pdev;
1485	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1486	struct e1000_buffer *buffer_info, *next_buffer;
1487	u32 length, staterr;
1488	unsigned int i;
1489	int cleaned_count = 0;
1490	bool cleaned = false;
1491	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1492	struct skb_shared_info *shinfo;
1493
1494	i = rx_ring->next_to_clean;
1495	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1496	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1497	buffer_info = &rx_ring->buffer_info[i];
1498
1499	while (staterr & E1000_RXD_STAT_DD) {
1500		struct sk_buff *skb;
1501
1502		if (*work_done >= work_to_do)
1503			break;
1504		(*work_done)++;
1505		rmb();	/* read descriptor and rx_buffer_info after status DD */
1506
1507		skb = buffer_info->skb;
1508		buffer_info->skb = NULL;
1509
1510		++i;
1511		if (i == rx_ring->count)
1512			i = 0;
1513		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1514		prefetch(next_rxd);
1515
1516		next_buffer = &rx_ring->buffer_info[i];
1517
1518		cleaned = true;
1519		cleaned_count++;
1520		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1521			       DMA_FROM_DEVICE);
1522		buffer_info->dma = 0;
1523
1524		length = le16_to_cpu(rx_desc->wb.upper.length);
1525
1526		/* errors is only valid for DD + EOP descriptors */
1527		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1528			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1529			      !(netdev->features & NETIF_F_RXALL)))) {
1530			/* recycle both page and skb */
1531			buffer_info->skb = skb;
1532			/* an error means any chain goes out the window too */
1533			if (rx_ring->rx_skb_top)
1534				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1535			rx_ring->rx_skb_top = NULL;
1536			goto next_desc;
1537		}
1538#define rxtop (rx_ring->rx_skb_top)
1539		if (!(staterr & E1000_RXD_STAT_EOP)) {
1540			/* this descriptor is only the beginning (or middle) */
1541			if (!rxtop) {
1542				/* this is the beginning of a chain */
1543				rxtop = skb;
1544				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1545						   0, length);
1546			} else {
1547				/* this is the middle of a chain */
1548				shinfo = skb_shinfo(rxtop);
1549				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1550						   buffer_info->page, 0,
1551						   length);
1552				/* re-use the skb, only consumed the page */
1553				buffer_info->skb = skb;
1554			}
1555			e1000_consume_page(buffer_info, rxtop, length);
1556			goto next_desc;
1557		} else {
1558			if (rxtop) {
1559				/* end of the chain */
1560				shinfo = skb_shinfo(rxtop);
1561				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1562						   buffer_info->page, 0,
1563						   length);
1564				/* re-use the current skb, we only consumed the
1565				 * page
1566				 */
1567				buffer_info->skb = skb;
1568				skb = rxtop;
1569				rxtop = NULL;
1570				e1000_consume_page(buffer_info, skb, length);
1571			} else {
1572				/* no chain, got EOP, this buf is the packet
1573				 * copybreak to save the put_page/alloc_page
1574				 */
1575				if (length <= copybreak &&
1576				    skb_tailroom(skb) >= length) {
1577					u8 *vaddr;
1578					vaddr = kmap_atomic(buffer_info->page);
1579					memcpy(skb_tail_pointer(skb), vaddr,
1580					       length);
1581					kunmap_atomic(vaddr);
1582					/* re-use the page, so don't erase
1583					 * buffer_info->page
1584					 */
1585					skb_put(skb, length);
1586				} else {
1587					skb_fill_page_desc(skb, 0,
1588							   buffer_info->page, 0,
1589							   length);
1590					e1000_consume_page(buffer_info, skb,
1591							   length);
1592				}
1593			}
1594		}
1595
1596		/* Receive Checksum Offload */
1597		e1000_rx_checksum(adapter, staterr, skb);
1598
1599		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1600
1601		/* probably a little skewed due to removing CRC */
1602		total_rx_bytes += skb->len;
1603		total_rx_packets++;
1604
1605		/* eth type trans needs skb->data to point to something */
1606		if (!pskb_may_pull(skb, ETH_HLEN)) {
1607			e_err("pskb_may_pull failed.\n");
1608			dev_kfree_skb_irq(skb);
1609			goto next_desc;
1610		}
1611
1612		e1000_receive_skb(adapter, netdev, skb, staterr,
1613				  rx_desc->wb.upper.vlan);
1614
1615next_desc:
1616		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1617
1618		/* return some buffers to hardware, one at a time is too slow */
1619		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1620			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1621					      GFP_ATOMIC);
1622			cleaned_count = 0;
1623		}
1624
1625		/* use prefetched values */
1626		rx_desc = next_rxd;
1627		buffer_info = next_buffer;
1628
1629		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1630	}
1631	rx_ring->next_to_clean = i;
1632
1633	cleaned_count = e1000_desc_unused(rx_ring);
1634	if (cleaned_count)
1635		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1636
1637	adapter->total_rx_bytes += total_rx_bytes;
1638	adapter->total_rx_packets += total_rx_packets;
1639	return cleaned;
1640}
1641
1642/**
1643 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1644 * @rx_ring: Rx descriptor ring
1645 **/
1646static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1647{
1648	struct e1000_adapter *adapter = rx_ring->adapter;
1649	struct e1000_buffer *buffer_info;
1650	struct e1000_ps_page *ps_page;
1651	struct pci_dev *pdev = adapter->pdev;
1652	unsigned int i, j;
1653
1654	/* Free all the Rx ring sk_buffs */
1655	for (i = 0; i < rx_ring->count; i++) {
1656		buffer_info = &rx_ring->buffer_info[i];
1657		if (buffer_info->dma) {
1658			if (adapter->clean_rx == e1000_clean_rx_irq)
1659				dma_unmap_single(&pdev->dev, buffer_info->dma,
1660						 adapter->rx_buffer_len,
1661						 DMA_FROM_DEVICE);
1662			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1663				dma_unmap_page(&pdev->dev, buffer_info->dma,
1664					       PAGE_SIZE, DMA_FROM_DEVICE);
1665			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1666				dma_unmap_single(&pdev->dev, buffer_info->dma,
1667						 adapter->rx_ps_bsize0,
1668						 DMA_FROM_DEVICE);
1669			buffer_info->dma = 0;
1670		}
1671
1672		if (buffer_info->page) {
1673			put_page(buffer_info->page);
1674			buffer_info->page = NULL;
1675		}
1676
1677		if (buffer_info->skb) {
1678			dev_kfree_skb(buffer_info->skb);
1679			buffer_info->skb = NULL;
1680		}
1681
1682		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1683			ps_page = &buffer_info->ps_pages[j];
1684			if (!ps_page->page)
1685				break;
1686			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1687				       DMA_FROM_DEVICE);
1688			ps_page->dma = 0;
1689			put_page(ps_page->page);
1690			ps_page->page = NULL;
1691		}
1692	}
1693
1694	/* there also may be some cached data from a chained receive */
1695	if (rx_ring->rx_skb_top) {
1696		dev_kfree_skb(rx_ring->rx_skb_top);
1697		rx_ring->rx_skb_top = NULL;
1698	}
1699
1700	/* Zero out the descriptor ring */
1701	memset(rx_ring->desc, 0, rx_ring->size);
1702
1703	rx_ring->next_to_clean = 0;
1704	rx_ring->next_to_use = 0;
1705	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1706
1707	writel(0, rx_ring->head);
1708	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1709		e1000e_update_rdt_wa(rx_ring, 0);
1710	else
1711		writel(0, rx_ring->tail);
1712}
1713
1714static void e1000e_downshift_workaround(struct work_struct *work)
1715{
1716	struct e1000_adapter *adapter = container_of(work,
1717						     struct e1000_adapter,
1718						     downshift_task);
1719
1720	if (test_bit(__E1000_DOWN, &adapter->state))
1721		return;
1722
1723	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1724}
1725
1726/**
1727 * e1000_intr_msi - Interrupt Handler
1728 * @irq: interrupt number
1729 * @data: pointer to a network interface device structure
1730 **/
1731static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1732{
1733	struct net_device *netdev = data;
1734	struct e1000_adapter *adapter = netdev_priv(netdev);
1735	struct e1000_hw *hw = &adapter->hw;
1736	u32 icr = er32(ICR);
1737
1738	/* read ICR disables interrupts using IAM */
1739	if (icr & E1000_ICR_LSC) {
1740		hw->mac.get_link_status = true;
1741		/* ICH8 workaround-- Call gig speed drop workaround on cable
1742		 * disconnect (LSC) before accessing any PHY registers
1743		 */
1744		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1745		    (!(er32(STATUS) & E1000_STATUS_LU)))
1746			schedule_work(&adapter->downshift_task);
1747
1748		/* 80003ES2LAN workaround-- For packet buffer work-around on
1749		 * link down event; disable receives here in the ISR and reset
1750		 * adapter in watchdog
1751		 */
1752		if (netif_carrier_ok(netdev) &&
1753		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1754			/* disable receives */
1755			u32 rctl = er32(RCTL);
 
1756			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1757			adapter->flags |= FLAG_RESTART_NOW;
1758		}
1759		/* guard against interrupt when we're going down */
1760		if (!test_bit(__E1000_DOWN, &adapter->state))
1761			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1762	}
1763
1764	/* Reset on uncorrectable ECC error */
1765	if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1766		u32 pbeccsts = er32(PBECCSTS);
1767
1768		adapter->corr_errors +=
1769		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1770		adapter->uncorr_errors +=
1771		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1772		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1773
1774		/* Do the reset outside of interrupt context */
1775		schedule_work(&adapter->reset_task);
1776
1777		/* return immediately since reset is imminent */
1778		return IRQ_HANDLED;
1779	}
1780
1781	if (napi_schedule_prep(&adapter->napi)) {
1782		adapter->total_tx_bytes = 0;
1783		adapter->total_tx_packets = 0;
1784		adapter->total_rx_bytes = 0;
1785		adapter->total_rx_packets = 0;
1786		__napi_schedule(&adapter->napi);
1787	}
1788
1789	return IRQ_HANDLED;
1790}
1791
1792/**
1793 * e1000_intr - Interrupt Handler
1794 * @irq: interrupt number
1795 * @data: pointer to a network interface device structure
1796 **/
1797static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1798{
1799	struct net_device *netdev = data;
1800	struct e1000_adapter *adapter = netdev_priv(netdev);
1801	struct e1000_hw *hw = &adapter->hw;
1802	u32 rctl, icr = er32(ICR);
1803
1804	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1805		return IRQ_NONE;	/* Not our interrupt */
1806
1807	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1808	 * not set, then the adapter didn't send an interrupt
1809	 */
1810	if (!(icr & E1000_ICR_INT_ASSERTED))
1811		return IRQ_NONE;
1812
1813	/* Interrupt Auto-Mask...upon reading ICR,
1814	 * interrupts are masked.  No need for the
1815	 * IMC write
1816	 */
1817
1818	if (icr & E1000_ICR_LSC) {
1819		hw->mac.get_link_status = true;
1820		/* ICH8 workaround-- Call gig speed drop workaround on cable
1821		 * disconnect (LSC) before accessing any PHY registers
1822		 */
1823		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1824		    (!(er32(STATUS) & E1000_STATUS_LU)))
1825			schedule_work(&adapter->downshift_task);
1826
1827		/* 80003ES2LAN workaround--
1828		 * For packet buffer work-around on link down event;
1829		 * disable receives here in the ISR and
1830		 * reset adapter in watchdog
1831		 */
1832		if (netif_carrier_ok(netdev) &&
1833		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1834			/* disable receives */
1835			rctl = er32(RCTL);
1836			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1837			adapter->flags |= FLAG_RESTART_NOW;
1838		}
1839		/* guard against interrupt when we're going down */
1840		if (!test_bit(__E1000_DOWN, &adapter->state))
1841			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1842	}
1843
1844	/* Reset on uncorrectable ECC error */
1845	if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1846		u32 pbeccsts = er32(PBECCSTS);
1847
1848		adapter->corr_errors +=
1849		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1850		adapter->uncorr_errors +=
1851		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1852		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1853
1854		/* Do the reset outside of interrupt context */
1855		schedule_work(&adapter->reset_task);
1856
1857		/* return immediately since reset is imminent */
1858		return IRQ_HANDLED;
1859	}
1860
1861	if (napi_schedule_prep(&adapter->napi)) {
1862		adapter->total_tx_bytes = 0;
1863		adapter->total_tx_packets = 0;
1864		adapter->total_rx_bytes = 0;
1865		adapter->total_rx_packets = 0;
1866		__napi_schedule(&adapter->napi);
1867	}
1868
1869	return IRQ_HANDLED;
1870}
1871
1872static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1873{
1874	struct net_device *netdev = data;
1875	struct e1000_adapter *adapter = netdev_priv(netdev);
1876	struct e1000_hw *hw = &adapter->hw;
1877	u32 icr = er32(ICR);
1878
1879	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1880		if (!test_bit(__E1000_DOWN, &adapter->state))
1881			ew32(IMS, E1000_IMS_OTHER);
1882		return IRQ_NONE;
1883	}
1884
1885	if (icr & adapter->eiac_mask)
1886		ew32(ICS, (icr & adapter->eiac_mask));
1887
1888	if (icr & E1000_ICR_OTHER) {
1889		if (!(icr & E1000_ICR_LSC))
1890			goto no_link_interrupt;
1891		hw->mac.get_link_status = true;
1892		/* guard against interrupt when we're going down */
1893		if (!test_bit(__E1000_DOWN, &adapter->state))
1894			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1895	}
1896
1897no_link_interrupt:
1898	if (!test_bit(__E1000_DOWN, &adapter->state))
1899		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1900
1901	return IRQ_HANDLED;
1902}
1903
1904static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1905{
1906	struct net_device *netdev = data;
1907	struct e1000_adapter *adapter = netdev_priv(netdev);
1908	struct e1000_hw *hw = &adapter->hw;
1909	struct e1000_ring *tx_ring = adapter->tx_ring;
1910
1911	adapter->total_tx_bytes = 0;
1912	adapter->total_tx_packets = 0;
1913
1914	if (!e1000_clean_tx_irq(tx_ring))
1915		/* Ring was not completely cleaned, so fire another interrupt */
1916		ew32(ICS, tx_ring->ims_val);
1917
 
 
 
1918	return IRQ_HANDLED;
1919}
1920
1921static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1922{
1923	struct net_device *netdev = data;
1924	struct e1000_adapter *adapter = netdev_priv(netdev);
1925	struct e1000_ring *rx_ring = adapter->rx_ring;
1926
1927	/* Write the ITR value calculated at the end of the
1928	 * previous interrupt.
1929	 */
1930	if (rx_ring->set_itr) {
1931		writel(1000000000 / (rx_ring->itr_val * 256),
1932		       rx_ring->itr_register);
 
 
1933		rx_ring->set_itr = 0;
1934	}
1935
1936	if (napi_schedule_prep(&adapter->napi)) {
1937		adapter->total_rx_bytes = 0;
1938		adapter->total_rx_packets = 0;
1939		__napi_schedule(&adapter->napi);
1940	}
1941	return IRQ_HANDLED;
1942}
1943
1944/**
1945 * e1000_configure_msix - Configure MSI-X hardware
 
1946 *
1947 * e1000_configure_msix sets up the hardware to properly
1948 * generate MSI-X interrupts.
1949 **/
1950static void e1000_configure_msix(struct e1000_adapter *adapter)
1951{
1952	struct e1000_hw *hw = &adapter->hw;
1953	struct e1000_ring *rx_ring = adapter->rx_ring;
1954	struct e1000_ring *tx_ring = adapter->tx_ring;
1955	int vector = 0;
1956	u32 ctrl_ext, ivar = 0;
1957
1958	adapter->eiac_mask = 0;
1959
1960	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1961	if (hw->mac.type == e1000_82574) {
1962		u32 rfctl = er32(RFCTL);
 
1963		rfctl |= E1000_RFCTL_ACK_DIS;
1964		ew32(RFCTL, rfctl);
1965	}
1966
1967	/* Configure Rx vector */
1968	rx_ring->ims_val = E1000_IMS_RXQ0;
1969	adapter->eiac_mask |= rx_ring->ims_val;
1970	if (rx_ring->itr_val)
1971		writel(1000000000 / (rx_ring->itr_val * 256),
1972		       rx_ring->itr_register);
1973	else
1974		writel(1, rx_ring->itr_register);
1975	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1976
1977	/* Configure Tx vector */
1978	tx_ring->ims_val = E1000_IMS_TXQ0;
1979	vector++;
1980	if (tx_ring->itr_val)
1981		writel(1000000000 / (tx_ring->itr_val * 256),
1982		       tx_ring->itr_register);
1983	else
1984		writel(1, tx_ring->itr_register);
1985	adapter->eiac_mask |= tx_ring->ims_val;
1986	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1987
1988	/* set vector for Other Causes, e.g. link changes */
1989	vector++;
1990	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1991	if (rx_ring->itr_val)
1992		writel(1000000000 / (rx_ring->itr_val * 256),
1993		       hw->hw_addr + E1000_EITR_82574(vector));
1994	else
1995		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1996
1997	/* Cause Tx interrupts on every write back */
1998	ivar |= (1 << 31);
1999
2000	ew32(IVAR, ivar);
2001
2002	/* enable MSI-X PBA support */
2003	ctrl_ext = er32(CTRL_EXT);
2004	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2005
2006	/* Auto-Mask Other interrupts upon ICR read */
2007	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2008	ctrl_ext |= E1000_CTRL_EXT_EIAME;
2009	ew32(CTRL_EXT, ctrl_ext);
2010	e1e_flush();
2011}
2012
2013void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2014{
2015	if (adapter->msix_entries) {
2016		pci_disable_msix(adapter->pdev);
2017		kfree(adapter->msix_entries);
2018		adapter->msix_entries = NULL;
2019	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2020		pci_disable_msi(adapter->pdev);
2021		adapter->flags &= ~FLAG_MSI_ENABLED;
2022	}
2023}
2024
2025/**
2026 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
 
2027 *
2028 * Attempt to configure interrupts using the best available
2029 * capabilities of the hardware and kernel.
2030 **/
2031void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2032{
2033	int err;
2034	int i;
2035
2036	switch (adapter->int_mode) {
2037	case E1000E_INT_MODE_MSIX:
2038		if (adapter->flags & FLAG_HAS_MSIX) {
2039			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2040			adapter->msix_entries = kcalloc(adapter->num_vectors,
2041							sizeof(struct
2042							       msix_entry),
2043							GFP_KERNEL);
2044			if (adapter->msix_entries) {
2045				struct e1000_adapter *a = adapter;
2046
2047				for (i = 0; i < adapter->num_vectors; i++)
2048					adapter->msix_entries[i].entry = i;
2049
2050				err = pci_enable_msix_range(a->pdev,
2051							    a->msix_entries,
2052							    a->num_vectors,
2053							    a->num_vectors);
2054				if (err > 0)
2055					return;
2056			}
2057			/* MSI-X failed, so fall through and try MSI */
2058			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2059			e1000e_reset_interrupt_capability(adapter);
2060		}
2061		adapter->int_mode = E1000E_INT_MODE_MSI;
2062		/* Fall through */
2063	case E1000E_INT_MODE_MSI:
2064		if (!pci_enable_msi(adapter->pdev)) {
2065			adapter->flags |= FLAG_MSI_ENABLED;
2066		} else {
2067			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2068			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2069		}
2070		/* Fall through */
2071	case E1000E_INT_MODE_LEGACY:
2072		/* Don't do anything; this is the system default */
2073		break;
2074	}
2075
2076	/* store the number of vectors being used */
2077	adapter->num_vectors = 1;
2078}
2079
2080/**
2081 * e1000_request_msix - Initialize MSI-X interrupts
 
2082 *
2083 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2084 * kernel.
2085 **/
2086static int e1000_request_msix(struct e1000_adapter *adapter)
2087{
2088	struct net_device *netdev = adapter->netdev;
2089	int err = 0, vector = 0;
2090
2091	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2092		snprintf(adapter->rx_ring->name,
2093			 sizeof(adapter->rx_ring->name) - 1,
2094			 "%s-rx-0", netdev->name);
2095	else
2096		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2097	err = request_irq(adapter->msix_entries[vector].vector,
2098			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2099			  netdev);
2100	if (err)
2101		return err;
2102	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2103	    E1000_EITR_82574(vector);
2104	adapter->rx_ring->itr_val = adapter->itr;
2105	vector++;
2106
2107	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2108		snprintf(adapter->tx_ring->name,
2109			 sizeof(adapter->tx_ring->name) - 1,
2110			 "%s-tx-0", netdev->name);
2111	else
2112		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2113	err = request_irq(adapter->msix_entries[vector].vector,
2114			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2115			  netdev);
2116	if (err)
2117		return err;
2118	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2119	    E1000_EITR_82574(vector);
2120	adapter->tx_ring->itr_val = adapter->itr;
2121	vector++;
2122
2123	err = request_irq(adapter->msix_entries[vector].vector,
2124			  e1000_msix_other, 0, netdev->name, netdev);
2125	if (err)
2126		return err;
2127
2128	e1000_configure_msix(adapter);
2129
2130	return 0;
2131}
2132
2133/**
2134 * e1000_request_irq - initialize interrupts
 
2135 *
2136 * Attempts to configure interrupts using the best available
2137 * capabilities of the hardware and kernel.
2138 **/
2139static int e1000_request_irq(struct e1000_adapter *adapter)
2140{
2141	struct net_device *netdev = adapter->netdev;
2142	int err;
2143
2144	if (adapter->msix_entries) {
2145		err = e1000_request_msix(adapter);
2146		if (!err)
2147			return err;
2148		/* fall back to MSI */
2149		e1000e_reset_interrupt_capability(adapter);
2150		adapter->int_mode = E1000E_INT_MODE_MSI;
2151		e1000e_set_interrupt_capability(adapter);
2152	}
2153	if (adapter->flags & FLAG_MSI_ENABLED) {
2154		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2155				  netdev->name, netdev);
2156		if (!err)
2157			return err;
2158
2159		/* fall back to legacy interrupt */
2160		e1000e_reset_interrupt_capability(adapter);
2161		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2162	}
2163
2164	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2165			  netdev->name, netdev);
2166	if (err)
2167		e_err("Unable to allocate interrupt, Error: %d\n", err);
2168
2169	return err;
2170}
2171
2172static void e1000_free_irq(struct e1000_adapter *adapter)
2173{
2174	struct net_device *netdev = adapter->netdev;
2175
2176	if (adapter->msix_entries) {
2177		int vector = 0;
2178
2179		free_irq(adapter->msix_entries[vector].vector, netdev);
2180		vector++;
2181
2182		free_irq(adapter->msix_entries[vector].vector, netdev);
2183		vector++;
2184
2185		/* Other Causes interrupt vector */
2186		free_irq(adapter->msix_entries[vector].vector, netdev);
2187		return;
2188	}
2189
2190	free_irq(adapter->pdev->irq, netdev);
2191}
2192
2193/**
2194 * e1000_irq_disable - Mask off interrupt generation on the NIC
 
