Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
7 * of the device.
8 *
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
13 *
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
16 *
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
20 *
21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22 */
23
24#include "bcache.h"
25#include "btree.h"
26#include "debug.h"
27#include "extents.h"
28
29#include <linux/slab.h>
30#include <linux/bitops.h>
31#include <linux/hash.h>
32#include <linux/kthread.h>
33#include <linux/prefetch.h>
34#include <linux/random.h>
35#include <linux/rcupdate.h>
36#include <linux/sched/clock.h>
37#include <linux/rculist.h>
38#include <linux/delay.h>
39#include <trace/events/bcache.h>
40
41/*
42 * Todo:
43 * register_bcache: Return errors out to userspace correctly
44 *
45 * Writeback: don't undirty key until after a cache flush
46 *
47 * Create an iterator for key pointers
48 *
49 * On btree write error, mark bucket such that it won't be freed from the cache
50 *
51 * Journalling:
52 * Check for bad keys in replay
53 * Propagate barriers
54 * Refcount journal entries in journal_replay
55 *
56 * Garbage collection:
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
59 *
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
63 *
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
66 * from being starved
67 *
68 * Add a tracepoint or somesuch to watch for writeback starvation
69 *
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
72 * obvious.
73 *
74 * Plugging?
75 *
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
78 *
79 * Superblock needs to be fleshed out for multiple cache devices
80 *
81 * Add a sysfs tunable for the number of writeback IOs in flight
82 *
83 * Add a sysfs tunable for the number of open data buckets
84 *
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
87 *
88 * Test module load/unload
89 */
90
91#define MAX_NEED_GC 64
92#define MAX_SAVE_PRIO 72
93#define MAX_GC_TIMES 100
94#define MIN_GC_NODES 100
95#define GC_SLEEP_MS 100
96
97#define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
98
99#define PTR_HASH(c, k) \
100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101
102static struct workqueue_struct *btree_io_wq;
103
104#define insert_lock(s, b) ((b)->level <= (s)->lock)
105
106
107static inline struct bset *write_block(struct btree *b)
108{
109 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache);
110}
111
112static void bch_btree_init_next(struct btree *b)
113{
114 /* If not a leaf node, always sort */
115 if (b->level && b->keys.nsets)
116 bch_btree_sort(&b->keys, &b->c->sort);
117 else
118 bch_btree_sort_lazy(&b->keys, &b->c->sort);
119
120 if (b->written < btree_blocks(b))
121 bch_bset_init_next(&b->keys, write_block(b),
122 bset_magic(&b->c->cache->sb));
123
124}
125
126/* Btree key manipulation */
127
128void bkey_put(struct cache_set *c, struct bkey *k)
129{
130 unsigned int i;
131
132 for (i = 0; i < KEY_PTRS(k); i++)
133 if (ptr_available(c, k, i))
134 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
135}
136
137/* Btree IO */
138
139static uint64_t btree_csum_set(struct btree *b, struct bset *i)
140{
141 uint64_t crc = b->key.ptr[0];
142 void *data = (void *) i + 8, *end = bset_bkey_last(i);
143
144 crc = crc64_be(crc, data, end - data);
145 return crc ^ 0xffffffffffffffffULL;
146}
147
148void bch_btree_node_read_done(struct btree *b)
149{
150 const char *err = "bad btree header";
151 struct bset *i = btree_bset_first(b);
152 struct btree_iter *iter;
153
154 /*
155 * c->fill_iter can allocate an iterator with more memory space
156 * than static MAX_BSETS.
157 * See the comment arount cache_set->fill_iter.
158 */
159 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
160 iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size;
161 iter->used = 0;
162
163#ifdef CONFIG_BCACHE_DEBUG
164 iter->b = &b->keys;
165#endif
166
167 if (!i->seq)
168 goto err;
169
170 for (;
171 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
172 i = write_block(b)) {
173 err = "unsupported bset version";
174 if (i->version > BCACHE_BSET_VERSION)
175 goto err;
176
177 err = "bad btree header";
178 if (b->written + set_blocks(i, block_bytes(b->c->cache)) >
179 btree_blocks(b))
180 goto err;
181
182 err = "bad magic";
183 if (i->magic != bset_magic(&b->c->cache->sb))
184 goto err;
185
186 err = "bad checksum";
187 switch (i->version) {
188 case 0:
189 if (i->csum != csum_set(i))
190 goto err;
191 break;
192 case BCACHE_BSET_VERSION:
193 if (i->csum != btree_csum_set(b, i))
194 goto err;
195 break;
196 }
197
198 err = "empty set";
199 if (i != b->keys.set[0].data && !i->keys)
200 goto err;
201
202 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
203
204 b->written += set_blocks(i, block_bytes(b->c->cache));
205 }
206
207 err = "corrupted btree";
208 for (i = write_block(b);
209 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
210 i = ((void *) i) + block_bytes(b->c->cache))
211 if (i->seq == b->keys.set[0].data->seq)
212 goto err;
213
214 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
215
216 i = b->keys.set[0].data;
217 err = "short btree key";
218 if (b->keys.set[0].size &&
219 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
220 goto err;
221
222 if (b->written < btree_blocks(b))
223 bch_bset_init_next(&b->keys, write_block(b),
224 bset_magic(&b->c->cache->sb));
225out:
226 mempool_free(iter, &b->c->fill_iter);
227 return;
228err:
229 set_btree_node_io_error(b);
230 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
231 err, PTR_BUCKET_NR(b->c, &b->key, 0),
232 bset_block_offset(b, i), i->keys);
233 goto out;
234}
235
236static void btree_node_read_endio(struct bio *bio)
237{
238 struct closure *cl = bio->bi_private;
239
240 closure_put(cl);
241}
242
243static void bch_btree_node_read(struct btree *b)
244{
245 uint64_t start_time = local_clock();
246 struct closure cl;
247 struct bio *bio;
248
249 trace_bcache_btree_read(b);
250
251 closure_init_stack(&cl);
252
253 bio = bch_bbio_alloc(b->c);
254 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
255 bio->bi_end_io = btree_node_read_endio;
256 bio->bi_private = &cl;
257 bio->bi_opf = REQ_OP_READ | REQ_META;
258
259 bch_bio_map(bio, b->keys.set[0].data);
260
261 bch_submit_bbio(bio, b->c, &b->key, 0);
262 closure_sync(&cl);
263
264 if (bio->bi_status)
265 set_btree_node_io_error(b);
266
267 bch_bbio_free(bio, b->c);
268
269 if (btree_node_io_error(b))
270 goto err;
271
272 bch_btree_node_read_done(b);
273 bch_time_stats_update(&b->c->btree_read_time, start_time);
274
275 return;
276err:
277 bch_cache_set_error(b->c, "io error reading bucket %zu",
278 PTR_BUCKET_NR(b->c, &b->key, 0));
279}
280
281static void btree_complete_write(struct btree *b, struct btree_write *w)
282{
283 if (w->prio_blocked &&
284 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
285 wake_up_allocators(b->c);
286
287 if (w->journal) {
288 atomic_dec_bug(w->journal);
289 __closure_wake_up(&b->c->journal.wait);
290 }
291
292 w->prio_blocked = 0;
293 w->journal = NULL;
294}
295
296static CLOSURE_CALLBACK(btree_node_write_unlock)
297{
298 closure_type(b, struct btree, io);
299
300 up(&b->io_mutex);
301}
302
303static CLOSURE_CALLBACK(__btree_node_write_done)
304{
305 closure_type(b, struct btree, io);
306 struct btree_write *w = btree_prev_write(b);
307
308 bch_bbio_free(b->bio, b->c);
309 b->bio = NULL;
310 btree_complete_write(b, w);
311
312 if (btree_node_dirty(b))
313 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
314
315 closure_return_with_destructor(cl, btree_node_write_unlock);
316}
317
318static CLOSURE_CALLBACK(btree_node_write_done)
319{
320 closure_type(b, struct btree, io);
321
322 bio_free_pages(b->bio);
323 __btree_node_write_done(&cl->work);
324}
325
326static void btree_node_write_endio(struct bio *bio)
327{
328 struct closure *cl = bio->bi_private;
329 struct btree *b = container_of(cl, struct btree, io);
330
331 if (bio->bi_status)
332 set_btree_node_io_error(b);
333
334 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
335 closure_put(cl);
336}
337
338static void do_btree_node_write(struct btree *b)
339{
340 struct closure *cl = &b->io;
341 struct bset *i = btree_bset_last(b);
342 BKEY_PADDED(key) k;
343
344 i->version = BCACHE_BSET_VERSION;
345 i->csum = btree_csum_set(b, i);
346
347 BUG_ON(b->bio);
348 b->bio = bch_bbio_alloc(b->c);
349
350 b->bio->bi_end_io = btree_node_write_endio;
351 b->bio->bi_private = cl;
352 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c->cache));
353 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
354 bch_bio_map(b->bio, i);
355
356 /*
357 * If we're appending to a leaf node, we don't technically need FUA -
358 * this write just needs to be persisted before the next journal write,
359 * which will be marked FLUSH|FUA.
