Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   5
   6#include <linux/module.h>
   7#include <linux/types.h>
   8#include <linux/init.h>
   9#include <linux/pci.h>
  10#include <linux/vmalloc.h>
  11#include <linux/pagemap.h>
  12#include <linux/delay.h>
  13#include <linux/netdevice.h>
  14#include <linux/interrupt.h>
  15#include <linux/tcp.h>
  16#include <linux/ipv6.h>
  17#include <linux/slab.h>
  18#include <net/checksum.h>
  19#include <net/ip6_checksum.h>
  20#include <linux/ethtool.h>
  21#include <linux/if_vlan.h>
  22#include <linux/cpu.h>
  23#include <linux/smp.h>
  24#include <linux/pm_qos.h>
  25#include <linux/pm_runtime.h>
 
  26#include <linux/prefetch.h>
  27#include <linux/suspend.h>
  28
  29#include "e1000.h"
  30#define CREATE_TRACE_POINTS
  31#include "e1000e_trace.h"
  32
 
 
 
  33char e1000e_driver_name[] = "e1000e";
 
  34
  35#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  36static int debug = -1;
  37module_param(debug, int, 0);
  38MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  39
  40static const struct e1000_info *e1000_info_tbl[] = {
  41	[board_82571]		= &e1000_82571_info,
  42	[board_82572]		= &e1000_82572_info,
  43	[board_82573]		= &e1000_82573_info,
  44	[board_82574]		= &e1000_82574_info,
  45	[board_82583]		= &e1000_82583_info,
  46	[board_80003es2lan]	= &e1000_es2_info,
  47	[board_ich8lan]		= &e1000_ich8_info,
  48	[board_ich9lan]		= &e1000_ich9_info,
  49	[board_ich10lan]	= &e1000_ich10_info,
  50	[board_pchlan]		= &e1000_pch_info,
  51	[board_pch2lan]		= &e1000_pch2_info,
  52	[board_pch_lpt]		= &e1000_pch_lpt_info,
  53	[board_pch_spt]		= &e1000_pch_spt_info,
  54	[board_pch_cnp]		= &e1000_pch_cnp_info,
  55	[board_pch_tgp]		= &e1000_pch_tgp_info,
  56	[board_pch_adp]		= &e1000_pch_adp_info,
  57	[board_pch_mtp]		= &e1000_pch_mtp_info,
  58};
  59
  60struct e1000_reg_info {
  61	u32 ofs;
  62	char *name;
  63};
  64
  65static const struct e1000_reg_info e1000_reg_info_tbl[] = {
  66	/* General Registers */
  67	{E1000_CTRL, "CTRL"},
  68	{E1000_STATUS, "STATUS"},
  69	{E1000_CTRL_EXT, "CTRL_EXT"},
  70
  71	/* Interrupt Registers */
  72	{E1000_ICR, "ICR"},
  73
  74	/* Rx Registers */
  75	{E1000_RCTL, "RCTL"},
  76	{E1000_RDLEN(0), "RDLEN"},
  77	{E1000_RDH(0), "RDH"},
  78	{E1000_RDT(0), "RDT"},
  79	{E1000_RDTR, "RDTR"},
  80	{E1000_RXDCTL(0), "RXDCTL"},
  81	{E1000_ERT, "ERT"},
  82	{E1000_RDBAL(0), "RDBAL"},
  83	{E1000_RDBAH(0), "RDBAH"},
  84	{E1000_RDFH, "RDFH"},
  85	{E1000_RDFT, "RDFT"},
  86	{E1000_RDFHS, "RDFHS"},
  87	{E1000_RDFTS, "RDFTS"},
  88	{E1000_RDFPC, "RDFPC"},
  89
  90	/* Tx Registers */
  91	{E1000_TCTL, "TCTL"},
  92	{E1000_TDBAL(0), "TDBAL"},
  93	{E1000_TDBAH(0), "TDBAH"},
  94	{E1000_TDLEN(0), "TDLEN"},
  95	{E1000_TDH(0), "TDH"},
  96	{E1000_TDT(0), "TDT"},
  97	{E1000_TIDV, "TIDV"},
  98	{E1000_TXDCTL(0), "TXDCTL"},
  99	{E1000_TADV, "TADV"},
 100	{E1000_TARC(0), "TARC"},
 101	{E1000_TDFH, "TDFH"},
 102	{E1000_TDFT, "TDFT"},
 103	{E1000_TDFHS, "TDFHS"},
 104	{E1000_TDFTS, "TDFTS"},
 105	{E1000_TDFPC, "TDFPC"},
 106
 107	/* List Terminator */
 108	{0, NULL}
 109};
 110
 111/**
 112 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
 113 * @hw: pointer to the HW structure
 114 *
 115 * When updating the MAC CSR registers, the Manageability Engine (ME) could
 116 * be accessing the registers at the same time.  Normally, this is handled in
 117 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
 118 * accesses later than it should which could result in the register to have
 119 * an incorrect value.  Workaround this by checking the FWSM register which
 120 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
 121 * and try again a number of times.
 122 **/
 123static void __ew32_prepare(struct e1000_hw *hw)
 124{
 125	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
 126
 127	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
 128		udelay(50);
 
 
 129}
 130
 131void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
 132{
 133	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 134		__ew32_prepare(hw);
 135
 136	writel(val, hw->hw_addr + reg);
 137}
 138
 139/**
 140 * e1000_regdump - register printout routine
 141 * @hw: pointer to the HW structure
 142 * @reginfo: pointer to the register info table
 143 **/
 144static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
 145{
 146	int n = 0;
 147	char rname[16];
 148	u32 regs[8];
 149
 150	switch (reginfo->ofs) {
 151	case E1000_RXDCTL(0):
 152		for (n = 0; n < 2; n++)
 153			regs[n] = __er32(hw, E1000_RXDCTL(n));
 154		break;
 155	case E1000_TXDCTL(0):
 156		for (n = 0; n < 2; n++)
 157			regs[n] = __er32(hw, E1000_TXDCTL(n));
 158		break;
 159	case E1000_TARC(0):
 160		for (n = 0; n < 2; n++)
 161			regs[n] = __er32(hw, E1000_TARC(n));
 162		break;
 163	default:
 164		pr_info("%-15s %08x\n",
 165			reginfo->name, __er32(hw, reginfo->ofs));
 166		return;
 167	}
 168
 169	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
 170	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
 171}
 172
 173static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
 174				 struct e1000_buffer *bi)
 175{
 176	int i;
 177	struct e1000_ps_page *ps_page;
 178
 179	for (i = 0; i < adapter->rx_ps_pages; i++) {
 180		ps_page = &bi->ps_pages[i];
 181
 182		if (ps_page->page) {
 183			pr_info("packet dump for ps_page %d:\n", i);
 184			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 185				       16, 1, page_address(ps_page->page),
 186				       PAGE_SIZE, true);
 187		}
 188	}
 189}
 190
 191/**
 192 * e1000e_dump - Print registers, Tx-ring and Rx-ring
 193 * @adapter: board private structure
 194 **/
 195static void e1000e_dump(struct e1000_adapter *adapter)
 196{
 197	struct net_device *netdev = adapter->netdev;
 198	struct e1000_hw *hw = &adapter->hw;
 199	struct e1000_reg_info *reginfo;
 200	struct e1000_ring *tx_ring = adapter->tx_ring;
 201	struct e1000_tx_desc *tx_desc;
 202	struct my_u0 {
 203		__le64 a;
 204		__le64 b;
 205	} *u0;
 206	struct e1000_buffer *buffer_info;
 207	struct e1000_ring *rx_ring = adapter->rx_ring;
 208	union e1000_rx_desc_packet_split *rx_desc_ps;
 209	union e1000_rx_desc_extended *rx_desc;
 210	struct my_u1 {
 211		__le64 a;
 212		__le64 b;
 213		__le64 c;
 214		__le64 d;
 215	} *u1;
 216	u32 staterr;
 217	int i = 0;
 218
 219	if (!netif_msg_hw(adapter))
 220		return;
 221
 222	/* Print netdevice Info */
 223	if (netdev) {
 224		dev_info(&adapter->pdev->dev, "Net device Info\n");
 225		pr_info("Device Name     state            trans_start\n");
 226		pr_info("%-15s %016lX %016lX\n", netdev->name,
 227			netdev->state, dev_trans_start(netdev));
 228	}
 229
 230	/* Print Registers */
 231	dev_info(&adapter->pdev->dev, "Register Dump\n");
 232	pr_info(" Register Name   Value\n");
 233	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
 234	     reginfo->name; reginfo++) {
 235		e1000_regdump(hw, reginfo);
 236	}
 237
 238	/* Print Tx Ring Summary */
 239	if (!netdev || !netif_running(netdev))
 240		return;
 241
 242	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
 243	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 244	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
 245	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
 246		0, tx_ring->next_to_use, tx_ring->next_to_clean,
 247		(unsigned long long)buffer_info->dma,
 248		buffer_info->length,
 249		buffer_info->next_to_watch,
 250		(unsigned long long)buffer_info->time_stamp);
 251
 252	/* Print Tx Ring */
 253	if (!netif_msg_tx_done(adapter))
 254		goto rx_ring_summary;
 255
 256	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
 257
 258	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
 259	 *
 260	 * Legacy Transmit Descriptor
 261	 *   +--------------------------------------------------------------+
 262	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
 263	 *   +--------------------------------------------------------------+
 264	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
 265	 *   +--------------------------------------------------------------+
 266	 *   63       48 47        36 35    32 31     24 23    16 15        0
 267	 *
 268	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
 269	 *   63      48 47    40 39       32 31             16 15    8 7      0
 270	 *   +----------------------------------------------------------------+
 271	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
 272	 *   +----------------------------------------------------------------+
 273	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
 274	 *   +----------------------------------------------------------------+
 275	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
 276	 *
 277	 * Extended Data Descriptor (DTYP=0x1)
 278	 *   +----------------------------------------------------------------+
 279	 * 0 |                     Buffer Address [63:0]                      |
 280	 *   +----------------------------------------------------------------+
 281	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
 282	 *   +----------------------------------------------------------------+
 283	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
 284	 */
 285	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
 286	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
 287	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
 288	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 289		const char *next_desc;
 290		tx_desc = E1000_TX_DESC(*tx_ring, i);
 291		buffer_info = &tx_ring->buffer_info[i];
 292		u0 = (struct my_u0 *)tx_desc;
 293		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
 294			next_desc = " NTC/U";
 295		else if (i == tx_ring->next_to_use)
 296			next_desc = " NTU";
 297		else if (i == tx_ring->next_to_clean)
 298			next_desc = " NTC";
 299		else
 300			next_desc = "";
 301		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
 302			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
 303			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
 304			i,
 305			(unsigned long long)le64_to_cpu(u0->a),
 306			(unsigned long long)le64_to_cpu(u0->b),
 307			(unsigned long long)buffer_info->dma,
 308			buffer_info->length, buffer_info->next_to_watch,
 309			(unsigned long long)buffer_info->time_stamp,
 310			buffer_info->skb, next_desc);
 311
 312		if (netif_msg_pktdata(adapter) && buffer_info->skb)
 313			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 314				       16, 1, buffer_info->skb->data,
 315				       buffer_info->skb->len, true);
 316	}
 317
 318	/* Print Rx Ring Summary */
 319rx_ring_summary:
 320	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
 321	pr_info("Queue [NTU] [NTC]\n");
 322	pr_info(" %5d %5X %5X\n",
 323		0, rx_ring->next_to_use, rx_ring->next_to_clean);
 324
 325	/* Print Rx Ring */
 326	if (!netif_msg_rx_status(adapter))
 327		return;
 328
 329	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
 330	switch (adapter->rx_ps_pages) {
 331	case 1:
 332	case 2:
 333	case 3:
 334		/* [Extended] Packet Split Receive Descriptor Format
 335		 *
 336		 *    +-----------------------------------------------------+
 337		 *  0 |                Buffer Address 0 [63:0]              |
 338		 *    +-----------------------------------------------------+
 339		 *  8 |                Buffer Address 1 [63:0]              |
 340		 *    +-----------------------------------------------------+
 341		 * 16 |                Buffer Address 2 [63:0]              |
 342		 *    +-----------------------------------------------------+
 343		 * 24 |                Buffer Address 3 [63:0]              |
 344		 *    +-----------------------------------------------------+
 345		 */
 346		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
 347		/* [Extended] Receive Descriptor (Write-Back) Format
 348		 *
 349		 *   63       48 47    32 31     13 12    8 7    4 3        0
 350		 *   +------------------------------------------------------+
 351		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
 352		 *   | Checksum | Ident  |         | Queue |      |  Type   |
 353		 *   +------------------------------------------------------+
 354		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 355		 *   +------------------------------------------------------+
 356		 *   63       48 47    32 31            20 19               0
 357		 */
 358		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
 359		for (i = 0; i < rx_ring->count; i++) {
 360			const char *next_desc;
 361			buffer_info = &rx_ring->buffer_info[i];
 362			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
 363			u1 = (struct my_u1 *)rx_desc_ps;
 364			staterr =
 365			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
 366
 367			if (i == rx_ring->next_to_use)
 368				next_desc = " NTU";
 369			else if (i == rx_ring->next_to_clean)
 370				next_desc = " NTC";
 371			else
 372				next_desc = "";
 373
 374			if (staterr & E1000_RXD_STAT_DD) {
 375				/* Descriptor Done */
 376				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
 377					"RWB", i,
 378					(unsigned long long)le64_to_cpu(u1->a),
 379					(unsigned long long)le64_to_cpu(u1->b),
 380					(unsigned long long)le64_to_cpu(u1->c),
 381					(unsigned long long)le64_to_cpu(u1->d),
 382					buffer_info->skb, next_desc);
 383			} else {
 384				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
 385					"R  ", i,
 386					(unsigned long long)le64_to_cpu(u1->a),
 387					(unsigned long long)le64_to_cpu(u1->b),
 388					(unsigned long long)le64_to_cpu(u1->c),
 389					(unsigned long long)le64_to_cpu(u1->d),
 390					(unsigned long long)buffer_info->dma,
 391					buffer_info->skb, next_desc);
 392
 393				if (netif_msg_pktdata(adapter))
 394					e1000e_dump_ps_pages(adapter,
 395							     buffer_info);
 396			}
 397		}
 398		break;
 399	default:
 400	case 0:
 401		/* Extended Receive Descriptor (Read) Format
 402		 *
 403		 *   +-----------------------------------------------------+
 404		 * 0 |                Buffer Address [63:0]                |
 405		 *   +-----------------------------------------------------+
 406		 * 8 |                      Reserved                       |
 407		 *   +-----------------------------------------------------+
 408		 */
 409		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
 410		/* Extended Receive Descriptor (Write-Back) Format
 411		 *
 412		 *   63       48 47    32 31    24 23            4 3        0
 413		 *   +------------------------------------------------------+
 414		 *   |     RSS Hash      |        |               |         |
 415		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
 416		 *   | Packet   | IP     |        |               |  Type   |
 417		 *   | Checksum | Ident  |        |               |         |
 418		 *   +------------------------------------------------------+
 419		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 420		 *   +------------------------------------------------------+
 421		 *   63       48 47    32 31            20 19               0
 422		 */
 423		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
 424
 425		for (i = 0; i < rx_ring->count; i++) {
 426			const char *next_desc;
 427
 428			buffer_info = &rx_ring->buffer_info[i];
 429			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 430			u1 = (struct my_u1 *)rx_desc;
 431			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 432
 433			if (i == rx_ring->next_to_use)
 434				next_desc = " NTU";
 435			else if (i == rx_ring->next_to_clean)
 436				next_desc = " NTC";
 437			else
 438				next_desc = "";
 439
 440			if (staterr & E1000_RXD_STAT_DD) {
 441				/* Descriptor Done */
 442				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
 443					"RWB", i,
 444					(unsigned long long)le64_to_cpu(u1->a),
 445					(unsigned long long)le64_to_cpu(u1->b),
 446					buffer_info->skb, next_desc);
 447			} else {
 448				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
 449					"R  ", i,
 450					(unsigned long long)le64_to_cpu(u1->a),
 451					(unsigned long long)le64_to_cpu(u1->b),
 452					(unsigned long long)buffer_info->dma,
 453					buffer_info->skb, next_desc);
 454
 455				if (netif_msg_pktdata(adapter) &&
 456				    buffer_info->skb)
 457					print_hex_dump(KERN_INFO, "",
 458						       DUMP_PREFIX_ADDRESS, 16,
 459						       1,
 460						       buffer_info->skb->data,
 461						       adapter->rx_buffer_len,
 462						       true);
 463			}
 464		}
 465	}
 466}
 467
 468/**
 469 * e1000_desc_unused - calculate if we have unused descriptors
 470 * @ring: pointer to ring struct to perform calculation on
 471 **/
 472static int e1000_desc_unused(struct e1000_ring *ring)
 473{
 474	if (ring->next_to_clean > ring->next_to_use)
 475		return ring->next_to_clean - ring->next_to_use - 1;
 476
 477	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
 478}
 479
 480/**
 481 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
 482 * @adapter: board private structure
 483 * @hwtstamps: time stamp structure to update
 484 * @systim: unsigned 64bit system time value.
 485 *
 486 * Convert the system time value stored in the RX/TXSTMP registers into a
 487 * hwtstamp which can be used by the upper level time stamping functions.
 488 *
 489 * The 'systim_lock' spinlock is used to protect the consistency of the
 490 * system time value. This is needed because reading the 64 bit time
 491 * value involves reading two 32 bit registers. The first read latches the
 492 * value.
 493 **/
 494static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
 495				      struct skb_shared_hwtstamps *hwtstamps,
 496				      u64 systim)
 497{
 498	u64 ns;
 499	unsigned long flags;
 500
 501	spin_lock_irqsave(&adapter->systim_lock, flags);
 502	ns = timecounter_cyc2time(&adapter->tc, systim);
 503	spin_unlock_irqrestore(&adapter->systim_lock, flags);
 504
 505	memset(hwtstamps, 0, sizeof(*hwtstamps));
 506	hwtstamps->hwtstamp = ns_to_ktime(ns);
 507}
 508
 509/**
 510 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
 511 * @adapter: board private structure
 512 * @status: descriptor extended error and status field
 513 * @skb: particular skb to include time stamp
 514 *
 515 * If the time stamp is valid, convert it into the timecounter ns value
 516 * and store that result into the shhwtstamps structure which is passed
 517 * up the network stack.
 518 **/
 519static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
 520			       struct sk_buff *skb)
 521{
 522	struct e1000_hw *hw = &adapter->hw;
 523	u64 rxstmp;
 524
 525	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
 526	    !(status & E1000_RXDEXT_STATERR_TST) ||
 527	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 528		return;
 529
 530	/* The Rx time stamp registers contain the time stamp.  No other
 531	 * received packet will be time stamped until the Rx time stamp
 532	 * registers are read.  Because only one packet can be time stamped
 533	 * at a time, the register values must belong to this packet and
 534	 * therefore none of the other additional attributes need to be
 535	 * compared.
 536	 */
 537	rxstmp = (u64)er32(RXSTMPL);
 538	rxstmp |= (u64)er32(RXSTMPH) << 32;
 539	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
 540
 541	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
 542}
 543
 544/**
 545 * e1000_receive_skb - helper function to handle Rx indications
 546 * @adapter: board private structure
 547 * @netdev: pointer to netdev struct
 548 * @staterr: descriptor extended error and status field as written by hardware
 549 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 550 * @skb: pointer to sk_buff to be indicated to stack
 551 **/
 552static void e1000_receive_skb(struct e1000_adapter *adapter,
 553			      struct net_device *netdev, struct sk_buff *skb,
 554			      u32 staterr, __le16 vlan)
 555{
 556	u16 tag = le16_to_cpu(vlan);
 557
 558	e1000e_rx_hwtstamp(adapter, staterr, skb);
 559
 560	skb->protocol = eth_type_trans(skb, netdev);
 561
 562	if (staterr & E1000_RXD_STAT_VP)
 563		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
 564
 565	napi_gro_receive(&adapter->napi, skb);
 566}
 567
 568/**
 569 * e1000_rx_checksum - Receive Checksum Offload
 570 * @adapter: board private structure
 571 * @status_err: receive descriptor status and error fields
 572 * @skb: socket buffer with received data
 
 573 **/
 574static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 575			      struct sk_buff *skb)
 576{
 577	u16 status = (u16)status_err;
 578	u8 errors = (u8)(status_err >> 24);
 579
 580	skb_checksum_none_assert(skb);
 581
 582	/* Rx checksum disabled */
 583	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
 584		return;
 585
 586	/* Ignore Checksum bit is set */
 587	if (status & E1000_RXD_STAT_IXSM)
 588		return;
 589
 590	/* TCP/UDP checksum error bit or IP checksum error bit is set */
 591	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
 592		/* let the stack verify checksum errors */
 593		adapter->hw_csum_err++;
 594		return;
 595	}
 596
 597	/* TCP/UDP Checksum has not been calculated */
 598	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
 599		return;
 600
 601	/* It must be a TCP or UDP packet with a valid checksum */
 602	skb->ip_summed = CHECKSUM_UNNECESSARY;
 603	adapter->hw_csum_good++;
 604}
 605
 606static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
 607{
 608	struct e1000_adapter *adapter = rx_ring->adapter;
 609	struct e1000_hw *hw = &adapter->hw;
 
 610
 611	__ew32_prepare(hw);
 612	writel(i, rx_ring->tail);
 613
 614	if (unlikely(i != readl(rx_ring->tail))) {
 615		u32 rctl = er32(RCTL);
 616
 617		ew32(RCTL, rctl & ~E1000_RCTL_EN);
 618		e_err("ME firmware caused invalid RDT - resetting\n");
 619		schedule_work(&adapter->reset_task);
 620	}
 621}
 622
 623static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
 624{
 625	struct e1000_adapter *adapter = tx_ring->adapter;
 626	struct e1000_hw *hw = &adapter->hw;
 
 627
 628	__ew32_prepare(hw);
 629	writel(i, tx_ring->tail);
 630
 631	if (unlikely(i != readl(tx_ring->tail))) {
 632		u32 tctl = er32(TCTL);
 633
 634		ew32(TCTL, tctl & ~E1000_TCTL_EN);
 635		e_err("ME firmware caused invalid TDT - resetting\n");
 636		schedule_work(&adapter->reset_task);
 637	}
 638}
 639
 640/**
 641 * e1000_alloc_rx_buffers - Replace used receive buffers
 642 * @rx_ring: Rx descriptor ring
 643 * @cleaned_count: number to reallocate
 644 * @gfp: flags for allocation
 645 **/
 646static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
 647				   int cleaned_count, gfp_t gfp)
 648{
 649	struct e1000_adapter *adapter = rx_ring->adapter;
 650	struct net_device *netdev = adapter->netdev;
 651	struct pci_dev *pdev = adapter->pdev;
 652	union e1000_rx_desc_extended *rx_desc;
 653	struct e1000_buffer *buffer_info;
 654	struct sk_buff *skb;
 655	unsigned int i;
 656	unsigned int bufsz = adapter->rx_buffer_len;
 657
 658	i = rx_ring->next_to_use;
 659	buffer_info = &rx_ring->buffer_info[i];
 660
 661	while (cleaned_count--) {
 662		skb = buffer_info->skb;
 663		if (skb) {
 664			skb_trim(skb, 0);
 665			goto map_skb;
 666		}
 667
 668		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 669		if (!skb) {
 670			/* Better luck next round */
 671			adapter->alloc_rx_buff_failed++;
 672			break;
 673		}
 674
 675		buffer_info->skb = skb;
 676map_skb:
 677		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 678						  adapter->rx_buffer_len,
 679						  DMA_FROM_DEVICE);
 680		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 681			dev_err(&pdev->dev, "Rx DMA map failed\n");
 682			adapter->rx_dma_failed++;
 683			break;
 684		}
 685
 686		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 687		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 688
 689		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 690			/* Force memory writes to complete before letting h/w
 691			 * know there are new descriptors to fetch.  (Only
 692			 * applicable for weak-ordered memory model archs,
 693			 * such as IA-64).
 694			 */
 695			wmb();
 696			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 697				e1000e_update_rdt_wa(rx_ring, i);
 698			else
 699				writel(i, rx_ring->tail);
 700		}
 701		i++;
 702		if (i == rx_ring->count)
 703			i = 0;
 704		buffer_info = &rx_ring->buffer_info[i];
 705	}
 706
 707	rx_ring->next_to_use = i;
 708}
 709
 710/**
 711 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 712 * @rx_ring: Rx descriptor ring
 713 * @cleaned_count: number to reallocate
 714 * @gfp: flags for allocation
 715 **/
 716static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
 717				      int cleaned_count, gfp_t gfp)
 718{
 719	struct e1000_adapter *adapter = rx_ring->adapter;
 720	struct net_device *netdev = adapter->netdev;
 721	struct pci_dev *pdev = adapter->pdev;
 722	union e1000_rx_desc_packet_split *rx_desc;
 723	struct e1000_buffer *buffer_info;
 724	struct e1000_ps_page *ps_page;
 725	struct sk_buff *skb;
 726	unsigned int i, j;
 727
 728	i = rx_ring->next_to_use;
 729	buffer_info = &rx_ring->buffer_info[i];
 730
 731	while (cleaned_count--) {
 732		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
 733
 734		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
 735			ps_page = &buffer_info->ps_pages[j];
 736			if (j >= adapter->rx_ps_pages) {
 737				/* all unused desc entries get hw null ptr */
 738				rx_desc->read.buffer_addr[j + 1] =
 739				    ~cpu_to_le64(0);
 740				continue;
 741			}
 742			if (!ps_page->page) {
 743				ps_page->page = alloc_page(gfp);
 744				if (!ps_page->page) {
 745					adapter->alloc_rx_buff_failed++;
 746					goto no_buffers;
 747				}
 748				ps_page->dma = dma_map_page(&pdev->dev,
 749							    ps_page->page,
 750							    0, PAGE_SIZE,
 751							    DMA_FROM_DEVICE);
 752				if (dma_mapping_error(&pdev->dev,
 753						      ps_page->dma)) {
 754					dev_err(&adapter->pdev->dev,
 755						"Rx DMA page map failed\n");
 756					adapter->rx_dma_failed++;
 757					goto no_buffers;
 758				}
 759			}
 760			/* Refresh the desc even if buffer_addrs
 761			 * didn't change because each write-back
 762			 * erases this info.
 763			 */
 764			rx_desc->read.buffer_addr[j + 1] =
 765			    cpu_to_le64(ps_page->dma);
 766		}
 767
 768		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
 769						  gfp);
 770
 771		if (!skb) {
 772			adapter->alloc_rx_buff_failed++;
 773			break;
 774		}
 775
 776		buffer_info->skb = skb;
 777		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 778						  adapter->rx_ps_bsize0,
 779						  DMA_FROM_DEVICE);
 780		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 781			dev_err(&pdev->dev, "Rx DMA map failed\n");
 782			adapter->rx_dma_failed++;
 783			/* cleanup skb */
 784			dev_kfree_skb_any(skb);
 785			buffer_info->skb = NULL;
 786			break;
 787		}
 788
 789		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
 790
 791		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 792			/* Force memory writes to complete before letting h/w
 793			 * know there are new descriptors to fetch.  (Only
 794			 * applicable for weak-ordered memory model archs,
 795			 * such as IA-64).
 796			 */
 797			wmb();
 798			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 799				e1000e_update_rdt_wa(rx_ring, i << 1);
 800			else
 801				writel(i << 1, rx_ring->tail);
 802		}
 803
 804		i++;
 805		if (i == rx_ring->count)
 806			i = 0;
 807		buffer_info = &rx_ring->buffer_info[i];
 808	}
 809
 810no_buffers:
 811	rx_ring->next_to_use = i;
 812}
 813
 814/**
 815 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 816 * @rx_ring: Rx descriptor ring
 817 * @cleaned_count: number of buffers to allocate this pass
 818 * @gfp: flags for allocation
 819 **/
 820
 821static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
 822					 int cleaned_count, gfp_t gfp)
 823{
 824	struct e1000_adapter *adapter = rx_ring->adapter;
 825	struct net_device *netdev = adapter->netdev;
 826	struct pci_dev *pdev = adapter->pdev;
 827	union e1000_rx_desc_extended *rx_desc;
 828	struct e1000_buffer *buffer_info;
 829	struct sk_buff *skb;
 830	unsigned int i;
 831	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
 832
 833	i = rx_ring->next_to_use;
 834	buffer_info = &rx_ring->buffer_info[i];
 835
 836	while (cleaned_count--) {
 837		skb = buffer_info->skb;
 838		if (skb) {
 839			skb_trim(skb, 0);
 840			goto check_page;
 841		}
 842
 843		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 844		if (unlikely(!skb)) {
 845			/* Better luck next round */
 846			adapter->alloc_rx_buff_failed++;
 847			break;
 848		}
 849
 850		buffer_info->skb = skb;
 851check_page:
 852		/* allocate a new page if necessary */
 853		if (!buffer_info->page) {
 854			buffer_info->page = alloc_page(gfp);
 855			if (unlikely(!buffer_info->page)) {
 856				adapter->alloc_rx_buff_failed++;
 857				break;
 858			}
 859		}
 860
 861		if (!buffer_info->dma) {
 862			buffer_info->dma = dma_map_page(&pdev->dev,
 863							buffer_info->page, 0,
 864							PAGE_SIZE,
 865							DMA_FROM_DEVICE);
 866			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 867				adapter->alloc_rx_buff_failed++;
 868				break;
 869			}
 870		}
 871
 872		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 873		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 874
 875		if (unlikely(++i == rx_ring->count))
 876			i = 0;
 877		buffer_info = &rx_ring->buffer_info[i];
 878	}
 879
 880	if (likely(rx_ring->next_to_use != i)) {
 881		rx_ring->next_to_use = i;
 882		if (unlikely(i-- == 0))
 883			i = (rx_ring->count - 1);
 884
 885		/* Force memory writes to complete before letting h/w
 886		 * know there are new descriptors to fetch.  (Only
 887		 * applicable for weak-ordered memory model archs,
 888		 * such as IA-64).
 889		 */
 890		wmb();
 891		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 892			e1000e_update_rdt_wa(rx_ring, i);
 893		else
 894			writel(i, rx_ring->tail);
 895	}
 896}
 897
 898static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
 899				 struct sk_buff *skb)
 900{
 901	if (netdev->features & NETIF_F_RXHASH)
 902		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
 903}
 904
 905/**
 906 * e1000_clean_rx_irq - Send received data up the network stack
 907 * @rx_ring: Rx descriptor ring
 908 * @work_done: output parameter for indicating completed work
 909 * @work_to_do: how many packets we can clean
 910 *
 911 * the return value indicates whether actual cleaning was done, there
 912 * is no guarantee that everything was cleaned
 913 **/
 914static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
 915			       int work_to_do)
 916{
 917	struct e1000_adapter *adapter = rx_ring->adapter;
 918	struct net_device *netdev = adapter->netdev;
 919	struct pci_dev *pdev = adapter->pdev;
 920	struct e1000_hw *hw = &adapter->hw;
 921	union e1000_rx_desc_extended *rx_desc, *next_rxd;
 922	struct e1000_buffer *buffer_info, *next_buffer;
 923	u32 length, staterr;
 924	unsigned int i;
 925	int cleaned_count = 0;
 926	bool cleaned = false;
 927	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 928
 929	i = rx_ring->next_to_clean;
 930	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 931	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 932	buffer_info = &rx_ring->buffer_info[i];
 933
 934	while (staterr & E1000_RXD_STAT_DD) {
 935		struct sk_buff *skb;
 936
 937		if (*work_done >= work_to_do)
 938			break;
 939		(*work_done)++;
 940		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
 941
 942		skb = buffer_info->skb;
 943		buffer_info->skb = NULL;
 944
 945		prefetch(skb->data - NET_IP_ALIGN);
 946
 947		i++;
 948		if (i == rx_ring->count)
 949			i = 0;
 950		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
 951		prefetch(next_rxd);
 952
 953		next_buffer = &rx_ring->buffer_info[i];
 954
 955		cleaned = true;
 956		cleaned_count++;
 957		dma_unmap_single(&pdev->dev, buffer_info->dma,
 958				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
 959		buffer_info->dma = 0;
 960
 961		length = le16_to_cpu(rx_desc->wb.upper.length);
 962
 963		/* !EOP means multiple descriptors were used to store a single
 964		 * packet, if that's the case we need to toss it.  In fact, we
 965		 * need to toss every packet with the EOP bit clear and the
 966		 * next frame that _does_ have the EOP bit set, as it is by
 967		 * definition only a frame fragment
 968		 */
 969		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
 970			adapter->flags2 |= FLAG2_IS_DISCARDING;
 971
 972		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
 973			/* All receives must fit into a single buffer */
 974			e_dbg("Receive packet consumed multiple buffers\n");
 975			/* recycle */
 976			buffer_info->skb = skb;
 977			if (staterr & E1000_RXD_STAT_EOP)
 978				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 979			goto next_desc;
 980		}
 981
 982		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
 983			     !(netdev->features & NETIF_F_RXALL))) {
 984			/* recycle */
 985			buffer_info->skb = skb;
 986			goto next_desc;
 987		}
 988
 989		/* adjust length to remove Ethernet CRC */
 990		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
 991			/* If configured to store CRC, don't subtract FCS,
 992			 * but keep the FCS bytes out of the total_rx_bytes
 993			 * counter
 994			 */
 995			if (netdev->features & NETIF_F_RXFCS)
 996				total_rx_bytes -= 4;
 997			else
 998				length -= 4;
 999		}
1000
1001		total_rx_bytes += length;
1002		total_rx_packets++;
1003
1004		/* code added for copybreak, this should improve
1005		 * performance for small packets with large amounts
1006		 * of reassembly being done in the stack
1007		 */
1008		if (length < copybreak) {
1009			struct sk_buff *new_skb =
1010				napi_alloc_skb(&adapter->napi, length);
1011			if (new_skb) {
1012				skb_copy_to_linear_data_offset(new_skb,
1013							       -NET_IP_ALIGN,
1014							       (skb->data -
1015								NET_IP_ALIGN),
1016							       (length +
1017								NET_IP_ALIGN));
1018				/* save the skb in buffer_info as good */
1019				buffer_info->skb = skb;
1020				skb = new_skb;
1021			}
1022			/* else just continue with the old one */
1023		}
1024		/* end copybreak code */
1025		skb_put(skb, length);
1026
1027		/* Receive Checksum Offload */
1028		e1000_rx_checksum(adapter, staterr, skb);
1029
1030		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1031
1032		e1000_receive_skb(adapter, netdev, skb, staterr,
1033				  rx_desc->wb.upper.vlan);
1034
1035next_desc:
1036		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1037
1038		/* return some buffers to hardware, one at a time is too slow */
1039		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1040			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1041					      GFP_ATOMIC);
1042			cleaned_count = 0;
1043		}
1044
1045		/* use prefetched values */
1046		rx_desc = next_rxd;
1047		buffer_info = next_buffer;
1048
1049		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1050	}
1051	rx_ring->next_to_clean = i;
1052
1053	cleaned_count = e1000_desc_unused(rx_ring);
1054	if (cleaned_count)
1055		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1056
1057	adapter->total_rx_bytes += total_rx_bytes;
1058	adapter->total_rx_packets += total_rx_packets;
1059	return cleaned;
1060}
1061
1062static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1063			    struct e1000_buffer *buffer_info,
1064			    bool drop)
1065{
1066	struct e1000_adapter *adapter = tx_ring->adapter;
1067
1068	if (buffer_info->dma) {
1069		if (buffer_info->mapped_as_page)
1070			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1071				       buffer_info->length, DMA_TO_DEVICE);
1072		else
1073			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1074					 buffer_info->length, DMA_TO_DEVICE);
1075		buffer_info->dma = 0;
1076	}
1077	if (buffer_info->skb) {
1078		if (drop)
1079			dev_kfree_skb_any(buffer_info->skb);
1080		else
1081			dev_consume_skb_any(buffer_info->skb);
1082		buffer_info->skb = NULL;
1083	}
1084	buffer_info->time_stamp = 0;
1085}
1086
1087static void e1000_print_hw_hang(struct work_struct *work)
1088{
1089	struct e1000_adapter *adapter = container_of(work,
1090						     struct e1000_adapter,
1091						     print_hang_task);
1092	struct net_device *netdev = adapter->netdev;
1093	struct e1000_ring *tx_ring = adapter->tx_ring;
1094	unsigned int i = tx_ring->next_to_clean;
1095	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1096	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1097	struct e1000_hw *hw = &adapter->hw;
1098	u16 phy_status, phy_1000t_status, phy_ext_status;
1099	u16 pci_status;
1100
1101	if (test_bit(__E1000_DOWN, &adapter->state))
1102		return;
1103
1104	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1105		/* May be block on write-back, flush and detect again
1106		 * flush pending descriptor writebacks to memory
1107		 */
1108		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1109		/* execute the writes immediately */
1110		e1e_flush();
1111		/* Due to rare timing issues, write to TIDV again to ensure
1112		 * the write is successful
1113		 */
1114		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115		/* execute the writes immediately */
1116		e1e_flush();
1117		adapter->tx_hang_recheck = true;
1118		return;
1119	}
1120	adapter->tx_hang_recheck = false;
1121
1122	if (er32(TDH(0)) == er32(TDT(0))) {
1123		e_dbg("false hang detected, ignoring\n");
1124		return;
1125	}
1126
1127	/* Real hang detected */
1128	netif_stop_queue(netdev);
1129
1130	e1e_rphy(hw, MII_BMSR, &phy_status);
1131	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1132	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1133
1134	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1135
1136	/* detected Hardware unit hang */
1137	e_err("Detected Hardware Unit Hang:\n"
1138	      "  TDH                  <%x>\n"
1139	      "  TDT                  <%x>\n"
1140	      "  next_to_use          <%x>\n"
1141	      "  next_to_clean        <%x>\n"
1142	      "buffer_info[next_to_clean]:\n"
1143	      "  time_stamp           <%lx>\n"
1144	      "  next_to_watch        <%x>\n"
1145	      "  jiffies              <%lx>\n"
1146	      "  next_to_watch.status <%x>\n"
1147	      "MAC Status             <%x>\n"
1148	      "PHY Status             <%x>\n"
1149	      "PHY 1000BASE-T Status  <%x>\n"
1150	      "PHY Extended Status    <%x>\n"
1151	      "PCI Status             <%x>\n",
1152	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1153	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1154	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1155	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1156
1157	e1000e_dump(adapter);
1158
1159	/* Suggest workaround for known h/w issue */
1160	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1161		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1162}
1163
1164/**
1165 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1166 * @work: pointer to work struct
1167 *
1168 * This work function polls the TSYNCTXCTL valid bit to determine when a
1169 * timestamp has been taken for the current stored skb.  The timestamp must
1170 * be for this skb because only one such packet is allowed in the queue.
1171 */
1172static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1173{
1174	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1175						     tx_hwtstamp_work);
1176	struct e1000_hw *hw = &adapter->hw;
1177
1178	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1179		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1180		struct skb_shared_hwtstamps shhwtstamps;
1181		u64 txstmp;
1182
1183		txstmp = er32(TXSTMPL);
1184		txstmp |= (u64)er32(TXSTMPH) << 32;
1185
1186		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1187
1188		/* Clear the global tx_hwtstamp_skb pointer and force writes
1189		 * prior to notifying the stack of a Tx timestamp.
1190		 */
1191		adapter->tx_hwtstamp_skb = NULL;
1192		wmb(); /* force write prior to skb_tstamp_tx */
1193
1194		skb_tstamp_tx(skb, &shhwtstamps);
1195		dev_consume_skb_any(skb);
1196	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197			      + adapter->tx_timeout_factor * HZ)) {
1198		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199		adapter->tx_hwtstamp_skb = NULL;
1200		adapter->tx_hwtstamp_timeouts++;
1201		e_warn("clearing Tx timestamp hang\n");
1202	} else {
1203		/* reschedule to check later */
1204		schedule_work(&adapter->tx_hwtstamp_work);
1205	}
1206}
1207
1208/**
1209 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210 * @tx_ring: Tx descriptor ring
1211 *
1212 * the return value indicates whether actual cleaning was done, there
1213 * is no guarantee that everything was cleaned
1214 **/
1215static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1216{
1217	struct e1000_adapter *adapter = tx_ring->adapter;
1218	struct net_device *netdev = adapter->netdev;
1219	struct e1000_hw *hw = &adapter->hw;
1220	struct e1000_tx_desc *tx_desc, *eop_desc;
1221	struct e1000_buffer *buffer_info;
1222	unsigned int i, eop;
1223	unsigned int count = 0;
1224	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225	unsigned int bytes_compl = 0, pkts_compl = 0;
1226
1227	i = tx_ring->next_to_clean;
1228	eop = tx_ring->buffer_info[i].next_to_watch;
1229	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230
1231	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232	       (count < tx_ring->count)) {
1233		bool cleaned = false;
1234
1235		dma_rmb();		/* read buffer_info after eop_desc */
1236		for (; !cleaned; count++) {
1237			tx_desc = E1000_TX_DESC(*tx_ring, i);
1238			buffer_info = &tx_ring->buffer_info[i];
1239			cleaned = (i == eop);
1240
1241			if (cleaned) {
1242				total_tx_packets += buffer_info->segs;
1243				total_tx_bytes += buffer_info->bytecount;
1244				if (buffer_info->skb) {
1245					bytes_compl += buffer_info->skb->len;
1246					pkts_compl++;
1247				}
1248			}
1249
1250			e1000_put_txbuf(tx_ring, buffer_info, false);
1251			tx_desc->upper.data = 0;
1252
1253			i++;
1254			if (i == tx_ring->count)
1255				i = 0;
1256		}
1257
1258		if (i == tx_ring->next_to_use)
1259			break;
1260		eop = tx_ring->buffer_info[i].next_to_watch;
1261		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1262	}
1263
1264	tx_ring->next_to_clean = i;
1265
1266	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267
1268#define TX_WAKE_THRESHOLD 32
1269	if (count && netif_carrier_ok(netdev) &&
1270	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271		/* Make sure that anybody stopping the queue after this
1272		 * sees the new next_to_clean.
1273		 */
1274		smp_mb();
1275
1276		if (netif_queue_stopped(netdev) &&
1277		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1278			netif_wake_queue(netdev);
1279			++adapter->restart_queue;
1280		}
1281	}
1282
1283	if (adapter->detect_tx_hung) {
1284		/* Detect a transmit hang in hardware, this serializes the
1285		 * check with the clearing of time_stamp and movement of i
1286		 */
1287		adapter->detect_tx_hung = false;
1288		if (tx_ring->buffer_info[i].time_stamp &&
1289		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290			       + (adapter->tx_timeout_factor * HZ)) &&
1291		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1292			schedule_work(&adapter->print_hang_task);
1293		else
1294			adapter->tx_hang_recheck = false;
1295	}
1296	adapter->total_tx_bytes += total_tx_bytes;
1297	adapter->total_tx_packets += total_tx_packets;
1298	return count < tx_ring->count;
1299}
1300
1301/**
1302 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303 * @rx_ring: Rx descriptor ring
1304 * @work_done: output parameter for indicating completed work
1305 * @work_to_do: how many packets we can clean
1306 *
1307 * the return value indicates whether actual cleaning was done, there
1308 * is no guarantee that everything was cleaned
1309 **/
1310static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1311				  int work_to_do)
1312{
1313	struct e1000_adapter *adapter = rx_ring->adapter;
1314	struct e1000_hw *hw = &adapter->hw;
1315	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1316	struct net_device *netdev = adapter->netdev;
1317	struct pci_dev *pdev = adapter->pdev;
1318	struct e1000_buffer *buffer_info, *next_buffer;
1319	struct e1000_ps_page *ps_page;
1320	struct sk_buff *skb;
1321	unsigned int i, j;
1322	u32 length, staterr;
1323	int cleaned_count = 0;
1324	bool cleaned = false;
1325	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1326
1327	i = rx_ring->next_to_clean;
1328	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1329	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1330	buffer_info = &rx_ring->buffer_info[i];
1331
1332	while (staterr & E1000_RXD_STAT_DD) {
1333		if (*work_done >= work_to_do)
1334			break;
1335		(*work_done)++;
1336		skb = buffer_info->skb;
1337		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1338
1339		/* in the packet split case this is header only */
1340		prefetch(skb->data - NET_IP_ALIGN);
1341
1342		i++;
1343		if (i == rx_ring->count)
1344			i = 0;
1345		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1346		prefetch(next_rxd);
1347
1348		next_buffer = &rx_ring->buffer_info[i];
1349
1350		cleaned = true;
1351		cleaned_count++;
1352		dma_unmap_single(&pdev->dev, buffer_info->dma,
1353				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1354		buffer_info->dma = 0;
1355
1356		/* see !EOP comment in other Rx routine */
1357		if (!(staterr & E1000_RXD_STAT_EOP))
1358			adapter->flags2 |= FLAG2_IS_DISCARDING;
1359
1360		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1361			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1362			dev_kfree_skb_irq(skb);
1363			if (staterr & E1000_RXD_STAT_EOP)
1364				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1365			goto next_desc;
1366		}
1367
1368		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1369			     !(netdev->features & NETIF_F_RXALL))) {
1370			dev_kfree_skb_irq(skb);
1371			goto next_desc;
1372		}
1373
1374		length = le16_to_cpu(rx_desc->wb.middle.length0);
1375
1376		if (!length) {
1377			e_dbg("Last part of the packet spanning multiple descriptors\n");
1378			dev_kfree_skb_irq(skb);
1379			goto next_desc;
1380		}
1381
1382		/* Good Receive */
1383		skb_put(skb, length);
1384
1385		{
1386			/* this looks ugly, but it seems compiler issues make
1387			 * it more efficient than reusing j
1388			 */
1389			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1390
1391			/* page alloc/put takes too long and effects small
1392			 * packet throughput, so unsplit small packets and
1393			 * save the alloc/put
 
1394			 */
1395			if (l1 && (l1 <= copybreak) &&
1396			    ((length + l1) <= adapter->rx_ps_bsize0)) {
 
 
1397				ps_page = &buffer_info->ps_pages[0];
1398
 
 
 
 
1399				dma_sync_single_for_cpu(&pdev->dev,
1400							ps_page->dma,
1401							PAGE_SIZE,
1402							DMA_FROM_DEVICE);
1403				memcpy(skb_tail_pointer(skb),
1404				       page_address(ps_page->page), l1);
 
1405				dma_sync_single_for_device(&pdev->dev,
1406							   ps_page->dma,
1407							   PAGE_SIZE,
1408							   DMA_FROM_DEVICE);
1409
1410				/* remove the CRC */
1411				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1412					if (!(netdev->features & NETIF_F_RXFCS))
1413						l1 -= 4;
1414				}
1415
1416				skb_put(skb, l1);
1417				goto copydone;
1418			}	/* if */
1419		}
1420
1421		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1422			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1423			if (!length)
1424				break;
1425
1426			ps_page = &buffer_info->ps_pages[j];
1427			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1428				       DMA_FROM_DEVICE);
1429			ps_page->dma = 0;
1430			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1431			ps_page->page = NULL;
1432			skb->len += length;
1433			skb->data_len += length;
1434			skb->truesize += PAGE_SIZE;
1435		}
1436
1437		/* strip the ethernet crc, problem is we're using pages now so
1438		 * this whole operation can get a little cpu intensive
1439		 */
1440		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1441			if (!(netdev->features & NETIF_F_RXFCS))
1442				pskb_trim(skb, skb->len - 4);
1443		}
1444
1445copydone:
1446		total_rx_bytes += skb->len;
1447		total_rx_packets++;
1448
1449		e1000_rx_checksum(adapter, staterr, skb);
1450
1451		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1452
1453		if (rx_desc->wb.upper.header_status &
1454		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1455			adapter->rx_hdr_split++;
1456
1457		e1000_receive_skb(adapter, netdev, skb, staterr,
1458				  rx_desc->wb.middle.vlan);
1459
1460next_desc:
1461		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1462		buffer_info->skb = NULL;
1463
1464		/* return some buffers to hardware, one at a time is too slow */
1465		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1466			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1467					      GFP_ATOMIC);
1468			cleaned_count = 0;
1469		}
1470
1471		/* use prefetched values */
1472		rx_desc = next_rxd;
1473		buffer_info = next_buffer;
1474
1475		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1476	}
1477	rx_ring->next_to_clean = i;
1478
1479	cleaned_count = e1000_desc_unused(rx_ring);
1480	if (cleaned_count)
1481		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1482
1483	adapter->total_rx_bytes += total_rx_bytes;
1484	adapter->total_rx_packets += total_rx_packets;
1485	return cleaned;
1486}
1487
 
 
 
1488static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1489			       u16 length)
1490{
1491	bi->page = NULL;
1492	skb->len += length;
1493	skb->data_len += length;
1494	skb->truesize += PAGE_SIZE;
1495}
1496
1497/**
1498 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1499 * @rx_ring: Rx descriptor ring
1500 * @work_done: output parameter for indicating completed work
1501 * @work_to_do: how many packets we can clean
1502 *
1503 * the return value indicates whether actual cleaning was done, there
1504 * is no guarantee that everything was cleaned
1505 **/
1506static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1507				     int work_to_do)
1508{
1509	struct e1000_adapter *adapter = rx_ring->adapter;
1510	struct net_device *netdev = adapter->netdev;
1511	struct pci_dev *pdev = adapter->pdev;
1512	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1513	struct e1000_buffer *buffer_info, *next_buffer;
1514	u32 length, staterr;
1515	unsigned int i;
1516	int cleaned_count = 0;
1517	bool cleaned = false;
1518	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1519	struct skb_shared_info *shinfo;
1520
1521	i = rx_ring->next_to_clean;
1522	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1523	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1524	buffer_info = &rx_ring->buffer_info[i];
1525
1526	while (staterr & E1000_RXD_STAT_DD) {
1527		struct sk_buff *skb;
1528
1529		if (*work_done >= work_to_do)
1530			break;
1531		(*work_done)++;
1532		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1533
1534		skb = buffer_info->skb;
1535		buffer_info->skb = NULL;
1536
1537		++i;
1538		if (i == rx_ring->count)
1539			i = 0;
1540		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1541		prefetch(next_rxd);
1542
1543		next_buffer = &rx_ring->buffer_info[i];
1544
1545		cleaned = true;
1546		cleaned_count++;
1547		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1548			       DMA_FROM_DEVICE);
1549		buffer_info->dma = 0;
1550
1551		length = le16_to_cpu(rx_desc->wb.upper.length);
1552
1553		/* errors is only valid for DD + EOP descriptors */
1554		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1555			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1556			      !(netdev->features & NETIF_F_RXALL)))) {
1557			/* recycle both page and skb */
1558			buffer_info->skb = skb;
1559			/* an error means any chain goes out the window too */
1560			if (rx_ring->rx_skb_top)
1561				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1562			rx_ring->rx_skb_top = NULL;
1563			goto next_desc;
1564		}
1565#define rxtop (rx_ring->rx_skb_top)
1566		if (!(staterr & E1000_RXD_STAT_EOP)) {
1567			/* this descriptor is only the beginning (or middle) */
1568			if (!rxtop) {
1569				/* this is the beginning of a chain */
1570				rxtop = skb;
1571				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1572						   0, length);
1573			} else {
1574				/* this is the middle of a chain */
1575				shinfo = skb_shinfo(rxtop);
1576				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1577						   buffer_info->page, 0,
1578						   length);
1579				/* re-use the skb, only consumed the page */
1580				buffer_info->skb = skb;
1581			}
1582			e1000_consume_page(buffer_info, rxtop, length);
1583			goto next_desc;
1584		} else {
1585			if (rxtop) {
1586				/* end of the chain */
1587				shinfo = skb_shinfo(rxtop);
1588				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1589						   buffer_info->page, 0,
1590						   length);
1591				/* re-use the current skb, we only consumed the
1592				 * page
1593				 */
1594				buffer_info->skb = skb;
1595				skb = rxtop;
1596				rxtop = NULL;
1597				e1000_consume_page(buffer_info, skb, length);
1598			} else {
1599				/* no chain, got EOP, this buf is the packet
1600				 * copybreak to save the put_page/alloc_page
1601				 */
1602				if (length <= copybreak &&
1603				    skb_tailroom(skb) >= length) {
1604					memcpy(skb_tail_pointer(skb),
1605					       page_address(buffer_info->page),
 
1606					       length);
 
1607					/* re-use the page, so don't erase
1608					 * buffer_info->page
1609					 */
1610					skb_put(skb, length);
1611				} else {
1612					skb_fill_page_desc(skb, 0,
1613							   buffer_info->page, 0,
1614							   length);
1615					e1000_consume_page(buffer_info, skb,
1616							   length);
1617				}
1618			}
1619		}
1620
1621		/* Receive Checksum Offload */
1622		e1000_rx_checksum(adapter, staterr, skb);
1623
1624		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1625
1626		/* probably a little skewed due to removing CRC */
1627		total_rx_bytes += skb->len;
1628		total_rx_packets++;
1629
1630		/* eth type trans needs skb->data to point to something */
1631		if (!pskb_may_pull(skb, ETH_HLEN)) {
1632			e_err("pskb_may_pull failed.\n");
1633			dev_kfree_skb_irq(skb);
1634			goto next_desc;
1635		}
1636
1637		e1000_receive_skb(adapter, netdev, skb, staterr,
1638				  rx_desc->wb.upper.vlan);
1639
1640next_desc:
1641		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1642
1643		/* return some buffers to hardware, one at a time is too slow */
1644		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1645			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1646					      GFP_ATOMIC);
1647			cleaned_count = 0;
1648		}
1649
1650		/* use prefetched values */
1651		rx_desc = next_rxd;
1652		buffer_info = next_buffer;
1653
1654		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1655	}
1656	rx_ring->next_to_clean = i;
1657
1658	cleaned_count = e1000_desc_unused(rx_ring);
1659	if (cleaned_count)
1660		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1661
1662	adapter->total_rx_bytes += total_rx_bytes;
1663	adapter->total_rx_packets += total_rx_packets;
1664	return cleaned;
1665}
1666
1667/**
1668 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1669 * @rx_ring: Rx descriptor ring
1670 **/
1671static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1672{
1673	struct e1000_adapter *adapter = rx_ring->adapter;
1674	struct e1000_buffer *buffer_info;
1675	struct e1000_ps_page *ps_page;
1676	struct pci_dev *pdev = adapter->pdev;
1677	unsigned int i, j;
1678
1679	/* Free all the Rx ring sk_buffs */
1680	for (i = 0; i < rx_ring->count; i++) {
1681		buffer_info = &rx_ring->buffer_info[i];
1682		if (buffer_info->dma) {
1683			if (adapter->clean_rx == e1000_clean_rx_irq)
1684				dma_unmap_single(&pdev->dev, buffer_info->dma,
1685						 adapter->rx_buffer_len,
1686						 DMA_FROM_DEVICE);
1687			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1688				dma_unmap_page(&pdev->dev, buffer_info->dma,
1689					       PAGE_SIZE, DMA_FROM_DEVICE);
1690			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1691				dma_unmap_single(&pdev->dev, buffer_info->dma,
1692						 adapter->rx_ps_bsize0,
1693						 DMA_FROM_DEVICE);
1694			buffer_info->dma = 0;
1695		}
1696
1697		if (buffer_info->page) {
1698			put_page(buffer_info->page);
1699			buffer_info->page = NULL;
1700		}
1701
1702		if (buffer_info->skb) {
1703			dev_kfree_skb(buffer_info->skb);
1704			buffer_info->skb = NULL;
1705		}
1706
1707		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1708			ps_page = &buffer_info->ps_pages[j];
1709			if (!ps_page->page)
1710				break;
1711			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1712				       DMA_FROM_DEVICE);
1713			ps_page->dma = 0;
1714			put_page(ps_page->page);
1715			ps_page->page = NULL;
1716		}
1717	}
1718
1719	/* there also may be some cached data from a chained receive */
1720	if (rx_ring->rx_skb_top) {
1721		dev_kfree_skb(rx_ring->rx_skb_top);
1722		rx_ring->rx_skb_top = NULL;
1723	}
1724
1725	/* Zero out the descriptor ring */
1726	memset(rx_ring->desc, 0, rx_ring->size);
1727
1728	rx_ring->next_to_clean = 0;
1729	rx_ring->next_to_use = 0;
1730	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1731}
1732
1733static void e1000e_downshift_workaround(struct work_struct *work)
1734{
1735	struct e1000_adapter *adapter = container_of(work,
1736						     struct e1000_adapter,
1737						     downshift_task);
1738
1739	if (test_bit(__E1000_DOWN, &adapter->state))
1740		return;
1741
1742	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1743}
1744
1745/**
1746 * e1000_intr_msi - Interrupt Handler
1747 * @irq: interrupt number
1748 * @data: pointer to a network interface device structure
1749 **/
1750static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1751{
1752	struct net_device *netdev = data;
1753	struct e1000_adapter *adapter = netdev_priv(netdev);
1754	struct e1000_hw *hw = &adapter->hw;
1755	u32 icr = er32(ICR);
1756
1757	/* read ICR disables interrupts using IAM */
1758	if (icr & E1000_ICR_LSC) {
1759		hw->mac.get_link_status = true;
1760		/* ICH8 workaround-- Call gig speed drop workaround on cable
1761		 * disconnect (LSC) before accessing any PHY registers
1762		 */
1763		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1764		    (!(er32(STATUS) & E1000_STATUS_LU)))
1765			schedule_work(&adapter->downshift_task);
1766
1767		/* 80003ES2LAN workaround-- For packet buffer work-around on
1768		 * link down event; disable receives here in the ISR and reset
1769		 * adapter in watchdog
1770		 */
1771		if (netif_carrier_ok(netdev) &&
1772		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1773			/* disable receives */
1774			u32 rctl = er32(RCTL);
1775
1776			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1777			adapter->flags |= FLAG_RESTART_NOW;
1778		}
1779		/* guard against interrupt when we're going down */
1780		if (!test_bit(__E1000_DOWN, &adapter->state))
1781			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1782	}
1783
1784	/* Reset on uncorrectable ECC error */
1785	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1786		u32 pbeccsts = er32(PBECCSTS);
1787
1788		adapter->corr_errors +=
1789		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1790		adapter->uncorr_errors +=
1791		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
 
1792
1793		/* Do the reset outside of interrupt context */
1794		schedule_work(&adapter->reset_task);
1795
1796		/* return immediately since reset is imminent */
1797		return IRQ_HANDLED;
1798	}
1799
1800	if (napi_schedule_prep(&adapter->napi)) {
1801		adapter->total_tx_bytes = 0;
1802		adapter->total_tx_packets = 0;
1803		adapter->total_rx_bytes = 0;
1804		adapter->total_rx_packets = 0;
1805		__napi_schedule(&adapter->napi);
1806	}
1807
1808	return IRQ_HANDLED;
1809}
1810
1811/**
1812 * e1000_intr - Interrupt Handler
1813 * @irq: interrupt number
1814 * @data: pointer to a network interface device structure
1815 **/
1816static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1817{
1818	struct net_device *netdev = data;
1819	struct e1000_adapter *adapter = netdev_priv(netdev);
1820	struct e1000_hw *hw = &adapter->hw;
1821	u32 rctl, icr = er32(ICR);
1822
1823	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1824		return IRQ_NONE;	/* Not our interrupt */
1825
1826	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1827	 * not set, then the adapter didn't send an interrupt
1828	 */
1829	if (!(icr & E1000_ICR_INT_ASSERTED))
1830		return IRQ_NONE;
1831
1832	/* Interrupt Auto-Mask...upon reading ICR,
1833	 * interrupts are masked.  No need for the
1834	 * IMC write
1835	 */
1836
1837	if (icr & E1000_ICR_LSC) {
1838		hw->mac.get_link_status = true;
1839		/* ICH8 workaround-- Call gig speed drop workaround on cable
1840		 * disconnect (LSC) before accessing any PHY registers
1841		 */
1842		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1843		    (!(er32(STATUS) & E1000_STATUS_LU)))
1844			schedule_work(&adapter->downshift_task);
1845
1846		/* 80003ES2LAN workaround--
1847		 * For packet buffer work-around on link down event;
1848		 * disable receives here in the ISR and
1849		 * reset adapter in watchdog
1850		 */
1851		if (netif_carrier_ok(netdev) &&
1852		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1853			/* disable receives */
1854			rctl = er32(RCTL);
1855			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1856			adapter->flags |= FLAG_RESTART_NOW;
1857		}
1858		/* guard against interrupt when we're going down */
1859		if (!test_bit(__E1000_DOWN, &adapter->state))
1860			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1861	}
1862
1863	/* Reset on uncorrectable ECC error */
1864	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1865		u32 pbeccsts = er32(PBECCSTS);
1866
1867		adapter->corr_errors +=
1868		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1869		adapter->uncorr_errors +=
1870		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
 