2195 **/
2196static void e1000_irq_disable(struct e1000_adapter *adapter)
2197{
2198	struct e1000_hw *hw = &adapter->hw;
2199
2200	ew32(IMC, ~0);
2201	if (adapter->msix_entries)
2202		ew32(EIAC_82574, 0);
2203	e1e_flush();
2204
2205	if (adapter->msix_entries) {
2206		int i;
 
2207		for (i = 0; i < adapter->num_vectors; i++)
2208			synchronize_irq(adapter->msix_entries[i].vector);
2209	} else {
2210		synchronize_irq(adapter->pdev->irq);
2211	}
2212}
2213
2214/**
2215 * e1000_irq_enable - Enable default interrupt generation settings
 
2216 **/
2217static void e1000_irq_enable(struct e1000_adapter *adapter)
2218{
2219	struct e1000_hw *hw = &adapter->hw;
2220
2221	if (adapter->msix_entries) {
2222		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2223		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2224	} else if (hw->mac.type == e1000_pch_lpt) {
 
2225		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2226	} else {
2227		ew32(IMS, IMS_ENABLE_MASK);
2228	}
2229	e1e_flush();
2230}
2231
2232/**
2233 * e1000e_get_hw_control - get control of the h/w from f/w
2234 * @adapter: address of board private structure
2235 *
2236 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2237 * For ASF and Pass Through versions of f/w this means that
2238 * the driver is loaded. For AMT version (only with 82573)
2239 * of the f/w this means that the network i/f is open.
2240 **/
2241void e1000e_get_hw_control(struct e1000_adapter *adapter)
2242{
2243	struct e1000_hw *hw = &adapter->hw;
2244	u32 ctrl_ext;
2245	u32 swsm;
2246
2247	/* Let firmware know the driver has taken over */
2248	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2249		swsm = er32(SWSM);
2250		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2251	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2252		ctrl_ext = er32(CTRL_EXT);
2253		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2254	}
2255}
2256
2257/**
2258 * e1000e_release_hw_control - release control of the h/w to f/w
2259 * @adapter: address of board private structure
2260 *
2261 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2262 * For ASF and Pass Through versions of f/w this means that the
2263 * driver is no longer loaded. For AMT version (only with 82573) i
2264 * of the f/w this means that the network i/f is closed.
2265 *
2266 **/
2267void e1000e_release_hw_control(struct e1000_adapter *adapter)
2268{
2269	struct e1000_hw *hw = &adapter->hw;
2270	u32 ctrl_ext;
2271	u32 swsm;
2272
2273	/* Let firmware taken over control of h/w */
2274	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2275		swsm = er32(SWSM);
2276		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2277	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2278		ctrl_ext = er32(CTRL_EXT);
2279		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2280	}
2281}
2282
2283/**
2284 * e1000_alloc_ring_dma - allocate memory for a ring structure
 
 
2285 **/
2286static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2287				struct e1000_ring *ring)
2288{
2289	struct pci_dev *pdev = adapter->pdev;
2290
2291	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2292					GFP_KERNEL);
2293	if (!ring->desc)
2294		return -ENOMEM;
2295
2296	return 0;
2297}
2298
2299/**
2300 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2301 * @tx_ring: Tx descriptor ring
2302 *
2303 * Return 0 on success, negative on failure
2304 **/
2305int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2306{
2307	struct e1000_adapter *adapter = tx_ring->adapter;
2308	int err = -ENOMEM, size;
2309
2310	size = sizeof(struct e1000_buffer) * tx_ring->count;
2311	tx_ring->buffer_info = vzalloc(size);
2312	if (!tx_ring->buffer_info)
2313		goto err;
2314
2315	/* round up to nearest 4K */
2316	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2317	tx_ring->size = ALIGN(tx_ring->size, 4096);
2318
2319	err = e1000_alloc_ring_dma(adapter, tx_ring);
2320	if (err)
2321		goto err;
2322
2323	tx_ring->next_to_use = 0;
2324	tx_ring->next_to_clean = 0;
2325
2326	return 0;
2327err:
2328	vfree(tx_ring->buffer_info);
2329	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2330	return err;
2331}
2332
2333/**
2334 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2335 * @rx_ring: Rx descriptor ring
2336 *
2337 * Returns 0 on success, negative on failure
2338 **/
2339int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2340{
2341	struct e1000_adapter *adapter = rx_ring->adapter;
2342	struct e1000_buffer *buffer_info;
2343	int i, size, desc_len, err = -ENOMEM;
2344
2345	size = sizeof(struct e1000_buffer) * rx_ring->count;
2346	rx_ring->buffer_info = vzalloc(size);
2347	if (!rx_ring->buffer_info)
2348		goto err;
2349
2350	for (i = 0; i < rx_ring->count; i++) {
2351		buffer_info = &rx_ring->buffer_info[i];
2352		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2353						sizeof(struct e1000_ps_page),
2354						GFP_KERNEL);
2355		if (!buffer_info->ps_pages)
2356			goto err_pages;
2357	}
2358
2359	desc_len = sizeof(union e1000_rx_desc_packet_split);
2360
2361	/* Round up to nearest 4K */
2362	rx_ring->size = rx_ring->count * desc_len;
2363	rx_ring->size = ALIGN(rx_ring->size, 4096);
2364
2365	err = e1000_alloc_ring_dma(adapter, rx_ring);
2366	if (err)
2367		goto err_pages;
2368
2369	rx_ring->next_to_clean = 0;
2370	rx_ring->next_to_use = 0;
2371	rx_ring->rx_skb_top = NULL;
2372
2373	return 0;
2374
2375err_pages:
2376	for (i = 0; i < rx_ring->count; i++) {
2377		buffer_info = &rx_ring->buffer_info[i];
2378		kfree(buffer_info->ps_pages);
2379	}
2380err:
2381	vfree(rx_ring->buffer_info);
2382	e_err("Unable to allocate memory for the receive descriptor ring\n");
2383	return err;
2384}
2385
2386/**
2387 * e1000_clean_tx_ring - Free Tx Buffers
2388 * @tx_ring: Tx descriptor ring
2389 **/
2390static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2391{
2392	struct e1000_adapter *adapter = tx_ring->adapter;
2393	struct e1000_buffer *buffer_info;
2394	unsigned long size;
2395	unsigned int i;
2396
2397	for (i = 0; i < tx_ring->count; i++) {
2398		buffer_info = &tx_ring->buffer_info[i];
2399		e1000_put_txbuf(tx_ring, buffer_info);
2400	}
2401
2402	netdev_reset_queue(adapter->netdev);
2403	size = sizeof(struct e1000_buffer) * tx_ring->count;
2404	memset(tx_ring->buffer_info, 0, size);
2405
2406	memset(tx_ring->desc, 0, tx_ring->size);
2407
2408	tx_ring->next_to_use = 0;
2409	tx_ring->next_to_clean = 0;
2410
2411	writel(0, tx_ring->head);
2412	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2413		e1000e_update_tdt_wa(tx_ring, 0);
2414	else
2415		writel(0, tx_ring->tail);
2416}
2417
2418/**
2419 * e1000e_free_tx_resources - Free Tx Resources per Queue
2420 * @tx_ring: Tx descriptor ring
2421 *
2422 * Free all transmit software resources
2423 **/
2424void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2425{
2426	struct e1000_adapter *adapter = tx_ring->adapter;
2427	struct pci_dev *pdev = adapter->pdev;
2428
2429	e1000_clean_tx_ring(tx_ring);
2430
2431	vfree(tx_ring->buffer_info);
2432	tx_ring->buffer_info = NULL;
2433
2434	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2435			  tx_ring->dma);
2436	tx_ring->desc = NULL;
2437}
2438
2439/**
2440 * e1000e_free_rx_resources - Free Rx Resources
2441 * @rx_ring: Rx descriptor ring
2442 *
2443 * Free all receive software resources
2444 **/
2445void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2446{
2447	struct e1000_adapter *adapter = rx_ring->adapter;
2448	struct pci_dev *pdev = adapter->pdev;
2449	int i;
2450
2451	e1000_clean_rx_ring(rx_ring);
2452
2453	for (i = 0; i < rx_ring->count; i++)
2454		kfree(rx_ring->buffer_info[i].ps_pages);
2455
2456	vfree(rx_ring->buffer_info);
2457	rx_ring->buffer_info = NULL;
2458
2459	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2460			  rx_ring->dma);
2461	rx_ring->desc = NULL;
2462}
2463
2464/**
2465 * e1000_update_itr - update the dynamic ITR value based on statistics
2466 * @adapter: pointer to adapter
2467 * @itr_setting: current adapter->itr
2468 * @packets: the number of packets during this measurement interval
2469 * @bytes: the number of bytes during this measurement interval
2470 *
2471 *      Stores a new ITR value based on packets and byte
2472 *      counts during the last interrupt.  The advantage of per interrupt
2473 *      computation is faster updates and more accurate ITR for the current
2474 *      traffic pattern.  Constants in this function were computed
2475 *      based on theoretical maximum wire speed and thresholds were set based
2476 *      on testing data as well as attempting to minimize response time
2477 *      while increasing bulk throughput.  This functionality is controlled
2478 *      by the InterruptThrottleRate module parameter.
2479 **/
2480static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2481{
2482	unsigned int retval = itr_setting;
2483
2484	if (packets == 0)
2485		return itr_setting;
2486
2487	switch (itr_setting) {
2488	case lowest_latency:
2489		/* handle TSO and jumbo frames */
2490		if (bytes / packets > 8000)
2491			retval = bulk_latency;
2492		else if ((packets < 5) && (bytes > 512))
2493			retval = low_latency;
2494		break;
2495	case low_latency:	/* 50 usec aka 20000 ints/s */
2496		if (bytes > 10000) {
2497			/* this if handles the TSO accounting */
2498			if (bytes / packets > 8000)
2499				retval = bulk_latency;
2500			else if ((packets < 10) || ((bytes / packets) > 1200))
2501				retval = bulk_latency;
2502			else if ((packets > 35))
2503				retval = lowest_latency;
2504		} else if (bytes / packets > 2000) {
2505			retval = bulk_latency;
2506		} else if (packets <= 2 && bytes < 512) {
2507			retval = lowest_latency;
2508		}
2509		break;
2510	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2511		if (bytes > 25000) {
2512			if (packets > 35)
2513				retval = low_latency;
2514		} else if (bytes < 6000) {
2515			retval = low_latency;
2516		}
2517		break;
2518	}
2519
2520	return retval;
2521}
2522
2523static void e1000_set_itr(struct e1000_adapter *adapter)
2524{
2525	u16 current_itr;
2526	u32 new_itr = adapter->itr;
2527
2528	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2529	if (adapter->link_speed != SPEED_1000) {
2530		current_itr = 0;
2531		new_itr = 4000;
2532		goto set_itr_now;
2533	}
2534
2535	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2536		new_itr = 0;
2537		goto set_itr_now;
2538	}
2539
2540	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2541					   adapter->total_tx_packets,
2542					   adapter->total_tx_bytes);
2543	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2544	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2545		adapter->tx_itr = low_latency;
2546
2547	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2548					   adapter->total_rx_packets,
2549					   adapter->total_rx_bytes);
2550	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2551	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2552		adapter->rx_itr = low_latency;
2553
2554	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2555
2556	/* counts and packets in update_itr are dependent on these numbers */
2557	switch (current_itr) {
2558	case lowest_latency:
2559		new_itr = 70000;
2560		break;
2561	case low_latency:
2562		new_itr = 20000;	/* aka hwitr = ~200 */
2563		break;
2564	case bulk_latency:
2565		new_itr = 4000;
2566		break;
2567	default:
2568		break;
2569	}
2570
2571set_itr_now:
2572	if (new_itr != adapter->itr) {
2573		/* this attempts to bias the interrupt rate towards Bulk
2574		 * by adding intermediate steps when interrupt rate is
2575		 * increasing
2576		 */
2577		new_itr = new_itr > adapter->itr ?
2578		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2579		adapter->itr = new_itr;
2580		adapter->rx_ring->itr_val = new_itr;
2581		if (adapter->msix_entries)
2582			adapter->rx_ring->set_itr = 1;
2583		else
2584			e1000e_write_itr(adapter, new_itr);
2585	}
2586}
2587
2588/**
2589 * e1000e_write_itr - write the ITR value to the appropriate registers
2590 * @adapter: address of board private structure
2591 * @itr: new ITR value to program
2592 *
2593 * e1000e_write_itr determines if the adapter is in MSI-X mode
2594 * and, if so, writes the EITR registers with the ITR value.
2595 * Otherwise, it writes the ITR value into the ITR register.
2596 **/
2597void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2598{
2599	struct e1000_hw *hw = &adapter->hw;
2600	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2601
2602	if (adapter->msix_entries) {
2603		int vector;
2604
2605		for (vector = 0; vector < adapter->num_vectors; vector++)
2606			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2607	} else {
2608		ew32(ITR, new_itr);
2609	}
2610}
2611
2612/**
2613 * e1000_alloc_queues - Allocate memory for all rings
2614 * @adapter: board private structure to initialize
2615 **/
2616static int e1000_alloc_queues(struct e1000_adapter *adapter)
2617{
2618	int size = sizeof(struct e1000_ring);
2619
2620	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2621	if (!adapter->tx_ring)
2622		goto err;
2623	adapter->tx_ring->count = adapter->tx_ring_count;
2624	adapter->tx_ring->adapter = adapter;
2625
2626	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2627	if (!adapter->rx_ring)
2628		goto err;
2629	adapter->rx_ring->count = adapter->rx_ring_count;
2630	adapter->rx_ring->adapter = adapter;
2631
2632	return 0;
2633err:
2634	e_err("Unable to allocate memory for queues\n");
2635	kfree(adapter->rx_ring);
2636	kfree(adapter->tx_ring);
2637	return -ENOMEM;
2638}
2639
2640/**
2641 * e1000e_poll - NAPI Rx polling callback
2642 * @napi: struct associated with this polling callback
2643 * @weight: number of packets driver is allowed to process this poll
2644 **/
2645static int e1000e_poll(struct napi_struct *napi, int weight)
2646{
2647	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2648						     napi);
2649	struct e1000_hw *hw = &adapter->hw;
2650	struct net_device *poll_dev = adapter->netdev;
2651	int tx_cleaned = 1, work_done = 0;
2652
2653	adapter = netdev_priv(poll_dev);
2654
2655	if (!adapter->msix_entries ||
2656	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2657		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2658
2659	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2660
2661	if (!tx_cleaned)
2662		work_done = weight;
2663
2664	/* If weight not fully consumed, exit the polling mode */
2665	if (work_done < weight) {
 
 
2666		if (adapter->itr_setting & 3)
2667			e1000_set_itr(adapter);
2668		napi_complete(napi);
2669		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2670			if (adapter->msix_entries)
2671				ew32(IMS, adapter->rx_ring->ims_val);
2672			else
2673				e1000_irq_enable(adapter);
2674		}
2675	}
2676
2677	return work_done;
2678}
2679
2680static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2681				 __always_unused __be16 proto, u16 vid)
2682{
2683	struct e1000_adapter *adapter = netdev_priv(netdev);
2684	struct e1000_hw *hw = &adapter->hw;
2685	u32 vfta, index;
2686
2687	/* don't update vlan cookie if already programmed */
2688	if ((adapter->hw.mng_cookie.status &
2689	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2690	    (vid == adapter->mng_vlan_id))
2691		return 0;
2692
2693	/* add VID to filter table */
2694	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2695		index = (vid >> 5) & 0x7F;
2696		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2697		vfta |= (1 << (vid & 0x1F));
2698		hw->mac.ops.write_vfta(hw, index, vfta);
2699	}
2700
2701	set_bit(vid, adapter->active_vlans);
2702
2703	return 0;
2704}
2705
2706static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2707				  __always_unused __be16 proto, u16 vid)
2708{
2709	struct e1000_adapter *adapter = netdev_priv(netdev);
2710	struct e1000_hw *hw = &adapter->hw;
2711	u32 vfta, index;
2712
2713	if ((adapter->hw.mng_cookie.status &
2714	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2715	    (vid == adapter->mng_vlan_id)) {
2716		/* release control to f/w */
2717		e1000e_release_hw_control(adapter);
2718		return 0;
2719	}
2720
2721	/* remove VID from filter table */
2722	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2723		index = (vid >> 5) & 0x7F;
2724		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2725		vfta &= ~(1 << (vid & 0x1F));
2726		hw->mac.ops.write_vfta(hw, index, vfta);
2727	}
2728
2729	clear_bit(vid, adapter->active_vlans);
2730
2731	return 0;
2732}
2733
2734/**
2735 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2736 * @adapter: board private structure to initialize
2737 **/
2738static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2739{
2740	struct net_device *netdev = adapter->netdev;
2741	struct e1000_hw *hw = &adapter->hw;
2742	u32 rctl;
2743
2744	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2745		/* disable VLAN receive filtering */
2746		rctl = er32(RCTL);
2747		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2748		ew32(RCTL, rctl);
2749
2750		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2751			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2752					       adapter->mng_vlan_id);
2753			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2754		}
2755	}
2756}
2757
2758/**
2759 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2760 * @adapter: board private structure to initialize
2761 **/
2762static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2763{
2764	struct e1000_hw *hw = &adapter->hw;
2765	u32 rctl;
2766
2767	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2768		/* enable VLAN receive filtering */
2769		rctl = er32(RCTL);
2770		rctl |= E1000_RCTL_VFE;
2771		rctl &= ~E1000_RCTL_CFIEN;
2772		ew32(RCTL, rctl);
2773	}
2774}
2775
2776/**
2777 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2778 * @adapter: board private structure to initialize
2779 **/
2780static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2781{
2782	struct e1000_hw *hw = &adapter->hw;
2783	u32 ctrl;
2784
2785	/* disable VLAN tag insert/strip */
2786	ctrl = er32(CTRL);
2787	ctrl &= ~E1000_CTRL_VME;
2788	ew32(CTRL, ctrl);
2789}
2790
2791/**
2792 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2793 * @adapter: board private structure to initialize
2794 **/
2795static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2796{
2797	struct e1000_hw *hw = &adapter->hw;
2798	u32 ctrl;
2799
2800	/* enable VLAN tag insert/strip */
2801	ctrl = er32(CTRL);
2802	ctrl |= E1000_CTRL_VME;
2803	ew32(CTRL, ctrl);
2804}
2805
2806static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2807{
2808	struct net_device *netdev = adapter->netdev;
2809	u16 vid = adapter->hw.mng_cookie.vlan_id;
2810	u16 old_vid = adapter->mng_vlan_id;
2811
2812	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2813		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2814		adapter->mng_vlan_id = vid;
2815	}
2816
2817	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2818		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2819}
2820
2821static void e1000_restore_vlan(struct e1000_adapter *adapter)
2822{
2823	u16 vid;
2824
2825	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2826
2827	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2828	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2829}
2830
2831static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2832{
2833	struct e1000_hw *hw = &adapter->hw;
2834	u32 manc, manc2h, mdef, i, j;
2835
2836	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2837		return;
2838
2839	manc = er32(MANC);
2840
2841	/* enable receiving management packets to the host. this will probably
2842	 * generate destination unreachable messages from the host OS, but
2843	 * the packets will be handled on SMBUS
2844	 */
2845	manc |= E1000_MANC_EN_MNG2HOST;
2846	manc2h = er32(MANC2H);
2847
2848	switch (hw->mac.type) {
2849	default:
2850		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2851		break;
2852	case e1000_82574:
2853	case e1000_82583:
2854		/* Check if IPMI pass-through decision filter already exists;
2855		 * if so, enable it.
2856		 */
2857		for (i = 0, j = 0; i < 8; i++) {
2858			mdef = er32(MDEF(i));
2859
2860			/* Ignore filters with anything other than IPMI ports */
2861			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2862				continue;
2863
2864			/* Enable this decision filter in MANC2H */
2865			if (mdef)
2866				manc2h |= (1 << i);
2867
2868			j |= mdef;
2869		}
2870
2871		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2872			break;
2873
2874		/* Create new decision filter in an empty filter */
2875		for (i = 0, j = 0; i < 8; i++)
2876			if (er32(MDEF(i)) == 0) {
2877				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2878					       E1000_MDEF_PORT_664));
2879				manc2h |= (1 << 1);
2880				j++;
2881				break;
2882			}
2883
2884		if (!j)
2885			e_warn("Unable to create IPMI pass-through filter\n");
2886		break;
2887	}
2888
2889	ew32(MANC2H, manc2h);
2890	ew32(MANC, manc);
2891}
2892
2893/**
2894 * e1000_configure_tx - Configure Transmit Unit after Reset
2895 * @adapter: board private structure
2896 *
2897 * Configure the Tx unit of the MAC after a reset.
2898 **/
2899static void e1000_configure_tx(struct e1000_adapter *adapter)
2900{
2901	struct e1000_hw *hw = &adapter->hw;
2902	struct e1000_ring *tx_ring = adapter->tx_ring;
2903	u64 tdba;
2904	u32 tdlen, tctl, tarc;
2905
2906	/* Setup the HW Tx Head and Tail descriptor pointers */
2907	tdba = tx_ring->dma;
2908	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2909	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2910	ew32(TDBAH(0), (tdba >> 32));
2911	ew32(TDLEN(0), tdlen);
2912	ew32(TDH(0), 0);
2913	ew32(TDT(0), 0);
2914	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2915	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2916
 
 
 
 
 
 
2917	/* Set the Tx Interrupt Delay register */
2918	ew32(TIDV, adapter->tx_int_delay);
2919	/* Tx irq moderation */
2920	ew32(TADV, adapter->tx_abs_int_delay);
2921
2922	if (adapter->flags2 & FLAG2_DMA_BURST) {
2923		u32 txdctl = er32(TXDCTL(0));
 