360 *
361 * Similarly if we're writing a new btree root - the pointer is going to
362 * be in the next journal entry.
363 *
364 * But if we're writing a new btree node (that isn't a root) or
365 * appending to a non leaf btree node, we need either FUA or a flush
366 * when we write the parent with the new pointer. FUA is cheaper than a
367 * flush, and writes appending to leaf nodes aren't blocking anything so
368 * just make all btree node writes FUA to keep things sane.
369 */
370
371 bkey_copy(&k.key, &b->key);
372 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
373 bset_sector_offset(&b->keys, i));
374
375 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
376 struct bio_vec *bv;
377 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
378 struct bvec_iter_all iter_all;
379
380 bio_for_each_segment_all(bv, b->bio, iter_all) {
381 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
382 addr += PAGE_SIZE;
383 }
384
385 bch_submit_bbio(b->bio, b->c, &k.key, 0);
386
387 continue_at(cl, btree_node_write_done, NULL);
388 } else {
389 /*
390 * No problem for multipage bvec since the bio is
391 * just allocated
392 */
393 b->bio->bi_vcnt = 0;
394 bch_bio_map(b->bio, i);
395
396 bch_submit_bbio(b->bio, b->c, &k.key, 0);
397
398 closure_sync(cl);
399 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
400 }
401}
402
403void __bch_btree_node_write(struct btree *b, struct closure *parent)
404{
405 struct bset *i = btree_bset_last(b);
406
407 lockdep_assert_held(&b->write_lock);
408
409 trace_bcache_btree_write(b);
410
411 BUG_ON(current->bio_list);
412 BUG_ON(b->written >= btree_blocks(b));
413 BUG_ON(b->written && !i->keys);
414 BUG_ON(btree_bset_first(b)->seq != i->seq);
415 bch_check_keys(&b->keys, "writing");
416
417 cancel_delayed_work(&b->work);
418
419 /* If caller isn't waiting for write, parent refcount is cache set */
420 down(&b->io_mutex);
421 closure_init(&b->io, parent ?: &b->c->cl);
422
423 clear_bit(BTREE_NODE_dirty, &b->flags);
424 change_bit(BTREE_NODE_write_idx, &b->flags);
425
426 do_btree_node_write(b);
427
428 atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size,
429 &b->c->cache->btree_sectors_written);
430
431 b->written += set_blocks(i, block_bytes(b->c->cache));
432}
433
434void bch_btree_node_write(struct btree *b, struct closure *parent)
435{
436 unsigned int nsets = b->keys.nsets;
437
438 lockdep_assert_held(&b->lock);
439
440 __bch_btree_node_write(b, parent);
441
442 /*
443 * do verify if there was more than one set initially (i.e. we did a
444 * sort) and we sorted down to a single set:
445 */
446 if (nsets && !b->keys.nsets)
447 bch_btree_verify(b);
448
449 bch_btree_init_next(b);
450}
451
452static void bch_btree_node_write_sync(struct btree *b)
453{
454 struct closure cl;
455
456 closure_init_stack(&cl);
457
458 mutex_lock(&b->write_lock);
459 bch_btree_node_write(b, &cl);
460 mutex_unlock(&b->write_lock);
461
462 closure_sync(&cl);
463}
464
465static void btree_node_write_work(struct work_struct *w)
466{
467 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
468
469 mutex_lock(&b->write_lock);
470 if (btree_node_dirty(b))
471 __bch_btree_node_write(b, NULL);
472 mutex_unlock(&b->write_lock);
473}
474
475static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
476{
477 struct bset *i = btree_bset_last(b);
478 struct btree_write *w = btree_current_write(b);
479
480 lockdep_assert_held(&b->write_lock);
481
482 BUG_ON(!b->written);
483 BUG_ON(!i->keys);
484
485 if (!btree_node_dirty(b))
486 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
487
488 set_btree_node_dirty(b);
489
490 /*
491 * w->journal is always the oldest journal pin of all bkeys
492 * in the leaf node, to make sure the oldest jset seq won't
493 * be increased before this btree node is flushed.
494 */
495 if (journal_ref) {
496 if (w->journal &&
497 journal_pin_cmp(b->c, w->journal, journal_ref)) {
498 atomic_dec_bug(w->journal);
499 w->journal = NULL;
500 }
501
502 if (!w->journal) {
503 w->journal = journal_ref;
504 atomic_inc(w->journal);
505 }
506 }
507
508 /* Force write if set is too big */
509 if (set_bytes(i) > PAGE_SIZE - 48 &&
510 !current->bio_list)
511 bch_btree_node_write(b, NULL);
512}
513
514/*
515 * Btree in memory cache - allocation/freeing
516 * mca -> memory cache
517 */
518
519#define mca_reserve(c) (((!IS_ERR_OR_NULL(c->root) && c->root->level) \
520 ? c->root->level : 1) * 8 + 16)
521#define mca_can_free(c) \
522 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
523
524static void mca_data_free(struct btree *b)
525{
526 BUG_ON(b->io_mutex.count != 1);
527
528 bch_btree_keys_free(&b->keys);
529
530 b->c->btree_cache_used--;
531 list_move(&b->list, &b->c->btree_cache_freed);
532}
533
534static void mca_bucket_free(struct btree *b)
535{
536 BUG_ON(btree_node_dirty(b));
537
538 b->key.ptr[0] = 0;
539 hlist_del_init_rcu(&b->hash);
540 list_move(&b->list, &b->c->btree_cache_freeable);
541}
542
543static unsigned int btree_order(struct bkey *k)
544{
545 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
546}
547
548static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
549{
550 if (!bch_btree_keys_alloc(&b->keys,
551 max_t(unsigned int,
552 ilog2(b->c->btree_pages),
553 btree_order(k)),
554 gfp)) {
555 b->c->btree_cache_used++;
556 list_move(&b->list, &b->c->btree_cache);
557 } else {
558 list_move(&b->list, &b->c->btree_cache_freed);
559 }
560}
561
562#define cmp_int(l, r) ((l > r) - (l < r))
563
564#ifdef CONFIG_PROVE_LOCKING
565static int btree_lock_cmp_fn(const struct lockdep_map *_a,
566 const struct lockdep_map *_b)
567{
568 const struct btree *a = container_of(_a, struct btree, lock.dep_map);
569 const struct btree *b = container_of(_b, struct btree, lock.dep_map);
570
571 return -cmp_int(a->level, b->level) ?: bkey_cmp(&a->key, &b->key);
572}
573
574static void btree_lock_print_fn(const struct lockdep_map *map)
575{
576 const struct btree *b = container_of(map, struct btree, lock.dep_map);
577
578 printk(KERN_CONT " l=%u %llu:%llu", b->level,
579 KEY_INODE(&b->key), KEY_OFFSET(&b->key));
580}
581#endif
582
583static struct btree *mca_bucket_alloc(struct cache_set *c,
584 struct bkey *k, gfp_t gfp)
585{
586 /*
587 * kzalloc() is necessary here for initialization,
588 * see code comments in bch_btree_keys_init().