1871
1872		/* Do the reset outside of interrupt context */
1873		schedule_work(&adapter->reset_task);
1874
1875		/* return immediately since reset is imminent */
1876		return IRQ_HANDLED;
1877	}
1878
1879	if (napi_schedule_prep(&adapter->napi)) {
1880		adapter->total_tx_bytes = 0;
1881		adapter->total_tx_packets = 0;
1882		adapter->total_rx_bytes = 0;
1883		adapter->total_rx_packets = 0;
1884		__napi_schedule(&adapter->napi);
1885	}
1886
1887	return IRQ_HANDLED;
1888}
1889
1890static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1891{
1892	struct net_device *netdev = data;
1893	struct e1000_adapter *adapter = netdev_priv(netdev);
1894	struct e1000_hw *hw = &adapter->hw;
1895	u32 icr = er32(ICR);
1896
1897	if (icr & adapter->eiac_mask)
1898		ew32(ICS, (icr & adapter->eiac_mask));
1899
1900	if (icr & E1000_ICR_LSC) {
1901		hw->mac.get_link_status = true;
1902		/* guard against interrupt when we're going down */
1903		if (!test_bit(__E1000_DOWN, &adapter->state))
1904			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1905	}
1906
1907	if (!test_bit(__E1000_DOWN, &adapter->state))
1908		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1909
1910	return IRQ_HANDLED;
1911}
1912
1913static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1914{
1915	struct net_device *netdev = data;
1916	struct e1000_adapter *adapter = netdev_priv(netdev);
1917	struct e1000_hw *hw = &adapter->hw;
1918	struct e1000_ring *tx_ring = adapter->tx_ring;
1919
1920	adapter->total_tx_bytes = 0;
1921	adapter->total_tx_packets = 0;
1922
1923	if (!e1000_clean_tx_irq(tx_ring))
1924		/* Ring was not completely cleaned, so fire another interrupt */
1925		ew32(ICS, tx_ring->ims_val);
1926
1927	if (!test_bit(__E1000_DOWN, &adapter->state))
1928		ew32(IMS, adapter->tx_ring->ims_val);
1929
1930	return IRQ_HANDLED;
1931}
1932
1933static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1934{
1935	struct net_device *netdev = data;
1936	struct e1000_adapter *adapter = netdev_priv(netdev);
1937	struct e1000_ring *rx_ring = adapter->rx_ring;
1938
1939	/* Write the ITR value calculated at the end of the
1940	 * previous interrupt.
1941	 */
1942	if (rx_ring->set_itr) {
1943		u32 itr = rx_ring->itr_val ?
1944			  1000000000 / (rx_ring->itr_val * 256) : 0;
1945
1946		writel(itr, rx_ring->itr_register);
1947		rx_ring->set_itr = 0;
1948	}
1949
1950	if (napi_schedule_prep(&adapter->napi)) {
1951		adapter->total_rx_bytes = 0;
1952		adapter->total_rx_packets = 0;
1953		__napi_schedule(&adapter->napi);
1954	}
1955	return IRQ_HANDLED;
1956}
1957
1958/**
1959 * e1000_configure_msix - Configure MSI-X hardware
1960 * @adapter: board private structure
1961 *
1962 * e1000_configure_msix sets up the hardware to properly
1963 * generate MSI-X interrupts.
1964 **/
1965static void e1000_configure_msix(struct e1000_adapter *adapter)
1966{
1967	struct e1000_hw *hw = &adapter->hw;
1968	struct e1000_ring *rx_ring = adapter->rx_ring;
1969	struct e1000_ring *tx_ring = adapter->tx_ring;
1970	int vector = 0;
1971	u32 ctrl_ext, ivar = 0;
1972
1973	adapter->eiac_mask = 0;
1974
1975	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1976	if (hw->mac.type == e1000_82574) {
1977		u32 rfctl = er32(RFCTL);
1978
1979		rfctl |= E1000_RFCTL_ACK_DIS;
1980		ew32(RFCTL, rfctl);
1981	}
1982
1983	/* Configure Rx vector */
1984	rx_ring->ims_val = E1000_IMS_RXQ0;
1985	adapter->eiac_mask |= rx_ring->ims_val;
1986	if (rx_ring->itr_val)
1987		writel(1000000000 / (rx_ring->itr_val * 256),
1988		       rx_ring->itr_register);
1989	else
1990		writel(1, rx_ring->itr_register);
1991	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1992
1993	/* Configure Tx vector */
1994	tx_ring->ims_val = E1000_IMS_TXQ0;
1995	vector++;
1996	if (tx_ring->itr_val)
1997		writel(1000000000 / (tx_ring->itr_val * 256),
1998		       tx_ring->itr_register);
1999	else
2000		writel(1, tx_ring->itr_register);
2001	adapter->eiac_mask |= tx_ring->ims_val;
2002	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2003
2004	/* set vector for Other Causes, e.g. link changes */
2005	vector++;
2006	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2007	if (rx_ring->itr_val)
2008		writel(1000000000 / (rx_ring->itr_val * 256),
2009		       hw->hw_addr + E1000_EITR_82574(vector));
2010	else
2011		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2012
2013	/* Cause Tx interrupts on every write back */
2014	ivar |= BIT(31);
2015
2016	ew32(IVAR, ivar);
2017
2018	/* enable MSI-X PBA support */
2019	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2020	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2021	ew32(CTRL_EXT, ctrl_ext);
2022	e1e_flush();
2023}
2024
2025void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2026{
2027	if (adapter->msix_entries) {
2028		pci_disable_msix(adapter->pdev);
2029		kfree(adapter->msix_entries);
2030		adapter->msix_entries = NULL;
2031	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2032		pci_disable_msi(adapter->pdev);
2033		adapter->flags &= ~FLAG_MSI_ENABLED;
2034	}
2035}
2036
2037/**
2038 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2039 * @adapter: board private structure
2040 *
2041 * Attempt to configure interrupts using the best available
2042 * capabilities of the hardware and kernel.
2043 **/
2044void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2045{
2046	int err;
2047	int i;
2048
2049	switch (adapter->int_mode) {
2050	case E1000E_INT_MODE_MSIX:
2051		if (adapter->flags & FLAG_HAS_MSIX) {
2052			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2053			adapter->msix_entries = kcalloc(adapter->num_vectors,
2054							sizeof(struct
2055							       msix_entry),
2056							GFP_KERNEL);
2057			if (adapter->msix_entries) {
2058				struct e1000_adapter *a = adapter;
2059
2060				for (i = 0; i < adapter->num_vectors; i++)
2061					adapter->msix_entries[i].entry = i;
2062
2063				err = pci_enable_msix_range(a->pdev,
2064							    a->msix_entries,
2065							    a->num_vectors,
2066							    a->num_vectors);
2067				if (err > 0)
2068					return;
2069			}
2070			/* MSI-X failed, so fall through and try MSI */
2071			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2072			e1000e_reset_interrupt_capability(adapter);
2073		}
2074		adapter->int_mode = E1000E_INT_MODE_MSI;
2075		fallthrough;
2076	case E1000E_INT_MODE_MSI:
2077		if (!pci_enable_msi(adapter->pdev)) {
2078			adapter->flags |= FLAG_MSI_ENABLED;
2079		} else {
2080			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2081			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2082		}
2083		fallthrough;
2084	case E1000E_INT_MODE_LEGACY:
2085		/* Don't do anything; this is the system default */
2086		break;
2087	}
2088
2089	/* store the number of vectors being used */
2090	adapter->num_vectors = 1;
2091}
2092
2093/**
2094 * e1000_request_msix - Initialize MSI-X interrupts
2095 * @adapter: board private structure
2096 *
2097 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2098 * kernel.
2099 **/
2100static int e1000_request_msix(struct e1000_adapter *adapter)
2101{
2102	struct net_device *netdev = adapter->netdev;
2103	int err = 0, vector = 0;
2104
2105	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2106		snprintf(adapter->rx_ring->name,
2107			 sizeof(adapter->rx_ring->name) - 1,
2108			 "%.14s-rx-0", netdev->name);
2109	else
2110		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2111	err = request_irq(adapter->msix_entries[vector].vector,
2112			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2113			  netdev);
2114	if (err)
2115		return err;
2116	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2117	    E1000_EITR_82574(vector);
2118	adapter->rx_ring->itr_val = adapter->itr;
2119	vector++;
2120
2121	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2122		snprintf(adapter->tx_ring->name,
2123			 sizeof(adapter->tx_ring->name) - 1,
2124			 "%.14s-tx-0", netdev->name);
2125	else
2126		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2127	err = request_irq(adapter->msix_entries[vector].vector,
2128			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2129			  netdev);
2130	if (err)
2131		return err;
2132	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2133	    E1000_EITR_82574(vector);
2134	adapter->tx_ring->itr_val = adapter->itr;
2135	vector++;
2136
2137	err = request_irq(adapter->msix_entries[vector].vector,
2138			  e1000_msix_other, 0, netdev->name, netdev);
2139	if (err)
2140		return err;
2141
2142	e1000_configure_msix(adapter);
2143
2144	return 0;
2145}
2146
2147/**
2148 * e1000_request_irq - initialize interrupts
2149 * @adapter: board private structure
2150 *
2151 * Attempts to configure interrupts using the best available
2152 * capabilities of the hardware and kernel.
2153 **/
2154static int e1000_request_irq(struct e1000_adapter *adapter)
2155{
2156	struct net_device *netdev = adapter->netdev;
2157	int err;
2158
2159	if (adapter->msix_entries) {
2160		err = e1000_request_msix(adapter);
2161		if (!err)
2162			return err;
2163		/* fall back to MSI */
2164		e1000e_reset_interrupt_capability(adapter);
2165		adapter->int_mode = E1000E_INT_MODE_MSI;
2166		e1000e_set_interrupt_capability(adapter);
2167	}
2168	if (adapter->flags & FLAG_MSI_ENABLED) {
2169		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2170				  netdev->name, netdev);
2171		if (!err)
2172			return err;
2173
2174		/* fall back to legacy interrupt */
2175		e1000e_reset_interrupt_capability(adapter);
2176		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2177	}
2178
2179	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2180			  netdev->name, netdev);
2181	if (err)
2182		e_err("Unable to allocate interrupt, Error: %d\n", err);
2183
2184	return err;
2185}
2186
2187static void e1000_free_irq(struct e1000_adapter *adapter)
2188{
2189	struct net_device *netdev = adapter->netdev;
2190
2191	if (adapter->msix_entries) {
2192		int vector = 0;
2193
2194		free_irq(adapter->msix_entries[vector].vector, netdev);
2195		vector++;
2196
2197		free_irq(adapter->msix_entries[vector].vector, netdev);
2198		vector++;
2199
2200		/* Other Causes interrupt vector */
2201		free_irq(adapter->msix_entries[vector].vector, netdev);
2202		return;
2203	}
2204
2205	free_irq(adapter->pdev->irq, netdev);
2206}
2207
2208/**
2209 * e1000_irq_disable - Mask off interrupt generation on the NIC
2210 * @adapter: board private structure
2211 **/
2212static void e1000_irq_disable(struct e1000_adapter *adapter)
2213{
2214	struct e1000_hw *hw = &adapter->hw;
2215
2216	ew32(IMC, ~0);
2217	if (adapter->msix_entries)
2218		ew32(EIAC_82574, 0);
2219	e1e_flush();
2220
2221	if (adapter->msix_entries) {
2222		int i;
2223
2224		for (i = 0; i < adapter->num_vectors; i++)
2225			synchronize_irq(adapter->msix_entries[i].vector);
2226	} else {
2227		synchronize_irq(adapter->pdev->irq);
2228	}
2229}
2230
2231/**
2232 * e1000_irq_enable - Enable default interrupt generation settings
2233 * @adapter: board private structure
2234 **/
2235static void e1000_irq_enable(struct e1000_adapter *adapter)
2236{
2237	struct e1000_hw *hw = &adapter->hw;
2238
2239	if (adapter->msix_entries) {
2240		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2241		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2242		     IMS_OTHER_MASK);
2243	} else if (hw->mac.type >= e1000_pch_lpt) {
2244		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2245	} else {
2246		ew32(IMS, IMS_ENABLE_MASK);
2247	}
2248	e1e_flush();
2249}
2250
2251/**
2252 * e1000e_get_hw_control - get control of the h/w from f/w
2253 * @adapter: address of board private structure
2254 *
2255 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2256 * For ASF and Pass Through versions of f/w this means that
2257 * the driver is loaded. For AMT version (only with 82573)
2258 * of the f/w this means that the network i/f is open.
2259 **/
2260void e1000e_get_hw_control(struct e1000_adapter *adapter)
2261{
2262	struct e1000_hw *hw = &adapter->hw;
2263	u32 ctrl_ext;
2264	u32 swsm;
2265
2266	/* Let firmware know the driver has taken over */
2267	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2268		swsm = er32(SWSM);
2269		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2270	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2271		ctrl_ext = er32(CTRL_EXT);
2272		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2273	}
2274}
2275
2276/**
2277 * e1000e_release_hw_control - release control of the h/w to f/w
2278 * @adapter: address of board private structure
2279 *
2280 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2281 * For ASF and Pass Through versions of f/w this means that the
2282 * driver is no longer loaded. For AMT version (only with 82573) i
2283 * of the f/w this means that the network i/f is closed.
2284 *
2285 **/
2286void e1000e_release_hw_control(struct e1000_adapter *adapter)
2287{
2288	struct e1000_hw *hw = &adapter->hw;
2289	u32 ctrl_ext;
2290	u32 swsm;
2291
2292	/* Let firmware taken over control of h/w */
2293	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2294		swsm = er32(SWSM);
2295		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2296	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2297		ctrl_ext = er32(CTRL_EXT);
2298		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2299	}
2300}
2301
2302/**
2303 * e1000_alloc_ring_dma - allocate memory for a ring structure
2304 * @adapter: board private structure
2305 * @ring: ring struct for which to allocate dma
2306 **/
2307static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2308				struct e1000_ring *ring)
2309{
2310	struct pci_dev *pdev = adapter->pdev;
2311
2312	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2313					GFP_KERNEL);
2314	if (!ring->desc)
2315		return -ENOMEM;
2316
2317	return 0;
2318}
2319
2320/**
2321 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2322 * @tx_ring: Tx descriptor ring
2323 *
2324 * Return 0 on success, negative on failure
2325 **/
2326int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2327{
2328	struct e1000_adapter *adapter = tx_ring->adapter;
2329	int err = -ENOMEM, size;
2330
2331	size = sizeof(struct e1000_buffer) * tx_ring->count;
2332	tx_ring->buffer_info = vzalloc(size);
2333	if (!tx_ring->buffer_info)
2334		goto err;
2335
2336	/* round up to nearest 4K */
2337	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2338	tx_ring->size = ALIGN(tx_ring->size, 4096);
2339
2340	err = e1000_alloc_ring_dma(adapter, tx_ring);
2341	if (err)
2342		goto err;
2343
2344	tx_ring->next_to_use = 0;
2345	tx_ring->next_to_clean = 0;
2346
2347	return 0;
2348err:
2349	vfree(tx_ring->buffer_info);
2350	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2351	return err;
2352}
2353
2354/**
2355 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2356 * @rx_ring: Rx descriptor ring
2357 *
2358 * Returns 0 on success, negative on failure
2359 **/
2360int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2361{
2362	struct e1000_adapter *adapter = rx_ring->adapter;
2363	struct e1000_buffer *buffer_info;
2364	int i, size, desc_len, err = -ENOMEM;
2365
2366	size = sizeof(struct e1000_buffer) * rx_ring->count;
2367	rx_ring->buffer_info = vzalloc(size);
2368	if (!rx_ring->buffer_info)
2369		goto err;
2370
2371	for (i = 0; i < rx_ring->count; i++) {
2372		buffer_info = &rx_ring->buffer_info[i];
2373		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2374						sizeof(struct e1000_ps_page),
2375						GFP_KERNEL);
2376		if (!buffer_info->ps_pages)
2377			goto err_pages;
2378	}
2379
2380	desc_len = sizeof(union e1000_rx_desc_packet_split);
2381
2382	/* Round up to nearest 4K */
2383	rx_ring->size = rx_ring->count * desc_len;
2384	rx_ring->size = ALIGN(rx_ring->size, 4096);
2385
2386	err = e1000_alloc_ring_dma(adapter, rx_ring);
2387	if (err)
2388		goto err_pages;
2389
2390	rx_ring->next_to_clean = 0;
2391	rx_ring->next_to_use = 0;
2392	rx_ring->rx_skb_top = NULL;
2393
2394	return 0;
2395
2396err_pages:
2397	for (i = 0; i < rx_ring->count; i++) {
2398		buffer_info = &rx_ring->buffer_info[i];
2399		kfree(buffer_info->ps_pages);
2400	}
2401err:
2402	vfree(rx_ring->buffer_info);
2403	e_err("Unable to allocate memory for the receive descriptor ring\n");
2404	return err;
2405}
2406
2407/**
2408 * e1000_clean_tx_ring - Free Tx Buffers
2409 * @tx_ring: Tx descriptor ring
2410 **/
2411static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2412{
2413	struct e1000_adapter *adapter = tx_ring->adapter;
2414	struct e1000_buffer *buffer_info;
2415	unsigned long size;
2416	unsigned int i;
2417
2418	for (i = 0; i < tx_ring->count; i++) {
2419		buffer_info = &tx_ring->buffer_info[i];
2420		e1000_put_txbuf(tx_ring, buffer_info, false);
2421	}
2422
2423	netdev_reset_queue(adapter->netdev);
2424	size = sizeof(struct e1000_buffer) * tx_ring->count;
2425	memset(tx_ring->buffer_info, 0, size);
2426
2427	memset(tx_ring->desc, 0, tx_ring->size);
2428
2429	tx_ring->next_to_use = 0;
2430	tx_ring->next_to_clean = 0;
2431}
2432
2433/**
2434 * e1000e_free_tx_resources - Free Tx Resources per Queue
2435 * @tx_ring: Tx descriptor ring
2436 *
2437 * Free all transmit software resources
2438 **/
2439void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2440{
2441	struct e1000_adapter *adapter = tx_ring->adapter;
2442	struct pci_dev *pdev = adapter->pdev;
2443
2444	e1000_clean_tx_ring(tx_ring);
2445
2446	vfree(tx_ring->buffer_info);
2447	tx_ring->buffer_info = NULL;
2448
2449	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2450			  tx_ring->dma);
2451	tx_ring->desc = NULL;
2452}
2453
2454/**
2455 * e1000e_free_rx_resources - Free Rx Resources
2456 * @rx_ring: Rx descriptor ring
2457 *
2458 * Free all receive software resources
2459 **/
2460void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2461{
2462	struct e1000_adapter *adapter = rx_ring->adapter;
2463	struct pci_dev *pdev = adapter->pdev;
2464	int i;
2465
2466	e1000_clean_rx_ring(rx_ring);
2467
2468	for (i = 0; i < rx_ring->count; i++)
2469		kfree(rx_ring->buffer_info[i].ps_pages);
2470
2471	vfree(rx_ring->buffer_info);
2472	rx_ring->buffer_info = NULL;
2473
2474	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2475			  rx_ring->dma);
2476	rx_ring->desc = NULL;
2477}
2478
2479/**
2480 * e1000_update_itr - update the dynamic ITR value based on statistics
 
2481 * @itr_setting: current adapter->itr
2482 * @packets: the number of packets during this measurement interval
2483 * @bytes: the number of bytes during this measurement interval
2484 *
2485 *      Stores a new ITR value based on packets and byte
2486 *      counts during the last interrupt.  The advantage of per interrupt
2487 *      computation is faster updates and more accurate ITR for the current
2488 *      traffic pattern.  Constants in this function were computed
2489 *      based on theoretical maximum wire speed and thresholds were set based
2490 *      on testing data as well as attempting to minimize response time
2491 *      while increasing bulk throughput.  This functionality is controlled
2492 *      by the InterruptThrottleRate module parameter.
2493 **/
2494static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2495{
2496	unsigned int retval = itr_setting;
2497
2498	if (packets == 0)
2499		return itr_setting;
2500
2501	switch (itr_setting) {
2502	case lowest_latency:
2503		/* handle TSO and jumbo frames */
2504		if (bytes / packets > 8000)
2505			retval = bulk_latency;
2506		else if ((packets < 5) && (bytes > 512))
2507			retval = low_latency;
2508		break;
2509	case low_latency:	/* 50 usec aka 20000 ints/s */
2510		if (bytes > 10000) {
2511			/* this if handles the TSO accounting */
2512			if (bytes / packets > 8000)
2513				retval = bulk_latency;
2514			else if ((packets < 10) || ((bytes / packets) > 1200))
2515				retval = bulk_latency;
2516			else if ((packets > 35))
2517				retval = lowest_latency;
2518		} else if (bytes / packets > 2000) {
2519			retval = bulk_latency;
2520		} else if (packets <= 2 && bytes < 512) {
2521			retval = lowest_latency;
2522		}
2523		break;
2524	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2525		if (bytes > 25000) {
2526			if (packets > 35)
2527				retval = low_latency;
2528		} else if (bytes < 6000) {
2529			retval = low_latency;
2530		}
2531		break;
2532	}
2533
2534	return retval;
2535}
2536
2537static void e1000_set_itr(struct e1000_adapter *adapter)
2538{
2539	u16 current_itr;
2540	u32 new_itr = adapter->itr;
2541
2542	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2543	if (adapter->link_speed != SPEED_1000) {
 
2544		new_itr = 4000;
2545		goto set_itr_now;
2546	}
2547
2548	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2549		new_itr = 0;
2550		goto set_itr_now;
2551	}
2552
2553	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2554					   adapter->total_tx_packets,
2555					   adapter->total_tx_bytes);
2556	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2557	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2558		adapter->tx_itr = low_latency;
2559
2560	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2561					   adapter->total_rx_packets,
2562					   adapter->total_rx_bytes);
2563	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2564	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2565		adapter->rx_itr = low_latency;
2566
2567	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2568
2569	/* counts and packets in update_itr are dependent on these numbers */
2570	switch (current_itr) {
2571	case lowest_latency:
2572		new_itr = 70000;
2573		break;
2574	case low_latency:
2575		new_itr = 20000;	/* aka hwitr = ~200 */
2576		break;
2577	case bulk_latency:
2578		new_itr = 4000;
2579		break;
2580	default:
2581		break;
2582	}
2583
2584set_itr_now:
2585	if (new_itr != adapter->itr) {
2586		/* this attempts to bias the interrupt rate towards Bulk
2587		 * by adding intermediate steps when interrupt rate is
2588		 * increasing
2589		 */
2590		new_itr = new_itr > adapter->itr ?
2591		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2592		adapter->itr = new_itr;
2593		adapter->rx_ring->itr_val = new_itr;
2594		if (adapter->msix_entries)
2595			adapter->rx_ring->set_itr = 1;
2596		else
2597			e1000e_write_itr(adapter, new_itr);
2598	}
2599}
2600
2601/**
2602 * e1000e_write_itr - write the ITR value to the appropriate registers
2603 * @adapter: address of board private structure
2604 * @itr: new ITR value to program
2605 *
2606 * e1000e_write_itr determines if the adapter is in MSI-X mode
2607 * and, if so, writes the EITR registers with the ITR value.
2608 * Otherwise, it writes the ITR value into the ITR register.
2609 **/
2610void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2611{
2612	struct e1000_hw *hw = &adapter->hw;
2613	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2614
2615	if (adapter->msix_entries) {
2616		int vector;
2617
2618		for (vector = 0; vector < adapter->num_vectors; vector++)
2619			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2620	} else {
2621		ew32(ITR, new_itr);
2622	}
2623}
2624
2625/**
2626 * e1000_alloc_queues - Allocate memory for all rings
2627 * @adapter: board private structure to initialize
2628 **/
2629static int e1000_alloc_queues(struct e1000_adapter *adapter)
2630{
2631	int size = sizeof(struct e1000_ring);
2632
2633	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2634	if (!adapter->tx_ring)
2635		goto err;
2636	adapter->tx_ring->count = adapter->tx_ring_count;
2637	adapter->tx_ring->adapter = adapter;
2638
2639	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2640	if (!adapter->rx_ring)
2641		goto err;
2642	adapter->rx_ring->count = adapter->rx_ring_count;
2643	adapter->rx_ring->adapter = adapter;
2644
2645	return 0;
2646err:
2647	e_err("Unable to allocate memory for queues\n");
2648	kfree(adapter->rx_ring);
2649	kfree(adapter->tx_ring);
2650	return -ENOMEM;
2651}
2652
2653/**
2654 * e1000e_poll - NAPI Rx polling callback
2655 * @napi: struct associated with this polling callback
2656 * @budget: number of packets driver is allowed to process this poll
2657 **/
2658static int e1000e_poll(struct napi_struct *napi, int budget)
2659{
2660	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2661						     napi);
2662	struct e1000_hw *hw = &adapter->hw;
2663	struct net_device *poll_dev = adapter->netdev;
2664	int tx_cleaned = 1, work_done = 0;
2665
2666	adapter = netdev_priv(poll_dev);
2667
2668	if (!adapter->msix_entries ||
2669	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2670		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2671
2672	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2673
2674	if (!tx_cleaned || work_done == budget)
2675		return budget;
2676
2677	/* Exit the polling mode, but don't re-enable interrupts if stack might
2678	 * poll us due to busy-polling
2679	 */
2680	if (likely(napi_complete_done(napi, work_done))) {
2681		if (adapter->itr_setting & 3)
2682			e1000_set_itr(adapter);
 
2683		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2684			if (adapter->msix_entries)
2685				ew32(IMS, adapter->rx_ring->ims_val);
2686			else
2687				e1000_irq_enable(adapter);
2688		}
2689	}
2690
2691	return work_done;
2692}
2693
2694static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2695				 __always_unused __be16 proto, u16 vid)
2696{
2697	struct e1000_adapter *adapter = netdev_priv(netdev);
2698	struct e1000_hw *hw = &adapter->hw;
2699	u32 vfta, index;
2700
2701	/* don't update vlan cookie if already programmed */
2702	if ((adapter->hw.mng_cookie.status &
2703	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2704	    (vid == adapter->mng_vlan_id))
2705		return 0;
2706
2707	/* add VID to filter table */
2708	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2709		index = (vid >> 5) & 0x7F;
2710		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2711		vfta |= BIT((vid & 0x1F));
2712		hw->mac.ops.write_vfta(hw, index, vfta);
2713	}
2714
2715	set_bit(vid, adapter->active_vlans);
2716
2717	return 0;
2718}
2719
2720static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2721				  __always_unused __be16 proto, u16 vid)
2722{
2723	struct e1000_adapter *adapter = netdev_priv(netdev);
2724	struct e1000_hw *hw = &adapter->hw;
2725	u32 vfta, index;
2726
2727	if ((adapter->hw.mng_cookie.status &
2728	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2729	    (vid == adapter->mng_vlan_id)) {
2730		/* release control to f/w */
2731		e1000e_release_hw_control(adapter);
2732		return 0;
2733	}
2734
2735	/* remove VID from filter table */
2736	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2737		index = (vid >> 5) & 0x7F;
2738		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2739		vfta &= ~BIT((vid & 0x1F));
2740		hw->mac.ops.write_vfta(hw, index, vfta);
2741	}
2742
2743	clear_bit(vid, adapter->active_vlans);
2744
2745	return 0;
2746}
2747
2748/**
2749 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2750 * @adapter: board private structure to initialize
2751 **/
2752static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2753{
2754	struct net_device *netdev = adapter->netdev;
2755	struct e1000_hw *hw = &adapter->hw;
2756	u32 rctl;
2757
2758	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2759		/* disable VLAN receive filtering */
2760		rctl = er32(RCTL);
2761		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2762		ew32(RCTL, rctl);
2763
2764		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2765			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2766					       adapter->mng_vlan_id);
2767			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2768		}
2769	}
2770}
2771
2772/**
2773 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2774 * @adapter: board private structure to initialize
2775 **/
2776static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2777{
2778	struct e1000_hw *hw = &adapter->hw;
2779	u32 rctl;
2780
2781	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2782		/* enable VLAN receive filtering */
2783		rctl = er32(RCTL);
2784		rctl |= E1000_RCTL_VFE;
2785		rctl &= ~E1000_RCTL_CFIEN;
2786		ew32(RCTL, rctl);
2787	}
2788}
2789
2790/**
2791 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2792 * @adapter: board private structure to initialize
2793 **/
2794static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2795{
2796	struct e1000_hw *hw = &adapter->hw;
2797	u32 ctrl;
2798
2799	/* disable VLAN tag insert/strip */
2800	ctrl = er32(CTRL);
2801	ctrl &= ~E1000_CTRL_VME;
2802	ew32(CTRL, ctrl);
2803}
2804
2805/**
2806 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2807 * @adapter: board private structure to initialize
2808 **/
2809static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2810{
2811	struct e1000_hw *hw = &adapter->hw;
2812	u32 ctrl;
2813
2814	/* enable VLAN tag insert/strip */
2815	ctrl = er32(CTRL);
2816	ctrl |= E1000_CTRL_VME;
2817	ew32(CTRL, ctrl);
2818}
2819
2820static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2821{
2822	struct net_device *netdev = adapter->netdev;
2823	u16 vid = adapter->hw.mng_cookie.vlan_id;
2824	u16 old_vid = adapter->mng_vlan_id;
2825
2826	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2827		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2828		adapter->mng_vlan_id = vid;
2829	}
2830
2831	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2832		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2833}
2834
2835static void e1000_restore_vlan(struct e1000_adapter *adapter)
2836{
2837	u16 vid;
2838
2839	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2840
2841	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2842	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2843}
2844
2845static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2846{
2847	struct e1000_hw *hw = &adapter->hw;
2848	u32 manc, manc2h, mdef, i, j;
2849
2850	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2851		return;
2852
2853	manc = er32(MANC);
2854
2855	/* enable receiving management packets to the host. this will probably
2856	 * generate destination unreachable messages from the host OS, but
2857	 * the packets will be handled on SMBUS
2858	 */
2859	manc |= E1000_MANC_EN_MNG2HOST;
2860	manc2h = er32(MANC2H);
2861
2862	switch (hw->mac.type) {
2863	default:
2864		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2865		break;
2866	case e1000_82574:
2867	case e1000_82583:
2868		/* Check if IPMI pass-through decision filter already exists;
2869		 * if so, enable it.
2870		 */
2871		for (i = 0, j = 0; i < 8; i++) {
2872			mdef = er32(MDEF(i));
2873
2874			/* Ignore filters with anything other than IPMI ports */
2875			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2876				continue;
2877
2878			/* Enable this decision filter in MANC2H */
2879			if (mdef)
2880				manc2h |= BIT(i);
2881
2882			j |= mdef;
2883		}
2884
2885		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2886			break;
2887
2888		/* Create new decision filter in an empty filter */
2889		for (i = 0, j = 0; i < 8; i++)
2890			if (er32(MDEF(i)) == 0) {
2891				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2892					       E1000_MDEF_PORT_664));
2893				manc2h |= BIT(1);
2894				j++;
2895				break;
2896			}
2897
2898		if (!j)
2899			e_warn("Unable to create IPMI pass-through filter\n");
2900		break;
2901	}
2902
2903	ew32(MANC2H, manc2h);
2904	ew32(MANC, manc);
2905}
2906
2907/**
2908 * e1000_configure_tx - Configure Transmit Unit after Reset
2909 * @adapter: board private structure
2910 *
2911 * Configure the Tx unit of the MAC after a reset.
2912 **/
2913static void e1000_configure_tx(struct e1000_adapter *adapter)
2914{
2915	struct e1000_hw *hw = &adapter->hw;
2916	struct e1000_ring *tx_ring = adapter->tx_ring;
2917	u64 tdba;
2918	u32 tdlen, tctl, tarc;
2919
2920	/* Setup the HW Tx Head and Tail descriptor pointers */
2921	tdba = tx_ring->dma;
2922	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2923	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2924	ew32(TDBAH(0), (tdba >> 32));
2925	ew32(TDLEN(0), tdlen);
2926	ew32(TDH(0), 0);
2927	ew32(TDT(0), 0);
2928	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2929	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2930
2931	writel(0, tx_ring->head);
2932	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2933		e1000e_update_tdt_wa(tx_ring, 0);
2934	else
2935		writel(0, tx_ring->tail);
2936
2937	/* Set the Tx Interrupt Delay register */
2938	ew32(TIDV, adapter->tx_int_delay);
2939	/* Tx irq moderation */
2940	ew32(TADV, adapter->tx_abs_int_delay);
2941
2942	if (adapter->flags2 & FLAG2_DMA_BURST) {
2943		u32 txdctl = er32(TXDCTL(0));
2944
2945		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2946			    E1000_TXDCTL_WTHRESH);
2947		/* set up some performance related parameters to encourage the
2948		 * hardware to use the bus more efficiently in bursts, depends
2949		 * on the tx_int_delay to be enabled,
2950		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2951		 * hthresh = 1 ==> prefetch when one or more available
2952		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2953		 * BEWARE: this seems to work but should be considered first if
2954		 * there are Tx hangs or other Tx related bugs
2955		 */
2956		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2957		ew32(TXDCTL(0), txdctl);
2958	}
2959	/* erratum work around: set txdctl the same for both queues */
2960	ew32(TXDCTL(1), er32(TXDCTL(0)));
2961
2962	/* Program the Transmit Control Register */
2963	tctl = er32(TCTL);
2964	tctl &= ~E1000_TCTL_CT;
2965	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2966		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2967
2968	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2969		tarc = er32(TARC(0));
2970		/* set the speed mode bit, we'll clear it if we're not at
2971		 * gigabit link later
2972		 */
2973#define SPEED_MODE_BIT BIT(21)
2974		tarc |= SPEED_MODE_BIT;
2975		ew32(TARC(0), tarc);
2976	}
2977
2978	/* errata: program both queues to unweighted RR */
2979	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2980		tarc = er32(TARC(0));
2981		tarc |= 1;
2982		ew32(TARC(0), tarc);
2983		tarc = er32(TARC(1));
2984		tarc |= 1;
2985		ew32(TARC(1), tarc);
2986	}
2987
2988	/* Setup Transmit Descriptor Settings for eop descriptor */
2989	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2990
2991	/* only set IDE if we are delaying interrupts using the timers */
2992	if (adapter->tx_int_delay)
2993		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2994
2995	/* enable Report Status bit */
2996	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2997
2998	ew32(TCTL, tctl);
2999
3000	hw->mac.ops.config_collision_dist(hw);
3001
3002	/* SPT and KBL Si errata workaround to avoid data corruption */
3003	if (hw->mac.type == e1000_pch_spt) {
3004		u32 reg_val;
3005
3006		reg_val = er32(IOSFPC);
3007		reg_val |= E1000_RCTL_RDMTS_HEX;
3008		ew32(IOSFPC, reg_val);
3009
3010		reg_val = er32(TARC(0));
3011		/* SPT and KBL Si errata workaround to avoid Tx hang.
3012		 * Dropping the number of outstanding requests from
3013		 * 3 to 2 in order to avoid a buffer overrun.
3014		 */
3015		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3016		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3017		ew32(TARC(0), reg_val);
3018	}
3019}
3020
3021#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3022			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3023
3024/**
3025 * e1000_setup_rctl - configure the receive control registers
3026 * @adapter: Board private structure
3027 **/
 
 
3028static void e1000_setup_rctl(struct e1000_adapter *adapter)
3029{
3030	struct e1000_hw *hw = &adapter->hw;
3031	u32 rctl, rfctl;
3032	u32 pages = 0;
3033
3034	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3035	 * If jumbo frames not set, program related MAC/PHY registers
3036	 * to h/w defaults
3037	 */
3038	if (hw->mac.type >= e1000_pch2lan) {
3039		s32 ret_val;
3040
3041		if (adapter->netdev->mtu > ETH_DATA_LEN)
3042			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3043		else
3044			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3045
3046		if (ret_val)
3047			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3048	}
3049
3050	/* Program MC offset vector base */
3051	rctl = er32(RCTL);
3052	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3053	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3054	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3055	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3056
3057	/* Do not Store bad packets */
3058	rctl &= ~E1000_RCTL_SBP;
3059
3060	/* Enable Long Packet receive */
3061	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3062		rctl &= ~E1000_RCTL_LPE;
3063	else
3064		rctl |= E1000_RCTL_LPE;
3065
3066	/* Some systems expect that the CRC is included in SMBUS traffic. The
3067	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3068	 * host memory when this is enabled
3069	 */
3070	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3071		rctl |= E1000_RCTL_SECRC;
3072
3073	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3074	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3075		u16 phy_data;
3076
3077		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3078		phy_data &= 0xfff8;
3079		phy_data |= BIT(2);
3080		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3081
3082		e1e_rphy(hw, 22, &phy_data);
3083		phy_data &= 0x0fff;
3084		phy_data |= BIT(14);
3085		e1e_wphy(hw, 0x10, 0x2823);
3086		e1e_wphy(hw, 0x11, 0x0003);
3087		e1e_wphy(hw, 22, phy_data);
3088	}
3089
3090	/* Setup buffer sizes */
3091	rctl &= ~E1000_RCTL_SZ_4096;
3092	rctl |= E1000_RCTL_BSEX;
3093	switch (adapter->rx_buffer_len) {
3094	case 2048:
3095	default:
3096		rctl |= E1000_RCTL_SZ_2048;
3097		rctl &= ~E1000_RCTL_BSEX;
3098		break;
3099	case 4096:
3100		rctl |= E1000_RCTL_SZ_4096;
3101		break;
3102	case 8192:
3103		rctl |= E1000_RCTL_SZ_8192;
3104		break;
3105	case 16384:
3106		rctl |= E1000_RCTL_SZ_16384;
3107		break;
3108	}
3109
3110	/* Enable Extended Status in all Receive Descriptors */
3111	rfctl = er32(RFCTL);
3112	rfctl |= E1000_RFCTL_EXTEN;
3113	ew32(RFCTL, rfctl);
3114
3115	/* 82571 and greater support packet-split where the protocol
3116	 * header is placed in skb->data and the packet data is
3117	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3118	 * In the case of a non-split, skb->data is linearly filled,
3119	 * followed by the page buffers.  Therefore, skb->data is
3120	 * sized to hold the largest protocol header.
3121	 *
3122	 * allocations using alloc_page take too long for regular MTU
3123	 * so only enable packet split for jumbo frames
3124	 *
3125	 * Using pages when the page size is greater than 16k wastes
3126	 * a lot of memory, since we allocate 3 pages at all times
3127	 * per packet.
3128	 */
3129	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3130	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3131		adapter->rx_ps_pages = pages;
3132	else
3133		adapter->rx_ps_pages = 0;
3134
3135	if (adapter->rx_ps_pages) {
3136		u32 psrctl = 0;
3137
3138		/* Enable Packet split descriptors */
3139		rctl |= E1000_RCTL_DTYP_PS;
3140
3141		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3142
3143		switch (adapter->rx_ps_pages) {
3144		case 3:
3145			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3146			fallthrough;
3147		case 2:
3148			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3149			fallthrough;
3150		case 1:
3151			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3152			break;
3153		}
3154
3155		ew32(PSRCTL, psrctl);
3156	}
3157
3158	/* This is useful for sniffing bad packets. */
3159	if (adapter->netdev->features & NETIF_F_RXALL) {
3160		/* UPE and MPE will be handled by normal PROMISC logic
3161		 * in e1000e_set_rx_mode
3162		 */
3163		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3164			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3165			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3166
3167		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3168			  E1000_RCTL_DPF |	/* Allow filtered pause */
3169			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3170		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3171		 * and that breaks VLANs.
3172		 */
3173	}
3174
3175	ew32(RCTL, rctl);
3176	/* just started the receive unit, no need to restart */
3177	adapter->flags &= ~FLAG_RESTART_NOW;
3178}
3179
3180/**
3181 * e1000_configure_rx - Configure Receive Unit after Reset
3182 * @adapter: board private structure
3183 *
3184 * Configure the Rx unit of the MAC after a reset.
3185 **/
3186static void e1000_configure_rx(struct e1000_adapter *adapter)
3187{
3188	struct e1000_hw *hw = &adapter->hw;
3189	struct e1000_ring *rx_ring = adapter->rx_ring;
3190	u64 rdba;
3191	u32 rdlen, rctl, rxcsum, ctrl_ext;
3192
3193	if (adapter->rx_ps_pages) {
3194		/* this is a 32 byte descriptor */
3195		rdlen = rx_ring->count *
3196		    sizeof(union e1000_rx_desc_packet_split);
3197		adapter->clean_rx = e1000_clean_rx_irq_ps;
3198		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3199	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3200		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3201		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3202		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3203	} else {
3204		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3205		adapter->clean_rx = e1000_clean_rx_irq;
3206		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3207	}
3208
3209	/* disable receives while setting up the descriptors */
3210	rctl = er32(RCTL);
3211	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3212		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3213	e1e_flush();
3214	usleep_range(10000, 11000);
3215
3216	if (adapter->flags2 & FLAG2_DMA_BURST) {
3217		/* set the writeback threshold (only takes effect if the RDTR
3218		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3219		 * enable prefetching of 0x20 Rx descriptors
3220		 * granularity = 01
3221		 * wthresh = 04,
3222		 * hthresh = 04,
3223		 * pthresh = 0x20
3224		 */
3225		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3226		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3227	}
3228
3229	/* set the Receive Delay Timer Register */
3230	ew32(RDTR, adapter->rx_int_delay);
3231
3232	/* irq moderation */
3233	ew32(RADV, adapter->rx_abs_int_delay);
3234	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3235		e1000e_write_itr(adapter, adapter->itr);
3236
3237	ctrl_ext = er32(CTRL_EXT);
3238	/* Auto-Mask interrupts upon ICR access */
3239	ctrl_ext |= E1000_CTRL_EXT_IAME;
3240	ew32(IAM, 0xffffffff);
3241	ew32(CTRL_EXT, ctrl_ext);
3242	e1e_flush();
3243
3244	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3245	 * the Base and Length of the Rx Descriptor Ring
3246	 */
3247	rdba = rx_ring->dma;
3248	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3249	ew32(RDBAH(0), (rdba >> 32));
3250	ew32(RDLEN(0), rdlen);
3251	ew32(RDH(0), 0);
3252	ew32(RDT(0), 0);
3253	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3254	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3255
3256	writel(0, rx_ring->head);
3257	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3258		e1000e_update_rdt_wa(rx_ring, 0);
3259	else
3260		writel(0, rx_ring->tail);
3261
3262	/* Enable Receive Checksum Offload for TCP and UDP */
3263	rxcsum = er32(RXCSUM);
3264	if (adapter->netdev->features & NETIF_F_RXCSUM)
3265		rxcsum |= E1000_RXCSUM_TUOFL;
3266	else
3267		rxcsum &= ~E1000_RXCSUM_TUOFL;
3268	ew32(RXCSUM, rxcsum);
3269
3270	/* With jumbo frames, excessive C-state transition latencies result
3271	 * in dropped transactions.
3272	 */
3273	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3274		u32 lat =
3275		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3276		     adapter->max_frame_size) * 8 / 1000;
3277
3278		if (adapter->flags & FLAG_IS_ICH) {
3279			u32 rxdctl = er32(RXDCTL(0));
3280
3281			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3282		}
3283
3284		dev_info(&adapter->pdev->dev,
3285			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3286		cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3287	} else {
3288		cpu_latency_qos_update_request(&adapter->pm_qos_req,
3289					       PM_QOS_DEFAULT_VALUE);
3290	}
3291
3292	/* Enable Receives */
3293	ew32(RCTL, rctl);
3294}
3295
3296/**
3297 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3298 * @netdev: network interface device structure
3299 *
3300 * Writes multicast address list to the MTA hash table.
3301 * Returns: -ENOMEM on failure
3302 *                0 on no addresses written
3303 *                X on writing X addresses to MTA
3304 */
3305static int e1000e_write_mc_addr_list(struct net_device *netdev)
3306{
3307	struct e1000_adapter *adapter = netdev_priv(netdev);
3308	struct e1000_hw *hw = &adapter->hw;
3309	struct netdev_hw_addr *ha;
3310	u8 *mta_list;
3311	int i;
3312
3313	if (netdev_mc_empty(netdev)) {
3314		/* nothing to program, so clear mc list */
3315		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3316		return 0;
3317	}
3318
3319	mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3320	if (!mta_list)
3321		return -ENOMEM;
3322
3323	/* update_mc_addr_list expects a packed array of only addresses. */
3324	i = 0;
3325	netdev_for_each_mc_addr(ha, netdev)
3326	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3327
3328	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3329	kfree(mta_list);
3330
3331	return netdev_mc_count(netdev);
3332}
3333
3334/**
3335 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3336 * @netdev: network interface device structure
3337 *
3338 * Writes unicast address list to the RAR table.
3339 * Returns: -ENOMEM on failure/insufficient address space
3340 *                0 on no addresses written
3341 *                X on writing X addresses to the RAR table
3342 **/
3343static int e1000e_write_uc_addr_list(struct net_device *netdev)
3344{
3345	struct e1000_adapter *adapter = netdev_priv(netdev);
3346	struct e1000_hw *hw = &adapter->hw;
3347	unsigned int rar_entries;
3348	int count = 0;
3349
3350	rar_entries = hw->mac.ops.rar_get_count(hw);
3351
3352	/* save a rar entry for our hardware address */
3353	rar_entries--;
3354
3355	/* save a rar entry for the LAA workaround */
3356	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3357		rar_entries--;
3358
3359	/* return ENOMEM indicating insufficient memory for addresses */
3360	if (netdev_uc_count(netdev) > rar_entries)
3361		return -ENOMEM;
3362
3363	if (!netdev_uc_empty(netdev) && rar_entries) {
3364		struct netdev_hw_addr *ha;
3365
3366		/* write the addresses in reverse order to avoid write
3367		 * combining
3368		 */
3369		netdev_for_each_uc_addr(ha, netdev) {
3370			int ret_val;
3371
3372			if (!rar_entries)
3373				break;
3374			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3375			if (ret_val < 0)
3376				return -ENOMEM;
3377			count++;
3378		}
3379	}
3380
3381	/* zero out the remaining RAR entries not used above */
3382	for (; rar_entries > 0; rar_entries--) {
3383		ew32(RAH(rar_entries), 0);
3384		ew32(RAL(rar_entries), 0);
3385	}
3386	e1e_flush();
3387
3388	return count;
3389}
3390
3391/**
3392 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3393 * @netdev: network interface device structure
3394 *
3395 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3396 * address list or the network interface flags are updated.  This routine is
3397 * responsible for configuring the hardware for proper unicast, multicast,
3398 * promiscuous mode, and all-multi behavior.
3399 **/
3400static void e1000e_set_rx_mode(struct net_device *netdev)
3401{
3402	struct e1000_adapter *adapter = netdev_priv(netdev);
3403	struct e1000_hw *hw = &adapter->hw;
3404	u32 rctl;
3405
3406	if (pm_runtime_suspended(netdev->dev.parent))
3407		return;
3408
3409	/* Check for Promiscuous and All Multicast modes */
3410	rctl = er32(RCTL);
3411
3412	/* clear the affected bits */
3413	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3414
3415	if (netdev->flags & IFF_PROMISC) {
3416		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3417		/* Do not hardware filter VLANs in promisc mode */
3418		e1000e_vlan_filter_disable(adapter);
3419	} else {
3420		int count;
3421
3422		if (netdev->flags & IFF_ALLMULTI) {
3423			rctl |= E1000_RCTL_MPE;
3424		} else {
3425			/* Write addresses to the MTA, if the attempt fails
3426			 * then we should just turn on promiscuous mode so
3427			 * that we can at least receive multicast traffic
3428			 */
3429			count = e1000e_write_mc_addr_list(netdev);
3430			if (count < 0)
3431				rctl |= E1000_RCTL_MPE;
3432		}
3433		e1000e_vlan_filter_enable(adapter);
3434		/* Write addresses to available RAR registers, if there is not
3435		 * sufficient space to store all the addresses then enable
3436		 * unicast promiscuous mode
3437		 */
3438		count = e1000e_write_uc_addr_list(netdev);
3439		if (count < 0)
3440			rctl |= E1000_RCTL_UPE;
3441	}
3442
3443	ew32(RCTL, rctl);
3444
3445	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3446		e1000e_vlan_strip_enable(adapter);
3447	else
3448		e1000e_vlan_strip_disable(adapter);
3449}
3450
3451static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3452{
3453	struct e1000_hw *hw = &adapter->hw;
3454	u32 mrqc, rxcsum;
3455	u32 rss_key[10];
3456	int i;
3457
3458	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3459	for (i = 0; i < 10; i++)
3460		ew32(RSSRK(i), rss_key[i]);
3461
3462	/* Direct all traffic to queue 0 */
3463	for (i = 0; i < 32; i++)
3464		ew32(RETA(i), 0);
3465
3466	/* Disable raw packet checksumming so that RSS hash is placed in
3467	 * descriptor on writeback.
3468	 */
3469	rxcsum = er32(RXCSUM);
3470	rxcsum |= E1000_RXCSUM_PCSD;
3471
3472	ew32(RXCSUM, rxcsum);
3473
3474	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3475		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3476		E1000_MRQC_RSS_FIELD_IPV6 |
3477		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3478		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3479
3480	ew32(MRQC, mrqc);
3481}
3482
3483/**
3484 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3485 * @adapter: board private structure
3486 * @timinca: pointer to returned time increment attributes
3487 *
3488 * Get attributes for incrementing the System Time Register SYSTIML/H at
3489 * the default base frequency, and set the cyclecounter shift value.
3490 **/
3491s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3492{
3493	struct e1000_hw *hw = &adapter->hw;
3494	u32 incvalue, incperiod, shift;
3495
3496	/* Make sure clock is enabled on I217/I218/I219  before checking
3497	 * the frequency
3498	 */
3499	if ((hw->mac.type >= e1000_pch_lpt) &&
3500	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3501	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3502		u32 fextnvm7 = er32(FEXTNVM7);
3503
3504		if (!(fextnvm7 & BIT(0))) {
3505			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3506			e1e_flush();
3507		}
3508	}
3509
3510	switch (hw->mac.type) {
3511	case e1000_pch2lan:
3512		/* Stable 96MHz frequency */
3513		incperiod = INCPERIOD_96MHZ;
3514		incvalue = INCVALUE_96MHZ;
3515		shift = INCVALUE_SHIFT_96MHZ;
3516		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3517		break;
3518	case e1000_pch_lpt:
3519		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3520			/* Stable 96MHz frequency */
3521			incperiod = INCPERIOD_96MHZ;
3522			incvalue = INCVALUE_96MHZ;
3523			shift = INCVALUE_SHIFT_96MHZ;
3524			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3525		} else {
3526			/* Stable 25MHz frequency */
3527			incperiod = INCPERIOD_25MHZ;
3528			incvalue = INCVALUE_25MHZ;
3529			shift = INCVALUE_SHIFT_25MHZ;
3530			adapter->cc.shift = shift;
3531		}
3532		break;
3533	case e1000_pch_spt:
3534		/* Stable 24MHz frequency */
3535		incperiod = INCPERIOD_24MHZ;
3536		incvalue = INCVALUE_24MHZ;
3537		shift = INCVALUE_SHIFT_24MHZ;
3538		adapter->cc.shift = shift;
3539		break;
 
 
 
3540	case e1000_pch_cnp:
3541	case e1000_pch_tgp:
3542	case e1000_pch_adp:
3543	case e1000_pch_mtp:
3544	case e1000_pch_lnp:
3545	case e1000_pch_ptp:
3546	case e1000_pch_nvp:
3547		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3548			/* Stable 24MHz frequency */
3549			incperiod = INCPERIOD_24MHZ;
3550			incvalue = INCVALUE_24MHZ;
3551			shift = INCVALUE_SHIFT_24MHZ;
3552			adapter->cc.shift = shift;
3553		} else {
3554			/* Stable 38400KHz frequency */
3555			incperiod = INCPERIOD_38400KHZ;
3556			incvalue = INCVALUE_38400KHZ;
3557			shift = INCVALUE_SHIFT_38400KHZ;
3558			adapter->cc.shift = shift;
3559		}
3560		break;
3561	case e1000_82574:
3562	case e1000_82583:
3563		/* Stable 25MHz frequency */
3564		incperiod = INCPERIOD_25MHZ;
3565		incvalue = INCVALUE_25MHZ;
3566		shift = INCVALUE_SHIFT_25MHZ;
3567		adapter->cc.shift = shift;
3568		break;
3569	default:
3570		return -EINVAL;
3571	}
3572
3573	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3574		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3575
3576	return 0;
3577}
3578
3579/**
3580 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3581 * @adapter: board private structure
3582 * @config: timestamp configuration
3583 *
3584 * Outgoing time stamping can be enabled and disabled. Play nice and
3585 * disable it when requested, although it shouldn't cause any overhead
3586 * when no packet needs it. At most one packet in the queue may be
3587 * marked for time stamping, otherwise it would be impossible to tell
3588 * for sure to which packet the hardware time stamp belongs.
3589 *
3590 * Incoming time stamping has to be configured via the hardware filters.
3591 * Not all combinations are supported, in particular event type has to be
3592 * specified. Matching the kind of event packet is not supported, with the
3593 * exception of "all V2 events regardless of level 2 or 4".
3594 **/
3595static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3596				  struct hwtstamp_config *config)
3597{
3598	struct e1000_hw *hw = &adapter->hw;
3599	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3600	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3601	u32 rxmtrl = 0;
3602	u16 rxudp = 0;
3603	bool is_l4 = false;
3604	bool is_l2 = false;
3605	u32 regval;
3606
3607	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3608		return -EINVAL;
3609
 
 
 
 
3610	switch (config->tx_type) {
3611	case HWTSTAMP_TX_OFF:
3612		tsync_tx_ctl = 0;
3613		break;
3614	case HWTSTAMP_TX_ON:
3615		break;
3616	default:
3617		return -ERANGE;
3618	}
3619
3620	switch (config->rx_filter) {
3621	case HWTSTAMP_FILTER_NONE:
3622		tsync_rx_ctl = 0;
3623		break;
3624	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3625		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3626		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3627		is_l4 = true;
3628		break;
3629	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3630		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3631		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3632		is_l4 = true;
3633		break;
3634	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3635		/* Also time stamps V2 L2 Path Delay Request/Response */
3636		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3637		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3638		is_l2 = true;
3639		break;
3640	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3641		/* Also time stamps V2 L2 Path Delay Request/Response. */
3642		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3643		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3644		is_l2 = true;
3645		break;
3646	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3647		/* Hardware cannot filter just V2 L4 Sync messages */
3648		fallthrough;
 
3649	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3650		/* Also time stamps V2 Path Delay Request/Response. */
3651		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3652		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3653		is_l2 = true;
3654		is_l4 = true;
3655		break;
3656	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3657		/* Hardware cannot filter just V2 L4 Delay Request messages */
3658		fallthrough;
 
3659	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3660		/* Also time stamps V2 Path Delay Request/Response. */
3661		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3662		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3663		is_l2 = true;
3664		is_l4 = true;
3665		break;
3666	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3667	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3668		/* Hardware cannot filter just V2 L4 or L2 Event messages */
3669		fallthrough;
 
3670	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3671		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3672		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3673		is_l2 = true;
3674		is_l4 = true;
3675		break;
3676	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3677		/* For V1, the hardware can only filter Sync messages or
3678		 * Delay Request messages but not both so fall-through to
3679		 * time stamp all packets.
3680		 */
3681		fallthrough;
3682	case HWTSTAMP_FILTER_NTP_ALL:
3683	case HWTSTAMP_FILTER_ALL:
3684		is_l2 = true;
3685		is_l4 = true;
3686		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3687		config->rx_filter = HWTSTAMP_FILTER_ALL;
3688		break;
3689	default:
3690		return -ERANGE;
3691	}
3692
3693	adapter->hwtstamp_config = *config;
3694
3695	/* enable/disable Tx h/w time stamping */
3696	regval = er32(TSYNCTXCTL);
3697	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3698	regval |= tsync_tx_ctl;
3699	ew32(TSYNCTXCTL, regval);
3700	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3701	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3702		e_err("Timesync Tx Control register not set as expected\n");
3703		return -EAGAIN;
3704	}
3705
3706	/* enable/disable Rx h/w time stamping */
3707	regval = er32(TSYNCRXCTL);
3708	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3709	regval |= tsync_rx_ctl;
3710	ew32(TSYNCRXCTL, regval);
3711	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3712				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3713	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3714		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3715		e_err("Timesync Rx Control register not set as expected\n");
3716		return -EAGAIN;
3717	}
3718
3719	/* L2: define ethertype filter for time stamped packets */
3720	if (is_l2)
3721		rxmtrl |= ETH_P_1588;
3722
3723	/* define which PTP packets get time stamped */
3724	ew32(RXMTRL, rxmtrl);
3725
3726	/* Filter by destination port */
3727	if (is_l4) {
3728		rxudp = PTP_EV_PORT;
3729		cpu_to_be16s(&rxudp);
3730	}
3731	ew32(RXUDP, rxudp);
3732
3733	e1e_flush();
3734
3735	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3736	er32(RXSTMPH);
3737	er32(TXSTMPH);
3738
3739	return 0;
3740}
3741
3742/**
3743 * e1000_configure - configure the hardware for Rx and Tx
3744 * @adapter: private board structure
3745 **/
3746static void e1000_configure(struct e1000_adapter *adapter)
3747{
3748	struct e1000_ring *rx_ring = adapter->rx_ring;
3749
3750	e1000e_set_rx_mode(adapter->netdev);
3751
3752	e1000_restore_vlan(adapter);
3753	e1000_init_manageability_pt(adapter);
3754
3755	e1000_configure_tx(adapter);
3756
3757	if (adapter->netdev->features & NETIF_F_RXHASH)
3758		e1000e_setup_rss_hash(adapter);
3759	e1000_setup_rctl(adapter);
3760	e1000_configure_rx(adapter);
3761	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3762}
3763
3764/**
3765 * e1000e_power_up_phy - restore link in case the phy was powered down
3766 * @adapter: address of board private structure
3767 *
3768 * The phy may be powered down to save power and turn off link when the
3769 * driver is unloaded and wake on lan is not enabled (among others)
3770 * *** this routine MUST be followed by a call to e1000e_reset ***
3771 **/
3772void e1000e_power_up_phy(struct e1000_adapter *adapter)
3773{
3774	if (adapter->hw.phy.ops.power_up)
3775		adapter->hw.phy.ops.power_up(&adapter->hw);
3776
3777	adapter->hw.mac.ops.setup_link(&adapter->hw);
3778}
3779
3780/**
3781 * e1000_power_down_phy - Power down the PHY
3782 * @adapter: board private structure
3783 *
3784 * Power down the PHY so no link is implied when interface is down.
3785 * The PHY cannot be powered down if management or WoL is active.
3786 */
3787static void e1000_power_down_phy(struct e1000_adapter *adapter)
3788{
3789	if (adapter->hw.phy.ops.power_down)
3790		adapter->hw.phy.ops.power_down(&adapter->hw);
3791}
3792
3793/**
3794 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3795 * @adapter: board private structure
3796 *
3797 * We want to clear all pending descriptors from the TX ring.
3798 * zeroing happens when the HW reads the regs. We  assign the ring itself as
3799 * the data of the next descriptor. We don't care about the data we are about
3800 * to reset the HW.
3801 */
3802static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3803{
3804	struct e1000_hw *hw = &adapter->hw;
3805	struct e1000_ring *tx_ring = adapter->tx_ring;
3806	struct e1000_tx_desc *tx_desc = NULL;
3807	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3808	u16 size = 512;
3809
3810	tctl = er32(TCTL);
3811	ew32(TCTL, tctl | E1000_TCTL_EN);
3812	tdt = er32(TDT(0));
3813	BUG_ON(tdt != tx_ring->next_to_use);
3814	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3815	tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3816
3817	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3818	tx_desc->upper.data = 0;
3819	/* flush descriptors to memory before notifying the HW */
3820	wmb();
3821	tx_ring->next_to_use++;
3822	if (tx_ring->next_to_use == tx_ring->count)
3823		tx_ring->next_to_use = 0;
3824	ew32(TDT(0), tx_ring->next_to_use);
 