2924		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2925			    E1000_TXDCTL_WTHRESH);
2926		/* set up some performance related parameters to encourage the
2927		 * hardware to use the bus more efficiently in bursts, depends
2928		 * on the tx_int_delay to be enabled,
2929		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2930		 * hthresh = 1 ==> prefetch when one or more available
2931		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2932		 * BEWARE: this seems to work but should be considered first if
2933		 * there are Tx hangs or other Tx related bugs
2934		 */
2935		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2936		ew32(TXDCTL(0), txdctl);
2937	}
2938	/* erratum work around: set txdctl the same for both queues */
2939	ew32(TXDCTL(1), er32(TXDCTL(0)));
2940
2941	/* Program the Transmit Control Register */
2942	tctl = er32(TCTL);
2943	tctl &= ~E1000_TCTL_CT;
2944	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2945		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2946
2947	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2948		tarc = er32(TARC(0));
2949		/* set the speed mode bit, we'll clear it if we're not at
2950		 * gigabit link later
2951		 */
2952#define SPEED_MODE_BIT (1 << 21)
2953		tarc |= SPEED_MODE_BIT;
2954		ew32(TARC(0), tarc);
2955	}
2956
2957	/* errata: program both queues to unweighted RR */
2958	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2959		tarc = er32(TARC(0));
2960		tarc |= 1;
2961		ew32(TARC(0), tarc);
2962		tarc = er32(TARC(1));
2963		tarc |= 1;
2964		ew32(TARC(1), tarc);
2965	}
2966
2967	/* Setup Transmit Descriptor Settings for eop descriptor */
2968	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2969
2970	/* only set IDE if we are delaying interrupts using the timers */
2971	if (adapter->tx_int_delay)
2972		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2973
2974	/* enable Report Status bit */
2975	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2976
2977	ew32(TCTL, tctl);
2978
2979	hw->mac.ops.config_collision_dist(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2980}
2981
 
 
 
2982/**
2983 * e1000_setup_rctl - configure the receive control registers
2984 * @adapter: Board private structure
2985 **/
2986#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2987			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2988static void e1000_setup_rctl(struct e1000_adapter *adapter)
2989{
2990	struct e1000_hw *hw = &adapter->hw;
2991	u32 rctl, rfctl;
2992	u32 pages = 0;
2993
2994	/* Workaround Si errata on PCHx - configure jumbo frame flow.
2995	 * If jumbo frames not set, program related MAC/PHY registers
2996	 * to h/w defaults
2997	 */
2998	if (hw->mac.type >= e1000_pch2lan) {
2999		s32 ret_val;
3000
3001		if (adapter->netdev->mtu > ETH_DATA_LEN)
3002			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3003		else
3004			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3005
3006		if (ret_val)
3007			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3008	}
3009
3010	/* Program MC offset vector base */
3011	rctl = er32(RCTL);
3012	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3013	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3014	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3015	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3016
3017	/* Do not Store bad packets */
3018	rctl &= ~E1000_RCTL_SBP;
3019
3020	/* Enable Long Packet receive */
3021	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3022		rctl &= ~E1000_RCTL_LPE;
3023	else
3024		rctl |= E1000_RCTL_LPE;
3025
3026	/* Some systems expect that the CRC is included in SMBUS traffic. The
3027	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3028	 * host memory when this is enabled
3029	 */
3030	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3031		rctl |= E1000_RCTL_SECRC;
3032
3033	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3034	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3035		u16 phy_data;
3036
3037		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3038		phy_data &= 0xfff8;
3039		phy_data |= (1 << 2);
3040		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3041
3042		e1e_rphy(hw, 22, &phy_data);
3043		phy_data &= 0x0fff;
3044		phy_data |= (1 << 14);
3045		e1e_wphy(hw, 0x10, 0x2823);
3046		e1e_wphy(hw, 0x11, 0x0003);
3047		e1e_wphy(hw, 22, phy_data);
3048	}
3049
3050	/* Setup buffer sizes */
3051	rctl &= ~E1000_RCTL_SZ_4096;
3052	rctl |= E1000_RCTL_BSEX;
3053	switch (adapter->rx_buffer_len) {
3054	case 2048:
3055	default:
3056		rctl |= E1000_RCTL_SZ_2048;
3057		rctl &= ~E1000_RCTL_BSEX;
3058		break;
3059	case 4096:
3060		rctl |= E1000_RCTL_SZ_4096;
3061		break;
3062	case 8192:
3063		rctl |= E1000_RCTL_SZ_8192;
3064		break;
3065	case 16384:
3066		rctl |= E1000_RCTL_SZ_16384;
3067		break;
3068	}
3069
3070	/* Enable Extended Status in all Receive Descriptors */
3071	rfctl = er32(RFCTL);
3072	rfctl |= E1000_RFCTL_EXTEN;
3073	ew32(RFCTL, rfctl);
3074
3075	/* 82571 and greater support packet-split where the protocol
3076	 * header is placed in skb->data and the packet data is
3077	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3078	 * In the case of a non-split, skb->data is linearly filled,
3079	 * followed by the page buffers.  Therefore, skb->data is
3080	 * sized to hold the largest protocol header.
3081	 *
3082	 * allocations using alloc_page take too long for regular MTU
3083	 * so only enable packet split for jumbo frames
3084	 *
3085	 * Using pages when the page size is greater than 16k wastes
3086	 * a lot of memory, since we allocate 3 pages at all times
3087	 * per packet.
3088	 */
3089	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3090	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3091		adapter->rx_ps_pages = pages;
3092	else
3093		adapter->rx_ps_pages = 0;
3094
3095	if (adapter->rx_ps_pages) {
3096		u32 psrctl = 0;
3097
3098		/* Enable Packet split descriptors */
3099		rctl |= E1000_RCTL_DTYP_PS;
3100
3101		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3102
3103		switch (adapter->rx_ps_pages) {
3104		case 3:
3105			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3106			/* fall-through */
3107		case 2:
3108			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3109			/* fall-through */
3110		case 1:
3111			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3112			break;
3113		}
3114
3115		ew32(PSRCTL, psrctl);
3116	}
3117
3118	/* This is useful for sniffing bad packets. */
3119	if (adapter->netdev->features & NETIF_F_RXALL) {
3120		/* UPE and MPE will be handled by normal PROMISC logic
3121		 * in e1000e_set_rx_mode
3122		 */
3123		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3124			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3125			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3126
3127		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3128			  E1000_RCTL_DPF |	/* Allow filtered pause */
3129			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3130		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3131		 * and that breaks VLANs.
3132		 */
3133	}
3134
3135	ew32(RCTL, rctl);
3136	/* just started the receive unit, no need to restart */
3137	adapter->flags &= ~FLAG_RESTART_NOW;
3138}
3139
3140/**
3141 * e1000_configure_rx - Configure Receive Unit after Reset
3142 * @adapter: board private structure
3143 *
3144 * Configure the Rx unit of the MAC after a reset.
3145 **/
3146static void e1000_configure_rx(struct e1000_adapter *adapter)
3147{
3148	struct e1000_hw *hw = &adapter->hw;
3149	struct e1000_ring *rx_ring = adapter->rx_ring;
3150	u64 rdba;
3151	u32 rdlen, rctl, rxcsum, ctrl_ext;
3152
3153	if (adapter->rx_ps_pages) {
3154		/* this is a 32 byte descriptor */
3155		rdlen = rx_ring->count *
3156		    sizeof(union e1000_rx_desc_packet_split);
3157		adapter->clean_rx = e1000_clean_rx_irq_ps;
3158		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3159	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3160		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3161		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3162		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3163	} else {
3164		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3165		adapter->clean_rx = e1000_clean_rx_irq;
3166		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3167	}
3168
3169	/* disable receives while setting up the descriptors */
3170	rctl = er32(RCTL);
3171	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3172		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3173	e1e_flush();
3174	usleep_range(10000, 20000);
3175
3176	if (adapter->flags2 & FLAG2_DMA_BURST) {
3177		/* set the writeback threshold (only takes effect if the RDTR
3178		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3179		 * enable prefetching of 0x20 Rx descriptors
3180		 * granularity = 01
3181		 * wthresh = 04,
3182		 * hthresh = 04,
3183		 * pthresh = 0x20
3184		 */
3185		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3186		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3187
3188		/* override the delay timers for enabling bursting, only if
3189		 * the value was not set by the user via module options
3190		 */
3191		if (adapter->rx_int_delay == DEFAULT_RDTR)
3192			adapter->rx_int_delay = BURST_RDTR;
3193		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3194			adapter->rx_abs_int_delay = BURST_RADV;
3195	}
3196
3197	/* set the Receive Delay Timer Register */
3198	ew32(RDTR, adapter->rx_int_delay);
3199
3200	/* irq moderation */
3201	ew32(RADV, adapter->rx_abs_int_delay);
3202	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3203		e1000e_write_itr(adapter, adapter->itr);
3204
3205	ctrl_ext = er32(CTRL_EXT);
3206	/* Auto-Mask interrupts upon ICR access */
3207	ctrl_ext |= E1000_CTRL_EXT_IAME;
3208	ew32(IAM, 0xffffffff);
3209	ew32(CTRL_EXT, ctrl_ext);
3210	e1e_flush();
3211
3212	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3213	 * the Base and Length of the Rx Descriptor Ring
3214	 */
3215	rdba = rx_ring->dma;
3216	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3217	ew32(RDBAH(0), (rdba >> 32));
3218	ew32(RDLEN(0), rdlen);
3219	ew32(RDH(0), 0);
3220	ew32(RDT(0), 0);
3221	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3222	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3223
 
 
 
 
 
 
3224	/* Enable Receive Checksum Offload for TCP and UDP */
3225	rxcsum = er32(RXCSUM);
3226	if (adapter->netdev->features & NETIF_F_RXCSUM)
3227		rxcsum |= E1000_RXCSUM_TUOFL;
3228	else
3229		rxcsum &= ~E1000_RXCSUM_TUOFL;
3230	ew32(RXCSUM, rxcsum);
3231
3232	/* With jumbo frames, excessive C-state transition latencies result
3233	 * in dropped transactions.
3234	 */
3235	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3236		u32 lat =
3237		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3238		     adapter->max_frame_size) * 8 / 1000;
3239
3240		if (adapter->flags & FLAG_IS_ICH) {
3241			u32 rxdctl = er32(RXDCTL(0));
3242			ew32(RXDCTL(0), rxdctl | 0x3);
 
3243		}
3244
3245		pm_qos_update_request(&adapter->netdev->pm_qos_req, lat);
 
 
3246	} else {
3247		pm_qos_update_request(&adapter->netdev->pm_qos_req,
3248				      PM_QOS_DEFAULT_VALUE);
3249	}
3250
3251	/* Enable Receives */
3252	ew32(RCTL, rctl);
3253}
3254
3255/**
3256 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3257 * @netdev: network interface device structure
3258 *
3259 * Writes multicast address list to the MTA hash table.
3260 * Returns: -ENOMEM on failure
3261 *                0 on no addresses written
3262 *                X on writing X addresses to MTA
3263 */
3264static int e1000e_write_mc_addr_list(struct net_device *netdev)
3265{
3266	struct e1000_adapter *adapter = netdev_priv(netdev);
3267	struct e1000_hw *hw = &adapter->hw;
3268	struct netdev_hw_addr *ha;
3269	u8 *mta_list;
3270	int i;
3271
3272	if (netdev_mc_empty(netdev)) {
3273		/* nothing to program, so clear mc list */
3274		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3275		return 0;
3276	}
3277
3278	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3279	if (!mta_list)
3280		return -ENOMEM;
3281
3282	/* update_mc_addr_list expects a packed array of only addresses. */
3283	i = 0;
3284	netdev_for_each_mc_addr(ha, netdev)
3285	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3286
3287	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3288	kfree(mta_list);
3289
3290	return netdev_mc_count(netdev);
3291}
3292
3293/**
3294 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3295 * @netdev: network interface device structure
3296 *
3297 * Writes unicast address list to the RAR table.
3298 * Returns: -ENOMEM on failure/insufficient address space
3299 *                0 on no addresses written
3300 *                X on writing X addresses to the RAR table
3301 **/
3302static int e1000e_write_uc_addr_list(struct net_device *netdev)
3303{
3304	struct e1000_adapter *adapter = netdev_priv(netdev);
3305	struct e1000_hw *hw = &adapter->hw;
3306	unsigned int rar_entries = hw->mac.rar_entry_count;
3307	int count = 0;
3308
 
 
3309	/* save a rar entry for our hardware address */
3310	rar_entries--;
3311
3312	/* save a rar entry for the LAA workaround */
3313	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3314		rar_entries--;
3315
3316	/* return ENOMEM indicating insufficient memory for addresses */
3317	if (netdev_uc_count(netdev) > rar_entries)
3318		return -ENOMEM;
3319
3320	if (!netdev_uc_empty(netdev) && rar_entries) {
3321		struct netdev_hw_addr *ha;
3322
3323		/* write the addresses in reverse order to avoid write
3324		 * combining
3325		 */
3326		netdev_for_each_uc_addr(ha, netdev) {
 
 
3327			if (!rar_entries)
3328				break;
3329			hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
 
 
3330			count++;
3331		}
3332	}
3333
3334	/* zero out the remaining RAR entries not used above */
3335	for (; rar_entries > 0; rar_entries--) {
3336		ew32(RAH(rar_entries), 0);
3337		ew32(RAL(rar_entries), 0);
3338	}
3339	e1e_flush();
3340
3341	return count;
3342}
3343
3344/**
3345 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3346 * @netdev: network interface device structure
3347 *
3348 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3349 * address list or the network interface flags are updated.  This routine is
3350 * responsible for configuring the hardware for proper unicast, multicast,
3351 * promiscuous mode, and all-multi behavior.
3352 **/
3353static void e1000e_set_rx_mode(struct net_device *netdev)
3354{
3355	struct e1000_adapter *adapter = netdev_priv(netdev);
3356	struct e1000_hw *hw = &adapter->hw;
3357	u32 rctl;
3358
3359	if (pm_runtime_suspended(netdev->dev.parent))
3360		return;
3361
3362	/* Check for Promiscuous and All Multicast modes */
3363	rctl = er32(RCTL);
3364
3365	/* clear the affected bits */
3366	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3367
3368	if (netdev->flags & IFF_PROMISC) {
3369		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3370		/* Do not hardware filter VLANs in promisc mode */
3371		e1000e_vlan_filter_disable(adapter);
3372	} else {
3373		int count;
3374
3375		if (netdev->flags & IFF_ALLMULTI) {
3376			rctl |= E1000_RCTL_MPE;
3377		} else {
3378			/* Write addresses to the MTA, if the attempt fails
3379			 * then we should just turn on promiscuous mode so
3380			 * that we can at least receive multicast traffic
3381			 */
3382			count = e1000e_write_mc_addr_list(netdev);
3383			if (count < 0)
3384				rctl |= E1000_RCTL_MPE;
3385		}
3386		e1000e_vlan_filter_enable(adapter);
3387		/* Write addresses to available RAR registers, if there is not
3388		 * sufficient space to store all the addresses then enable
3389		 * unicast promiscuous mode
3390		 */
3391		count = e1000e_write_uc_addr_list(netdev);
3392		if (count < 0)
3393			rctl |= E1000_RCTL_UPE;
3394	}
3395
3396	ew32(RCTL, rctl);
3397
3398	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3399		e1000e_vlan_strip_enable(adapter);
3400	else
3401		e1000e_vlan_strip_disable(adapter);
3402}
3403
3404static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3405{
3406	struct e1000_hw *hw = &adapter->hw;
3407	u32 mrqc, rxcsum;
 
3408	int i;
3409	static const u32 rsskey[10] = {
3410		0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3411		0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3412	};
3413
3414	/* Fill out hash function seed */
3415	for (i = 0; i < 10; i++)
3416		ew32(RSSRK(i), rsskey[i]);
3417
3418	/* Direct all traffic to queue 0 */
3419	for (i = 0; i < 32; i++)
3420		ew32(RETA(i), 0);
3421
3422	/* Disable raw packet checksumming so that RSS hash is placed in
3423	 * descriptor on writeback.
3424	 */
3425	rxcsum = er32(RXCSUM);
3426	rxcsum |= E1000_RXCSUM_PCSD;
3427
3428	ew32(RXCSUM, rxcsum);
3429
3430	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3431		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3432		E1000_MRQC_RSS_FIELD_IPV6 |
3433		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3434		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3435
3436	ew32(MRQC, mrqc);
3437}
3438
3439/**
3440 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3441 * @adapter: board private structure
3442 * @timinca: pointer to returned time increment attributes
3443 *
3444 * Get attributes for incrementing the System Time Register SYSTIML/H at
3445 * the default base frequency, and set the cyclecounter shift value.
3446 **/
3447s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3448{
3449	struct e1000_hw *hw = &adapter->hw;
3450	u32 incvalue, incperiod, shift;
3451
3452	/* Make sure clock is enabled on I217 before checking the frequency */
3453	if ((hw->mac.type == e1000_pch_lpt) &&
 
 
3454	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3455	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3456		u32 fextnvm7 = er32(FEXTNVM7);
3457
3458		if (!(fextnvm7 & (1 << 0))) {
3459			ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3460			e1e_flush();
3461		}
3462	}
3463
3464	switch (hw->mac.type) {
3465	case e1000_pch2lan:
 
 
 
 
 
 
3466	case e1000_pch_lpt:
3467		/* On I217, the clock frequency is 25MHz or 96MHz as
3468		 * indicated by the System Clock Frequency Indication
3469		 */
3470		if ((hw->mac.type != e1000_pch_lpt) ||
3471		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) {
3472			/* Stable 96MHz frequency */
3473			incperiod = INCPERIOD_96MHz;
3474			incvalue = INCVALUE_96MHz;
3475			shift = INCVALUE_SHIFT_96MHz;
3476			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3477			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3478		}
3479		/* fall-through */
3480	case e1000_82574:
3481	case e1000_82583:
3482		/* Stable 25MHz frequency */
3483		incperiod = INCPERIOD_25MHz;
3484		incvalue = INCVALUE_25MHz;
3485		shift = INCVALUE_SHIFT_25MHz;
3486		adapter->cc.shift = shift;
3487		break;
3488	default:
3489		return -EINVAL;
3490	}
3491
3492	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3493		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3494
3495	return 0;
3496}
3497
3498/**
3499 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3500 * @adapter: board private structure
 
3501 *
3502 * Outgoing time stamping can be enabled and disabled. Play nice and
3503 * disable it when requested, although it shouldn't cause any overhead
3504 * when no packet needs it. At most one packet in the queue may be
3505 * marked for time stamping, otherwise it would be impossible to tell
3506 * for sure to which packet the hardware time stamp belongs.
3507 *
3508 * Incoming time stamping has to be configured via the hardware filters.
3509 * Not all combinations are supported, in particular event type has to be
3510 * specified. Matching the kind of event packet is not supported, with the
3511 * exception of "all V2 events regardless of level 2 or 4".
3512 **/
3513static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3514				  struct hwtstamp_config *config)
3515{
3516	struct e1000_hw *hw = &adapter->hw;
3517	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3518	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3519	u32 rxmtrl = 0;
3520	u16 rxudp = 0;
3521	bool is_l4 = false;
3522	bool is_l2 = false;
3523	u32 regval;
3524	s32 ret_val;
3525
3526	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3527		return -EINVAL;
3528
3529	/* flags reserved for future extensions - must be zero */
3530	if (config->flags)
3531		return -EINVAL;
3532
3533	switch (config->tx_type) {
3534	case HWTSTAMP_TX_OFF:
3535		tsync_tx_ctl = 0;
3536		break;
3537	case HWTSTAMP_TX_ON:
3538		break;
3539	default:
3540		return -ERANGE;
3541	}
3542
3543	switch (config->rx_filter) {
3544	case HWTSTAMP_FILTER_NONE:
3545		tsync_rx_ctl = 0;
3546		break;
3547	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3548		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3549		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3550		is_l4 = true;
3551		break;
3552	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3553		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3554		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3555		is_l4 = true;
3556		break;
3557	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3558		/* Also time stamps V2 L2 Path Delay Request/Response */
3559		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3560		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3561		is_l2 = true;
3562		break;
3563	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3564		/* Also time stamps V2 L2 Path Delay Request/Response. */
3565		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3566		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3567		is_l2 = true;
3568		break;
3569	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3570		/* Hardware cannot filter just V2 L4 Sync messages;
3571		 * fall-through to V2 (both L2 and L4) Sync.
3572		 */
3573	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3574		/* Also time stamps V2 Path Delay Request/Response. */
3575		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3576		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3577		is_l2 = true;
3578		is_l4 = true;
3579		break;
3580	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3581		/* Hardware cannot filter just V2 L4 Delay Request messages;
3582		 * fall-through to V2 (both L2 and L4) Delay Request.
3583		 */
3584	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3585		/* Also time stamps V2 Path Delay Request/Response. */
3586		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3587		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3588		is_l2 = true;
3589		is_l4 = true;
3590		break;
3591	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3592	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3593		/* Hardware cannot filter just V2 L4 or L2 Event messages;
3594		 * fall-through to all V2 (both L2 and L4) Events.
3595		 */
3596	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3597		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3598		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3599		is_l2 = true;
3600		is_l4 = true;
3601		break;
3602	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3603		/* For V1, the hardware can only filter Sync messages or
3604		 * Delay Request messages but not both so fall-through to
3605		 * time stamp all packets.
3606		 */
 