589 */
590 struct btree *b = kzalloc(sizeof(struct btree), gfp);
591
592 if (!b)
593 return NULL;
594
595 init_rwsem(&b->lock);
596 lock_set_cmp_fn(&b->lock, btree_lock_cmp_fn, btree_lock_print_fn);
597 mutex_init(&b->write_lock);
598 lockdep_set_novalidate_class(&b->write_lock);
599 INIT_LIST_HEAD(&b->list);
600 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
601 b->c = c;
602 sema_init(&b->io_mutex, 1);
603
604 mca_data_alloc(b, k, gfp);
605 return b;
606}
607
608static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
609{
610 struct closure cl;
611
612 closure_init_stack(&cl);
613 lockdep_assert_held(&b->c->bucket_lock);
614
615 if (!down_write_trylock(&b->lock))
616 return -ENOMEM;
617
618 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
619
620 if (b->keys.page_order < min_order)
621 goto out_unlock;
622
623 if (!flush) {
624 if (btree_node_dirty(b))
625 goto out_unlock;
626
627 if (down_trylock(&b->io_mutex))
628 goto out_unlock;
629 up(&b->io_mutex);
630 }
631
632retry:
633 /*
634 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
635 * __bch_btree_node_write(). To avoid an extra flush, acquire
636 * b->write_lock before checking BTREE_NODE_dirty bit.
637 */
638 mutex_lock(&b->write_lock);
639 /*
640 * If this btree node is selected in btree_flush_write() by journal
641 * code, delay and retry until the node is flushed by journal code
642 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
643 */
644 if (btree_node_journal_flush(b)) {
645 pr_debug("bnode %p is flushing by journal, retry\n", b);
646 mutex_unlock(&b->write_lock);
647 udelay(1);
648 goto retry;
649 }
650
651 if (btree_node_dirty(b))
652 __bch_btree_node_write(b, &cl);
653 mutex_unlock(&b->write_lock);
654
655 closure_sync(&cl);
656
657 /* wait for any in flight btree write */
658 down(&b->io_mutex);
659 up(&b->io_mutex);
660
661 return 0;
662out_unlock:
663 rw_unlock(true, b);
664 return -ENOMEM;
665}
666
667static unsigned long bch_mca_scan(struct shrinker *shrink,
668 struct shrink_control *sc)
669{
670 struct cache_set *c = shrink->private_data;
671 struct btree *b, *t;
672 unsigned long i, nr = sc->nr_to_scan;
673 unsigned long freed = 0;
674 unsigned int btree_cache_used;
675
676 if (c->shrinker_disabled)
677 return SHRINK_STOP;
678
679 if (c->btree_cache_alloc_lock)
680 return SHRINK_STOP;
681
682 /* Return -1 if we can't do anything right now */
683 if (sc->gfp_mask & __GFP_IO)
684 mutex_lock(&c->bucket_lock);
685 else if (!mutex_trylock(&c->bucket_lock))
686 return -1;
687
688 /*
689 * It's _really_ critical that we don't free too many btree nodes - we
690 * have to always leave ourselves a reserve. The reserve is how we
691 * guarantee that allocating memory for a new btree node can always
692 * succeed, so that inserting keys into the btree can always succeed and
693 * IO can always make forward progress:
694 */
695 nr /= c->btree_pages;
696 if (nr == 0)
697 nr = 1;
698 nr = min_t(unsigned long, nr, mca_can_free(c));
699
700 i = 0;
701 btree_cache_used = c->btree_cache_used;
702 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
703 if (nr <= 0)
704 goto out;
705
706 if (!mca_reap(b, 0, false)) {
707 mca_data_free(b);
708 rw_unlock(true, b);
709 freed++;
710 }
711 nr--;
712 i++;
713 }
714
715 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
716 if (nr <= 0 || i >= btree_cache_used)
717 goto out;
718
719 if (!mca_reap(b, 0, false)) {
720 mca_bucket_free(b);
721 mca_data_free(b);
722 rw_unlock(true, b);
723 freed++;
724 }
725
726 nr--;
727 i++;
728 }
729out:
730 mutex_unlock(&c->bucket_lock);
731 return freed * c->btree_pages;
732}
733
734static unsigned long bch_mca_count(struct shrinker *shrink,
735 struct shrink_control *sc)
736{
737 struct cache_set *c = shrink->private_data;
738
739 if (c->shrinker_disabled)
740 return 0;
741
742 if (c->btree_cache_alloc_lock)
743 return 0;
744
745 return mca_can_free(c) * c->btree_pages;
746}
747
748void bch_btree_cache_free(struct cache_set *c)
749{
750 struct btree *b;
751 struct closure cl;
752
753 closure_init_stack(&cl);
754
755 if (c->shrink)
756 shrinker_free(c->shrink);
757
758 mutex_lock(&c->bucket_lock);
759
760#ifdef CONFIG_BCACHE_DEBUG
761 if (c->verify_data)
762 list_move(&c->verify_data->list, &c->btree_cache);
763
764 free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb)));
765#endif
766
767 list_splice(&c->btree_cache_freeable,
768 &c->btree_cache);
769
770 while (!list_empty(&c->btree_cache)) {
771 b = list_first_entry(&c->btree_cache, struct btree, list);
772
773 /*
774 * This function is called by cache_set_free(), no I/O
775 * request on cache now, it is unnecessary to acquire
776 * b->write_lock before clearing BTREE_NODE_dirty anymore.
777 */
778 if (btree_node_dirty(b)) {
779 btree_complete_write(b, btree_current_write(b));
780 clear_bit(BTREE_NODE_dirty, &b->flags);
781 }
782 mca_data_free(b);
783 }
784
785 while (!list_empty(&c->btree_cache_freed)) {
786 b = list_first_entry(&c->btree_cache_freed,
787 struct btree, list);
788 list_del(&b->list);
789 cancel_delayed_work_sync(&b->work);
790 kfree(b);
791 }
792
793 mutex_unlock(&c->bucket_lock);
794}
795
796int bch_btree_cache_alloc(struct cache_set *c)
797{
798 unsigned int i;
799
800 for (i = 0; i < mca_reserve(c); i++)
801 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
802 return -ENOMEM;
803
804 list_splice_init(&c->btree_cache,
805 &c->btree_cache_freeable);
806
807#ifdef CONFIG_BCACHE_DEBUG
808 mutex_init(&c->verify_lock);
809
810 c->verify_ondisk = (void *)
811 __get_free_pages(GFP_KERNEL|__GFP_COMP,
812 ilog2(meta_bucket_pages(&c->cache->sb)));
813 if (!c->verify_ondisk) {
814 /*
815 * Don't worry about the mca_rereserve buckets
816 * allocated in previous for-loop, they will be
817 * handled properly in bch_cache_set_unregister().
818 */
819 return -ENOMEM;
820 }
821
822 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
823
824 if (c->verify_data &&
825 c->verify_data->keys.set->data)
826 list_del_init(&c->verify_data->list);
827 else
828 c->verify_data = NULL;
829#endif
830
831 c->shrink = shrinker_alloc(0, "md-bcache:%pU", c->set_uuid);
832 if (!c->shrink) {
833 pr_warn("bcache: %s: could not allocate shrinker\n", __func__);
834 return 0;
835 }
836
837 c->shrink->count_objects = bch_mca_count;
838 c->shrink->scan_objects = bch_mca_scan;
839 c->shrink->seeks = 4;
840 c->shrink->batch = c->btree_pages * 2;
841 c->shrink->private_data = c;
842
843 shrinker_register(c->shrink);
844
845 return 0;
846}
847
848/* Btree in memory cache - hash table */
849
850static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
851{
852 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
853}
854
855static struct btree *mca_find(struct cache_set *c, struct bkey *k)
856{
857 struct btree *b;
858
859 rcu_read_lock();
860 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
861 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
862 goto out;
863 b = NULL;
864out:
865 rcu_read_unlock();
866 return b;
867}
868
869static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
870{
871 spin_lock(&c->btree_cannibalize_lock);
872 if (likely(c->btree_cache_alloc_lock == NULL)) {
873 c->btree_cache_alloc_lock = current;
874 } else if (c->btree_cache_alloc_lock != current) {
875 if (op)
876 prepare_to_wait(&c->btree_cache_wait, &op->wait,
877 TASK_UNINTERRUPTIBLE);
878 spin_unlock(&c->btree_cannibalize_lock);
879 return -EINTR;
880 }
881 spin_unlock(&c->btree_cannibalize_lock);
882
883 return 0;
884}
885
886static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
887 struct bkey *k)
888{
889 struct btree *b;
890
891 trace_bcache_btree_cache_cannibalize(c);
892
893 if (mca_cannibalize_lock(c, op))
894 return ERR_PTR(-EINTR);
895
896 list_for_each_entry_reverse(b, &c->btree_cache, list)
897 if (!mca_reap(b, btree_order(k), false))
898 return b;
899
900 list_for_each_entry_reverse(b, &c->btree_cache, list)
901 if (!mca_reap(b, btree_order(k), true))
902 return b;
903
904 WARN(1, "btree cache cannibalize failed\n");
905 return ERR_PTR(-ENOMEM);
906}
907
908/*
909 * We can only have one thread cannibalizing other cached btree nodes at a time,
910 * or we'll deadlock. We use an open coded mutex to ensure that, which a
911 * cannibalize_bucket() will take. This means every time we unlock the root of
912 * the btree, we need to release this lock if we have it held.