3825	usleep_range(200, 250);
3826}
3827
3828/**
3829 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3830 * @adapter: board private structure
3831 *
3832 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3833 */
3834static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3835{
3836	u32 rctl, rxdctl;
3837	struct e1000_hw *hw = &adapter->hw;
3838
3839	rctl = er32(RCTL);
3840	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3841	e1e_flush();
3842	usleep_range(100, 150);
3843
3844	rxdctl = er32(RXDCTL(0));
3845	/* zero the lower 14 bits (prefetch and host thresholds) */
3846	rxdctl &= 0xffffc000;
3847
3848	/* update thresholds: prefetch threshold to 31, host threshold to 1
3849	 * and make sure the granularity is "descriptors" and not "cache lines"
3850	 */
3851	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3852
3853	ew32(RXDCTL(0), rxdctl);
3854	/* momentarily enable the RX ring for the changes to take effect */
3855	ew32(RCTL, rctl | E1000_RCTL_EN);
3856	e1e_flush();
3857	usleep_range(100, 150);
3858	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3859}
3860
3861/**
3862 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3863 * @adapter: board private structure
3864 *
3865 * In i219, the descriptor rings must be emptied before resetting the HW
3866 * or before changing the device state to D3 during runtime (runtime PM).
3867 *
3868 * Failure to do this will cause the HW to enter a unit hang state which can
3869 * only be released by PCI reset on the device
3870 *
3871 */
3872
3873static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3874{
3875	u16 hang_state;
3876	u32 fext_nvm11, tdlen;
3877	struct e1000_hw *hw = &adapter->hw;
3878
3879	/* First, disable MULR fix in FEXTNVM11 */
3880	fext_nvm11 = er32(FEXTNVM11);
3881	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3882	ew32(FEXTNVM11, fext_nvm11);
3883	/* do nothing if we're not in faulty state, or if the queue is empty */
3884	tdlen = er32(TDLEN(0));
3885	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3886			     &hang_state);
3887	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3888		return;
3889	e1000_flush_tx_ring(adapter);
3890	/* recheck, maybe the fault is caused by the rx ring */
3891	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3892			     &hang_state);
3893	if (hang_state & FLUSH_DESC_REQUIRED)
3894		e1000_flush_rx_ring(adapter);
3895}
3896
3897/**
3898 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3899 * @adapter: board private structure
3900 *
3901 * When the MAC is reset, all hardware bits for timesync will be reset to the
3902 * default values. This function will restore the settings last in place.
3903 * Since the clock SYSTIME registers are reset, we will simply restore the
3904 * cyclecounter to the kernel real clock time.
3905 **/
3906static void e1000e_systim_reset(struct e1000_adapter *adapter)
3907{
3908	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3909	struct e1000_hw *hw = &adapter->hw;
3910	unsigned long flags;
3911	u32 timinca;
3912	s32 ret_val;
3913
3914	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3915		return;
3916
3917	if (info->adjfine) {
3918		/* restore the previous ptp frequency delta */
3919		ret_val = info->adjfine(info, adapter->ptp_delta);
3920	} else {
3921		/* set the default base frequency if no adjustment possible */
3922		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3923		if (!ret_val)
3924			ew32(TIMINCA, timinca);
3925	}
3926
3927	if (ret_val) {
3928		dev_warn(&adapter->pdev->dev,
3929			 "Failed to restore TIMINCA clock rate delta: %d\n",
3930			 ret_val);
3931		return;
3932	}
3933
3934	/* reset the systim ns time counter */
3935	spin_lock_irqsave(&adapter->systim_lock, flags);
3936	timecounter_init(&adapter->tc, &adapter->cc,
3937			 ktime_to_ns(ktime_get_real()));
3938	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3939
3940	/* restore the previous hwtstamp configuration settings */
3941	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3942}
3943
3944/**
3945 * e1000e_reset - bring the hardware into a known good state
3946 * @adapter: board private structure
3947 *
3948 * This function boots the hardware and enables some settings that
3949 * require a configuration cycle of the hardware - those cannot be
3950 * set/changed during runtime. After reset the device needs to be
3951 * properly configured for Rx, Tx etc.
3952 */
3953void e1000e_reset(struct e1000_adapter *adapter)
3954{
3955	struct e1000_mac_info *mac = &adapter->hw.mac;
3956	struct e1000_fc_info *fc = &adapter->hw.fc;
3957	struct e1000_hw *hw = &adapter->hw;
3958	u32 tx_space, min_tx_space, min_rx_space;
3959	u32 pba = adapter->pba;
3960	u16 hwm;
3961
3962	/* reset Packet Buffer Allocation to default */
3963	ew32(PBA, pba);
3964
3965	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3966		/* To maintain wire speed transmits, the Tx FIFO should be
3967		 * large enough to accommodate two full transmit packets,
3968		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3969		 * the Rx FIFO should be large enough to accommodate at least
3970		 * one full receive packet and is similarly rounded up and
3971		 * expressed in KB.
3972		 */
3973		pba = er32(PBA);
3974		/* upper 16 bits has Tx packet buffer allocation size in KB */
3975		tx_space = pba >> 16;
3976		/* lower 16 bits has Rx packet buffer allocation size in KB */
3977		pba &= 0xffff;
3978		/* the Tx fifo also stores 16 bytes of information about the Tx
3979		 * but don't include ethernet FCS because hardware appends it
3980		 */
3981		min_tx_space = (adapter->max_frame_size +
3982				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3983		min_tx_space = ALIGN(min_tx_space, 1024);
3984		min_tx_space >>= 10;
3985		/* software strips receive CRC, so leave room for it */
3986		min_rx_space = adapter->max_frame_size;
3987		min_rx_space = ALIGN(min_rx_space, 1024);
3988		min_rx_space >>= 10;
3989
3990		/* If current Tx allocation is less than the min Tx FIFO size,
3991		 * and the min Tx FIFO size is less than the current Rx FIFO
3992		 * allocation, take space away from current Rx allocation
3993		 */
3994		if ((tx_space < min_tx_space) &&
3995		    ((min_tx_space - tx_space) < pba)) {
3996			pba -= min_tx_space - tx_space;
3997
3998			/* if short on Rx space, Rx wins and must trump Tx
3999			 * adjustment
4000			 */
4001			if (pba < min_rx_space)
4002				pba = min_rx_space;
4003		}
4004
4005		ew32(PBA, pba);
4006	}
4007
4008	/* flow control settings
4009	 *
4010	 * The high water mark must be low enough to fit one full frame
4011	 * (or the size used for early receive) above it in the Rx FIFO.
4012	 * Set it to the lower of:
4013	 * - 90% of the Rx FIFO size, and
4014	 * - the full Rx FIFO size minus one full frame
4015	 */
4016	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4017		fc->pause_time = 0xFFFF;
4018	else
4019		fc->pause_time = E1000_FC_PAUSE_TIME;
4020	fc->send_xon = true;
4021	fc->current_mode = fc->requested_mode;
4022
4023	switch (hw->mac.type) {
4024	case e1000_ich9lan:
4025	case e1000_ich10lan:
4026		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4027			pba = 14;
4028			ew32(PBA, pba);
4029			fc->high_water = 0x2800;
4030			fc->low_water = fc->high_water - 8;
4031			break;
4032		}
4033		fallthrough;
4034	default:
4035		hwm = min(((pba << 10) * 9 / 10),
4036			  ((pba << 10) - adapter->max_frame_size));
4037
4038		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4039		fc->low_water = fc->high_water - 8;
4040		break;
4041	case e1000_pchlan:
4042		/* Workaround PCH LOM adapter hangs with certain network
4043		 * loads.  If hangs persist, try disabling Tx flow control.
4044		 */
4045		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4046			fc->high_water = 0x3500;
4047			fc->low_water = 0x1500;
4048		} else {
4049			fc->high_water = 0x5000;
4050			fc->low_water = 0x3000;
4051		}
4052		fc->refresh_time = 0x1000;
4053		break;
4054	case e1000_pch2lan:
4055	case e1000_pch_lpt:
4056	case e1000_pch_spt:
4057	case e1000_pch_cnp:
4058	case e1000_pch_tgp:
4059	case e1000_pch_adp:
4060	case e1000_pch_mtp:
4061	case e1000_pch_lnp:
4062	case e1000_pch_ptp:
4063	case e1000_pch_nvp:
4064		fc->refresh_time = 0xFFFF;
4065		fc->pause_time = 0xFFFF;
4066
4067		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4068			fc->high_water = 0x05C20;
4069			fc->low_water = 0x05048;
 
4070			break;
4071		}
4072
4073		pba = 14;
4074		ew32(PBA, pba);
4075		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4076		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4077		break;
4078	}
4079
4080	/* Alignment of Tx data is on an arbitrary byte boundary with the
4081	 * maximum size per Tx descriptor limited only to the transmit
4082	 * allocation of the packet buffer minus 96 bytes with an upper
4083	 * limit of 24KB due to receive synchronization limitations.
4084	 */
4085	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4086				       24 << 10);
4087
4088	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4089	 * fit in receive buffer.
4090	 */
4091	if (adapter->itr_setting & 0x3) {
4092		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4093			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4094				dev_info(&adapter->pdev->dev,
4095					 "Interrupt Throttle Rate off\n");
4096				adapter->flags2 |= FLAG2_DISABLE_AIM;
4097				e1000e_write_itr(adapter, 0);
4098			}
4099		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4100			dev_info(&adapter->pdev->dev,
4101				 "Interrupt Throttle Rate on\n");
4102			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4103			adapter->itr = 20000;
4104			e1000e_write_itr(adapter, adapter->itr);
4105		}
4106	}
4107
4108	if (hw->mac.type >= e1000_pch_spt)
4109		e1000_flush_desc_rings(adapter);
4110	/* Allow time for pending master requests to run */
4111	mac->ops.reset_hw(hw);
4112
4113	/* For parts with AMT enabled, let the firmware know
4114	 * that the network interface is in control
4115	 */
4116	if (adapter->flags & FLAG_HAS_AMT)
4117		e1000e_get_hw_control(adapter);
4118
4119	ew32(WUC, 0);
4120
4121	if (mac->ops.init_hw(hw))
4122		e_err("Hardware Error\n");
4123
4124	e1000_update_mng_vlan(adapter);
4125
4126	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4127	ew32(VET, ETH_P_8021Q);
4128
4129	e1000e_reset_adaptive(hw);
4130
4131	/* restore systim and hwtstamp settings */
4132	e1000e_systim_reset(adapter);
4133
4134	/* Set EEE advertisement as appropriate */
4135	if (adapter->flags2 & FLAG2_HAS_EEE) {
4136		s32 ret_val;
4137		u16 adv_addr;
4138
4139		switch (hw->phy.type) {
4140		case e1000_phy_82579:
4141			adv_addr = I82579_EEE_ADVERTISEMENT;
4142			break;
4143		case e1000_phy_i217:
4144			adv_addr = I217_EEE_ADVERTISEMENT;
4145			break;
4146		default:
4147			dev_err(&adapter->pdev->dev,
4148				"Invalid PHY type setting EEE advertisement\n");
4149			return;
4150		}
4151
4152		ret_val = hw->phy.ops.acquire(hw);
4153		if (ret_val) {
4154			dev_err(&adapter->pdev->dev,
4155				"EEE advertisement - unable to acquire PHY\n");
4156			return;
4157		}
4158
4159		e1000_write_emi_reg_locked(hw, adv_addr,
4160					   hw->dev_spec.ich8lan.eee_disable ?
4161					   0 : adapter->eee_advert);
4162
4163		hw->phy.ops.release(hw);
4164	}
4165
4166	if (!netif_running(adapter->netdev) &&
4167	    !test_bit(__E1000_TESTING, &adapter->state))
4168		e1000_power_down_phy(adapter);
4169
4170	e1000_get_phy_info(hw);
4171
4172	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4173	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4174		u16 phy_data = 0;
4175		/* speed up time to link by disabling smart power down, ignore
4176		 * the return value of this function because there is nothing
4177		 * different we would do if it failed
4178		 */
4179		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4180		phy_data &= ~IGP02E1000_PM_SPD;
4181		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4182	}
4183	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4184		u32 reg;
4185
4186		/* Fextnvm7 @ 0xe4[2] = 1 */
4187		reg = er32(FEXTNVM7);
4188		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4189		ew32(FEXTNVM7, reg);
4190		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4191		reg = er32(FEXTNVM9);
4192		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4193		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4194		ew32(FEXTNVM9, reg);
4195	}
4196
4197}
4198
4199/**
4200 * e1000e_trigger_lsc - trigger an LSC interrupt
4201 * @adapter: board private structure
4202 *
4203 * Fire a link status change interrupt to start the watchdog.
4204 **/
4205static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4206{
4207	struct e1000_hw *hw = &adapter->hw;
4208
4209	if (adapter->msix_entries)
4210		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4211	else
4212		ew32(ICS, E1000_ICS_LSC);
4213}
4214
4215void e1000e_up(struct e1000_adapter *adapter)
4216{
4217	/* hardware has been reset, we need to reload some things */
4218	e1000_configure(adapter);
4219
4220	clear_bit(__E1000_DOWN, &adapter->state);
4221
4222	if (adapter->msix_entries)
4223		e1000_configure_msix(adapter);
4224	e1000_irq_enable(adapter);
4225
4226	/* Tx queue started by watchdog timer when link is up */
4227
4228	e1000e_trigger_lsc(adapter);
4229}
4230
4231static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4232{
4233	struct e1000_hw *hw = &adapter->hw;
4234
4235	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4236		return;
4237
4238	/* flush pending descriptor writebacks to memory */
4239	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4240	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4241
4242	/* execute the writes immediately */
4243	e1e_flush();
4244
4245	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4246	 * write is successful
4247	 */
4248	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4249	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4250
4251	/* execute the writes immediately */
4252	e1e_flush();
4253}
4254
4255static void e1000e_update_stats(struct e1000_adapter *adapter);
4256
4257/**
4258 * e1000e_down - quiesce the device and optionally reset the hardware
4259 * @adapter: board private structure
4260 * @reset: boolean flag to reset the hardware or not
4261 */
4262void e1000e_down(struct e1000_adapter *adapter, bool reset)
4263{
4264	struct net_device *netdev = adapter->netdev;
4265	struct e1000_hw *hw = &adapter->hw;
4266	u32 tctl, rctl;
4267
4268	/* signal that we're down so the interrupt handler does not
4269	 * reschedule our watchdog timer
4270	 */
4271	set_bit(__E1000_DOWN, &adapter->state);
4272
4273	netif_carrier_off(netdev);
4274
4275	/* disable receives in the hardware */
4276	rctl = er32(RCTL);
4277	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4278		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4279	/* flush and sleep below */
4280
4281	netif_stop_queue(netdev);
4282
4283	/* disable transmits in the hardware */
4284	tctl = er32(TCTL);
4285	tctl &= ~E1000_TCTL_EN;
4286	ew32(TCTL, tctl);
4287
4288	/* flush both disables and wait for them to finish */
4289	e1e_flush();
4290	usleep_range(10000, 11000);
4291
4292	e1000_irq_disable(adapter);
4293
4294	napi_synchronize(&adapter->napi);
4295
4296	del_timer_sync(&adapter->watchdog_timer);
4297	del_timer_sync(&adapter->phy_info_timer);
4298
4299	spin_lock(&adapter->stats64_lock);
4300	e1000e_update_stats(adapter);
4301	spin_unlock(&adapter->stats64_lock);
4302
4303	e1000e_flush_descriptors(adapter);
4304
4305	adapter->link_speed = 0;
4306	adapter->link_duplex = 0;
4307
4308	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4309	if ((hw->mac.type >= e1000_pch2lan) &&
4310	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4311	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4312		e_dbg("failed to disable jumbo frame workaround mode\n");
4313
4314	if (!pci_channel_offline(adapter->pdev)) {
4315		if (reset)
4316			e1000e_reset(adapter);
4317		else if (hw->mac.type >= e1000_pch_spt)
4318			e1000_flush_desc_rings(adapter);
4319	}
4320	e1000_clean_tx_ring(adapter->tx_ring);
4321	e1000_clean_rx_ring(adapter->rx_ring);
4322}
4323
4324void e1000e_reinit_locked(struct e1000_adapter *adapter)
4325{
4326	might_sleep();
4327	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4328		usleep_range(1000, 1100);
4329	e1000e_down(adapter, true);
4330	e1000e_up(adapter);
4331	clear_bit(__E1000_RESETTING, &adapter->state);
4332}
4333
4334/**
4335 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4336 * @hw: pointer to the HW structure
4337 * @systim: PHC time value read, sanitized and returned
4338 * @sts: structure to hold system time before and after reading SYSTIML,
4339 * may be NULL
4340 *
4341 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4342 * check to see that the time is incrementing at a reasonable
4343 * rate and is a multiple of incvalue.
4344 **/
4345static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4346				  struct ptp_system_timestamp *sts)
4347{
4348	u64 time_delta, rem, temp;
4349	u64 systim_next;
4350	u32 incvalue;
4351	int i;
4352
4353	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4354	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4355		/* latch SYSTIMH on read of SYSTIML */
4356		ptp_read_system_prets(sts);
4357		systim_next = (u64)er32(SYSTIML);
4358		ptp_read_system_postts(sts);
4359		systim_next |= (u64)er32(SYSTIMH) << 32;
4360
4361		time_delta = systim_next - systim;
4362		temp = time_delta;
4363		/* VMWare users have seen incvalue of zero, don't div / 0 */
4364		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4365
4366		systim = systim_next;
4367
4368		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4369			break;
4370	}
4371
4372	return systim;
4373}
4374
4375/**
4376 * e1000e_read_systim - read SYSTIM register
4377 * @adapter: board private structure
4378 * @sts: structure which will contain system time before and after reading
4379 * SYSTIML, may be NULL
4380 **/
4381u64 e1000e_read_systim(struct e1000_adapter *adapter,
4382		       struct ptp_system_timestamp *sts)
4383{
 
 
4384	struct e1000_hw *hw = &adapter->hw;
4385	u32 systimel, systimel_2, systimeh;
4386	u64 systim;
4387	/* SYSTIMH latching upon SYSTIML read does not work well.
4388	 * This means that if SYSTIML overflows after we read it but before
4389	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4390	 * will experience a huge non linear increment in the systime value
4391	 * to fix that we test for overflow and if true, we re-read systime.
4392	 */
4393	ptp_read_system_prets(sts);
4394	systimel = er32(SYSTIML);
4395	ptp_read_system_postts(sts);
4396	systimeh = er32(SYSTIMH);
4397	/* Is systimel is so large that overflow is possible? */
4398	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4399		ptp_read_system_prets(sts);
4400		systimel_2 = er32(SYSTIML);
4401		ptp_read_system_postts(sts);
4402		if (systimel > systimel_2) {
4403			/* There was an overflow, read again SYSTIMH, and use
4404			 * systimel_2
4405			 */
4406			systimeh = er32(SYSTIMH);
4407			systimel = systimel_2;
4408		}
4409	}
4410	systim = (u64)systimel;
4411	systim |= (u64)systimeh << 32;
4412
4413	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4414		systim = e1000e_sanitize_systim(hw, systim, sts);
4415
4416	return systim;
4417}
4418
4419/**
4420 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4421 * @cc: cyclecounter structure
4422 **/
4423static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4424{
4425	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4426						     cc);
4427
4428	return e1000e_read_systim(adapter, NULL);
4429}
4430
4431/**
4432 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4433 * @adapter: board private structure to initialize
4434 *
4435 * e1000_sw_init initializes the Adapter private data structure.
4436 * Fields are initialized based on PCI device information and
4437 * OS network device settings (MTU size).
4438 **/
4439static int e1000_sw_init(struct e1000_adapter *adapter)
4440{
4441	struct net_device *netdev = adapter->netdev;
4442
4443	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4444	adapter->rx_ps_bsize0 = 128;
4445	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4446	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4447	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4448	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4449
4450	spin_lock_init(&adapter->stats64_lock);
4451
4452	e1000e_set_interrupt_capability(adapter);
4453
4454	if (e1000_alloc_queues(adapter))
4455		return -ENOMEM;
4456
4457	/* Setup hardware time stamping cyclecounter */
4458	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4459		adapter->cc.read = e1000e_cyclecounter_read;
4460		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4461		adapter->cc.mult = 1;
4462		/* cc.shift set in e1000e_get_base_tininca() */
4463
4464		spin_lock_init(&adapter->systim_lock);
4465		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4466	}
4467
4468	/* Explicitly disable IRQ since the NIC can be in any state. */
4469	e1000_irq_disable(adapter);
4470
4471	set_bit(__E1000_DOWN, &adapter->state);
4472	return 0;
4473}
4474
4475/**
4476 * e1000_intr_msi_test - Interrupt Handler
4477 * @irq: interrupt number
4478 * @data: pointer to a network interface device structure
4479 **/
4480static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4481{
4482	struct net_device *netdev = data;
4483	struct e1000_adapter *adapter = netdev_priv(netdev);
4484	struct e1000_hw *hw = &adapter->hw;
4485	u32 icr = er32(ICR);
4486
4487	e_dbg("icr is %08X\n", icr);
4488	if (icr & E1000_ICR_RXSEQ) {
4489		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4490		/* Force memory writes to complete before acknowledging the
4491		 * interrupt is handled.
4492		 */
4493		wmb();
4494	}
4495
4496	return IRQ_HANDLED;
4497}
4498
4499/**
4500 * e1000_test_msi_interrupt - Returns 0 for successful test
4501 * @adapter: board private struct
4502 *
4503 * code flow taken from tg3.c
4504 **/
4505static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4506{
4507	struct net_device *netdev = adapter->netdev;
4508	struct e1000_hw *hw = &adapter->hw;
4509	int err;
4510
4511	/* poll_enable hasn't been called yet, so don't need disable */
4512	/* clear any pending events */
4513	er32(ICR);
4514
4515	/* free the real vector and request a test handler */
4516	e1000_free_irq(adapter);
4517	e1000e_reset_interrupt_capability(adapter);
4518
4519	/* Assume that the test fails, if it succeeds then the test
4520	 * MSI irq handler will unset this flag
4521	 */
4522	adapter->flags |= FLAG_MSI_TEST_FAILED;
4523
4524	err = pci_enable_msi(adapter->pdev);
4525	if (err)
4526		goto msi_test_failed;
4527
4528	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4529			  netdev->name, netdev);
4530	if (err) {
4531		pci_disable_msi(adapter->pdev);
4532		goto msi_test_failed;
4533	}
4534
4535	/* Force memory writes to complete before enabling and firing an
4536	 * interrupt.
4537	 */
4538	wmb();
4539
4540	e1000_irq_enable(adapter);
4541
4542	/* fire an unusual interrupt on the test handler */
4543	ew32(ICS, E1000_ICS_RXSEQ);
4544	e1e_flush();
4545	msleep(100);
4546
4547	e1000_irq_disable(adapter);
4548
4549	rmb();			/* read flags after interrupt has been fired */
4550
4551	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4552		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4553		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4554	} else {
4555		e_dbg("MSI interrupt test succeeded!\n");
4556	}
4557
4558	free_irq(adapter->pdev->irq, netdev);
4559	pci_disable_msi(adapter->pdev);
4560
4561msi_test_failed:
4562	e1000e_set_interrupt_capability(adapter);
4563	return e1000_request_irq(adapter);
4564}
4565
4566/**
4567 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4568 * @adapter: board private struct
4569 *
4570 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4571 **/
4572static int e1000_test_msi(struct e1000_adapter *adapter)
4573{
4574	int err;
4575	u16 pci_cmd;
4576
4577	if (!(adapter->flags & FLAG_MSI_ENABLED))
4578		return 0;
4579
4580	/* disable SERR in case the MSI write causes a master abort */
4581	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4582	if (pci_cmd & PCI_COMMAND_SERR)
4583		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4584				      pci_cmd & ~PCI_COMMAND_SERR);
4585
4586	err = e1000_test_msi_interrupt(adapter);
4587
4588	/* re-enable SERR */
4589	if (pci_cmd & PCI_COMMAND_SERR) {
4590		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4591		pci_cmd |= PCI_COMMAND_SERR;
4592		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4593	}
4594
4595	return err;
4596}
4597
4598/**
4599 * e1000e_open - Called when a network interface is made active
4600 * @netdev: network interface device structure
4601 *
4602 * Returns 0 on success, negative value on failure
4603 *
4604 * The open entry point is called when a network interface is made
4605 * active by the system (IFF_UP).  At this point all resources needed
4606 * for transmit and receive operations are allocated, the interrupt
4607 * handler is registered with the OS, the watchdog timer is started,
4608 * and the stack is notified that the interface is ready.
4609 **/
4610int e1000e_open(struct net_device *netdev)
4611{
4612	struct e1000_adapter *adapter = netdev_priv(netdev);
4613	struct e1000_hw *hw = &adapter->hw;
4614	struct pci_dev *pdev = adapter->pdev;
4615	int err;
4616
4617	/* disallow open during test */
4618	if (test_bit(__E1000_TESTING, &adapter->state))
4619		return -EBUSY;
4620
4621	pm_runtime_get_sync(&pdev->dev);
4622
4623	netif_carrier_off(netdev);
4624	netif_stop_queue(netdev);
4625
4626	/* allocate transmit descriptors */
4627	err = e1000e_setup_tx_resources(adapter->tx_ring);
4628	if (err)
4629		goto err_setup_tx;
4630
4631	/* allocate receive descriptors */
4632	err = e1000e_setup_rx_resources(adapter->rx_ring);
4633	if (err)
4634		goto err_setup_rx;
4635
4636	/* If AMT is enabled, let the firmware know that the network
4637	 * interface is now open and reset the part to a known state.
4638	 */
4639	if (adapter->flags & FLAG_HAS_AMT) {
4640		e1000e_get_hw_control(adapter);
4641		e1000e_reset(adapter);
4642	}
4643
4644	e1000e_power_up_phy(adapter);
4645
4646	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4647	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4648		e1000_update_mng_vlan(adapter);
4649
4650	/* DMA latency requirement to workaround jumbo issue */
4651	cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
 
4652
4653	/* before we allocate an interrupt, we must be ready to handle it.
4654	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4655	 * as soon as we call pci_request_irq, so we have to setup our
4656	 * clean_rx handler before we do so.
4657	 */
4658	e1000_configure(adapter);
4659
4660	err = e1000_request_irq(adapter);
4661	if (err)
4662		goto err_req_irq;
4663
4664	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4665	 * ignore e1000e MSI messages, which means we need to test our MSI
4666	 * interrupt now
4667	 */
4668	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4669		err = e1000_test_msi(adapter);
4670		if (err) {
4671			e_err("Interrupt allocation failed\n");
4672			goto err_req_irq;
4673		}
4674	}
4675
4676	/* From here on the code is the same as e1000e_up() */
4677	clear_bit(__E1000_DOWN, &adapter->state);
4678
4679	napi_enable(&adapter->napi);
4680
4681	e1000_irq_enable(adapter);
4682
4683	adapter->tx_hang_recheck = false;
 
4684
4685	hw->mac.get_link_status = true;
4686	pm_runtime_put(&pdev->dev);
4687
4688	e1000e_trigger_lsc(adapter);
4689
4690	return 0;
4691
4692err_req_irq:
4693	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4694	e1000e_release_hw_control(adapter);
4695	e1000_power_down_phy(adapter);
4696	e1000e_free_rx_resources(adapter->rx_ring);
4697err_setup_rx:
4698	e1000e_free_tx_resources(adapter->tx_ring);
4699err_setup_tx:
4700	e1000e_reset(adapter);
4701	pm_runtime_put_sync(&pdev->dev);
4702
4703	return err;
4704}
4705
4706/**
4707 * e1000e_close - Disables a network interface
4708 * @netdev: network interface device structure
4709 *
4710 * Returns 0, this is not allowed to fail
4711 *
4712 * The close entry point is called when an interface is de-activated
4713 * by the OS.  The hardware is still under the drivers control, but
4714 * needs to be disabled.  A global MAC reset is issued to stop the
4715 * hardware, and all transmit and receive resources are freed.
4716 **/
4717int e1000e_close(struct net_device *netdev)
4718{
4719	struct e1000_adapter *adapter = netdev_priv(netdev);
4720	struct pci_dev *pdev = adapter->pdev;
4721	int count = E1000_CHECK_RESET_COUNT;
4722
4723	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4724		usleep_range(10000, 11000);
4725
4726	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4727
4728	pm_runtime_get_sync(&pdev->dev);
4729
4730	if (netif_device_present(netdev)) {
4731		e1000e_down(adapter, true);
4732		e1000_free_irq(adapter);
4733
4734		/* Link status message must follow this format */
4735		netdev_info(netdev, "NIC Link is Down\n");
4736	}
4737
4738	napi_disable(&adapter->napi);
4739
4740	e1000e_free_tx_resources(adapter->tx_ring);
4741	e1000e_free_rx_resources(adapter->rx_ring);
4742
4743	/* kill manageability vlan ID if supported, but not if a vlan with
4744	 * the same ID is registered on the host OS (let 8021q kill it)
4745	 */
4746	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4747		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4748				       adapter->mng_vlan_id);
4749
4750	/* If AMT is enabled, let the firmware know that the network
4751	 * interface is now closed
4752	 */
4753	if ((adapter->flags & FLAG_HAS_AMT) &&
4754	    !test_bit(__E1000_TESTING, &adapter->state))
4755		e1000e_release_hw_control(adapter);
4756
4757	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4758
4759	pm_runtime_put_sync(&pdev->dev);
4760
4761	return 0;
4762}
4763
4764/**
4765 * e1000_set_mac - Change the Ethernet Address of the NIC
4766 * @netdev: network interface device structure
4767 * @p: pointer to an address structure
4768 *
4769 * Returns 0 on success, negative on failure
4770 **/
4771static int e1000_set_mac(struct net_device *netdev, void *p)
4772{
4773	struct e1000_adapter *adapter = netdev_priv(netdev);
4774	struct e1000_hw *hw = &adapter->hw;
4775	struct sockaddr *addr = p;
4776
4777	if (!is_valid_ether_addr(addr->sa_data))
4778		return -EADDRNOTAVAIL;
4779
4780	eth_hw_addr_set(netdev, addr->sa_data);
4781	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4782
4783	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4784
4785	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4786		/* activate the work around */
4787		e1000e_set_laa_state_82571(&adapter->hw, 1);
4788
4789		/* Hold a copy of the LAA in RAR[14] This is done so that
4790		 * between the time RAR[0] gets clobbered  and the time it
4791		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4792		 * of the RARs and no incoming packets directed to this port
4793		 * are dropped. Eventually the LAA will be in RAR[0] and
4794		 * RAR[14]
4795		 */
4796		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4797				    adapter->hw.mac.rar_entry_count - 1);
4798	}
4799
4800	return 0;
4801}
4802
4803/**
4804 * e1000e_update_phy_task - work thread to update phy
4805 * @work: pointer to our work struct
4806 *
4807 * this worker thread exists because we must acquire a
4808 * semaphore to read the phy, which we could msleep while
4809 * waiting for it, and we can't msleep in a timer.
4810 **/
4811static void e1000e_update_phy_task(struct work_struct *work)
4812{
4813	struct e1000_adapter *adapter = container_of(work,
4814						     struct e1000_adapter,
4815						     update_phy_task);
4816	struct e1000_hw *hw = &adapter->hw;
4817
4818	if (test_bit(__E1000_DOWN, &adapter->state))
4819		return;
4820
4821	e1000_get_phy_info(hw);
4822
4823	/* Enable EEE on 82579 after link up */
4824	if (hw->phy.type >= e1000_phy_82579)
4825		e1000_set_eee_pchlan(hw);
4826}
4827
4828/**
4829 * e1000_update_phy_info - timre call-back to update PHY info
4830 * @t: pointer to timer_list containing private info adapter
4831 *
4832 * Need to wait a few seconds after link up to get diagnostic information from
4833 * the phy
4834 **/
4835static void e1000_update_phy_info(struct timer_list *t)
4836{
4837	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4838
4839	if (test_bit(__E1000_DOWN, &adapter->state))
4840		return;
4841
4842	schedule_work(&adapter->update_phy_task);
4843}
4844
4845/**
4846 * e1000e_update_phy_stats - Update the PHY statistics counters
4847 * @adapter: board private structure
4848 *
4849 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4850 **/
4851static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4852{
4853	struct e1000_hw *hw = &adapter->hw;
4854	s32 ret_val;
4855	u16 phy_data;
4856
4857	ret_val = hw->phy.ops.acquire(hw);
4858	if (ret_val)
4859		return;
4860
4861	/* A page set is expensive so check if already on desired page.
4862	 * If not, set to the page with the PHY status registers.
4863	 */
4864	hw->phy.addr = 1;
4865	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4866					   &phy_data);
4867	if (ret_val)
4868		goto release;
4869	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4870		ret_val = hw->phy.ops.set_page(hw,
4871					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4872		if (ret_val)
4873			goto release;
4874	}
4875
4876	/* Single Collision Count */
4877	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4878	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4879	if (!ret_val)
4880		adapter->stats.scc += phy_data;
4881
4882	/* Excessive Collision Count */
4883	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4884	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4885	if (!ret_val)
4886		adapter->stats.ecol += phy_data;
4887
4888	/* Multiple Collision Count */
4889	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4890	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4891	if (!ret_val)
4892		adapter->stats.mcc += phy_data;
4893
4894	/* Late Collision Count */
4895	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4896	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4897	if (!ret_val)
4898		adapter->stats.latecol += phy_data;
4899
4900	/* Collision Count - also used for adaptive IFS */
4901	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4902	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4903	if (!ret_val)
4904		hw->mac.collision_delta = phy_data;
4905
4906	/* Defer Count */
4907	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4908	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4909	if (!ret_val)
4910		adapter->stats.dc += phy_data;
4911
4912	/* Transmit with no CRS */
4913	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4914	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4915	if (!ret_val)
4916		adapter->stats.tncrs += phy_data;
4917
4918release:
4919	hw->phy.ops.release(hw);
4920}
4921
4922/**
4923 * e1000e_update_stats - Update the board statistics counters
4924 * @adapter: board private structure
4925 **/
4926static void e1000e_update_stats(struct e1000_adapter *adapter)
4927{
4928	struct net_device *netdev = adapter->netdev;
4929	struct e1000_hw *hw = &adapter->hw;
4930	struct pci_dev *pdev = adapter->pdev;
4931
4932	/* Prevent stats update while adapter is being reset, or if the pci
4933	 * connection is down.
4934	 */
4935	if (adapter->link_speed == 0)
4936		return;
4937	if (pci_channel_offline(pdev))
4938		return;
4939
4940	adapter->stats.crcerrs += er32(CRCERRS);
4941	adapter->stats.gprc += er32(GPRC);
4942	adapter->stats.gorc += er32(GORCL);
4943	er32(GORCH);		/* Clear gorc */
4944	adapter->stats.bprc += er32(BPRC);
4945	adapter->stats.mprc += er32(MPRC);
4946	adapter->stats.roc += er32(ROC);
4947
4948	adapter->stats.mpc += er32(MPC);
4949
4950	/* Half-duplex statistics */
4951	if (adapter->link_duplex == HALF_DUPLEX) {
4952		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4953			e1000e_update_phy_stats(adapter);
4954		} else {
4955			adapter->stats.scc += er32(SCC);
4956			adapter->stats.ecol += er32(ECOL);
4957			adapter->stats.mcc += er32(MCC);
4958			adapter->stats.latecol += er32(LATECOL);
4959			adapter->stats.dc += er32(DC);
4960
4961			hw->mac.collision_delta = er32(COLC);
4962
4963			if ((hw->mac.type != e1000_82574) &&
4964			    (hw->mac.type != e1000_82583))
4965				adapter->stats.tncrs += er32(TNCRS);
4966		}
4967		adapter->stats.colc += hw->mac.collision_delta;
4968	}
4969
4970	adapter->stats.xonrxc += er32(XONRXC);
4971	adapter->stats.xontxc += er32(XONTXC);
4972	adapter->stats.xoffrxc += er32(XOFFRXC);
4973	adapter->stats.xofftxc += er32(XOFFTXC);
4974	adapter->stats.gptc += er32(GPTC);
4975	adapter->stats.gotc += er32(GOTCL);
4976	er32(GOTCH);		/* Clear gotc */
4977	adapter->stats.rnbc += er32(RNBC);
4978	adapter->stats.ruc += er32(RUC);
4979
4980	adapter->stats.mptc += er32(MPTC);
4981	adapter->stats.bptc += er32(BPTC);
4982
4983	/* used for adaptive IFS */
4984
4985	hw->mac.tx_packet_delta = er32(TPT);
4986	adapter->stats.tpt += hw->mac.tx_packet_delta;
4987
4988	adapter->stats.algnerrc += er32(ALGNERRC);
4989	adapter->stats.rxerrc += er32(RXERRC);
4990	adapter->stats.cexterr += er32(CEXTERR);
4991	adapter->stats.tsctc += er32(TSCTC);
4992	adapter->stats.tsctfc += er32(TSCTFC);
4993
4994	/* Fill out the OS statistics structure */
4995	netdev->stats.multicast = adapter->stats.mprc;
4996	netdev->stats.collisions = adapter->stats.colc;
4997
4998	/* Rx Errors */
4999
5000	/* RLEC on some newer hardware can be incorrect so build
5001	 * our own version based on RUC and ROC
5002	 */
5003	netdev->stats.rx_errors = adapter->stats.rxerrc +
5004	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5005	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5006	netdev->stats.rx_length_errors = adapter->stats.ruc +
5007	    adapter->stats.roc;
5008	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5009	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5010	netdev->stats.rx_missed_errors = adapter->stats.mpc;
5011
5012	/* Tx Errors */
5013	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5014	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5015	netdev->stats.tx_window_errors = adapter->stats.latecol;
5016	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5017
5018	/* Tx Dropped needs to be maintained elsewhere */
5019
5020	/* Management Stats */
5021	adapter->stats.mgptc += er32(MGTPTC);
5022	adapter->stats.mgprc += er32(MGTPRC);
5023	adapter->stats.mgpdc += er32(MGTPDC);
5024
5025	/* Correctable ECC Errors */
5026	if (hw->mac.type >= e1000_pch_lpt) {
5027		u32 pbeccsts = er32(PBECCSTS);
5028
5029		adapter->corr_errors +=
5030		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5031		adapter->uncorr_errors +=
5032		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
 
5033	}
5034}
5035
5036/**
5037 * e1000_phy_read_status - Update the PHY register status snapshot
5038 * @adapter: board private structure
5039 **/
5040static void e1000_phy_read_status(struct e1000_adapter *adapter)
5041{
5042	struct e1000_hw *hw = &adapter->hw;
5043	struct e1000_phy_regs *phy = &adapter->phy_regs;
5044
5045	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5046	    (er32(STATUS) & E1000_STATUS_LU) &&
5047	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5048		int ret_val;
5049
5050		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5051		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5052		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5053		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5054		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5055		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5056		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5057		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5058		if (ret_val)
5059			e_warn("Error reading PHY register\n");
5060	} else {
5061		/* Do not read PHY registers if link is not up
5062		 * Set values to typical power-on defaults
5063		 */
5064		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5065		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5066			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5067			     BMSR_ERCAP);
5068		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5069				  ADVERTISE_ALL | ADVERTISE_CSMA);
5070		phy->lpa = 0;
5071		phy->expansion = EXPANSION_ENABLENPAGE;
5072		phy->ctrl1000 = ADVERTISE_1000FULL;
5073		phy->stat1000 = 0;
5074		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5075	}
5076}
5077
5078static void e1000_print_link_info(struct e1000_adapter *adapter)
5079{
5080	struct e1000_hw *hw = &adapter->hw;
5081	u32 ctrl = er32(CTRL);
5082
5083	/* Link status message must follow this format for user tools */
5084	netdev_info(adapter->netdev,
5085		    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5086		    adapter->link_speed,
5087		    adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5088		    (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5089		    (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5090		    (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5091}
5092
5093static bool e1000e_has_link(struct e1000_adapter *adapter)
5094{
5095	struct e1000_hw *hw = &adapter->hw;
5096	bool link_active = false;
5097	s32 ret_val = 0;
5098
5099	/* get_link_status is set on LSC (link status) interrupt or
5100	 * Rx sequence error interrupt.  get_link_status will stay
5101	 * true until the check_for_link establishes link
5102	 * for copper adapters ONLY
5103	 */
5104	switch (hw->phy.media_type) {
5105	case e1000_media_type_copper:
5106		if (hw->mac.get_link_status) {
5107			ret_val = hw->mac.ops.check_for_link(hw);
5108			link_active = !hw->mac.get_link_status;
5109		} else {
5110			link_active = true;
5111		}
5112		break;
5113	case e1000_media_type_fiber:
5114		ret_val = hw->mac.ops.check_for_link(hw);
5115		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5116		break;
5117	case e1000_media_type_internal_serdes:
5118		ret_val = hw->mac.ops.check_for_link(hw);
5119		link_active = hw->mac.serdes_has_link;
5120		break;
5121	default:
5122	case e1000_media_type_unknown:
5123		break;
5124	}
5125
5126	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5127	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5128		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5129		e_info("Gigabit has been disabled, downgrading speed\n");
5130	}
5131
5132	return link_active;
5133}
5134
5135static void e1000e_enable_receives(struct e1000_adapter *adapter)
5136{
5137	/* make sure the receive unit is started */
5138	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5139	    (adapter->flags & FLAG_RESTART_NOW)) {
5140		struct e1000_hw *hw = &adapter->hw;
5141		u32 rctl = er32(RCTL);
5142
5143		ew32(RCTL, rctl | E1000_RCTL_EN);
5144		adapter->flags &= ~FLAG_RESTART_NOW;
5145	}
5146}
5147
5148static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5149{
5150	struct e1000_hw *hw = &adapter->hw;
5151
5152	/* With 82574 controllers, PHY needs to be checked periodically
5153	 * for hung state and reset, if two calls return true
5154	 */
5155	if (e1000_check_phy_82574(hw))
5156		adapter->phy_hang_count++;
5157	else
5158		adapter->phy_hang_count = 0;
5159
5160	if (adapter->phy_hang_count > 1) {
5161		adapter->phy_hang_count = 0;
5162		e_dbg("PHY appears hung - resetting\n");
5163		schedule_work(&adapter->reset_task);
5164	}
5165}
5166
5167/**
5168 * e1000_watchdog - Timer Call-back
5169 * @t: pointer to timer_list containing private info adapter
5170 **/
5171static void e1000_watchdog(struct timer_list *t)
5172{
5173	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5174
5175	/* Do the rest outside of interrupt context */
5176	schedule_work(&adapter->watchdog_task);
5177
5178	/* TODO: make this use queue_delayed_work() */
5179}
5180
5181static void e1000_watchdog_task(struct work_struct *work)
5182{
5183	struct e1000_adapter *adapter = container_of(work,
5184						     struct e1000_adapter,
5185						     watchdog_task);
5186	struct net_device *netdev = adapter->netdev;
5187	struct e1000_mac_info *mac = &adapter->hw.mac;
5188	struct e1000_phy_info *phy = &adapter->hw.phy;
5189	struct e1000_ring *tx_ring = adapter->tx_ring;
5190	u32 dmoff_exit_timeout = 100, tries = 0;
5191	struct e1000_hw *hw = &adapter->hw;
5192	u32 link, tctl, pcim_state;
5193
5194	if (test_bit(__E1000_DOWN, &adapter->state))
5195		return;
5196
5197	link = e1000e_has_link(adapter);
5198	if ((netif_carrier_ok(netdev)) && link) {
5199		/* Cancel scheduled suspend requests. */
5200		pm_runtime_resume(netdev->dev.parent);
5201
5202		e1000e_enable_receives(adapter);
5203		goto link_up;
5204	}
5205
5206	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5207	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5208		e1000_update_mng_vlan(adapter);
5209
5210	if (link) {
5211		if (!netif_carrier_ok(netdev)) {
5212			bool txb2b = true;
5213
5214			/* Cancel scheduled suspend requests. */
5215			pm_runtime_resume(netdev->dev.parent);
5216
5217			/* Checking if MAC is in DMoff state*/
5218			if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5219				pcim_state = er32(STATUS);
5220				while (pcim_state & E1000_STATUS_PCIM_STATE) {
5221					if (tries++ == dmoff_exit_timeout) {
5222						e_dbg("Error in exiting dmoff\n");
5223						break;
5224					}
5225					usleep_range(10000, 20000);
5226					pcim_state = er32(STATUS);
5227
5228					/* Checking if MAC exited DMoff state */
5229					if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5230						e1000_phy_hw_reset(&adapter->hw);
5231				}
5232			}
5233
5234			/* update snapshot of PHY registers on LSC */
5235			e1000_phy_read_status(adapter);
5236			mac->ops.get_link_up_info(&adapter->hw,
5237						  &adapter->link_speed,
5238						  &adapter->link_duplex);
5239			e1000_print_link_info(adapter);
5240
5241			/* check if SmartSpeed worked */
5242			e1000e_check_downshift(hw);
5243			if (phy->speed_downgraded)
5244				netdev_warn(netdev,
5245					    "Link Speed was downgraded by SmartSpeed\n");
5246
5247			/* On supported PHYs, check for duplex mismatch only
5248			 * if link has autonegotiated at 10/100 half
5249			 */
5250			if ((hw->phy.type == e1000_phy_igp_3 ||
5251			     hw->phy.type == e1000_phy_bm) &&
5252			    hw->mac.autoneg &&
5253			    (adapter->link_speed == SPEED_10 ||
5254			     adapter->link_speed == SPEED_100) &&
5255			    (adapter->link_duplex == HALF_DUPLEX)) {
5256				u16 autoneg_exp;
5257
5258				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5259
5260				if (!(autoneg_exp & EXPANSION_NWAY))
5261					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5262			}
5263
5264			/* adjust timeout factor according to speed/duplex */
5265			adapter->tx_timeout_factor = 1;
5266			switch (adapter->link_speed) {
5267			case SPEED_10:
5268				txb2b = false;
5269				adapter->tx_timeout_factor = 16;
5270				break;
5271			case SPEED_100:
5272				txb2b = false;
5273				adapter->tx_timeout_factor = 10;
5274				break;
5275			}
5276
5277			/* workaround: re-program speed mode bit after
5278			 * link-up event
5279			 */
5280			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5281			    !txb2b) {
5282				u32 tarc0;
5283
5284				tarc0 = er32(TARC(0));
5285				tarc0 &= ~SPEED_MODE_BIT;
5286				ew32(TARC(0), tarc0);
5287			}
5288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5289			/* enable transmits in the hardware, need to do this
5290			 * after setting TARC(0)
5291			 */
5292			tctl = er32(TCTL);
5293			tctl |= E1000_TCTL_EN;
5294			ew32(TCTL, tctl);
5295
5296			/* Perform any post-link-up configuration before
5297			 * reporting link up.
5298			 */
5299			if (phy->ops.cfg_on_link_up)
5300				phy->ops.cfg_on_link_up(hw);
5301
5302			netif_wake_queue(netdev);
5303			netif_carrier_on(netdev);
5304
5305			if (!test_bit(__E1000_DOWN, &adapter->state))
5306				mod_timer(&adapter->phy_info_timer,
5307					  round_jiffies(jiffies + 2 * HZ));
5308		}
5309	} else {
5310		if (netif_carrier_ok(netdev)) {
5311			adapter->link_speed = 0;
5312			adapter->link_duplex = 0;
5313			/* Link status message must follow this format */
5314			netdev_info(netdev, "NIC Link is Down\n");
5315			netif_carrier_off(netdev);
5316			netif_stop_queue(netdev);
5317			if (!test_bit(__E1000_DOWN, &adapter->state))
5318				mod_timer(&adapter->phy_info_timer,
5319					  round_jiffies(jiffies + 2 * HZ));
5320
5321			/* 8000ES2LAN requires a Rx packet buffer work-around
5322			 * on link down event; reset the controller to flush
5323			 * the Rx packet buffer.
5324			 */
5325			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5326				adapter->flags |= FLAG_RESTART_NOW;
5327			else
5328				pm_schedule_suspend(netdev->dev.parent,
5329						    LINK_TIMEOUT);
5330		}
5331	}
5332
5333link_up:
5334	spin_lock(&adapter->stats64_lock);
5335	e1000e_update_stats(adapter);
5336
5337	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5338	adapter->tpt_old = adapter->stats.tpt;
5339	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5340	adapter->colc_old = adapter->stats.colc;
5341
5342	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5343	adapter->gorc_old = adapter->stats.gorc;
5344	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5345	adapter->gotc_old = adapter->stats.gotc;
5346	spin_unlock(&adapter->stats64_lock);
5347
5348	/* If the link is lost the controller stops DMA, but
5349	 * if there is queued Tx work it cannot be done.  So
5350	 * reset the controller to flush the Tx packet buffers.
5351	 */
5352	if (!netif_carrier_ok(netdev) &&
5353	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5354		adapter->flags |= FLAG_RESTART_NOW;
5355
5356	/* If reset is necessary, do it outside of interrupt context. */
5357	if (adapter->flags & FLAG_RESTART_NOW) {
5358		schedule_work(&adapter->reset_task);
5359		/* return immediately since reset is imminent */
5360		return;
5361	}
5362
5363	e1000e_update_adaptive(&adapter->hw);
5364
5365	/* Simple mode for Interrupt Throttle Rate (ITR) */
5366	if (adapter->itr_setting == 4) {
5367		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5368		 * Total asymmetrical Tx or Rx gets ITR=8000;
5369		 * everyone else is between 2000-8000.
5370		 */
5371		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5372		u32 dif = (adapter->gotc > adapter->gorc ?
5373			   adapter->gotc - adapter->gorc :
5374			   adapter->gorc - adapter->gotc) / 10000;
5375		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5376
5377		e1000e_write_itr(adapter, itr);
5378	}
5379
5380	/* Cause software interrupt to ensure Rx ring is cleaned */
5381	if (adapter->msix_entries)
5382		ew32(ICS, adapter->rx_ring->ims_val);
5383	else
5384		ew32(ICS, E1000_ICS_RXDMT0);
5385
5386	/* flush pending descriptors to memory before detecting Tx hang */
5387	e1000e_flush_descriptors(adapter);
5388
5389	/* Force detection of hung controller every watchdog period */
5390	adapter->detect_tx_hung = true;
5391
5392	/* With 82571 controllers, LAA may be overwritten due to controller
5393	 * reset from the other port. Set the appropriate LAA in RAR[0]
5394	 */
5395	if (e1000e_get_laa_state_82571(hw))
5396		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5397
5398	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5399		e1000e_check_82574_phy_workaround(adapter);
5400
5401	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5402	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5403		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5404		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5405			er32(RXSTMPH);
5406			adapter->rx_hwtstamp_cleared++;
5407		} else {
5408			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5409		}
5410	}
5411
5412	/* Reset the timer */
5413	if (!test_bit(__E1000_DOWN, &adapter->state))
5414		mod_timer(&adapter->watchdog_timer,
5415			  round_jiffies(jiffies + 2 * HZ));
5416}
5417
5418#define E1000_TX_FLAGS_CSUM		0x00000001
5419#define E1000_TX_FLAGS_VLAN		0x00000002
5420#define E1000_TX_FLAGS_TSO		0x00000004
5421#define E1000_TX_FLAGS_IPV4		0x00000008
5422#define E1000_TX_FLAGS_NO_FCS		0x00000010
5423#define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5424#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5425#define E1000_TX_FLAGS_VLAN_SHIFT	16
5426
5427static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5428		     __be16 protocol)
5429{
5430	struct e1000_context_desc *context_desc;
5431	struct e1000_buffer *buffer_info;
5432	unsigned int i;
5433	u32 cmd_length = 0;
5434	u16 ipcse = 0, mss;
5435	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5436	int err;
5437
5438	if (!skb_is_gso(skb))
5439		return 0;
5440
5441	err = skb_cow_head(skb, 0);
5442	if (err < 0)
5443		return err;
5444
5445	hdr_len = skb_tcp_all_headers(skb);
5446	mss = skb_shinfo(skb)->gso_size;
5447	if (protocol == htons(ETH_P_IP)) {
5448		struct iphdr *iph = ip_hdr(skb);
5449		iph->tot_len = 0;
5450		iph->check = 0;
5451		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5452							 0, IPPROTO_TCP, 0);
5453		cmd_length = E1000_TXD_CMD_IP;
5454		ipcse = skb_transport_offset(skb) - 1;
5455	} else if (skb_is_gso_v6(skb)) {
5456		tcp_v6_gso_csum_prep(skb);
 
 
 
5457		ipcse = 0;
5458	}
5459	ipcss = skb_network_offset(skb);
5460	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5461	tucss = skb_transport_offset(skb);
5462	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5463
5464	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5465		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5466
5467	i = tx_ring->next_to_use;
5468	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5469	buffer_info = &tx_ring->buffer_info[i];
5470
5471	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5472	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5473	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5474	context_desc->upper_setup.tcp_fields.tucss = tucss;
5475	context_desc->upper_setup.tcp_fields.tucso = tucso;
5476	context_desc->upper_setup.tcp_fields.tucse = 0;
5477	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5478	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5479	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5480
5481	buffer_info->time_stamp = jiffies;
5482	buffer_info->next_to_watch = i;
5483
5484	i++;
5485	if (i == tx_ring->count)
5486		i = 0;
5487	tx_ring->next_to_use = i;
5488
5489	return 1;
5490}
5491
5492static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5493			  __be16 protocol)
5494{
5495	struct e1000_adapter *adapter = tx_ring->adapter;
5496	struct e1000_context_desc *context_desc;
5497	struct e1000_buffer *buffer_info;
5498	unsigned int i;
5499	u8 css;
5500	u32 cmd_len = E1000_TXD_CMD_DEXT;
5501
5502	if (skb->ip_summed != CHECKSUM_PARTIAL)
5503		return false;
5504
5505	switch (protocol) {
5506	case cpu_to_be16(ETH_P_IP):
5507		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5508			cmd_len |= E1000_TXD_CMD_TCP;
5509		break;
5510	case cpu_to_be16(ETH_P_IPV6):
5511		/* XXX not handling all IPV6 headers */
5512		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5513			cmd_len |= E1000_TXD_CMD_TCP;
5514		break;
5515	default:
5516		if (unlikely(net_ratelimit()))
5517			e_warn("checksum_partial proto=%x!\n",
5518			       be16_to_cpu(protocol));
5519		break;
5520	}
5521
5522	css = skb_checksum_start_offset(skb);
5523
5524	i = tx_ring->next_to_use;
5525	buffer_info = &tx_ring->buffer_info[i];
5526	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5527
5528	context_desc->lower_setup.ip_config = 0;
5529	context_desc->upper_setup.tcp_fields.tucss = css;
5530	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5531	context_desc->upper_setup.tcp_fields.tucse = 0;
5532	context_desc->tcp_seg_setup.data = 0;
5533	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5534
5535	buffer_info->time_stamp = jiffies;
5536	buffer_info->next_to_watch = i;
5537
5538	i++;
5539	if (i == tx_ring->count)
5540		i = 0;
5541	tx_ring->next_to_use = i;
5542
5543	return true;
5544}
5545
5546static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5547			unsigned int first, unsigned int max_per_txd,
5548			unsigned int nr_frags)
5549{
5550	struct e1000_adapter *adapter = tx_ring->adapter;
5551	struct pci_dev *pdev = adapter->pdev;
5552	struct e1000_buffer *buffer_info;
5553	unsigned int len = skb_headlen(skb);
5554	unsigned int offset = 0, size, count = 0, i;
5555	unsigned int f, bytecount, segs;
5556
5557	i = tx_ring->next_to_use;
5558
5559	while (len) {
5560		buffer_info = &tx_ring->buffer_info[i];
5561		size = min(len, max_per_txd);
5562
5563		buffer_info->length = size;
5564		buffer_info->time_stamp = jiffies;
5565		buffer_info->next_to_watch = i;
5566		buffer_info->dma = dma_map_single(&pdev->dev,
5567						  skb->data + offset,
5568						  size, DMA_TO_DEVICE);
5569		buffer_info->mapped_as_page = false;
5570		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5571			goto dma_error;
5572
5573		len -= size;
5574		offset += size;
5575		count++;
5576
5577		if (len) {
5578			i++;
5579			if (i == tx_ring->count)
5580				i = 0;
5581		}
5582	}
5583
5584	for (f = 0; f < nr_frags; f++) {
5585		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5586
 
5587		len = skb_frag_size(frag);
5588		offset = 0;
5589
5590		while (len) {
5591			i++;
5592			if (i == tx_ring->count)
5593				i = 0;
5594
5595			buffer_info = &tx_ring->buffer_info[i];
5596			size = min(len, max_per_txd);
5597
5598			buffer_info->length = size;
5599			buffer_info->time_stamp = jiffies;
5600			buffer_info->next_to_watch = i;
5601			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5602							    offset, size,
5603							    DMA_TO_DEVICE);
5604			buffer_info->mapped_as_page = true;
5605			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5606				goto dma_error;
5607
5608			len -= size;
5609			offset += size;
5610			count++;
5611		}
5612	}
5613
5614	segs = skb_shinfo(skb)->gso_segs ? : 1;
5615	/* multiply data chunks by size of headers */
5616	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5617
5618	tx_ring->buffer_info[i].skb = skb;
5619	tx_ring->buffer_info[i].segs = segs;
5620	tx_ring->buffer_info[i].bytecount = bytecount;
5621	tx_ring->buffer_info[first].next_to_watch = i;
5622
5623	return count;
5624
5625dma_error:
5626	dev_err(&pdev->dev, "Tx DMA map failed\n");
5627	buffer_info->dma = 0;
5628	if (count)
5629		count--;
5630
5631	while (count--) {
5632		if (i == 0)
5633			i += tx_ring->count;
5634		i--;
5635		buffer_info = &tx_ring->buffer_info[i];
5636		e1000_put_txbuf(tx_ring, buffer_info, true);
5637	}
5638
5639	return 0;
5640}
5641
5642static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5643{
5644	struct e1000_adapter *adapter = tx_ring->adapter;
5645	struct e1000_tx_desc *tx_desc = NULL;
5646	struct e1000_buffer *buffer_info;
5647	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5648	unsigned int i;
5649
5650	if (tx_flags & E1000_TX_FLAGS_TSO) {
5651		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5652		    E1000_TXD_CMD_TSE;
5653		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5654
5655		if (tx_flags & E1000_TX_FLAGS_IPV4)
5656			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5657	}
5658
5659	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5660		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5661		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5662	}
5663
5664	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5665		txd_lower |= E1000_TXD_CMD_VLE;
5666		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5667	}
5668
5669	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5670		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5671
5672	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5673		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5674		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5675	}
5676
5677	i = tx_ring->next_to_use;
5678
5679	do {
5680		buffer_info = &tx_ring->buffer_info[i];
5681		tx_desc = E1000_TX_DESC(*tx_ring, i);
5682		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5683		tx_desc->lower.data = cpu_to_le32(txd_lower |
5684						  buffer_info->length);
5685		tx_desc->upper.data = cpu_to_le32(txd_upper);
5686
5687		i++;
5688		if (i == tx_ring->count)
5689			i = 0;
5690	} while (--count > 0);
5691
5692	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5693
5694	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5695	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5696		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5697
5698	/* Force memory writes to complete before letting h/w
5699	 * know there are new descriptors to fetch.  (Only
5700	 * applicable for weak-ordered memory model archs,
5701	 * such as IA-64).
5702	 */
5703	wmb();
5704
5705	tx_ring->next_to_use = i;
5706}
5707
5708#define MINIMUM_DHCP_PACKET_SIZE 282
5709static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5710				    struct sk_buff *skb)
5711{
5712	struct e1000_hw *hw = &adapter->hw;
5713	u16 length, offset;
5714
5715	if (skb_vlan_tag_present(skb) &&
5716	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5717	      (adapter->hw.mng_cookie.status &
5718	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5719		return 0;
5720
5721	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5722		return 0;
5723
5724	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5725		return 0;
5726
5727	{
5728		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5729		struct udphdr *udp;
5730
5731		if (ip->protocol != IPPROTO_UDP)
5732			return 0;
5733
5734		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5735		if (ntohs(udp->dest) != 67)
5736			return 0;
5737
5738		offset = (u8 *)udp + 8 - skb->data;
5739		length = skb->len - offset;
5740		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5741	}
5742
5743	return 0;
5744}
5745
5746static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5747{
5748	struct e1000_adapter *adapter = tx_ring->adapter;
5749
5750	netif_stop_queue(adapter->netdev);
5751	/* Herbert's original patch had:
5752	 *  smp_mb__after_netif_stop_queue();
5753	 * but since that doesn't exist yet, just open code it.
5754	 */
5755	smp_mb();
5756
5757	/* We need to check again in a case another CPU has just
5758	 * made room available.
5759	 */
5760	if (e1000_desc_unused(tx_ring) < size)
5761		return -EBUSY;
5762
5763	/* A reprieve! */
5764	netif_start_queue(adapter->netdev);
5765	++adapter->restart_queue;
5766	return 0;
5767}
5768
5769static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5770{
5771	BUG_ON(size > tx_ring->count);
5772
5773	if (e1000_desc_unused(tx_ring) >= size)
5774		return 0;
5775	return __e1000_maybe_stop_tx(tx_ring, size);
5776}
5777
5778static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5779				    struct net_device *netdev)
5780{
5781	struct e1000_adapter *adapter = netdev_priv(netdev);
5782	struct e1000_ring *tx_ring = adapter->tx_ring;
5783	unsigned int first;
5784	unsigned int tx_flags = 0;
5785	unsigned int len = skb_headlen(skb);
5786	unsigned int nr_frags;
5787	unsigned int mss;
5788	int count = 0;
5789	int tso;
5790	unsigned int f;
5791	__be16 protocol = vlan_get_protocol(skb);
5792
5793	if (test_bit(__E1000_DOWN, &adapter->state)) {
5794		dev_kfree_skb_any(skb);
5795		return NETDEV_TX_OK;
5796	}
5797
5798	if (skb->len <= 0) {
5799		dev_kfree_skb_any(skb);
5800		return NETDEV_TX_OK;
5801	}
5802
5803	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5804	 * pad skb in order to meet this minimum size requirement
5805	 */
5806	if (skb_put_padto(skb, 17))
5807		return NETDEV_TX_OK;
5808
5809	mss = skb_shinfo(skb)->gso_size;
5810	if (mss) {
5811		u8 hdr_len;
5812
5813		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5814		 * points to just header, pull a few bytes of payload from
5815		 * frags into skb->data
5816		 */
5817		hdr_len = skb_tcp_all_headers(skb);
5818		/* we do this workaround for ES2LAN, but it is un-necessary,
5819		 * avoiding it could save a lot of cycles
5820		 */
5821		if (skb->data_len && (hdr_len == len)) {
5822			unsigned int pull_size;
5823
5824			pull_size = min_t(unsigned int, 4, skb->data_len);
5825			if (!__pskb_pull_tail(skb, pull_size)) {
5826				e_err("__pskb_pull_tail failed.\n");
5827				dev_kfree_skb_any(skb);
5828				return NETDEV_TX_OK;
5829			}
5830			len = skb_headlen(skb);
5831		}
5832	}
5833
5834	/* reserve a descriptor for the offload context */
5835	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5836		count++;
5837	count++;
5838
5839	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5840
5841	nr_frags = skb_shinfo(skb)->nr_frags;
5842	for (f = 0; f < nr_frags; f++)
5843		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5844				      adapter->tx_fifo_limit);
5845
5846	if (adapter->hw.mac.tx_pkt_filtering)
5847		e1000_transfer_dhcp_info(adapter, skb);
5848
5849	/* need: count + 2 desc gap to keep tail from touching
5850	 * head, otherwise try next time
5851	 */
5852	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5853		return NETDEV_TX_BUSY;
5854
5855	if (skb_vlan_tag_present(skb)) {
5856		tx_flags |= E1000_TX_FLAGS_VLAN;
5857		tx_flags |= (skb_vlan_tag_get(skb) <<
5858			     E1000_TX_FLAGS_VLAN_SHIFT);
5859	}
5860
5861	first = tx_ring->next_to_use;
5862
5863	tso = e1000_tso(tx_ring, skb, protocol);
5864	if (tso < 0) {
5865		dev_kfree_skb_any(skb);
5866		return NETDEV_TX_OK;
5867	}
5868
5869	if (tso)
5870		tx_flags |= E1000_TX_FLAGS_TSO;
5871	else if (e1000_tx_csum(tx_ring, skb, protocol))
5872		tx_flags |= E1000_TX_FLAGS_CSUM;
5873
5874	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5875	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5876	 * no longer assume, we must.
5877	 */
5878	if (protocol == htons(ETH_P_IP))
5879		tx_flags |= E1000_TX_FLAGS_IPV4;
5880
5881	if (unlikely(skb->no_fcs))
5882		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5883
5884	/* if count is 0 then mapping error has occurred */
5885	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5886			     nr_frags);
5887	if (count) {
5888		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5889		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5890			if (!adapter->tx_hwtstamp_skb) {
5891				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5892				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5893				adapter->tx_hwtstamp_skb = skb_get(skb);
5894				adapter->tx_hwtstamp_start = jiffies;
5895				schedule_work(&adapter->tx_hwtstamp_work);
5896			} else {
5897				adapter->tx_hwtstamp_skipped++;
5898			}
5899		}
5900
5901		skb_tx_timestamp(skb);
5902
5903		netdev_sent_queue(netdev, skb->len);
5904		e1000_tx_queue(tx_ring, tx_flags, count);
5905		/* Make sure there is space in the ring for the next send. */
5906		e1000_maybe_stop_tx(tx_ring,
5907				    ((MAX_SKB_FRAGS + 1) *
5908				     DIV_ROUND_UP(PAGE_SIZE,
5909						  adapter->tx_fifo_limit) + 4));
5910
5911		if (!netdev_xmit_more() ||
5912		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5913			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5914				e1000e_update_tdt_wa(tx_ring,
5915						     tx_ring->next_to_use);
5916			else
5917				writel(tx_ring->next_to_use, tx_ring->tail);
 