 
3607	case HWTSTAMP_FILTER_ALL:
3608		is_l2 = true;
3609		is_l4 = true;
3610		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3611		config->rx_filter = HWTSTAMP_FILTER_ALL;
3612		break;
3613	default:
3614		return -ERANGE;
3615	}
3616
3617	adapter->hwtstamp_config = *config;
3618
3619	/* enable/disable Tx h/w time stamping */
3620	regval = er32(TSYNCTXCTL);
3621	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3622	regval |= tsync_tx_ctl;
3623	ew32(TSYNCTXCTL, regval);
3624	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3625	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3626		e_err("Timesync Tx Control register not set as expected\n");
3627		return -EAGAIN;
3628	}
3629
3630	/* enable/disable Rx h/w time stamping */
3631	regval = er32(TSYNCRXCTL);
3632	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3633	regval |= tsync_rx_ctl;
3634	ew32(TSYNCRXCTL, regval);
3635	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3636				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3637	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3638		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3639		e_err("Timesync Rx Control register not set as expected\n");
3640		return -EAGAIN;
3641	}
3642
3643	/* L2: define ethertype filter for time stamped packets */
3644	if (is_l2)
3645		rxmtrl |= ETH_P_1588;
3646
3647	/* define which PTP packets get time stamped */
3648	ew32(RXMTRL, rxmtrl);
3649
3650	/* Filter by destination port */
3651	if (is_l4) {
3652		rxudp = PTP_EV_PORT;
3653		cpu_to_be16s(&rxudp);
3654	}
3655	ew32(RXUDP, rxudp);
3656
3657	e1e_flush();
3658
3659	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3660	er32(RXSTMPH);
3661	er32(TXSTMPH);
3662
3663	/* Get and set the System Time Register SYSTIM base frequency */
3664	ret_val = e1000e_get_base_timinca(adapter, &regval);
3665	if (ret_val)
3666		return ret_val;
3667	ew32(TIMINCA, regval);
3668
3669	/* reset the ns time counter */
3670	timecounter_init(&adapter->tc, &adapter->cc,
3671			 ktime_to_ns(ktime_get_real()));
3672
3673	return 0;
3674}
3675
3676/**
3677 * e1000_configure - configure the hardware for Rx and Tx
3678 * @adapter: private board structure
3679 **/
3680static void e1000_configure(struct e1000_adapter *adapter)
3681{
3682	struct e1000_ring *rx_ring = adapter->rx_ring;
3683
3684	e1000e_set_rx_mode(adapter->netdev);
3685
3686	e1000_restore_vlan(adapter);
3687	e1000_init_manageability_pt(adapter);
3688
3689	e1000_configure_tx(adapter);
3690
3691	if (adapter->netdev->features & NETIF_F_RXHASH)
3692		e1000e_setup_rss_hash(adapter);
3693	e1000_setup_rctl(adapter);
3694	e1000_configure_rx(adapter);
3695	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3696}
3697
3698/**
3699 * e1000e_power_up_phy - restore link in case the phy was powered down
3700 * @adapter: address of board private structure
3701 *
3702 * The phy may be powered down to save power and turn off link when the
3703 * driver is unloaded and wake on lan is not enabled (among others)
3704 * *** this routine MUST be followed by a call to e1000e_reset ***
3705 **/
3706void e1000e_power_up_phy(struct e1000_adapter *adapter)
3707{
3708	if (adapter->hw.phy.ops.power_up)
3709		adapter->hw.phy.ops.power_up(&adapter->hw);
3710
3711	adapter->hw.mac.ops.setup_link(&adapter->hw);
3712}
3713
3714/**
3715 * e1000_power_down_phy - Power down the PHY
 
3716 *
3717 * Power down the PHY so no link is implied when interface is down.
3718 * The PHY cannot be powered down if management or WoL is active.
3719 */
3720static void e1000_power_down_phy(struct e1000_adapter *adapter)
3721{
3722	if (adapter->hw.phy.ops.power_down)
3723		adapter->hw.phy.ops.power_down(&adapter->hw);
3724}
3725
3726/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3727 * e1000e_reset - bring the hardware into a known good state
 
3728 *
3729 * This function boots the hardware and enables some settings that
3730 * require a configuration cycle of the hardware - those cannot be
3731 * set/changed during runtime. After reset the device needs to be
3732 * properly configured for Rx, Tx etc.
3733 */
3734void e1000e_reset(struct e1000_adapter *adapter)
3735{
3736	struct e1000_mac_info *mac = &adapter->hw.mac;
3737	struct e1000_fc_info *fc = &adapter->hw.fc;
3738	struct e1000_hw *hw = &adapter->hw;
3739	u32 tx_space, min_tx_space, min_rx_space;
3740	u32 pba = adapter->pba;
3741	u16 hwm;
3742
3743	/* reset Packet Buffer Allocation to default */
3744	ew32(PBA, pba);
3745
3746	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3747		/* To maintain wire speed transmits, the Tx FIFO should be
3748		 * large enough to accommodate two full transmit packets,
3749		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3750		 * the Rx FIFO should be large enough to accommodate at least
3751		 * one full receive packet and is similarly rounded up and
3752		 * expressed in KB.
3753		 */
3754		pba = er32(PBA);
3755		/* upper 16 bits has Tx packet buffer allocation size in KB */
3756		tx_space = pba >> 16;
3757		/* lower 16 bits has Rx packet buffer allocation size in KB */
3758		pba &= 0xffff;
3759		/* the Tx fifo also stores 16 bytes of information about the Tx
3760		 * but don't include ethernet FCS because hardware appends it
3761		 */
3762		min_tx_space = (adapter->max_frame_size +
3763				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3764		min_tx_space = ALIGN(min_tx_space, 1024);
3765		min_tx_space >>= 10;
3766		/* software strips receive CRC, so leave room for it */
3767		min_rx_space = adapter->max_frame_size;
3768		min_rx_space = ALIGN(min_rx_space, 1024);
3769		min_rx_space >>= 10;
3770
3771		/* If current Tx allocation is less than the min Tx FIFO size,
3772		 * and the min Tx FIFO size is less than the current Rx FIFO
3773		 * allocation, take space away from current Rx allocation
3774		 */
3775		if ((tx_space < min_tx_space) &&
3776		    ((min_tx_space - tx_space) < pba)) {
3777			pba -= min_tx_space - tx_space;
3778
3779			/* if short on Rx space, Rx wins and must trump Tx
3780			 * adjustment
3781			 */
3782			if (pba < min_rx_space)
3783				pba = min_rx_space;
3784		}
3785
3786		ew32(PBA, pba);
3787	}
3788
3789	/* flow control settings
3790	 *
3791	 * The high water mark must be low enough to fit one full frame
3792	 * (or the size used for early receive) above it in the Rx FIFO.
3793	 * Set it to the lower of:
3794	 * - 90% of the Rx FIFO size, and
3795	 * - the full Rx FIFO size minus one full frame
3796	 */
3797	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3798		fc->pause_time = 0xFFFF;
3799	else
3800		fc->pause_time = E1000_FC_PAUSE_TIME;
3801	fc->send_xon = true;
3802	fc->current_mode = fc->requested_mode;
3803
3804	switch (hw->mac.type) {
3805	case e1000_ich9lan:
3806	case e1000_ich10lan:
3807		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3808			pba = 14;
3809			ew32(PBA, pba);
3810			fc->high_water = 0x2800;
3811			fc->low_water = fc->high_water - 8;
3812			break;
3813		}
3814		/* fall-through */
3815	default:
3816		hwm = min(((pba << 10) * 9 / 10),
3817			  ((pba << 10) - adapter->max_frame_size));
3818
3819		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
3820		fc->low_water = fc->high_water - 8;
3821		break;
3822	case e1000_pchlan:
3823		/* Workaround PCH LOM adapter hangs with certain network
3824		 * loads.  If hangs persist, try disabling Tx flow control.
3825		 */
3826		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3827			fc->high_water = 0x3500;
3828			fc->low_water = 0x1500;
3829		} else {
3830			fc->high_water = 0x5000;
3831			fc->low_water = 0x3000;
3832		}
3833		fc->refresh_time = 0x1000;
3834		break;
3835	case e1000_pch2lan:
3836	case e1000_pch_lpt:
3837		fc->refresh_time = 0x0400;
 
 
 
 
 
 
 
 
 
3838
3839		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
3840			fc->high_water = 0x05C20;
3841			fc->low_water = 0x05048;
3842			fc->pause_time = 0x0650;
3843			break;
3844		}
3845
3846		pba = 14;
3847		ew32(PBA, pba);
3848		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
3849		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
3850		break;
3851	}
3852
3853	/* Alignment of Tx data is on an arbitrary byte boundary with the
3854	 * maximum size per Tx descriptor limited only to the transmit
3855	 * allocation of the packet buffer minus 96 bytes with an upper
3856	 * limit of 24KB due to receive synchronization limitations.
3857	 */
3858	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3859				       24 << 10);
3860
3861	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
3862	 * fit in receive buffer.
3863	 */
3864	if (adapter->itr_setting & 0x3) {
3865		if ((adapter->max_frame_size * 2) > (pba << 10)) {
3866			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3867				dev_info(&adapter->pdev->dev,
3868					 "Interrupt Throttle Rate off\n");
3869				adapter->flags2 |= FLAG2_DISABLE_AIM;
3870				e1000e_write_itr(adapter, 0);
3871			}
3872		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3873			dev_info(&adapter->pdev->dev,
3874				 "Interrupt Throttle Rate on\n");
3875			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3876			adapter->itr = 20000;
3877			e1000e_write_itr(adapter, adapter->itr);
3878		}
3879	}
3880
 
 
3881	/* Allow time for pending master requests to run */
3882	mac->ops.reset_hw(hw);
3883
3884	/* For parts with AMT enabled, let the firmware know
3885	 * that the network interface is in control
3886	 */
3887	if (adapter->flags & FLAG_HAS_AMT)
3888		e1000e_get_hw_control(adapter);
3889
3890	ew32(WUC, 0);
3891
3892	if (mac->ops.init_hw(hw))
3893		e_err("Hardware Error\n");
3894
3895	e1000_update_mng_vlan(adapter);
3896
3897	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3898	ew32(VET, ETH_P_8021Q);
3899
3900	e1000e_reset_adaptive(hw);
3901
3902	/* initialize systim and reset the ns time counter */
3903	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3904
3905	/* Set EEE advertisement as appropriate */
3906	if (adapter->flags2 & FLAG2_HAS_EEE) {
3907		s32 ret_val;
3908		u16 adv_addr;
3909
3910		switch (hw->phy.type) {
3911		case e1000_phy_82579:
3912			adv_addr = I82579_EEE_ADVERTISEMENT;
3913			break;
3914		case e1000_phy_i217:
3915			adv_addr = I217_EEE_ADVERTISEMENT;
3916			break;
3917		default:
3918			dev_err(&adapter->pdev->dev,
3919				"Invalid PHY type setting EEE advertisement\n");
3920			return;
3921		}
3922
3923		ret_val = hw->phy.ops.acquire(hw);
3924		if (ret_val) {
3925			dev_err(&adapter->pdev->dev,
3926				"EEE advertisement - unable to acquire PHY\n");
3927			return;
3928		}
3929
3930		e1000_write_emi_reg_locked(hw, adv_addr,
3931					   hw->dev_spec.ich8lan.eee_disable ?
3932					   0 : adapter->eee_advert);
3933
3934		hw->phy.ops.release(hw);
3935	}
3936
3937	if (!netif_running(adapter->netdev) &&
3938	    !test_bit(__E1000_TESTING, &adapter->state))
3939		e1000_power_down_phy(adapter);
3940
3941	e1000_get_phy_info(hw);
3942
3943	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3944	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3945		u16 phy_data = 0;
3946		/* speed up time to link by disabling smart power down, ignore
3947		 * the return value of this function because there is nothing
3948		 * different we would do if it failed
3949		 */
3950		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3951		phy_data &= ~IGP02E1000_PM_SPD;
3952		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3953	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3954}
3955
3956int e1000e_up(struct e1000_adapter *adapter)
 
 
 
 
 
 
3957{
3958	struct e1000_hw *hw = &adapter->hw;
3959
 
 
 
 
 
 
 
 
3960	/* hardware has been reset, we need to reload some things */
3961	e1000_configure(adapter);
3962
3963	clear_bit(__E1000_DOWN, &adapter->state);
3964
3965	if (adapter->msix_entries)
3966		e1000_configure_msix(adapter);
3967	e1000_irq_enable(adapter);
3968
3969	netif_start_queue(adapter->netdev);
3970
3971	/* fire a link change interrupt to start the watchdog */
3972	if (adapter->msix_entries)
3973		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3974	else
3975		ew32(ICS, E1000_ICS_LSC);
3976
3977	return 0;
3978}
3979
3980static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3981{
3982	struct e1000_hw *hw = &adapter->hw;
3983
3984	if (!(adapter->flags2 & FLAG2_DMA_BURST))
3985		return;
3986
3987	/* flush pending descriptor writebacks to memory */
3988	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3989	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3990
3991	/* execute the writes immediately */
3992	e1e_flush();
3993
3994	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
3995	 * write is successful
3996	 */
3997	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3998	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3999
4000	/* execute the writes immediately */
4001	e1e_flush();
4002}
4003
4004static void e1000e_update_stats(struct e1000_adapter *adapter);
4005
4006/**
4007 * e1000e_down - quiesce the device and optionally reset the hardware
4008 * @adapter: board private structure
4009 * @reset: boolean flag to reset the hardware or not
4010 */
4011void e1000e_down(struct e1000_adapter *adapter, bool reset)
4012{
4013	struct net_device *netdev = adapter->netdev;
4014	struct e1000_hw *hw = &adapter->hw;
4015	u32 tctl, rctl;
4016
4017	/* signal that we're down so the interrupt handler does not
4018	 * reschedule our watchdog timer
4019	 */
4020	set_bit(__E1000_DOWN, &adapter->state);
4021
 
 
4022	/* disable receives in the hardware */
4023	rctl = er32(RCTL);
4024	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4025		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4026	/* flush and sleep below */
4027
4028	netif_stop_queue(netdev);
4029
4030	/* disable transmits in the hardware */
4031	tctl = er32(TCTL);
4032	tctl &= ~E1000_TCTL_EN;
4033	ew32(TCTL, tctl);
4034
4035	/* flush both disables and wait for them to finish */
4036	e1e_flush();
4037	usleep_range(10000, 20000);
4038
4039	e1000_irq_disable(adapter);
4040
4041	napi_synchronize(&adapter->napi);
4042
4043	del_timer_sync(&adapter->watchdog_timer);
4044	del_timer_sync(&adapter->phy_info_timer);
4045
4046	netif_carrier_off(netdev);
4047
4048	spin_lock(&adapter->stats64_lock);
4049	e1000e_update_stats(adapter);
4050	spin_unlock(&adapter->stats64_lock);
4051
4052	e1000e_flush_descriptors(adapter);
4053	e1000_clean_tx_ring(adapter->tx_ring);
4054	e1000_clean_rx_ring(adapter->rx_ring);
4055
4056	adapter->link_speed = 0;
4057	adapter->link_duplex = 0;
4058
4059	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4060	if ((hw->mac.type >= e1000_pch2lan) &&
4061	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4062	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4063		e_dbg("failed to disable jumbo frame workaround mode\n");
4064
4065	if (reset && !pci_channel_offline(adapter->pdev))
4066		e1000e_reset(adapter);
 
 
 
 
 
 
4067}
4068
4069void e1000e_reinit_locked(struct e1000_adapter *adapter)
4070{
4071	might_sleep();
4072	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4073		usleep_range(1000, 2000);
4074	e1000e_down(adapter, true);
4075	e1000e_up(adapter);
4076	clear_bit(__E1000_RESETTING, &adapter->state);
4077}
4078
4079/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4080 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4081 * @cc: cyclecounter structure
4082 **/
4083static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4084{
4085	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4086						     cc);
4087	struct e1000_hw *hw = &adapter->hw;
4088	cycle_t systim;
4089
4090	/* latch SYSTIMH on read of SYSTIML */
4091	systim = (cycle_t)er32(SYSTIML);
4092	systim |= (cycle_t)er32(SYSTIMH) << 32;
4093
4094	return systim;
4095}
4096
4097/**
4098 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4099 * @adapter: board private structure to initialize
4100 *
4101 * e1000_sw_init initializes the Adapter private data structure.
4102 * Fields are initialized based on PCI device information and
4103 * OS network device settings (MTU size).
4104 **/
4105static int e1000_sw_init(struct e1000_adapter *adapter)
4106{
4107	struct net_device *netdev = adapter->netdev;
4108
4109	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
4110	adapter->rx_ps_bsize0 = 128;
4111	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
4112	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4113	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4114	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4115
4116	spin_lock_init(&adapter->stats64_lock);
4117
4118	e1000e_set_interrupt_capability(adapter);
4119
4120	if (e1000_alloc_queues(adapter))
4121		return -ENOMEM;
4122
4123	/* Setup hardware time stamping cyclecounter */
4124	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4125		adapter->cc.read = e1000e_cyclecounter_read;
4126		adapter->cc.mask = CLOCKSOURCE_MASK(64);
4127		adapter->cc.mult = 1;
4128		/* cc.shift set in e1000e_get_base_tininca() */
4129
4130		spin_lock_init(&adapter->systim_lock);
4131		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4132	}
4133
4134	/* Explicitly disable IRQ since the NIC can be in any state. */
4135	e1000_irq_disable(adapter);
4136
4137	set_bit(__E1000_DOWN, &adapter->state);
4138	return 0;
4139}
4140
4141/**
4142 * e1000_intr_msi_test - Interrupt Handler
4143 * @irq: interrupt number
4144 * @data: pointer to a network interface device structure
4145 **/
4146static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4147{
4148	struct net_device *netdev = data;
4149	struct e1000_adapter *adapter = netdev_priv(netdev);
4150	struct e1000_hw *hw = &adapter->hw;
4151	u32 icr = er32(ICR);
4152
4153	e_dbg("icr is %08X\n", icr);
4154	if (icr & E1000_ICR_RXSEQ) {
4155		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4156		/* Force memory writes to complete before acknowledging the
4157		 * interrupt is handled.
4158		 */
4159		wmb();
4160	}
4161
4162	return IRQ_HANDLED;
4163}
4164
4165/**
4166 * e1000_test_msi_interrupt - Returns 0 for successful test
4167 * @adapter: board private struct
4168 *
4169 * code flow taken from tg3.c
4170 **/
4171static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4172{
4173	struct net_device *netdev = adapter->netdev;
4174	struct e1000_hw *hw = &adapter->hw;
4175	int err;
4176
4177	/* poll_enable hasn't been called yet, so don't need disable */
4178	/* clear any pending events */
4179	er32(ICR);
4180
4181	/* free the real vector and request a test handler */
4182	e1000_free_irq(adapter);
4183	e1000e_reset_interrupt_capability(adapter);
4184
4185	/* Assume that the test fails, if it succeeds then the test
4186	 * MSI irq handler will unset this flag
4187	 */
4188	adapter->flags |= FLAG_MSI_TEST_FAILED;
4189
4190	err = pci_enable_msi(adapter->pdev);
4191	if (err)
4192		goto msi_test_failed;
4193
4194	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4195			  netdev->name, netdev);
4196	if (err) {
4197		pci_disable_msi(adapter->pdev);
4198		goto msi_test_failed;
4199	}
4200
4201	/* Force memory writes to complete before enabling and firing an
4202	 * interrupt.
4203	 */
4204	wmb();
4205
4206	e1000_irq_enable(adapter);
4207
4208	/* fire an unusual interrupt on the test handler */
4209	ew32(ICS, E1000_ICS_RXSEQ);
4210	e1e_flush();
4211	msleep(100);
4212
4213	e1000_irq_disable(adapter);
4214
4215	rmb();			/* read flags after interrupt has been fired */
4216
4217	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4218		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4219		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4220	} else {
4221		e_dbg("MSI interrupt test succeeded!\n");
4222	}
4223
4224	free_irq(adapter->pdev->irq, netdev);
4225	pci_disable_msi(adapter->pdev);
4226
4227msi_test_failed:
4228	e1000e_set_interrupt_capability(adapter);
4229	return e1000_request_irq(adapter);
4230}
4231
4232/**
4233 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4234 * @adapter: board private struct
4235 *
4236 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4237 **/
4238static int e1000_test_msi(struct e1000_adapter *adapter)
4239{
4240	int err;
4241	u16 pci_cmd;
4242
4243	if (!(adapter->flags & FLAG_MSI_ENABLED))
4244		return 0;
4245
4246	/* disable SERR in case the MSI write causes a master abort */
4247	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4248	if (pci_cmd & PCI_COMMAND_SERR)
4249		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4250				      pci_cmd & ~PCI_COMMAND_SERR);
4251
4252	err = e1000_test_msi_interrupt(adapter);
4253
4254	/* re-enable SERR */
4255	if (pci_cmd & PCI_COMMAND_SERR) {
4256		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4257		pci_cmd |= PCI_COMMAND_SERR;
4258		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4259	}
4260
4261	return err;
4262}
4263
4264/**
4265 * e1000_open - Called when a network interface is made active
4266 * @netdev: network interface device structure
4267 *
4268 * Returns 0 on success, negative value on failure
4269 *
4270 * The open entry point is called when a network interface is made
4271 * active by the system (IFF_UP).  At this point all resources needed
4272 * for transmit and receive operations are allocated, the interrupt
4273 * handler is registered with the OS, the watchdog timer is started,
4274 * and the stack is notified that the interface is ready.
4275 **/
4276static int e1000_open(struct net_device *netdev)
4277{
4278	struct e1000_adapter *adapter = netdev_priv(netdev);
4279	struct e1000_hw *hw = &adapter->hw;
4280	struct pci_dev *pdev = adapter->pdev;
4281	int err;
4282
4283	/* disallow open during test */
4284	if (test_bit(__E1000_TESTING, &adapter->state))
4285		return -EBUSY;
4286
4287	pm_runtime_get_sync(&pdev->dev);
4288
4289	netif_carrier_off(netdev);
 
4290
4291	/* allocate transmit descriptors */
4292	err = e1000e_setup_tx_resources(adapter->tx_ring);
4293	if (err)
4294		goto err_setup_tx;
4295
4296	/* allocate receive descriptors */
4297	err = e1000e_setup_rx_resources(adapter->rx_ring);
4298	if (err)
4299		goto err_setup_rx;
4300
4301	/* If AMT is enabled, let the firmware know that the network
4302	 * interface is now open and reset the part to a known state.
4303	 */
4304	if (adapter->flags & FLAG_HAS_AMT) {
4305		e1000e_get_hw_control(adapter);
4306		e1000e_reset(adapter);
4307	}
4308
4309	e1000e_power_up_phy(adapter);
4310
4311	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4312	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4313		e1000_update_mng_vlan(adapter);
4314
4315	/* DMA latency requirement to workaround jumbo issue */
4316	pm_qos_add_request(&adapter->netdev->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4317			   PM_QOS_DEFAULT_VALUE);
4318
4319	/* before we allocate an interrupt, we must be ready to handle it.
4320	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4321	 * as soon as we call pci_request_irq, so we have to setup our
4322	 * clean_rx handler before we do so.
4323	 */
4324	e1000_configure(adapter);
4325
4326	err = e1000_request_irq(adapter);
4327	if (err)
4328		goto err_req_irq;
4329
4330	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4331	 * ignore e1000e MSI messages, which means we need to test our MSI
4332	 * interrupt now
4333	 */
4334	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4335		err = e1000_test_msi(adapter);
4336		if (err) {
4337			e_err("Interrupt allocation failed\n");
4338			goto err_req_irq;
4339		}
4340	}
4341
4342	/* From here on the code is the same as e1000e_up() */
4343	clear_bit(__E1000_DOWN, &adapter->state);
4344
4345	napi_enable(&adapter->napi);
4346
4347	e1000_irq_enable(adapter);
4348
4349	adapter->tx_hang_recheck = false;
4350	netif_start_queue(netdev);
4351
4352	hw->mac.get_link_status = true;
4353	pm_runtime_put(&pdev->dev);
4354
4355	/* fire a link status change interrupt to start the watchdog */
4356	if (adapter->msix_entries)
4357		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4358	else
4359		ew32(ICS, E1000_ICS_LSC);
4360
4361	return 0;
4362
4363err_req_irq:
 