913 */
914void bch_cannibalize_unlock(struct cache_set *c)
915{
916 spin_lock(&c->btree_cannibalize_lock);
917 if (c->btree_cache_alloc_lock == current) {
918 c->btree_cache_alloc_lock = NULL;
919 wake_up(&c->btree_cache_wait);
920 }
921 spin_unlock(&c->btree_cannibalize_lock);
922}
923
924static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
925 struct bkey *k, int level)
926{
927 struct btree *b;
928
929 BUG_ON(current->bio_list);
930
931 lockdep_assert_held(&c->bucket_lock);
932
933 if (mca_find(c, k))
934 return NULL;
935
936 /* btree_free() doesn't free memory; it sticks the node on the end of
937 * the list. Check if there's any freed nodes there:
938 */
939 list_for_each_entry(b, &c->btree_cache_freeable, list)
940 if (!mca_reap(b, btree_order(k), false))
941 goto out;
942
943 /* We never free struct btree itself, just the memory that holds the on
944 * disk node. Check the freed list before allocating a new one:
945 */
946 list_for_each_entry(b, &c->btree_cache_freed, list)
947 if (!mca_reap(b, 0, false)) {
948 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
949 if (!b->keys.set[0].data)
950 goto err;
951 else
952 goto out;
953 }
954
955 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
956 if (!b)
957 goto err;
958
959 BUG_ON(!down_write_trylock(&b->lock));
960 if (!b->keys.set->data)
961 goto err;
962out:
963 BUG_ON(b->io_mutex.count != 1);
964
965 bkey_copy(&b->key, k);
966 list_move(&b->list, &c->btree_cache);
967 hlist_del_init_rcu(&b->hash);
968 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
969
970 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
971 b->parent = (void *) ~0UL;
972 b->flags = 0;
973 b->written = 0;
974 b->level = level;
975
976 if (!b->level)
977 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
978 &b->c->expensive_debug_checks);
979 else
980 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
981 &b->c->expensive_debug_checks);
982
983 return b;
984err:
985 if (b)
986 rw_unlock(true, b);
987
988 b = mca_cannibalize(c, op, k);
989 if (!IS_ERR(b))
990 goto out;
991
992 return b;
993}
994
995/*
996 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
997 * in from disk if necessary.
998 *
999 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN.
1000 *
1001 * The btree node will have either a read or a write lock held, depending on
1002 * level and op->lock.
1003 *
1004 * Note: Only error code or btree pointer will be returned, it is unncessary
1005 * for callers to check NULL pointer.
1006 */
1007struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
1008 struct bkey *k, int level, bool write,
1009 struct btree *parent)
1010{
1011 int i = 0;
1012 struct btree *b;
1013
1014 BUG_ON(level < 0);
1015retry:
1016 b = mca_find(c, k);
1017
1018 if (!b) {
1019 if (current->bio_list)
1020 return ERR_PTR(-EAGAIN);
1021
1022 mutex_lock(&c->bucket_lock);
1023 b = mca_alloc(c, op, k, level);
1024 mutex_unlock(&c->bucket_lock);
1025
1026 if (!b)
1027 goto retry;
1028 if (IS_ERR(b))
1029 return b;
1030
1031 bch_btree_node_read(b);
1032
1033 if (!write)
1034 downgrade_write(&b->lock);
1035 } else {
1036 rw_lock(write, b, level);
1037 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1038 rw_unlock(write, b);
1039 goto retry;
1040 }
1041 BUG_ON(b->level != level);
1042 }
1043
1044 if (btree_node_io_error(b)) {
1045 rw_unlock(write, b);
1046 return ERR_PTR(-EIO);
1047 }
1048
1049 BUG_ON(!b->written);
1050
1051 b->parent = parent;
1052
1053 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1054 prefetch(b->keys.set[i].tree);
1055 prefetch(b->keys.set[i].data);
1056 }
1057
1058 for (; i <= b->keys.nsets; i++)
1059 prefetch(b->keys.set[i].data);
1060
1061 return b;
1062}
1063
1064static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1065{
1066 struct btree *b;
1067
1068 mutex_lock(&parent->c->bucket_lock);
1069 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1070 mutex_unlock(&parent->c->bucket_lock);
1071
1072 if (!IS_ERR_OR_NULL(b)) {
1073 b->parent = parent;
1074 bch_btree_node_read(b);
1075 rw_unlock(true, b);
1076 }
1077}
1078
1079/* Btree alloc */
1080
1081static void btree_node_free(struct btree *b)
1082{
1083 trace_bcache_btree_node_free(b);
1084
1085 BUG_ON(b == b->c->root);
1086
1087retry:
1088 mutex_lock(&b->write_lock);
1089 /*
1090 * If the btree node is selected and flushing in btree_flush_write(),
1091 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1092 * then it is safe to free the btree node here. Otherwise this btree
1093 * node will be in race condition.
1094 */
1095 if (btree_node_journal_flush(b)) {
1096 mutex_unlock(&b->write_lock);
1097 pr_debug("bnode %p journal_flush set, retry\n", b);
1098 udelay(1);
1099 goto retry;
1100 }
1101
1102 if (btree_node_dirty(b)) {
1103 btree_complete_write(b, btree_current_write(b));
1104 clear_bit(BTREE_NODE_dirty, &b->flags);
1105 }
1106
1107 mutex_unlock(&b->write_lock);
1108
1109 cancel_delayed_work(&b->work);
1110
1111 mutex_lock(&b->c->bucket_lock);
1112 bch_bucket_free(b->c, &b->key);
1113 mca_bucket_free(b);
1114 mutex_unlock(&b->c->bucket_lock);
1115}
1116
1117/*
1118 * Only error code or btree pointer will be returned, it is unncessary for
1119 * callers to check NULL pointer.