 
 
 
 
 
5918		}
5919	} else {
5920		dev_kfree_skb_any(skb);
5921		tx_ring->buffer_info[first].time_stamp = 0;
5922		tx_ring->next_to_use = first;
5923	}
5924
5925	return NETDEV_TX_OK;
5926}
5927
5928/**
5929 * e1000_tx_timeout - Respond to a Tx Hang
5930 * @netdev: network interface device structure
5931 * @txqueue: index of the hung queue (unused)
5932 **/
5933static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5934{
5935	struct e1000_adapter *adapter = netdev_priv(netdev);
5936
5937	/* Do the reset outside of interrupt context */
5938	adapter->tx_timeout_count++;
5939	schedule_work(&adapter->reset_task);
5940}
5941
5942static void e1000_reset_task(struct work_struct *work)
5943{
5944	struct e1000_adapter *adapter;
5945	adapter = container_of(work, struct e1000_adapter, reset_task);
5946
5947	rtnl_lock();
5948	/* don't run the task if already down */
5949	if (test_bit(__E1000_DOWN, &adapter->state)) {
5950		rtnl_unlock();
5951		return;
5952	}
5953
5954	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5955		e1000e_dump(adapter);
5956		e_err("Reset adapter unexpectedly\n");
5957	}
5958	e1000e_reinit_locked(adapter);
5959	rtnl_unlock();
5960}
5961
5962/**
5963 * e1000e_get_stats64 - Get System Network Statistics
5964 * @netdev: network interface device structure
5965 * @stats: rtnl_link_stats64 pointer
5966 *
5967 * Returns the address of the device statistics structure.
5968 **/
5969void e1000e_get_stats64(struct net_device *netdev,
5970			struct rtnl_link_stats64 *stats)
5971{
5972	struct e1000_adapter *adapter = netdev_priv(netdev);
5973
5974	spin_lock(&adapter->stats64_lock);
5975	e1000e_update_stats(adapter);
5976	/* Fill out the OS statistics structure */
5977	stats->rx_bytes = adapter->stats.gorc;
5978	stats->rx_packets = adapter->stats.gprc;
5979	stats->tx_bytes = adapter->stats.gotc;
5980	stats->tx_packets = adapter->stats.gptc;
5981	stats->multicast = adapter->stats.mprc;
5982	stats->collisions = adapter->stats.colc;
5983
5984	/* Rx Errors */
5985
5986	/* RLEC on some newer hardware can be incorrect so build
5987	 * our own version based on RUC and ROC
5988	 */
5989	stats->rx_errors = adapter->stats.rxerrc +
5990	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5991	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5992	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5993	stats->rx_crc_errors = adapter->stats.crcerrs;
5994	stats->rx_frame_errors = adapter->stats.algnerrc;
5995	stats->rx_missed_errors = adapter->stats.mpc;
5996
5997	/* Tx Errors */
5998	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5999	stats->tx_aborted_errors = adapter->stats.ecol;
6000	stats->tx_window_errors = adapter->stats.latecol;
6001	stats->tx_carrier_errors = adapter->stats.tncrs;
6002
6003	/* Tx Dropped needs to be maintained elsewhere */
6004
6005	spin_unlock(&adapter->stats64_lock);
6006}
6007
6008/**
6009 * e1000_change_mtu - Change the Maximum Transfer Unit
6010 * @netdev: network interface device structure
6011 * @new_mtu: new value for maximum frame size
6012 *
6013 * Returns 0 on success, negative on failure
6014 **/
6015static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6016{
6017	struct e1000_adapter *adapter = netdev_priv(netdev);
6018	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6019
6020	/* Jumbo frame support */
6021	if ((new_mtu > ETH_DATA_LEN) &&
6022	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6023		e_err("Jumbo Frames not supported.\n");
6024		return -EINVAL;
6025	}
6026
6027	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6028	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6029	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6030	    (new_mtu > ETH_DATA_LEN)) {
6031		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6032		return -EINVAL;
6033	}
6034
6035	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6036		usleep_range(1000, 1100);
6037	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6038	adapter->max_frame_size = max_frame;
6039	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6040		   netdev->mtu, new_mtu);
6041	netdev->mtu = new_mtu;
6042
6043	pm_runtime_get_sync(netdev->dev.parent);
6044
6045	if (netif_running(netdev))
6046		e1000e_down(adapter, true);
6047
6048	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6049	 * means we reserve 2 more, this pushes us to allocate from the next
6050	 * larger slab size.
6051	 * i.e. RXBUFFER_2048 --> size-4096 slab
6052	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6053	 * fragmented skbs
6054	 */
6055
6056	if (max_frame <= 2048)
6057		adapter->rx_buffer_len = 2048;
6058	else
6059		adapter->rx_buffer_len = 4096;
6060
6061	/* adjust allocation if LPE protects us, and we aren't using SBP */
6062	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6063		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6064
6065	if (netif_running(netdev))
6066		e1000e_up(adapter);
6067	else
6068		e1000e_reset(adapter);
6069
6070	pm_runtime_put_sync(netdev->dev.parent);
6071
6072	clear_bit(__E1000_RESETTING, &adapter->state);
6073
6074	return 0;
6075}
6076
6077static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6078			   int cmd)
6079{
6080	struct e1000_adapter *adapter = netdev_priv(netdev);
6081	struct mii_ioctl_data *data = if_mii(ifr);
6082
6083	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6084		return -EOPNOTSUPP;
6085
6086	switch (cmd) {
6087	case SIOCGMIIPHY:
6088		data->phy_id = adapter->hw.phy.addr;
6089		break;
6090	case SIOCGMIIREG:
6091		e1000_phy_read_status(adapter);
6092
6093		switch (data->reg_num & 0x1F) {
6094		case MII_BMCR:
6095			data->val_out = adapter->phy_regs.bmcr;
6096			break;
6097		case MII_BMSR:
6098			data->val_out = adapter->phy_regs.bmsr;
6099			break;
6100		case MII_PHYSID1:
6101			data->val_out = (adapter->hw.phy.id >> 16);
6102			break;
6103		case MII_PHYSID2:
6104			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6105			break;
6106		case MII_ADVERTISE:
6107			data->val_out = adapter->phy_regs.advertise;
6108			break;
6109		case MII_LPA:
6110			data->val_out = adapter->phy_regs.lpa;
6111			break;
6112		case MII_EXPANSION:
6113			data->val_out = adapter->phy_regs.expansion;
6114			break;
6115		case MII_CTRL1000:
6116			data->val_out = adapter->phy_regs.ctrl1000;
6117			break;
6118		case MII_STAT1000:
6119			data->val_out = adapter->phy_regs.stat1000;
6120			break;
6121		case MII_ESTATUS:
6122			data->val_out = adapter->phy_regs.estatus;
6123			break;
6124		default:
6125			return -EIO;
6126		}
6127		break;
6128	case SIOCSMIIREG:
6129	default:
6130		return -EOPNOTSUPP;
6131	}
6132	return 0;
6133}
6134
6135/**
6136 * e1000e_hwtstamp_set - control hardware time stamping
6137 * @netdev: network interface device structure
6138 * @ifr: interface request
6139 *
6140 * Outgoing time stamping can be enabled and disabled. Play nice and
6141 * disable it when requested, although it shouldn't cause any overhead
6142 * when no packet needs it. At most one packet in the queue may be
6143 * marked for time stamping, otherwise it would be impossible to tell
6144 * for sure to which packet the hardware time stamp belongs.
6145 *
6146 * Incoming time stamping has to be configured via the hardware filters.
6147 * Not all combinations are supported, in particular event type has to be
6148 * specified. Matching the kind of event packet is not supported, with the
6149 * exception of "all V2 events regardless of level 2 or 4".
6150 **/
6151static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6152{
6153	struct e1000_adapter *adapter = netdev_priv(netdev);
6154	struct hwtstamp_config config;
6155	int ret_val;
6156
6157	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6158		return -EFAULT;
6159
6160	ret_val = e1000e_config_hwtstamp(adapter, &config);
6161	if (ret_val)
6162		return ret_val;
6163
6164	switch (config.rx_filter) {
6165	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6166	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6167	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6168	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6169	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6170	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6171		/* With V2 type filters which specify a Sync or Delay Request,
6172		 * Path Delay Request/Response messages are also time stamped
6173		 * by hardware so notify the caller the requested packets plus
6174		 * some others are time stamped.
6175		 */
6176		config.rx_filter = HWTSTAMP_FILTER_SOME;
6177		break;
6178	default:
6179		break;
6180	}
6181
6182	return copy_to_user(ifr->ifr_data, &config,
6183			    sizeof(config)) ? -EFAULT : 0;
6184}
6185
6186static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6187{
6188	struct e1000_adapter *adapter = netdev_priv(netdev);
6189
6190	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6191			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6192}
6193
6194static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6195{
6196	switch (cmd) {
6197	case SIOCGMIIPHY:
6198	case SIOCGMIIREG:
6199	case SIOCSMIIREG:
6200		return e1000_mii_ioctl(netdev, ifr, cmd);
6201	case SIOCSHWTSTAMP:
6202		return e1000e_hwtstamp_set(netdev, ifr);
6203	case SIOCGHWTSTAMP:
6204		return e1000e_hwtstamp_get(netdev, ifr);
6205	default:
6206		return -EOPNOTSUPP;
6207	}
6208}
6209
6210static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6211{
6212	struct e1000_hw *hw = &adapter->hw;
6213	u32 i, mac_reg, wuc;
6214	u16 phy_reg, wuc_enable;
6215	int retval;
6216
6217	/* copy MAC RARs to PHY RARs */
6218	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6219
6220	retval = hw->phy.ops.acquire(hw);
6221	if (retval) {
6222		e_err("Could not acquire PHY\n");
6223		return retval;
6224	}
6225
6226	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6227	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6228	if (retval)
6229		goto release;
6230
6231	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6232	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6233		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6234		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6235					   (u16)(mac_reg & 0xFFFF));
6236		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6237					   (u16)((mac_reg >> 16) & 0xFFFF));
6238	}
6239
6240	/* configure PHY Rx Control register */
6241	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6242	mac_reg = er32(RCTL);
6243	if (mac_reg & E1000_RCTL_UPE)
6244		phy_reg |= BM_RCTL_UPE;
6245	if (mac_reg & E1000_RCTL_MPE)
6246		phy_reg |= BM_RCTL_MPE;
6247	phy_reg &= ~(BM_RCTL_MO_MASK);
6248	if (mac_reg & E1000_RCTL_MO_3)
6249		phy_reg |= (FIELD_GET(E1000_RCTL_MO_3, mac_reg)
6250			    << BM_RCTL_MO_SHIFT);
6251	if (mac_reg & E1000_RCTL_BAM)
6252		phy_reg |= BM_RCTL_BAM;
6253	if (mac_reg & E1000_RCTL_PMCF)
6254		phy_reg |= BM_RCTL_PMCF;
6255	mac_reg = er32(CTRL);
6256	if (mac_reg & E1000_CTRL_RFCE)
6257		phy_reg |= BM_RCTL_RFCE;
6258	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6259
6260	wuc = E1000_WUC_PME_EN;
6261	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6262		wuc |= E1000_WUC_APME;
6263
6264	/* enable PHY wakeup in MAC register */
6265	ew32(WUFC, wufc);
6266	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6267		   E1000_WUC_PME_STATUS | wuc));
6268
6269	/* configure and enable PHY wakeup in PHY registers */
6270	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6271	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6272
6273	/* activate PHY wakeup */
6274	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6275	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6276	if (retval)
6277		e_err("Could not set PHY Host Wakeup bit\n");
6278release:
6279	hw->phy.ops.release(hw);
6280
6281	return retval;
6282}
6283
6284static void e1000e_flush_lpic(struct pci_dev *pdev)
6285{
6286	struct net_device *netdev = pci_get_drvdata(pdev);
6287	struct e1000_adapter *adapter = netdev_priv(netdev);
6288	struct e1000_hw *hw = &adapter->hw;
6289	u32 ret_val;
6290
6291	pm_runtime_get_sync(netdev->dev.parent);
6292
6293	ret_val = hw->phy.ops.acquire(hw);
6294	if (ret_val)
6295		goto fl_out;
6296
6297	pr_info("EEE TX LPI TIMER: %08X\n",
6298		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6299
6300	hw->phy.ops.release(hw);
6301
6302fl_out:
6303	pm_runtime_put_sync(netdev->dev.parent);
6304}
6305
6306/* S0ix implementation */
6307static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6308{
6309	struct e1000_hw *hw = &adapter->hw;
6310	u32 mac_data;
6311	u16 phy_data;
6312
6313	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6314	    hw->mac.type >= e1000_pch_adp) {
6315		/* Request ME configure the device for S0ix */
6316		mac_data = er32(H2ME);
6317		mac_data |= E1000_H2ME_START_DPG;
6318		mac_data &= ~E1000_H2ME_EXIT_DPG;
6319		trace_e1000e_trace_mac_register(mac_data);
6320		ew32(H2ME, mac_data);
6321	} else {
6322		/* Request driver configure the device to S0ix */
6323		/* Disable the periodic inband message,
6324		 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6325		 */
6326		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6327		phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6328		phy_data |= BIT(10);
6329		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6330
6331		/* Make sure we don't exit K1 every time a new packet arrives
6332		 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6333		 */
6334		e1e_rphy(hw, I217_CGFREG, &phy_data);
6335		phy_data |= BIT(5);
6336		e1e_wphy(hw, I217_CGFREG, phy_data);
6337
6338		/* Change the MAC/PHY interface to SMBus
6339		 * Force the SMBus in PHY page769_23[0] = 1
6340		 * Force the SMBus in MAC CTRL_EXT[11] = 1
6341		 */
6342		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6343		phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6344		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6345		mac_data = er32(CTRL_EXT);
6346		mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6347		ew32(CTRL_EXT, mac_data);
6348
6349		/* DFT control: PHY bit: page769_20[0] = 1
6350		 * page769_20[7] - PHY PLL stop
6351		 * page769_20[8] - PHY go to the electrical idle
6352		 * page769_20[9] - PHY serdes disable
6353		 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6354		 */
6355		e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6356		phy_data |= BIT(0);
6357		phy_data |= BIT(7);
6358		phy_data |= BIT(8);
6359		phy_data |= BIT(9);
6360		e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6361
6362		mac_data = er32(EXTCNF_CTRL);
6363		mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6364		ew32(EXTCNF_CTRL, mac_data);
6365
6366		/* Enable the Dynamic Power Gating in the MAC */
6367		mac_data = er32(FEXTNVM7);
6368		mac_data |= BIT(22);
6369		ew32(FEXTNVM7, mac_data);
6370
6371		/* Disable disconnected cable conditioning for Power Gating */
6372		mac_data = er32(DPGFR);
6373		mac_data |= BIT(2);
6374		ew32(DPGFR, mac_data);
6375
6376		/* Don't wake from dynamic Power Gating with clock request */
6377		mac_data = er32(FEXTNVM12);
6378		mac_data |= BIT(12);
6379		ew32(FEXTNVM12, mac_data);
6380
6381		/* Ungate PGCB clock */
6382		mac_data = er32(FEXTNVM9);
6383		mac_data &= ~BIT(28);
6384		ew32(FEXTNVM9, mac_data);
6385
6386		/* Enable K1 off to enable mPHY Power Gating */
6387		mac_data = er32(FEXTNVM6);
6388		mac_data |= BIT(31);
6389		ew32(FEXTNVM6, mac_data);
6390
6391		/* Enable mPHY power gating for any link and speed */
6392		mac_data = er32(FEXTNVM8);
6393		mac_data |= BIT(9);
6394		ew32(FEXTNVM8, mac_data);
6395
6396		/* Enable the Dynamic Clock Gating in the DMA and MAC */
6397		mac_data = er32(CTRL_EXT);
6398		mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6399		ew32(CTRL_EXT, mac_data);
6400
6401		/* No MAC DPG gating SLP_S0 in modern standby
6402		 * Switch the logic of the lanphypc to use PMC counter
6403		 */
6404		mac_data = er32(FEXTNVM5);
6405		mac_data |= BIT(7);
6406		ew32(FEXTNVM5, mac_data);
6407	}
6408
6409	/* Disable the time synchronization clock */
6410	mac_data = er32(FEXTNVM7);
6411	mac_data |= BIT(31);
6412	mac_data &= ~BIT(0);
6413	ew32(FEXTNVM7, mac_data);
6414
6415	/* Dynamic Power Gating Enable */
6416	mac_data = er32(CTRL_EXT);
6417	mac_data |= BIT(3);
6418	ew32(CTRL_EXT, mac_data);
6419
6420	/* Check MAC Tx/Rx packet buffer pointers.
6421	 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6422	 * pending traffic indication that would prevent power gating.
6423	 */
6424	mac_data = er32(TDFH);
6425	if (mac_data)
6426		ew32(TDFH, 0);
6427	mac_data = er32(TDFT);
6428	if (mac_data)
6429		ew32(TDFT, 0);
6430	mac_data = er32(TDFHS);
6431	if (mac_data)
6432		ew32(TDFHS, 0);
6433	mac_data = er32(TDFTS);
6434	if (mac_data)
6435		ew32(TDFTS, 0);
6436	mac_data = er32(TDFPC);
6437	if (mac_data)
6438		ew32(TDFPC, 0);
6439	mac_data = er32(RDFH);
6440	if (mac_data)
6441		ew32(RDFH, 0);
6442	mac_data = er32(RDFT);
6443	if (mac_data)
6444		ew32(RDFT, 0);
6445	mac_data = er32(RDFHS);
6446	if (mac_data)
6447		ew32(RDFHS, 0);
6448	mac_data = er32(RDFTS);
6449	if (mac_data)
6450		ew32(RDFTS, 0);
6451	mac_data = er32(RDFPC);
6452	if (mac_data)
6453		ew32(RDFPC, 0);
6454}
6455
6456static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6457{
6458	struct e1000_hw *hw = &adapter->hw;
6459	bool firmware_bug = false;
6460	u32 mac_data;
6461	u16 phy_data;
6462	u32 i = 0;
6463
6464	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6465	    hw->mac.type >= e1000_pch_adp) {
6466		/* Keep the GPT clock enabled for CSME */
6467		mac_data = er32(FEXTNVM);
6468		mac_data |= BIT(3);
6469		ew32(FEXTNVM, mac_data);
6470		/* Request ME unconfigure the device from S0ix */
6471		mac_data = er32(H2ME);
6472		mac_data &= ~E1000_H2ME_START_DPG;
6473		mac_data |= E1000_H2ME_EXIT_DPG;
6474		trace_e1000e_trace_mac_register(mac_data);
6475		ew32(H2ME, mac_data);
6476
6477		/* Poll up to 2.5 seconds for ME to unconfigure DPG.
6478		 * If this takes more than 1 second, show a warning indicating a
6479		 * firmware bug
6480		 */
6481		while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) {
6482			if (i > 100 && !firmware_bug)
6483				firmware_bug = true;
6484
6485			if (i++ == 250) {
6486				e_dbg("Timeout (firmware bug): %d msec\n",
6487				      i * 10);
6488				break;
6489			}
6490
6491			usleep_range(10000, 11000);
6492		}
6493		if (firmware_bug)
6494			e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
6495			       i * 10);
6496		else
6497			e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10);
6498	} else {
6499		/* Request driver unconfigure the device from S0ix */
6500
6501		/* Disable the Dynamic Power Gating in the MAC */
6502		mac_data = er32(FEXTNVM7);
6503		mac_data &= 0xFFBFFFFF;
6504		ew32(FEXTNVM7, mac_data);
6505
6506		/* Disable mPHY power gating for any link and speed */
6507		mac_data = er32(FEXTNVM8);
6508		mac_data &= ~BIT(9);
6509		ew32(FEXTNVM8, mac_data);
6510
6511		/* Disable K1 off */
6512		mac_data = er32(FEXTNVM6);
6513		mac_data &= ~BIT(31);
6514		ew32(FEXTNVM6, mac_data);
6515
6516		/* Disable Ungate PGCB clock */
6517		mac_data = er32(FEXTNVM9);
6518		mac_data |= BIT(28);
6519		ew32(FEXTNVM9, mac_data);
6520
6521		/* Cancel not waking from dynamic
6522		 * Power Gating with clock request
6523		 */
6524		mac_data = er32(FEXTNVM12);
6525		mac_data &= ~BIT(12);
6526		ew32(FEXTNVM12, mac_data);
6527
6528		/* Cancel disable disconnected cable conditioning
6529		 * for Power Gating
6530		 */
6531		mac_data = er32(DPGFR);
6532		mac_data &= ~BIT(2);
6533		ew32(DPGFR, mac_data);
6534
6535		/* Disable the Dynamic Clock Gating in the DMA and MAC */
6536		mac_data = er32(CTRL_EXT);
6537		mac_data &= 0xFFF7FFFF;
6538		ew32(CTRL_EXT, mac_data);
6539
6540		/* Revert the lanphypc logic to use the internal Gbe counter
6541		 * and not the PMC counter
6542		 */
6543		mac_data = er32(FEXTNVM5);
6544		mac_data &= 0xFFFFFF7F;
6545		ew32(FEXTNVM5, mac_data);
6546
6547		/* Enable the periodic inband message,
6548		 * Request PCIe clock in K1 page770_17[10:9] =01b
6549		 */
6550		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6551		phy_data &= 0xFBFF;
6552		phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6553		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6554
6555		/* Return back configuration
6556		 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6557		 */
6558		e1e_rphy(hw, I217_CGFREG, &phy_data);
6559		phy_data &= 0xFFDF;
6560		e1e_wphy(hw, I217_CGFREG, phy_data);
6561
6562		/* Change the MAC/PHY interface to Kumeran
6563		 * Unforce the SMBus in PHY page769_23[0] = 0
6564		 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6565		 */
6566		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6567		phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6568		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6569		mac_data = er32(CTRL_EXT);
6570		mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6571		ew32(CTRL_EXT, mac_data);
6572	}
6573
6574	/* Disable Dynamic Power Gating */
6575	mac_data = er32(CTRL_EXT);
6576	mac_data &= 0xFFFFFFF7;
6577	ew32(CTRL_EXT, mac_data);
6578
6579	/* Enable the time synchronization clock */
6580	mac_data = er32(FEXTNVM7);
6581	mac_data &= ~BIT(31);
6582	mac_data |= BIT(0);
6583	ew32(FEXTNVM7, mac_data);
6584}
6585
6586static int e1000e_pm_freeze(struct device *dev)
6587{
6588	struct net_device *netdev = dev_get_drvdata(dev);
6589	struct e1000_adapter *adapter = netdev_priv(netdev);
6590	bool present;
6591
6592	rtnl_lock();
6593
6594	present = netif_device_present(netdev);
6595	netif_device_detach(netdev);
6596
6597	if (present && netif_running(netdev)) {
6598		int count = E1000_CHECK_RESET_COUNT;
6599
6600		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6601			usleep_range(10000, 11000);
6602
6603		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6604
6605		/* Quiesce the device without resetting the hardware */
6606		e1000e_down(adapter, false);
6607		e1000_free_irq(adapter);
6608	}
6609	rtnl_unlock();
6610
6611	e1000e_reset_interrupt_capability(adapter);
6612
6613	/* Allow time for pending master requests to run */
6614	e1000e_disable_pcie_master(&adapter->hw);
6615
6616	return 0;
6617}
6618
6619static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6620{
6621	struct net_device *netdev = pci_get_drvdata(pdev);
6622	struct e1000_adapter *adapter = netdev_priv(netdev);
6623	struct e1000_hw *hw = &adapter->hw;
6624	u32 ctrl, ctrl_ext, rctl, status, wufc;
6625	int retval = 0;
6626
6627	/* Runtime suspend should only enable wakeup for link changes */
6628	if (runtime)
6629		wufc = E1000_WUFC_LNKC;
6630	else if (device_may_wakeup(&pdev->dev))
6631		wufc = adapter->wol;
6632	else
6633		wufc = 0;
6634
6635	status = er32(STATUS);
6636	if (status & E1000_STATUS_LU)
6637		wufc &= ~E1000_WUFC_LNKC;
6638
6639	if (wufc) {
6640		e1000_setup_rctl(adapter);
6641		e1000e_set_rx_mode(netdev);
6642
6643		/* turn on all-multi mode if wake on multicast is enabled */
6644		if (wufc & E1000_WUFC_MC) {
6645			rctl = er32(RCTL);
6646			rctl |= E1000_RCTL_MPE;
6647			ew32(RCTL, rctl);
6648		}
6649
6650		ctrl = er32(CTRL);
6651		ctrl |= E1000_CTRL_ADVD3WUC;
6652		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6653			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6654		ew32(CTRL, ctrl);
6655
6656		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6657		    adapter->hw.phy.media_type ==
6658		    e1000_media_type_internal_serdes) {
6659			/* keep the laser running in D3 */
6660			ctrl_ext = er32(CTRL_EXT);
6661			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6662			ew32(CTRL_EXT, ctrl_ext);
6663		}
6664
6665		if (!runtime)
6666			e1000e_power_up_phy(adapter);
6667
6668		if (adapter->flags & FLAG_IS_ICH)
6669			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6670
6671		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6672			/* enable wakeup by the PHY */
6673			retval = e1000_init_phy_wakeup(adapter, wufc);
6674			if (retval)
6675				return retval;
6676		} else {
6677			/* enable wakeup by the MAC */
6678			ew32(WUFC, wufc);
6679			ew32(WUC, E1000_WUC_PME_EN);
6680		}
6681	} else {
6682		ew32(WUC, 0);
6683		ew32(WUFC, 0);
6684
6685		e1000_power_down_phy(adapter);
6686	}
6687
6688	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6689		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6690	} else if (hw->mac.type >= e1000_pch_lpt) {
6691		if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6692			/* ULP does not support wake from unicast, multicast
6693			 * or broadcast.
6694			 */
6695			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6696
6697		if (retval)
6698			return retval;
6699	}
6700
6701	/* Ensure that the appropriate bits are set in LPI_CTRL
6702	 * for EEE in Sx
6703	 */
6704	if ((hw->phy.type >= e1000_phy_i217) &&
6705	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6706		u16 lpi_ctrl = 0;
6707
6708		retval = hw->phy.ops.acquire(hw);
6709		if (!retval) {
6710			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6711						 &lpi_ctrl);
6712			if (!retval) {
6713				if (adapter->eee_advert &
6714				    hw->dev_spec.ich8lan.eee_lp_ability &
6715				    I82579_EEE_100_SUPPORTED)
6716					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6717				if (adapter->eee_advert &
6718				    hw->dev_spec.ich8lan.eee_lp_ability &
6719				    I82579_EEE_1000_SUPPORTED)
6720					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6721
6722				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6723							 lpi_ctrl);
6724			}
6725		}
6726		hw->phy.ops.release(hw);
6727	}
6728
6729	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6730	 * would have already happened in close and is redundant.
6731	 */
6732	e1000e_release_hw_control(adapter);
6733
6734	pci_clear_master(pdev);
6735
6736	/* The pci-e switch on some quad port adapters will report a
6737	 * correctable error when the MAC transitions from D0 to D3.  To
6738	 * prevent this we need to mask off the correctable errors on the
6739	 * downstream port of the pci-e switch.
6740	 *
6741	 * We don't have the associated upstream bridge while assigning
6742	 * the PCI device into guest. For example, the KVM on power is
6743	 * one of the cases.
6744	 */
6745	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6746		struct pci_dev *us_dev = pdev->bus->self;
6747		u16 devctl;
6748
6749		if (!us_dev)
6750			return 0;
6751
6752		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6753		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6754					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6755
6756		pci_save_state(pdev);
6757		pci_prepare_to_sleep(pdev);
6758
6759		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6760	}
6761
6762	return 0;
6763}
6764
6765/**
6766 * __e1000e_disable_aspm - Disable ASPM states
6767 * @pdev: pointer to PCI device struct
6768 * @state: bit-mask of ASPM states to disable
6769 * @locked: indication if this context holds pci_bus_sem locked.
6770 *
6771 * Some devices *must* have certain ASPM states disabled per hardware errata.
6772 **/
6773static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6774{
6775	struct pci_dev *parent = pdev->bus->self;
6776	u16 aspm_dis_mask = 0;
6777	u16 pdev_aspmc, parent_aspmc;
6778
6779	switch (state) {
6780	case PCIE_LINK_STATE_L0S:
6781	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6782		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6783		fallthrough; /* can't have L1 without L0s */
6784	case PCIE_LINK_STATE_L1:
6785		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6786		break;
6787	default:
6788		return;
6789	}
6790
6791	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6792	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6793
6794	if (parent) {
6795		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6796					  &parent_aspmc);
6797		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6798	}
6799
6800	/* Nothing to do if the ASPM states to be disabled already are */
6801	if (!(pdev_aspmc & aspm_dis_mask) &&
6802	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6803		return;
6804
6805	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6806		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6807		 "L0s" : "",
6808		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6809		 "L1" : "");
6810
6811#ifdef CONFIG_PCIEASPM
6812	if (locked)
6813		pci_disable_link_state_locked(pdev, state);
6814	else
6815		pci_disable_link_state(pdev, state);
6816
6817	/* Double-check ASPM control.  If not disabled by the above, the
6818	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6819	 * not enabled); override by writing PCI config space directly.
6820	 */
6821	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6822	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6823
6824	if (!(aspm_dis_mask & pdev_aspmc))
6825		return;
6826#endif
6827
6828	/* Both device and parent should have the same ASPM setting.
6829	 * Disable ASPM in downstream component first and then upstream.
6830	 */
6831	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6832
6833	if (parent)
6834		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6835					   aspm_dis_mask);
6836}
6837
6838/**
6839 * e1000e_disable_aspm - Disable ASPM states.
6840 * @pdev: pointer to PCI device struct
6841 * @state: bit-mask of ASPM states to disable
6842 *
6843 * This function acquires the pci_bus_sem!
6844 * Some devices *must* have certain ASPM states disabled per hardware errata.
6845 **/
6846static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6847{
6848	__e1000e_disable_aspm(pdev, state, 0);
6849}
6850
6851/**
6852 * e1000e_disable_aspm_locked - Disable ASPM states.
6853 * @pdev: pointer to PCI device struct
6854 * @state: bit-mask of ASPM states to disable
6855 *
6856 * This function must be called with pci_bus_sem acquired!
6857 * Some devices *must* have certain ASPM states disabled per hardware errata.
6858 **/
6859static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6860{
6861	__e1000e_disable_aspm(pdev, state, 1);
6862}
6863
6864static int e1000e_pm_thaw(struct device *dev)
6865{
6866	struct net_device *netdev = dev_get_drvdata(dev);
6867	struct e1000_adapter *adapter = netdev_priv(netdev);
6868	int rc = 0;
6869
6870	e1000e_set_interrupt_capability(adapter);
6871
6872	rtnl_lock();
6873	if (netif_running(netdev)) {
6874		rc = e1000_request_irq(adapter);
6875		if (rc)
6876			goto err_irq;
6877
6878		e1000e_up(adapter);
6879	}
6880
6881	netif_device_attach(netdev);
6882err_irq:
6883	rtnl_unlock();
6884
6885	return rc;
6886}
6887
6888static int __e1000_resume(struct pci_dev *pdev)
6889{
6890	struct net_device *netdev = pci_get_drvdata(pdev);
6891	struct e1000_adapter *adapter = netdev_priv(netdev);
6892	struct e1000_hw *hw = &adapter->hw;
6893	u16 aspm_disable_flag = 0;
6894
6895	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6896		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6897	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6898		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6899	if (aspm_disable_flag)
6900		e1000e_disable_aspm(pdev, aspm_disable_flag);
6901
6902	pci_set_master(pdev);
6903
6904	if (hw->mac.type >= e1000_pch2lan)
6905		e1000_resume_workarounds_pchlan(&adapter->hw);
6906
6907	e1000e_power_up_phy(adapter);
6908
6909	/* report the system wakeup cause from S3/S4 */
6910	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6911		u16 phy_data;
6912
6913		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6914		if (phy_data) {
6915			e_info("PHY Wakeup cause - %s\n",
6916			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6917			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6918			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6919			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6920			       phy_data & E1000_WUS_LNKC ?
6921			       "Link Status Change" : "other");
6922		}
6923		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6924	} else {
6925		u32 wus = er32(WUS);
6926
6927		if (wus) {
6928			e_info("MAC Wakeup cause - %s\n",
6929			       wus & E1000_WUS_EX ? "Unicast Packet" :
6930			       wus & E1000_WUS_MC ? "Multicast Packet" :
6931			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6932			       wus & E1000_WUS_MAG ? "Magic Packet" :
6933			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6934			       "other");
6935		}
6936		ew32(WUS, ~0);
6937	}
6938
6939	e1000e_reset(adapter);
6940
6941	e1000_init_manageability_pt(adapter);
6942
6943	/* If the controller has AMT, do not set DRV_LOAD until the interface
6944	 * is up.  For all other cases, let the f/w know that the h/w is now
6945	 * under the control of the driver.
6946	 */
6947	if (!(adapter->flags & FLAG_HAS_AMT))
6948		e1000e_get_hw_control(adapter);
6949
6950	return 0;
6951}
6952
6953static __maybe_unused int e1000e_pm_prepare(struct device *dev)
 
6954{
6955	return pm_runtime_suspended(dev) &&
6956		pm_suspend_via_firmware();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6957}
6958
6959static __maybe_unused int e1000e_pm_suspend(struct device *dev)
6960{
6961	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6962	struct e1000_adapter *adapter = netdev_priv(netdev);
6963	struct pci_dev *pdev = to_pci_dev(dev);
6964	int rc;
6965
6966	e1000e_flush_lpic(pdev);
6967
6968	e1000e_pm_freeze(dev);
6969
6970	rc = __e1000_shutdown(pdev, false);
6971	if (rc) {
6972		e1000e_pm_thaw(dev);
6973	} else {
6974		/* Introduce S0ix implementation */
6975		if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6976			e1000e_s0ix_entry_flow(adapter);
6977	}
6978
6979	return rc;
6980}
6981
6982static __maybe_unused int e1000e_pm_resume(struct device *dev)
6983{
6984	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6985	struct e1000_adapter *adapter = netdev_priv(netdev);
6986	struct pci_dev *pdev = to_pci_dev(dev);
6987	int rc;
6988
6989	/* Introduce S0ix implementation */
6990	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6991		e1000e_s0ix_exit_flow(adapter);
6992
6993	rc = __e1000_resume(pdev);
6994	if (rc)
6995		return rc;
6996
6997	return e1000e_pm_thaw(dev);
6998}
 
6999
7000static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
7001{
7002	struct net_device *netdev = dev_get_drvdata(dev);
 
7003	struct e1000_adapter *adapter = netdev_priv(netdev);
7004	u16 eee_lp;
7005
7006	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
7007
7008	if (!e1000e_has_link(adapter)) {
7009		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
7010		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
7011	}
7012
7013	return -EBUSY;
7014}
7015
7016static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
7017{
7018	struct pci_dev *pdev = to_pci_dev(dev);
7019	struct net_device *netdev = pci_get_drvdata(pdev);
7020	struct e1000_adapter *adapter = netdev_priv(netdev);
7021	int rc;
7022
7023	pdev->pme_poll = true;
7024
7025	rc = __e1000_resume(pdev);
7026	if (rc)
7027		return rc;
7028
7029	if (netdev->flags & IFF_UP)
7030		e1000e_up(adapter);
7031
7032	return rc;
7033}
7034
7035static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
7036{
7037	struct pci_dev *pdev = to_pci_dev(dev);
7038	struct net_device *netdev = pci_get_drvdata(pdev);
7039	struct e1000_adapter *adapter = netdev_priv(netdev);
7040
7041	if (netdev->flags & IFF_UP) {
7042		int count = E1000_CHECK_RESET_COUNT;
7043
7044		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7045			usleep_range(10000, 11000);
7046
7047		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7048
7049		/* Down the device without resetting the hardware */
7050		e1000e_down(adapter, false);
7051	}
7052
7053	if (__e1000_shutdown(pdev, true)) {
7054		e1000e_pm_runtime_resume(dev);
7055		return -EBUSY;
7056	}
7057
7058	return 0;
7059}
 
7060
7061static void e1000_shutdown(struct pci_dev *pdev)
7062{
7063	e1000e_flush_lpic(pdev);
7064
7065	e1000e_pm_freeze(&pdev->dev);
7066
7067	__e1000_shutdown(pdev, false);
7068}
7069
7070#ifdef CONFIG_NET_POLL_CONTROLLER
7071
7072static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7073{
7074	struct net_device *netdev = data;
7075	struct e1000_adapter *adapter = netdev_priv(netdev);
7076
7077	if (adapter->msix_entries) {
7078		int vector, msix_irq;
7079
7080		vector = 0;
7081		msix_irq = adapter->msix_entries[vector].vector;
7082		if (disable_hardirq(msix_irq))
7083			e1000_intr_msix_rx(msix_irq, netdev);
7084		enable_irq(msix_irq);
7085
7086		vector++;
7087		msix_irq = adapter->msix_entries[vector].vector;
7088		if (disable_hardirq(msix_irq))
7089			e1000_intr_msix_tx(msix_irq, netdev);
7090		enable_irq(msix_irq);
7091
7092		vector++;
7093		msix_irq = adapter->msix_entries[vector].vector;
7094		if (disable_hardirq(msix_irq))
7095			e1000_msix_other(msix_irq, netdev);
7096		enable_irq(msix_irq);
7097	}
7098
7099	return IRQ_HANDLED;
7100}
7101
7102/**
7103 * e1000_netpoll
7104 * @netdev: network interface device structure
7105 *
7106 * Polling 'interrupt' - used by things like netconsole to send skbs
7107 * without having to re-enable interrupts. It's not called while
7108 * the interrupt routine is executing.
7109 */
7110static void e1000_netpoll(struct net_device *netdev)
7111{
7112	struct e1000_adapter *adapter = netdev_priv(netdev);
7113
7114	switch (adapter->int_mode) {
7115	case E1000E_INT_MODE_MSIX:
7116		e1000_intr_msix(adapter->pdev->irq, netdev);
7117		break;
7118	case E1000E_INT_MODE_MSI:
7119		if (disable_hardirq(adapter->pdev->irq))
7120			e1000_intr_msi(adapter->pdev->irq, netdev);
7121		enable_irq(adapter->pdev->irq);
7122		break;
7123	default:		/* E1000E_INT_MODE_LEGACY */
7124		if (disable_hardirq(adapter->pdev->irq))
7125			e1000_intr(adapter->pdev->irq, netdev);
7126		enable_irq(adapter->pdev->irq);
7127		break;
7128	}
7129}
7130#endif
7131
7132/**
7133 * e1000_io_error_detected - called when PCI error is detected
7134 * @pdev: Pointer to PCI device
7135 * @state: The current pci connection state
7136 *
7137 * This function is called after a PCI bus error affecting
7138 * this device has been detected.
7139 */
7140static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7141						pci_channel_state_t state)
7142{
7143	e1000e_pm_freeze(&pdev->dev);
 
 
 
7144
7145	if (state == pci_channel_io_perm_failure)
7146		return PCI_ERS_RESULT_DISCONNECT;
7147
 
 
7148	pci_disable_device(pdev);
7149
7150	/* Request a slot reset. */
7151	return PCI_ERS_RESULT_NEED_RESET;
7152}
7153
7154/**
7155 * e1000_io_slot_reset - called after the pci bus has been reset.
7156 * @pdev: Pointer to PCI device
7157 *
7158 * Restart the card from scratch, as if from a cold-boot. Implementation
7159 * resembles the first-half of the e1000e_pm_resume routine.
7160 */
7161static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7162{
7163	struct net_device *netdev = pci_get_drvdata(pdev);
7164	struct e1000_adapter *adapter = netdev_priv(netdev);
7165	struct e1000_hw *hw = &adapter->hw;
7166	u16 aspm_disable_flag = 0;
7167	int err;
7168	pci_ers_result_t result;
7169
7170	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7171		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7172	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7173		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7174	if (aspm_disable_flag)
7175		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7176
7177	err = pci_enable_device_mem(pdev);
7178	if (err) {
7179		dev_err(&pdev->dev,
7180			"Cannot re-enable PCI device after reset.\n");
7181		result = PCI_ERS_RESULT_DISCONNECT;
7182	} else {
7183		pdev->state_saved = true;
7184		pci_restore_state(pdev);
7185		pci_set_master(pdev);
7186
7187		pci_enable_wake(pdev, PCI_D3hot, 0);
7188		pci_enable_wake(pdev, PCI_D3cold, 0);
7189
7190		e1000e_reset(adapter);
7191		ew32(WUS, ~0);
7192		result = PCI_ERS_RESULT_RECOVERED;
7193	}
7194
 
 
7195	return result;
7196}
7197
7198/**
7199 * e1000_io_resume - called when traffic can start flowing again.
7200 * @pdev: Pointer to PCI device
7201 *
7202 * This callback is called when the error recovery driver tells us that
7203 * its OK to resume normal operation. Implementation resembles the
7204 * second-half of the e1000e_pm_resume routine.
7205 */
7206static void e1000_io_resume(struct pci_dev *pdev)
7207{
7208	struct net_device *netdev = pci_get_drvdata(pdev);
7209	struct e1000_adapter *adapter = netdev_priv(netdev);
7210
7211	e1000_init_manageability_pt(adapter);
7212
7213	e1000e_pm_thaw(&pdev->dev);
 
 
 
7214
7215	/* If the controller has AMT, do not set DRV_LOAD until the interface
7216	 * is up.  For all other cases, let the f/w know that the h/w is now
7217	 * under the control of the driver.
7218	 */
7219	if (!(adapter->flags & FLAG_HAS_AMT))
7220		e1000e_get_hw_control(adapter);
7221}
7222
7223static void e1000_print_device_info(struct e1000_adapter *adapter)
7224{
7225	struct e1000_hw *hw = &adapter->hw;
7226	struct net_device *netdev = adapter->netdev;
7227	u32 ret_val;
7228	u8 pba_str[E1000_PBANUM_LENGTH];
7229
7230	/* print bus type/speed/width info */
7231	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7232	       /* bus width */
7233	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7234		"Width x1"),
7235	       /* MAC address */
7236	       netdev->dev_addr);
7237	e_info("Intel(R) PRO/%s Network Connection\n",
7238	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7239	ret_val = e1000_read_pba_string_generic(hw, pba_str,
7240						E1000_PBANUM_LENGTH);
7241	if (ret_val)
7242		strscpy((char *)pba_str, "Unknown", sizeof(pba_str));
7243	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7244	       hw->mac.type, hw->phy.type, pba_str);
7245}
7246
7247static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7248{
7249	struct e1000_hw *hw = &adapter->hw;
7250	int ret_val;
7251	u16 buf = 0;
7252
7253	if (hw->mac.type != e1000_82573)
7254		return;
7255
7256	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7257	le16_to_cpus(&buf);
7258	if (!ret_val && (!(buf & BIT(0)))) {
7259		/* Deep Smart Power Down (DSPD) */
7260		dev_warn(&adapter->pdev->dev,
7261			 "Warning: detected DSPD enabled in EEPROM\n");
7262	}
7263}
7264
7265static netdev_features_t e1000_fix_features(struct net_device *netdev,
7266					    netdev_features_t features)
7267{
7268	struct e1000_adapter *adapter = netdev_priv(netdev);
7269	struct e1000_hw *hw = &adapter->hw;
7270
7271	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7272	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7273		features &= ~NETIF_F_RXFCS;
7274
7275	/* Since there is no support for separate Rx/Tx vlan accel
7276	 * enable/disable make sure Tx flag is always in same state as Rx.
7277	 */
7278	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7279		features |= NETIF_F_HW_VLAN_CTAG_TX;
7280	else
7281		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7282
7283	return features;
7284}
7285
7286static int e1000_set_features(struct net_device *netdev,
7287			      netdev_features_t features)
7288{
7289	struct e1000_adapter *adapter = netdev_priv(netdev);
7290	netdev_features_t changed = features ^ netdev->features;
7291
7292	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7293		adapter->flags |= FLAG_TSO_FORCE;
7294
7295	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7296			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7297			 NETIF_F_RXALL)))
7298		return 0;
7299
7300	if (changed & NETIF_F_RXFCS) {
7301		if (features & NETIF_F_RXFCS) {
7302			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7303		} else {
7304			/* We need to take it back to defaults, which might mean
7305			 * stripping is still disabled at the adapter level.
7306			 */
7307			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7308				adapter->flags2 |= FLAG2_CRC_STRIPPING;
7309			else
7310				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7311		}
7312	}
7313
7314	netdev->features = features;
7315
7316	if (netif_running(netdev))
7317		e1000e_reinit_locked(adapter);
7318	else
7319		e1000e_reset(adapter);
7320
7321	return 1;
7322}
7323
7324static const struct net_device_ops e1000e_netdev_ops = {
7325	.ndo_open		= e1000e_open,
7326	.ndo_stop		= e1000e_close,
7327	.ndo_start_xmit		= e1000_xmit_frame,
7328	.ndo_get_stats64	= e1000e_get_stats64,
7329	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7330	.ndo_set_mac_address	= e1000_set_mac,
7331	.ndo_change_mtu		= e1000_change_mtu,
7332	.ndo_eth_ioctl		= e1000_ioctl,
7333	.ndo_tx_timeout		= e1000_tx_timeout,
7334	.ndo_validate_addr	= eth_validate_addr,
7335
7336	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7337	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7338#ifdef CONFIG_NET_POLL_CONTROLLER
7339	.ndo_poll_controller	= e1000_netpoll,
7340#endif
7341	.ndo_set_features = e1000_set_features,
7342	.ndo_fix_features = e1000_fix_features,
7343	.ndo_features_check	= passthru_features_check,
7344};
7345
7346/**
7347 * e1000_probe - Device Initialization Routine
7348 * @pdev: PCI device information struct
7349 * @ent: entry in e1000_pci_tbl
7350 *
7351 * Returns 0 on success, negative on failure
7352 *
7353 * e1000_probe initializes an adapter identified by a pci_dev structure.
7354 * The OS initialization, configuring of the adapter private structure,
7355 * and a hardware reset occur.
7356 **/
7357static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7358{
7359	struct net_device *netdev;
7360	struct e1000_adapter *adapter;
7361	struct e1000_hw *hw;
7362	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7363	resource_size_t mmio_start, mmio_len;
7364	resource_size_t flash_start, flash_len;
7365	static int cards_found;
7366	u16 aspm_disable_flag = 0;
 
7367	u16 eeprom_data = 0;
7368	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7369	int bars, i, err;
7370	s32 ret_val = 0;
7371
7372	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7373		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7374	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7375		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7376	if (aspm_disable_flag)
7377		e1000e_disable_aspm(pdev, aspm_disable_flag);
7378
7379	err = pci_enable_device_mem(pdev);
7380	if (err)
7381		return err;
7382
 
7383	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7384	if (err) {
7385		dev_err(&pdev->dev,
7386			"No usable DMA configuration, aborting\n");
7387		goto err_dma;
 
 
 
 
 
7388	}
7389
7390	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7391	err = pci_request_selected_regions_exclusive(pdev, bars,
7392						     e1000e_driver_name);
7393	if (err)
7394		goto err_pci_reg;
7395
 
 
 
7396	pci_set_master(pdev);
7397	/* PCI config space info */
7398	err = pci_save_state(pdev);
7399	if (err)
7400		goto err_alloc_etherdev;
7401
7402	err = -ENOMEM;
7403	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7404	if (!netdev)
7405		goto err_alloc_etherdev;
7406
7407	SET_NETDEV_DEV(netdev, &pdev->dev);
7408
7409	netdev->irq = pdev->irq;
7410
7411	pci_set_drvdata(pdev, netdev);
7412	adapter = netdev_priv(netdev);
7413	hw = &adapter->hw;
7414	adapter->netdev = netdev;
7415	adapter->pdev = pdev;
7416	adapter->ei = ei;
7417	adapter->pba = ei->pba;
7418	adapter->flags = ei->flags;
7419	adapter->flags2 = ei->flags2;
7420	adapter->hw.adapter = adapter;
7421	adapter->hw.mac.type = ei->mac;
7422	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7423	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7424
7425	mmio_start = pci_resource_start(pdev, 0);
7426	mmio_len = pci_resource_len(pdev, 0);
7427
7428	err = -EIO;
7429	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7430	if (!adapter->hw.hw_addr)
7431		goto err_ioremap;
7432
7433	if ((adapter->flags & FLAG_HAS_FLASH) &&
7434	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7435	    (hw->mac.type < e1000_pch_spt)) {
7436		flash_start = pci_resource_start(pdev, 1);
7437		flash_len = pci_resource_len(pdev, 1);
7438		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7439		if (!adapter->hw.flash_address)
7440			goto err_flashmap;
7441	}
7442
7443	/* Set default EEE advertisement */
7444	if (adapter->flags2 & FLAG2_HAS_EEE)
7445		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7446
7447	/* construct the net_device struct */
7448	netdev->netdev_ops = &e1000e_netdev_ops;
7449	e1000e_set_ethtool_ops(netdev);
7450	netdev->watchdog_timeo = 5 * HZ;
7451	netif_napi_add(netdev, &adapter->napi, e1000e_poll);
7452	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7453
7454	netdev->mem_start = mmio_start;
7455	netdev->mem_end = mmio_start + mmio_len;
7456
7457	adapter->bd_number = cards_found++;
7458
7459	e1000e_check_options(adapter);
7460
7461	/* setup adapter struct */
7462	err = e1000_sw_init(adapter);
7463	if (err)
7464		goto err_sw_init;
7465
7466	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7467	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7468	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7469
7470	err = ei->get_variants(adapter);
7471	if (err)
7472		goto err_hw_init;
7473
7474	if ((adapter->flags & FLAG_IS_ICH) &&
7475	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7476	    (hw->mac.type < e1000_pch_spt))
7477		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7478
7479	hw->mac.ops.get_bus_info(&adapter->hw);
7480
7481	adapter->hw.phy.autoneg_wait_to_complete = 0;
7482
7483	/* Copper options */
7484	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7485		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7486		adapter->hw.phy.disable_polarity_correction = 0;
7487		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7488	}
7489
7490	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7491		dev_info(&pdev->dev,
7492			 "PHY reset is blocked due to SOL/IDER session.\n");
7493
7494	/* Set initial default active device features */
7495	netdev->features = (NETIF_F_SG |
7496			    NETIF_F_HW_VLAN_CTAG_RX |
7497			    NETIF_F_HW_VLAN_CTAG_TX |
7498			    NETIF_F_TSO |
7499			    NETIF_F_TSO6 |
7500			    NETIF_F_RXHASH |
7501			    NETIF_F_RXCSUM |
7502			    NETIF_F_HW_CSUM);
7503
7504	/* disable TSO for pcie and 10/100 speeds to avoid
7505	 * some hardware issues and for i219 to fix transfer
7506	 * speed being capped at 60%
7507	 */
7508	if (!(adapter->flags & FLAG_TSO_FORCE)) {
7509		switch (adapter->link_speed) {
7510		case SPEED_10:
7511		case SPEED_100:
7512			e_info("10/100 speed: disabling TSO\n");
7513			netdev->features &= ~NETIF_F_TSO;
7514			netdev->features &= ~NETIF_F_TSO6;
7515			break;
7516		case SPEED_1000:
7517			netdev->features |= NETIF_F_TSO;
7518			netdev->features |= NETIF_F_TSO6;
7519			break;
7520		default:
7521			/* oops */
7522			break;
7523		}
7524		if (hw->mac.type == e1000_pch_spt) {
7525			netdev->features &= ~NETIF_F_TSO;
7526			netdev->features &= ~NETIF_F_TSO6;
7527		}
7528	}
7529
7530	/* Set user-changeable features (subset of all device features) */
7531	netdev->hw_features = netdev->features;
7532	netdev->hw_features |= NETIF_F_RXFCS;
7533	netdev->priv_flags |= IFF_SUPP_NOFCS;
7534	netdev->hw_features |= NETIF_F_RXALL;
7535
7536	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7537		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7538
7539	netdev->vlan_features |= (NETIF_F_SG |
7540				  NETIF_F_TSO |
7541				  NETIF_F_TSO6 |
7542				  NETIF_F_HW_CSUM);
7543
7544	netdev->priv_flags |= IFF_UNICAST_FLT;
7545
7546	netdev->features |= NETIF_F_HIGHDMA;
7547	netdev->vlan_features |= NETIF_F_HIGHDMA;
 
 
7548
7549	/* MTU range: 68 - max_hw_frame_size */
7550	netdev->min_mtu = ETH_MIN_MTU;
7551	netdev->max_mtu = adapter->max_hw_frame_size -
7552			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7553
7554	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7555		adapter->flags |= FLAG_MNG_PT_ENABLED;
7556
7557	/* before reading the NVM, reset the controller to
7558	 * put the device in a known good starting state
7559	 */
7560	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7561
7562	/* systems with ASPM and others may see the checksum fail on the first
7563	 * attempt. Let's give it a few tries
7564	 */
7565	for (i = 0;; i++) {
7566		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7567			break;
7568		if (i == 2) {
7569			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7570			err = -EIO;
7571			goto err_eeprom;
7572		}
7573	}
7574
7575	e1000_eeprom_checks(adapter);
7576
7577	/* copy the MAC address */
7578	if (e1000e_read_mac_addr(&adapter->hw))
7579		dev_err(&pdev->dev,
7580			"NVM Read Error while reading MAC address\n");
7581
7582	eth_hw_addr_set(netdev, adapter->hw.mac.addr);
7583
7584	if (!is_valid_ether_addr(netdev->dev_addr)) {
7585		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7586			netdev->dev_addr);
7587		err = -EIO;
7588		goto err_eeprom;
7589	}
7590
7591	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7592	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7593
7594	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7595	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7596	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7597	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7598	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7599
7600	/* Initialize link parameters. User can change them with ethtool */
7601	adapter->hw.mac.autoneg = 1;
7602	adapter->fc_autoneg = true;
7603	adapter->hw.fc.requested_mode = e1000_fc_default;
7604	adapter->hw.fc.current_mode = e1000_fc_default;
7605	adapter->hw.phy.autoneg_advertised = 0x2f;
7606
7607	/* Initial Wake on LAN setting - If APM wake is enabled in
7608	 * the EEPROM, enable the ACPI Magic Packet filter
7609	 */
7610	if (adapter->flags & FLAG_APME_IN_WUC) {
7611		/* APME bit in EEPROM is mapped to WUC.APME */
7612		eeprom_data = er32(WUC);
7613		eeprom_apme_mask = E1000_WUC_APME;
7614		if ((hw->mac.type > e1000_ich10lan) &&
7615		    (eeprom_data & E1000_WUC_PHY_WAKE))
7616			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7617	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7618		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7619		    (adapter->hw.bus.func == 1))
7620			ret_val = e1000_read_nvm(&adapter->hw,
7621					      NVM_INIT_CONTROL3_PORT_B,
7622					      1, &eeprom_data);
7623		else
7624			ret_val = e1000_read_nvm(&adapter->hw,
7625					      NVM_INIT_CONTROL3_PORT_A,
7626					      1, &eeprom_data);
7627	}
7628
7629	/* fetch WoL from EEPROM */
7630	if (ret_val)
7631		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7632	else if (eeprom_data & eeprom_apme_mask)
7633		adapter->eeprom_wol |= E1000_WUFC_MAG;
7634
7635	/* now that we have the eeprom settings, apply the special cases
7636	 * where the eeprom may be wrong or the board simply won't support
7637	 * wake on lan on a particular port
7638	 */
7639	if (!(adapter->flags & FLAG_HAS_WOL))
7640		adapter->eeprom_wol = 0;
7641
7642	/* initialize the wol settings based on the eeprom settings */
7643	adapter->wol = adapter->eeprom_wol;
7644
7645	/* make sure adapter isn't asleep if manageability is enabled */
7646	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7647	    (hw->mac.ops.check_mng_mode(hw)))
7648		device_wakeup_enable(&pdev->dev);
7649
7650	/* save off EEPROM version number */
7651	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7652
7653	if (ret_val) {
7654		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7655		adapter->eeprom_vers = 0;
7656	}
7657
7658	/* init PTP hardware clock */
7659	e1000e_ptp_init(adapter);
7660
7661	/* reset the hardware with the new settings */
7662	e1000e_reset(adapter);
7663
7664	/* If the controller has AMT, do not set DRV_LOAD until the interface
7665	 * is up.  For all other cases, let the f/w know that the h/w is now
7666	 * under the control of the driver.
7667	 */
7668	if (!(adapter->flags & FLAG_HAS_AMT))
7669		e1000e_get_hw_control(adapter);
7670
7671	if (hw->mac.type >= e1000_pch_cnp)
7672		adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7673
7674	strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7675	err = register_netdev(netdev);
7676	if (err)
7677		goto err_register;
7678
7679	/* carrier off reporting is important to ethtool even BEFORE open */
7680	netif_carrier_off(netdev);
7681
7682	e1000_print_device_info(adapter);
7683
7684	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7685
7686	if (pci_dev_run_wake(pdev))
7687		pm_runtime_put_noidle(&pdev->dev);
7688
7689	return 0;
7690
7691err_register:
7692	if (!(adapter->flags & FLAG_HAS_AMT))
7693		e1000e_release_hw_control(adapter);
7694err_eeprom:
7695	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7696		e1000_phy_hw_reset(&adapter->hw);
7697err_hw_init:
7698	kfree(adapter->tx_ring);
7699	kfree(adapter->rx_ring);
7700err_sw_init:
7701	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7702		iounmap(adapter->hw.flash_address);
7703	e1000e_reset_interrupt_capability(adapter);
7704err_flashmap:
7705	iounmap(adapter->hw.hw_addr);
7706err_ioremap:
7707	free_netdev(netdev);
7708err_alloc_etherdev:
7709	pci_release_mem_regions(pdev);
7710err_pci_reg:
7711err_dma:
7712	pci_disable_device(pdev);
7713	return err;
7714}
7715
7716/**
7717 * e1000_remove - Device Removal Routine
7718 * @pdev: PCI device information struct
7719 *
7720 * e1000_remove is called by the PCI subsystem to alert the driver
7721 * that it should release a PCI device.  This could be caused by a
7722 * Hot-Plug event, or because the driver is going to be removed from
7723 * memory.
7724 **/
7725static void e1000_remove(struct pci_dev *pdev)
7726{
7727	struct net_device *netdev = pci_get_drvdata(pdev);
7728	struct e1000_adapter *adapter = netdev_priv(netdev);
 