4364	e1000e_release_hw_control(adapter);
4365	e1000_power_down_phy(adapter);
4366	e1000e_free_rx_resources(adapter->rx_ring);
4367err_setup_rx:
4368	e1000e_free_tx_resources(adapter->tx_ring);
4369err_setup_tx:
4370	e1000e_reset(adapter);
4371	pm_runtime_put_sync(&pdev->dev);
4372
4373	return err;
4374}
4375
4376/**
4377 * e1000_close - Disables a network interface
4378 * @netdev: network interface device structure
4379 *
4380 * Returns 0, this is not allowed to fail
4381 *
4382 * The close entry point is called when an interface is de-activated
4383 * by the OS.  The hardware is still under the drivers control, but
4384 * needs to be disabled.  A global MAC reset is issued to stop the
4385 * hardware, and all transmit and receive resources are freed.
4386 **/
4387static int e1000_close(struct net_device *netdev)
4388{
4389	struct e1000_adapter *adapter = netdev_priv(netdev);
4390	struct pci_dev *pdev = adapter->pdev;
4391	int count = E1000_CHECK_RESET_COUNT;
4392
4393	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4394		usleep_range(10000, 20000);
4395
4396	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4397
4398	pm_runtime_get_sync(&pdev->dev);
4399
4400	if (!test_bit(__E1000_DOWN, &adapter->state)) {
4401		e1000e_down(adapter, true);
4402		e1000_free_irq(adapter);
4403
4404		/* Link status message must follow this format */
4405		pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4406	}
4407
4408	napi_disable(&adapter->napi);
4409
4410	e1000e_free_tx_resources(adapter->tx_ring);
4411	e1000e_free_rx_resources(adapter->rx_ring);
4412
4413	/* kill manageability vlan ID if supported, but not if a vlan with
4414	 * the same ID is registered on the host OS (let 8021q kill it)
4415	 */
4416	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4417		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4418				       adapter->mng_vlan_id);
4419
4420	/* If AMT is enabled, let the firmware know that the network
4421	 * interface is now closed
4422	 */
4423	if ((adapter->flags & FLAG_HAS_AMT) &&
4424	    !test_bit(__E1000_TESTING, &adapter->state))
4425		e1000e_release_hw_control(adapter);
4426
4427	pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4428
4429	pm_runtime_put_sync(&pdev->dev);
4430
4431	return 0;
4432}
4433
4434/**
4435 * e1000_set_mac - Change the Ethernet Address of the NIC
4436 * @netdev: network interface device structure
4437 * @p: pointer to an address structure
4438 *
4439 * Returns 0 on success, negative on failure
4440 **/
4441static int e1000_set_mac(struct net_device *netdev, void *p)
4442{
4443	struct e1000_adapter *adapter = netdev_priv(netdev);
4444	struct e1000_hw *hw = &adapter->hw;
4445	struct sockaddr *addr = p;
4446
4447	if (!is_valid_ether_addr(addr->sa_data))
4448		return -EADDRNOTAVAIL;
4449
4450	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4451	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4452
4453	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4454
4455	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4456		/* activate the work around */
4457		e1000e_set_laa_state_82571(&adapter->hw, 1);
4458
4459		/* Hold a copy of the LAA in RAR[14] This is done so that
4460		 * between the time RAR[0] gets clobbered  and the time it
4461		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4462		 * of the RARs and no incoming packets directed to this port
4463		 * are dropped. Eventually the LAA will be in RAR[0] and
4464		 * RAR[14]
4465		 */
4466		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4467				    adapter->hw.mac.rar_entry_count - 1);
4468	}
4469
4470	return 0;
4471}
4472
4473/**
4474 * e1000e_update_phy_task - work thread to update phy
4475 * @work: pointer to our work struct
4476 *
4477 * this worker thread exists because we must acquire a
4478 * semaphore to read the phy, which we could msleep while
4479 * waiting for it, and we can't msleep in a timer.
4480 **/
4481static void e1000e_update_phy_task(struct work_struct *work)
4482{
4483	struct e1000_adapter *adapter = container_of(work,
4484						     struct e1000_adapter,
4485						     update_phy_task);
4486	struct e1000_hw *hw = &adapter->hw;
4487
4488	if (test_bit(__E1000_DOWN, &adapter->state))
4489		return;
4490
4491	e1000_get_phy_info(hw);
4492
4493	/* Enable EEE on 82579 after link up */
4494	if (hw->phy.type == e1000_phy_82579)
4495		e1000_set_eee_pchlan(hw);
4496}
4497
4498/**
4499 * e1000_update_phy_info - timre call-back to update PHY info
4500 * @data: pointer to adapter cast into an unsigned long
4501 *
4502 * Need to wait a few seconds after link up to get diagnostic information from
4503 * the phy
4504 **/
4505static void e1000_update_phy_info(unsigned long data)
4506{
4507	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4508
4509	if (test_bit(__E1000_DOWN, &adapter->state))
4510		return;
4511
4512	schedule_work(&adapter->update_phy_task);
4513}
4514
4515/**
4516 * e1000e_update_phy_stats - Update the PHY statistics counters
4517 * @adapter: board private structure
4518 *
4519 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4520 **/
4521static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4522{
4523	struct e1000_hw *hw = &adapter->hw;
4524	s32 ret_val;
4525	u16 phy_data;
4526
4527	ret_val = hw->phy.ops.acquire(hw);
4528	if (ret_val)
4529		return;
4530
4531	/* A page set is expensive so check if already on desired page.
4532	 * If not, set to the page with the PHY status registers.
4533	 */
4534	hw->phy.addr = 1;
4535	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4536					   &phy_data);
4537	if (ret_val)
4538		goto release;
4539	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4540		ret_val = hw->phy.ops.set_page(hw,
4541					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4542		if (ret_val)
4543			goto release;
4544	}
4545
4546	/* Single Collision Count */
4547	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4548	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4549	if (!ret_val)
4550		adapter->stats.scc += phy_data;
4551
4552	/* Excessive Collision Count */
4553	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4554	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4555	if (!ret_val)
4556		adapter->stats.ecol += phy_data;
4557
4558	/* Multiple Collision Count */
4559	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4560	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4561	if (!ret_val)
4562		adapter->stats.mcc += phy_data;
4563
4564	/* Late Collision Count */
4565	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4566	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4567	if (!ret_val)
4568		adapter->stats.latecol += phy_data;
4569
4570	/* Collision Count - also used for adaptive IFS */
4571	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4572	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4573	if (!ret_val)
4574		hw->mac.collision_delta = phy_data;
4575
4576	/* Defer Count */
4577	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4578	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4579	if (!ret_val)
4580		adapter->stats.dc += phy_data;
4581
4582	/* Transmit with no CRS */
4583	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4584	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4585	if (!ret_val)
4586		adapter->stats.tncrs += phy_data;
4587
4588release:
4589	hw->phy.ops.release(hw);
4590}
4591
4592/**
4593 * e1000e_update_stats - Update the board statistics counters
4594 * @adapter: board private structure
4595 **/
4596static void e1000e_update_stats(struct e1000_adapter *adapter)
4597{
4598	struct net_device *netdev = adapter->netdev;
4599	struct e1000_hw *hw = &adapter->hw;
4600	struct pci_dev *pdev = adapter->pdev;
4601
4602	/* Prevent stats update while adapter is being reset, or if the pci
4603	 * connection is down.
4604	 */
4605	if (adapter->link_speed == 0)
4606		return;
4607	if (pci_channel_offline(pdev))
4608		return;
4609
4610	adapter->stats.crcerrs += er32(CRCERRS);
4611	adapter->stats.gprc += er32(GPRC);
4612	adapter->stats.gorc += er32(GORCL);
4613	er32(GORCH);		/* Clear gorc */
4614	adapter->stats.bprc += er32(BPRC);
4615	adapter->stats.mprc += er32(MPRC);
4616	adapter->stats.roc += er32(ROC);
4617
4618	adapter->stats.mpc += er32(MPC);
4619
4620	/* Half-duplex statistics */
4621	if (adapter->link_duplex == HALF_DUPLEX) {
4622		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4623			e1000e_update_phy_stats(adapter);
4624		} else {
4625			adapter->stats.scc += er32(SCC);
4626			adapter->stats.ecol += er32(ECOL);
4627			adapter->stats.mcc += er32(MCC);
4628			adapter->stats.latecol += er32(LATECOL);
4629			adapter->stats.dc += er32(DC);
4630
4631			hw->mac.collision_delta = er32(COLC);
4632
4633			if ((hw->mac.type != e1000_82574) &&
4634			    (hw->mac.type != e1000_82583))
4635				adapter->stats.tncrs += er32(TNCRS);
4636		}
4637		adapter->stats.colc += hw->mac.collision_delta;
4638	}
4639
4640	adapter->stats.xonrxc += er32(XONRXC);
4641	adapter->stats.xontxc += er32(XONTXC);
4642	adapter->stats.xoffrxc += er32(XOFFRXC);
4643	adapter->stats.xofftxc += er32(XOFFTXC);
4644	adapter->stats.gptc += er32(GPTC);
4645	adapter->stats.gotc += er32(GOTCL);
4646	er32(GOTCH);		/* Clear gotc */
4647	adapter->stats.rnbc += er32(RNBC);
4648	adapter->stats.ruc += er32(RUC);
4649
4650	adapter->stats.mptc += er32(MPTC);
4651	adapter->stats.bptc += er32(BPTC);
4652
4653	/* used for adaptive IFS */
4654
4655	hw->mac.tx_packet_delta = er32(TPT);
4656	adapter->stats.tpt += hw->mac.tx_packet_delta;
4657
4658	adapter->stats.algnerrc += er32(ALGNERRC);
4659	adapter->stats.rxerrc += er32(RXERRC);
4660	adapter->stats.cexterr += er32(CEXTERR);
4661	adapter->stats.tsctc += er32(TSCTC);
4662	adapter->stats.tsctfc += er32(TSCTFC);
4663
4664	/* Fill out the OS statistics structure */
4665	netdev->stats.multicast = adapter->stats.mprc;
4666	netdev->stats.collisions = adapter->stats.colc;
4667
4668	/* Rx Errors */
4669
4670	/* RLEC on some newer hardware can be incorrect so build
4671	 * our own version based on RUC and ROC
4672	 */
4673	netdev->stats.rx_errors = adapter->stats.rxerrc +
4674	    adapter->stats.crcerrs + adapter->stats.algnerrc +
4675	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4676	netdev->stats.rx_length_errors = adapter->stats.ruc +
4677	    adapter->stats.roc;
4678	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4679	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4680	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4681
4682	/* Tx Errors */
4683	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4684	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4685	netdev->stats.tx_window_errors = adapter->stats.latecol;
4686	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4687
4688	/* Tx Dropped needs to be maintained elsewhere */
4689
4690	/* Management Stats */
4691	adapter->stats.mgptc += er32(MGTPTC);
4692	adapter->stats.mgprc += er32(MGTPRC);
4693	adapter->stats.mgpdc += er32(MGTPDC);
4694
4695	/* Correctable ECC Errors */
4696	if (hw->mac.type == e1000_pch_lpt) {
4697		u32 pbeccsts = er32(PBECCSTS);
 
4698		adapter->corr_errors +=
4699		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4700		adapter->uncorr_errors +=
4701		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4702		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4703	}
4704}
4705
4706/**
4707 * e1000_phy_read_status - Update the PHY register status snapshot
4708 * @adapter: board private structure
4709 **/
4710static void e1000_phy_read_status(struct e1000_adapter *adapter)
4711{
4712	struct e1000_hw *hw = &adapter->hw;
4713	struct e1000_phy_regs *phy = &adapter->phy_regs;
4714
4715	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4716	    (er32(STATUS) & E1000_STATUS_LU) &&
4717	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4718		int ret_val;
4719
4720		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4721		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4722		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4723		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4724		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4725		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4726		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4727		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4728		if (ret_val)
4729			e_warn("Error reading PHY register\n");
4730	} else {
4731		/* Do not read PHY registers if link is not up
4732		 * Set values to typical power-on defaults
4733		 */
4734		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4735		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4736			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4737			     BMSR_ERCAP);
4738		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4739				  ADVERTISE_ALL | ADVERTISE_CSMA);
4740		phy->lpa = 0;
4741		phy->expansion = EXPANSION_ENABLENPAGE;
4742		phy->ctrl1000 = ADVERTISE_1000FULL;
4743		phy->stat1000 = 0;
4744		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4745	}
4746}
4747
4748static void e1000_print_link_info(struct e1000_adapter *adapter)
4749{
4750	struct e1000_hw *hw = &adapter->hw;
4751	u32 ctrl = er32(CTRL);
4752
4753	/* Link status message must follow this format for user tools */
4754	pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4755		adapter->netdev->name, adapter->link_speed,
4756		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4757		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4758		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
4759		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
 
4760}
4761
4762static bool e1000e_has_link(struct e1000_adapter *adapter)
4763{
4764	struct e1000_hw *hw = &adapter->hw;
4765	bool link_active = false;
4766	s32 ret_val = 0;
4767
4768	/* get_link_status is set on LSC (link status) interrupt or
4769	 * Rx sequence error interrupt.  get_link_status will stay
4770	 * false until the check_for_link establishes link
4771	 * for copper adapters ONLY
4772	 */
4773	switch (hw->phy.media_type) {
4774	case e1000_media_type_copper:
4775		if (hw->mac.get_link_status) {
4776			ret_val = hw->mac.ops.check_for_link(hw);
4777			link_active = !hw->mac.get_link_status;
4778		} else {
4779			link_active = true;
4780		}
4781		break;
4782	case e1000_media_type_fiber:
4783		ret_val = hw->mac.ops.check_for_link(hw);
4784		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4785		break;
4786	case e1000_media_type_internal_serdes:
4787		ret_val = hw->mac.ops.check_for_link(hw);
4788		link_active = adapter->hw.mac.serdes_has_link;
4789		break;
4790	default:
4791	case e1000_media_type_unknown:
4792		break;
4793	}
4794
4795	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4796	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4797		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4798		e_info("Gigabit has been disabled, downgrading speed\n");
4799	}
4800
4801	return link_active;
4802}
4803
4804static void e1000e_enable_receives(struct e1000_adapter *adapter)
4805{
4806	/* make sure the receive unit is started */
4807	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4808	    (adapter->flags & FLAG_RESTART_NOW)) {
4809		struct e1000_hw *hw = &adapter->hw;
4810		u32 rctl = er32(RCTL);
 
4811		ew32(RCTL, rctl | E1000_RCTL_EN);
4812		adapter->flags &= ~FLAG_RESTART_NOW;
4813	}
4814}
4815
4816static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4817{
4818	struct e1000_hw *hw = &adapter->hw;
4819
4820	/* With 82574 controllers, PHY needs to be checked periodically
4821	 * for hung state and reset, if two calls return true
4822	 */
4823	if (e1000_check_phy_82574(hw))
4824		adapter->phy_hang_count++;
4825	else
4826		adapter->phy_hang_count = 0;
4827
4828	if (adapter->phy_hang_count > 1) {
4829		adapter->phy_hang_count = 0;
4830		e_dbg("PHY appears hung - resetting\n");
4831		schedule_work(&adapter->reset_task);
4832	}
4833}
4834
4835/**
4836 * e1000_watchdog - Timer Call-back
4837 * @data: pointer to adapter cast into an unsigned long
4838 **/
4839static void e1000_watchdog(unsigned long data)
4840{
4841	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4842
4843	/* Do the rest outside of interrupt context */
4844	schedule_work(&adapter->watchdog_task);
4845
4846	/* TODO: make this use queue_delayed_work() */
4847}
4848
4849static void e1000_watchdog_task(struct work_struct *work)
4850{
4851	struct e1000_adapter *adapter = container_of(work,
4852						     struct e1000_adapter,
4853						     watchdog_task);
4854	struct net_device *netdev = adapter->netdev;
4855	struct e1000_mac_info *mac = &adapter->hw.mac;
4856	struct e1000_phy_info *phy = &adapter->hw.phy;
4857	struct e1000_ring *tx_ring = adapter->tx_ring;
 
4858	struct e1000_hw *hw = &adapter->hw;
4859	u32 link, tctl;
4860
4861	if (test_bit(__E1000_DOWN, &adapter->state))
4862		return;
4863
4864	link = e1000e_has_link(adapter);
4865	if ((netif_carrier_ok(netdev)) && link) {
4866		/* Cancel scheduled suspend requests. */
4867		pm_runtime_resume(netdev->dev.parent);
4868
4869		e1000e_enable_receives(adapter);
4870		goto link_up;
4871	}
4872
4873	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4874	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4875		e1000_update_mng_vlan(adapter);
4876
4877	if (link) {
4878		if (!netif_carrier_ok(netdev)) {
4879			bool txb2b = true;
4880
4881			/* Cancel scheduled suspend requests. */
4882			pm_runtime_resume(netdev->dev.parent);
4883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4884			/* update snapshot of PHY registers on LSC */
4885			e1000_phy_read_status(adapter);
4886			mac->ops.get_link_up_info(&adapter->hw,
4887						  &adapter->link_speed,
4888						  &adapter->link_duplex);
4889			e1000_print_link_info(adapter);
4890
4891			/* check if SmartSpeed worked */
4892			e1000e_check_downshift(hw);
4893			if (phy->speed_downgraded)
4894				netdev_warn(netdev,
4895					    "Link Speed was downgraded by SmartSpeed\n");
4896
4897			/* On supported PHYs, check for duplex mismatch only
4898			 * if link has autonegotiated at 10/100 half
4899			 */
4900			if ((hw->phy.type == e1000_phy_igp_3 ||
4901			     hw->phy.type == e1000_phy_bm) &&
4902			    hw->mac.autoneg &&
4903			    (adapter->link_speed == SPEED_10 ||
4904			     adapter->link_speed == SPEED_100) &&
4905			    (adapter->link_duplex == HALF_DUPLEX)) {
4906				u16 autoneg_exp;
4907
4908				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
4909
4910				if (!(autoneg_exp & EXPANSION_NWAY))
4911					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4912			}
4913
4914			/* adjust timeout factor according to speed/duplex */
4915			adapter->tx_timeout_factor = 1;
4916			switch (adapter->link_speed) {
4917			case SPEED_10:
4918				txb2b = false;
4919				adapter->tx_timeout_factor = 16;
4920				break;
4921			case SPEED_100:
4922				txb2b = false;
4923				adapter->tx_timeout_factor = 10;
4924				break;
4925			}
4926
4927			/* workaround: re-program speed mode bit after
4928			 * link-up event
4929			 */
4930			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4931			    !txb2b) {
4932				u32 tarc0;
 
4933				tarc0 = er32(TARC(0));
4934				tarc0 &= ~SPEED_MODE_BIT;
4935				ew32(TARC(0), tarc0);
4936			}
4937
4938			/* disable TSO for pcie and 10/100 speeds, to avoid
4939			 * some hardware issues
4940			 */
4941			if (!(adapter->flags & FLAG_TSO_FORCE)) {
4942				switch (adapter->link_speed) {
4943				case SPEED_10:
4944				case SPEED_100:
4945					e_info("10/100 speed: disabling TSO\n");
4946					netdev->features &= ~NETIF_F_TSO;
4947					netdev->features &= ~NETIF_F_TSO6;
4948					break;
4949				case SPEED_1000:
4950					netdev->features |= NETIF_F_TSO;
4951					netdev->features |= NETIF_F_TSO6;
4952					break;
4953				default:
4954					/* oops */
4955					break;
4956				}
4957			}
4958
4959			/* enable transmits in the hardware, need to do this
4960			 * after setting TARC(0)
4961			 */
4962			tctl = er32(TCTL);
4963			tctl |= E1000_TCTL_EN;
4964			ew32(TCTL, tctl);
4965
4966			/* Perform any post-link-up configuration before
4967			 * reporting link up.
4968			 */
4969			if (phy->ops.cfg_on_link_up)
4970				phy->ops.cfg_on_link_up(hw);
4971
 
4972			netif_carrier_on(netdev);
4973
4974			if (!test_bit(__E1000_DOWN, &adapter->state))
4975				mod_timer(&adapter->phy_info_timer,
4976					  round_jiffies(jiffies + 2 * HZ));
4977		}
4978	} else {
4979		if (netif_carrier_ok(netdev)) {
4980			adapter->link_speed = 0;
4981			adapter->link_duplex = 0;
4982			/* Link status message must follow this format */
4983			pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4984			netif_carrier_off(netdev);
 