1120 */
1121struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1122 int level, bool wait,
1123 struct btree *parent)
1124{
1125 BKEY_PADDED(key) k;
1126 struct btree *b;
1127
1128 mutex_lock(&c->bucket_lock);
1129retry:
1130 /* return ERR_PTR(-EAGAIN) when it fails */
1131 b = ERR_PTR(-EAGAIN);
1132 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait))
1133 goto err;
1134
1135 bkey_put(c, &k.key);
1136 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1137
1138 b = mca_alloc(c, op, &k.key, level);
1139 if (IS_ERR(b))
1140 goto err_free;
1141
1142 if (!b) {
1143 cache_bug(c,
1144 "Tried to allocate bucket that was in btree cache");
1145 goto retry;
1146 }
1147
1148 b->parent = parent;
1149 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb));
1150
1151 mutex_unlock(&c->bucket_lock);
1152
1153 trace_bcache_btree_node_alloc(b);
1154 return b;
1155err_free:
1156 bch_bucket_free(c, &k.key);
1157err:
1158 mutex_unlock(&c->bucket_lock);
1159
1160 trace_bcache_btree_node_alloc_fail(c);
1161 return b;
1162}
1163
1164static struct btree *bch_btree_node_alloc(struct cache_set *c,
1165 struct btree_op *op, int level,
1166 struct btree *parent)
1167{
1168 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1169}
1170
1171static struct btree *btree_node_alloc_replacement(struct btree *b,
1172 struct btree_op *op)
1173{
1174 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1175
1176 if (!IS_ERR(n)) {
1177 mutex_lock(&n->write_lock);
1178 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1179 bkey_copy_key(&n->key, &b->key);
1180 mutex_unlock(&n->write_lock);
1181 }
1182
1183 return n;
1184}
1185
1186static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1187{
1188 unsigned int i;
1189
1190 mutex_lock(&b->c->bucket_lock);
1191
1192 atomic_inc(&b->c->prio_blocked);
1193
1194 bkey_copy(k, &b->key);
1195 bkey_copy_key(k, &ZERO_KEY);
1196
1197 for (i = 0; i < KEY_PTRS(k); i++)
1198 SET_PTR_GEN(k, i,
1199 bch_inc_gen(b->c->cache,
1200 PTR_BUCKET(b->c, &b->key, i)));
1201
1202 mutex_unlock(&b->c->bucket_lock);
1203}
1204
1205static int btree_check_reserve(struct btree *b, struct btree_op *op)
1206{
1207 struct cache_set *c = b->c;
1208 struct cache *ca = c->cache;
1209 unsigned int reserve = (c->root->level - b->level) * 2 + 1;
1210
1211 mutex_lock(&c->bucket_lock);
1212
1213 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1214 if (op)
1215 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1216 TASK_UNINTERRUPTIBLE);
1217 mutex_unlock(&c->bucket_lock);
1218 return -EINTR;
1219 }
1220
1221 mutex_unlock(&c->bucket_lock);
1222
1223 return mca_cannibalize_lock(b->c, op);
1224}
1225
1226/* Garbage collection */
1227
1228static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1229 struct bkey *k)
1230{
1231 uint8_t stale = 0;
1232 unsigned int i;
1233 struct bucket *g;
1234
1235 /*
1236 * ptr_invalid() can't return true for the keys that mark btree nodes as
1237 * freed, but since ptr_bad() returns true we'll never actually use them
1238 * for anything and thus we don't want mark their pointers here
1239 */
1240 if (!bkey_cmp(k, &ZERO_KEY))
1241 return stale;
1242
1243 for (i = 0; i < KEY_PTRS(k); i++) {
1244 if (!ptr_available(c, k, i))
1245 continue;
1246
1247 g = PTR_BUCKET(c, k, i);
1248
1249 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1250 g->last_gc = PTR_GEN(k, i);
1251
1252 if (ptr_stale(c, k, i)) {
1253 stale = max(stale, ptr_stale(c, k, i));
1254 continue;
1255 }
1256
1257 cache_bug_on(GC_MARK(g) &&
1258 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1259 c, "inconsistent ptrs: mark = %llu, level = %i",
1260 GC_MARK(g), level);
1261
1262 if (level)
1263 SET_GC_MARK(g, GC_MARK_METADATA);
1264 else if (KEY_DIRTY(k))
1265 SET_GC_MARK(g, GC_MARK_DIRTY);
1266 else if (!GC_MARK(g))
1267 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1268
1269 /* guard against overflow */
1270 SET_GC_SECTORS_USED(g, min_t(unsigned int,
1271 GC_SECTORS_USED(g) + KEY_SIZE(k),
1272 MAX_GC_SECTORS_USED));
1273
1274 BUG_ON(!GC_SECTORS_USED(g));
1275 }
1276
1277 return stale;
1278}
1279
1280#define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1281
1282void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1283{
1284 unsigned int i;
1285
1286 for (i = 0; i < KEY_PTRS(k); i++)
1287 if (ptr_available(c, k, i) &&
1288 !ptr_stale(c, k, i)) {
1289 struct bucket *b = PTR_BUCKET(c, k, i);
1290
1291 b->gen = PTR_GEN(k, i);
1292
1293 if (level && bkey_cmp(k, &ZERO_KEY))
1294 b->prio = BTREE_PRIO;
1295 else if (!level && b->prio == BTREE_PRIO)
1296 b->prio = INITIAL_PRIO;
1297 }
1298
1299 __bch_btree_mark_key(c, level, k);
1300}
1301
1302void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1303{
1304 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1305}
1306
1307static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1308{
1309 uint8_t stale = 0;
1310 unsigned int keys = 0, good_keys = 0;
1311 struct bkey *k;
1312 struct btree_iter iter;
1313 struct bset_tree *t;
1314
1315 gc->nodes++;
1316
1317 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1318 stale = max(stale, btree_mark_key(b, k));
1319 keys++;
1320
1321 if (bch_ptr_bad(&b->keys, k))
1322 continue;
1323
1324 gc->key_bytes += bkey_u64s(k);
1325 gc->nkeys++;
1326 good_keys++;
1327
1328 gc->data += KEY_SIZE(k);
1329 }
1330
1331 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1332 btree_bug_on(t->size &&
1333 bset_written(&b->keys, t) &&
1334 bkey_cmp(&b->key, &t->end) < 0,
1335 b, "found short btree key in gc");
1336
1337 if (b->c->gc_always_rewrite)
1338 return true;
1339
1340 if (stale > 10)
1341 return true;
1342
1343 if ((keys - good_keys) * 2 > keys)
1344 return true;
1345
1346 return false;
1347}
1348
1349#define GC_MERGE_NODES 4U
1350
1351struct gc_merge_info {
1352 struct btree *b;
1353 unsigned int keys;
1354};
1355
1356static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1357 struct keylist *insert_keys,
1358 atomic_t *journal_ref,
1359 struct bkey *replace_key);
1360
1361static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1362 struct gc_stat *gc, struct gc_merge_info *r)
1363{
1364 unsigned int i, nodes = 0, keys = 0, blocks;
1365 struct btree *new_nodes[GC_MERGE_NODES];
1366 struct keylist keylist;
1367 struct closure cl;
1368 struct bkey *k;
1369
1370 bch_keylist_init(&keylist);
1371
1372 if (btree_check_reserve(b, NULL))
1373 return 0;
1374
1375 memset(new_nodes, 0, sizeof(new_nodes));
1376 closure_init_stack(&cl);
1377
1378 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1379 keys += r[nodes++].keys;
1380
1381 blocks = btree_default_blocks(b->c) * 2 / 3;
1382
1383 if (nodes < 2 ||
1384 __set_blocks(b->keys.set[0].data, keys,
1385 block_bytes(b->c->cache)) > blocks * (nodes - 1))
1386 return 0;
1387
1388 for (i = 0; i < nodes; i++) {
1389 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1390 if (IS_ERR(new_nodes[i]))
1391 goto out_nocoalesce;
1392 }
1393
1394 /*
1395 * We have to check the reserve here, after we've allocated our new
1396 * nodes, to make sure the insert below will succeed - we also check
1397 * before as an optimization to potentially avoid a bunch of expensive
1398 * allocs/sorts
1399 */
1400 if (btree_check_reserve(b, NULL))
1401 goto out_nocoalesce;
1402
1403 for (i = 0; i < nodes; i++)
1404 mutex_lock(&new_nodes[i]->write_lock);
1405
1406 for (i = nodes - 1; i > 0; --i) {
1407 struct bset *n1 = btree_bset_first(new_nodes[i]);