7729
7730	e1000e_ptp_remove(adapter);
7731
7732	/* The timers may be rescheduled, so explicitly disable them
7733	 * from being rescheduled.
7734	 */
7735	set_bit(__E1000_DOWN, &adapter->state);
 
7736	del_timer_sync(&adapter->watchdog_timer);
7737	del_timer_sync(&adapter->phy_info_timer);
7738
7739	cancel_work_sync(&adapter->reset_task);
7740	cancel_work_sync(&adapter->watchdog_task);
7741	cancel_work_sync(&adapter->downshift_task);
7742	cancel_work_sync(&adapter->update_phy_task);
7743	cancel_work_sync(&adapter->print_hang_task);
7744
7745	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7746		cancel_work_sync(&adapter->tx_hwtstamp_work);
7747		if (adapter->tx_hwtstamp_skb) {
7748			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7749			adapter->tx_hwtstamp_skb = NULL;
7750		}
7751	}
7752
 
 
 
7753	unregister_netdev(netdev);
7754
7755	if (pci_dev_run_wake(pdev))
7756		pm_runtime_get_noresume(&pdev->dev);
7757
7758	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7759	 * would have already happened in close and is redundant.
7760	 */
7761	e1000e_release_hw_control(adapter);
7762
7763	e1000e_reset_interrupt_capability(adapter);
7764	kfree(adapter->tx_ring);
7765	kfree(adapter->rx_ring);
7766
7767	iounmap(adapter->hw.hw_addr);
7768	if ((adapter->hw.flash_address) &&
7769	    (adapter->hw.mac.type < e1000_pch_spt))
7770		iounmap(adapter->hw.flash_address);
7771	pci_release_mem_regions(pdev);
7772
7773	free_netdev(netdev);
7774
 
 
 
7775	pci_disable_device(pdev);
7776}
7777
7778/* PCI Error Recovery (ERS) */
7779static const struct pci_error_handlers e1000_err_handler = {
7780	.error_detected = e1000_io_error_detected,
7781	.slot_reset = e1000_io_slot_reset,
7782	.resume = e1000_io_resume,
7783};
7784
7785static const struct pci_device_id e1000_pci_tbl[] = {
7786	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7787	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7788	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7789	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7790	  board_82571 },
7791	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7792	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7793	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7794	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7795	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7796
7797	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7798	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7799	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7800	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7801
7802	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7803	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7804	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7805
7806	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7807	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7808	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7809
7810	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7811	  board_80003es2lan },
7812	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7813	  board_80003es2lan },
7814	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7815	  board_80003es2lan },
7816	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7817	  board_80003es2lan },
7818
7819	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7820	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7821	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7822	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7823	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7824	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7825	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7826	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7827
7828	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7829	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7830	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7831	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7832	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7833	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7834	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7835	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7836	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7837
7838	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7839	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7840	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7841
7842	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7843	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7844	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7845
7846	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7847	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7848	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7849	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7850
7851	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7852	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7853
7854	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7855	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7856	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7857	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7858	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7859	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7860	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7861	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7862	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7863	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7864	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7865	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7866	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7867	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7868	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7869	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7870	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7871	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7872	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7873	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7874	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7875	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7876	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7877	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7878	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7879	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7880	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7881	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7882	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7883	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7884	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7885	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7886	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7887	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7888	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7889	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7890	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
7891	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_adp },
7892	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_adp },
7893	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_adp },
7894	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_adp },
7895	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_adp },
7896	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_adp },
7897	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_adp },
7898	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_adp },
7899	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_mtp },
7900	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_mtp },
7901	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM19), board_pch_mtp },
7902	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V19), board_pch_mtp },
7903	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_mtp },
7904	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_mtp },
7905	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_mtp },
7906	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_mtp },
7907	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_LM24), board_pch_mtp },
7908	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_V24), board_pch_mtp },
7909	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM25), board_pch_mtp },
7910	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V25), board_pch_mtp },
7911	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM26), board_pch_mtp },
7912	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V26), board_pch_mtp },
7913	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM27), board_pch_mtp },
7914	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V27), board_pch_mtp },
7915	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_LM29), board_pch_mtp },
7916	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_V29), board_pch_mtp },
7917
7918	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7919};
7920MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7921
7922static const struct dev_pm_ops e1000_pm_ops = {
7923#ifdef CONFIG_PM_SLEEP
7924	.prepare	= e1000e_pm_prepare,
7925	.suspend	= e1000e_pm_suspend,
7926	.resume		= e1000e_pm_resume,
7927	.freeze		= e1000e_pm_freeze,
7928	.thaw		= e1000e_pm_thaw,
7929	.poweroff	= e1000e_pm_suspend,
7930	.restore	= e1000e_pm_resume,
7931#endif
7932	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7933			   e1000e_pm_runtime_idle)
7934};
7935
7936/* PCI Device API Driver */
7937static struct pci_driver e1000_driver = {
7938	.name     = e1000e_driver_name,
7939	.id_table = e1000_pci_tbl,
7940	.probe    = e1000_probe,
7941	.remove   = e1000_remove,
7942	.driver   = {
7943		.pm = &e1000_pm_ops,
7944	},
7945	.shutdown = e1000_shutdown,
7946	.err_handler = &e1000_err_handler
7947};
7948
7949/**
7950 * e1000_init_module - Driver Registration Routine
7951 *
7952 * e1000_init_module is the first routine called when the driver is
7953 * loaded. All it does is register with the PCI subsystem.
7954 **/
7955static int __init e1000_init_module(void)
7956{
7957	pr_info("Intel(R) PRO/1000 Network Driver\n");
 
7958	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7959
7960	return pci_register_driver(&e1000_driver);
7961}
7962module_init(e1000_init_module);
7963
7964/**
7965 * e1000_exit_module - Driver Exit Cleanup Routine
7966 *
7967 * e1000_exit_module is called just before the driver is removed
7968 * from memory.
7969 **/
7970static void __exit e1000_exit_module(void)
7971{
7972	pci_unregister_driver(&e1000_driver);
7973}
7974module_exit(e1000_exit_module);
7975
7976MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7977MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7978MODULE_LICENSE("GPL v2");
 
7979
7980/* netdev.c */
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel PRO/1000 Linux driver
   3 * Copyright(c) 1999 - 2015 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * The full GNU General Public License is included in this distribution in
  15 * the file called "COPYING".
  16 *
  17 * Contact Information:
  18 * Linux NICS <linux.nics@intel.com>
  19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  21 */
  22
  23#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  24
  25#include <linux/module.h>
  26#include <linux/types.h>
  27#include <linux/init.h>
  28#include <linux/pci.h>
  29#include <linux/vmalloc.h>
  30#include <linux/pagemap.h>
  31#include <linux/delay.h>
  32#include <linux/netdevice.h>
  33#include <linux/interrupt.h>
  34#include <linux/tcp.h>
  35#include <linux/ipv6.h>
  36#include <linux/slab.h>
  37#include <net/checksum.h>
  38#include <net/ip6_checksum.h>
  39#include <linux/ethtool.h>
  40#include <linux/if_vlan.h>
  41#include <linux/cpu.h>
  42#include <linux/smp.h>
  43#include <linux/pm_qos.h>
  44#include <linux/pm_runtime.h>
  45#include <linux/aer.h>
  46#include <linux/prefetch.h>
 
  47
  48#include "e1000.h"
 
 
  49
  50#define DRV_EXTRAVERSION "-k"
  51
  52#define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
  53char e1000e_driver_name[] = "e1000e";
  54const char e1000e_driver_version[] = DRV_VERSION;
  55
  56#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  57static int debug = -1;
  58module_param(debug, int, 0);
  59MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  60
  61static const struct e1000_info *e1000_info_tbl[] = {
  62	[board_82571]		= &e1000_82571_info,
  63	[board_82572]		= &e1000_82572_info,
  64	[board_82573]		= &e1000_82573_info,
  65	[board_82574]		= &e1000_82574_info,
  66	[board_82583]		= &e1000_82583_info,
  67	[board_80003es2lan]	= &e1000_es2_info,
  68	[board_ich8lan]		= &e1000_ich8_info,
  69	[board_ich9lan]		= &e1000_ich9_info,
  70	[board_ich10lan]	= &e1000_ich10_info,
  71	[board_pchlan]		= &e1000_pch_info,
  72	[board_pch2lan]		= &e1000_pch2_info,
  73	[board_pch_lpt]		= &e1000_pch_lpt_info,
  74	[board_pch_spt]		= &e1000_pch_spt_info,
  75	[board_pch_cnp]		= &e1000_pch_cnp_info,
 
 
 
  76};
  77
  78struct e1000_reg_info {
  79	u32 ofs;
  80	char *name;
  81};
  82
  83static const struct e1000_reg_info e1000_reg_info_tbl[] = {
  84	/* General Registers */
  85	{E1000_CTRL, "CTRL"},
  86	{E1000_STATUS, "STATUS"},
  87	{E1000_CTRL_EXT, "CTRL_EXT"},
  88
  89	/* Interrupt Registers */
  90	{E1000_ICR, "ICR"},
  91
  92	/* Rx Registers */
  93	{E1000_RCTL, "RCTL"},
  94	{E1000_RDLEN(0), "RDLEN"},
  95	{E1000_RDH(0), "RDH"},
  96	{E1000_RDT(0), "RDT"},
  97	{E1000_RDTR, "RDTR"},
  98	{E1000_RXDCTL(0), "RXDCTL"},
  99	{E1000_ERT, "ERT"},
 100	{E1000_RDBAL(0), "RDBAL"},
 101	{E1000_RDBAH(0), "RDBAH"},
 102	{E1000_RDFH, "RDFH"},
 103	{E1000_RDFT, "RDFT"},
 104	{E1000_RDFHS, "RDFHS"},
 105	{E1000_RDFTS, "RDFTS"},
 106	{E1000_RDFPC, "RDFPC"},
 107
 108	/* Tx Registers */
 109	{E1000_TCTL, "TCTL"},
 110	{E1000_TDBAL(0), "TDBAL"},
 111	{E1000_TDBAH(0), "TDBAH"},
 112	{E1000_TDLEN(0), "TDLEN"},
 113	{E1000_TDH(0), "TDH"},
 114	{E1000_TDT(0), "TDT"},
 115	{E1000_TIDV, "TIDV"},
 116	{E1000_TXDCTL(0), "TXDCTL"},
 117	{E1000_TADV, "TADV"},
 118	{E1000_TARC(0), "TARC"},
 119	{E1000_TDFH, "TDFH"},
 120	{E1000_TDFT, "TDFT"},
 121	{E1000_TDFHS, "TDFHS"},
 122	{E1000_TDFTS, "TDFTS"},
 123	{E1000_TDFPC, "TDFPC"},
 124
 125	/* List Terminator */
 126	{0, NULL}
 127};
 128
 129/**
 130 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
 131 * @hw: pointer to the HW structure
 132 *
 133 * When updating the MAC CSR registers, the Manageability Engine (ME) could
 134 * be accessing the registers at the same time.  Normally, this is handled in
 135 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
 136 * accesses later than it should which could result in the register to have
 137 * an incorrect value.  Workaround this by checking the FWSM register which
 138 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
 139 * and try again a number of times.
 140 **/
 141s32 __ew32_prepare(struct e1000_hw *hw)
 142{
 143	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
 144
 145	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
 146		udelay(50);
 147
 148	return i;
 149}
 150
 151void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
 152{
 153	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 154		__ew32_prepare(hw);
 155
 156	writel(val, hw->hw_addr + reg);
 157}
 158
 159/**
 160 * e1000_regdump - register printout routine
 161 * @hw: pointer to the HW structure
 162 * @reginfo: pointer to the register info table
 163 **/
 164static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
 165{
 166	int n = 0;
 167	char rname[16];
 168	u32 regs[8];
 169
 170	switch (reginfo->ofs) {
 171	case E1000_RXDCTL(0):
 172		for (n = 0; n < 2; n++)
 173			regs[n] = __er32(hw, E1000_RXDCTL(n));
 174		break;
 175	case E1000_TXDCTL(0):
 176		for (n = 0; n < 2; n++)
 177			regs[n] = __er32(hw, E1000_TXDCTL(n));
 178		break;
 179	case E1000_TARC(0):
 180		for (n = 0; n < 2; n++)
 181			regs[n] = __er32(hw, E1000_TARC(n));
 182		break;
 183	default:
 184		pr_info("%-15s %08x\n",
 185			reginfo->name, __er32(hw, reginfo->ofs));
 186		return;
 187	}
 188
 189	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
 190	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
 191}
 192
 193static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
 194				 struct e1000_buffer *bi)
 195{
 196	int i;
 197	struct e1000_ps_page *ps_page;
 198
 199	for (i = 0; i < adapter->rx_ps_pages; i++) {
 200		ps_page = &bi->ps_pages[i];
 201
 202		if (ps_page->page) {
 203			pr_info("packet dump for ps_page %d:\n", i);
 204			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 205				       16, 1, page_address(ps_page->page),
 206				       PAGE_SIZE, true);
 207		}
 208	}
 209}
 210
 211/**
 212 * e1000e_dump - Print registers, Tx-ring and Rx-ring
 213 * @adapter: board private structure
 214 **/
 215static void e1000e_dump(struct e1000_adapter *adapter)
 216{
 217	struct net_device *netdev = adapter->netdev;
 218	struct e1000_hw *hw = &adapter->hw;
 219	struct e1000_reg_info *reginfo;
 220	struct e1000_ring *tx_ring = adapter->tx_ring;
 221	struct e1000_tx_desc *tx_desc;
 222	struct my_u0 {
 223		__le64 a;
 224		__le64 b;
 225	} *u0;
 226	struct e1000_buffer *buffer_info;
 227	struct e1000_ring *rx_ring = adapter->rx_ring;
 228	union e1000_rx_desc_packet_split *rx_desc_ps;
 229	union e1000_rx_desc_extended *rx_desc;
 230	struct my_u1 {
 231		__le64 a;
 232		__le64 b;
 233		__le64 c;
 234		__le64 d;
 235	} *u1;
 236	u32 staterr;
 237	int i = 0;
 238
 239	if (!netif_msg_hw(adapter))
 240		return;
 241
 242	/* Print netdevice Info */
 243	if (netdev) {
 244		dev_info(&adapter->pdev->dev, "Net device Info\n");
 245		pr_info("Device Name     state            trans_start\n");
 246		pr_info("%-15s %016lX %016lX\n", netdev->name,
 247			netdev->state, dev_trans_start(netdev));
 248	}
 249
 250	/* Print Registers */
 251	dev_info(&adapter->pdev->dev, "Register Dump\n");
 252	pr_info(" Register Name   Value\n");
 253	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
 254	     reginfo->name; reginfo++) {
 255		e1000_regdump(hw, reginfo);
 256	}
 257
 258	/* Print Tx Ring Summary */
 259	if (!netdev || !netif_running(netdev))
 260		return;
 261
 262	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
 263	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 264	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
 265	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
 266		0, tx_ring->next_to_use, tx_ring->next_to_clean,
 267		(unsigned long long)buffer_info->dma,
 268		buffer_info->length,
 269		buffer_info->next_to_watch,
 270		(unsigned long long)buffer_info->time_stamp);
 271
 272	/* Print Tx Ring */
 273	if (!netif_msg_tx_done(adapter))
 274		goto rx_ring_summary;
 275
 276	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
 277
 278	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
 279	 *
 280	 * Legacy Transmit Descriptor
 281	 *   +--------------------------------------------------------------+
 282	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
 283	 *   +--------------------------------------------------------------+
 284	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
 285	 *   +--------------------------------------------------------------+
 286	 *   63       48 47        36 35    32 31     24 23    16 15        0
 287	 *
 288	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
 289	 *   63      48 47    40 39       32 31             16 15    8 7      0
 290	 *   +----------------------------------------------------------------+
 291	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
 292	 *   +----------------------------------------------------------------+
 293	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
 294	 *   +----------------------------------------------------------------+
 295	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
 296	 *
 297	 * Extended Data Descriptor (DTYP=0x1)
 298	 *   +----------------------------------------------------------------+
 299	 * 0 |                     Buffer Address [63:0]                      |
 300	 *   +----------------------------------------------------------------+
 301	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
 302	 *   +----------------------------------------------------------------+
 303	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
 304	 */
 305	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
 306	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
 307	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
 308	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 309		const char *next_desc;
 310		tx_desc = E1000_TX_DESC(*tx_ring, i);
 311		buffer_info = &tx_ring->buffer_info[i];
 312		u0 = (struct my_u0 *)tx_desc;
 313		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
 314			next_desc = " NTC/U";
 315		else if (i == tx_ring->next_to_use)
 316			next_desc = " NTU";
 317		else if (i == tx_ring->next_to_clean)
 318			next_desc = " NTC";
 319		else
 320			next_desc = "";
 321		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
 322			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
 323			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
 324			i,
 325			(unsigned long long)le64_to_cpu(u0->a),
 326			(unsigned long long)le64_to_cpu(u0->b),
 327			(unsigned long long)buffer_info->dma,
 328			buffer_info->length, buffer_info->next_to_watch,
 329			(unsigned long long)buffer_info->time_stamp,
 330			buffer_info->skb, next_desc);
 331
 332		if (netif_msg_pktdata(adapter) && buffer_info->skb)
 333			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 334				       16, 1, buffer_info->skb->data,
 335				       buffer_info->skb->len, true);
 336	}
 337
 338	/* Print Rx Ring Summary */
 339rx_ring_summary:
 340	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
 341	pr_info("Queue [NTU] [NTC]\n");
 342	pr_info(" %5d %5X %5X\n",
 343		0, rx_ring->next_to_use, rx_ring->next_to_clean);
 344
 345	/* Print Rx Ring */
 346	if (!netif_msg_rx_status(adapter))
 347		return;
 348
 349	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
 350	switch (adapter->rx_ps_pages) {
 351	case 1:
 352	case 2:
 353	case 3:
 354		/* [Extended] Packet Split Receive Descriptor Format
 355		 *
 356		 *    +-----------------------------------------------------+
 357		 *  0 |                Buffer Address 0 [63:0]              |
 358		 *    +-----------------------------------------------------+
 359		 *  8 |                Buffer Address 1 [63:0]              |
 360		 *    +-----------------------------------------------------+
 361		 * 16 |                Buffer Address 2 [63:0]              |
 362		 *    +-----------------------------------------------------+
 363		 * 24 |                Buffer Address 3 [63:0]              |
 364		 *    +-----------------------------------------------------+
 365		 */
 366		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
 367		/* [Extended] Receive Descriptor (Write-Back) Format
 368		 *
 369		 *   63       48 47    32 31     13 12    8 7    4 3        0
 370		 *   +------------------------------------------------------+
 371		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
 372		 *   | Checksum | Ident  |         | Queue |      |  Type   |
 373		 *   +------------------------------------------------------+
 374		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 375		 *   +------------------------------------------------------+
 376		 *   63       48 47    32 31            20 19               0
 377		 */
 378		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
 379		for (i = 0; i < rx_ring->count; i++) {
 380			const char *next_desc;
 381			buffer_info = &rx_ring->buffer_info[i];
 382			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
 383			u1 = (struct my_u1 *)rx_desc_ps;
 384			staterr =
 385			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
 386
 387			if (i == rx_ring->next_to_use)
 388				next_desc = " NTU";
 389			else if (i == rx_ring->next_to_clean)
 390				next_desc = " NTC";
 391			else
 392				next_desc = "";
 393
 394			if (staterr & E1000_RXD_STAT_DD) {
 395				/* Descriptor Done */
 396				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
 397					"RWB", i,
 398					(unsigned long long)le64_to_cpu(u1->a),
 399					(unsigned long long)le64_to_cpu(u1->b),
 400					(unsigned long long)le64_to_cpu(u1->c),
 401					(unsigned long long)le64_to_cpu(u1->d),
 402					buffer_info->skb, next_desc);
 403			} else {
 404				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
 405					"R  ", i,
 406					(unsigned long long)le64_to_cpu(u1->a),
 407					(unsigned long long)le64_to_cpu(u1->b),
 408					(unsigned long long)le64_to_cpu(u1->c),
 409					(unsigned long long)le64_to_cpu(u1->d),
 410					(unsigned long long)buffer_info->dma,
 411					buffer_info->skb, next_desc);
 412
 413				if (netif_msg_pktdata(adapter))
 414					e1000e_dump_ps_pages(adapter,
 415							     buffer_info);
 416			}
 417		}
 418		break;
 419	default:
 420	case 0:
 421		/* Extended Receive Descriptor (Read) Format
 422		 *
 423		 *   +-----------------------------------------------------+
 424		 * 0 |                Buffer Address [63:0]                |
 425		 *   +-----------------------------------------------------+
 426		 * 8 |                      Reserved                       |
 427		 *   +-----------------------------------------------------+
 428		 */
 429		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
 430		/* Extended Receive Descriptor (Write-Back) Format
 431		 *
 432		 *   63       48 47    32 31    24 23            4 3        0
 433		 *   +------------------------------------------------------+
 434		 *   |     RSS Hash      |        |               |         |
 435		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
 436		 *   | Packet   | IP     |        |               |  Type   |
 437		 *   | Checksum | Ident  |        |               |         |
 438		 *   +------------------------------------------------------+
 439		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 440		 *   +------------------------------------------------------+
 441		 *   63       48 47    32 31            20 19               0
 442		 */
 443		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
 444
 445		for (i = 0; i < rx_ring->count; i++) {
 446			const char *next_desc;
 447
 448			buffer_info = &rx_ring->buffer_info[i];
 449			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 450			u1 = (struct my_u1 *)rx_desc;
 451			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 452
 453			if (i == rx_ring->next_to_use)
 454				next_desc = " NTU";
 455			else if (i == rx_ring->next_to_clean)
 456				next_desc = " NTC";
 457			else
 458				next_desc = "";
 459
 460			if (staterr & E1000_RXD_STAT_DD) {
 461				/* Descriptor Done */
 462				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
 463					"RWB", i,
 464					(unsigned long long)le64_to_cpu(u1->a),
 465					(unsigned long long)le64_to_cpu(u1->b),
 466					buffer_info->skb, next_desc);
 467			} else {
 468				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
 469					"R  ", i,
 470					(unsigned long long)le64_to_cpu(u1->a),
 471					(unsigned long long)le64_to_cpu(u1->b),
 472					(unsigned long long)buffer_info->dma,
 473					buffer_info->skb, next_desc);
 474
 475				if (netif_msg_pktdata(adapter) &&
 476				    buffer_info->skb)
 477					print_hex_dump(KERN_INFO, "",
 478						       DUMP_PREFIX_ADDRESS, 16,
 479						       1,
 480						       buffer_info->skb->data,
 481						       adapter->rx_buffer_len,
 482						       true);
 483			}
 484		}
 485	}
 486}
 487
 488/**
 489 * e1000_desc_unused - calculate if we have unused descriptors
 
 490 **/
 491static int e1000_desc_unused(struct e1000_ring *ring)
 492{
 493	if (ring->next_to_clean > ring->next_to_use)
 494		return ring->next_to_clean - ring->next_to_use - 1;
 495
 496	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
 497}
 498
 499/**
 500 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
 501 * @adapter: board private structure
 502 * @hwtstamps: time stamp structure to update
 503 * @systim: unsigned 64bit system time value.
 504 *
 505 * Convert the system time value stored in the RX/TXSTMP registers into a
 506 * hwtstamp which can be used by the upper level time stamping functions.
 507 *
 508 * The 'systim_lock' spinlock is used to protect the consistency of the
 509 * system time value. This is needed because reading the 64 bit time
 510 * value involves reading two 32 bit registers. The first read latches the
 511 * value.
 512 **/
 513static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
 514				      struct skb_shared_hwtstamps *hwtstamps,
 515				      u64 systim)
 516{
 517	u64 ns;
 518	unsigned long flags;
 519
 520	spin_lock_irqsave(&adapter->systim_lock, flags);
 521	ns = timecounter_cyc2time(&adapter->tc, systim);
 522	spin_unlock_irqrestore(&adapter->systim_lock, flags);
 523
 524	memset(hwtstamps, 0, sizeof(*hwtstamps));
 525	hwtstamps->hwtstamp = ns_to_ktime(ns);
 526}
 527
 528/**
 529 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
 530 * @adapter: board private structure
 531 * @status: descriptor extended error and status field
 532 * @skb: particular skb to include time stamp
 533 *
 534 * If the time stamp is valid, convert it into the timecounter ns value
 535 * and store that result into the shhwtstamps structure which is passed
 536 * up the network stack.
 537 **/
 538static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
 539			       struct sk_buff *skb)
 540{
 541	struct e1000_hw *hw = &adapter->hw;
 542	u64 rxstmp;
 543
 544	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
 545	    !(status & E1000_RXDEXT_STATERR_TST) ||
 546	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 547		return;
 548
 549	/* The Rx time stamp registers contain the time stamp.  No other
 550	 * received packet will be time stamped until the Rx time stamp
 551	 * registers are read.  Because only one packet can be time stamped
 552	 * at a time, the register values must belong to this packet and
 553	 * therefore none of the other additional attributes need to be
 554	 * compared.
 555	 */
 556	rxstmp = (u64)er32(RXSTMPL);
 557	rxstmp |= (u64)er32(RXSTMPH) << 32;
 558	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
 559
 560	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
 561}
 562
 563/**
 564 * e1000_receive_skb - helper function to handle Rx indications
 565 * @adapter: board private structure
 
 566 * @staterr: descriptor extended error and status field as written by hardware
 567 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 568 * @skb: pointer to sk_buff to be indicated to stack
 569 **/
 570static void e1000_receive_skb(struct e1000_adapter *adapter,
 571			      struct net_device *netdev, struct sk_buff *skb,
 572			      u32 staterr, __le16 vlan)
 573{
 574	u16 tag = le16_to_cpu(vlan);
 575
 576	e1000e_rx_hwtstamp(adapter, staterr, skb);
 577
 578	skb->protocol = eth_type_trans(skb, netdev);
 579
 580	if (staterr & E1000_RXD_STAT_VP)
 581		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
 582
 583	napi_gro_receive(&adapter->napi, skb);
 584}
 585
 586/**
 587 * e1000_rx_checksum - Receive Checksum Offload
 588 * @adapter: board private structure
 589 * @status_err: receive descriptor status and error fields
 590 * @csum: receive descriptor csum field
 591 * @sk_buff: socket buffer with received data
 592 **/
 593static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 594			      struct sk_buff *skb)
 595{
 596	u16 status = (u16)status_err;
 597	u8 errors = (u8)(status_err >> 24);
 598
 599	skb_checksum_none_assert(skb);
 600
 601	/* Rx checksum disabled */
 602	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
 603		return;
 604
 605	/* Ignore Checksum bit is set */
 606	if (status & E1000_RXD_STAT_IXSM)
 607		return;
 608
 609	/* TCP/UDP checksum error bit or IP checksum error bit is set */
 610	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
 611		/* let the stack verify checksum errors */
 612		adapter->hw_csum_err++;
 613		return;
 614	}
 615
 616	/* TCP/UDP Checksum has not been calculated */
 617	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
 618		return;
 619
 620	/* It must be a TCP or UDP packet with a valid checksum */
 621	skb->ip_summed = CHECKSUM_UNNECESSARY;
 622	adapter->hw_csum_good++;
 623}
 624
 625static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
 626{
 627	struct e1000_adapter *adapter = rx_ring->adapter;
 628	struct e1000_hw *hw = &adapter->hw;
 629	s32 ret_val = __ew32_prepare(hw);
 630
 
 631	writel(i, rx_ring->tail);
 632
 633	if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
 634		u32 rctl = er32(RCTL);
 635
 636		ew32(RCTL, rctl & ~E1000_RCTL_EN);
 637		e_err("ME firmware caused invalid RDT - resetting\n");
 638		schedule_work(&adapter->reset_task);
 639	}
 640}
 641
 642static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
 643{
 644	struct e1000_adapter *adapter = tx_ring->adapter;
 645	struct e1000_hw *hw = &adapter->hw;
 646	s32 ret_val = __ew32_prepare(hw);
 647
 
 648	writel(i, tx_ring->tail);
 649
 650	if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
 651		u32 tctl = er32(TCTL);
 652
 653		ew32(TCTL, tctl & ~E1000_TCTL_EN);
 654		e_err("ME firmware caused invalid TDT - resetting\n");
 655		schedule_work(&adapter->reset_task);
 656	}
 657}
 658
 659/**
 660 * e1000_alloc_rx_buffers - Replace used receive buffers
 661 * @rx_ring: Rx descriptor ring
 
 
 662 **/
 663static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
 664				   int cleaned_count, gfp_t gfp)
 665{
 666	struct e1000_adapter *adapter = rx_ring->adapter;
 667	struct net_device *netdev = adapter->netdev;
 668	struct pci_dev *pdev = adapter->pdev;
 669	union e1000_rx_desc_extended *rx_desc;
 670	struct e1000_buffer *buffer_info;
 671	struct sk_buff *skb;
 672	unsigned int i;
 673	unsigned int bufsz = adapter->rx_buffer_len;
 674
 675	i = rx_ring->next_to_use;
 676	buffer_info = &rx_ring->buffer_info[i];
 677
 678	while (cleaned_count--) {
 679		skb = buffer_info->skb;
 680		if (skb) {
 681			skb_trim(skb, 0);
 682			goto map_skb;
 683		}
 684
 685		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 686		if (!skb) {
 687			/* Better luck next round */
 688			adapter->alloc_rx_buff_failed++;
 689			break;
 690		}
 691
 692		buffer_info->skb = skb;
 693map_skb:
 694		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 695						  adapter->rx_buffer_len,
 696						  DMA_FROM_DEVICE);
 697		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 698			dev_err(&pdev->dev, "Rx DMA map failed\n");
 699			adapter->rx_dma_failed++;
 700			break;
 701		}
 702
 703		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 704		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 705
 706		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 707			/* Force memory writes to complete before letting h/w
 708			 * know there are new descriptors to fetch.  (Only
 709			 * applicable for weak-ordered memory model archs,
 710			 * such as IA-64).
 711			 */
 712			wmb();
 713			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 714				e1000e_update_rdt_wa(rx_ring, i);
 715			else
 716				writel(i, rx_ring->tail);
 717		}
 718		i++;
 719		if (i == rx_ring->count)
 720			i = 0;
 721		buffer_info = &rx_ring->buffer_info[i];
 722	}
 723
 724	rx_ring->next_to_use = i;
 725}
 726
 727/**
 728 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 729 * @rx_ring: Rx descriptor ring
 
 
 730 **/
 731static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
 732				      int cleaned_count, gfp_t gfp)
 733{
 734	struct e1000_adapter *adapter = rx_ring->adapter;
 735	struct net_device *netdev = adapter->netdev;
 736	struct pci_dev *pdev = adapter->pdev;
 737	union e1000_rx_desc_packet_split *rx_desc;
 738	struct e1000_buffer *buffer_info;
 739	struct e1000_ps_page *ps_page;
 740	struct sk_buff *skb;
 741	unsigned int i, j;
 742
 743	i = rx_ring->next_to_use;
 744	buffer_info = &rx_ring->buffer_info[i];
 745
 746	while (cleaned_count--) {
 747		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
 748
 749		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
 750			ps_page = &buffer_info->ps_pages[j];
 751			if (j >= adapter->rx_ps_pages) {
 752				/* all unused desc entries get hw null ptr */
 753				rx_desc->read.buffer_addr[j + 1] =
 754				    ~cpu_to_le64(0);
 755				continue;
 756			}
 757			if (!ps_page->page) {
 758				ps_page->page = alloc_page(gfp);
 759				if (!ps_page->page) {
 760					adapter->alloc_rx_buff_failed++;
 761					goto no_buffers;
 762				}
 763				ps_page->dma = dma_map_page(&pdev->dev,
 764							    ps_page->page,
 765							    0, PAGE_SIZE,
 766							    DMA_FROM_DEVICE);
 767				if (dma_mapping_error(&pdev->dev,
 768						      ps_page->dma)) {
 769					dev_err(&adapter->pdev->dev,
 770						"Rx DMA page map failed\n");
 771					adapter->rx_dma_failed++;
 772					goto no_buffers;
 773				}
 774			}
 775			/* Refresh the desc even if buffer_addrs
 776			 * didn't change because each write-back
 777			 * erases this info.
 778			 */
 779			rx_desc->read.buffer_addr[j + 1] =
 780			    cpu_to_le64(ps_page->dma);
 781		}
 782
 783		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
 784						  gfp);
 785
 786		if (!skb) {
 787			adapter->alloc_rx_buff_failed++;
 788			break;
 789		}
 790
 791		buffer_info->skb = skb;
 792		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 793						  adapter->rx_ps_bsize0,
 794						  DMA_FROM_DEVICE);
 795		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 796			dev_err(&pdev->dev, "Rx DMA map failed\n");
 797			adapter->rx_dma_failed++;
 798			/* cleanup skb */
 799			dev_kfree_skb_any(skb);
 800			buffer_info->skb = NULL;
 801			break;
 802		}
 803
 804		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
 805
 806		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 807			/* Force memory writes to complete before letting h/w
 808			 * know there are new descriptors to fetch.  (Only
 809			 * applicable for weak-ordered memory model archs,
 810			 * such as IA-64).
 811			 */
 812			wmb();
 813			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 814				e1000e_update_rdt_wa(rx_ring, i << 1);
 815			else
 816				writel(i << 1, rx_ring->tail);
 817		}
 818
 819		i++;
 820		if (i == rx_ring->count)
 821			i = 0;
 822		buffer_info = &rx_ring->buffer_info[i];
 823	}
 824
 825no_buffers:
 826	rx_ring->next_to_use = i;
 827}
 828
 829/**
 830 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 831 * @rx_ring: Rx descriptor ring
 832 * @cleaned_count: number of buffers to allocate this pass
 
 833 **/
 834
 835static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
 836					 int cleaned_count, gfp_t gfp)
 837{
 838	struct e1000_adapter *adapter = rx_ring->adapter;
 839	struct net_device *netdev = adapter->netdev;
 840	struct pci_dev *pdev = adapter->pdev;
 841	union e1000_rx_desc_extended *rx_desc;
 842	struct e1000_buffer *buffer_info;
 843	struct sk_buff *skb;
 844	unsigned int i;
 845	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
 846
 847	i = rx_ring->next_to_use;
 848	buffer_info = &rx_ring->buffer_info[i];
 849
 850	while (cleaned_count--) {
 851		skb = buffer_info->skb;
 852		if (skb) {
 853			skb_trim(skb, 0);
 854			goto check_page;
 855		}
 856
 857		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 858		if (unlikely(!skb)) {
 859			/* Better luck next round */
 860			adapter->alloc_rx_buff_failed++;
 861			break;
 862		}
 863
 864		buffer_info->skb = skb;
 865check_page:
 866		/* allocate a new page if necessary */
 867		if (!buffer_info->page) {
 868			buffer_info->page = alloc_page(gfp);
 869			if (unlikely(!buffer_info->page)) {
 870				adapter->alloc_rx_buff_failed++;
 871				break;
 872			}
 873		}
 874
 875		if (!buffer_info->dma) {
 876			buffer_info->dma = dma_map_page(&pdev->dev,
 877							buffer_info->page, 0,
 878							PAGE_SIZE,
 879							DMA_FROM_DEVICE);
 880			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 881				adapter->alloc_rx_buff_failed++;
 882				break;
 883			}
 884		}
 885
 886		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 887		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 888
 889		if (unlikely(++i == rx_ring->count))
 890			i = 0;
 891		buffer_info = &rx_ring->buffer_info[i];
 892	}
 893
 894	if (likely(rx_ring->next_to_use != i)) {
 895		rx_ring->next_to_use = i;
 896		if (unlikely(i-- == 0))
 897			i = (rx_ring->count - 1);
 898
 899		/* Force memory writes to complete before letting h/w
 900		 * know there are new descriptors to fetch.  (Only
 901		 * applicable for weak-ordered memory model archs,
 902		 * such as IA-64).
 903		 */
 904		wmb();
 905		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 906			e1000e_update_rdt_wa(rx_ring, i);
 907		else
 908			writel(i, rx_ring->tail);
 909	}
 910}
 911
 912static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
 913				 struct sk_buff *skb)
 914{
 915	if (netdev->features & NETIF_F_RXHASH)
 916		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
 917}
 918
 919/**
 920 * e1000_clean_rx_irq - Send received data up the network stack
 921 * @rx_ring: Rx descriptor ring
 
 
 922 *
 923 * the return value indicates whether actual cleaning was done, there
 924 * is no guarantee that everything was cleaned
 925 **/
 926static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
 927			       int work_to_do)
 928{
 929	struct e1000_adapter *adapter = rx_ring->adapter;
 930	struct net_device *netdev = adapter->netdev;
 931	struct pci_dev *pdev = adapter->pdev;
 932	struct e1000_hw *hw = &adapter->hw;
 933	union e1000_rx_desc_extended *rx_desc, *next_rxd;
 934	struct e1000_buffer *buffer_info, *next_buffer;
 935	u32 length, staterr;
 936	unsigned int i;
 937	int cleaned_count = 0;
 938	bool cleaned = false;
 939	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 940
 941	i = rx_ring->next_to_clean;
 942	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 943	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 944	buffer_info = &rx_ring->buffer_info[i];
 945
 946	while (staterr & E1000_RXD_STAT_DD) {
 947		struct sk_buff *skb;
 948
 949		if (*work_done >= work_to_do)
 950			break;
 951		(*work_done)++;
 952		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
 953
 954		skb = buffer_info->skb;
 955		buffer_info->skb = NULL;
 956
 957		prefetch(skb->data - NET_IP_ALIGN);
 958
 959		i++;
 960		if (i == rx_ring->count)
 961			i = 0;
 962		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
 963		prefetch(next_rxd);
 964
 965		next_buffer = &rx_ring->buffer_info[i];
 966
 967		cleaned = true;
 968		cleaned_count++;
 969		dma_unmap_single(&pdev->dev, buffer_info->dma,
 970				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
 971		buffer_info->dma = 0;
 972
 973		length = le16_to_cpu(rx_desc->wb.upper.length);
 974
 975		/* !EOP means multiple descriptors were used to store a single
 976		 * packet, if that's the case we need to toss it.  In fact, we
 977		 * need to toss every packet with the EOP bit clear and the
 978		 * next frame that _does_ have the EOP bit set, as it is by
 979		 * definition only a frame fragment
 980		 */
 981		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
 982			adapter->flags2 |= FLAG2_IS_DISCARDING;
 983
 984		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
 985			/* All receives must fit into a single buffer */
 986			e_dbg("Receive packet consumed multiple buffers\n");
 987			/* recycle */
 988			buffer_info->skb = skb;
 989			if (staterr & E1000_RXD_STAT_EOP)
 990				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 991			goto next_desc;
 992		}
 993
 994		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
 995			     !(netdev->features & NETIF_F_RXALL))) {
 996			/* recycle */
 997			buffer_info->skb = skb;
 998			goto next_desc;
 999		}
1000
1001		/* adjust length to remove Ethernet CRC */
1002		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1003			/* If configured to store CRC, don't subtract FCS,
1004			 * but keep the FCS bytes out of the total_rx_bytes
1005			 * counter
1006			 */
1007			if (netdev->features & NETIF_F_RXFCS)
1008				total_rx_bytes -= 4;
1009			else
1010				length -= 4;
1011		}
1012
1013		total_rx_bytes += length;
1014		total_rx_packets++;
1015
1016		/* code added for copybreak, this should improve
1017		 * performance for small packets with large amounts
1018		 * of reassembly being done in the stack
1019		 */
1020		if (length < copybreak) {
1021			struct sk_buff *new_skb =
1022				napi_alloc_skb(&adapter->napi, length);
1023			if (new_skb) {
1024				skb_copy_to_linear_data_offset(new_skb,
1025							       -NET_IP_ALIGN,
1026							       (skb->data -
1027								NET_IP_ALIGN),
1028							       (length +
1029								NET_IP_ALIGN));
1030				/* save the skb in buffer_info as good */
1031				buffer_info->skb = skb;
1032				skb = new_skb;
1033			}
1034			/* else just continue with the old one */
1035		}
1036		/* end copybreak code */
1037		skb_put(skb, length);
1038
1039		/* Receive Checksum Offload */
1040		e1000_rx_checksum(adapter, staterr, skb);
1041
1042		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1043
1044		e1000_receive_skb(adapter, netdev, skb, staterr,
1045				  rx_desc->wb.upper.vlan);
1046
1047next_desc:
1048		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1049
1050		/* return some buffers to hardware, one at a time is too slow */
1051		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1052			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1053					      GFP_ATOMIC);
1054			cleaned_count = 0;
1055		}
1056
1057		/* use prefetched values */
1058		rx_desc = next_rxd;
1059		buffer_info = next_buffer;
1060
1061		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1062	}
1063	rx_ring->next_to_clean = i;
1064
1065	cleaned_count = e1000_desc_unused(rx_ring);
1066	if (cleaned_count)
1067		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1068
1069	adapter->total_rx_bytes += total_rx_bytes;
1070	adapter->total_rx_packets += total_rx_packets;
1071	return cleaned;
1072}
1073
1074static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1075			    struct e1000_buffer *buffer_info,
1076			    bool drop)
1077{
1078	struct e1000_adapter *adapter = tx_ring->adapter;
1079
1080	if (buffer_info->dma) {
1081		if (buffer_info->mapped_as_page)
1082			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1083				       buffer_info->length, DMA_TO_DEVICE);
1084		else
1085			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1086					 buffer_info->length, DMA_TO_DEVICE);
1087		buffer_info->dma = 0;
1088	}
1089	if (buffer_info->skb) {
1090		if (drop)
1091			dev_kfree_skb_any(buffer_info->skb);
1092		else
1093			dev_consume_skb_any(buffer_info->skb);
1094		buffer_info->skb = NULL;
1095	}
1096	buffer_info->time_stamp = 0;
1097}
1098
1099static void e1000_print_hw_hang(struct work_struct *work)
1100{
1101	struct e1000_adapter *adapter = container_of(work,
1102						     struct e1000_adapter,
1103						     print_hang_task);
1104	struct net_device *netdev = adapter->netdev;
1105	struct e1000_ring *tx_ring = adapter->tx_ring;
1106	unsigned int i = tx_ring->next_to_clean;
1107	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1108	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1109	struct e1000_hw *hw = &adapter->hw;
1110	u16 phy_status, phy_1000t_status, phy_ext_status;
1111	u16 pci_status;
1112
1113	if (test_bit(__E1000_DOWN, &adapter->state))
1114		return;
1115
1116	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1117		/* May be block on write-back, flush and detect again
1118		 * flush pending descriptor writebacks to memory
1119		 */
1120		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1121		/* execute the writes immediately */
1122		e1e_flush();
1123		/* Due to rare timing issues, write to TIDV again to ensure
1124		 * the write is successful
1125		 */
1126		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1127		/* execute the writes immediately */
1128		e1e_flush();
1129		adapter->tx_hang_recheck = true;
1130		return;
1131	}
1132	adapter->tx_hang_recheck = false;
1133
1134	if (er32(TDH(0)) == er32(TDT(0))) {
1135		e_dbg("false hang detected, ignoring\n");
1136		return;
1137	}
1138
1139	/* Real hang detected */
1140	netif_stop_queue(netdev);
1141
1142	e1e_rphy(hw, MII_BMSR, &phy_status);
1143	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1144	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1145
1146	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1147
1148	/* detected Hardware unit hang */
1149	e_err("Detected Hardware Unit Hang:\n"
1150	      "  TDH                  <%x>\n"
1151	      "  TDT                  <%x>\n"
1152	      "  next_to_use          <%x>\n"
1153	      "  next_to_clean        <%x>\n"
1154	      "buffer_info[next_to_clean]:\n"
1155	      "  time_stamp           <%lx>\n"
1156	      "  next_to_watch        <%x>\n"
1157	      "  jiffies              <%lx>\n"
1158	      "  next_to_watch.status <%x>\n"
1159	      "MAC Status             <%x>\n"
1160	      "PHY Status             <%x>\n"
1161	      "PHY 1000BASE-T Status  <%x>\n"
1162	      "PHY Extended Status    <%x>\n"
1163	      "PCI Status             <%x>\n",
1164	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1165	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1166	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1167	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1168
1169	e1000e_dump(adapter);
1170
1171	/* Suggest workaround for known h/w issue */
1172	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1173		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1174}
1175
1176/**
1177 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1178 * @work: pointer to work struct
1179 *
1180 * This work function polls the TSYNCTXCTL valid bit to determine when a
1181 * timestamp has been taken for the current stored skb.  The timestamp must
1182 * be for this skb because only one such packet is allowed in the queue.
1183 */
1184static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1185{
1186	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1187						     tx_hwtstamp_work);
1188	struct e1000_hw *hw = &adapter->hw;
1189
1190	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1191		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1192		struct skb_shared_hwtstamps shhwtstamps;
1193		u64 txstmp;
1194
1195		txstmp = er32(TXSTMPL);
1196		txstmp |= (u64)er32(TXSTMPH) << 32;
1197
1198		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1199
1200		/* Clear the global tx_hwtstamp_skb pointer and force writes
1201		 * prior to notifying the stack of a Tx timestamp.
1202		 */
1203		adapter->tx_hwtstamp_skb = NULL;
1204		wmb(); /* force write prior to skb_tstamp_tx */
1205
1206		skb_tstamp_tx(skb, &shhwtstamps);
1207		dev_consume_skb_any(skb);
1208	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1209			      + adapter->tx_timeout_factor * HZ)) {
1210		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1211		adapter->tx_hwtstamp_skb = NULL;
1212		adapter->tx_hwtstamp_timeouts++;
1213		e_warn("clearing Tx timestamp hang\n");
1214	} else {
1215		/* reschedule to check later */
1216		schedule_work(&adapter->tx_hwtstamp_work);
1217	}
1218}
1219
1220/**
1221 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1222 * @tx_ring: Tx descriptor ring
1223 *
1224 * the return value indicates whether actual cleaning was done, there
1225 * is no guarantee that everything was cleaned
1226 **/
1227static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1228{
1229	struct e1000_adapter *adapter = tx_ring->adapter;
1230	struct net_device *netdev = adapter->netdev;
1231	struct e1000_hw *hw = &adapter->hw;
1232	struct e1000_tx_desc *tx_desc, *eop_desc;
1233	struct e1000_buffer *buffer_info;
1234	unsigned int i, eop;
1235	unsigned int count = 0;
1236	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1237	unsigned int bytes_compl = 0, pkts_compl = 0;
1238
1239	i = tx_ring->next_to_clean;
1240	eop = tx_ring->buffer_info[i].next_to_watch;
1241	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1242
1243	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1244	       (count < tx_ring->count)) {
1245		bool cleaned = false;
1246
1247		dma_rmb();		/* read buffer_info after eop_desc */
1248		for (; !cleaned; count++) {
1249			tx_desc = E1000_TX_DESC(*tx_ring, i);
1250			buffer_info = &tx_ring->buffer_info[i];
1251			cleaned = (i == eop);
1252
1253			if (cleaned) {
1254				total_tx_packets += buffer_info->segs;
1255				total_tx_bytes += buffer_info->bytecount;
1256				if (buffer_info->skb) {
1257					bytes_compl += buffer_info->skb->len;
1258					pkts_compl++;
1259				}
1260			}
1261
1262			e1000_put_txbuf(tx_ring, buffer_info, false);
1263			tx_desc->upper.data = 0;
1264
1265			i++;
1266			if (i == tx_ring->count)
1267				i = 0;
1268		}
1269
1270		if (i == tx_ring->next_to_use)
1271			break;
1272		eop = tx_ring->buffer_info[i].next_to_watch;
1273		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1274	}
1275
1276	tx_ring->next_to_clean = i;
1277
1278	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1279
1280#define TX_WAKE_THRESHOLD 32
1281	if (count && netif_carrier_ok(netdev) &&
1282	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1283		/* Make sure that anybody stopping the queue after this
1284		 * sees the new next_to_clean.
1285		 */
1286		smp_mb();
1287
1288		if (netif_queue_stopped(netdev) &&
1289		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1290			netif_wake_queue(netdev);
1291			++adapter->restart_queue;
1292		}
1293	}
1294
1295	if (adapter->detect_tx_hung) {
1296		/* Detect a transmit hang in hardware, this serializes the
1297		 * check with the clearing of time_stamp and movement of i
1298		 */
1299		adapter->detect_tx_hung = false;
1300		if (tx_ring->buffer_info[i].time_stamp &&
1301		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1302			       + (adapter->tx_timeout_factor * HZ)) &&
1303		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1304			schedule_work(&adapter->print_hang_task);
1305		else
1306			adapter->tx_hang_recheck = false;
1307	}
1308	adapter->total_tx_bytes += total_tx_bytes;
1309	adapter->total_tx_packets += total_tx_packets;
1310	return count < tx_ring->count;
1311}
1312
1313/**
1314 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1315 * @rx_ring: Rx descriptor ring
 
 
1316 *
1317 * the return value indicates whether actual cleaning was done, there
1318 * is no guarantee that everything was cleaned
1319 **/
1320static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1321				  int work_to_do)
1322{
1323	struct e1000_adapter *adapter = rx_ring->adapter;
1324	struct e1000_hw *hw = &adapter->hw;
1325	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1326	struct net_device *netdev = adapter->netdev;
1327	struct pci_dev *pdev = adapter->pdev;
1328	struct e1000_buffer *buffer_info, *next_buffer;
1329	struct e1000_ps_page *ps_page;
1330	struct sk_buff *skb;
1331	unsigned int i, j;
1332	u32 length, staterr;
1333	int cleaned_count = 0;
1334	bool cleaned = false;
1335	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1336
1337	i = rx_ring->next_to_clean;
1338	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1339	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1340	buffer_info = &rx_ring->buffer_info[i];
1341
1342	while (staterr & E1000_RXD_STAT_DD) {
1343		if (*work_done >= work_to_do)
1344			break;
1345		(*work_done)++;
1346		skb = buffer_info->skb;
1347		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1348
1349		/* in the packet split case this is header only */
1350		prefetch(skb->data - NET_IP_ALIGN);
1351
1352		i++;
1353		if (i == rx_ring->count)
1354			i = 0;
1355		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1356		prefetch(next_rxd);
1357
1358		next_buffer = &rx_ring->buffer_info[i];
1359
1360		cleaned = true;
1361		cleaned_count++;
1362		dma_unmap_single(&pdev->dev, buffer_info->dma,
1363				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1364		buffer_info->dma = 0;
1365
1366		/* see !EOP comment in other Rx routine */
1367		if (!(staterr & E1000_RXD_STAT_EOP))
1368			adapter->flags2 |= FLAG2_IS_DISCARDING;
1369
1370		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1371			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1372			dev_kfree_skb_irq(skb);
1373			if (staterr & E1000_RXD_STAT_EOP)
1374				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1375			goto next_desc;
1376		}
1377
1378		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1379			     !(netdev->features & NETIF_F_RXALL))) {
1380			dev_kfree_skb_irq(skb);
1381			goto next_desc;
1382		}
1383
1384		length = le16_to_cpu(rx_desc->wb.middle.length0);
1385
1386		if (!length) {
1387			e_dbg("Last part of the packet spanning multiple descriptors\n");
1388			dev_kfree_skb_irq(skb);
1389			goto next_desc;
1390		}
1391
1392		/* Good Receive */
1393		skb_put(skb, length);
1394
1395		{
1396			/* this looks ugly, but it seems compiler issues make
1397			 * it more efficient than reusing j
1398			 */
1399			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1400
1401			/* page alloc/put takes too long and effects small
1402			 * packet throughput, so unsplit small packets and
1403			 * save the alloc/put only valid in softirq (napi)
1404			 * context to call kmap_*
1405			 */
1406			if (l1 && (l1 <= copybreak) &&
1407			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1408				u8 *vaddr;
1409
1410				ps_page = &buffer_info->ps_pages[0];
1411
1412				/* there is no documentation about how to call
1413				 * kmap_atomic, so we can't hold the mapping
1414				 * very long
1415				 */
1416				dma_sync_single_for_cpu(&pdev->dev,
1417							ps_page->dma,
1418							PAGE_SIZE,
1419							DMA_FROM_DEVICE);
1420				vaddr = kmap_atomic(ps_page->page);
1421				memcpy(skb_tail_pointer(skb), vaddr, l1);
1422				kunmap_atomic(vaddr);
1423				dma_sync_single_for_device(&pdev->dev,
1424							   ps_page->dma,
1425							   PAGE_SIZE,
1426							   DMA_FROM_DEVICE);
1427
1428				/* remove the CRC */
1429				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1430					if (!(netdev->features & NETIF_F_RXFCS))
1431						l1 -= 4;
1432				}
1433
1434				skb_put(skb, l1);
1435				goto copydone;
1436			}	/* if */
1437		}
1438
1439		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1440			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1441			if (!length)
1442				break;
1443
1444			ps_page = &buffer_info->ps_pages[j];
1445			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1446				       DMA_FROM_DEVICE);
1447			ps_page->dma = 0;
1448			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1449			ps_page->page = NULL;
1450			skb->len += length;
1451			skb->data_len += length;
1452			skb->truesize += PAGE_SIZE;
1453		}
1454
1455		/* strip the ethernet crc, problem is we're using pages now so
1456		 * this whole operation can get a little cpu intensive
1457		 */
1458		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1459			if (!(netdev->features & NETIF_F_RXFCS))
1460				pskb_trim(skb, skb->len - 4);
1461		}
1462
1463copydone:
1464		total_rx_bytes += skb->len;
1465		total_rx_packets++;
1466
1467		e1000_rx_checksum(adapter, staterr, skb);
1468
1469		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1470
1471		if (rx_desc->wb.upper.header_status &
1472		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1473			adapter->rx_hdr_split++;
1474
1475		e1000_receive_skb(adapter, netdev, skb, staterr,
1476				  rx_desc->wb.middle.vlan);
1477
1478next_desc:
1479		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1480		buffer_info->skb = NULL;
1481
1482		/* return some buffers to hardware, one at a time is too slow */
1483		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1484			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1485					      GFP_ATOMIC);
1486			cleaned_count = 0;
1487		}
1488
1489		/* use prefetched values */
1490		rx_desc = next_rxd;
1491		buffer_info = next_buffer;
1492
1493		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1494	}
1495	rx_ring->next_to_clean = i;
1496
1497	cleaned_count = e1000_desc_unused(rx_ring);
1498	if (cleaned_count)
1499		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1500
1501	adapter->total_rx_bytes += total_rx_bytes;
1502	adapter->total_rx_packets += total_rx_packets;
1503	return cleaned;
1504}
1505
1506/**
1507 * e1000_consume_page - helper function
1508 **/
1509static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1510			       u16 length)
1511{
1512	bi->page = NULL;
1513	skb->len += length;
1514	skb->data_len += length;
1515	skb->truesize += PAGE_SIZE;
1516}
1517
1518/**
1519 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1520 * @adapter: board private structure
 