4985			if (!test_bit(__E1000_DOWN, &adapter->state))
4986				mod_timer(&adapter->phy_info_timer,
4987					  round_jiffies(jiffies + 2 * HZ));
4988
4989			/* 8000ES2LAN requires a Rx packet buffer work-around
4990			 * on link down event; reset the controller to flush
4991			 * the Rx packet buffer.
4992			 */
4993			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4994				adapter->flags |= FLAG_RESTART_NOW;
4995			else
4996				pm_schedule_suspend(netdev->dev.parent,
4997						    LINK_TIMEOUT);
4998		}
4999	}
5000
5001link_up:
5002	spin_lock(&adapter->stats64_lock);
5003	e1000e_update_stats(adapter);
5004
5005	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5006	adapter->tpt_old = adapter->stats.tpt;
5007	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5008	adapter->colc_old = adapter->stats.colc;
5009
5010	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5011	adapter->gorc_old = adapter->stats.gorc;
5012	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5013	adapter->gotc_old = adapter->stats.gotc;
5014	spin_unlock(&adapter->stats64_lock);
5015
5016	/* If the link is lost the controller stops DMA, but
5017	 * if there is queued Tx work it cannot be done.  So
5018	 * reset the controller to flush the Tx packet buffers.
5019	 */
5020	if (!netif_carrier_ok(netdev) &&
5021	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5022		adapter->flags |= FLAG_RESTART_NOW;
5023
5024	/* If reset is necessary, do it outside of interrupt context. */
5025	if (adapter->flags & FLAG_RESTART_NOW) {
5026		schedule_work(&adapter->reset_task);
5027		/* return immediately since reset is imminent */
5028		return;
5029	}
5030
5031	e1000e_update_adaptive(&adapter->hw);
5032
5033	/* Simple mode for Interrupt Throttle Rate (ITR) */
5034	if (adapter->itr_setting == 4) {
5035		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5036		 * Total asymmetrical Tx or Rx gets ITR=8000;
5037		 * everyone else is between 2000-8000.
5038		 */
5039		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5040		u32 dif = (adapter->gotc > adapter->gorc ?
5041			   adapter->gotc - adapter->gorc :
5042			   adapter->gorc - adapter->gotc) / 10000;
5043		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5044
5045		e1000e_write_itr(adapter, itr);
5046	}
5047
5048	/* Cause software interrupt to ensure Rx ring is cleaned */
5049	if (adapter->msix_entries)
5050		ew32(ICS, adapter->rx_ring->ims_val);
5051	else
5052		ew32(ICS, E1000_ICS_RXDMT0);
5053
5054	/* flush pending descriptors to memory before detecting Tx hang */
5055	e1000e_flush_descriptors(adapter);
5056
5057	/* Force detection of hung controller every watchdog period */
5058	adapter->detect_tx_hung = true;
5059
5060	/* With 82571 controllers, LAA may be overwritten due to controller
5061	 * reset from the other port. Set the appropriate LAA in RAR[0]
5062	 */
5063	if (e1000e_get_laa_state_82571(hw))
5064		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5065
5066	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5067		e1000e_check_82574_phy_workaround(adapter);
5068
5069	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5070	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5071		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5072		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5073			er32(RXSTMPH);
5074			adapter->rx_hwtstamp_cleared++;
5075		} else {
5076			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5077		}
5078	}
5079
5080	/* Reset the timer */
5081	if (!test_bit(__E1000_DOWN, &adapter->state))
5082		mod_timer(&adapter->watchdog_timer,
5083			  round_jiffies(jiffies + 2 * HZ));
5084}
5085
5086#define E1000_TX_FLAGS_CSUM		0x00000001
5087#define E1000_TX_FLAGS_VLAN		0x00000002
5088#define E1000_TX_FLAGS_TSO		0x00000004
5089#define E1000_TX_FLAGS_IPV4		0x00000008
5090#define E1000_TX_FLAGS_NO_FCS		0x00000010
5091#define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5092#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5093#define E1000_TX_FLAGS_VLAN_SHIFT	16
5094
5095static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
 
5096{
5097	struct e1000_context_desc *context_desc;
5098	struct e1000_buffer *buffer_info;
5099	unsigned int i;
5100	u32 cmd_length = 0;
5101	u16 ipcse = 0, mss;
5102	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5103	int err;
5104
5105	if (!skb_is_gso(skb))
5106		return 0;
5107
5108	err = skb_cow_head(skb, 0);
5109	if (err < 0)
5110		return err;
5111
5112	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5113	mss = skb_shinfo(skb)->gso_size;
5114	if (skb->protocol == htons(ETH_P_IP)) {
5115		struct iphdr *iph = ip_hdr(skb);
5116		iph->tot_len = 0;
5117		iph->check = 0;
5118		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5119							 0, IPPROTO_TCP, 0);
5120		cmd_length = E1000_TXD_CMD_IP;
5121		ipcse = skb_transport_offset(skb) - 1;
5122	} else if (skb_is_gso_v6(skb)) {
5123		ipv6_hdr(skb)->payload_len = 0;
5124		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5125						       &ipv6_hdr(skb)->daddr,
5126						       0, IPPROTO_TCP, 0);
5127		ipcse = 0;
5128	}
5129	ipcss = skb_network_offset(skb);
5130	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5131	tucss = skb_transport_offset(skb);
5132	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5133
5134	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5135		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5136
5137	i = tx_ring->next_to_use;
5138	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5139	buffer_info = &tx_ring->buffer_info[i];
5140
5141	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5142	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5143	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5144	context_desc->upper_setup.tcp_fields.tucss = tucss;
5145	context_desc->upper_setup.tcp_fields.tucso = tucso;
5146	context_desc->upper_setup.tcp_fields.tucse = 0;
5147	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5148	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5149	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5150
5151	buffer_info->time_stamp = jiffies;
5152	buffer_info->next_to_watch = i;
5153
5154	i++;
5155	if (i == tx_ring->count)
5156		i = 0;
5157	tx_ring->next_to_use = i;
5158
5159	return 1;
5160}
5161
5162static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
 
5163{
5164	struct e1000_adapter *adapter = tx_ring->adapter;
5165	struct e1000_context_desc *context_desc;
5166	struct e1000_buffer *buffer_info;
5167	unsigned int i;
5168	u8 css;
5169	u32 cmd_len = E1000_TXD_CMD_DEXT;
5170	__be16 protocol;
5171
5172	if (skb->ip_summed != CHECKSUM_PARTIAL)
5173		return 0;
5174
5175	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
5176		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
5177	else
5178		protocol = skb->protocol;
5179
5180	switch (protocol) {
5181	case cpu_to_be16(ETH_P_IP):
5182		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5183			cmd_len |= E1000_TXD_CMD_TCP;
5184		break;
5185	case cpu_to_be16(ETH_P_IPV6):
5186		/* XXX not handling all IPV6 headers */
5187		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5188			cmd_len |= E1000_TXD_CMD_TCP;
5189		break;
5190	default:
5191		if (unlikely(net_ratelimit()))
5192			e_warn("checksum_partial proto=%x!\n",
5193			       be16_to_cpu(protocol));
5194		break;
5195	}
5196
5197	css = skb_checksum_start_offset(skb);
5198
5199	i = tx_ring->next_to_use;
5200	buffer_info = &tx_ring->buffer_info[i];
5201	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5202
5203	context_desc->lower_setup.ip_config = 0;
5204	context_desc->upper_setup.tcp_fields.tucss = css;
5205	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5206	context_desc->upper_setup.tcp_fields.tucse = 0;
5207	context_desc->tcp_seg_setup.data = 0;
5208	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5209
5210	buffer_info->time_stamp = jiffies;
5211	buffer_info->next_to_watch = i;
5212
5213	i++;
5214	if (i == tx_ring->count)
5215		i = 0;
5216	tx_ring->next_to_use = i;
5217
5218	return 1;
5219}
5220
5221static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5222			unsigned int first, unsigned int max_per_txd,
5223			unsigned int nr_frags)
5224{
5225	struct e1000_adapter *adapter = tx_ring->adapter;
5226	struct pci_dev *pdev = adapter->pdev;
5227	struct e1000_buffer *buffer_info;
5228	unsigned int len = skb_headlen(skb);
5229	unsigned int offset = 0, size, count = 0, i;
5230	unsigned int f, bytecount, segs;
5231
5232	i = tx_ring->next_to_use;
5233
5234	while (len) {
5235		buffer_info = &tx_ring->buffer_info[i];
5236		size = min(len, max_per_txd);
5237
5238		buffer_info->length = size;
5239		buffer_info->time_stamp = jiffies;
5240		buffer_info->next_to_watch = i;
5241		buffer_info->dma = dma_map_single(&pdev->dev,
5242						  skb->data + offset,
5243						  size, DMA_TO_DEVICE);
5244		buffer_info->mapped_as_page = false;
5245		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5246			goto dma_error;
5247
5248		len -= size;
5249		offset += size;
5250		count++;
5251
5252		if (len) {
5253			i++;
5254			if (i == tx_ring->count)
5255				i = 0;
5256		}
5257	}
5258
5259	for (f = 0; f < nr_frags; f++) {
5260		const struct skb_frag_struct *frag;
5261
5262		frag = &skb_shinfo(skb)->frags[f];
5263		len = skb_frag_size(frag);
5264		offset = 0;
5265
5266		while (len) {
5267			i++;
5268			if (i == tx_ring->count)
5269				i = 0;
5270
5271			buffer_info = &tx_ring->buffer_info[i];
5272			size = min(len, max_per_txd);
5273
5274			buffer_info->length = size;
5275			buffer_info->time_stamp = jiffies;
5276			buffer_info->next_to_watch = i;
5277			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5278							    offset, size,
5279							    DMA_TO_DEVICE);
5280			buffer_info->mapped_as_page = true;
5281			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5282				goto dma_error;
5283
5284			len -= size;
5285			offset += size;
5286			count++;
5287		}
5288	}
5289
5290	segs = skb_shinfo(skb)->gso_segs ? : 1;
5291	/* multiply data chunks by size of headers */
5292	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5293
5294	tx_ring->buffer_info[i].skb = skb;
5295	tx_ring->buffer_info[i].segs = segs;
5296	tx_ring->buffer_info[i].bytecount = bytecount;
5297	tx_ring->buffer_info[first].next_to_watch = i;
5298
5299	return count;
5300
5301dma_error:
5302	dev_err(&pdev->dev, "Tx DMA map failed\n");
5303	buffer_info->dma = 0;
5304	if (count)
5305		count--;
5306
5307	while (count--) {
5308		if (i == 0)
5309			i += tx_ring->count;
5310		i--;
5311		buffer_info = &tx_ring->buffer_info[i];
5312		e1000_put_txbuf(tx_ring, buffer_info);
5313	}
5314
5315	return 0;
5316}
5317
5318static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5319{
5320	struct e1000_adapter *adapter = tx_ring->adapter;
5321	struct e1000_tx_desc *tx_desc = NULL;
5322	struct e1000_buffer *buffer_info;
5323	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5324	unsigned int i;
5325
5326	if (tx_flags & E1000_TX_FLAGS_TSO) {
5327		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5328		    E1000_TXD_CMD_TSE;
5329		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5330
5331		if (tx_flags & E1000_TX_FLAGS_IPV4)
5332			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5333	}
5334
5335	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5336		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5337		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5338	}
5339
5340	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5341		txd_lower |= E1000_TXD_CMD_VLE;
5342		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5343	}
5344
5345	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5346		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5347
5348	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5349		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5350		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5351	}
5352
5353	i = tx_ring->next_to_use;
5354
5355	do {
5356		buffer_info = &tx_ring->buffer_info[i];
5357		tx_desc = E1000_TX_DESC(*tx_ring, i);
5358		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5359		tx_desc->lower.data = cpu_to_le32(txd_lower |
5360						  buffer_info->length);
5361		tx_desc->upper.data = cpu_to_le32(txd_upper);
5362
5363		i++;
5364		if (i == tx_ring->count)
5365			i = 0;
5366	} while (--count > 0);
5367
5368	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5369
5370	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5371	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5372		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5373
5374	/* Force memory writes to complete before letting h/w
5375	 * know there are new descriptors to fetch.  (Only
5376	 * applicable for weak-ordered memory model archs,
5377	 * such as IA-64).
5378	 */
5379	wmb();
5380
5381	tx_ring->next_to_use = i;
5382
5383	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5384		e1000e_update_tdt_wa(tx_ring, i);
5385	else
5386		writel(i, tx_ring->tail);
5387
5388	/* we need this if more than one processor can write to our tail
5389	 * at a time, it synchronizes IO on IA64/Altix systems
5390	 */
5391	mmiowb();
5392}
5393
5394#define MINIMUM_DHCP_PACKET_SIZE 282
5395static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5396				    struct sk_buff *skb)
5397{
5398	struct e1000_hw *hw = &adapter->hw;
5399	u16 length, offset;
5400
5401	if (vlan_tx_tag_present(skb) &&
5402	    !((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5403	      (adapter->hw.mng_cookie.status &
5404	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5405		return 0;
5406
5407	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5408		return 0;
5409
5410	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5411		return 0;
5412
5413	{
5414		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5415		struct udphdr *udp;
5416
5417		if (ip->protocol != IPPROTO_UDP)
5418			return 0;
5419
5420		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5421		if (ntohs(udp->dest) != 67)
5422			return 0;
5423
5424		offset = (u8 *)udp + 8 - skb->data;
5425		length = skb->len - offset;
5426		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5427	}
5428
5429	return 0;
5430}
5431
5432static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5433{
5434	struct e1000_adapter *adapter = tx_ring->adapter;
5435
5436	netif_stop_queue(adapter->netdev);
5437	/* Herbert's original patch had:
5438	 *  smp_mb__after_netif_stop_queue();
5439	 * but since that doesn't exist yet, just open code it.
5440	 */
5441	smp_mb();
5442
5443	/* We need to check again in a case another CPU has just
5444	 * made room available.
5445	 */
5446	if (e1000_desc_unused(tx_ring) < size)
5447		return -EBUSY;
5448
5449	/* A reprieve! */
5450	netif_start_queue(adapter->netdev);
5451	++adapter->restart_queue;
5452	return 0;
5453}
5454
5455static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5456{
5457	BUG_ON(size > tx_ring->count);
5458
5459	if (e1000_desc_unused(tx_ring) >= size)
5460		return 0;
5461	return __e1000_maybe_stop_tx(tx_ring, size);
5462}
5463
5464static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5465				    struct net_device *netdev)
5466{
5467	struct e1000_adapter *adapter = netdev_priv(netdev);
5468	struct e1000_ring *tx_ring = adapter->tx_ring;
5469	unsigned int first;
5470	unsigned int tx_flags = 0;
5471	unsigned int len = skb_headlen(skb);
5472	unsigned int nr_frags;
5473	unsigned int mss;
5474	int count = 0;
5475	int tso;
5476	unsigned int f;
 
5477
5478	if (test_bit(__E1000_DOWN, &adapter->state)) {
5479		dev_kfree_skb_any(skb);
5480		return NETDEV_TX_OK;
5481	}
5482
5483	if (skb->len <= 0) {
5484		dev_kfree_skb_any(skb);
5485		return NETDEV_TX_OK;
5486	}
5487
5488	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5489	 * pad skb in order to meet this minimum size requirement
5490	 */
5491	if (unlikely(skb->len < 17)) {
5492		if (skb_pad(skb, 17 - skb->len))
5493			return NETDEV_TX_OK;
5494		skb->len = 17;
5495		skb_set_tail_pointer(skb, 17);
5496	}
5497
5498	mss = skb_shinfo(skb)->gso_size;
5499	if (mss) {
5500		u8 hdr_len;
5501
5502		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5503		 * points to just header, pull a few bytes of payload from
5504		 * frags into skb->data
5505		 */
5506		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5507		/* we do this workaround for ES2LAN, but it is un-necessary,
5508		 * avoiding it could save a lot of cycles
5509		 */
5510		if (skb->data_len && (hdr_len == len)) {
5511			unsigned int pull_size;
5512
5513			pull_size = min_t(unsigned int, 4, skb->data_len);
5514			if (!__pskb_pull_tail(skb, pull_size)) {
5515				e_err("__pskb_pull_tail failed.\n");
5516				dev_kfree_skb_any(skb);
5517				return NETDEV_TX_OK;
5518			}
5519			len = skb_headlen(skb);
5520		}
5521	}
5522
5523	/* reserve a descriptor for the offload context */
5524	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5525		count++;
5526	count++;
5527
5528	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5529
5530	nr_frags = skb_shinfo(skb)->nr_frags;
5531	for (f = 0; f < nr_frags; f++)
5532		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5533				      adapter->tx_fifo_limit);
5534
5535	if (adapter->hw.mac.tx_pkt_filtering)
5536		e1000_transfer_dhcp_info(adapter, skb);
5537
5538	/* need: count + 2 desc gap to keep tail from touching
5539	 * head, otherwise try next time
5540	 */
5541	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5542		return NETDEV_TX_BUSY;
5543
5544	if (vlan_tx_tag_present(skb)) {
5545		tx_flags |= E1000_TX_FLAGS_VLAN;
5546		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
 
5547	}
5548
5549	first = tx_ring->next_to_use;
5550
5551	tso = e1000_tso(tx_ring, skb);
5552	if (tso < 0) {
5553		dev_kfree_skb_any(skb);
5554		return NETDEV_TX_OK;
5555	}
5556
5557	if (tso)
5558		tx_flags |= E1000_TX_FLAGS_TSO;
5559	else if (e1000_tx_csum(tx_ring, skb))
5560		tx_flags |= E1000_TX_FLAGS_CSUM;
5561
5562	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5563	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5564	 * no longer assume, we must.
5565	 */
5566	if (skb->protocol == htons(ETH_P_IP))
5567		tx_flags |= E1000_TX_FLAGS_IPV4;
5568
5569	if (unlikely(skb->no_fcs))
5570		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5571
5572	/* if count is 0 then mapping error has occurred */
5573	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5574			     nr_frags);
5575	if (count) {
5576		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5577			     !adapter->tx_hwtstamp_skb)) {
5578			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5579			tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5580			adapter->tx_hwtstamp_skb = skb_get(skb);
5581			adapter->tx_hwtstamp_start = jiffies;
5582			schedule_work(&adapter->tx_hwtstamp_work);
5583		} else {
5584			skb_tx_timestamp(skb);
 
 
5585		}
5586
 
 
5587		netdev_sent_queue(netdev, skb->len);
5588		e1000_tx_queue(tx_ring, tx_flags, count);
5589		/* Make sure there is space in the ring for the next send. */
5590		e1000_maybe_stop_tx(tx_ring,
5591				    (MAX_SKB_FRAGS *
5592				     DIV_ROUND_UP(PAGE_SIZE,
5593						  adapter->tx_fifo_limit) + 2));
 
 
 
 
 
 
 
 
 
5594	} else {
5595		dev_kfree_skb_any(skb);
5596		tx_ring->buffer_info[first].time_stamp = 0;
5597		tx_ring->next_to_use = first;
5598	}
5599
5600	return NETDEV_TX_OK;
5601}
5602
5603/**
5604 * e1000_tx_timeout - Respond to a Tx Hang
5605 * @netdev: network interface device structure
 
5606 **/
5607static void e1000_tx_timeout(struct net_device *netdev)
5608{
5609	struct e1000_adapter *adapter = netdev_priv(netdev);
5610
5611	/* Do the reset outside of interrupt context */
5612	adapter->tx_timeout_count++;
5613	schedule_work(&adapter->reset_task);
5614}
5615
5616static void e1000_reset_task(struct work_struct *work)
5617{
5618	struct e1000_adapter *adapter;
5619	adapter = container_of(work, struct e1000_adapter, reset_task);
5620
 
5621	/* don't run the task if already down */
5622	if (test_bit(__E1000_DOWN, &adapter->state))
 
5623		return;
 
5624
5625	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5626		e1000e_dump(adapter);
5627		e_err("Reset adapter unexpectedly\n");
5628	}
5629	e1000e_reinit_locked(adapter);
 
5630}
5631
5632/**
5633 * e1000_get_stats64 - Get System Network Statistics
5634 * @netdev: network interface device structure
5635 * @stats: rtnl_link_stats64 pointer
5636 *
5637 * Returns the address of the device statistics structure.
5638 **/
5639struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5640					     struct rtnl_link_stats64 *stats)
5641{
5642	struct e1000_adapter *adapter = netdev_priv(netdev);
5643
5644	memset(stats, 0, sizeof(struct rtnl_link_stats64));
5645	spin_lock(&adapter->stats64_lock);
5646	e1000e_update_stats(adapter);
5647	/* Fill out the OS statistics structure */
5648	stats->rx_bytes = adapter->stats.gorc;
5649	stats->rx_packets = adapter->stats.gprc;
5650	stats->tx_bytes = adapter->stats.gotc;
5651	stats->tx_packets = adapter->stats.gptc;
5652	stats->multicast = adapter->stats.mprc;
5653	stats->collisions = adapter->stats.colc;
5654
5655	/* Rx Errors */
5656
5657	/* RLEC on some newer hardware can be incorrect so build
5658	 * our own version based on RUC and ROC
5659	 */
5660	stats->rx_errors = adapter->stats.rxerrc +
5661	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5662	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5663	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5664	stats->rx_crc_errors = adapter->stats.crcerrs;
5665	stats->rx_frame_errors = adapter->stats.algnerrc;
5666	stats->rx_missed_errors = adapter->stats.mpc;
5667
5668	/* Tx Errors */
5669	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5670	stats->tx_aborted_errors = adapter->stats.ecol;
5671	stats->tx_window_errors = adapter->stats.latecol;
5672	stats->tx_carrier_errors = adapter->stats.tncrs;
5673
5674	/* Tx Dropped needs to be maintained elsewhere */
5675
5676	spin_unlock(&adapter->stats64_lock);
5677	return stats;
5678}
5679
5680/**
5681 * e1000_change_mtu - Change the Maximum Transfer Unit
5682 * @netdev: network interface device structure
5683 * @new_mtu: new value for maximum frame size
5684 *
5685 * Returns 0 on success, negative on failure
5686 **/
5687static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5688{
5689	struct e1000_adapter *adapter = netdev_priv(netdev);
5690	int max_frame = new_mtu + VLAN_HLEN + ETH_HLEN + ETH_FCS_LEN;
5691
5692	/* Jumbo frame support */
5693	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5694	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5695		e_err("Jumbo Frames not supported.\n");
5696		return -EINVAL;
5697	}
5698
5699	/* Supported frame sizes */
5700	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5701	    (max_frame > adapter->max_hw_frame_size)) {
5702		e_err("Unsupported MTU setting\n");
5703		return -EINVAL;
5704	}
5705
5706	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5707	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5708	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5709	    (new_mtu > ETH_DATA_LEN)) {
5710		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5711		return -EINVAL;
5712	}
5713
5714	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5715		usleep_range(1000, 2000);
5716	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5717	adapter->max_frame_size = max_frame;
5718	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
 