1408 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1409 struct bkey *k, *last = NULL;
1410
1411 keys = 0;
1412
1413 if (i > 1) {
1414 for (k = n2->start;
1415 k < bset_bkey_last(n2);
1416 k = bkey_next(k)) {
1417 if (__set_blocks(n1, n1->keys + keys +
1418 bkey_u64s(k),
1419 block_bytes(b->c->cache)) > blocks)
1420 break;
1421
1422 last = k;
1423 keys += bkey_u64s(k);
1424 }
1425 } else {
1426 /*
1427 * Last node we're not getting rid of - we're getting
1428 * rid of the node at r[0]. Have to try and fit all of
1429 * the remaining keys into this node; we can't ensure
1430 * they will always fit due to rounding and variable
1431 * length keys (shouldn't be possible in practice,
1432 * though)
1433 */
1434 if (__set_blocks(n1, n1->keys + n2->keys,
1435 block_bytes(b->c->cache)) >
1436 btree_blocks(new_nodes[i]))
1437 goto out_unlock_nocoalesce;
1438
1439 keys = n2->keys;
1440 /* Take the key of the node we're getting rid of */
1441 last = &r->b->key;
1442 }
1443
1444 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) >
1445 btree_blocks(new_nodes[i]));
1446
1447 if (last)
1448 bkey_copy_key(&new_nodes[i]->key, last);
1449
1450 memcpy(bset_bkey_last(n1),
1451 n2->start,
1452 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1453
1454 n1->keys += keys;
1455 r[i].keys = n1->keys;
1456
1457 memmove(n2->start,
1458 bset_bkey_idx(n2, keys),
1459 (void *) bset_bkey_last(n2) -
1460 (void *) bset_bkey_idx(n2, keys));
1461
1462 n2->keys -= keys;
1463
1464 if (__bch_keylist_realloc(&keylist,
1465 bkey_u64s(&new_nodes[i]->key)))
1466 goto out_unlock_nocoalesce;
1467
1468 bch_btree_node_write(new_nodes[i], &cl);
1469 bch_keylist_add(&keylist, &new_nodes[i]->key);
1470 }
1471
1472 for (i = 0; i < nodes; i++)
1473 mutex_unlock(&new_nodes[i]->write_lock);
1474
1475 closure_sync(&cl);
1476
1477 /* We emptied out this node */
1478 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1479 btree_node_free(new_nodes[0]);
1480 rw_unlock(true, new_nodes[0]);
1481 new_nodes[0] = NULL;
1482
1483 for (i = 0; i < nodes; i++) {
1484 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1485 goto out_nocoalesce;
1486
1487 make_btree_freeing_key(r[i].b, keylist.top);
1488 bch_keylist_push(&keylist);
1489 }
1490
1491 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1492 BUG_ON(!bch_keylist_empty(&keylist));
1493
1494 for (i = 0; i < nodes; i++) {
1495 btree_node_free(r[i].b);
1496 rw_unlock(true, r[i].b);
1497
1498 r[i].b = new_nodes[i];
1499 }
1500
1501 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1502 r[nodes - 1].b = ERR_PTR(-EINTR);
1503
1504 trace_bcache_btree_gc_coalesce(nodes);
1505 gc->nodes--;
1506
1507 bch_keylist_free(&keylist);
1508
1509 /* Invalidated our iterator */
1510 return -EINTR;
1511
1512out_unlock_nocoalesce:
1513 for (i = 0; i < nodes; i++)
1514 mutex_unlock(&new_nodes[i]->write_lock);
1515
1516out_nocoalesce:
1517 closure_sync(&cl);
1518
1519 while ((k = bch_keylist_pop(&keylist)))
1520 if (!bkey_cmp(k, &ZERO_KEY))
1521 atomic_dec(&b->c->prio_blocked);
1522 bch_keylist_free(&keylist);
1523
1524 for (i = 0; i < nodes; i++)
1525 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1526 btree_node_free(new_nodes[i]);
1527 rw_unlock(true, new_nodes[i]);
1528 }
1529 return 0;
1530}
1531
1532static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1533 struct btree *replace)
1534{
1535 struct keylist keys;
1536 struct btree *n;
1537
1538 if (btree_check_reserve(b, NULL))
1539 return 0;
1540
1541 n = btree_node_alloc_replacement(replace, NULL);
1542 if (IS_ERR(n))
1543 return 0;
1544
1545 /* recheck reserve after allocating replacement node */
1546 if (btree_check_reserve(b, NULL)) {
1547 btree_node_free(n);
1548 rw_unlock(true, n);
1549 return 0;
1550 }
1551
1552 bch_btree_node_write_sync(n);
1553
1554 bch_keylist_init(&keys);
1555 bch_keylist_add(&keys, &n->key);
1556
1557 make_btree_freeing_key(replace, keys.top);
1558 bch_keylist_push(&keys);
1559
1560 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1561 BUG_ON(!bch_keylist_empty(&keys));
1562
1563 btree_node_free(replace);
1564 rw_unlock(true, n);
1565
1566 /* Invalidated our iterator */
1567 return -EINTR;
1568}
1569
1570static unsigned int btree_gc_count_keys(struct btree *b)
1571{
1572 struct bkey *k;
1573 struct btree_iter iter;
1574 unsigned int ret = 0;
1575
1576 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1577 ret += bkey_u64s(k);
1578
1579 return ret;
1580}
1581
1582static size_t btree_gc_min_nodes(struct cache_set *c)
1583{
1584 size_t min_nodes;
1585
1586 /*
1587 * Since incremental GC would stop 100ms when front
1588 * side I/O comes, so when there are many btree nodes,
1589 * if GC only processes constant (100) nodes each time,
1590 * GC would last a long time, and the front side I/Os
1591 * would run out of the buckets (since no new bucket
1592 * can be allocated during GC), and be blocked again.
1593 * So GC should not process constant nodes, but varied
1594 * nodes according to the number of btree nodes, which
1595 * realized by dividing GC into constant(100) times,
1596 * so when there are many btree nodes, GC can process
1597 * more nodes each time, otherwise, GC will process less
1598 * nodes each time (but no less than MIN_GC_NODES)
1599 */
1600 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1601 if (min_nodes < MIN_GC_NODES)
1602 min_nodes = MIN_GC_NODES;
1603
1604 return min_nodes;
1605}
1606
1607
1608static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1609 struct closure *writes, struct gc_stat *gc)
1610{
1611 int ret = 0;
1612 bool should_rewrite;
1613 struct bkey *k;
1614 struct btree_iter iter;
1615 struct gc_merge_info r[GC_MERGE_NODES];
1616 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1617
1618 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1619
1620 for (i = r; i < r + ARRAY_SIZE(r); i++)
1621 i->b = ERR_PTR(-EINTR);
1622
1623 while (1) {
1624 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1625 if (k) {
1626 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1627 true, b);
1628 if (IS_ERR(r->b)) {
1629 ret = PTR_ERR(r->b);
1630 break;
1631 }
1632
1633 r->keys = btree_gc_count_keys(r->b);
1634
1635 ret = btree_gc_coalesce(b, op, gc, r);
1636 if (ret)
1637 break;
1638 }
1639
1640 if (!last->b)
1641 break;
1642
1643 if (!IS_ERR(last->b)) {
1644 should_rewrite = btree_gc_mark_node(last->b, gc);
1645 if (should_rewrite) {
1646 ret = btree_gc_rewrite_node(b, op, last->b);
1647 if (ret)
1648 break;
1649 }
1650
1651 if (last->b->level) {
1652 ret = btree_gc_recurse(last->b, op, writes, gc);
1653 if (ret)
1654 break;
1655 }
1656
1657 bkey_copy_key(&b->c->gc_done, &last->b->key);
1658
1659 /*
1660 * Must flush leaf nodes before gc ends, since replace
1661 * operations aren't journalled
1662 */
1663 mutex_lock(&last->b->write_lock);
1664 if (btree_node_dirty(last->b))
1665 bch_btree_node_write(last->b, writes);
1666 mutex_unlock(&last->b->write_lock);
1667 rw_unlock(true, last->b);
1668 }
1669
1670 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1671 r->b = NULL;
1672
1673 if (atomic_read(&b->c->search_inflight) &&
1674 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1675 gc->nodes_pre = gc->nodes;
1676 ret = -EAGAIN;
1677 break;
1678 }
1679
1680 if (need_resched()) {
1681 ret = -EAGAIN;
1682 break;
1683 }
1684 }
1685
1686 for (i = r; i < r + ARRAY_SIZE(r); i++)
1687 if (!IS_ERR_OR_NULL(i->b)) {
1688 mutex_lock(&i->b->write_lock);