 
1521 *
1522 * the return value indicates whether actual cleaning was done, there
1523 * is no guarantee that everything was cleaned
1524 **/
1525static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1526				     int work_to_do)
1527{
1528	struct e1000_adapter *adapter = rx_ring->adapter;
1529	struct net_device *netdev = adapter->netdev;
1530	struct pci_dev *pdev = adapter->pdev;
1531	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1532	struct e1000_buffer *buffer_info, *next_buffer;
1533	u32 length, staterr;
1534	unsigned int i;
1535	int cleaned_count = 0;
1536	bool cleaned = false;
1537	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1538	struct skb_shared_info *shinfo;
1539
1540	i = rx_ring->next_to_clean;
1541	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1542	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1543	buffer_info = &rx_ring->buffer_info[i];
1544
1545	while (staterr & E1000_RXD_STAT_DD) {
1546		struct sk_buff *skb;
1547
1548		if (*work_done >= work_to_do)
1549			break;
1550		(*work_done)++;
1551		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1552
1553		skb = buffer_info->skb;
1554		buffer_info->skb = NULL;
1555
1556		++i;
1557		if (i == rx_ring->count)
1558			i = 0;
1559		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1560		prefetch(next_rxd);
1561
1562		next_buffer = &rx_ring->buffer_info[i];
1563
1564		cleaned = true;
1565		cleaned_count++;
1566		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1567			       DMA_FROM_DEVICE);
1568		buffer_info->dma = 0;
1569
1570		length = le16_to_cpu(rx_desc->wb.upper.length);
1571
1572		/* errors is only valid for DD + EOP descriptors */
1573		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1574			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1575			      !(netdev->features & NETIF_F_RXALL)))) {
1576			/* recycle both page and skb */
1577			buffer_info->skb = skb;
1578			/* an error means any chain goes out the window too */
1579			if (rx_ring->rx_skb_top)
1580				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1581			rx_ring->rx_skb_top = NULL;
1582			goto next_desc;
1583		}
1584#define rxtop (rx_ring->rx_skb_top)
1585		if (!(staterr & E1000_RXD_STAT_EOP)) {
1586			/* this descriptor is only the beginning (or middle) */
1587			if (!rxtop) {
1588				/* this is the beginning of a chain */
1589				rxtop = skb;
1590				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1591						   0, length);
1592			} else {
1593				/* this is the middle of a chain */
1594				shinfo = skb_shinfo(rxtop);
1595				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1596						   buffer_info->page, 0,
1597						   length);
1598				/* re-use the skb, only consumed the page */
1599				buffer_info->skb = skb;
1600			}
1601			e1000_consume_page(buffer_info, rxtop, length);
1602			goto next_desc;
1603		} else {
1604			if (rxtop) {
1605				/* end of the chain */
1606				shinfo = skb_shinfo(rxtop);
1607				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1608						   buffer_info->page, 0,
1609						   length);
1610				/* re-use the current skb, we only consumed the
1611				 * page
1612				 */
1613				buffer_info->skb = skb;
1614				skb = rxtop;
1615				rxtop = NULL;
1616				e1000_consume_page(buffer_info, skb, length);
1617			} else {
1618				/* no chain, got EOP, this buf is the packet
1619				 * copybreak to save the put_page/alloc_page
1620				 */
1621				if (length <= copybreak &&
1622				    skb_tailroom(skb) >= length) {
1623					u8 *vaddr;
1624					vaddr = kmap_atomic(buffer_info->page);
1625					memcpy(skb_tail_pointer(skb), vaddr,
1626					       length);
1627					kunmap_atomic(vaddr);
1628					/* re-use the page, so don't erase
1629					 * buffer_info->page
1630					 */
1631					skb_put(skb, length);
1632				} else {
1633					skb_fill_page_desc(skb, 0,
1634							   buffer_info->page, 0,
1635							   length);
1636					e1000_consume_page(buffer_info, skb,
1637							   length);
1638				}
1639			}
1640		}
1641
1642		/* Receive Checksum Offload */
1643		e1000_rx_checksum(adapter, staterr, skb);
1644
1645		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1646
1647		/* probably a little skewed due to removing CRC */
1648		total_rx_bytes += skb->len;
1649		total_rx_packets++;
1650
1651		/* eth type trans needs skb->data to point to something */
1652		if (!pskb_may_pull(skb, ETH_HLEN)) {
1653			e_err("pskb_may_pull failed.\n");
1654			dev_kfree_skb_irq(skb);
1655			goto next_desc;
1656		}
1657
1658		e1000_receive_skb(adapter, netdev, skb, staterr,
1659				  rx_desc->wb.upper.vlan);
1660
1661next_desc:
1662		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1663
1664		/* return some buffers to hardware, one at a time is too slow */
1665		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1666			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1667					      GFP_ATOMIC);
1668			cleaned_count = 0;
1669		}
1670
1671		/* use prefetched values */
1672		rx_desc = next_rxd;
1673		buffer_info = next_buffer;
1674
1675		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1676	}
1677	rx_ring->next_to_clean = i;
1678
1679	cleaned_count = e1000_desc_unused(rx_ring);
1680	if (cleaned_count)
1681		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1682
1683	adapter->total_rx_bytes += total_rx_bytes;
1684	adapter->total_rx_packets += total_rx_packets;
1685	return cleaned;
1686}
1687
1688/**
1689 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1690 * @rx_ring: Rx descriptor ring
1691 **/
1692static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1693{
1694	struct e1000_adapter *adapter = rx_ring->adapter;
1695	struct e1000_buffer *buffer_info;
1696	struct e1000_ps_page *ps_page;
1697	struct pci_dev *pdev = adapter->pdev;
1698	unsigned int i, j;
1699
1700	/* Free all the Rx ring sk_buffs */
1701	for (i = 0; i < rx_ring->count; i++) {
1702		buffer_info = &rx_ring->buffer_info[i];
1703		if (buffer_info->dma) {
1704			if (adapter->clean_rx == e1000_clean_rx_irq)
1705				dma_unmap_single(&pdev->dev, buffer_info->dma,
1706						 adapter->rx_buffer_len,
1707						 DMA_FROM_DEVICE);
1708			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1709				dma_unmap_page(&pdev->dev, buffer_info->dma,
1710					       PAGE_SIZE, DMA_FROM_DEVICE);
1711			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1712				dma_unmap_single(&pdev->dev, buffer_info->dma,
1713						 adapter->rx_ps_bsize0,
1714						 DMA_FROM_DEVICE);
1715			buffer_info->dma = 0;
1716		}
1717
1718		if (buffer_info->page) {
1719			put_page(buffer_info->page);
1720			buffer_info->page = NULL;
1721		}
1722
1723		if (buffer_info->skb) {
1724			dev_kfree_skb(buffer_info->skb);
1725			buffer_info->skb = NULL;
1726		}
1727
1728		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1729			ps_page = &buffer_info->ps_pages[j];
1730			if (!ps_page->page)
1731				break;
1732			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1733				       DMA_FROM_DEVICE);
1734			ps_page->dma = 0;
1735			put_page(ps_page->page);
1736			ps_page->page = NULL;
1737		}
1738	}
1739
1740	/* there also may be some cached data from a chained receive */
1741	if (rx_ring->rx_skb_top) {
1742		dev_kfree_skb(rx_ring->rx_skb_top);
1743		rx_ring->rx_skb_top = NULL;
1744	}
1745
1746	/* Zero out the descriptor ring */
1747	memset(rx_ring->desc, 0, rx_ring->size);
1748
1749	rx_ring->next_to_clean = 0;
1750	rx_ring->next_to_use = 0;
1751	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1752}
1753
1754static void e1000e_downshift_workaround(struct work_struct *work)
1755{
1756	struct e1000_adapter *adapter = container_of(work,
1757						     struct e1000_adapter,
1758						     downshift_task);
1759
1760	if (test_bit(__E1000_DOWN, &adapter->state))
1761		return;
1762
1763	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1764}
1765
1766/**
1767 * e1000_intr_msi - Interrupt Handler
1768 * @irq: interrupt number
1769 * @data: pointer to a network interface device structure
1770 **/
1771static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1772{
1773	struct net_device *netdev = data;
1774	struct e1000_adapter *adapter = netdev_priv(netdev);
1775	struct e1000_hw *hw = &adapter->hw;
1776	u32 icr = er32(ICR);
1777
1778	/* read ICR disables interrupts using IAM */
1779	if (icr & E1000_ICR_LSC) {
1780		hw->mac.get_link_status = true;
1781		/* ICH8 workaround-- Call gig speed drop workaround on cable
1782		 * disconnect (LSC) before accessing any PHY registers
1783		 */
1784		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1785		    (!(er32(STATUS) & E1000_STATUS_LU)))
1786			schedule_work(&adapter->downshift_task);
1787
1788		/* 80003ES2LAN workaround-- For packet buffer work-around on
1789		 * link down event; disable receives here in the ISR and reset
1790		 * adapter in watchdog
1791		 */
1792		if (netif_carrier_ok(netdev) &&
1793		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1794			/* disable receives */
1795			u32 rctl = er32(RCTL);
1796
1797			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1798			adapter->flags |= FLAG_RESTART_NOW;
1799		}
1800		/* guard against interrupt when we're going down */
1801		if (!test_bit(__E1000_DOWN, &adapter->state))
1802			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1803	}
1804
1805	/* Reset on uncorrectable ECC error */
1806	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1807		u32 pbeccsts = er32(PBECCSTS);
1808
1809		adapter->corr_errors +=
1810		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1811		adapter->uncorr_errors +=
1812		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1813		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1814
1815		/* Do the reset outside of interrupt context */
1816		schedule_work(&adapter->reset_task);
1817
1818		/* return immediately since reset is imminent */
1819		return IRQ_HANDLED;
1820	}
1821
1822	if (napi_schedule_prep(&adapter->napi)) {
1823		adapter->total_tx_bytes = 0;
1824		adapter->total_tx_packets = 0;
1825		adapter->total_rx_bytes = 0;
1826		adapter->total_rx_packets = 0;
1827		__napi_schedule(&adapter->napi);
1828	}
1829
1830	return IRQ_HANDLED;
1831}
1832
1833/**
1834 * e1000_intr - Interrupt Handler
1835 * @irq: interrupt number
1836 * @data: pointer to a network interface device structure
1837 **/
1838static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1839{
1840	struct net_device *netdev = data;
1841	struct e1000_adapter *adapter = netdev_priv(netdev);
1842	struct e1000_hw *hw = &adapter->hw;
1843	u32 rctl, icr = er32(ICR);
1844
1845	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1846		return IRQ_NONE;	/* Not our interrupt */
1847
1848	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1849	 * not set, then the adapter didn't send an interrupt
1850	 */
1851	if (!(icr & E1000_ICR_INT_ASSERTED))
1852		return IRQ_NONE;
1853
1854	/* Interrupt Auto-Mask...upon reading ICR,
1855	 * interrupts are masked.  No need for the
1856	 * IMC write
1857	 */
1858
1859	if (icr & E1000_ICR_LSC) {
1860		hw->mac.get_link_status = true;
1861		/* ICH8 workaround-- Call gig speed drop workaround on cable
1862		 * disconnect (LSC) before accessing any PHY registers
1863		 */
1864		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1865		    (!(er32(STATUS) & E1000_STATUS_LU)))
1866			schedule_work(&adapter->downshift_task);
1867
1868		/* 80003ES2LAN workaround--
1869		 * For packet buffer work-around on link down event;
1870		 * disable receives here in the ISR and
1871		 * reset adapter in watchdog
1872		 */
1873		if (netif_carrier_ok(netdev) &&
1874		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1875			/* disable receives */
1876			rctl = er32(RCTL);
1877			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1878			adapter->flags |= FLAG_RESTART_NOW;
1879		}
1880		/* guard against interrupt when we're going down */
1881		if (!test_bit(__E1000_DOWN, &adapter->state))
1882			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1883	}
1884
1885	/* Reset on uncorrectable ECC error */
1886	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1887		u32 pbeccsts = er32(PBECCSTS);
1888
1889		adapter->corr_errors +=
1890		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1891		adapter->uncorr_errors +=
1892		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1893		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1894
1895		/* Do the reset outside of interrupt context */
1896		schedule_work(&adapter->reset_task);
1897
1898		/* return immediately since reset is imminent */
1899		return IRQ_HANDLED;
1900	}
1901
1902	if (napi_schedule_prep(&adapter->napi)) {
1903		adapter->total_tx_bytes = 0;
1904		adapter->total_tx_packets = 0;
1905		adapter->total_rx_bytes = 0;
1906		adapter->total_rx_packets = 0;
1907		__napi_schedule(&adapter->napi);
1908	}
1909
1910	return IRQ_HANDLED;
1911}
1912
1913static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1914{
1915	struct net_device *netdev = data;
1916	struct e1000_adapter *adapter = netdev_priv(netdev);
1917	struct e1000_hw *hw = &adapter->hw;
1918	u32 icr = er32(ICR);
1919
1920	if (icr & adapter->eiac_mask)
1921		ew32(ICS, (icr & adapter->eiac_mask));
1922
1923	if (icr & E1000_ICR_LSC) {
1924		hw->mac.get_link_status = true;
1925		/* guard against interrupt when we're going down */
1926		if (!test_bit(__E1000_DOWN, &adapter->state))
1927			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1928	}
1929
1930	if (!test_bit(__E1000_DOWN, &adapter->state))
1931		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1932
1933	return IRQ_HANDLED;
1934}
1935
1936static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1937{
1938	struct net_device *netdev = data;
1939	struct e1000_adapter *adapter = netdev_priv(netdev);
1940	struct e1000_hw *hw = &adapter->hw;
1941	struct e1000_ring *tx_ring = adapter->tx_ring;
1942
1943	adapter->total_tx_bytes = 0;
1944	adapter->total_tx_packets = 0;
1945
1946	if (!e1000_clean_tx_irq(tx_ring))
1947		/* Ring was not completely cleaned, so fire another interrupt */
1948		ew32(ICS, tx_ring->ims_val);
1949
1950	if (!test_bit(__E1000_DOWN, &adapter->state))
1951		ew32(IMS, adapter->tx_ring->ims_val);
1952
1953	return IRQ_HANDLED;
1954}
1955
1956static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1957{
1958	struct net_device *netdev = data;
1959	struct e1000_adapter *adapter = netdev_priv(netdev);
1960	struct e1000_ring *rx_ring = adapter->rx_ring;
1961
1962	/* Write the ITR value calculated at the end of the
1963	 * previous interrupt.
1964	 */
1965	if (rx_ring->set_itr) {
1966		u32 itr = rx_ring->itr_val ?
1967			  1000000000 / (rx_ring->itr_val * 256) : 0;
1968
1969		writel(itr, rx_ring->itr_register);
1970		rx_ring->set_itr = 0;
1971	}
1972
1973	if (napi_schedule_prep(&adapter->napi)) {
1974		adapter->total_rx_bytes = 0;
1975		adapter->total_rx_packets = 0;
1976		__napi_schedule(&adapter->napi);
1977	}
1978	return IRQ_HANDLED;
1979}
1980
1981/**
1982 * e1000_configure_msix - Configure MSI-X hardware
 
1983 *
1984 * e1000_configure_msix sets up the hardware to properly
1985 * generate MSI-X interrupts.
1986 **/
1987static void e1000_configure_msix(struct e1000_adapter *adapter)
1988{
1989	struct e1000_hw *hw = &adapter->hw;
1990	struct e1000_ring *rx_ring = adapter->rx_ring;
1991	struct e1000_ring *tx_ring = adapter->tx_ring;
1992	int vector = 0;
1993	u32 ctrl_ext, ivar = 0;
1994
1995	adapter->eiac_mask = 0;
1996
1997	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1998	if (hw->mac.type == e1000_82574) {
1999		u32 rfctl = er32(RFCTL);
2000
2001		rfctl |= E1000_RFCTL_ACK_DIS;
2002		ew32(RFCTL, rfctl);
2003	}
2004
2005	/* Configure Rx vector */
2006	rx_ring->ims_val = E1000_IMS_RXQ0;
2007	adapter->eiac_mask |= rx_ring->ims_val;
2008	if (rx_ring->itr_val)
2009		writel(1000000000 / (rx_ring->itr_val * 256),
2010		       rx_ring->itr_register);
2011	else
2012		writel(1, rx_ring->itr_register);
2013	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2014
2015	/* Configure Tx vector */
2016	tx_ring->ims_val = E1000_IMS_TXQ0;
2017	vector++;
2018	if (tx_ring->itr_val)
2019		writel(1000000000 / (tx_ring->itr_val * 256),
2020		       tx_ring->itr_register);
2021	else
2022		writel(1, tx_ring->itr_register);
2023	adapter->eiac_mask |= tx_ring->ims_val;
2024	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2025
2026	/* set vector for Other Causes, e.g. link changes */
2027	vector++;
2028	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2029	if (rx_ring->itr_val)
2030		writel(1000000000 / (rx_ring->itr_val * 256),
2031		       hw->hw_addr + E1000_EITR_82574(vector));
2032	else
2033		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2034
2035	/* Cause Tx interrupts on every write back */
2036	ivar |= BIT(31);
2037
2038	ew32(IVAR, ivar);
2039
2040	/* enable MSI-X PBA support */
2041	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2042	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2043	ew32(CTRL_EXT, ctrl_ext);
2044	e1e_flush();
2045}
2046
2047void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2048{
2049	if (adapter->msix_entries) {
2050		pci_disable_msix(adapter->pdev);
2051		kfree(adapter->msix_entries);
2052		adapter->msix_entries = NULL;
2053	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2054		pci_disable_msi(adapter->pdev);
2055		adapter->flags &= ~FLAG_MSI_ENABLED;
2056	}
2057}
2058
2059/**
2060 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
 
2061 *
2062 * Attempt to configure interrupts using the best available
2063 * capabilities of the hardware and kernel.
2064 **/
2065void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2066{
2067	int err;
2068	int i;
2069
2070	switch (adapter->int_mode) {
2071	case E1000E_INT_MODE_MSIX:
2072		if (adapter->flags & FLAG_HAS_MSIX) {
2073			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2074			adapter->msix_entries = kcalloc(adapter->num_vectors,
2075							sizeof(struct
2076							       msix_entry),
2077							GFP_KERNEL);
2078			if (adapter->msix_entries) {
2079				struct e1000_adapter *a = adapter;
2080
2081				for (i = 0; i < adapter->num_vectors; i++)
2082					adapter->msix_entries[i].entry = i;
2083
2084				err = pci_enable_msix_range(a->pdev,
2085							    a->msix_entries,
2086							    a->num_vectors,
2087							    a->num_vectors);
2088				if (err > 0)
2089					return;
2090			}
2091			/* MSI-X failed, so fall through and try MSI */
2092			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2093			e1000e_reset_interrupt_capability(adapter);
2094		}
2095		adapter->int_mode = E1000E_INT_MODE_MSI;
2096		/* Fall through */
2097	case E1000E_INT_MODE_MSI:
2098		if (!pci_enable_msi(adapter->pdev)) {
2099			adapter->flags |= FLAG_MSI_ENABLED;
2100		} else {
2101			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2102			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2103		}
2104		/* Fall through */
2105	case E1000E_INT_MODE_LEGACY:
2106		/* Don't do anything; this is the system default */
2107		break;
2108	}
2109
2110	/* store the number of vectors being used */
2111	adapter->num_vectors = 1;
2112}
2113
2114/**
2115 * e1000_request_msix - Initialize MSI-X interrupts
 
2116 *
2117 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2118 * kernel.
2119 **/
2120static int e1000_request_msix(struct e1000_adapter *adapter)
2121{
2122	struct net_device *netdev = adapter->netdev;
2123	int err = 0, vector = 0;
2124
2125	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2126		snprintf(adapter->rx_ring->name,
2127			 sizeof(adapter->rx_ring->name) - 1,
2128			 "%s-rx-0", netdev->name);
2129	else
2130		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2131	err = request_irq(adapter->msix_entries[vector].vector,
2132			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2133			  netdev);
2134	if (err)
2135		return err;
2136	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2137	    E1000_EITR_82574(vector);
2138	adapter->rx_ring->itr_val = adapter->itr;
2139	vector++;
2140
2141	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2142		snprintf(adapter->tx_ring->name,
2143			 sizeof(adapter->tx_ring->name) - 1,
2144			 "%s-tx-0", netdev->name);
2145	else
2146		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2147	err = request_irq(adapter->msix_entries[vector].vector,
2148			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2149			  netdev);
2150	if (err)
2151		return err;
2152	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2153	    E1000_EITR_82574(vector);
2154	adapter->tx_ring->itr_val = adapter->itr;
2155	vector++;
2156
2157	err = request_irq(adapter->msix_entries[vector].vector,
2158			  e1000_msix_other, 0, netdev->name, netdev);
2159	if (err)
2160		return err;
2161
2162	e1000_configure_msix(adapter);
2163
2164	return 0;
2165}
2166
2167/**
2168 * e1000_request_irq - initialize interrupts
 
2169 *
2170 * Attempts to configure interrupts using the best available
2171 * capabilities of the hardware and kernel.
2172 **/
2173static int e1000_request_irq(struct e1000_adapter *adapter)
2174{
2175	struct net_device *netdev = adapter->netdev;
2176	int err;
2177
2178	if (adapter->msix_entries) {
2179		err = e1000_request_msix(adapter);
2180		if (!err)
2181			return err;
2182		/* fall back to MSI */
2183		e1000e_reset_interrupt_capability(adapter);
2184		adapter->int_mode = E1000E_INT_MODE_MSI;
2185		e1000e_set_interrupt_capability(adapter);
2186	}
2187	if (adapter->flags & FLAG_MSI_ENABLED) {
2188		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2189				  netdev->name, netdev);
2190		if (!err)
2191			return err;
2192
2193		/* fall back to legacy interrupt */
2194		e1000e_reset_interrupt_capability(adapter);
2195		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2196	}
2197
2198	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2199			  netdev->name, netdev);
2200	if (err)
2201		e_err("Unable to allocate interrupt, Error: %d\n", err);
2202
2203	return err;
2204}
2205
2206static void e1000_free_irq(struct e1000_adapter *adapter)
2207{
2208	struct net_device *netdev = adapter->netdev;
2209
2210	if (adapter->msix_entries) {
2211		int vector = 0;
2212
2213		free_irq(adapter->msix_entries[vector].vector, netdev);
2214		vector++;
2215
2216		free_irq(adapter->msix_entries[vector].vector, netdev);
2217		vector++;
2218
2219		/* Other Causes interrupt vector */
2220		free_irq(adapter->msix_entries[vector].vector, netdev);
2221		return;
2222	}
2223
2224	free_irq(adapter->pdev->irq, netdev);
2225}
2226
2227/**
2228 * e1000_irq_disable - Mask off interrupt generation on the NIC
 
2229 **/
2230static void e1000_irq_disable(struct e1000_adapter *adapter)
2231{
2232	struct e1000_hw *hw = &adapter->hw;
2233
2234	ew32(IMC, ~0);
2235	if (adapter->msix_entries)
2236		ew32(EIAC_82574, 0);
2237	e1e_flush();
2238
2239	if (adapter->msix_entries) {
2240		int i;
2241
2242		for (i = 0; i < adapter->num_vectors; i++)
2243			synchronize_irq(adapter->msix_entries[i].vector);
2244	} else {
2245		synchronize_irq(adapter->pdev->irq);
2246	}
2247}
2248
2249/**
2250 * e1000_irq_enable - Enable default interrupt generation settings
 
2251 **/
2252static void e1000_irq_enable(struct e1000_adapter *adapter)
2253{
2254	struct e1000_hw *hw = &adapter->hw;
2255
2256	if (adapter->msix_entries) {
2257		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2258		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2259		     IMS_OTHER_MASK);
2260	} else if (hw->mac.type >= e1000_pch_lpt) {
2261		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2262	} else {
2263		ew32(IMS, IMS_ENABLE_MASK);
2264	}
2265	e1e_flush();
2266}
2267
2268/**
2269 * e1000e_get_hw_control - get control of the h/w from f/w
2270 * @adapter: address of board private structure
2271 *
2272 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2273 * For ASF and Pass Through versions of f/w this means that
2274 * the driver is loaded. For AMT version (only with 82573)
2275 * of the f/w this means that the network i/f is open.
2276 **/
2277void e1000e_get_hw_control(struct e1000_adapter *adapter)
2278{
2279	struct e1000_hw *hw = &adapter->hw;
2280	u32 ctrl_ext;
2281	u32 swsm;
2282
2283	/* Let firmware know the driver has taken over */
2284	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2285		swsm = er32(SWSM);
2286		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2287	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2288		ctrl_ext = er32(CTRL_EXT);
2289		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2290	}
2291}
2292
2293/**
2294 * e1000e_release_hw_control - release control of the h/w to f/w
2295 * @adapter: address of board private structure
2296 *
2297 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2298 * For ASF and Pass Through versions of f/w this means that the
2299 * driver is no longer loaded. For AMT version (only with 82573) i
2300 * of the f/w this means that the network i/f is closed.
2301 *
2302 **/
2303void e1000e_release_hw_control(struct e1000_adapter *adapter)
2304{
2305	struct e1000_hw *hw = &adapter->hw;
2306	u32 ctrl_ext;
2307	u32 swsm;
2308
2309	/* Let firmware taken over control of h/w */
2310	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2311		swsm = er32(SWSM);
2312		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2313	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2314		ctrl_ext = er32(CTRL_EXT);
2315		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2316	}
2317}
2318
2319/**
2320 * e1000_alloc_ring_dma - allocate memory for a ring structure
 
 
2321 **/
2322static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2323				struct e1000_ring *ring)
2324{
2325	struct pci_dev *pdev = adapter->pdev;
2326
2327	ring->desc = dma_zalloc_coherent(&pdev->dev, ring->size, &ring->dma,
2328					 GFP_KERNEL);
2329	if (!ring->desc)
2330		return -ENOMEM;
2331
2332	return 0;
2333}
2334
2335/**
2336 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2337 * @tx_ring: Tx descriptor ring
2338 *
2339 * Return 0 on success, negative on failure
2340 **/
2341int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2342{
2343	struct e1000_adapter *adapter = tx_ring->adapter;
2344	int err = -ENOMEM, size;
2345
2346	size = sizeof(struct e1000_buffer) * tx_ring->count;
2347	tx_ring->buffer_info = vzalloc(size);
2348	if (!tx_ring->buffer_info)
2349		goto err;
2350
2351	/* round up to nearest 4K */
2352	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2353	tx_ring->size = ALIGN(tx_ring->size, 4096);
2354
2355	err = e1000_alloc_ring_dma(adapter, tx_ring);
2356	if (err)
2357		goto err;
2358
2359	tx_ring->next_to_use = 0;
2360	tx_ring->next_to_clean = 0;
2361
2362	return 0;
2363err:
2364	vfree(tx_ring->buffer_info);
2365	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2366	return err;
2367}
2368
2369/**
2370 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2371 * @rx_ring: Rx descriptor ring
2372 *
2373 * Returns 0 on success, negative on failure
2374 **/
2375int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2376{
2377	struct e1000_adapter *adapter = rx_ring->adapter;
2378	struct e1000_buffer *buffer_info;
2379	int i, size, desc_len, err = -ENOMEM;
2380
2381	size = sizeof(struct e1000_buffer) * rx_ring->count;
2382	rx_ring->buffer_info = vzalloc(size);
2383	if (!rx_ring->buffer_info)
2384		goto err;
2385
2386	for (i = 0; i < rx_ring->count; i++) {
2387		buffer_info = &rx_ring->buffer_info[i];
2388		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2389						sizeof(struct e1000_ps_page),
2390						GFP_KERNEL);
2391		if (!buffer_info->ps_pages)
2392			goto err_pages;
2393	}
2394
2395	desc_len = sizeof(union e1000_rx_desc_packet_split);
2396
2397	/* Round up to nearest 4K */
2398	rx_ring->size = rx_ring->count * desc_len;
2399	rx_ring->size = ALIGN(rx_ring->size, 4096);
2400
2401	err = e1000_alloc_ring_dma(adapter, rx_ring);
2402	if (err)
2403		goto err_pages;
2404
2405	rx_ring->next_to_clean = 0;
2406	rx_ring->next_to_use = 0;
2407	rx_ring->rx_skb_top = NULL;
2408
2409	return 0;
2410
2411err_pages:
2412	for (i = 0; i < rx_ring->count; i++) {
2413		buffer_info = &rx_ring->buffer_info[i];
2414		kfree(buffer_info->ps_pages);
2415	}
2416err:
2417	vfree(rx_ring->buffer_info);
2418	e_err("Unable to allocate memory for the receive descriptor ring\n");
2419	return err;
2420}
2421
2422/**
2423 * e1000_clean_tx_ring - Free Tx Buffers
2424 * @tx_ring: Tx descriptor ring
2425 **/
2426static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2427{
2428	struct e1000_adapter *adapter = tx_ring->adapter;
2429	struct e1000_buffer *buffer_info;
2430	unsigned long size;
2431	unsigned int i;
2432
2433	for (i = 0; i < tx_ring->count; i++) {
2434		buffer_info = &tx_ring->buffer_info[i];
2435		e1000_put_txbuf(tx_ring, buffer_info, false);
2436	}
2437
2438	netdev_reset_queue(adapter->netdev);
2439	size = sizeof(struct e1000_buffer) * tx_ring->count;
2440	memset(tx_ring->buffer_info, 0, size);
2441
2442	memset(tx_ring->desc, 0, tx_ring->size);
2443
2444	tx_ring->next_to_use = 0;
2445	tx_ring->next_to_clean = 0;
2446}
2447
2448/**
2449 * e1000e_free_tx_resources - Free Tx Resources per Queue
2450 * @tx_ring: Tx descriptor ring
2451 *
2452 * Free all transmit software resources
2453 **/
2454void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2455{
2456	struct e1000_adapter *adapter = tx_ring->adapter;
2457	struct pci_dev *pdev = adapter->pdev;
2458
2459	e1000_clean_tx_ring(tx_ring);
2460
2461	vfree(tx_ring->buffer_info);
2462	tx_ring->buffer_info = NULL;
2463
2464	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2465			  tx_ring->dma);
2466	tx_ring->desc = NULL;
2467}
2468
2469/**
2470 * e1000e_free_rx_resources - Free Rx Resources
2471 * @rx_ring: Rx descriptor ring
2472 *
2473 * Free all receive software resources
2474 **/
2475void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2476{
2477	struct e1000_adapter *adapter = rx_ring->adapter;
2478	struct pci_dev *pdev = adapter->pdev;
2479	int i;
2480
2481	e1000_clean_rx_ring(rx_ring);
2482
2483	for (i = 0; i < rx_ring->count; i++)
2484		kfree(rx_ring->buffer_info[i].ps_pages);
2485
2486	vfree(rx_ring->buffer_info);
2487	rx_ring->buffer_info = NULL;
2488
2489	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2490			  rx_ring->dma);
2491	rx_ring->desc = NULL;
2492}
2493
2494/**
2495 * e1000_update_itr - update the dynamic ITR value based on statistics
2496 * @adapter: pointer to adapter
2497 * @itr_setting: current adapter->itr
2498 * @packets: the number of packets during this measurement interval
2499 * @bytes: the number of bytes during this measurement interval
2500 *
2501 *      Stores a new ITR value based on packets and byte
2502 *      counts during the last interrupt.  The advantage of per interrupt
2503 *      computation is faster updates and more accurate ITR for the current
2504 *      traffic pattern.  Constants in this function were computed
2505 *      based on theoretical maximum wire speed and thresholds were set based
2506 *      on testing data as well as attempting to minimize response time
2507 *      while increasing bulk throughput.  This functionality is controlled
2508 *      by the InterruptThrottleRate module parameter.
2509 **/
2510static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2511{
2512	unsigned int retval = itr_setting;
2513
2514	if (packets == 0)
2515		return itr_setting;
2516
2517	switch (itr_setting) {
2518	case lowest_latency:
2519		/* handle TSO and jumbo frames */
2520		if (bytes / packets > 8000)
2521			retval = bulk_latency;
2522		else if ((packets < 5) && (bytes > 512))
2523			retval = low_latency;
2524		break;
2525	case low_latency:	/* 50 usec aka 20000 ints/s */
2526		if (bytes > 10000) {
2527			/* this if handles the TSO accounting */
2528			if (bytes / packets > 8000)
2529				retval = bulk_latency;
2530			else if ((packets < 10) || ((bytes / packets) > 1200))
2531				retval = bulk_latency;
2532			else if ((packets > 35))
2533				retval = lowest_latency;
2534		} else if (bytes / packets > 2000) {
2535			retval = bulk_latency;
2536		} else if (packets <= 2 && bytes < 512) {
2537			retval = lowest_latency;
2538		}
2539		break;
2540	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2541		if (bytes > 25000) {
2542			if (packets > 35)
2543				retval = low_latency;
2544		} else if (bytes < 6000) {
2545			retval = low_latency;
2546		}
2547		break;
2548	}
2549
2550	return retval;
2551}
2552
2553static void e1000_set_itr(struct e1000_adapter *adapter)
2554{
2555	u16 current_itr;
2556	u32 new_itr = adapter->itr;
2557
2558	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2559	if (adapter->link_speed != SPEED_1000) {
2560		current_itr = 0;
2561		new_itr = 4000;
2562		goto set_itr_now;
2563	}
2564
2565	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2566		new_itr = 0;
2567		goto set_itr_now;
2568	}
2569
2570	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2571					   adapter->total_tx_packets,
2572					   adapter->total_tx_bytes);
2573	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2574	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2575		adapter->tx_itr = low_latency;
2576
2577	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2578					   adapter->total_rx_packets,
2579					   adapter->total_rx_bytes);
2580	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2581	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2582		adapter->rx_itr = low_latency;
2583
2584	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2585
2586	/* counts and packets in update_itr are dependent on these numbers */
2587	switch (current_itr) {
2588	case lowest_latency:
2589		new_itr = 70000;
2590		break;
2591	case low_latency:
2592		new_itr = 20000;	/* aka hwitr = ~200 */
2593		break;
2594	case bulk_latency:
2595		new_itr = 4000;
2596		break;
2597	default:
2598		break;
2599	}
2600
2601set_itr_now:
2602	if (new_itr != adapter->itr) {
2603		/* this attempts to bias the interrupt rate towards Bulk
2604		 * by adding intermediate steps when interrupt rate is
2605		 * increasing
2606		 */
2607		new_itr = new_itr > adapter->itr ?
2608		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2609		adapter->itr = new_itr;
2610		adapter->rx_ring->itr_val = new_itr;
2611		if (adapter->msix_entries)
2612			adapter->rx_ring->set_itr = 1;
2613		else
2614			e1000e_write_itr(adapter, new_itr);
2615	}
2616}
2617
2618/**
2619 * e1000e_write_itr - write the ITR value to the appropriate registers
2620 * @adapter: address of board private structure
2621 * @itr: new ITR value to program
2622 *
2623 * e1000e_write_itr determines if the adapter is in MSI-X mode
2624 * and, if so, writes the EITR registers with the ITR value.
2625 * Otherwise, it writes the ITR value into the ITR register.
2626 **/
2627void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2628{
2629	struct e1000_hw *hw = &adapter->hw;
2630	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2631
2632	if (adapter->msix_entries) {
2633		int vector;
2634
2635		for (vector = 0; vector < adapter->num_vectors; vector++)
2636			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2637	} else {
2638		ew32(ITR, new_itr);
2639	}
2640}
2641
2642/**
2643 * e1000_alloc_queues - Allocate memory for all rings
2644 * @adapter: board private structure to initialize
2645 **/
2646static int e1000_alloc_queues(struct e1000_adapter *adapter)
2647{
2648	int size = sizeof(struct e1000_ring);
2649
2650	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2651	if (!adapter->tx_ring)
2652		goto err;
2653	adapter->tx_ring->count = adapter->tx_ring_count;
2654	adapter->tx_ring->adapter = adapter;
2655
2656	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2657	if (!adapter->rx_ring)
2658		goto err;
2659	adapter->rx_ring->count = adapter->rx_ring_count;
2660	adapter->rx_ring->adapter = adapter;
2661
2662	return 0;
2663err:
2664	e_err("Unable to allocate memory for queues\n");
2665	kfree(adapter->rx_ring);
2666	kfree(adapter->tx_ring);
2667	return -ENOMEM;
2668}
2669
2670/**
2671 * e1000e_poll - NAPI Rx polling callback
2672 * @napi: struct associated with this polling callback
2673 * @weight: number of packets driver is allowed to process this poll
2674 **/
2675static int e1000e_poll(struct napi_struct *napi, int weight)
2676{
2677	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2678						     napi);
2679	struct e1000_hw *hw = &adapter->hw;
2680	struct net_device *poll_dev = adapter->netdev;
2681	int tx_cleaned = 1, work_done = 0;
2682
2683	adapter = netdev_priv(poll_dev);
2684
2685	if (!adapter->msix_entries ||
2686	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2687		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2688
2689	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2690
2691	if (!tx_cleaned)
2692		work_done = weight;
2693
2694	/* If weight not fully consumed, exit the polling mode */
2695	if (work_done < weight) {
 
 
2696		if (adapter->itr_setting & 3)
2697			e1000_set_itr(adapter);
2698		napi_complete_done(napi, work_done);
2699		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2700			if (adapter->msix_entries)
2701				ew32(IMS, adapter->rx_ring->ims_val);
2702			else
2703				e1000_irq_enable(adapter);
2704		}
2705	}
2706
2707	return work_done;
2708}
2709
2710static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2711				 __always_unused __be16 proto, u16 vid)
2712{
2713	struct e1000_adapter *adapter = netdev_priv(netdev);
2714	struct e1000_hw *hw = &adapter->hw;
2715	u32 vfta, index;
2716
2717	/* don't update vlan cookie if already programmed */
2718	if ((adapter->hw.mng_cookie.status &
2719	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2720	    (vid == adapter->mng_vlan_id))
2721		return 0;
2722
2723	/* add VID to filter table */
2724	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2725		index = (vid >> 5) & 0x7F;
2726		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2727		vfta |= BIT((vid & 0x1F));
2728		hw->mac.ops.write_vfta(hw, index, vfta);
2729	}
2730
2731	set_bit(vid, adapter->active_vlans);
2732
2733	return 0;
2734}
2735
2736static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2737				  __always_unused __be16 proto, u16 vid)
2738{
2739	struct e1000_adapter *adapter = netdev_priv(netdev);
2740	struct e1000_hw *hw = &adapter->hw;
2741	u32 vfta, index;
2742
2743	if ((adapter->hw.mng_cookie.status &
2744	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2745	    (vid == adapter->mng_vlan_id)) {
2746		/* release control to f/w */
2747		e1000e_release_hw_control(adapter);
2748		return 0;
2749	}
2750
2751	/* remove VID from filter table */
2752	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2753		index = (vid >> 5) & 0x7F;
2754		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2755		vfta &= ~BIT((vid & 0x1F));
2756		hw->mac.ops.write_vfta(hw, index, vfta);
2757	}
2758
2759	clear_bit(vid, adapter->active_vlans);
2760
2761	return 0;
2762}
2763
2764/**
2765 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2766 * @adapter: board private structure to initialize
2767 **/
2768static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2769{
2770	struct net_device *netdev = adapter->netdev;
2771	struct e1000_hw *hw = &adapter->hw;
2772	u32 rctl;
2773
2774	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2775		/* disable VLAN receive filtering */
2776		rctl = er32(RCTL);
2777		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2778		ew32(RCTL, rctl);
2779
2780		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2781			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2782					       adapter->mng_vlan_id);
2783			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2784		}
2785	}
2786}
2787
2788/**
2789 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2790 * @adapter: board private structure to initialize
2791 **/
2792static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2793{
2794	struct e1000_hw *hw = &adapter->hw;
2795	u32 rctl;
2796
2797	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2798		/* enable VLAN receive filtering */
2799		rctl = er32(RCTL);
2800		rctl |= E1000_RCTL_VFE;
2801		rctl &= ~E1000_RCTL_CFIEN;
2802		ew32(RCTL, rctl);
2803	}
2804}
2805
2806/**
2807 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2808 * @adapter: board private structure to initialize
2809 **/
2810static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2811{
2812	struct e1000_hw *hw = &adapter->hw;
2813	u32 ctrl;
2814
2815	/* disable VLAN tag insert/strip */
2816	ctrl = er32(CTRL);
2817	ctrl &= ~E1000_CTRL_VME;
2818	ew32(CTRL, ctrl);
2819}
2820
2821/**
2822 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2823 * @adapter: board private structure to initialize
2824 **/
2825static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2826{
2827	struct e1000_hw *hw = &adapter->hw;
2828	u32 ctrl;
2829
2830	/* enable VLAN tag insert/strip */
2831	ctrl = er32(CTRL);
2832	ctrl |= E1000_CTRL_VME;
2833	ew32(CTRL, ctrl);
2834}
2835
2836static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2837{
2838	struct net_device *netdev = adapter->netdev;
2839	u16 vid = adapter->hw.mng_cookie.vlan_id;
2840	u16 old_vid = adapter->mng_vlan_id;
2841
2842	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2843		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2844		adapter->mng_vlan_id = vid;
2845	}
2846
2847	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2848		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2849}
2850
2851static void e1000_restore_vlan(struct e1000_adapter *adapter)
2852{
2853	u16 vid;
2854
2855	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2856
2857	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2858	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2859}
2860
2861static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2862{
2863	struct e1000_hw *hw = &adapter->hw;
2864	u32 manc, manc2h, mdef, i, j;
2865
2866	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2867		return;
2868
2869	manc = er32(MANC);
2870
2871	/* enable receiving management packets to the host. this will probably
2872	 * generate destination unreachable messages from the host OS, but
2873	 * the packets will be handled on SMBUS
2874	 */
2875	manc |= E1000_MANC_EN_MNG2HOST;
2876	manc2h = er32(MANC2H);
2877
2878	switch (hw->mac.type) {
2879	default:
2880		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2881		break;
2882	case e1000_82574:
2883	case e1000_82583:
2884		/* Check if IPMI pass-through decision filter already exists;
2885		 * if so, enable it.
2886		 */
2887		for (i = 0, j = 0; i < 8; i++) {
2888			mdef = er32(MDEF(i));
2889
2890			/* Ignore filters with anything other than IPMI ports */
2891			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2892				continue;
2893
2894			/* Enable this decision filter in MANC2H */
2895			if (mdef)
2896				manc2h |= BIT(i);
2897
2898			j |= mdef;
2899		}
2900
2901		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2902			break;
2903
2904		/* Create new decision filter in an empty filter */
2905		for (i = 0, j = 0; i < 8; i++)
2906			if (er32(MDEF(i)) == 0) {
2907				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2908					       E1000_MDEF_PORT_664));
2909				manc2h |= BIT(1);
2910				j++;
2911				break;
2912			}
2913
2914		if (!j)
2915			e_warn("Unable to create IPMI pass-through filter\n");
2916		break;
2917	}
2918
2919	ew32(MANC2H, manc2h);
2920	ew32(MANC, manc);
2921}
2922
2923/**
2924 * e1000_configure_tx - Configure Transmit Unit after Reset
2925 * @adapter: board private structure
2926 *
2927 * Configure the Tx unit of the MAC after a reset.
2928 **/
2929static void e1000_configure_tx(struct e1000_adapter *adapter)
2930{
2931	struct e1000_hw *hw = &adapter->hw;
2932	struct e1000_ring *tx_ring = adapter->tx_ring;
2933	u64 tdba;
2934	u32 tdlen, tctl, tarc;
2935
2936	/* Setup the HW Tx Head and Tail descriptor pointers */
2937	tdba = tx_ring->dma;
2938	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2939	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2940	ew32(TDBAH(0), (tdba >> 32));
2941	ew32(TDLEN(0), tdlen);
2942	ew32(TDH(0), 0);
2943	ew32(TDT(0), 0);
2944	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2945	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2946
2947	writel(0, tx_ring->head);
2948	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2949		e1000e_update_tdt_wa(tx_ring, 0);
2950	else
2951		writel(0, tx_ring->tail);
2952
2953	/* Set the Tx Interrupt Delay register */
2954	ew32(TIDV, adapter->tx_int_delay);
2955	/* Tx irq moderation */
2956	ew32(TADV, adapter->tx_abs_int_delay);
2957
2958	if (adapter->flags2 & FLAG2_DMA_BURST) {
2959		u32 txdctl = er32(TXDCTL(0));
2960
2961		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2962			    E1000_TXDCTL_WTHRESH);
2963		/* set up some performance related parameters to encourage the
2964		 * hardware to use the bus more efficiently in bursts, depends
2965		 * on the tx_int_delay to be enabled,
2966		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2967		 * hthresh = 1 ==> prefetch when one or more available
2968		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2969		 * BEWARE: this seems to work but should be considered first if
2970		 * there are Tx hangs or other Tx related bugs
2971		 */
2972		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2973		ew32(TXDCTL(0), txdctl);
2974	}
2975	/* erratum work around: set txdctl the same for both queues */
2976	ew32(TXDCTL(1), er32(TXDCTL(0)));
2977
2978	/* Program the Transmit Control Register */
2979	tctl = er32(TCTL);
2980	tctl &= ~E1000_TCTL_CT;
2981	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2982		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2983
2984	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2985		tarc = er32(TARC(0));
2986		/* set the speed mode bit, we'll clear it if we're not at
2987		 * gigabit link later
2988		 */
2989#define SPEED_MODE_BIT BIT(21)
2990		tarc |= SPEED_MODE_BIT;
2991		ew32(TARC(0), tarc);
2992	}
2993
2994	/* errata: program both queues to unweighted RR */
2995	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2996		tarc = er32(TARC(0));
2997		tarc |= 1;
2998		ew32(TARC(0), tarc);
2999		tarc = er32(TARC(1));
3000		tarc |= 1;
3001		ew32(TARC(1), tarc);
3002	}
3003
3004	/* Setup Transmit Descriptor Settings for eop descriptor */
3005	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3006
3007	/* only set IDE if we are delaying interrupts using the timers */
3008	if (adapter->tx_int_delay)
3009		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3010
3011	/* enable Report Status bit */
3012	adapter->txd_cmd |= E1000_TXD_CMD_RS;
3013
3014	ew32(TCTL, tctl);
3015
3016	hw->mac.ops.config_collision_dist(hw);
3017
3018	/* SPT and KBL Si errata workaround to avoid data corruption */
3019	if (hw->mac.type == e1000_pch_spt) {
3020		u32 reg_val;
3021
3022		reg_val = er32(IOSFPC);
3023		reg_val |= E1000_RCTL_RDMTS_HEX;
3024		ew32(IOSFPC, reg_val);
3025
3026		reg_val = er32(TARC(0));
3027		/* SPT and KBL Si errata workaround to avoid Tx hang.
3028		 * Dropping the number of outstanding requests from
3029		 * 3 to 2 in order to avoid a buffer overrun.
3030		 */
3031		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3032		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3033		ew32(TARC(0), reg_val);
3034	}
3035}
3036
 
 
 
3037/**
3038 * e1000_setup_rctl - configure the receive control registers
3039 * @adapter: Board private structure
3040 **/
3041#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3042			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3043static void e1000_setup_rctl(struct e1000_adapter *adapter)
3044{
3045	struct e1000_hw *hw = &adapter->hw;
3046	u32 rctl, rfctl;
3047	u32 pages = 0;
3048
3049	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3050	 * If jumbo frames not set, program related MAC/PHY registers
3051	 * to h/w defaults
3052	 */
3053	if (hw->mac.type >= e1000_pch2lan) {
3054		s32 ret_val;
3055
3056		if (adapter->netdev->mtu > ETH_DATA_LEN)
3057			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3058		else
3059			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3060
3061		if (ret_val)
3062			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3063	}
3064
3065	/* Program MC offset vector base */
3066	rctl = er32(RCTL);
3067	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3068	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3069	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3070	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3071
3072	/* Do not Store bad packets */
3073	rctl &= ~E1000_RCTL_SBP;
3074
3075	/* Enable Long Packet receive */
3076	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3077		rctl &= ~E1000_RCTL_LPE;
3078	else
3079		rctl |= E1000_RCTL_LPE;
3080
3081	/* Some systems expect that the CRC is included in SMBUS traffic. The
3082	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3083	 * host memory when this is enabled
3084	 */
3085	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3086		rctl |= E1000_RCTL_SECRC;
3087
3088	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3089	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3090		u16 phy_data;
3091
3092		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3093		phy_data &= 0xfff8;
3094		phy_data |= BIT(2);
3095		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3096
3097		e1e_rphy(hw, 22, &phy_data);
3098		phy_data &= 0x0fff;
3099		phy_data |= BIT(14);
3100		e1e_wphy(hw, 0x10, 0x2823);
3101		e1e_wphy(hw, 0x11, 0x0003);
3102		e1e_wphy(hw, 22, phy_data);
3103	}
3104
3105	/* Setup buffer sizes */
3106	rctl &= ~E1000_RCTL_SZ_4096;
3107	rctl |= E1000_RCTL_BSEX;
3108	switch (adapter->rx_buffer_len) {
3109	case 2048:
3110	default:
3111		rctl |= E1000_RCTL_SZ_2048;
3112		rctl &= ~E1000_RCTL_BSEX;
3113		break;
3114	case 4096:
3115		rctl |= E1000_RCTL_SZ_4096;
3116		break;
3117	case 8192:
3118		rctl |= E1000_RCTL_SZ_8192;
3119		break;
3120	case 16384:
3121		rctl |= E1000_RCTL_SZ_16384;
3122		break;
3123	}
3124
3125	/* Enable Extended Status in all Receive Descriptors */
3126	rfctl = er32(RFCTL);
3127	rfctl |= E1000_RFCTL_EXTEN;
3128	ew32(RFCTL, rfctl);
3129
3130	/* 82571 and greater support packet-split where the protocol
3131	 * header is placed in skb->data and the packet data is
3132	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3133	 * In the case of a non-split, skb->data is linearly filled,
3134	 * followed by the page buffers.  Therefore, skb->data is
3135	 * sized to hold the largest protocol header.
3136	 *
3137	 * allocations using alloc_page take too long for regular MTU
3138	 * so only enable packet split for jumbo frames
3139	 *
3140	 * Using pages when the page size is greater than 16k wastes
3141	 * a lot of memory, since we allocate 3 pages at all times
3142	 * per packet.
3143	 */
3144	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3145	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3146		adapter->rx_ps_pages = pages;
3147	else
3148		adapter->rx_ps_pages = 0;
3149
3150	if (adapter->rx_ps_pages) {
3151		u32 psrctl = 0;
3152
3153		/* Enable Packet split descriptors */
3154		rctl |= E1000_RCTL_DTYP_PS;
3155
3156		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3157
3158		switch (adapter->rx_ps_pages) {
3159		case 3:
3160			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3161			/* fall-through */
3162		case 2:
3163			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3164			/* fall-through */
3165		case 1:
3166			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3167			break;
3168		}
3169
3170		ew32(PSRCTL, psrctl);
3171	}
3172
3173	/* This is useful for sniffing bad packets. */
3174	if (adapter->netdev->features & NETIF_F_RXALL) {
3175		/* UPE and MPE will be handled by normal PROMISC logic
3176		 * in e1000e_set_rx_mode
3177		 */
3178		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3179			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3180			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3181
3182		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3183			  E1000_RCTL_DPF |	/* Allow filtered pause */
3184			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3185		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3186		 * and that breaks VLANs.
3187		 */
3188	}
3189
3190	ew32(RCTL, rctl);
3191	/* just started the receive unit, no need to restart */
3192	adapter->flags &= ~FLAG_RESTART_NOW;
3193}
3194
3195/**
3196 * e1000_configure_rx - Configure Receive Unit after Reset
3197 * @adapter: board private structure
3198 *
3199 * Configure the Rx unit of the MAC after a reset.
3200 **/
3201static void e1000_configure_rx(struct e1000_adapter *adapter)
3202{
3203	struct e1000_hw *hw = &adapter->hw;
3204	struct e1000_ring *rx_ring = adapter->rx_ring;
3205	u64 rdba;
3206	u32 rdlen, rctl, rxcsum, ctrl_ext;
3207
3208	if (adapter->rx_ps_pages) {
3209		/* this is a 32 byte descriptor */
3210		rdlen = rx_ring->count *
3211		    sizeof(union e1000_rx_desc_packet_split);
3212		adapter->clean_rx = e1000_clean_rx_irq_ps;
3213		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3214	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3215		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3216		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3217		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3218	} else {
3219		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3220		adapter->clean_rx = e1000_clean_rx_irq;
3221		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3222	}
3223
3224	/* disable receives while setting up the descriptors */
3225	rctl = er32(RCTL);
3226	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3227		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3228	e1e_flush();
3229	usleep_range(10000, 20000);
3230
3231	if (adapter->flags2 & FLAG2_DMA_BURST) {
3232		/* set the writeback threshold (only takes effect if the RDTR
3233		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3234		 * enable prefetching of 0x20 Rx descriptors
3235		 * granularity = 01
3236		 * wthresh = 04,
3237		 * hthresh = 04,
3238		 * pthresh = 0x20
3239		 */
3240		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3241		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3242	}
3243
3244	/* set the Receive Delay Timer Register */
3245	ew32(RDTR, adapter->rx_int_delay);
3246
3247	/* irq moderation */
3248	ew32(RADV, adapter->rx_abs_int_delay);
3249	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3250		e1000e_write_itr(adapter, adapter->itr);
3251
3252	ctrl_ext = er32(CTRL_EXT);
3253	/* Auto-Mask interrupts upon ICR access */
3254	ctrl_ext |= E1000_CTRL_EXT_IAME;
3255	ew32(IAM, 0xffffffff);
3256	ew32(CTRL_EXT, ctrl_ext);
3257	e1e_flush();
3258
3259	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3260	 * the Base and Length of the Rx Descriptor Ring
3261	 */
3262	rdba = rx_ring->dma;
3263	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3264	ew32(RDBAH(0), (rdba >> 32));
3265	ew32(RDLEN(0), rdlen);
3266	ew32(RDH(0), 0);
3267	ew32(RDT(0), 0);
3268	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3269	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3270
3271	writel(0, rx_ring->head);
3272	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3273		e1000e_update_rdt_wa(rx_ring, 0);
3274	else
3275		writel(0, rx_ring->tail);
3276
3277	/* Enable Receive Checksum Offload for TCP and UDP */
3278	rxcsum = er32(RXCSUM);
3279	if (adapter->netdev->features & NETIF_F_RXCSUM)
3280		rxcsum |= E1000_RXCSUM_TUOFL;
3281	else
3282		rxcsum &= ~E1000_RXCSUM_TUOFL;
3283	ew32(RXCSUM, rxcsum);
3284
3285	/* With jumbo frames, excessive C-state transition latencies result
3286	 * in dropped transactions.
3287	 */
3288	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3289		u32 lat =
3290		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3291		     adapter->max_frame_size) * 8 / 1000;
3292
3293		if (adapter->flags & FLAG_IS_ICH) {
3294			u32 rxdctl = er32(RXDCTL(0));
3295
3296			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3297		}
3298
3299		dev_info(&adapter->pdev->dev,
3300			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3301		pm_qos_update_request(&adapter->pm_qos_req, lat);
3302	} else {
3303		pm_qos_update_request(&adapter->pm_qos_req,
3304				      PM_QOS_DEFAULT_VALUE);
3305	}
3306
3307	/* Enable Receives */
3308	ew32(RCTL, rctl);
3309}
3310
3311/**
3312 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3313 * @netdev: network interface device structure
3314 *
3315 * Writes multicast address list to the MTA hash table.
3316 * Returns: -ENOMEM on failure
3317 *                0 on no addresses written
3318 *                X on writing X addresses to MTA
3319 */
3320static int e1000e_write_mc_addr_list(struct net_device *netdev)
3321{
3322	struct e1000_adapter *adapter = netdev_priv(netdev);
3323	struct e1000_hw *hw = &adapter->hw;
3324	struct netdev_hw_addr *ha;
3325	u8 *mta_list;
3326	int i;
3327
3328	if (netdev_mc_empty(netdev)) {
3329		/* nothing to program, so clear mc list */
3330		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3331		return 0;
3332	}
3333
3334	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3335	if (!mta_list)
3336		return -ENOMEM;
3337
3338	/* update_mc_addr_list expects a packed array of only addresses. */
3339	i = 0;
3340	netdev_for_each_mc_addr(ha, netdev)
3341	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3342
3343	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3344	kfree(mta_list);
3345
3346	return netdev_mc_count(netdev);
3347}
3348
3349/**
3350 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3351 * @netdev: network interface device structure
3352 *
3353 * Writes unicast address list to the RAR table.
3354 * Returns: -ENOMEM on failure/insufficient address space
3355 *                0 on no addresses written
3356 *                X on writing X addresses to the RAR table
3357 **/
3358static int e1000e_write_uc_addr_list(struct net_device *netdev)
3359{
3360	struct e1000_adapter *adapter = netdev_priv(netdev);
3361	struct e1000_hw *hw = &adapter->hw;
3362	unsigned int rar_entries;
3363	int count = 0;
3364
3365	rar_entries = hw->mac.ops.rar_get_count(hw);
3366
3367	/* save a rar entry for our hardware address */
3368	rar_entries--;
3369
3370	/* save a rar entry for the LAA workaround */
3371	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3372		rar_entries--;
3373
3374	/* return ENOMEM indicating insufficient memory for addresses */
3375	if (netdev_uc_count(netdev) > rar_entries)
3376		return -ENOMEM;
3377
3378	if (!netdev_uc_empty(netdev) && rar_entries) {
3379		struct netdev_hw_addr *ha;
3380
3381		/* write the addresses in reverse order to avoid write
3382		 * combining
3383		 */
3384		netdev_for_each_uc_addr(ha, netdev) {
3385			int ret_val;
3386
3387			if (!rar_entries)
3388				break;
3389			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3390			if (ret_val < 0)
3391				return -ENOMEM;
3392			count++;
3393		}
3394	}
3395
3396	/* zero out the remaining RAR entries not used above */
3397	for (; rar_entries > 0; rar_entries--) {
3398		ew32(RAH(rar_entries), 0);
3399		ew32(RAL(rar_entries), 0);
3400	}
3401	e1e_flush();
3402
3403	return count;
3404}
3405
3406/**
3407 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3408 * @netdev: network interface device structure
3409 *
3410 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3411 * address list or the network interface flags are updated.  This routine is
3412 * responsible for configuring the hardware for proper unicast, multicast,
3413 * promiscuous mode, and all-multi behavior.
3414 **/
3415static void e1000e_set_rx_mode(struct net_device *netdev)
3416{
3417	struct e1000_adapter *adapter = netdev_priv(netdev);
3418	struct e1000_hw *hw = &adapter->hw;
3419	u32 rctl;
3420
3421	if (pm_runtime_suspended(netdev->dev.parent))
3422		return;
3423
3424	/* Check for Promiscuous and All Multicast modes */
3425	rctl = er32(RCTL);
3426
3427	/* clear the affected bits */
3428	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3429
3430	if (netdev->flags & IFF_PROMISC) {
3431		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3432		/* Do not hardware filter VLANs in promisc mode */
3433		e1000e_vlan_filter_disable(adapter);
3434	} else {
3435		int count;
3436
3437		if (netdev->flags & IFF_ALLMULTI) {
3438			rctl |= E1000_RCTL_MPE;
3439		} else {
3440			/* Write addresses to the MTA, if the attempt fails
3441			 * then we should just turn on promiscuous mode so
3442			 * that we can at least receive multicast traffic
3443			 */
3444			count = e1000e_write_mc_addr_list(netdev);
3445			if (count < 0)
3446				rctl |= E1000_RCTL_MPE;
3447		}
3448		e1000e_vlan_filter_enable(adapter);
3449		/* Write addresses to available RAR registers, if there is not
3450		 * sufficient space to store all the addresses then enable
3451		 * unicast promiscuous mode
3452		 */
3453		count = e1000e_write_uc_addr_list(netdev);
3454		if (count < 0)
3455			rctl |= E1000_RCTL_UPE;
3456	}
3457
3458	ew32(RCTL, rctl);
3459
3460	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3461		e1000e_vlan_strip_enable(adapter);
3462	else
3463		e1000e_vlan_strip_disable(adapter);
3464}
3465
3466static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3467{
3468	struct e1000_hw *hw = &adapter->hw;
3469	u32 mrqc, rxcsum;
3470	u32 rss_key[10];
3471	int i;
3472
3473	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3474	for (i = 0; i < 10; i++)
3475		ew32(RSSRK(i), rss_key[i]);
3476
3477	/* Direct all traffic to queue 0 */
3478	for (i = 0; i < 32; i++)
3479		ew32(RETA(i), 0);
3480
3481	/* Disable raw packet checksumming so that RSS hash is placed in
3482	 * descriptor on writeback.
3483	 */
3484	rxcsum = er32(RXCSUM);
3485	rxcsum |= E1000_RXCSUM_PCSD;
3486
3487	ew32(RXCSUM, rxcsum);
3488
3489	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3490		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3491		E1000_MRQC_RSS_FIELD_IPV6 |
3492		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3493		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3494
3495	ew32(MRQC, mrqc);
3496}
3497
3498/**
3499 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3500 * @adapter: board private structure
3501 * @timinca: pointer to returned time increment attributes
3502 *
3503 * Get attributes for incrementing the System Time Register SYSTIML/H at
3504 * the default base frequency, and set the cyclecounter shift value.
3505 **/
3506s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3507{
3508	struct e1000_hw *hw = &adapter->hw;
3509	u32 incvalue, incperiod, shift;
3510
3511	/* Make sure clock is enabled on I217/I218/I219  before checking
3512	 * the frequency
3513	 */
3514	if ((hw->mac.type >= e1000_pch_lpt) &&
3515	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3516	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3517		u32 fextnvm7 = er32(FEXTNVM7);
3518
3519		if (!(fextnvm7 & BIT(0))) {
3520			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3521			e1e_flush();
3522		}
3523	}
3524
3525	switch (hw->mac.type) {
3526	case e1000_pch2lan:
3527		/* Stable 96MHz frequency */
3528		incperiod = INCPERIOD_96MHZ;
3529		incvalue = INCVALUE_96MHZ;
3530		shift = INCVALUE_SHIFT_96MHZ;
3531		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3532		break;
3533	case e1000_pch_lpt:
3534		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3535			/* Stable 96MHz frequency */
3536			incperiod = INCPERIOD_96MHZ;
3537			incvalue = INCVALUE_96MHZ;
3538			shift = INCVALUE_SHIFT_96MHZ;
3539			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3540		} else {
3541			/* Stable 25MHz frequency */
3542			incperiod = INCPERIOD_25MHZ;
3543			incvalue = INCVALUE_25MHZ;
3544			shift = INCVALUE_SHIFT_25MHZ;
3545			adapter->cc.shift = shift;
3546		}
3547		break;
3548	case e1000_pch_spt:
3549		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3550			/* Stable 24MHz frequency */
3551			incperiod = INCPERIOD_24MHZ;
3552			incvalue = INCVALUE_24MHZ;
3553			shift = INCVALUE_SHIFT_24MHZ;
3554			adapter->cc.shift = shift;
3555			break;
3556		}
3557		return -EINVAL;
3558	case e1000_pch_cnp:
 
 
 
 
 
 
3559		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3560			/* Stable 24MHz frequency */
3561			incperiod = INCPERIOD_24MHZ;
3562			incvalue = INCVALUE_24MHZ;
3563			shift = INCVALUE_SHIFT_24MHZ;
3564			adapter->cc.shift = shift;
3565		} else {
3566			/* Stable 38400KHz frequency */
3567			incperiod = INCPERIOD_38400KHZ;
3568			incvalue = INCVALUE_38400KHZ;
3569			shift = INCVALUE_SHIFT_38400KHZ;
3570			adapter->cc.shift = shift;
3571		}
3572		break;
3573	case e1000_82574:
3574	case e1000_82583:
3575		/* Stable 25MHz frequency */
3576		incperiod = INCPERIOD_25MHZ;
3577		incvalue = INCVALUE_25MHZ;
3578		shift = INCVALUE_SHIFT_25MHZ;
3579		adapter->cc.shift = shift;
3580		break;
3581	default:
3582		return -EINVAL;
3583	}
3584
3585	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3586		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3587
3588	return 0;
3589}
3590
3591/**
3592 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3593 * @adapter: board private structure
 
3594 *
3595 * Outgoing time stamping can be enabled and disabled. Play nice and
3596 * disable it when requested, although it shouldn't cause any overhead
3597 * when no packet needs it. At most one packet in the queue may be
3598 * marked for time stamping, otherwise it would be impossible to tell
3599 * for sure to which packet the hardware time stamp belongs.
3600 *
3601 * Incoming time stamping has to be configured via the hardware filters.
3602 * Not all combinations are supported, in particular event type has to be
3603 * specified. Matching the kind of event packet is not supported, with the
3604 * exception of "all V2 events regardless of level 2 or 4".
3605 **/
3606static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3607				  struct hwtstamp_config *config)
3608{
3609	struct e1000_hw *hw = &adapter->hw;
3610	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3611	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3612	u32 rxmtrl = 0;
3613	u16 rxudp = 0;
3614	bool is_l4 = false;
3615	bool is_l2 = false;
3616	u32 regval;
3617
3618	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3619		return -EINVAL;
3620
3621	/* flags reserved for future extensions - must be zero */
3622	if (config->flags)
3623		return -EINVAL;
3624
3625	switch (config->tx_type) {
3626	case HWTSTAMP_TX_OFF:
3627		tsync_tx_ctl = 0;
3628		break;
3629	case HWTSTAMP_TX_ON:
3630		break;
3631	default:
3632		return -ERANGE;
3633	}
3634
3635	switch (config->rx_filter) {
3636	case HWTSTAMP_FILTER_NONE:
3637		tsync_rx_ctl = 0;
3638		break;
3639	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3640		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3641		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3642		is_l4 = true;
3643		break;
3644	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3645		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3646		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3647		is_l4 = true;
3648		break;
3649	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3650		/* Also time stamps V2 L2 Path Delay Request/Response */
3651		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3652		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3653		is_l2 = true;
3654		break;
3655	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3656		/* Also time stamps V2 L2 Path Delay Request/Response. */
3657		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3658		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3659		is_l2 = true;
3660		break;
3661	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3662		/* Hardware cannot filter just V2 L4 Sync messages;
3663		 * fall-through to V2 (both L2 and L4) Sync.
3664		 */
3665	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3666		/* Also time stamps V2 Path Delay Request/Response. */
3667		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3668		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3669		is_l2 = true;
3670		is_l4 = true;
3671		break;
3672	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3673		/* Hardware cannot filter just V2 L4 Delay Request messages;
3674		 * fall-through to V2 (both L2 and L4) Delay Request.
3675		 */
3676	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3677		/* Also time stamps V2 Path Delay Request/Response. */
3678		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3679		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3680		is_l2 = true;
3681		is_l4 = true;
3682		break;
3683	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3684	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3685		/* Hardware cannot filter just V2 L4 or L2 Event messages;
3686		 * fall-through to all V2 (both L2 and L4) Events.
3687		 */
3688	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3689		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3690		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3691		is_l2 = true;
3692		is_l4 = true;
3693		break;
3694	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3695		/* For V1, the hardware can only filter Sync messages or
3696		 * Delay Request messages but not both so fall-through to
3697		 * time stamp all packets.
3698		 */
 