5719	netdev->mtu = new_mtu;
5720
5721	pm_runtime_get_sync(netdev->dev.parent);
5722
5723	if (netif_running(netdev))
5724		e1000e_down(adapter, true);
5725
5726	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5727	 * means we reserve 2 more, this pushes us to allocate from the next
5728	 * larger slab size.
5729	 * i.e. RXBUFFER_2048 --> size-4096 slab
5730	 * However with the new *_jumbo_rx* routines, jumbo receives will use
5731	 * fragmented skbs
5732	 */
5733
5734	if (max_frame <= 2048)
5735		adapter->rx_buffer_len = 2048;
5736	else
5737		adapter->rx_buffer_len = 4096;
5738
5739	/* adjust allocation if LPE protects us, and we aren't using SBP */
5740	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5741	    (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5742		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5743		    + ETH_FCS_LEN;
5744
5745	if (netif_running(netdev))
5746		e1000e_up(adapter);
5747	else
5748		e1000e_reset(adapter);
5749
5750	pm_runtime_put_sync(netdev->dev.parent);
5751
5752	clear_bit(__E1000_RESETTING, &adapter->state);
5753
5754	return 0;
5755}
5756
5757static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5758			   int cmd)
5759{
5760	struct e1000_adapter *adapter = netdev_priv(netdev);
5761	struct mii_ioctl_data *data = if_mii(ifr);
5762
5763	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5764		return -EOPNOTSUPP;
5765
5766	switch (cmd) {
5767	case SIOCGMIIPHY:
5768		data->phy_id = adapter->hw.phy.addr;
5769		break;
5770	case SIOCGMIIREG:
5771		e1000_phy_read_status(adapter);
5772
5773		switch (data->reg_num & 0x1F) {
5774		case MII_BMCR:
5775			data->val_out = adapter->phy_regs.bmcr;
5776			break;
5777		case MII_BMSR:
5778			data->val_out = adapter->phy_regs.bmsr;
5779			break;
5780		case MII_PHYSID1:
5781			data->val_out = (adapter->hw.phy.id >> 16);
5782			break;
5783		case MII_PHYSID2:
5784			data->val_out = (adapter->hw.phy.id & 0xFFFF);
5785			break;
5786		case MII_ADVERTISE:
5787			data->val_out = adapter->phy_regs.advertise;
5788			break;
5789		case MII_LPA:
5790			data->val_out = adapter->phy_regs.lpa;
5791			break;
5792		case MII_EXPANSION:
5793			data->val_out = adapter->phy_regs.expansion;
5794			break;
5795		case MII_CTRL1000:
5796			data->val_out = adapter->phy_regs.ctrl1000;
5797			break;
5798		case MII_STAT1000:
5799			data->val_out = adapter->phy_regs.stat1000;
5800			break;
5801		case MII_ESTATUS:
5802			data->val_out = adapter->phy_regs.estatus;
5803			break;
5804		default:
5805			return -EIO;
5806		}
5807		break;
5808	case SIOCSMIIREG:
5809	default:
5810		return -EOPNOTSUPP;
5811	}
5812	return 0;
5813}
5814
5815/**
5816 * e1000e_hwtstamp_ioctl - control hardware time stamping
5817 * @netdev: network interface device structure
5818 * @ifreq: interface request
5819 *
5820 * Outgoing time stamping can be enabled and disabled. Play nice and
5821 * disable it when requested, although it shouldn't cause any overhead
5822 * when no packet needs it. At most one packet in the queue may be
5823 * marked for time stamping, otherwise it would be impossible to tell
5824 * for sure to which packet the hardware time stamp belongs.
5825 *
5826 * Incoming time stamping has to be configured via the hardware filters.
5827 * Not all combinations are supported, in particular event type has to be
5828 * specified. Matching the kind of event packet is not supported, with the
5829 * exception of "all V2 events regardless of level 2 or 4".
5830 **/
5831static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
5832{
5833	struct e1000_adapter *adapter = netdev_priv(netdev);
5834	struct hwtstamp_config config;
5835	int ret_val;
5836
5837	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5838		return -EFAULT;
5839
5840	ret_val = e1000e_config_hwtstamp(adapter, &config);
5841	if (ret_val)
5842		return ret_val;
5843
5844	switch (config.rx_filter) {
5845	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5846	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5847	case HWTSTAMP_FILTER_PTP_V2_SYNC:
5848	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5849	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5850	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5851		/* With V2 type filters which specify a Sync or Delay Request,
5852		 * Path Delay Request/Response messages are also time stamped
5853		 * by hardware so notify the caller the requested packets plus
5854		 * some others are time stamped.
5855		 */
5856		config.rx_filter = HWTSTAMP_FILTER_SOME;
5857		break;
5858	default:
5859		break;
5860	}
5861
5862	return copy_to_user(ifr->ifr_data, &config,
5863			    sizeof(config)) ? -EFAULT : 0;
5864}
5865
5866static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
5867{
5868	struct e1000_adapter *adapter = netdev_priv(netdev);
5869
5870	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
5871			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
5872}
5873
5874static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5875{
5876	switch (cmd) {
5877	case SIOCGMIIPHY:
5878	case SIOCGMIIREG:
5879	case SIOCSMIIREG:
5880		return e1000_mii_ioctl(netdev, ifr, cmd);
5881	case SIOCSHWTSTAMP:
5882		return e1000e_hwtstamp_set(netdev, ifr);
5883	case SIOCGHWTSTAMP:
5884		return e1000e_hwtstamp_get(netdev, ifr);
5885	default:
5886		return -EOPNOTSUPP;
5887	}
5888}
5889
5890static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5891{
5892	struct e1000_hw *hw = &adapter->hw;
5893	u32 i, mac_reg, wuc;
5894	u16 phy_reg, wuc_enable;
5895	int retval;
5896
5897	/* copy MAC RARs to PHY RARs */
5898	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5899
5900	retval = hw->phy.ops.acquire(hw);
5901	if (retval) {
5902		e_err("Could not acquire PHY\n");
5903		return retval;
5904	}
5905
5906	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5907	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5908	if (retval)
5909		goto release;
5910
5911	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5912	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5913		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5914		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5915					   (u16)(mac_reg & 0xFFFF));
5916		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5917					   (u16)((mac_reg >> 16) & 0xFFFF));
5918	}
5919
5920	/* configure PHY Rx Control register */
5921	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5922	mac_reg = er32(RCTL);
5923	if (mac_reg & E1000_RCTL_UPE)
5924		phy_reg |= BM_RCTL_UPE;
5925	if (mac_reg & E1000_RCTL_MPE)
5926		phy_reg |= BM_RCTL_MPE;
5927	phy_reg &= ~(BM_RCTL_MO_MASK);
5928	if (mac_reg & E1000_RCTL_MO_3)
5929		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5930			    << BM_RCTL_MO_SHIFT);
5931	if (mac_reg & E1000_RCTL_BAM)
5932		phy_reg |= BM_RCTL_BAM;
5933	if (mac_reg & E1000_RCTL_PMCF)
5934		phy_reg |= BM_RCTL_PMCF;
5935	mac_reg = er32(CTRL);
5936	if (mac_reg & E1000_CTRL_RFCE)
5937		phy_reg |= BM_RCTL_RFCE;
5938	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5939
5940	wuc = E1000_WUC_PME_EN;
5941	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
5942		wuc |= E1000_WUC_APME;
5943
5944	/* enable PHY wakeup in MAC register */
5945	ew32(WUFC, wufc);
5946	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
5947		   E1000_WUC_PME_STATUS | wuc));
5948
5949	/* configure and enable PHY wakeup in PHY registers */
5950	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5951	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
5952
5953	/* activate PHY wakeup */
5954	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5955	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5956	if (retval)
5957		e_err("Could not set PHY Host Wakeup bit\n");
5958release:
5959	hw->phy.ops.release(hw);
5960
5961	return retval;
5962}
5963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5964static int e1000e_pm_freeze(struct device *dev)
5965{
5966	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
5967	struct e1000_adapter *adapter = netdev_priv(netdev);
 
 
 
5968
 
5969	netif_device_detach(netdev);
5970
5971	if (netif_running(netdev)) {
5972		int count = E1000_CHECK_RESET_COUNT;
5973
5974		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5975			usleep_range(10000, 20000);
5976
5977		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5978
5979		/* Quiesce the device without resetting the hardware */
5980		e1000e_down(adapter, false);
5981		e1000_free_irq(adapter);
5982	}
 
 
5983	e1000e_reset_interrupt_capability(adapter);
5984
5985	/* Allow time for pending master requests to run */
5986	e1000e_disable_pcie_master(&adapter->hw);
5987
5988	return 0;
5989}
5990
5991static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
5992{
5993	struct net_device *netdev = pci_get_drvdata(pdev);
5994	struct e1000_adapter *adapter = netdev_priv(netdev);
5995	struct e1000_hw *hw = &adapter->hw;
5996	u32 ctrl, ctrl_ext, rctl, status;
 
 
5997	/* Runtime suspend should only enable wakeup for link changes */
5998	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5999	int retval = 0;
 
 
 
 
6000
6001	status = er32(STATUS);
6002	if (status & E1000_STATUS_LU)
6003		wufc &= ~E1000_WUFC_LNKC;
6004
6005	if (wufc) {
6006		e1000_setup_rctl(adapter);
6007		e1000e_set_rx_mode(netdev);
6008
6009		/* turn on all-multi mode if wake on multicast is enabled */
6010		if (wufc & E1000_WUFC_MC) {
6011			rctl = er32(RCTL);
6012			rctl |= E1000_RCTL_MPE;
6013			ew32(RCTL, rctl);
6014		}
6015
6016		ctrl = er32(CTRL);
6017		ctrl |= E1000_CTRL_ADVD3WUC;
6018		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6019			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6020		ew32(CTRL, ctrl);
6021
6022		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6023		    adapter->hw.phy.media_type ==
6024		    e1000_media_type_internal_serdes) {
6025			/* keep the laser running in D3 */
6026			ctrl_ext = er32(CTRL_EXT);
6027			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6028			ew32(CTRL_EXT, ctrl_ext);
6029		}
6030
6031		if (!runtime)
6032			e1000e_power_up_phy(adapter);
6033
6034		if (adapter->flags & FLAG_IS_ICH)
6035			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6036
6037		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6038			/* enable wakeup by the PHY */
6039			retval = e1000_init_phy_wakeup(adapter, wufc);
6040			if (retval)
6041				return retval;
6042		} else {
6043			/* enable wakeup by the MAC */
6044			ew32(WUFC, wufc);
6045			ew32(WUC, E1000_WUC_PME_EN);
6046		}
6047	} else {
6048		ew32(WUC, 0);
6049		ew32(WUFC, 0);
6050
6051		e1000_power_down_phy(adapter);
6052	}
6053
6054	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6055		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6056	} else if (hw->mac.type == e1000_pch_lpt) {
6057		if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6058			/* ULP does not support wake from unicast, multicast
6059			 * or broadcast.
6060			 */
6061			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6062
6063		if (retval)
6064			return retval;
6065	}
6066
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6067
6068	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6069	 * would have already happened in close and is redundant.
6070	 */
6071	e1000e_release_hw_control(adapter);
6072
6073	pci_clear_master(pdev);
6074
6075	/* The pci-e switch on some quad port adapters will report a
6076	 * correctable error when the MAC transitions from D0 to D3.  To
6077	 * prevent this we need to mask off the correctable errors on the
6078	 * downstream port of the pci-e switch.
6079	 *
6080	 * We don't have the associated upstream bridge while assigning
6081	 * the PCI device into guest. For example, the KVM on power is
6082	 * one of the cases.
6083	 */
6084	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6085		struct pci_dev *us_dev = pdev->bus->self;
6086		u16 devctl;
6087
6088		if (!us_dev)
6089			return 0;
6090
6091		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6092		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6093					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6094
6095		pci_save_state(pdev);
6096		pci_prepare_to_sleep(pdev);
6097
6098		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6099	}
6100
6101	return 0;
6102}
6103
6104/**
6105 * e1000e_disable_aspm - Disable ASPM states
6106 * @pdev: pointer to PCI device struct
6107 * @state: bit-mask of ASPM states to disable
 
6108 *
6109 * Some devices *must* have certain ASPM states disabled per hardware errata.
6110 **/
6111static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6112{
6113	struct pci_dev *parent = pdev->bus->self;
6114	u16 aspm_dis_mask = 0;
6115	u16 pdev_aspmc, parent_aspmc;
6116
6117	switch (state) {
6118	case PCIE_LINK_STATE_L0S:
6119	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6120		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6121		/* fall-through - can't have L1 without L0s */
6122	case PCIE_LINK_STATE_L1:
6123		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6124		break;
6125	default:
6126		return;
6127	}
6128
6129	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6130	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6131
6132	if (parent) {
6133		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6134					  &parent_aspmc);
6135		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6136	}
6137
6138	/* Nothing to do if the ASPM states to be disabled already are */
6139	if (!(pdev_aspmc & aspm_dis_mask) &&
6140	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6141		return;
6142
6143	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6144		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6145		 "L0s" : "",
6146		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6147		 "L1" : "");
6148
6149#ifdef CONFIG_PCIEASPM
6150	pci_disable_link_state_locked(pdev, state);
 
 
 
6151
6152	/* Double-check ASPM control.  If not disabled by the above, the
6153	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6154	 * not enabled); override by writing PCI config space directly.
6155	 */
6156	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6157	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6158
6159	if (!(aspm_dis_mask & pdev_aspmc))
6160		return;
6161#endif
6162
6163	/* Both device and parent should have the same ASPM setting.
6164	 * Disable ASPM in downstream component first and then upstream.
6165	 */
6166	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6167
6168	if (parent)
6169		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6170					   aspm_dis_mask);
6171}
6172
6173#ifdef CONFIG_PM
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6174static int __e1000_resume(struct pci_dev *pdev)
6175{
6176	struct net_device *netdev = pci_get_drvdata(pdev);
6177	struct e1000_adapter *adapter = netdev_priv(netdev);
6178	struct e1000_hw *hw = &adapter->hw;
6179	u16 aspm_disable_flag = 0;
6180
6181	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6182		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6183	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6184		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6185	if (aspm_disable_flag)
6186		e1000e_disable_aspm(pdev, aspm_disable_flag);
6187
6188	pci_set_master(pdev);
6189
6190	if (hw->mac.type >= e1000_pch2lan)
6191		e1000_resume_workarounds_pchlan(&adapter->hw);
6192
6193	e1000e_power_up_phy(adapter);
6194
6195	/* report the system wakeup cause from S3/S4 */
6196	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6197		u16 phy_data;
6198
6199		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6200		if (phy_data) {
6201			e_info("PHY Wakeup cause - %s\n",
6202			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6203			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6204			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6205			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6206			       phy_data & E1000_WUS_LNKC ?
6207			       "Link Status Change" : "other");
6208		}
6209		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6210	} else {
6211		u32 wus = er32(WUS);
 
6212		if (wus) {
6213			e_info("MAC Wakeup cause - %s\n",
6214			       wus & E1000_WUS_EX ? "Unicast Packet" :
6215			       wus & E1000_WUS_MC ? "Multicast Packet" :
6216			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6217			       wus & E1000_WUS_MAG ? "Magic Packet" :
6218			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6219			       "other");
6220		}
6221		ew32(WUS, ~0);
6222	}
6223
6224	e1000e_reset(adapter);
6225
6226	e1000_init_manageability_pt(adapter);
6227
6228	/* If the controller has AMT, do not set DRV_LOAD until the interface
6229	 * is up.  For all other cases, let the f/w know that the h/w is now
6230	 * under the control of the driver.
6231	 */
6232	if (!(adapter->flags & FLAG_HAS_AMT))
6233		e1000e_get_hw_control(adapter);
6234
6235	return 0;
6236}
6237
6238#ifdef CONFIG_PM_SLEEP
6239static int e1000e_pm_thaw(struct device *dev)
 
 
 
 
 
6240{
6241	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6242	struct e1000_adapter *adapter = netdev_priv(netdev);
 
 
6243
6244	e1000e_set_interrupt_capability(adapter);
6245	if (netif_running(netdev)) {
6246		u32 err = e1000_request_irq(adapter);
6247
6248		if (err)
6249			return err;
6250
6251		e1000e_up(adapter);
 
 
 
 
 
 
6252	}
6253
6254	netif_device_attach(netdev);
6255
6256	return 0;
6257}
6258
6259static int e1000e_pm_suspend(struct device *dev)
6260{
 
 
6261	struct pci_dev *pdev = to_pci_dev(dev);
 
6262
6263	e1000e_pm_freeze(dev);
6264
6265	return __e1000_shutdown(pdev, false);
6266}
6267
6268static int e1000e_pm_resume(struct device *dev)
6269{
6270	struct pci_dev *pdev = to_pci_dev(dev);
6271	int rc;
6272
6273	rc = __e1000_resume(pdev);
6274	if (rc)
6275		return rc;
6276
6277	return e1000e_pm_thaw(dev);
6278}
6279#endif /* CONFIG_PM_SLEEP */
6280
6281#ifdef CONFIG_PM_RUNTIME
6282static int e1000e_pm_runtime_idle(struct device *dev)
6283{
6284	struct pci_dev *pdev = to_pci_dev(dev);
6285	struct net_device *netdev = pci_get_drvdata(pdev);
6286	struct e1000_adapter *adapter = netdev_priv(netdev);
 
 
 
6287
6288	if (!e1000e_has_link(adapter))
 
6289		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
 
6290
6291	return -EBUSY;
6292}
6293
6294static int e1000e_pm_runtime_resume(struct device *dev)
6295{
6296	struct pci_dev *pdev = to_pci_dev(dev);
6297	struct net_device *netdev = pci_get_drvdata(pdev);
6298	struct e1000_adapter *adapter = netdev_priv(netdev);
6299	int rc;
6300
 
 
6301	rc = __e1000_resume(pdev);
6302	if (rc)
6303		return rc;
6304
6305	if (netdev->flags & IFF_UP)
6306		rc = e1000e_up(adapter);
6307
6308	return rc;
6309}
6310
6311static int e1000e_pm_runtime_suspend(struct device *dev)
6312{
6313	struct pci_dev *pdev = to_pci_dev(dev);
6314	struct net_device *netdev = pci_get_drvdata(pdev);
6315	struct e1000_adapter *adapter = netdev_priv(netdev);
6316
6317	if (netdev->flags & IFF_UP) {
6318		int count = E1000_CHECK_RESET_COUNT;
6319
6320		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6321			usleep_range(10000, 20000);
6322
6323		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6324
6325		/* Down the device without resetting the hardware */
6326		e1000e_down(adapter, false);
6327	}
6328
6329	if (__e1000_shutdown(pdev, true)) {
6330		e1000e_pm_runtime_resume(dev);
6331		return -EBUSY;
6332	}
6333
6334	return 0;
6335}
6336#endif /* CONFIG_PM_RUNTIME */
6337#endif /* CONFIG_PM */
6338
6339static void e1000_shutdown(struct pci_dev *pdev)
6340{
 