1689 if (btree_node_dirty(i->b))
1690 bch_btree_node_write(i->b, writes);
1691 mutex_unlock(&i->b->write_lock);
1692 rw_unlock(true, i->b);
1693 }
1694
1695 return ret;
1696}
1697
1698static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1699 struct closure *writes, struct gc_stat *gc)
1700{
1701 struct btree *n = NULL;
1702 int ret = 0;
1703 bool should_rewrite;
1704
1705 should_rewrite = btree_gc_mark_node(b, gc);
1706 if (should_rewrite) {
1707 n = btree_node_alloc_replacement(b, NULL);
1708
1709 if (!IS_ERR(n)) {
1710 bch_btree_node_write_sync(n);
1711
1712 bch_btree_set_root(n);
1713 btree_node_free(b);
1714 rw_unlock(true, n);
1715
1716 return -EINTR;
1717 }
1718 }
1719
1720 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1721
1722 if (b->level) {
1723 ret = btree_gc_recurse(b, op, writes, gc);
1724 if (ret)
1725 return ret;
1726 }
1727
1728 bkey_copy_key(&b->c->gc_done, &b->key);
1729
1730 return ret;
1731}
1732
1733static void btree_gc_start(struct cache_set *c)
1734{
1735 struct cache *ca;
1736 struct bucket *b;
1737
1738 if (!c->gc_mark_valid)
1739 return;
1740
1741 mutex_lock(&c->bucket_lock);
1742
1743 c->gc_mark_valid = 0;
1744 c->gc_done = ZERO_KEY;
1745
1746 ca = c->cache;
1747 for_each_bucket(b, ca) {
1748 b->last_gc = b->gen;
1749 if (!atomic_read(&b->pin)) {
1750 SET_GC_MARK(b, 0);
1751 SET_GC_SECTORS_USED(b, 0);
1752 }
1753 }
1754
1755 mutex_unlock(&c->bucket_lock);
1756}
1757
1758static void bch_btree_gc_finish(struct cache_set *c)
1759{
1760 struct bucket *b;
1761 struct cache *ca;
1762 unsigned int i, j;
1763 uint64_t *k;
1764
1765 mutex_lock(&c->bucket_lock);
1766
1767 set_gc_sectors(c);
1768 c->gc_mark_valid = 1;
1769 c->need_gc = 0;
1770
1771 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1772 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1773 GC_MARK_METADATA);
1774
1775 /* don't reclaim buckets to which writeback keys point */
1776 rcu_read_lock();
1777 for (i = 0; i < c->devices_max_used; i++) {
1778 struct bcache_device *d = c->devices[i];
1779 struct cached_dev *dc;
1780 struct keybuf_key *w, *n;
1781
1782 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1783 continue;
1784 dc = container_of(d, struct cached_dev, disk);
1785
1786 spin_lock(&dc->writeback_keys.lock);
1787 rbtree_postorder_for_each_entry_safe(w, n,
1788 &dc->writeback_keys.keys, node)
1789 for (j = 0; j < KEY_PTRS(&w->key); j++)
1790 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1791 GC_MARK_DIRTY);
1792 spin_unlock(&dc->writeback_keys.lock);
1793 }
1794 rcu_read_unlock();
1795
1796 c->avail_nbuckets = 0;
1797
1798 ca = c->cache;
1799 ca->invalidate_needs_gc = 0;
1800
1801 for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++)
1802 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1803
1804 for (k = ca->prio_buckets;
1805 k < ca->prio_buckets + prio_buckets(ca) * 2; k++)
1806 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1807
1808 for_each_bucket(b, ca) {
1809 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1810
1811 if (atomic_read(&b->pin))
1812 continue;
1813
1814 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1815
1816 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1817 c->avail_nbuckets++;
1818 }
1819
1820 mutex_unlock(&c->bucket_lock);
1821}
1822
1823static void bch_btree_gc(struct cache_set *c)
1824{
1825 int ret;
1826 struct gc_stat stats;
1827 struct closure writes;
1828 struct btree_op op;
1829 uint64_t start_time = local_clock();
1830
1831 trace_bcache_gc_start(c);
1832
1833 memset(&stats, 0, sizeof(struct gc_stat));
1834 closure_init_stack(&writes);
1835 bch_btree_op_init(&op, SHRT_MAX);
1836
1837 btree_gc_start(c);
1838
1839 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1840 do {
1841 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
1842 closure_sync(&writes);
1843 cond_resched();
1844
1845 if (ret == -EAGAIN)
1846 schedule_timeout_interruptible(msecs_to_jiffies
1847 (GC_SLEEP_MS));
1848 else if (ret)
1849 pr_warn("gc failed!\n");
1850 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1851
1852 bch_btree_gc_finish(c);
1853 wake_up_allocators(c);
1854
1855 bch_time_stats_update(&c->btree_gc_time, start_time);
1856
1857 stats.key_bytes *= sizeof(uint64_t);
1858 stats.data <<= 9;
1859 bch_update_bucket_in_use(c, &stats);
1860 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1861
1862 trace_bcache_gc_end(c);
1863
1864 bch_moving_gc(c);
1865}
1866
1867static bool gc_should_run(struct cache_set *c)
1868{
1869 struct cache *ca = c->cache;
1870
1871 if (ca->invalidate_needs_gc)
1872 return true;
1873
1874 if (atomic_read(&c->sectors_to_gc) < 0)
1875 return true;
1876
1877 return false;
1878}
1879
1880static int bch_gc_thread(void *arg)
1881{
1882 struct cache_set *c = arg;
1883
1884 while (1) {
1885 wait_event_interruptible(c->gc_wait,
1886 kthread_should_stop() ||
1887 test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1888 gc_should_run(c));
1889
1890 if (kthread_should_stop() ||
1891 test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1892 break;
1893
1894 set_gc_sectors(c);
1895 bch_btree_gc(c);
1896 }
1897
1898 wait_for_kthread_stop();
1899 return 0;
1900}
1901
1902int bch_gc_thread_start(struct cache_set *c)
1903{
1904 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1905 return PTR_ERR_OR_ZERO(c->gc_thread);
1906}
1907
1908/* Initial partial gc */
1909
1910static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1911{
1912 int ret = 0;
1913 struct bkey *k, *p = NULL;
1914 struct btree_iter iter;
1915
1916 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1917 bch_initial_mark_key(b->c, b->level, k);
1918
1919 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1920
1921 if (b->level) {
1922 bch_btree_iter_init(&b->keys, &iter, NULL);
1923
1924 do {
1925 k = bch_btree_iter_next_filter(&iter, &b->keys,
1926 bch_ptr_bad);
1927 if (k) {
1928 btree_node_prefetch(b, k);
1929 /*
1930 * initiallize c->gc_stats.nodes
1931 * for incremental GC
1932 */
1933 b->c->gc_stats.nodes++;
1934 }
1935
1936 if (p)
1937 ret = bcache_btree(check_recurse, p, b, op);
1938
1939 p = k;
1940 } while (p && !ret);
1941 }
1942
1943 return ret;
1944}
1945
1946
1947static int bch_btree_check_thread(void *arg)
1948{
1949 int ret;
1950 struct btree_check_info *info = arg;
1951 struct btree_check_state *check_state = info->state;
1952 struct cache_set *c = check_state->c;
1953 struct btree_iter iter;
1954 struct bkey *k, *p;
1955 int cur_idx, prev_idx, skip_nr;
1956
1957 k = p = NULL;
1958 cur_idx = prev_idx = 0;
1959 ret = 0;
1960
1961 /* root node keys are checked before thread created */
1962 bch_btree_iter_init(&c->root->keys, &iter, NULL);
1963 k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
1964 BUG_ON(!k);
1965
1966 p = k;
1967 while (k) {
1968 /*
1969 * Fetch a root node key index, skip the keys which
1970 * should be fetched by other threads, then check the
1971 * sub-tree indexed by the fetched key.
1972 */
1973 spin_lock(&check_state->idx_lock);
1974 cur_idx = check_state->key_idx;
1975 check_state->key_idx++;
1976 spin_unlock(&check_state->idx_lock);
1977
1978 skip_nr = cur_idx - prev_idx;
1979
1980 while (skip_nr) {
1981 k = bch_btree_iter_next_filter(&iter,
1982 &c->root->keys,
1983 bch_ptr_bad);
1984 if (k)
1985 p = k;
1986 else {
1987 /*
1988 * No more keys to check in root node,
1989 * current checking threads are enough,
1990 * stop creating more.