3699	case HWTSTAMP_FILTER_NTP_ALL:
3700	case HWTSTAMP_FILTER_ALL:
3701		is_l2 = true;
3702		is_l4 = true;
3703		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3704		config->rx_filter = HWTSTAMP_FILTER_ALL;
3705		break;
3706	default:
3707		return -ERANGE;
3708	}
3709
3710	adapter->hwtstamp_config = *config;
3711
3712	/* enable/disable Tx h/w time stamping */
3713	regval = er32(TSYNCTXCTL);
3714	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3715	regval |= tsync_tx_ctl;
3716	ew32(TSYNCTXCTL, regval);
3717	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3718	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3719		e_err("Timesync Tx Control register not set as expected\n");
3720		return -EAGAIN;
3721	}
3722
3723	/* enable/disable Rx h/w time stamping */
3724	regval = er32(TSYNCRXCTL);
3725	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3726	regval |= tsync_rx_ctl;
3727	ew32(TSYNCRXCTL, regval);
3728	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3729				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3730	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3731		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3732		e_err("Timesync Rx Control register not set as expected\n");
3733		return -EAGAIN;
3734	}
3735
3736	/* L2: define ethertype filter for time stamped packets */
3737	if (is_l2)
3738		rxmtrl |= ETH_P_1588;
3739
3740	/* define which PTP packets get time stamped */
3741	ew32(RXMTRL, rxmtrl);
3742
3743	/* Filter by destination port */
3744	if (is_l4) {
3745		rxudp = PTP_EV_PORT;
3746		cpu_to_be16s(&rxudp);
3747	}
3748	ew32(RXUDP, rxudp);
3749
3750	e1e_flush();
3751
3752	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3753	er32(RXSTMPH);
3754	er32(TXSTMPH);
3755
3756	return 0;
3757}
3758
3759/**
3760 * e1000_configure - configure the hardware for Rx and Tx
3761 * @adapter: private board structure
3762 **/
3763static void e1000_configure(struct e1000_adapter *adapter)
3764{
3765	struct e1000_ring *rx_ring = adapter->rx_ring;
3766
3767	e1000e_set_rx_mode(adapter->netdev);
3768
3769	e1000_restore_vlan(adapter);
3770	e1000_init_manageability_pt(adapter);
3771
3772	e1000_configure_tx(adapter);
3773
3774	if (adapter->netdev->features & NETIF_F_RXHASH)
3775		e1000e_setup_rss_hash(adapter);
3776	e1000_setup_rctl(adapter);
3777	e1000_configure_rx(adapter);
3778	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3779}
3780
3781/**
3782 * e1000e_power_up_phy - restore link in case the phy was powered down
3783 * @adapter: address of board private structure
3784 *
3785 * The phy may be powered down to save power and turn off link when the
3786 * driver is unloaded and wake on lan is not enabled (among others)
3787 * *** this routine MUST be followed by a call to e1000e_reset ***
3788 **/
3789void e1000e_power_up_phy(struct e1000_adapter *adapter)
3790{
3791	if (adapter->hw.phy.ops.power_up)
3792		adapter->hw.phy.ops.power_up(&adapter->hw);
3793
3794	adapter->hw.mac.ops.setup_link(&adapter->hw);
3795}
3796
3797/**
3798 * e1000_power_down_phy - Power down the PHY
 
3799 *
3800 * Power down the PHY so no link is implied when interface is down.
3801 * The PHY cannot be powered down if management or WoL is active.
3802 */
3803static void e1000_power_down_phy(struct e1000_adapter *adapter)
3804{
3805	if (adapter->hw.phy.ops.power_down)
3806		adapter->hw.phy.ops.power_down(&adapter->hw);
3807}
3808
3809/**
3810 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
 
3811 *
3812 * We want to clear all pending descriptors from the TX ring.
3813 * zeroing happens when the HW reads the regs. We  assign the ring itself as
3814 * the data of the next descriptor. We don't care about the data we are about
3815 * to reset the HW.
3816 */
3817static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3818{
3819	struct e1000_hw *hw = &adapter->hw;
3820	struct e1000_ring *tx_ring = adapter->tx_ring;
3821	struct e1000_tx_desc *tx_desc = NULL;
3822	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3823	u16 size = 512;
3824
3825	tctl = er32(TCTL);
3826	ew32(TCTL, tctl | E1000_TCTL_EN);
3827	tdt = er32(TDT(0));
3828	BUG_ON(tdt != tx_ring->next_to_use);
3829	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3830	tx_desc->buffer_addr = tx_ring->dma;
3831
3832	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3833	tx_desc->upper.data = 0;
3834	/* flush descriptors to memory before notifying the HW */
3835	wmb();
3836	tx_ring->next_to_use++;
3837	if (tx_ring->next_to_use == tx_ring->count)
3838		tx_ring->next_to_use = 0;
3839	ew32(TDT(0), tx_ring->next_to_use);
3840	mmiowb();
3841	usleep_range(200, 250);
3842}
3843
3844/**
3845 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
 
3846 *
3847 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3848 */
3849static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3850{
3851	u32 rctl, rxdctl;
3852	struct e1000_hw *hw = &adapter->hw;
3853
3854	rctl = er32(RCTL);
3855	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3856	e1e_flush();
3857	usleep_range(100, 150);
3858
3859	rxdctl = er32(RXDCTL(0));
3860	/* zero the lower 14 bits (prefetch and host thresholds) */
3861	rxdctl &= 0xffffc000;
3862
3863	/* update thresholds: prefetch threshold to 31, host threshold to 1
3864	 * and make sure the granularity is "descriptors" and not "cache lines"
3865	 */
3866	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3867
3868	ew32(RXDCTL(0), rxdctl);
3869	/* momentarily enable the RX ring for the changes to take effect */
3870	ew32(RCTL, rctl | E1000_RCTL_EN);
3871	e1e_flush();
3872	usleep_range(100, 150);
3873	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3874}
3875
3876/**
3877 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
 
3878 *
3879 * In i219, the descriptor rings must be emptied before resetting the HW
3880 * or before changing the device state to D3 during runtime (runtime PM).
3881 *
3882 * Failure to do this will cause the HW to enter a unit hang state which can
3883 * only be released by PCI reset on the device
3884 *
3885 */
3886
3887static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3888{
3889	u16 hang_state;
3890	u32 fext_nvm11, tdlen;
3891	struct e1000_hw *hw = &adapter->hw;
3892
3893	/* First, disable MULR fix in FEXTNVM11 */
3894	fext_nvm11 = er32(FEXTNVM11);
3895	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3896	ew32(FEXTNVM11, fext_nvm11);
3897	/* do nothing if we're not in faulty state, or if the queue is empty */
3898	tdlen = er32(TDLEN(0));
3899	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3900			     &hang_state);
3901	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3902		return;
3903	e1000_flush_tx_ring(adapter);
3904	/* recheck, maybe the fault is caused by the rx ring */
3905	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3906			     &hang_state);
3907	if (hang_state & FLUSH_DESC_REQUIRED)
3908		e1000_flush_rx_ring(adapter);
3909}
3910
3911/**
3912 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3913 * @adapter: board private structure
3914 *
3915 * When the MAC is reset, all hardware bits for timesync will be reset to the
3916 * default values. This function will restore the settings last in place.
3917 * Since the clock SYSTIME registers are reset, we will simply restore the
3918 * cyclecounter to the kernel real clock time.
3919 **/
3920static void e1000e_systim_reset(struct e1000_adapter *adapter)
3921{
3922	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3923	struct e1000_hw *hw = &adapter->hw;
3924	unsigned long flags;
3925	u32 timinca;
3926	s32 ret_val;
3927
3928	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3929		return;
3930
3931	if (info->adjfreq) {
3932		/* restore the previous ptp frequency delta */
3933		ret_val = info->adjfreq(info, adapter->ptp_delta);
3934	} else {
3935		/* set the default base frequency if no adjustment possible */
3936		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3937		if (!ret_val)
3938			ew32(TIMINCA, timinca);
3939	}
3940
3941	if (ret_val) {
3942		dev_warn(&adapter->pdev->dev,
3943			 "Failed to restore TIMINCA clock rate delta: %d\n",
3944			 ret_val);
3945		return;
3946	}
3947
3948	/* reset the systim ns time counter */
3949	spin_lock_irqsave(&adapter->systim_lock, flags);
3950	timecounter_init(&adapter->tc, &adapter->cc,
3951			 ktime_to_ns(ktime_get_real()));
3952	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3953
3954	/* restore the previous hwtstamp configuration settings */
3955	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3956}
3957
3958/**
3959 * e1000e_reset - bring the hardware into a known good state
 
3960 *
3961 * This function boots the hardware and enables some settings that
3962 * require a configuration cycle of the hardware - those cannot be
3963 * set/changed during runtime. After reset the device needs to be
3964 * properly configured for Rx, Tx etc.
3965 */
3966void e1000e_reset(struct e1000_adapter *adapter)
3967{
3968	struct e1000_mac_info *mac = &adapter->hw.mac;
3969	struct e1000_fc_info *fc = &adapter->hw.fc;
3970	struct e1000_hw *hw = &adapter->hw;
3971	u32 tx_space, min_tx_space, min_rx_space;
3972	u32 pba = adapter->pba;
3973	u16 hwm;
3974
3975	/* reset Packet Buffer Allocation to default */
3976	ew32(PBA, pba);
3977
3978	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3979		/* To maintain wire speed transmits, the Tx FIFO should be
3980		 * large enough to accommodate two full transmit packets,
3981		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3982		 * the Rx FIFO should be large enough to accommodate at least
3983		 * one full receive packet and is similarly rounded up and
3984		 * expressed in KB.
3985		 */
3986		pba = er32(PBA);
3987		/* upper 16 bits has Tx packet buffer allocation size in KB */
3988		tx_space = pba >> 16;
3989		/* lower 16 bits has Rx packet buffer allocation size in KB */
3990		pba &= 0xffff;
3991		/* the Tx fifo also stores 16 bytes of information about the Tx
3992		 * but don't include ethernet FCS because hardware appends it
3993		 */
3994		min_tx_space = (adapter->max_frame_size +
3995				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3996		min_tx_space = ALIGN(min_tx_space, 1024);
3997		min_tx_space >>= 10;
3998		/* software strips receive CRC, so leave room for it */
3999		min_rx_space = adapter->max_frame_size;
4000		min_rx_space = ALIGN(min_rx_space, 1024);
4001		min_rx_space >>= 10;
4002
4003		/* If current Tx allocation is less than the min Tx FIFO size,
4004		 * and the min Tx FIFO size is less than the current Rx FIFO
4005		 * allocation, take space away from current Rx allocation
4006		 */
4007		if ((tx_space < min_tx_space) &&
4008		    ((min_tx_space - tx_space) < pba)) {
4009			pba -= min_tx_space - tx_space;
4010
4011			/* if short on Rx space, Rx wins and must trump Tx
4012			 * adjustment
4013			 */
4014			if (pba < min_rx_space)
4015				pba = min_rx_space;
4016		}
4017
4018		ew32(PBA, pba);
4019	}
4020
4021	/* flow control settings
4022	 *
4023	 * The high water mark must be low enough to fit one full frame
4024	 * (or the size used for early receive) above it in the Rx FIFO.
4025	 * Set it to the lower of:
4026	 * - 90% of the Rx FIFO size, and
4027	 * - the full Rx FIFO size minus one full frame
4028	 */
4029	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4030		fc->pause_time = 0xFFFF;
4031	else
4032		fc->pause_time = E1000_FC_PAUSE_TIME;
4033	fc->send_xon = true;
4034	fc->current_mode = fc->requested_mode;
4035
4036	switch (hw->mac.type) {
4037	case e1000_ich9lan:
4038	case e1000_ich10lan:
4039		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4040			pba = 14;
4041			ew32(PBA, pba);
4042			fc->high_water = 0x2800;
4043			fc->low_water = fc->high_water - 8;
4044			break;
4045		}
4046		/* fall-through */
4047	default:
4048		hwm = min(((pba << 10) * 9 / 10),
4049			  ((pba << 10) - adapter->max_frame_size));
4050
4051		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4052		fc->low_water = fc->high_water - 8;
4053		break;
4054	case e1000_pchlan:
4055		/* Workaround PCH LOM adapter hangs with certain network
4056		 * loads.  If hangs persist, try disabling Tx flow control.
4057		 */
4058		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4059			fc->high_water = 0x3500;
4060			fc->low_water = 0x1500;
4061		} else {
4062			fc->high_water = 0x5000;
4063			fc->low_water = 0x3000;
4064		}
4065		fc->refresh_time = 0x1000;
4066		break;
4067	case e1000_pch2lan:
4068	case e1000_pch_lpt:
4069	case e1000_pch_spt:
4070	case e1000_pch_cnp:
4071		fc->refresh_time = 0x0400;
 
 
 
 
 
 
 
4072
4073		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4074			fc->high_water = 0x05C20;
4075			fc->low_water = 0x05048;
4076			fc->pause_time = 0x0650;
4077			break;
4078		}
4079
4080		pba = 14;
4081		ew32(PBA, pba);
4082		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4083		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4084		break;
4085	}
4086
4087	/* Alignment of Tx data is on an arbitrary byte boundary with the
4088	 * maximum size per Tx descriptor limited only to the transmit
4089	 * allocation of the packet buffer minus 96 bytes with an upper
4090	 * limit of 24KB due to receive synchronization limitations.
4091	 */
4092	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4093				       24 << 10);
4094
4095	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4096	 * fit in receive buffer.
4097	 */
4098	if (adapter->itr_setting & 0x3) {
4099		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4100			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4101				dev_info(&adapter->pdev->dev,
4102					 "Interrupt Throttle Rate off\n");
4103				adapter->flags2 |= FLAG2_DISABLE_AIM;
4104				e1000e_write_itr(adapter, 0);
4105			}
4106		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4107			dev_info(&adapter->pdev->dev,
4108				 "Interrupt Throttle Rate on\n");
4109			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4110			adapter->itr = 20000;
4111			e1000e_write_itr(adapter, adapter->itr);
4112		}
4113	}
4114
4115	if (hw->mac.type >= e1000_pch_spt)
4116		e1000_flush_desc_rings(adapter);
4117	/* Allow time for pending master requests to run */
4118	mac->ops.reset_hw(hw);
4119
4120	/* For parts with AMT enabled, let the firmware know
4121	 * that the network interface is in control
4122	 */
4123	if (adapter->flags & FLAG_HAS_AMT)
4124		e1000e_get_hw_control(adapter);
4125
4126	ew32(WUC, 0);
4127
4128	if (mac->ops.init_hw(hw))
4129		e_err("Hardware Error\n");
4130
4131	e1000_update_mng_vlan(adapter);
4132
4133	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4134	ew32(VET, ETH_P_8021Q);
4135
4136	e1000e_reset_adaptive(hw);
4137
4138	/* restore systim and hwtstamp settings */
4139	e1000e_systim_reset(adapter);
4140
4141	/* Set EEE advertisement as appropriate */
4142	if (adapter->flags2 & FLAG2_HAS_EEE) {
4143		s32 ret_val;
4144		u16 adv_addr;
4145
4146		switch (hw->phy.type) {
4147		case e1000_phy_82579:
4148			adv_addr = I82579_EEE_ADVERTISEMENT;
4149			break;
4150		case e1000_phy_i217:
4151			adv_addr = I217_EEE_ADVERTISEMENT;
4152			break;
4153		default:
4154			dev_err(&adapter->pdev->dev,
4155				"Invalid PHY type setting EEE advertisement\n");
4156			return;
4157		}
4158
4159		ret_val = hw->phy.ops.acquire(hw);
4160		if (ret_val) {
4161			dev_err(&adapter->pdev->dev,
4162				"EEE advertisement - unable to acquire PHY\n");
4163			return;
4164		}
4165
4166		e1000_write_emi_reg_locked(hw, adv_addr,
4167					   hw->dev_spec.ich8lan.eee_disable ?
4168					   0 : adapter->eee_advert);
4169
4170		hw->phy.ops.release(hw);
4171	}
4172
4173	if (!netif_running(adapter->netdev) &&
4174	    !test_bit(__E1000_TESTING, &adapter->state))
4175		e1000_power_down_phy(adapter);
4176
4177	e1000_get_phy_info(hw);
4178
4179	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4180	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4181		u16 phy_data = 0;
4182		/* speed up time to link by disabling smart power down, ignore
4183		 * the return value of this function because there is nothing
4184		 * different we would do if it failed
4185		 */
4186		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4187		phy_data &= ~IGP02E1000_PM_SPD;
4188		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4189	}
4190	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4191		u32 reg;
4192
4193		/* Fextnvm7 @ 0xe4[2] = 1 */
4194		reg = er32(FEXTNVM7);
4195		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4196		ew32(FEXTNVM7, reg);
4197		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4198		reg = er32(FEXTNVM9);
4199		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4200		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4201		ew32(FEXTNVM9, reg);
4202	}
4203
4204}
4205
4206/**
4207 * e1000e_trigger_lsc - trigger an LSC interrupt
4208 * @adapter: 
4209 *
4210 * Fire a link status change interrupt to start the watchdog.
4211 **/
4212static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4213{
4214	struct e1000_hw *hw = &adapter->hw;
4215
4216	if (adapter->msix_entries)
4217		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4218	else
4219		ew32(ICS, E1000_ICS_LSC);
4220}
4221
4222void e1000e_up(struct e1000_adapter *adapter)
4223{
4224	/* hardware has been reset, we need to reload some things */
4225	e1000_configure(adapter);
4226
4227	clear_bit(__E1000_DOWN, &adapter->state);
4228
4229	if (adapter->msix_entries)
4230		e1000_configure_msix(adapter);
4231	e1000_irq_enable(adapter);
4232
4233	netif_start_queue(adapter->netdev);
4234
4235	e1000e_trigger_lsc(adapter);
4236}
4237
4238static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4239{
4240	struct e1000_hw *hw = &adapter->hw;
4241
4242	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4243		return;
4244
4245	/* flush pending descriptor writebacks to memory */
4246	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4247	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4248
4249	/* execute the writes immediately */
4250	e1e_flush();
4251
4252	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4253	 * write is successful
4254	 */
4255	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4256	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4257
4258	/* execute the writes immediately */
4259	e1e_flush();
4260}
4261
4262static void e1000e_update_stats(struct e1000_adapter *adapter);
4263
4264/**
4265 * e1000e_down - quiesce the device and optionally reset the hardware
4266 * @adapter: board private structure
4267 * @reset: boolean flag to reset the hardware or not
4268 */
4269void e1000e_down(struct e1000_adapter *adapter, bool reset)
4270{
4271	struct net_device *netdev = adapter->netdev;
4272	struct e1000_hw *hw = &adapter->hw;
4273	u32 tctl, rctl;
4274
4275	/* signal that we're down so the interrupt handler does not
4276	 * reschedule our watchdog timer
4277	 */
4278	set_bit(__E1000_DOWN, &adapter->state);
4279
4280	netif_carrier_off(netdev);
4281
4282	/* disable receives in the hardware */
4283	rctl = er32(RCTL);
4284	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4285		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4286	/* flush and sleep below */
4287
4288	netif_stop_queue(netdev);
4289
4290	/* disable transmits in the hardware */
4291	tctl = er32(TCTL);
4292	tctl &= ~E1000_TCTL_EN;
4293	ew32(TCTL, tctl);
4294
4295	/* flush both disables and wait for them to finish */
4296	e1e_flush();
4297	usleep_range(10000, 20000);
4298
4299	e1000_irq_disable(adapter);
4300
4301	napi_synchronize(&adapter->napi);
4302
4303	del_timer_sync(&adapter->watchdog_timer);
4304	del_timer_sync(&adapter->phy_info_timer);
4305
4306	spin_lock(&adapter->stats64_lock);
4307	e1000e_update_stats(adapter);
4308	spin_unlock(&adapter->stats64_lock);
4309
4310	e1000e_flush_descriptors(adapter);
4311
4312	adapter->link_speed = 0;
4313	adapter->link_duplex = 0;
4314
4315	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4316	if ((hw->mac.type >= e1000_pch2lan) &&
4317	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4318	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4319		e_dbg("failed to disable jumbo frame workaround mode\n");
4320
4321	if (!pci_channel_offline(adapter->pdev)) {
4322		if (reset)
4323			e1000e_reset(adapter);
4324		else if (hw->mac.type >= e1000_pch_spt)
4325			e1000_flush_desc_rings(adapter);
4326	}
4327	e1000_clean_tx_ring(adapter->tx_ring);
4328	e1000_clean_rx_ring(adapter->rx_ring);
4329}
4330
4331void e1000e_reinit_locked(struct e1000_adapter *adapter)
4332{
4333	might_sleep();
4334	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4335		usleep_range(1000, 2000);
4336	e1000e_down(adapter, true);
4337	e1000e_up(adapter);
4338	clear_bit(__E1000_RESETTING, &adapter->state);
4339}
4340
4341/**
4342 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4343 * @hw: pointer to the HW structure
4344 * @systim: time value read, sanitized and returned
 
 
4345 *
4346 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4347 * check to see that the time is incrementing at a reasonable
4348 * rate and is a multiple of incvalue.
4349 **/
4350static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim)
 
4351{
4352	u64 time_delta, rem, temp;
4353	u64 systim_next;
4354	u32 incvalue;
4355	int i;
4356
4357	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4358	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4359		/* latch SYSTIMH on read of SYSTIML */
 
4360		systim_next = (u64)er32(SYSTIML);
 
4361		systim_next |= (u64)er32(SYSTIMH) << 32;
4362
4363		time_delta = systim_next - systim;
4364		temp = time_delta;
4365		/* VMWare users have seen incvalue of zero, don't div / 0 */
4366		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4367
4368		systim = systim_next;
4369
4370		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4371			break;
4372	}
4373
4374	return systim;
4375}
4376
4377/**
4378 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4379 * @cc: cyclecounter structure
 
 
4380 **/
4381static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
 
4382{
4383	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4384						     cc);
4385	struct e1000_hw *hw = &adapter->hw;
4386	u32 systimel, systimeh;
4387	u64 systim;
4388	/* SYSTIMH latching upon SYSTIML read does not work well.
4389	 * This means that if SYSTIML overflows after we read it but before
4390	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4391	 * will experience a huge non linear increment in the systime value
4392	 * to fix that we test for overflow and if true, we re-read systime.
4393	 */
 
4394	systimel = er32(SYSTIML);
 
4395	systimeh = er32(SYSTIMH);
4396	/* Is systimel is so large that overflow is possible? */
4397	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4398		u32 systimel_2 = er32(SYSTIML);
 
 
4399		if (systimel > systimel_2) {
4400			/* There was an overflow, read again SYSTIMH, and use
4401			 * systimel_2
4402			 */
4403			systimeh = er32(SYSTIMH);
4404			systimel = systimel_2;
4405		}
4406	}
4407	systim = (u64)systimel;
4408	systim |= (u64)systimeh << 32;
4409
4410	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4411		systim = e1000e_sanitize_systim(hw, systim);
4412
4413	return systim;
4414}
4415
4416/**
 
 
 
 
 
 
 
 
 
 
 
 
4417 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4418 * @adapter: board private structure to initialize
4419 *
4420 * e1000_sw_init initializes the Adapter private data structure.
4421 * Fields are initialized based on PCI device information and
4422 * OS network device settings (MTU size).
4423 **/
4424static int e1000_sw_init(struct e1000_adapter *adapter)
4425{
4426	struct net_device *netdev = adapter->netdev;
4427
4428	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4429	adapter->rx_ps_bsize0 = 128;
4430	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4431	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4432	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4433	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4434
4435	spin_lock_init(&adapter->stats64_lock);
4436
4437	e1000e_set_interrupt_capability(adapter);
4438
4439	if (e1000_alloc_queues(adapter))
4440		return -ENOMEM;
4441
4442	/* Setup hardware time stamping cyclecounter */
4443	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4444		adapter->cc.read = e1000e_cyclecounter_read;
4445		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4446		adapter->cc.mult = 1;
4447		/* cc.shift set in e1000e_get_base_tininca() */
4448
4449		spin_lock_init(&adapter->systim_lock);
4450		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4451	}
4452
4453	/* Explicitly disable IRQ since the NIC can be in any state. */
4454	e1000_irq_disable(adapter);
4455
4456	set_bit(__E1000_DOWN, &adapter->state);
4457	return 0;
4458}
4459
4460/**
4461 * e1000_intr_msi_test - Interrupt Handler
4462 * @irq: interrupt number
4463 * @data: pointer to a network interface device structure
4464 **/
4465static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4466{
4467	struct net_device *netdev = data;
4468	struct e1000_adapter *adapter = netdev_priv(netdev);
4469	struct e1000_hw *hw = &adapter->hw;
4470	u32 icr = er32(ICR);
4471
4472	e_dbg("icr is %08X\n", icr);
4473	if (icr & E1000_ICR_RXSEQ) {
4474		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4475		/* Force memory writes to complete before acknowledging the
4476		 * interrupt is handled.
4477		 */
4478		wmb();
4479	}
4480
4481	return IRQ_HANDLED;
4482}
4483
4484/**
4485 * e1000_test_msi_interrupt - Returns 0 for successful test
4486 * @adapter: board private struct
4487 *
4488 * code flow taken from tg3.c
4489 **/
4490static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4491{
4492	struct net_device *netdev = adapter->netdev;
4493	struct e1000_hw *hw = &adapter->hw;
4494	int err;
4495
4496	/* poll_enable hasn't been called yet, so don't need disable */
4497	/* clear any pending events */
4498	er32(ICR);
4499
4500	/* free the real vector and request a test handler */
4501	e1000_free_irq(adapter);
4502	e1000e_reset_interrupt_capability(adapter);
4503
4504	/* Assume that the test fails, if it succeeds then the test
4505	 * MSI irq handler will unset this flag
4506	 */
4507	adapter->flags |= FLAG_MSI_TEST_FAILED;
4508
4509	err = pci_enable_msi(adapter->pdev);
4510	if (err)
4511		goto msi_test_failed;
4512
4513	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4514			  netdev->name, netdev);
4515	if (err) {
4516		pci_disable_msi(adapter->pdev);
4517		goto msi_test_failed;
4518	}
4519
4520	/* Force memory writes to complete before enabling and firing an
4521	 * interrupt.
4522	 */
4523	wmb();
4524
4525	e1000_irq_enable(adapter);
4526
4527	/* fire an unusual interrupt on the test handler */
4528	ew32(ICS, E1000_ICS_RXSEQ);
4529	e1e_flush();
4530	msleep(100);
4531
4532	e1000_irq_disable(adapter);
4533
4534	rmb();			/* read flags after interrupt has been fired */
4535
4536	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4537		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4538		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4539	} else {
4540		e_dbg("MSI interrupt test succeeded!\n");
4541	}
4542
4543	free_irq(adapter->pdev->irq, netdev);
4544	pci_disable_msi(adapter->pdev);
4545
4546msi_test_failed:
4547	e1000e_set_interrupt_capability(adapter);
4548	return e1000_request_irq(adapter);
4549}
4550
4551/**
4552 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4553 * @adapter: board private struct
4554 *
4555 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4556 **/
4557static int e1000_test_msi(struct e1000_adapter *adapter)
4558{
4559	int err;
4560	u16 pci_cmd;
4561
4562	if (!(adapter->flags & FLAG_MSI_ENABLED))
4563		return 0;
4564
4565	/* disable SERR in case the MSI write causes a master abort */
4566	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4567	if (pci_cmd & PCI_COMMAND_SERR)
4568		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4569				      pci_cmd & ~PCI_COMMAND_SERR);
4570
4571	err = e1000_test_msi_interrupt(adapter);
4572
4573	/* re-enable SERR */
4574	if (pci_cmd & PCI_COMMAND_SERR) {
4575		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4576		pci_cmd |= PCI_COMMAND_SERR;
4577		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4578	}
4579
4580	return err;
4581}
4582
4583/**
4584 * e1000e_open - Called when a network interface is made active
4585 * @netdev: network interface device structure
4586 *
4587 * Returns 0 on success, negative value on failure
4588 *
4589 * The open entry point is called when a network interface is made
4590 * active by the system (IFF_UP).  At this point all resources needed
4591 * for transmit and receive operations are allocated, the interrupt
4592 * handler is registered with the OS, the watchdog timer is started,
4593 * and the stack is notified that the interface is ready.
4594 **/
4595int e1000e_open(struct net_device *netdev)
4596{
4597	struct e1000_adapter *adapter = netdev_priv(netdev);
4598	struct e1000_hw *hw = &adapter->hw;
4599	struct pci_dev *pdev = adapter->pdev;
4600	int err;
4601
4602	/* disallow open during test */
4603	if (test_bit(__E1000_TESTING, &adapter->state))
4604		return -EBUSY;
4605
4606	pm_runtime_get_sync(&pdev->dev);
4607
4608	netif_carrier_off(netdev);
 
4609
4610	/* allocate transmit descriptors */
4611	err = e1000e_setup_tx_resources(adapter->tx_ring);
4612	if (err)
4613		goto err_setup_tx;
4614
4615	/* allocate receive descriptors */
4616	err = e1000e_setup_rx_resources(adapter->rx_ring);
4617	if (err)
4618		goto err_setup_rx;
4619
4620	/* If AMT is enabled, let the firmware know that the network
4621	 * interface is now open and reset the part to a known state.
4622	 */
4623	if (adapter->flags & FLAG_HAS_AMT) {
4624		e1000e_get_hw_control(adapter);
4625		e1000e_reset(adapter);
4626	}
4627
4628	e1000e_power_up_phy(adapter);
4629
4630	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4631	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4632		e1000_update_mng_vlan(adapter);
4633
4634	/* DMA latency requirement to workaround jumbo issue */
4635	pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4636			   PM_QOS_DEFAULT_VALUE);
4637
4638	/* before we allocate an interrupt, we must be ready to handle it.
4639	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4640	 * as soon as we call pci_request_irq, so we have to setup our
4641	 * clean_rx handler before we do so.
4642	 */
4643	e1000_configure(adapter);
4644
4645	err = e1000_request_irq(adapter);
4646	if (err)
4647		goto err_req_irq;
4648
4649	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4650	 * ignore e1000e MSI messages, which means we need to test our MSI
4651	 * interrupt now
4652	 */
4653	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4654		err = e1000_test_msi(adapter);
4655		if (err) {
4656			e_err("Interrupt allocation failed\n");
4657			goto err_req_irq;
4658		}
4659	}
4660
4661	/* From here on the code is the same as e1000e_up() */
4662	clear_bit(__E1000_DOWN, &adapter->state);
4663
4664	napi_enable(&adapter->napi);
4665
4666	e1000_irq_enable(adapter);
4667
4668	adapter->tx_hang_recheck = false;
4669	netif_start_queue(netdev);
4670
4671	hw->mac.get_link_status = true;
4672	pm_runtime_put(&pdev->dev);
4673
4674	e1000e_trigger_lsc(adapter);
4675
4676	return 0;
4677
4678err_req_irq:
4679	pm_qos_remove_request(&adapter->pm_qos_req);
4680	e1000e_release_hw_control(adapter);
4681	e1000_power_down_phy(adapter);
4682	e1000e_free_rx_resources(adapter->rx_ring);
4683err_setup_rx:
4684	e1000e_free_tx_resources(adapter->tx_ring);
4685err_setup_tx:
4686	e1000e_reset(adapter);
4687	pm_runtime_put_sync(&pdev->dev);
4688
4689	return err;
4690}
4691
4692/**
4693 * e1000e_close - Disables a network interface
4694 * @netdev: network interface device structure
4695 *
4696 * Returns 0, this is not allowed to fail
4697 *
4698 * The close entry point is called when an interface is de-activated
4699 * by the OS.  The hardware is still under the drivers control, but
4700 * needs to be disabled.  A global MAC reset is issued to stop the
4701 * hardware, and all transmit and receive resources are freed.
4702 **/
4703int e1000e_close(struct net_device *netdev)
4704{
4705	struct e1000_adapter *adapter = netdev_priv(netdev);
4706	struct pci_dev *pdev = adapter->pdev;
4707	int count = E1000_CHECK_RESET_COUNT;
4708
4709	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4710		usleep_range(10000, 20000);
4711
4712	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4713
4714	pm_runtime_get_sync(&pdev->dev);
4715
4716	if (!test_bit(__E1000_DOWN, &adapter->state)) {
4717		e1000e_down(adapter, true);
4718		e1000_free_irq(adapter);
4719
4720		/* Link status message must follow this format */
4721		pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4722	}
4723
4724	napi_disable(&adapter->napi);
4725
4726	e1000e_free_tx_resources(adapter->tx_ring);
4727	e1000e_free_rx_resources(adapter->rx_ring);
4728
4729	/* kill manageability vlan ID if supported, but not if a vlan with
4730	 * the same ID is registered on the host OS (let 8021q kill it)
4731	 */
4732	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4733		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4734				       adapter->mng_vlan_id);
4735
4736	/* If AMT is enabled, let the firmware know that the network
4737	 * interface is now closed
4738	 */
4739	if ((adapter->flags & FLAG_HAS_AMT) &&
4740	    !test_bit(__E1000_TESTING, &adapter->state))
4741		e1000e_release_hw_control(adapter);
4742
4743	pm_qos_remove_request(&adapter->pm_qos_req);
4744
4745	pm_runtime_put_sync(&pdev->dev);
4746
4747	return 0;
4748}
4749
4750/**
4751 * e1000_set_mac - Change the Ethernet Address of the NIC
4752 * @netdev: network interface device structure
4753 * @p: pointer to an address structure
4754 *
4755 * Returns 0 on success, negative on failure
4756 **/
4757static int e1000_set_mac(struct net_device *netdev, void *p)
4758{
4759	struct e1000_adapter *adapter = netdev_priv(netdev);
4760	struct e1000_hw *hw = &adapter->hw;
4761	struct sockaddr *addr = p;
4762
4763	if (!is_valid_ether_addr(addr->sa_data))
4764		return -EADDRNOTAVAIL;
4765
4766	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4767	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4768
4769	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4770
4771	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4772		/* activate the work around */
4773		e1000e_set_laa_state_82571(&adapter->hw, 1);
4774
4775		/* Hold a copy of the LAA in RAR[14] This is done so that
4776		 * between the time RAR[0] gets clobbered  and the time it
4777		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4778		 * of the RARs and no incoming packets directed to this port
4779		 * are dropped. Eventually the LAA will be in RAR[0] and
4780		 * RAR[14]
4781		 */
4782		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4783				    adapter->hw.mac.rar_entry_count - 1);
4784	}
4785
4786	return 0;
4787}
4788
4789/**
4790 * e1000e_update_phy_task - work thread to update phy
4791 * @work: pointer to our work struct
4792 *
4793 * this worker thread exists because we must acquire a
4794 * semaphore to read the phy, which we could msleep while
4795 * waiting for it, and we can't msleep in a timer.
4796 **/
4797static void e1000e_update_phy_task(struct work_struct *work)
4798{
4799	struct e1000_adapter *adapter = container_of(work,
4800						     struct e1000_adapter,
4801						     update_phy_task);
4802	struct e1000_hw *hw = &adapter->hw;
4803
4804	if (test_bit(__E1000_DOWN, &adapter->state))
4805		return;
4806
4807	e1000_get_phy_info(hw);
4808
4809	/* Enable EEE on 82579 after link up */
4810	if (hw->phy.type >= e1000_phy_82579)
4811		e1000_set_eee_pchlan(hw);
4812}
4813
4814/**
4815 * e1000_update_phy_info - timre call-back to update PHY info
4816 * @data: pointer to adapter cast into an unsigned long
4817 *
4818 * Need to wait a few seconds after link up to get diagnostic information from
4819 * the phy
4820 **/
4821static void e1000_update_phy_info(struct timer_list *t)
4822{
4823	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4824
4825	if (test_bit(__E1000_DOWN, &adapter->state))
4826		return;
4827
4828	schedule_work(&adapter->update_phy_task);
4829}
4830
4831/**
4832 * e1000e_update_phy_stats - Update the PHY statistics counters
4833 * @adapter: board private structure
4834 *
4835 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4836 **/
4837static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4838{
4839	struct e1000_hw *hw = &adapter->hw;
4840	s32 ret_val;
4841	u16 phy_data;
4842
4843	ret_val = hw->phy.ops.acquire(hw);
4844	if (ret_val)
4845		return;
4846
4847	/* A page set is expensive so check if already on desired page.
4848	 * If not, set to the page with the PHY status registers.
4849	 */
4850	hw->phy.addr = 1;
4851	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4852					   &phy_data);
4853	if (ret_val)
4854		goto release;
4855	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4856		ret_val = hw->phy.ops.set_page(hw,
4857					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4858		if (ret_val)
4859			goto release;
4860	}
4861
4862	/* Single Collision Count */
4863	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4864	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4865	if (!ret_val)
4866		adapter->stats.scc += phy_data;
4867
4868	/* Excessive Collision Count */
4869	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4870	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4871	if (!ret_val)
4872		adapter->stats.ecol += phy_data;
4873
4874	/* Multiple Collision Count */
4875	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4876	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4877	if (!ret_val)
4878		adapter->stats.mcc += phy_data;
4879
4880	/* Late Collision Count */
4881	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4882	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4883	if (!ret_val)
4884		adapter->stats.latecol += phy_data;
4885
4886	/* Collision Count - also used for adaptive IFS */
4887	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4888	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4889	if (!ret_val)
4890		hw->mac.collision_delta = phy_data;
4891
4892	/* Defer Count */
4893	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4894	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4895	if (!ret_val)
4896		adapter->stats.dc += phy_data;
4897
4898	/* Transmit with no CRS */
4899	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4900	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4901	if (!ret_val)
4902		adapter->stats.tncrs += phy_data;
4903
4904release:
4905	hw->phy.ops.release(hw);
4906}
4907
4908/**
4909 * e1000e_update_stats - Update the board statistics counters
4910 * @adapter: board private structure
4911 **/
4912static void e1000e_update_stats(struct e1000_adapter *adapter)
4913{
4914	struct net_device *netdev = adapter->netdev;
4915	struct e1000_hw *hw = &adapter->hw;
4916	struct pci_dev *pdev = adapter->pdev;
4917
4918	/* Prevent stats update while adapter is being reset, or if the pci
4919	 * connection is down.
4920	 */
4921	if (adapter->link_speed == 0)
4922		return;
4923	if (pci_channel_offline(pdev))
4924		return;
4925
4926	adapter->stats.crcerrs += er32(CRCERRS);
4927	adapter->stats.gprc += er32(GPRC);
4928	adapter->stats.gorc += er32(GORCL);
4929	er32(GORCH);		/* Clear gorc */
4930	adapter->stats.bprc += er32(BPRC);
4931	adapter->stats.mprc += er32(MPRC);
4932	adapter->stats.roc += er32(ROC);
4933
4934	adapter->stats.mpc += er32(MPC);
4935
4936	/* Half-duplex statistics */
4937	if (adapter->link_duplex == HALF_DUPLEX) {
4938		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4939			e1000e_update_phy_stats(adapter);
4940		} else {
4941			adapter->stats.scc += er32(SCC);
4942			adapter->stats.ecol += er32(ECOL);
4943			adapter->stats.mcc += er32(MCC);
4944			adapter->stats.latecol += er32(LATECOL);
4945			adapter->stats.dc += er32(DC);
4946
4947			hw->mac.collision_delta = er32(COLC);
4948
4949			if ((hw->mac.type != e1000_82574) &&
4950			    (hw->mac.type != e1000_82583))
4951				adapter->stats.tncrs += er32(TNCRS);
4952		}
4953		adapter->stats.colc += hw->mac.collision_delta;
4954	}
4955
4956	adapter->stats.xonrxc += er32(XONRXC);
4957	adapter->stats.xontxc += er32(XONTXC);
4958	adapter->stats.xoffrxc += er32(XOFFRXC);
4959	adapter->stats.xofftxc += er32(XOFFTXC);
4960	adapter->stats.gptc += er32(GPTC);
4961	adapter->stats.gotc += er32(GOTCL);
4962	er32(GOTCH);		/* Clear gotc */
4963	adapter->stats.rnbc += er32(RNBC);
4964	adapter->stats.ruc += er32(RUC);
4965
4966	adapter->stats.mptc += er32(MPTC);
4967	adapter->stats.bptc += er32(BPTC);
4968
4969	/* used for adaptive IFS */
4970
4971	hw->mac.tx_packet_delta = er32(TPT);
4972	adapter->stats.tpt += hw->mac.tx_packet_delta;
4973
4974	adapter->stats.algnerrc += er32(ALGNERRC);
4975	adapter->stats.rxerrc += er32(RXERRC);
4976	adapter->stats.cexterr += er32(CEXTERR);
4977	adapter->stats.tsctc += er32(TSCTC);
4978	adapter->stats.tsctfc += er32(TSCTFC);
4979
4980	/* Fill out the OS statistics structure */
4981	netdev->stats.multicast = adapter->stats.mprc;
4982	netdev->stats.collisions = adapter->stats.colc;
4983
4984	/* Rx Errors */
4985
4986	/* RLEC on some newer hardware can be incorrect so build
4987	 * our own version based on RUC and ROC
4988	 */
4989	netdev->stats.rx_errors = adapter->stats.rxerrc +
4990	    adapter->stats.crcerrs + adapter->stats.algnerrc +
4991	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4992	netdev->stats.rx_length_errors = adapter->stats.ruc +
4993	    adapter->stats.roc;
4994	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4995	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4996	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4997
4998	/* Tx Errors */
4999	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5000	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5001	netdev->stats.tx_window_errors = adapter->stats.latecol;
5002	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5003
5004	/* Tx Dropped needs to be maintained elsewhere */
5005
5006	/* Management Stats */
5007	adapter->stats.mgptc += er32(MGTPTC);
5008	adapter->stats.mgprc += er32(MGTPRC);
5009	adapter->stats.mgpdc += er32(MGTPDC);
5010
5011	/* Correctable ECC Errors */
5012	if (hw->mac.type >= e1000_pch_lpt) {
5013		u32 pbeccsts = er32(PBECCSTS);
5014
5015		adapter->corr_errors +=
5016		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5017		adapter->uncorr_errors +=
5018		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5019		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5020	}
5021}
5022
5023/**
5024 * e1000_phy_read_status - Update the PHY register status snapshot
5025 * @adapter: board private structure
5026 **/
5027static void e1000_phy_read_status(struct e1000_adapter *adapter)
5028{
5029	struct e1000_hw *hw = &adapter->hw;
5030	struct e1000_phy_regs *phy = &adapter->phy_regs;
5031
5032	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5033	    (er32(STATUS) & E1000_STATUS_LU) &&
5034	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5035		int ret_val;
5036
5037		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5038		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5039		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5040		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5041		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5042		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5043		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5044		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5045		if (ret_val)
5046			e_warn("Error reading PHY register\n");
5047	} else {
5048		/* Do not read PHY registers if link is not up
5049		 * Set values to typical power-on defaults
5050		 */
5051		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5052		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5053			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5054			     BMSR_ERCAP);
5055		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5056				  ADVERTISE_ALL | ADVERTISE_CSMA);
5057		phy->lpa = 0;
5058		phy->expansion = EXPANSION_ENABLENPAGE;
5059		phy->ctrl1000 = ADVERTISE_1000FULL;
5060		phy->stat1000 = 0;
5061		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5062	}
5063}
5064
5065static void e1000_print_link_info(struct e1000_adapter *adapter)
5066{
5067	struct e1000_hw *hw = &adapter->hw;
5068	u32 ctrl = er32(CTRL);
5069
5070	/* Link status message must follow this format for user tools */
5071	pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5072		adapter->netdev->name, adapter->link_speed,
5073		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5074		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5075		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
5076		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
 
5077}
5078
5079static bool e1000e_has_link(struct e1000_adapter *adapter)
5080{
5081	struct e1000_hw *hw = &adapter->hw;
5082	bool link_active = false;
5083	s32 ret_val = 0;
5084
5085	/* get_link_status is set on LSC (link status) interrupt or
5086	 * Rx sequence error interrupt.  get_link_status will stay
5087	 * true until the check_for_link establishes link
5088	 * for copper adapters ONLY
5089	 */
5090	switch (hw->phy.media_type) {
5091	case e1000_media_type_copper:
5092		if (hw->mac.get_link_status) {
5093			ret_val = hw->mac.ops.check_for_link(hw);
5094			link_active = !hw->mac.get_link_status;
5095		} else {
5096			link_active = true;
5097		}
5098		break;
5099	case e1000_media_type_fiber:
5100		ret_val = hw->mac.ops.check_for_link(hw);
5101		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5102		break;
5103	case e1000_media_type_internal_serdes:
5104		ret_val = hw->mac.ops.check_for_link(hw);
5105		link_active = hw->mac.serdes_has_link;
5106		break;
5107	default:
5108	case e1000_media_type_unknown:
5109		break;
5110	}
5111
5112	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5113	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5114		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5115		e_info("Gigabit has been disabled, downgrading speed\n");
5116	}
5117
5118	return link_active;
5119}
5120
5121static void e1000e_enable_receives(struct e1000_adapter *adapter)
5122{
5123	/* make sure the receive unit is started */
5124	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5125	    (adapter->flags & FLAG_RESTART_NOW)) {
5126		struct e1000_hw *hw = &adapter->hw;
5127		u32 rctl = er32(RCTL);
5128
5129		ew32(RCTL, rctl | E1000_RCTL_EN);
5130		adapter->flags &= ~FLAG_RESTART_NOW;
5131	}
5132}
5133
5134static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5135{
5136	struct e1000_hw *hw = &adapter->hw;
5137
5138	/* With 82574 controllers, PHY needs to be checked periodically
5139	 * for hung state and reset, if two calls return true
5140	 */
5141	if (e1000_check_phy_82574(hw))
5142		adapter->phy_hang_count++;
5143	else
5144		adapter->phy_hang_count = 0;
5145
5146	if (adapter->phy_hang_count > 1) {
5147		adapter->phy_hang_count = 0;
5148		e_dbg("PHY appears hung - resetting\n");
5149		schedule_work(&adapter->reset_task);
5150	}
5151}
5152
5153/**
5154 * e1000_watchdog - Timer Call-back
5155 * @data: pointer to adapter cast into an unsigned long
5156 **/
5157static void e1000_watchdog(struct timer_list *t)
5158{
5159	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5160
5161	/* Do the rest outside of interrupt context */
5162	schedule_work(&adapter->watchdog_task);
5163
5164	/* TODO: make this use queue_delayed_work() */
5165}
5166
5167static void e1000_watchdog_task(struct work_struct *work)
5168{
5169	struct e1000_adapter *adapter = container_of(work,
5170						     struct e1000_adapter,
5171						     watchdog_task);
5172	struct net_device *netdev = adapter->netdev;
5173	struct e1000_mac_info *mac = &adapter->hw.mac;
5174	struct e1000_phy_info *phy = &adapter->hw.phy;
5175	struct e1000_ring *tx_ring = adapter->tx_ring;
 
5176	struct e1000_hw *hw = &adapter->hw;
5177	u32 link, tctl;
5178
5179	if (test_bit(__E1000_DOWN, &adapter->state))
5180		return;
5181
5182	link = e1000e_has_link(adapter);
5183	if ((netif_carrier_ok(netdev)) && link) {
5184		/* Cancel scheduled suspend requests. */
5185		pm_runtime_resume(netdev->dev.parent);
5186
5187		e1000e_enable_receives(adapter);
5188		goto link_up;
5189	}
5190
5191	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5192	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5193		e1000_update_mng_vlan(adapter);
5194
5195	if (link) {
5196		if (!netif_carrier_ok(netdev)) {
5197			bool txb2b = true;
5198
5199			/* Cancel scheduled suspend requests. */
5200			pm_runtime_resume(netdev->dev.parent);
5201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5202			/* update snapshot of PHY registers on LSC */
5203			e1000_phy_read_status(adapter);
5204			mac->ops.get_link_up_info(&adapter->hw,
5205						  &adapter->link_speed,
5206						  &adapter->link_duplex);
5207			e1000_print_link_info(adapter);
5208
5209			/* check if SmartSpeed worked */
5210			e1000e_check_downshift(hw);
5211			if (phy->speed_downgraded)
5212				netdev_warn(netdev,
5213					    "Link Speed was downgraded by SmartSpeed\n");
5214
5215			/* On supported PHYs, check for duplex mismatch only
5216			 * if link has autonegotiated at 10/100 half
5217			 */
5218			if ((hw->phy.type == e1000_phy_igp_3 ||
5219			     hw->phy.type == e1000_phy_bm) &&
5220			    hw->mac.autoneg &&
5221			    (adapter->link_speed == SPEED_10 ||
5222			     adapter->link_speed == SPEED_100) &&
5223			    (adapter->link_duplex == HALF_DUPLEX)) {
5224				u16 autoneg_exp;
5225
5226				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5227
5228				if (!(autoneg_exp & EXPANSION_NWAY))
5229					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5230			}
5231
5232			/* adjust timeout factor according to speed/duplex */
5233			adapter->tx_timeout_factor = 1;
5234			switch (adapter->link_speed) {
5235			case SPEED_10:
5236				txb2b = false;
5237				adapter->tx_timeout_factor = 16;
5238				break;
5239			case SPEED_100:
5240				txb2b = false;
5241				adapter->tx_timeout_factor = 10;
5242				break;
5243			}
5244
5245			/* workaround: re-program speed mode bit after
5246			 * link-up event
5247			 */
5248			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5249			    !txb2b) {
5250				u32 tarc0;
5251
5252				tarc0 = er32(TARC(0));
5253				tarc0 &= ~SPEED_MODE_BIT;
5254				ew32(TARC(0), tarc0);
5255			}
5256
5257			/* disable TSO for pcie and 10/100 speeds, to avoid
5258			 * some hardware issues
5259			 */
5260			if (!(adapter->flags & FLAG_TSO_FORCE)) {
5261				switch (adapter->link_speed) {
5262				case SPEED_10:
5263				case SPEED_100:
5264					e_info("10/100 speed: disabling TSO\n");
5265					netdev->features &= ~NETIF_F_TSO;
5266					netdev->features &= ~NETIF_F_TSO6;
5267					break;
5268				case SPEED_1000:
5269					netdev->features |= NETIF_F_TSO;
5270					netdev->features |= NETIF_F_TSO6;
5271					break;
5272				default:
5273					/* oops */
5274					break;
5275				}
5276			}
5277
5278			/* enable transmits in the hardware, need to do this
5279			 * after setting TARC(0)
5280			 */
5281			tctl = er32(TCTL);
5282			tctl |= E1000_TCTL_EN;
5283			ew32(TCTL, tctl);
5284
5285			/* Perform any post-link-up configuration before
5286			 * reporting link up.
5287			 */
5288			if (phy->ops.cfg_on_link_up)
5289				phy->ops.cfg_on_link_up(hw);
5290
 
5291			netif_carrier_on(netdev);
5292
5293			if (!test_bit(__E1000_DOWN, &adapter->state))
5294				mod_timer(&adapter->phy_info_timer,
5295					  round_jiffies(jiffies + 2 * HZ));
5296		}
5297	} else {
5298		if (netif_carrier_ok(netdev)) {
5299			adapter->link_speed = 0;
5300			adapter->link_duplex = 0;
5301			/* Link status message must follow this format */
5302			pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5303			netif_carrier_off(netdev);
 
5304			if (!test_bit(__E1000_DOWN, &adapter->state))
5305				mod_timer(&adapter->phy_info_timer,
5306					  round_jiffies(jiffies + 2 * HZ));
5307
5308			/* 8000ES2LAN requires a Rx packet buffer work-around
5309			 * on link down event; reset the controller to flush
5310			 * the Rx packet buffer.
5311			 */
5312			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5313				adapter->flags |= FLAG_RESTART_NOW;
5314			else
5315				pm_schedule_suspend(netdev->dev.parent,
5316						    LINK_TIMEOUT);
5317		}
5318	}
5319
5320link_up:
5321	spin_lock(&adapter->stats64_lock);
5322	e1000e_update_stats(adapter);
5323
5324	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5325	adapter->tpt_old = adapter->stats.tpt;
5326	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5327	adapter->colc_old = adapter->stats.colc;
5328
5329	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5330	adapter->gorc_old = adapter->stats.gorc;
5331	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5332	adapter->gotc_old = adapter->stats.gotc;
5333	spin_unlock(&adapter->stats64_lock);
5334
5335	/* If the link is lost the controller stops DMA, but
5336	 * if there is queued Tx work it cannot be done.  So
5337	 * reset the controller to flush the Tx packet buffers.
5338	 */
5339	if (!netif_carrier_ok(netdev) &&
5340	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5341		adapter->flags |= FLAG_RESTART_NOW;
5342
5343	/* If reset is necessary, do it outside of interrupt context. */
5344	if (adapter->flags & FLAG_RESTART_NOW) {
5345		schedule_work(&adapter->reset_task);
5346		/* return immediately since reset is imminent */
5347		return;
5348	}
5349
5350	e1000e_update_adaptive(&adapter->hw);
5351
5352	/* Simple mode for Interrupt Throttle Rate (ITR) */
5353	if (adapter->itr_setting == 4) {
5354		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5355		 * Total asymmetrical Tx or Rx gets ITR=8000;
5356		 * everyone else is between 2000-8000.
5357		 */
5358		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5359		u32 dif = (adapter->gotc > adapter->gorc ?
5360			   adapter->gotc - adapter->gorc :
5361			   adapter->gorc - adapter->gotc) / 10000;
5362		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5363
5364		e1000e_write_itr(adapter, itr);
5365	}
5366
5367	/* Cause software interrupt to ensure Rx ring is cleaned */
5368	if (adapter->msix_entries)
5369		ew32(ICS, adapter->rx_ring->ims_val);
5370	else
5371		ew32(ICS, E1000_ICS_RXDMT0);
5372
5373	/* flush pending descriptors to memory before detecting Tx hang */
5374	e1000e_flush_descriptors(adapter);
5375
5376	/* Force detection of hung controller every watchdog period */
5377	adapter->detect_tx_hung = true;
5378
5379	/* With 82571 controllers, LAA may be overwritten due to controller
5380	 * reset from the other port. Set the appropriate LAA in RAR[0]
5381	 */
5382	if (e1000e_get_laa_state_82571(hw))
5383		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5384
5385	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5386		e1000e_check_82574_phy_workaround(adapter);
5387
5388	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5389	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5390		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5391		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5392			er32(RXSTMPH);
5393			adapter->rx_hwtstamp_cleared++;
5394		} else {
5395			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5396		}
5397	}
5398
5399	/* Reset the timer */
5400	if (!test_bit(__E1000_DOWN, &adapter->state))
5401		mod_timer(&adapter->watchdog_timer,
5402			  round_jiffies(jiffies + 2 * HZ));
5403}
5404
5405#define E1000_TX_FLAGS_CSUM		0x00000001
5406#define E1000_TX_FLAGS_VLAN		0x00000002
5407#define E1000_TX_FLAGS_TSO		0x00000004
5408#define E1000_TX_FLAGS_IPV4		0x00000008
5409#define E1000_TX_FLAGS_NO_FCS		0x00000010
5410#define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5411#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5412#define E1000_TX_FLAGS_VLAN_SHIFT	16
5413
5414static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5415		     __be16 protocol)
5416{
5417	struct e1000_context_desc *context_desc;
5418	struct e1000_buffer *buffer_info;
5419	unsigned int i;
5420	u32 cmd_length = 0;
5421	u16 ipcse = 0, mss;
5422	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5423	int err;
5424
5425	if (!skb_is_gso(skb))
5426		return 0;
5427
5428	err = skb_cow_head(skb, 0);
5429	if (err < 0)
5430		return err;
5431
5432	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5433	mss = skb_shinfo(skb)->gso_size;
5434	if (protocol == htons(ETH_P_IP)) {
5435		struct iphdr *iph = ip_hdr(skb);
5436		iph->tot_len = 0;
5437		iph->check = 0;
5438		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5439							 0, IPPROTO_TCP, 0);
5440		cmd_length = E1000_TXD_CMD_IP;
5441		ipcse = skb_transport_offset(skb) - 1;
5442	} else if (skb_is_gso_v6(skb)) {
5443		ipv6_hdr(skb)->payload_len = 0;
5444		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5445						       &ipv6_hdr(skb)->daddr,
5446						       0, IPPROTO_TCP, 0);
5447		ipcse = 0;
5448	}
5449	ipcss = skb_network_offset(skb);
5450	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5451	tucss = skb_transport_offset(skb);
5452	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5453
5454	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5455		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5456
5457	i = tx_ring->next_to_use;
5458	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5459	buffer_info = &tx_ring->buffer_info[i];
5460
5461	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5462	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5463	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5464	context_desc->upper_setup.tcp_fields.tucss = tucss;
5465	context_desc->upper_setup.tcp_fields.tucso = tucso;
5466	context_desc->upper_setup.tcp_fields.tucse = 0;
5467	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5468	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5469	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5470
5471	buffer_info->time_stamp = jiffies;
5472	buffer_info->next_to_watch = i;
5473
5474	i++;
5475	if (i == tx_ring->count)
5476		i = 0;
5477	tx_ring->next_to_use = i;
5478
5479	return 1;
5480}
5481
5482static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5483			  __be16 protocol)
5484{
5485	struct e1000_adapter *adapter = tx_ring->adapter;
5486	struct e1000_context_desc *context_desc;
5487	struct e1000_buffer *buffer_info;
5488	unsigned int i;
5489	u8 css;
5490	u32 cmd_len = E1000_TXD_CMD_DEXT;
5491
5492	if (skb->ip_summed != CHECKSUM_PARTIAL)
5493		return false;
5494
5495	switch (protocol) {
5496	case cpu_to_be16(ETH_P_IP):
5497		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5498			cmd_len |= E1000_TXD_CMD_TCP;
5499		break;
5500	case cpu_to_be16(ETH_P_IPV6):
5501		/* XXX not handling all IPV6 headers */
5502		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5503			cmd_len |= E1000_TXD_CMD_TCP;
5504		break;
5505	default:
5506		if (unlikely(net_ratelimit()))
5507			e_warn("checksum_partial proto=%x!\n",
5508			       be16_to_cpu(protocol));
5509		break;
5510	}
5511
5512	css = skb_checksum_start_offset(skb);
5513
5514	i = tx_ring->next_to_use;
5515	buffer_info = &tx_ring->buffer_info[i];
5516	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5517
5518	context_desc->lower_setup.ip_config = 0;
5519	context_desc->upper_setup.tcp_fields.tucss = css;
5520	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5521	context_desc->upper_setup.tcp_fields.tucse = 0;
5522	context_desc->tcp_seg_setup.data = 0;
5523	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5524
5525	buffer_info->time_stamp = jiffies;
5526	buffer_info->next_to_watch = i;
5527
5528	i++;
5529	if (i == tx_ring->count)
5530		i = 0;
5531	tx_ring->next_to_use = i;
5532
5533	return true;
5534}
5535
5536static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5537			unsigned int first, unsigned int max_per_txd,
5538			unsigned int nr_frags)
5539{
5540	struct e1000_adapter *adapter = tx_ring->adapter;
5541	struct pci_dev *pdev = adapter->pdev;
5542	struct e1000_buffer *buffer_info;
5543	unsigned int len = skb_headlen(skb);
5544	unsigned int offset = 0, size, count = 0, i;
5545	unsigned int f, bytecount, segs;
5546
5547	i = tx_ring->next_to_use;
5548
5549	while (len) {
5550		buffer_info = &tx_ring->buffer_info[i];
5551		size = min(len, max_per_txd);
5552
5553		buffer_info->length = size;
5554		buffer_info->time_stamp = jiffies;
5555		buffer_info->next_to_watch = i;
5556		buffer_info->dma = dma_map_single(&pdev->dev,
5557						  skb->data + offset,
5558						  size, DMA_TO_DEVICE);
5559		buffer_info->mapped_as_page = false;
5560		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5561			goto dma_error;
5562
5563		len -= size;
5564		offset += size;
5565		count++;
5566
5567		if (len) {
5568			i++;
5569			if (i == tx_ring->count)
5570				i = 0;
5571		}
5572	}
5573
5574	for (f = 0; f < nr_frags; f++) {
5575		const struct skb_frag_struct *frag;
5576
5577		frag = &skb_shinfo(skb)->frags[f];
5578		len = skb_frag_size(frag);
5579		offset = 0;
5580
5581		while (len) {
5582			i++;
5583			if (i == tx_ring->count)
5584				i = 0;
5585
5586			buffer_info = &tx_ring->buffer_info[i];
5587			size = min(len, max_per_txd);
5588
5589			buffer_info->length = size;
5590			buffer_info->time_stamp = jiffies;
5591			buffer_info->next_to_watch = i;
5592			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5593							    offset, size,
5594							    DMA_TO_DEVICE);
5595			buffer_info->mapped_as_page = true;
5596			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5597				goto dma_error;
5598
5599			len -= size;
5600			offset += size;
5601			count++;
5602		}
5603	}
5604
5605	segs = skb_shinfo(skb)->gso_segs ? : 1;
5606	/* multiply data chunks by size of headers */
5607	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5608
5609	tx_ring->buffer_info[i].skb = skb;
5610	tx_ring->buffer_info[i].segs = segs;
5611	tx_ring->buffer_info[i].bytecount = bytecount;
5612	tx_ring->buffer_info[first].next_to_watch = i;
5613
5614	return count;
5615
5616dma_error:
5617	dev_err(&pdev->dev, "Tx DMA map failed\n");
5618	buffer_info->dma = 0;
5619	if (count)
5620		count--;
5621
5622	while (count--) {
5623		if (i == 0)
5624			i += tx_ring->count;
5625		i--;
5626		buffer_info = &tx_ring->buffer_info[i];
5627		e1000_put_txbuf(tx_ring, buffer_info, true);
5628	}
5629
5630	return 0;
5631}
5632
5633static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5634{
5635	struct e1000_adapter *adapter = tx_ring->adapter;
5636	struct e1000_tx_desc *tx_desc = NULL;
5637	struct e1000_buffer *buffer_info;
5638	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5639	unsigned int i;
5640
5641	if (tx_flags & E1000_TX_FLAGS_TSO) {
5642		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5643		    E1000_TXD_CMD_TSE;
5644		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5645
5646		if (tx_flags & E1000_TX_FLAGS_IPV4)
5647			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5648	}
5649
5650	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5651		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5652		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5653	}
5654
5655	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5656		txd_lower |= E1000_TXD_CMD_VLE;
5657		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5658	}
5659
5660	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5661		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5662
5663	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5664		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5665		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5666	}
5667
5668	i = tx_ring->next_to_use;
5669
5670	do {
5671		buffer_info = &tx_ring->buffer_info[i];
5672		tx_desc = E1000_TX_DESC(*tx_ring, i);
5673		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5674		tx_desc->lower.data = cpu_to_le32(txd_lower |
5675						  buffer_info->length);
5676		tx_desc->upper.data = cpu_to_le32(txd_upper);
5677
5678		i++;
5679		if (i == tx_ring->count)
5680			i = 0;
5681	} while (--count > 0);
5682
5683	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5684
5685	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5686	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5687		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5688
5689	/* Force memory writes to complete before letting h/w
5690	 * know there are new descriptors to fetch.  (Only
5691	 * applicable for weak-ordered memory model archs,
5692	 * such as IA-64).
5693	 */
5694	wmb();
5695
5696	tx_ring->next_to_use = i;
5697}
5698
5699#define MINIMUM_DHCP_PACKET_SIZE 282
5700static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5701				    struct sk_buff *skb)
5702{
5703	struct e1000_hw *hw = &adapter->hw;
5704	u16 length, offset;
5705
5706	if (skb_vlan_tag_present(skb) &&
5707	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5708	      (adapter->hw.mng_cookie.status &
5709	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5710		return 0;
5711
5712	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5713		return 0;
5714
5715	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5716		return 0;
5717
5718	{
5719		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5720		struct udphdr *udp;
5721
5722		if (ip->protocol != IPPROTO_UDP)
5723			return 0;
5724
5725		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5726		if (ntohs(udp->dest) != 67)
5727			return 0;
5728
5729		offset = (u8 *)udp + 8 - skb->data;
5730		length = skb->len - offset;
5731		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5732	}
5733
5734	return 0;
5735}
5736
5737static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5738{
5739	struct e1000_adapter *adapter = tx_ring->adapter;
5740
5741	netif_stop_queue(adapter->netdev);
5742	/* Herbert's original patch had:
5743	 *  smp_mb__after_netif_stop_queue();
5744	 * but since that doesn't exist yet, just open code it.
5745	 */
5746	smp_mb();
5747
5748	/* We need to check again in a case another CPU has just
5749	 * made room available.
5750	 */
5751	if (e1000_desc_unused(tx_ring) < size)
5752		return -EBUSY;
5753
5754	/* A reprieve! */
5755	netif_start_queue(adapter->netdev);
5756	++adapter->restart_queue;
5757	return 0;
5758}
5759
5760static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5761{
5762	BUG_ON(size > tx_ring->count);
5763
5764	if (e1000_desc_unused(tx_ring) >= size)
5765		return 0;
5766	return __e1000_maybe_stop_tx(tx_ring, size);
5767}
5768
5769static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5770				    struct net_device *netdev)
5771{
5772	struct e1000_adapter *adapter = netdev_priv(netdev);
5773	struct e1000_ring *tx_ring = adapter->tx_ring;
5774	unsigned int first;
5775	unsigned int tx_flags = 0;
5776	unsigned int len = skb_headlen(skb);
5777	unsigned int nr_frags;
5778	unsigned int mss;
5779	int count = 0;
5780	int tso;
5781	unsigned int f;
5782	__be16 protocol = vlan_get_protocol(skb);
5783
5784	if (test_bit(__E1000_DOWN, &adapter->state)) {
5785		dev_kfree_skb_any(skb);
5786		return NETDEV_TX_OK;
5787	}
5788
5789	if (skb->len <= 0) {
5790		dev_kfree_skb_any(skb);
5791		return NETDEV_TX_OK;
5792	}
5793
5794	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5795	 * pad skb in order to meet this minimum size requirement
5796	 */
5797	if (skb_put_padto(skb, 17))
5798		return NETDEV_TX_OK;
5799
5800	mss = skb_shinfo(skb)->gso_size;
5801	if (mss) {
5802		u8 hdr_len;
5803
5804		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5805		 * points to just header, pull a few bytes of payload from
5806		 * frags into skb->data
5807		 */
5808		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5809		/* we do this workaround for ES2LAN, but it is un-necessary,
5810		 * avoiding it could save a lot of cycles
5811		 */
5812		if (skb->data_len && (hdr_len == len)) {
5813			unsigned int pull_size;
5814
5815			pull_size = min_t(unsigned int, 4, skb->data_len);
5816			if (!__pskb_pull_tail(skb, pull_size)) {
5817				e_err("__pskb_pull_tail failed.\n");
5818				dev_kfree_skb_any(skb);
5819				return NETDEV_TX_OK;
5820			}
5821			len = skb_headlen(skb);
5822		}
5823	}
5824
5825	/* reserve a descriptor for the offload context */
5826	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5827		count++;
5828	count++;
5829
5830	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5831
5832	nr_frags = skb_shinfo(skb)->nr_frags;
5833	for (f = 0; f < nr_frags; f++)
5834		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5835				      adapter->tx_fifo_limit);
5836
5837	if (adapter->hw.mac.tx_pkt_filtering)
5838		e1000_transfer_dhcp_info(adapter, skb);
5839
5840	/* need: count + 2 desc gap to keep tail from touching
5841	 * head, otherwise try next time
5842	 */
5843	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5844		return NETDEV_TX_BUSY;
5845
5846	if (skb_vlan_tag_present(skb)) {
5847		tx_flags |= E1000_TX_FLAGS_VLAN;
5848		tx_flags |= (skb_vlan_tag_get(skb) <<
5849			     E1000_TX_FLAGS_VLAN_SHIFT);
5850	}
5851
5852	first = tx_ring->next_to_use;
5853
5854	tso = e1000_tso(tx_ring, skb, protocol);
5855	if (tso < 0) {
5856		dev_kfree_skb_any(skb);
5857		return NETDEV_TX_OK;
5858	}
5859
5860	if (tso)
5861		tx_flags |= E1000_TX_FLAGS_TSO;
5862	else if (e1000_tx_csum(tx_ring, skb, protocol))
5863		tx_flags |= E1000_TX_FLAGS_CSUM;
5864
5865	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5866	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5867	 * no longer assume, we must.
5868	 */
5869	if (protocol == htons(ETH_P_IP))
5870		tx_flags |= E1000_TX_FLAGS_IPV4;
5871
5872	if (unlikely(skb->no_fcs))
5873		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5874
5875	/* if count is 0 then mapping error has occurred */
5876	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5877			     nr_frags);
5878	if (count) {
5879		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5880		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5881			if (!adapter->tx_hwtstamp_skb) {
5882				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5883				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5884				adapter->tx_hwtstamp_skb = skb_get(skb);
5885				adapter->tx_hwtstamp_start = jiffies;
5886				schedule_work(&adapter->tx_hwtstamp_work);
5887			} else {
5888				adapter->tx_hwtstamp_skipped++;
5889			}
5890		}
5891
5892		skb_tx_timestamp(skb);
5893
5894		netdev_sent_queue(netdev, skb->len);
5895		e1000_tx_queue(tx_ring, tx_flags, count);
5896		/* Make sure there is space in the ring for the next send. */
5897		e1000_maybe_stop_tx(tx_ring,
5898				    (MAX_SKB_FRAGS *
5899				     DIV_ROUND_UP(PAGE_SIZE,
5900						  adapter->tx_fifo_limit) + 2));
5901
5902		if (!skb->xmit_more ||
5903		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5904			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5905				e1000e_update_tdt_wa(tx_ring,
5906						     tx_ring->next_to_use);
5907			else
5908				writel(tx_ring->next_to_use, tx_ring->tail);
5909
5910			/* we need this if more than one processor can write
5911			 * to our tail at a time, it synchronizes IO on
5912			 *IA64/Altix systems
5913			 */
5914			mmiowb();
5915		}
5916	} else {
5917		dev_kfree_skb_any(skb);
5918		tx_ring->buffer_info[first].time_stamp = 0;
5919		tx_ring->next_to_use = first;
5920	}
5921
5922	return NETDEV_TX_OK;
5923}
5924
5925/**
5926 * e1000_tx_timeout - Respond to a Tx Hang
5927 * @netdev: network interface device structure
 