 
6341	e1000e_pm_freeze(&pdev->dev);
6342
6343	__e1000_shutdown(pdev, false);
6344}
6345
6346#ifdef CONFIG_NET_POLL_CONTROLLER
6347
6348static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6349{
6350	struct net_device *netdev = data;
6351	struct e1000_adapter *adapter = netdev_priv(netdev);
6352
6353	if (adapter->msix_entries) {
6354		int vector, msix_irq;
6355
6356		vector = 0;
6357		msix_irq = adapter->msix_entries[vector].vector;
6358		disable_irq(msix_irq);
6359		e1000_intr_msix_rx(msix_irq, netdev);
6360		enable_irq(msix_irq);
6361
6362		vector++;
6363		msix_irq = adapter->msix_entries[vector].vector;
6364		disable_irq(msix_irq);
6365		e1000_intr_msix_tx(msix_irq, netdev);
6366		enable_irq(msix_irq);
6367
6368		vector++;
6369		msix_irq = adapter->msix_entries[vector].vector;
6370		disable_irq(msix_irq);
6371		e1000_msix_other(msix_irq, netdev);
6372		enable_irq(msix_irq);
6373	}
6374
6375	return IRQ_HANDLED;
6376}
6377
6378/**
6379 * e1000_netpoll
6380 * @netdev: network interface device structure
6381 *
6382 * Polling 'interrupt' - used by things like netconsole to send skbs
6383 * without having to re-enable interrupts. It's not called while
6384 * the interrupt routine is executing.
6385 */
6386static void e1000_netpoll(struct net_device *netdev)
6387{
6388	struct e1000_adapter *adapter = netdev_priv(netdev);
6389
6390	switch (adapter->int_mode) {
6391	case E1000E_INT_MODE_MSIX:
6392		e1000_intr_msix(adapter->pdev->irq, netdev);
6393		break;
6394	case E1000E_INT_MODE_MSI:
6395		disable_irq(adapter->pdev->irq);
6396		e1000_intr_msi(adapter->pdev->irq, netdev);
6397		enable_irq(adapter->pdev->irq);
6398		break;
6399	default:		/* E1000E_INT_MODE_LEGACY */
6400		disable_irq(adapter->pdev->irq);
6401		e1000_intr(adapter->pdev->irq, netdev);
6402		enable_irq(adapter->pdev->irq);
6403		break;
6404	}
6405}
6406#endif
6407
6408/**
6409 * e1000_io_error_detected - called when PCI error is detected
6410 * @pdev: Pointer to PCI device
6411 * @state: The current pci connection state
6412 *
6413 * This function is called after a PCI bus error affecting
6414 * this device has been detected.
6415 */
6416static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6417						pci_channel_state_t state)
6418{
6419	struct net_device *netdev = pci_get_drvdata(pdev);
6420	struct e1000_adapter *adapter = netdev_priv(netdev);
6421
6422	netif_device_detach(netdev);
6423
6424	if (state == pci_channel_io_perm_failure)
6425		return PCI_ERS_RESULT_DISCONNECT;
6426
6427	if (netif_running(netdev))
6428		e1000e_down(adapter, true);
6429	pci_disable_device(pdev);
6430
6431	/* Request a slot slot reset. */
6432	return PCI_ERS_RESULT_NEED_RESET;
6433}
6434
6435/**
6436 * e1000_io_slot_reset - called after the pci bus has been reset.
6437 * @pdev: Pointer to PCI device
6438 *
6439 * Restart the card from scratch, as if from a cold-boot. Implementation
6440 * resembles the first-half of the e1000e_pm_resume routine.
6441 */
6442static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6443{
6444	struct net_device *netdev = pci_get_drvdata(pdev);
6445	struct e1000_adapter *adapter = netdev_priv(netdev);
6446	struct e1000_hw *hw = &adapter->hw;
6447	u16 aspm_disable_flag = 0;
6448	int err;
6449	pci_ers_result_t result;
6450
6451	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6452		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6453	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6454		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6455	if (aspm_disable_flag)
6456		e1000e_disable_aspm(pdev, aspm_disable_flag);
6457
6458	err = pci_enable_device_mem(pdev);
6459	if (err) {
6460		dev_err(&pdev->dev,
6461			"Cannot re-enable PCI device after reset.\n");
6462		result = PCI_ERS_RESULT_DISCONNECT;
6463	} else {
6464		pdev->state_saved = true;
6465		pci_restore_state(pdev);
6466		pci_set_master(pdev);
6467
6468		pci_enable_wake(pdev, PCI_D3hot, 0);
6469		pci_enable_wake(pdev, PCI_D3cold, 0);
6470
6471		e1000e_reset(adapter);
6472		ew32(WUS, ~0);
6473		result = PCI_ERS_RESULT_RECOVERED;
6474	}
6475
6476	pci_cleanup_aer_uncorrect_error_status(pdev);
6477
6478	return result;
6479}
6480
6481/**
6482 * e1000_io_resume - called when traffic can start flowing again.
6483 * @pdev: Pointer to PCI device
6484 *
6485 * This callback is called when the error recovery driver tells us that
6486 * its OK to resume normal operation. Implementation resembles the
6487 * second-half of the e1000e_pm_resume routine.
6488 */
6489static void e1000_io_resume(struct pci_dev *pdev)
6490{
6491	struct net_device *netdev = pci_get_drvdata(pdev);
6492	struct e1000_adapter *adapter = netdev_priv(netdev);
6493
6494	e1000_init_manageability_pt(adapter);
6495
6496	if (netif_running(netdev)) {
6497		if (e1000e_up(adapter)) {
6498			dev_err(&pdev->dev,
6499				"can't bring device back up after reset\n");
6500			return;
6501		}
6502	}
6503
6504	netif_device_attach(netdev);
6505
6506	/* If the controller has AMT, do not set DRV_LOAD until the interface
6507	 * is up.  For all other cases, let the f/w know that the h/w is now
6508	 * under the control of the driver.
6509	 */
6510	if (!(adapter->flags & FLAG_HAS_AMT))
6511		e1000e_get_hw_control(adapter);
6512}
6513
6514static void e1000_print_device_info(struct e1000_adapter *adapter)
6515{
6516	struct e1000_hw *hw = &adapter->hw;
6517	struct net_device *netdev = adapter->netdev;
6518	u32 ret_val;
6519	u8 pba_str[E1000_PBANUM_LENGTH];
6520
6521	/* print bus type/speed/width info */
6522	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6523	       /* bus width */
6524	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6525		"Width x1"),
6526	       /* MAC address */
6527	       netdev->dev_addr);
6528	e_info("Intel(R) PRO/%s Network Connection\n",
6529	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6530	ret_val = e1000_read_pba_string_generic(hw, pba_str,
6531						E1000_PBANUM_LENGTH);
6532	if (ret_val)
6533		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6534	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6535	       hw->mac.type, hw->phy.type, pba_str);
6536}
6537
6538static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6539{
6540	struct e1000_hw *hw = &adapter->hw;
6541	int ret_val;
6542	u16 buf = 0;
6543
6544	if (hw->mac.type != e1000_82573)
6545		return;
6546
6547	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6548	le16_to_cpus(&buf);
6549	if (!ret_val && (!(buf & (1 << 0)))) {
6550		/* Deep Smart Power Down (DSPD) */
6551		dev_warn(&adapter->pdev->dev,
6552			 "Warning: detected DSPD enabled in EEPROM\n");
6553	}
6554}
6555
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6556static int e1000_set_features(struct net_device *netdev,
6557			      netdev_features_t features)
6558{
6559	struct e1000_adapter *adapter = netdev_priv(netdev);
6560	netdev_features_t changed = features ^ netdev->features;
6561
6562	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6563		adapter->flags |= FLAG_TSO_FORCE;
6564
6565	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6566			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6567			 NETIF_F_RXALL)))
6568		return 0;
6569
6570	if (changed & NETIF_F_RXFCS) {
6571		if (features & NETIF_F_RXFCS) {
6572			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6573		} else {
6574			/* We need to take it back to defaults, which might mean
6575			 * stripping is still disabled at the adapter level.
6576			 */
6577			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6578				adapter->flags2 |= FLAG2_CRC_STRIPPING;
6579			else
6580				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6581		}
6582	}
6583
6584	netdev->features = features;
6585
6586	if (netif_running(netdev))
6587		e1000e_reinit_locked(adapter);
6588	else
6589		e1000e_reset(adapter);
6590
6591	return 0;
6592}
6593
6594static const struct net_device_ops e1000e_netdev_ops = {
6595	.ndo_open		= e1000_open,
6596	.ndo_stop		= e1000_close,
6597	.ndo_start_xmit		= e1000_xmit_frame,
6598	.ndo_get_stats64	= e1000e_get_stats64,
6599	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6600	.ndo_set_mac_address	= e1000_set_mac,
6601	.ndo_change_mtu		= e1000_change_mtu,
6602	.ndo_do_ioctl		= e1000_ioctl,
6603	.ndo_tx_timeout		= e1000_tx_timeout,
6604	.ndo_validate_addr	= eth_validate_addr,
6605
6606	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
6607	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
6608#ifdef CONFIG_NET_POLL_CONTROLLER
6609	.ndo_poll_controller	= e1000_netpoll,
6610#endif
6611	.ndo_set_features = e1000_set_features,
 
 
6612};
6613
6614/**
6615 * e1000_probe - Device Initialization Routine
6616 * @pdev: PCI device information struct
6617 * @ent: entry in e1000_pci_tbl
6618 *
6619 * Returns 0 on success, negative on failure
6620 *
6621 * e1000_probe initializes an adapter identified by a pci_dev structure.
6622 * The OS initialization, configuring of the adapter private structure,
6623 * and a hardware reset occur.
6624 **/
6625static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6626{
6627	struct net_device *netdev;
6628	struct e1000_adapter *adapter;
6629	struct e1000_hw *hw;
6630	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6631	resource_size_t mmio_start, mmio_len;
6632	resource_size_t flash_start, flash_len;
6633	static int cards_found;
6634	u16 aspm_disable_flag = 0;
6635	int bars, i, err, pci_using_dac;
6636	u16 eeprom_data = 0;
6637	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 
 
6638
6639	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6640		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6641	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6642		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6643	if (aspm_disable_flag)
6644		e1000e_disable_aspm(pdev, aspm_disable_flag);
6645
6646	err = pci_enable_device_mem(pdev);
6647	if (err)
6648		return err;
6649
6650	pci_using_dac = 0;
6651	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6652	if (!err) {
6653		pci_using_dac = 1;
6654	} else {
6655		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
6656		if (err) {
6657			dev_err(&pdev->dev,
6658				"No usable DMA configuration, aborting\n");
6659			goto err_dma;
6660		}
6661	}
6662
6663	bars = pci_select_bars(pdev, IORESOURCE_MEM);
6664	err = pci_request_selected_regions_exclusive(pdev, bars,
6665						     e1000e_driver_name);
6666	if (err)
6667		goto err_pci_reg;
6668
6669	/* AER (Advanced Error Reporting) hooks */
6670	pci_enable_pcie_error_reporting(pdev);
6671
6672	pci_set_master(pdev);
6673	/* PCI config space info */
6674	err = pci_save_state(pdev);
6675	if (err)
6676		goto err_alloc_etherdev;
6677
6678	err = -ENOMEM;
6679	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6680	if (!netdev)
6681		goto err_alloc_etherdev;
6682
6683	SET_NETDEV_DEV(netdev, &pdev->dev);
6684
6685	netdev->irq = pdev->irq;
6686
6687	pci_set_drvdata(pdev, netdev);
6688	adapter = netdev_priv(netdev);
6689	hw = &adapter->hw;
6690	adapter->netdev = netdev;
6691	adapter->pdev = pdev;
6692	adapter->ei = ei;
6693	adapter->pba = ei->pba;
6694	adapter->flags = ei->flags;
6695	adapter->flags2 = ei->flags2;
6696	adapter->hw.adapter = adapter;
6697	adapter->hw.mac.type = ei->mac;
6698	adapter->max_hw_frame_size = ei->max_hw_frame_size;
6699	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6700
6701	mmio_start = pci_resource_start(pdev, 0);
6702	mmio_len = pci_resource_len(pdev, 0);
6703
6704	err = -EIO;
6705	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6706	if (!adapter->hw.hw_addr)
6707		goto err_ioremap;
6708
6709	if ((adapter->flags & FLAG_HAS_FLASH) &&
6710	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
 
6711		flash_start = pci_resource_start(pdev, 1);
6712		flash_len = pci_resource_len(pdev, 1);
6713		adapter->hw.flash_address = ioremap(flash_start, flash_len);
6714		if (!adapter->hw.flash_address)
6715			goto err_flashmap;
6716	}
6717
6718	/* Set default EEE advertisement */
6719	if (adapter->flags2 & FLAG2_HAS_EEE)
6720		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
6721
6722	/* construct the net_device struct */
6723	netdev->netdev_ops = &e1000e_netdev_ops;
6724	e1000e_set_ethtool_ops(netdev);
6725	netdev->watchdog_timeo = 5 * HZ;
6726	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6727	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6728
6729	netdev->mem_start = mmio_start;
6730	netdev->mem_end = mmio_start + mmio_len;
6731
6732	adapter->bd_number = cards_found++;
6733
6734	e1000e_check_options(adapter);
6735
6736	/* setup adapter struct */
6737	err = e1000_sw_init(adapter);
6738	if (err)
6739		goto err_sw_init;
6740
6741	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6742	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6743	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6744
6745	err = ei->get_variants(adapter);
6746	if (err)
6747		goto err_hw_init;
6748
6749	if ((adapter->flags & FLAG_IS_ICH) &&
6750	    (adapter->flags & FLAG_READ_ONLY_NVM))
 
6751		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6752
6753	hw->mac.ops.get_bus_info(&adapter->hw);
6754
6755	adapter->hw.phy.autoneg_wait_to_complete = 0;
6756
6757	/* Copper options */
6758	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6759		adapter->hw.phy.mdix = AUTO_ALL_MODES;
6760		adapter->hw.phy.disable_polarity_correction = 0;
6761		adapter->hw.phy.ms_type = e1000_ms_hw_default;
6762	}
6763
6764	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6765		dev_info(&pdev->dev,
6766			 "PHY reset is blocked due to SOL/IDER session.\n");
6767
6768	/* Set initial default active device features */
6769	netdev->features = (NETIF_F_SG |
6770			    NETIF_F_HW_VLAN_CTAG_RX |
6771			    NETIF_F_HW_VLAN_CTAG_TX |
6772			    NETIF_F_TSO |
6773			    NETIF_F_TSO6 |
6774			    NETIF_F_RXHASH |
6775			    NETIF_F_RXCSUM |
6776			    NETIF_F_HW_CSUM);
6777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6778	/* Set user-changeable features (subset of all device features) */
6779	netdev->hw_features = netdev->features;
6780	netdev->hw_features |= NETIF_F_RXFCS;
6781	netdev->priv_flags |= IFF_SUPP_NOFCS;
6782	netdev->hw_features |= NETIF_F_RXALL;
6783
6784	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6785		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6786
6787	netdev->vlan_features |= (NETIF_F_SG |
6788				  NETIF_F_TSO |
6789				  NETIF_F_TSO6 |
6790				  NETIF_F_HW_CSUM);
6791
6792	netdev->priv_flags |= IFF_UNICAST_FLT;
6793
6794	if (pci_using_dac) {
6795		netdev->features |= NETIF_F_HIGHDMA;
6796		netdev->vlan_features |= NETIF_F_HIGHDMA;
6797	}
 
 
 
6798
6799	if (e1000e_enable_mng_pass_thru(&adapter->hw))
6800		adapter->flags |= FLAG_MNG_PT_ENABLED;
6801
6802	/* before reading the NVM, reset the controller to
6803	 * put the device in a known good starting state
6804	 */
6805	adapter->hw.mac.ops.reset_hw(&adapter->hw);
6806
6807	/* systems with ASPM and others may see the checksum fail on the first
6808	 * attempt. Let's give it a few tries
6809	 */
6810	for (i = 0;; i++) {
6811		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6812			break;
6813		if (i == 2) {
6814			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6815			err = -EIO;
6816			goto err_eeprom;
6817		}
6818	}
6819
6820	e1000_eeprom_checks(adapter);
6821
6822	/* copy the MAC address */
6823	if (e1000e_read_mac_addr(&adapter->hw))
6824		dev_err(&pdev->dev,
6825			"NVM Read Error while reading MAC address\n");
6826
6827	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6828
6829	if (!is_valid_ether_addr(netdev->dev_addr)) {
6830		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
6831			netdev->dev_addr);
6832		err = -EIO;
6833		goto err_eeprom;
6834	}
6835
6836	init_timer(&adapter->watchdog_timer);
6837	adapter->watchdog_timer.function = e1000_watchdog;
6838	adapter->watchdog_timer.data = (unsigned long)adapter;
6839
6840	init_timer(&adapter->phy_info_timer);
6841	adapter->phy_info_timer.function = e1000_update_phy_info;
6842	adapter->phy_info_timer.data = (unsigned long)adapter;
6843
6844	INIT_WORK(&adapter->reset_task, e1000_reset_task);
6845	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6846	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6847	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6848	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6849
6850	/* Initialize link parameters. User can change them with ethtool */
6851	adapter->hw.mac.autoneg = 1;
6852	adapter->fc_autoneg = true;
6853	adapter->hw.fc.requested_mode = e1000_fc_default;
6854	adapter->hw.fc.current_mode = e1000_fc_default;
6855	adapter->hw.phy.autoneg_advertised = 0x2f;
6856
6857	/* Initial Wake on LAN setting - If APM wake is enabled in
6858	 * the EEPROM, enable the ACPI Magic Packet filter
6859	 */
6860	if (adapter->flags & FLAG_APME_IN_WUC) {
6861		/* APME bit in EEPROM is mapped to WUC.APME */
6862		eeprom_data = er32(WUC);
6863		eeprom_apme_mask = E1000_WUC_APME;
6864		if ((hw->mac.type > e1000_ich10lan) &&
6865		    (eeprom_data & E1000_WUC_PHY_WAKE))
6866			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6867	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6868		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6869		    (adapter->hw.bus.func == 1))
6870			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6871				       1, &eeprom_data);
 
6872		else
6873			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6874				       1, &eeprom_data);
 
6875	}
6876
6877	/* fetch WoL from EEPROM */
6878	if (eeprom_data & eeprom_apme_mask)
 
 
6879		adapter->eeprom_wol |= E1000_WUFC_MAG;
6880
6881	/* now that we have the eeprom settings, apply the special cases
6882	 * where the eeprom may be wrong or the board simply won't support
6883	 * wake on lan on a particular port
6884	 */
6885	if (!(adapter->flags & FLAG_HAS_WOL))
6886		adapter->eeprom_wol = 0;
6887
6888	/* initialize the wol settings based on the eeprom settings */
6889	adapter->wol = adapter->eeprom_wol;
6890
6891	/* make sure adapter isn't asleep if manageability is enabled */
6892	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
6893	    (hw->mac.ops.check_mng_mode(hw)))
6894		device_wakeup_enable(&pdev->dev);
6895
6896	/* save off EEPROM version number */
6897	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
 
 
 
 
 
 
 
 
6898
6899	/* reset the hardware with the new settings */
6900	e1000e_reset(adapter);
6901
6902	/* If the controller has AMT, do not set DRV_LOAD until the interface
6903	 * is up.  For all other cases, let the f/w know that the h/w is now
6904	 * under the control of the driver.
6905	 */
6906	if (!(adapter->flags & FLAG_HAS_AMT))
6907		e1000e_get_hw_control(adapter);
6908
6909	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
 
 
 
6910	err = register_netdev(netdev);
6911	if (err)
6912		goto err_register;
6913
6914	/* carrier off reporting is important to ethtool even BEFORE open */
6915	netif_carrier_off(netdev);
6916
6917	/* init PTP hardware clock */
6918	e1000e_ptp_init(adapter);
6919
6920	e1000_print_device_info(adapter);
6921
6922	if (pci_dev_run_wake(pdev))
6923		pm_runtime_put_noidle(&pdev->dev);
6924
6925	return 0;
6926
6927err_register:
6928	if (!(adapter->flags & FLAG_HAS_AMT))
6929		e1000e_release_hw_control(adapter);
6930err_eeprom:
6931	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6932		e1000_phy_hw_reset(&adapter->hw);
6933err_hw_init:
6934	kfree(adapter->tx_ring);
6935	kfree(adapter->rx_ring);
6936err_sw_init:
6937	if (adapter->hw.flash_address)
6938		iounmap(adapter->hw.flash_address);
6939	e1000e_reset_interrupt_capability(adapter);
6940err_flashmap:
6941	iounmap(adapter->hw.hw_addr);
6942err_ioremap:
6943	free_netdev(netdev);
6944err_alloc_etherdev:
6945	pci_release_selected_regions(pdev,
6946				     pci_select_bars(pdev, IORESOURCE_MEM));
6947err_pci_reg:
6948err_dma:
6949	pci_disable_device(pdev);
6950	return err;
6951}
6952
6953/**
6954 * e1000_remove - Device Removal Routine
6955 * @pdev: PCI device information struct
6956 *
6957 * e1000_remove is called by the PCI subsystem to alert the driver
6958 * that it should release a PCI device.  The could be caused by a
6959 * Hot-Plug event, or because the driver is going to be removed from
6960 * memory.
6961 **/
6962static void e1000_remove(struct pci_dev *pdev)
6963{
6964	struct net_device *netdev = pci_get_drvdata(pdev);
6965	struct e1000_adapter *adapter = netdev_priv(netdev);
6966	bool down = test_bit(__E1000_DOWN, &adapter->state);
6967
6968	e1000e_ptp_remove(adapter);
6969
6970	/* The timers may be rescheduled, so explicitly disable them
6971	 * from being rescheduled.
6972	 */
6973	if (!down)
6974		set_bit(__E1000_DOWN, &adapter->state);
6975	del_timer_sync(&adapter->watchdog_timer);
6976	del_timer_sync(&adapter->phy_info_timer);
6977
6978	cancel_work_sync(&adapter->reset_task);
6979	cancel_work_sync(&adapter->watchdog_task);
6980	cancel_work_sync(&adapter->downshift_task);
6981	cancel_work_sync(&adapter->update_phy_task);
6982	cancel_work_sync(&adapter->print_hang_task);
6983
6984	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
6985		cancel_work_sync(&adapter->tx_hwtstamp_work);
6986		if (adapter->tx_hwtstamp_skb) {
6987			dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
6988			adapter->tx_hwtstamp_skb = NULL;
6989		}
6990	}
6991
6992	/* Don't lie to e1000_close() down the road. */
6993	if (!down)
6994		clear_bit(__E1000_DOWN, &adapter->state);
6995	unregister_netdev(netdev);
6996
6997	if (pci_dev_run_wake(pdev))
6998		pm_runtime_get_noresume(&pdev->dev);
6999
7000	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7001	 * would have already happened in close and is redundant.
7002	 */
7003	e1000e_release_hw_control(adapter);
7004
7005	e1000e_reset_interrupt_capability(adapter);
7006	kfree(adapter->tx_ring);
7007	kfree(adapter->rx_ring);
7008
7009	iounmap(adapter->hw.hw_addr);
7010	if (adapter->hw.flash_address)
 
7011		iounmap(adapter->hw.flash_address);
7012	pci_release_selected_regions(pdev,
7013				     pci_select_bars(pdev, IORESOURCE_MEM));
7014
7015	free_netdev(netdev);
7016
7017	/* AER disable */
7018	pci_disable_pcie_error_reporting(pdev);
7019
7020	pci_disable_device(pdev);
7021}
7022
7023/* PCI Error Recovery (ERS) */
7024static const struct pci_error_handlers e1000_err_handler = {
7025	.error_detected = e1000_io_error_detected,
7026	.slot_reset = e1000_io_slot_reset,
7027	.resume = e1000_io_resume,
7028};
7029
7030static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
7031	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7032	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7033	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7034	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7035	  board_82571 },
7036	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7037	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7038	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7039	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7040	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7041
7042	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7043	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7044	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7045	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7046
7047	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7048	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7049	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7050
7051	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7052	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7053	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7054
7055	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7056	  board_80003es2lan },
7057	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7058	  board_80003es2lan },
7059	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7060	  board_80003es2lan },
7061	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7062	  board_80003es2lan },
7063
7064	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7065	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7066	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7067	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7068	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7069	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7070	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7071	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7072
7073	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7074	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7075	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7076	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7077	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7078	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7079	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7080	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7081	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7082
7083	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7084	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7085	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7086
7087	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7088	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7089	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7090
7091	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7092	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7093	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7094	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7095
7096	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7097	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7098
7099	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7107
7108	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7109};
7110MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7111
7112static const struct dev_pm_ops e1000_pm_ops = {
7113#ifdef CONFIG_PM_SLEEP
 
7114	.suspend	= e1000e_pm_suspend,
7115	.resume		= e1000e_pm_resume,
7116	.freeze		= e1000e_pm_freeze,
7117	.thaw		= e1000e_pm_thaw,
7118	.poweroff	= e1000e_pm_suspend,
7119	.restore	= e1000e_pm_resume,
7120#endif
7121	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7122			   e1000e_pm_runtime_idle)
7123};
7124
7125/* PCI Device API Driver */
7126static struct pci_driver e1000_driver = {
7127	.name     = e1000e_driver_name,
7128	.id_table = e1000_pci_tbl,
7129	.probe    = e1000_probe,
7130	.remove   = e1000_remove,
7131	.driver   = {
7132		.pm = &e1000_pm_ops,
7133	},
7134	.shutdown = e1000_shutdown,
7135	.err_handler = &e1000_err_handler
7136};
7137
7138/**
7139 * e1000_init_module - Driver Registration Routine
7140 *
7141 * e1000_init_module is the first routine called when the driver is
7142 * loaded. All it does is register with the PCI subsystem.
7143 **/
7144static int __init e1000_init_module(void)
7145{
7146	int ret;
7147	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7148		e1000e_driver_version);
7149	pr_info("Copyright(c) 1999 - 2014 Intel Corporation.\n");
7150	ret = pci_register_driver(&e1000_driver);
7151
7152	return ret;
7153}
7154module_init(e1000_init_module);
7155
7156/**
7157 * e1000_exit_module - Driver Exit Cleanup Routine
7158 *
7159 * e1000_exit_module is called just before the driver is removed
7160 * from memory.
7161 **/
7162static void __exit e1000_exit_module(void)
7163{
7164	pci_unregister_driver(&e1000_driver);
7165}
7166module_exit(e1000_exit_module);
7167
7168MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7169MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7170MODULE_LICENSE("GPL");
7171MODULE_VERSION(DRV_VERSION);
7172
7173/* netdev.c */