5928 **/
5929static void e1000_tx_timeout(struct net_device *netdev)
5930{
5931	struct e1000_adapter *adapter = netdev_priv(netdev);
5932
5933	/* Do the reset outside of interrupt context */
5934	adapter->tx_timeout_count++;
5935	schedule_work(&adapter->reset_task);
5936}
5937
5938static void e1000_reset_task(struct work_struct *work)
5939{
5940	struct e1000_adapter *adapter;
5941	adapter = container_of(work, struct e1000_adapter, reset_task);
5942
 
5943	/* don't run the task if already down */
5944	if (test_bit(__E1000_DOWN, &adapter->state))
 
5945		return;
 
5946
5947	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5948		e1000e_dump(adapter);
5949		e_err("Reset adapter unexpectedly\n");
5950	}
5951	e1000e_reinit_locked(adapter);
 
5952}
5953
5954/**
5955 * e1000_get_stats64 - Get System Network Statistics
5956 * @netdev: network interface device structure
5957 * @stats: rtnl_link_stats64 pointer
5958 *
5959 * Returns the address of the device statistics structure.
5960 **/
5961void e1000e_get_stats64(struct net_device *netdev,
5962			struct rtnl_link_stats64 *stats)
5963{
5964	struct e1000_adapter *adapter = netdev_priv(netdev);
5965
5966	spin_lock(&adapter->stats64_lock);
5967	e1000e_update_stats(adapter);
5968	/* Fill out the OS statistics structure */
5969	stats->rx_bytes = adapter->stats.gorc;
5970	stats->rx_packets = adapter->stats.gprc;
5971	stats->tx_bytes = adapter->stats.gotc;
5972	stats->tx_packets = adapter->stats.gptc;
5973	stats->multicast = adapter->stats.mprc;
5974	stats->collisions = adapter->stats.colc;
5975
5976	/* Rx Errors */
5977
5978	/* RLEC on some newer hardware can be incorrect so build
5979	 * our own version based on RUC and ROC
5980	 */
5981	stats->rx_errors = adapter->stats.rxerrc +
5982	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5983	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5984	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5985	stats->rx_crc_errors = adapter->stats.crcerrs;
5986	stats->rx_frame_errors = adapter->stats.algnerrc;
5987	stats->rx_missed_errors = adapter->stats.mpc;
5988
5989	/* Tx Errors */
5990	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5991	stats->tx_aborted_errors = adapter->stats.ecol;
5992	stats->tx_window_errors = adapter->stats.latecol;
5993	stats->tx_carrier_errors = adapter->stats.tncrs;
5994
5995	/* Tx Dropped needs to be maintained elsewhere */
5996
5997	spin_unlock(&adapter->stats64_lock);
5998}
5999
6000/**
6001 * e1000_change_mtu - Change the Maximum Transfer Unit
6002 * @netdev: network interface device structure
6003 * @new_mtu: new value for maximum frame size
6004 *
6005 * Returns 0 on success, negative on failure
6006 **/
6007static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6008{
6009	struct e1000_adapter *adapter = netdev_priv(netdev);
6010	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6011
6012	/* Jumbo frame support */
6013	if ((new_mtu > ETH_DATA_LEN) &&
6014	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6015		e_err("Jumbo Frames not supported.\n");
6016		return -EINVAL;
6017	}
6018
6019	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6020	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6021	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6022	    (new_mtu > ETH_DATA_LEN)) {
6023		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6024		return -EINVAL;
6025	}
6026
6027	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6028		usleep_range(1000, 2000);
6029	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6030	adapter->max_frame_size = max_frame;
6031	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
 
6032	netdev->mtu = new_mtu;
6033
6034	pm_runtime_get_sync(netdev->dev.parent);
6035
6036	if (netif_running(netdev))
6037		e1000e_down(adapter, true);
6038
6039	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6040	 * means we reserve 2 more, this pushes us to allocate from the next
6041	 * larger slab size.
6042	 * i.e. RXBUFFER_2048 --> size-4096 slab
6043	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6044	 * fragmented skbs
6045	 */
6046
6047	if (max_frame <= 2048)
6048		adapter->rx_buffer_len = 2048;
6049	else
6050		adapter->rx_buffer_len = 4096;
6051
6052	/* adjust allocation if LPE protects us, and we aren't using SBP */
6053	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6054		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6055
6056	if (netif_running(netdev))
6057		e1000e_up(adapter);
6058	else
6059		e1000e_reset(adapter);
6060
6061	pm_runtime_put_sync(netdev->dev.parent);
6062
6063	clear_bit(__E1000_RESETTING, &adapter->state);
6064
6065	return 0;
6066}
6067
6068static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6069			   int cmd)
6070{
6071	struct e1000_adapter *adapter = netdev_priv(netdev);
6072	struct mii_ioctl_data *data = if_mii(ifr);
6073
6074	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6075		return -EOPNOTSUPP;
6076
6077	switch (cmd) {
6078	case SIOCGMIIPHY:
6079		data->phy_id = adapter->hw.phy.addr;
6080		break;
6081	case SIOCGMIIREG:
6082		e1000_phy_read_status(adapter);
6083
6084		switch (data->reg_num & 0x1F) {
6085		case MII_BMCR:
6086			data->val_out = adapter->phy_regs.bmcr;
6087			break;
6088		case MII_BMSR:
6089			data->val_out = adapter->phy_regs.bmsr;
6090			break;
6091		case MII_PHYSID1:
6092			data->val_out = (adapter->hw.phy.id >> 16);
6093			break;
6094		case MII_PHYSID2:
6095			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6096			break;
6097		case MII_ADVERTISE:
6098			data->val_out = adapter->phy_regs.advertise;
6099			break;
6100		case MII_LPA:
6101			data->val_out = adapter->phy_regs.lpa;
6102			break;
6103		case MII_EXPANSION:
6104			data->val_out = adapter->phy_regs.expansion;
6105			break;
6106		case MII_CTRL1000:
6107			data->val_out = adapter->phy_regs.ctrl1000;
6108			break;
6109		case MII_STAT1000:
6110			data->val_out = adapter->phy_regs.stat1000;
6111			break;
6112		case MII_ESTATUS:
6113			data->val_out = adapter->phy_regs.estatus;
6114			break;
6115		default:
6116			return -EIO;
6117		}
6118		break;
6119	case SIOCSMIIREG:
6120	default:
6121		return -EOPNOTSUPP;
6122	}
6123	return 0;
6124}
6125
6126/**
6127 * e1000e_hwtstamp_ioctl - control hardware time stamping
6128 * @netdev: network interface device structure
6129 * @ifreq: interface request
6130 *
6131 * Outgoing time stamping can be enabled and disabled. Play nice and
6132 * disable it when requested, although it shouldn't cause any overhead
6133 * when no packet needs it. At most one packet in the queue may be
6134 * marked for time stamping, otherwise it would be impossible to tell
6135 * for sure to which packet the hardware time stamp belongs.
6136 *
6137 * Incoming time stamping has to be configured via the hardware filters.
6138 * Not all combinations are supported, in particular event type has to be
6139 * specified. Matching the kind of event packet is not supported, with the
6140 * exception of "all V2 events regardless of level 2 or 4".
6141 **/
6142static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6143{
6144	struct e1000_adapter *adapter = netdev_priv(netdev);
6145	struct hwtstamp_config config;
6146	int ret_val;
6147
6148	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6149		return -EFAULT;
6150
6151	ret_val = e1000e_config_hwtstamp(adapter, &config);
6152	if (ret_val)
6153		return ret_val;
6154
6155	switch (config.rx_filter) {
6156	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6157	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6158	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6159	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6160	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6161	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6162		/* With V2 type filters which specify a Sync or Delay Request,
6163		 * Path Delay Request/Response messages are also time stamped
6164		 * by hardware so notify the caller the requested packets plus
6165		 * some others are time stamped.
6166		 */
6167		config.rx_filter = HWTSTAMP_FILTER_SOME;
6168		break;
6169	default:
6170		break;
6171	}
6172
6173	return copy_to_user(ifr->ifr_data, &config,
6174			    sizeof(config)) ? -EFAULT : 0;
6175}
6176
6177static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6178{
6179	struct e1000_adapter *adapter = netdev_priv(netdev);
6180
6181	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6182			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6183}
6184
6185static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6186{
6187	switch (cmd) {
6188	case SIOCGMIIPHY:
6189	case SIOCGMIIREG:
6190	case SIOCSMIIREG:
6191		return e1000_mii_ioctl(netdev, ifr, cmd);
6192	case SIOCSHWTSTAMP:
6193		return e1000e_hwtstamp_set(netdev, ifr);
6194	case SIOCGHWTSTAMP:
6195		return e1000e_hwtstamp_get(netdev, ifr);
6196	default:
6197		return -EOPNOTSUPP;
6198	}
6199}
6200
6201static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6202{
6203	struct e1000_hw *hw = &adapter->hw;
6204	u32 i, mac_reg, wuc;
6205	u16 phy_reg, wuc_enable;
6206	int retval;
6207
6208	/* copy MAC RARs to PHY RARs */
6209	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6210
6211	retval = hw->phy.ops.acquire(hw);
6212	if (retval) {
6213		e_err("Could not acquire PHY\n");
6214		return retval;
6215	}
6216
6217	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6218	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6219	if (retval)
6220		goto release;
6221
6222	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6223	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6224		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6225		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6226					   (u16)(mac_reg & 0xFFFF));
6227		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6228					   (u16)((mac_reg >> 16) & 0xFFFF));
6229	}
6230
6231	/* configure PHY Rx Control register */
6232	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6233	mac_reg = er32(RCTL);
6234	if (mac_reg & E1000_RCTL_UPE)
6235		phy_reg |= BM_RCTL_UPE;
6236	if (mac_reg & E1000_RCTL_MPE)
6237		phy_reg |= BM_RCTL_MPE;
6238	phy_reg &= ~(BM_RCTL_MO_MASK);
6239	if (mac_reg & E1000_RCTL_MO_3)
6240		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6241			    << BM_RCTL_MO_SHIFT);
6242	if (mac_reg & E1000_RCTL_BAM)
6243		phy_reg |= BM_RCTL_BAM;
6244	if (mac_reg & E1000_RCTL_PMCF)
6245		phy_reg |= BM_RCTL_PMCF;
6246	mac_reg = er32(CTRL);
6247	if (mac_reg & E1000_CTRL_RFCE)
6248		phy_reg |= BM_RCTL_RFCE;
6249	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6250
6251	wuc = E1000_WUC_PME_EN;
6252	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6253		wuc |= E1000_WUC_APME;
6254
6255	/* enable PHY wakeup in MAC register */
6256	ew32(WUFC, wufc);
6257	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6258		   E1000_WUC_PME_STATUS | wuc));
6259
6260	/* configure and enable PHY wakeup in PHY registers */
6261	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6262	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6263
6264	/* activate PHY wakeup */
6265	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6266	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6267	if (retval)
6268		e_err("Could not set PHY Host Wakeup bit\n");
6269release:
6270	hw->phy.ops.release(hw);
6271
6272	return retval;
6273}
6274
6275static void e1000e_flush_lpic(struct pci_dev *pdev)
6276{
6277	struct net_device *netdev = pci_get_drvdata(pdev);
6278	struct e1000_adapter *adapter = netdev_priv(netdev);
6279	struct e1000_hw *hw = &adapter->hw;
6280	u32 ret_val;
6281
6282	pm_runtime_get_sync(netdev->dev.parent);
6283
6284	ret_val = hw->phy.ops.acquire(hw);
6285	if (ret_val)
6286		goto fl_out;
6287
6288	pr_info("EEE TX LPI TIMER: %08X\n",
6289		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6290
6291	hw->phy.ops.release(hw);
6292
6293fl_out:
6294	pm_runtime_put_sync(netdev->dev.parent);
6295}
6296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6297static int e1000e_pm_freeze(struct device *dev)
6298{
6299	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6300	struct e1000_adapter *adapter = netdev_priv(netdev);
 
 
 
6301
 
6302	netif_device_detach(netdev);
6303
6304	if (netif_running(netdev)) {
6305		int count = E1000_CHECK_RESET_COUNT;
6306
6307		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6308			usleep_range(10000, 20000);
6309
6310		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6311
6312		/* Quiesce the device without resetting the hardware */
6313		e1000e_down(adapter, false);
6314		e1000_free_irq(adapter);
6315	}
 
 
6316	e1000e_reset_interrupt_capability(adapter);
6317
6318	/* Allow time for pending master requests to run */
6319	e1000e_disable_pcie_master(&adapter->hw);
6320
6321	return 0;
6322}
6323
6324static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6325{
6326	struct net_device *netdev = pci_get_drvdata(pdev);
6327	struct e1000_adapter *adapter = netdev_priv(netdev);
6328	struct e1000_hw *hw = &adapter->hw;
6329	u32 ctrl, ctrl_ext, rctl, status;
 
 
6330	/* Runtime suspend should only enable wakeup for link changes */
6331	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6332	int retval = 0;
 
 
 
 
6333
6334	status = er32(STATUS);
6335	if (status & E1000_STATUS_LU)
6336		wufc &= ~E1000_WUFC_LNKC;
6337
6338	if (wufc) {
6339		e1000_setup_rctl(adapter);
6340		e1000e_set_rx_mode(netdev);
6341
6342		/* turn on all-multi mode if wake on multicast is enabled */
6343		if (wufc & E1000_WUFC_MC) {
6344			rctl = er32(RCTL);
6345			rctl |= E1000_RCTL_MPE;
6346			ew32(RCTL, rctl);
6347		}
6348
6349		ctrl = er32(CTRL);
6350		ctrl |= E1000_CTRL_ADVD3WUC;
6351		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6352			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6353		ew32(CTRL, ctrl);
6354
6355		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6356		    adapter->hw.phy.media_type ==
6357		    e1000_media_type_internal_serdes) {
6358			/* keep the laser running in D3 */
6359			ctrl_ext = er32(CTRL_EXT);
6360			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6361			ew32(CTRL_EXT, ctrl_ext);
6362		}
6363
6364		if (!runtime)
6365			e1000e_power_up_phy(adapter);
6366
6367		if (adapter->flags & FLAG_IS_ICH)
6368			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6369
6370		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6371			/* enable wakeup by the PHY */
6372			retval = e1000_init_phy_wakeup(adapter, wufc);
6373			if (retval)
6374				return retval;
6375		} else {
6376			/* enable wakeup by the MAC */
6377			ew32(WUFC, wufc);
6378			ew32(WUC, E1000_WUC_PME_EN);
6379		}
6380	} else {
6381		ew32(WUC, 0);
6382		ew32(WUFC, 0);
6383
6384		e1000_power_down_phy(adapter);
6385	}
6386
6387	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6388		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6389	} else if (hw->mac.type >= e1000_pch_lpt) {
6390		if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6391			/* ULP does not support wake from unicast, multicast
6392			 * or broadcast.
6393			 */
6394			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6395
6396		if (retval)
6397			return retval;
6398	}
6399
6400	/* Ensure that the appropriate bits are set in LPI_CTRL
6401	 * for EEE in Sx
6402	 */
6403	if ((hw->phy.type >= e1000_phy_i217) &&
6404	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6405		u16 lpi_ctrl = 0;
6406
6407		retval = hw->phy.ops.acquire(hw);
6408		if (!retval) {
6409			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6410						 &lpi_ctrl);
6411			if (!retval) {
6412				if (adapter->eee_advert &
6413				    hw->dev_spec.ich8lan.eee_lp_ability &
6414				    I82579_EEE_100_SUPPORTED)
6415					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6416				if (adapter->eee_advert &
6417				    hw->dev_spec.ich8lan.eee_lp_ability &
6418				    I82579_EEE_1000_SUPPORTED)
6419					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6420
6421				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6422							 lpi_ctrl);
6423			}
6424		}
6425		hw->phy.ops.release(hw);
6426	}
6427
6428	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6429	 * would have already happened in close and is redundant.
6430	 */
6431	e1000e_release_hw_control(adapter);
6432
6433	pci_clear_master(pdev);
6434
6435	/* The pci-e switch on some quad port adapters will report a
6436	 * correctable error when the MAC transitions from D0 to D3.  To
6437	 * prevent this we need to mask off the correctable errors on the
6438	 * downstream port of the pci-e switch.
6439	 *
6440	 * We don't have the associated upstream bridge while assigning
6441	 * the PCI device into guest. For example, the KVM on power is
6442	 * one of the cases.
6443	 */
6444	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6445		struct pci_dev *us_dev = pdev->bus->self;
6446		u16 devctl;
6447
6448		if (!us_dev)
6449			return 0;
6450
6451		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6452		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6453					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6454
6455		pci_save_state(pdev);
6456		pci_prepare_to_sleep(pdev);
6457
6458		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6459	}
6460
6461	return 0;
6462}
6463
6464/**
6465 * __e1000e_disable_aspm - Disable ASPM states
6466 * @pdev: pointer to PCI device struct
6467 * @state: bit-mask of ASPM states to disable
6468 * @locked: indication if this context holds pci_bus_sem locked.
6469 *
6470 * Some devices *must* have certain ASPM states disabled per hardware errata.
6471 **/
6472static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6473{
6474	struct pci_dev *parent = pdev->bus->self;
6475	u16 aspm_dis_mask = 0;
6476	u16 pdev_aspmc, parent_aspmc;
6477
6478	switch (state) {
6479	case PCIE_LINK_STATE_L0S:
6480	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6481		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6482		/* fall-through - can't have L1 without L0s */
6483	case PCIE_LINK_STATE_L1:
6484		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6485		break;
6486	default:
6487		return;
6488	}
6489
6490	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6491	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6492
6493	if (parent) {
6494		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6495					  &parent_aspmc);
6496		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6497	}
6498
6499	/* Nothing to do if the ASPM states to be disabled already are */
6500	if (!(pdev_aspmc & aspm_dis_mask) &&
6501	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6502		return;
6503
6504	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6505		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6506		 "L0s" : "",
6507		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6508		 "L1" : "");
6509
6510#ifdef CONFIG_PCIEASPM
6511	if (locked)
6512		pci_disable_link_state_locked(pdev, state);
6513	else
6514		pci_disable_link_state(pdev, state);
6515
6516	/* Double-check ASPM control.  If not disabled by the above, the
6517	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6518	 * not enabled); override by writing PCI config space directly.
6519	 */
6520	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6521	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6522
6523	if (!(aspm_dis_mask & pdev_aspmc))
6524		return;
6525#endif
6526
6527	/* Both device and parent should have the same ASPM setting.
6528	 * Disable ASPM in downstream component first and then upstream.
6529	 */
6530	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6531
6532	if (parent)
6533		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6534					   aspm_dis_mask);
6535}
6536
6537/**
6538 * e1000e_disable_aspm - Disable ASPM states.
6539 * @pdev: pointer to PCI device struct
6540 * @state: bit-mask of ASPM states to disable
6541 *
6542 * This function acquires the pci_bus_sem!
6543 * Some devices *must* have certain ASPM states disabled per hardware errata.
6544 **/
6545static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6546{
6547	__e1000e_disable_aspm(pdev, state, 0);
6548}
6549
6550/**
6551 * e1000e_disable_aspm_locked   Disable ASPM states.
6552 * @pdev: pointer to PCI device struct
6553 * @state: bit-mask of ASPM states to disable
6554 *
6555 * This function must be called with pci_bus_sem acquired!
6556 * Some devices *must* have certain ASPM states disabled per hardware errata.
6557 **/
6558static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6559{
6560	__e1000e_disable_aspm(pdev, state, 1);
6561}
6562
6563#ifdef CONFIG_PM
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6564static int __e1000_resume(struct pci_dev *pdev)
6565{
6566	struct net_device *netdev = pci_get_drvdata(pdev);
6567	struct e1000_adapter *adapter = netdev_priv(netdev);
6568	struct e1000_hw *hw = &adapter->hw;
6569	u16 aspm_disable_flag = 0;
6570
6571	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6572		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6573	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6574		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6575	if (aspm_disable_flag)
6576		e1000e_disable_aspm(pdev, aspm_disable_flag);
6577
6578	pci_set_master(pdev);
6579
6580	if (hw->mac.type >= e1000_pch2lan)
6581		e1000_resume_workarounds_pchlan(&adapter->hw);
6582
6583	e1000e_power_up_phy(adapter);
6584
6585	/* report the system wakeup cause from S3/S4 */
6586	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6587		u16 phy_data;
6588
6589		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6590		if (phy_data) {
6591			e_info("PHY Wakeup cause - %s\n",
6592			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6593			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6594			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6595			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6596			       phy_data & E1000_WUS_LNKC ?
6597			       "Link Status Change" : "other");
6598		}
6599		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6600	} else {
6601		u32 wus = er32(WUS);
6602
6603		if (wus) {
6604			e_info("MAC Wakeup cause - %s\n",
6605			       wus & E1000_WUS_EX ? "Unicast Packet" :
6606			       wus & E1000_WUS_MC ? "Multicast Packet" :
6607			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6608			       wus & E1000_WUS_MAG ? "Magic Packet" :
6609			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6610			       "other");
6611		}
6612		ew32(WUS, ~0);
6613	}
6614
6615	e1000e_reset(adapter);
6616
6617	e1000_init_manageability_pt(adapter);
6618
6619	/* If the controller has AMT, do not set DRV_LOAD until the interface
6620	 * is up.  For all other cases, let the f/w know that the h/w is now
6621	 * under the control of the driver.
6622	 */
6623	if (!(adapter->flags & FLAG_HAS_AMT))
6624		e1000e_get_hw_control(adapter);
6625
6626	return 0;
6627}
6628
6629#ifdef CONFIG_PM_SLEEP
6630static int e1000e_pm_thaw(struct device *dev)
6631{
6632	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6633	struct e1000_adapter *adapter = netdev_priv(netdev);
6634
6635	e1000e_set_interrupt_capability(adapter);
6636	if (netif_running(netdev)) {
6637		u32 err = e1000_request_irq(adapter);
6638
6639		if (err)
6640			return err;
6641
6642		e1000e_up(adapter);
6643	}
6644
6645	netif_device_attach(netdev);
6646
6647	return 0;
6648}
6649
6650static int e1000e_pm_suspend(struct device *dev)
6651{
 
 
6652	struct pci_dev *pdev = to_pci_dev(dev);
6653	int rc;
6654
6655	e1000e_flush_lpic(pdev);
6656
6657	e1000e_pm_freeze(dev);
6658
6659	rc = __e1000_shutdown(pdev, false);
6660	if (rc)
6661		e1000e_pm_thaw(dev);
 
 
 
 
 
6662
6663	return rc;
6664}
6665
6666static int e1000e_pm_resume(struct device *dev)
6667{
 
 
6668	struct pci_dev *pdev = to_pci_dev(dev);
6669	int rc;
6670
 
 
 
 
6671	rc = __e1000_resume(pdev);
6672	if (rc)
6673		return rc;
6674
6675	return e1000e_pm_thaw(dev);
6676}
6677#endif /* CONFIG_PM_SLEEP */
6678
6679static int e1000e_pm_runtime_idle(struct device *dev)
6680{
6681	struct pci_dev *pdev = to_pci_dev(dev);
6682	struct net_device *netdev = pci_get_drvdata(pdev);
6683	struct e1000_adapter *adapter = netdev_priv(netdev);
6684	u16 eee_lp;
6685
6686	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6687
6688	if (!e1000e_has_link(adapter)) {
6689		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6690		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6691	}
6692
6693	return -EBUSY;
6694}
6695
6696static int e1000e_pm_runtime_resume(struct device *dev)
6697{
6698	struct pci_dev *pdev = to_pci_dev(dev);
6699	struct net_device *netdev = pci_get_drvdata(pdev);
6700	struct e1000_adapter *adapter = netdev_priv(netdev);
6701	int rc;
6702
 
 
6703	rc = __e1000_resume(pdev);
6704	if (rc)
6705		return rc;
6706
6707	if (netdev->flags & IFF_UP)
6708		e1000e_up(adapter);
6709
6710	return rc;
6711}
6712
6713static int e1000e_pm_runtime_suspend(struct device *dev)
6714{
6715	struct pci_dev *pdev = to_pci_dev(dev);
6716	struct net_device *netdev = pci_get_drvdata(pdev);
6717	struct e1000_adapter *adapter = netdev_priv(netdev);
6718
6719	if (netdev->flags & IFF_UP) {
6720		int count = E1000_CHECK_RESET_COUNT;
6721
6722		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6723			usleep_range(10000, 20000);
6724
6725		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6726
6727		/* Down the device without resetting the hardware */
6728		e1000e_down(adapter, false);
6729	}
6730
6731	if (__e1000_shutdown(pdev, true)) {
6732		e1000e_pm_runtime_resume(dev);
6733		return -EBUSY;
6734	}
6735
6736	return 0;
6737}
6738#endif /* CONFIG_PM */
6739
6740static void e1000_shutdown(struct pci_dev *pdev)
6741{
6742	e1000e_flush_lpic(pdev);
6743
6744	e1000e_pm_freeze(&pdev->dev);
6745
6746	__e1000_shutdown(pdev, false);
6747}
6748
6749#ifdef CONFIG_NET_POLL_CONTROLLER
6750
6751static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6752{
6753	struct net_device *netdev = data;
6754	struct e1000_adapter *adapter = netdev_priv(netdev);
6755
6756	if (adapter->msix_entries) {
6757		int vector, msix_irq;
6758
6759		vector = 0;
6760		msix_irq = adapter->msix_entries[vector].vector;
6761		if (disable_hardirq(msix_irq))
6762			e1000_intr_msix_rx(msix_irq, netdev);
6763		enable_irq(msix_irq);
6764
6765		vector++;
6766		msix_irq = adapter->msix_entries[vector].vector;
6767		if (disable_hardirq(msix_irq))
6768			e1000_intr_msix_tx(msix_irq, netdev);
6769		enable_irq(msix_irq);
6770
6771		vector++;
6772		msix_irq = adapter->msix_entries[vector].vector;
6773		if (disable_hardirq(msix_irq))
6774			e1000_msix_other(msix_irq, netdev);
6775		enable_irq(msix_irq);
6776	}
6777
6778	return IRQ_HANDLED;
6779}
6780
6781/**
6782 * e1000_netpoll
6783 * @netdev: network interface device structure
6784 *
6785 * Polling 'interrupt' - used by things like netconsole to send skbs
6786 * without having to re-enable interrupts. It's not called while
6787 * the interrupt routine is executing.
6788 */
6789static void e1000_netpoll(struct net_device *netdev)
6790{
6791	struct e1000_adapter *adapter = netdev_priv(netdev);
6792
6793	switch (adapter->int_mode) {
6794	case E1000E_INT_MODE_MSIX:
6795		e1000_intr_msix(adapter->pdev->irq, netdev);
6796		break;
6797	case E1000E_INT_MODE_MSI:
6798		if (disable_hardirq(adapter->pdev->irq))
6799			e1000_intr_msi(adapter->pdev->irq, netdev);
6800		enable_irq(adapter->pdev->irq);
6801		break;
6802	default:		/* E1000E_INT_MODE_LEGACY */
6803		if (disable_hardirq(adapter->pdev->irq))
6804			e1000_intr(adapter->pdev->irq, netdev);
6805		enable_irq(adapter->pdev->irq);
6806		break;
6807	}
6808}
6809#endif
6810
6811/**
6812 * e1000_io_error_detected - called when PCI error is detected
6813 * @pdev: Pointer to PCI device
6814 * @state: The current pci connection state
6815 *
6816 * This function is called after a PCI bus error affecting
6817 * this device has been detected.
6818 */
6819static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6820						pci_channel_state_t state)
6821{
6822	struct net_device *netdev = pci_get_drvdata(pdev);
6823	struct e1000_adapter *adapter = netdev_priv(netdev);
6824
6825	netif_device_detach(netdev);
6826
6827	if (state == pci_channel_io_perm_failure)
6828		return PCI_ERS_RESULT_DISCONNECT;
6829
6830	if (netif_running(netdev))
6831		e1000e_down(adapter, true);
6832	pci_disable_device(pdev);
6833
6834	/* Request a slot slot reset. */
6835	return PCI_ERS_RESULT_NEED_RESET;
6836}
6837
6838/**
6839 * e1000_io_slot_reset - called after the pci bus has been reset.
6840 * @pdev: Pointer to PCI device
6841 *
6842 * Restart the card from scratch, as if from a cold-boot. Implementation
6843 * resembles the first-half of the e1000e_pm_resume routine.
6844 */
6845static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6846{
6847	struct net_device *netdev = pci_get_drvdata(pdev);
6848	struct e1000_adapter *adapter = netdev_priv(netdev);
6849	struct e1000_hw *hw = &adapter->hw;
6850	u16 aspm_disable_flag = 0;
6851	int err;
6852	pci_ers_result_t result;
6853
6854	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6855		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6856	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6857		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6858	if (aspm_disable_flag)
6859		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6860
6861	err = pci_enable_device_mem(pdev);
6862	if (err) {
6863		dev_err(&pdev->dev,
6864			"Cannot re-enable PCI device after reset.\n");
6865		result = PCI_ERS_RESULT_DISCONNECT;
6866	} else {
6867		pdev->state_saved = true;
6868		pci_restore_state(pdev);
6869		pci_set_master(pdev);
6870
6871		pci_enable_wake(pdev, PCI_D3hot, 0);
6872		pci_enable_wake(pdev, PCI_D3cold, 0);
6873
6874		e1000e_reset(adapter);
6875		ew32(WUS, ~0);
6876		result = PCI_ERS_RESULT_RECOVERED;
6877	}
6878
6879	pci_cleanup_aer_uncorrect_error_status(pdev);
6880
6881	return result;
6882}
6883
6884/**
6885 * e1000_io_resume - called when traffic can start flowing again.
6886 * @pdev: Pointer to PCI device
6887 *
6888 * This callback is called when the error recovery driver tells us that
6889 * its OK to resume normal operation. Implementation resembles the
6890 * second-half of the e1000e_pm_resume routine.
6891 */
6892static void e1000_io_resume(struct pci_dev *pdev)
6893{
6894	struct net_device *netdev = pci_get_drvdata(pdev);
6895	struct e1000_adapter *adapter = netdev_priv(netdev);
6896
6897	e1000_init_manageability_pt(adapter);
6898
6899	if (netif_running(netdev))
6900		e1000e_up(adapter);
6901
6902	netif_device_attach(netdev);
6903
6904	/* If the controller has AMT, do not set DRV_LOAD until the interface
6905	 * is up.  For all other cases, let the f/w know that the h/w is now
6906	 * under the control of the driver.
6907	 */
6908	if (!(adapter->flags & FLAG_HAS_AMT))
6909		e1000e_get_hw_control(adapter);
6910}
6911
6912static void e1000_print_device_info(struct e1000_adapter *adapter)
6913{
6914	struct e1000_hw *hw = &adapter->hw;
6915	struct net_device *netdev = adapter->netdev;
6916	u32 ret_val;
6917	u8 pba_str[E1000_PBANUM_LENGTH];
6918
6919	/* print bus type/speed/width info */
6920	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6921	       /* bus width */
6922	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6923		"Width x1"),
6924	       /* MAC address */
6925	       netdev->dev_addr);
6926	e_info("Intel(R) PRO/%s Network Connection\n",
6927	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6928	ret_val = e1000_read_pba_string_generic(hw, pba_str,
6929						E1000_PBANUM_LENGTH);
6930	if (ret_val)
6931		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6932	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6933	       hw->mac.type, hw->phy.type, pba_str);
6934}
6935
6936static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6937{
6938	struct e1000_hw *hw = &adapter->hw;
6939	int ret_val;
6940	u16 buf = 0;
6941
6942	if (hw->mac.type != e1000_82573)
6943		return;
6944
6945	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6946	le16_to_cpus(&buf);
6947	if (!ret_val && (!(buf & BIT(0)))) {
6948		/* Deep Smart Power Down (DSPD) */
6949		dev_warn(&adapter->pdev->dev,
6950			 "Warning: detected DSPD enabled in EEPROM\n");
6951	}
6952}
6953
6954static netdev_features_t e1000_fix_features(struct net_device *netdev,
6955					    netdev_features_t features)
6956{
6957	struct e1000_adapter *adapter = netdev_priv(netdev);
6958	struct e1000_hw *hw = &adapter->hw;
6959
6960	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6961	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6962		features &= ~NETIF_F_RXFCS;
6963
6964	/* Since there is no support for separate Rx/Tx vlan accel
6965	 * enable/disable make sure Tx flag is always in same state as Rx.
6966	 */
6967	if (features & NETIF_F_HW_VLAN_CTAG_RX)
6968		features |= NETIF_F_HW_VLAN_CTAG_TX;
6969	else
6970		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
6971
6972	return features;
6973}
6974
6975static int e1000_set_features(struct net_device *netdev,
6976			      netdev_features_t features)
6977{
6978	struct e1000_adapter *adapter = netdev_priv(netdev);
6979	netdev_features_t changed = features ^ netdev->features;
6980
6981	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6982		adapter->flags |= FLAG_TSO_FORCE;
6983
6984	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6985			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6986			 NETIF_F_RXALL)))
6987		return 0;
6988
6989	if (changed & NETIF_F_RXFCS) {
6990		if (features & NETIF_F_RXFCS) {
6991			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6992		} else {
6993			/* We need to take it back to defaults, which might mean
6994			 * stripping is still disabled at the adapter level.
6995			 */
6996			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6997				adapter->flags2 |= FLAG2_CRC_STRIPPING;
6998			else
6999				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7000		}
7001	}
7002
7003	netdev->features = features;
7004
7005	if (netif_running(netdev))
7006		e1000e_reinit_locked(adapter);
7007	else
7008		e1000e_reset(adapter);
7009
7010	return 0;
7011}
7012
7013static const struct net_device_ops e1000e_netdev_ops = {
7014	.ndo_open		= e1000e_open,
7015	.ndo_stop		= e1000e_close,
7016	.ndo_start_xmit		= e1000_xmit_frame,
7017	.ndo_get_stats64	= e1000e_get_stats64,
7018	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7019	.ndo_set_mac_address	= e1000_set_mac,
7020	.ndo_change_mtu		= e1000_change_mtu,
7021	.ndo_do_ioctl		= e1000_ioctl,
7022	.ndo_tx_timeout		= e1000_tx_timeout,
7023	.ndo_validate_addr	= eth_validate_addr,
7024
7025	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7026	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7027#ifdef CONFIG_NET_POLL_CONTROLLER
7028	.ndo_poll_controller	= e1000_netpoll,
7029#endif
7030	.ndo_set_features = e1000_set_features,
7031	.ndo_fix_features = e1000_fix_features,
7032	.ndo_features_check	= passthru_features_check,
7033};
7034
7035/**
7036 * e1000_probe - Device Initialization Routine
7037 * @pdev: PCI device information struct
7038 * @ent: entry in e1000_pci_tbl
7039 *
7040 * Returns 0 on success, negative on failure
7041 *
7042 * e1000_probe initializes an adapter identified by a pci_dev structure.
7043 * The OS initialization, configuring of the adapter private structure,
7044 * and a hardware reset occur.
7045 **/
7046static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7047{
7048	struct net_device *netdev;
7049	struct e1000_adapter *adapter;
7050	struct e1000_hw *hw;
7051	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7052	resource_size_t mmio_start, mmio_len;
7053	resource_size_t flash_start, flash_len;
7054	static int cards_found;
7055	u16 aspm_disable_flag = 0;
7056	int bars, i, err, pci_using_dac;
7057	u16 eeprom_data = 0;
7058	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 
7059	s32 ret_val = 0;
7060
7061	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7062		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7063	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7064		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7065	if (aspm_disable_flag)
7066		e1000e_disable_aspm(pdev, aspm_disable_flag);
7067
7068	err = pci_enable_device_mem(pdev);
7069	if (err)
7070		return err;
7071
7072	pci_using_dac = 0;
7073	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7074	if (!err) {
7075		pci_using_dac = 1;
7076	} else {
7077		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7078		if (err) {
7079			dev_err(&pdev->dev,
7080				"No usable DMA configuration, aborting\n");
7081			goto err_dma;
7082		}
7083	}
7084
7085	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7086	err = pci_request_selected_regions_exclusive(pdev, bars,
7087						     e1000e_driver_name);
7088	if (err)
7089		goto err_pci_reg;
7090
7091	/* AER (Advanced Error Reporting) hooks */
7092	pci_enable_pcie_error_reporting(pdev);
7093
7094	pci_set_master(pdev);
7095	/* PCI config space info */
7096	err = pci_save_state(pdev);
7097	if (err)
7098		goto err_alloc_etherdev;
7099
7100	err = -ENOMEM;
7101	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7102	if (!netdev)
7103		goto err_alloc_etherdev;
7104
7105	SET_NETDEV_DEV(netdev, &pdev->dev);
7106
7107	netdev->irq = pdev->irq;
7108
7109	pci_set_drvdata(pdev, netdev);
7110	adapter = netdev_priv(netdev);
7111	hw = &adapter->hw;
7112	adapter->netdev = netdev;
7113	adapter->pdev = pdev;
7114	adapter->ei = ei;
7115	adapter->pba = ei->pba;
7116	adapter->flags = ei->flags;
7117	adapter->flags2 = ei->flags2;
7118	adapter->hw.adapter = adapter;
7119	adapter->hw.mac.type = ei->mac;
7120	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7121	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7122
7123	mmio_start = pci_resource_start(pdev, 0);
7124	mmio_len = pci_resource_len(pdev, 0);
7125
7126	err = -EIO;
7127	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7128	if (!adapter->hw.hw_addr)
7129		goto err_ioremap;
7130
7131	if ((adapter->flags & FLAG_HAS_FLASH) &&
7132	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7133	    (hw->mac.type < e1000_pch_spt)) {
7134		flash_start = pci_resource_start(pdev, 1);
7135		flash_len = pci_resource_len(pdev, 1);
7136		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7137		if (!adapter->hw.flash_address)
7138			goto err_flashmap;
7139	}
7140
7141	/* Set default EEE advertisement */
7142	if (adapter->flags2 & FLAG2_HAS_EEE)
7143		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7144
7145	/* construct the net_device struct */
7146	netdev->netdev_ops = &e1000e_netdev_ops;
7147	e1000e_set_ethtool_ops(netdev);
7148	netdev->watchdog_timeo = 5 * HZ;
7149	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7150	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7151
7152	netdev->mem_start = mmio_start;
7153	netdev->mem_end = mmio_start + mmio_len;
7154
7155	adapter->bd_number = cards_found++;
7156
7157	e1000e_check_options(adapter);
7158
7159	/* setup adapter struct */
7160	err = e1000_sw_init(adapter);
7161	if (err)
7162		goto err_sw_init;
7163
7164	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7165	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7166	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7167
7168	err = ei->get_variants(adapter);
7169	if (err)
7170		goto err_hw_init;
7171
7172	if ((adapter->flags & FLAG_IS_ICH) &&
7173	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7174	    (hw->mac.type < e1000_pch_spt))
7175		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7176
7177	hw->mac.ops.get_bus_info(&adapter->hw);
7178
7179	adapter->hw.phy.autoneg_wait_to_complete = 0;
7180
7181	/* Copper options */
7182	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7183		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7184		adapter->hw.phy.disable_polarity_correction = 0;
7185		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7186	}
7187
7188	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7189		dev_info(&pdev->dev,
7190			 "PHY reset is blocked due to SOL/IDER session.\n");
7191
7192	/* Set initial default active device features */
7193	netdev->features = (NETIF_F_SG |
7194			    NETIF_F_HW_VLAN_CTAG_RX |
7195			    NETIF_F_HW_VLAN_CTAG_TX |
7196			    NETIF_F_TSO |
7197			    NETIF_F_TSO6 |
7198			    NETIF_F_RXHASH |
7199			    NETIF_F_RXCSUM |
7200			    NETIF_F_HW_CSUM);
7201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7202	/* Set user-changeable features (subset of all device features) */
7203	netdev->hw_features = netdev->features;
7204	netdev->hw_features |= NETIF_F_RXFCS;
7205	netdev->priv_flags |= IFF_SUPP_NOFCS;
7206	netdev->hw_features |= NETIF_F_RXALL;
7207
7208	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7209		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7210
7211	netdev->vlan_features |= (NETIF_F_SG |
7212				  NETIF_F_TSO |
7213				  NETIF_F_TSO6 |
7214				  NETIF_F_HW_CSUM);
7215
7216	netdev->priv_flags |= IFF_UNICAST_FLT;
7217
7218	if (pci_using_dac) {
7219		netdev->features |= NETIF_F_HIGHDMA;
7220		netdev->vlan_features |= NETIF_F_HIGHDMA;
7221	}
7222
7223	/* MTU range: 68 - max_hw_frame_size */
7224	netdev->min_mtu = ETH_MIN_MTU;
7225	netdev->max_mtu = adapter->max_hw_frame_size -
7226			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7227
7228	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7229		adapter->flags |= FLAG_MNG_PT_ENABLED;
7230
7231	/* before reading the NVM, reset the controller to
7232	 * put the device in a known good starting state
7233	 */
7234	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7235
7236	/* systems with ASPM and others may see the checksum fail on the first
7237	 * attempt. Let's give it a few tries
7238	 */
7239	for (i = 0;; i++) {
7240		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7241			break;
7242		if (i == 2) {
7243			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7244			err = -EIO;
7245			goto err_eeprom;
7246		}
7247	}
7248
7249	e1000_eeprom_checks(adapter);
7250
7251	/* copy the MAC address */
7252	if (e1000e_read_mac_addr(&adapter->hw))
7253		dev_err(&pdev->dev,
7254			"NVM Read Error while reading MAC address\n");
7255
7256	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7257
7258	if (!is_valid_ether_addr(netdev->dev_addr)) {
7259		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7260			netdev->dev_addr);
7261		err = -EIO;
7262		goto err_eeprom;
7263	}
7264
7265	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7266	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7267
7268	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7269	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7270	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7271	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7272	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7273
7274	/* Initialize link parameters. User can change them with ethtool */
7275	adapter->hw.mac.autoneg = 1;
7276	adapter->fc_autoneg = true;
7277	adapter->hw.fc.requested_mode = e1000_fc_default;
7278	adapter->hw.fc.current_mode = e1000_fc_default;
7279	adapter->hw.phy.autoneg_advertised = 0x2f;
7280
7281	/* Initial Wake on LAN setting - If APM wake is enabled in
7282	 * the EEPROM, enable the ACPI Magic Packet filter
7283	 */
7284	if (adapter->flags & FLAG_APME_IN_WUC) {
7285		/* APME bit in EEPROM is mapped to WUC.APME */
7286		eeprom_data = er32(WUC);
7287		eeprom_apme_mask = E1000_WUC_APME;
7288		if ((hw->mac.type > e1000_ich10lan) &&
7289		    (eeprom_data & E1000_WUC_PHY_WAKE))
7290			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7291	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7292		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7293		    (adapter->hw.bus.func == 1))
7294			ret_val = e1000_read_nvm(&adapter->hw,
7295					      NVM_INIT_CONTROL3_PORT_B,
7296					      1, &eeprom_data);
7297		else
7298			ret_val = e1000_read_nvm(&adapter->hw,
7299					      NVM_INIT_CONTROL3_PORT_A,
7300					      1, &eeprom_data);
7301	}
7302
7303	/* fetch WoL from EEPROM */
7304	if (ret_val)
7305		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7306	else if (eeprom_data & eeprom_apme_mask)
7307		adapter->eeprom_wol |= E1000_WUFC_MAG;
7308
7309	/* now that we have the eeprom settings, apply the special cases
7310	 * where the eeprom may be wrong or the board simply won't support
7311	 * wake on lan on a particular port
7312	 */
7313	if (!(adapter->flags & FLAG_HAS_WOL))
7314		adapter->eeprom_wol = 0;
7315
7316	/* initialize the wol settings based on the eeprom settings */
7317	adapter->wol = adapter->eeprom_wol;
7318
7319	/* make sure adapter isn't asleep if manageability is enabled */
7320	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7321	    (hw->mac.ops.check_mng_mode(hw)))
7322		device_wakeup_enable(&pdev->dev);
7323
7324	/* save off EEPROM version number */
7325	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7326
7327	if (ret_val) {
7328		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7329		adapter->eeprom_vers = 0;
7330	}
7331
7332	/* init PTP hardware clock */
7333	e1000e_ptp_init(adapter);
7334
7335	/* reset the hardware with the new settings */
7336	e1000e_reset(adapter);
7337
7338	/* If the controller has AMT, do not set DRV_LOAD until the interface
7339	 * is up.  For all other cases, let the f/w know that the h/w is now
7340	 * under the control of the driver.
7341	 */
7342	if (!(adapter->flags & FLAG_HAS_AMT))
7343		e1000e_get_hw_control(adapter);
7344
7345	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
 
 
 
7346	err = register_netdev(netdev);
7347	if (err)
7348		goto err_register;
7349
7350	/* carrier off reporting is important to ethtool even BEFORE open */
7351	netif_carrier_off(netdev);
7352
7353	e1000_print_device_info(adapter);
7354
 
 
7355	if (pci_dev_run_wake(pdev))
7356		pm_runtime_put_noidle(&pdev->dev);
7357
7358	return 0;
7359
7360err_register:
7361	if (!(adapter->flags & FLAG_HAS_AMT))
7362		e1000e_release_hw_control(adapter);
7363err_eeprom:
7364	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7365		e1000_phy_hw_reset(&adapter->hw);
7366err_hw_init:
7367	kfree(adapter->tx_ring);
7368	kfree(adapter->rx_ring);
7369err_sw_init:
7370	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7371		iounmap(adapter->hw.flash_address);
7372	e1000e_reset_interrupt_capability(adapter);
7373err_flashmap:
7374	iounmap(adapter->hw.hw_addr);
7375err_ioremap:
7376	free_netdev(netdev);
7377err_alloc_etherdev:
7378	pci_release_mem_regions(pdev);
7379err_pci_reg:
7380err_dma:
7381	pci_disable_device(pdev);
7382	return err;
7383}
7384
7385/**
7386 * e1000_remove - Device Removal Routine
7387 * @pdev: PCI device information struct
7388 *
7389 * e1000_remove is called by the PCI subsystem to alert the driver
7390 * that it should release a PCI device.  The could be caused by a
7391 * Hot-Plug event, or because the driver is going to be removed from
7392 * memory.
7393 **/
7394static void e1000_remove(struct pci_dev *pdev)
7395{
7396	struct net_device *netdev = pci_get_drvdata(pdev);
7397	struct e1000_adapter *adapter = netdev_priv(netdev);
7398	bool down = test_bit(__E1000_DOWN, &adapter->state);
7399
7400	e1000e_ptp_remove(adapter);
7401
7402	/* The timers may be rescheduled, so explicitly disable them
7403	 * from being rescheduled.
7404	 */
7405	if (!down)
7406		set_bit(__E1000_DOWN, &adapter->state);
7407	del_timer_sync(&adapter->watchdog_timer);
7408	del_timer_sync(&adapter->phy_info_timer);
7409
7410	cancel_work_sync(&adapter->reset_task);
7411	cancel_work_sync(&adapter->watchdog_task);
7412	cancel_work_sync(&adapter->downshift_task);
7413	cancel_work_sync(&adapter->update_phy_task);
7414	cancel_work_sync(&adapter->print_hang_task);
7415
7416	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7417		cancel_work_sync(&adapter->tx_hwtstamp_work);
7418		if (adapter->tx_hwtstamp_skb) {
7419			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7420			adapter->tx_hwtstamp_skb = NULL;
7421		}
7422	}
7423
7424	/* Don't lie to e1000_close() down the road. */
7425	if (!down)
7426		clear_bit(__E1000_DOWN, &adapter->state);
7427	unregister_netdev(netdev);
7428
7429	if (pci_dev_run_wake(pdev))
7430		pm_runtime_get_noresume(&pdev->dev);
7431
7432	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7433	 * would have already happened in close and is redundant.
7434	 */
7435	e1000e_release_hw_control(adapter);
7436
7437	e1000e_reset_interrupt_capability(adapter);
7438	kfree(adapter->tx_ring);
7439	kfree(adapter->rx_ring);
7440
7441	iounmap(adapter->hw.hw_addr);
7442	if ((adapter->hw.flash_address) &&
7443	    (adapter->hw.mac.type < e1000_pch_spt))
7444		iounmap(adapter->hw.flash_address);
7445	pci_release_mem_regions(pdev);
7446
7447	free_netdev(netdev);
7448
7449	/* AER disable */
7450	pci_disable_pcie_error_reporting(pdev);
7451
7452	pci_disable_device(pdev);
7453}
7454
7455/* PCI Error Recovery (ERS) */
7456static const struct pci_error_handlers e1000_err_handler = {
7457	.error_detected = e1000_io_error_detected,
7458	.slot_reset = e1000_io_slot_reset,
7459	.resume = e1000_io_resume,
7460};
7461
7462static const struct pci_device_id e1000_pci_tbl[] = {
7463	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7464	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7465	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7466	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7467	  board_82571 },
7468	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7469	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7470	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7471	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7472	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7473
7474	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7475	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7476	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7477	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7478
7479	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7480	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7481	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7482
7483	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7484	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7485	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7486
7487	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7488	  board_80003es2lan },
7489	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7490	  board_80003es2lan },
7491	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7492	  board_80003es2lan },
7493	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7494	  board_80003es2lan },
7495
7496	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7497	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7498	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7499	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7500	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7501	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7502	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7503	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7504
7505	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7506	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7507	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7508	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7509	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7510	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7511	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7512	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7513	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7514
7515	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7516	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7517	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7518
7519	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7520	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7521	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7522
7523	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7524	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7525	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7526	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7527
7528	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7529	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7530
7531	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7532	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7533	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7534	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7535	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7536	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7537	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7538	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7539	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7540	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7541	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7542	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7543	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7544	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7545	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7546	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7547	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7548	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7549	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7550	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7551	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7552	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7553	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7554	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7555	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7556
7557	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7558};
7559MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7560
7561static const struct dev_pm_ops e1000_pm_ops = {
7562#ifdef CONFIG_PM_SLEEP
 
7563	.suspend	= e1000e_pm_suspend,
7564	.resume		= e1000e_pm_resume,
7565	.freeze		= e1000e_pm_freeze,
7566	.thaw		= e1000e_pm_thaw,
7567	.poweroff	= e1000e_pm_suspend,
7568	.restore	= e1000e_pm_resume,
7569#endif
7570	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7571			   e1000e_pm_runtime_idle)
7572};
7573
7574/* PCI Device API Driver */
7575static struct pci_driver e1000_driver = {
7576	.name     = e1000e_driver_name,
7577	.id_table = e1000_pci_tbl,
7578	.probe    = e1000_probe,
7579	.remove   = e1000_remove,
7580	.driver   = {
7581		.pm = &e1000_pm_ops,
7582	},
7583	.shutdown = e1000_shutdown,
7584	.err_handler = &e1000_err_handler
7585};
7586
7587/**
7588 * e1000_init_module - Driver Registration Routine
7589 *
7590 * e1000_init_module is the first routine called when the driver is
7591 * loaded. All it does is register with the PCI subsystem.
7592 **/
7593static int __init e1000_init_module(void)
7594{
7595	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7596		e1000e_driver_version);
7597	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7598
7599	return pci_register_driver(&e1000_driver);
7600}
7601module_init(e1000_init_module);
7602
7603/**
7604 * e1000_exit_module - Driver Exit Cleanup Routine
7605 *
7606 * e1000_exit_module is called just before the driver is removed
7607 * from memory.
7608 **/
7609static void __exit e1000_exit_module(void)
7610{
7611	pci_unregister_driver(&e1000_driver);
7612}
7613module_exit(e1000_exit_module);
7614
7615MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7616MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7617MODULE_LICENSE("GPL");
7618MODULE_VERSION(DRV_VERSION);
7619
7620/* netdev.c */