1991 */
1992 atomic_set(&check_state->enough, 1);
1993 /* Update check_state->enough earlier */
1994 smp_mb__after_atomic();
1995 goto out;
1996 }
1997 skip_nr--;
1998 cond_resched();
1999 }
2000
2001 if (p) {
2002 struct btree_op op;
2003
2004 btree_node_prefetch(c->root, p);
2005 c->gc_stats.nodes++;
2006 bch_btree_op_init(&op, 0);
2007 ret = bcache_btree(check_recurse, p, c->root, &op);
2008 /*
2009 * The op may be added to cache_set's btree_cache_wait
2010 * in mca_cannibalize(), must ensure it is removed from
2011 * the list and release btree_cache_alloc_lock before
2012 * free op memory.
2013 * Otherwise, the btree_cache_wait will be damaged.
2014 */
2015 bch_cannibalize_unlock(c);
2016 finish_wait(&c->btree_cache_wait, &(&op)->wait);
2017 if (ret)
2018 goto out;
2019 }
2020 p = NULL;
2021 prev_idx = cur_idx;
2022 cond_resched();
2023 }
2024
2025out:
2026 info->result = ret;
2027 /* update check_state->started among all CPUs */
2028 smp_mb__before_atomic();
2029 if (atomic_dec_and_test(&check_state->started))
2030 wake_up(&check_state->wait);
2031
2032 return ret;
2033}
2034
2035
2036
2037static int bch_btree_chkthread_nr(void)
2038{
2039 int n = num_online_cpus()/2;
2040
2041 if (n == 0)
2042 n = 1;
2043 else if (n > BCH_BTR_CHKTHREAD_MAX)
2044 n = BCH_BTR_CHKTHREAD_MAX;
2045
2046 return n;
2047}
2048
2049int bch_btree_check(struct cache_set *c)
2050{
2051 int ret = 0;
2052 int i;
2053 struct bkey *k = NULL;
2054 struct btree_iter iter;
2055 struct btree_check_state check_state;
2056
2057 /* check and mark root node keys */
2058 for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
2059 bch_initial_mark_key(c, c->root->level, k);
2060
2061 bch_initial_mark_key(c, c->root->level + 1, &c->root->key);
2062
2063 if (c->root->level == 0)
2064 return 0;
2065
2066 memset(&check_state, 0, sizeof(struct btree_check_state));
2067 check_state.c = c;
2068 check_state.total_threads = bch_btree_chkthread_nr();
2069 check_state.key_idx = 0;
2070 spin_lock_init(&check_state.idx_lock);
2071 atomic_set(&check_state.started, 0);
2072 atomic_set(&check_state.enough, 0);
2073 init_waitqueue_head(&check_state.wait);
2074
2075 rw_lock(0, c->root, c->root->level);
2076 /*
2077 * Run multiple threads to check btree nodes in parallel,
2078 * if check_state.enough is non-zero, it means current
2079 * running check threads are enough, unncessary to create
2080 * more.
2081 */
2082 for (i = 0; i < check_state.total_threads; i++) {
2083 /* fetch latest check_state.enough earlier */
2084 smp_mb__before_atomic();
2085 if (atomic_read(&check_state.enough))
2086 break;
2087
2088 check_state.infos[i].result = 0;
2089 check_state.infos[i].state = &check_state;
2090
2091 check_state.infos[i].thread =
2092 kthread_run(bch_btree_check_thread,
2093 &check_state.infos[i],
2094 "bch_btrchk[%d]", i);
2095 if (IS_ERR(check_state.infos[i].thread)) {
2096 pr_err("fails to run thread bch_btrchk[%d]\n", i);
2097 for (--i; i >= 0; i--)
2098 kthread_stop(check_state.infos[i].thread);
2099 ret = -ENOMEM;
2100 goto out;
2101 }
2102 atomic_inc(&check_state.started);
2103 }
2104
2105 /*
2106 * Must wait for all threads to stop.
2107 */
2108 wait_event(check_state.wait, atomic_read(&check_state.started) == 0);
2109
2110 for (i = 0; i < check_state.total_threads; i++) {
2111 if (check_state.infos[i].result) {
2112 ret = check_state.infos[i].result;
2113 goto out;
2114 }
2115 }
2116
2117out:
2118 rw_unlock(0, c->root);
2119 return ret;
2120}
2121
2122void bch_initial_gc_finish(struct cache_set *c)
2123{
2124 struct cache *ca = c->cache;
2125 struct bucket *b;
2126
2127 bch_btree_gc_finish(c);
2128
2129 mutex_lock(&c->bucket_lock);
2130
2131 /*
2132 * We need to put some unused buckets directly on the prio freelist in
2133 * order to get the allocator thread started - it needs freed buckets in
2134 * order to rewrite the prios and gens, and it needs to rewrite prios
2135 * and gens in order to free buckets.
2136 *
2137 * This is only safe for buckets that have no live data in them, which
2138 * there should always be some of.
2139 */
2140 for_each_bucket(b, ca) {
2141 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
2142 fifo_full(&ca->free[RESERVE_BTREE]))
2143 break;
2144
2145 if (bch_can_invalidate_bucket(ca, b) &&
2146 !GC_MARK(b)) {
2147 __bch_invalidate_one_bucket(ca, b);
2148 if (!fifo_push(&ca->free[RESERVE_PRIO],
2149 b - ca->buckets))
2150 fifo_push(&ca->free[RESERVE_BTREE],
2151 b - ca->buckets);
2152 }
2153 }
2154
2155 mutex_unlock(&c->bucket_lock);
2156}
2157
2158/* Btree insertion */
2159
2160static bool btree_insert_key(struct btree *b, struct bkey *k,
2161 struct bkey *replace_key)
2162{
2163 unsigned int status;
2164
2165 BUG_ON(bkey_cmp(k, &b->key) > 0);
2166
2167 status = bch_btree_insert_key(&b->keys, k, replace_key);
2168 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2169 bch_check_keys(&b->keys, "%u for %s", status,
2170 replace_key ? "replace" : "insert");
2171
2172 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2173 status);
2174 return true;
2175 } else
2176 return false;
2177}
2178
2179static size_t insert_u64s_remaining(struct btree *b)
2180{
2181 long ret = bch_btree_keys_u64s_remaining(&b->keys);
2182
2183 /*
2184 * Might land in the middle of an existing extent and have to split it
2185 */
2186 if (b->keys.ops->is_extents)
2187 ret -= KEY_MAX_U64S;
2188
2189 return max(ret, 0L);
2190}
2191
2192static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2193 struct keylist *insert_keys,
2194 struct bkey *replace_key)
2195{
2196 bool ret = false;
2197 int oldsize = bch_count_data(&b->keys);
2198
2199 while (!bch_keylist_empty(insert_keys)) {
2200 struct bkey *k = insert_keys->keys;
2201
2202 if (bkey_u64s(k) > insert_u64s_remaining(b))
2203 break;
2204
2205 if (bkey_cmp(k, &b->key) <= 0) {
2206 if (!b->level)
2207 bkey_put(b->c, k);
2208
2209 ret |= btree_insert_key(b, k, replace_key);
2210 bch_keylist_pop_front(insert_keys);
2211 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2212 BKEY_PADDED(key) temp;
2213 bkey_copy(&temp.key, insert_keys->keys);
2214
2215 bch_cut_back(&b->key, &temp.key);
2216 bch_cut_front(&b->key, insert_keys->keys);
2217
2218 ret |= btree_insert_key(b, &temp.key, replace_key);
2219 break;
2220 } else {
2221 break;
2222 }
2223 }
2224
2225 if (!ret)
2226 op->insert_collision = true;
2227
2228 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2229
2230 BUG_ON(bch_count_data(&b->keys) < oldsize);
2231 return ret;
2232}
2233
2234static int btree_split(struct btree *b, struct btree_op *op,
2235 struct keylist *insert_keys,
2236 struct bkey *replace_key)
2237{
2238 bool split;
2239 struct btree *n1, *n2 = NULL, *n3 = NULL;
2240 uint64_t start_time = local_clock();
2241 struct closure cl;
2242 struct keylist parent_keys;
2243
2244 closure_init_stack(&cl);
2245 bch_keylist_init(&parent_keys);
2246
2247 if (btree_check_reserve(b, op)) {
2248 if (!b->level)
2249 return -EINTR;
2250 else
2251 WARN(1, "insufficient reserve for split\n");
2252 }
2253
2254 n1 = btree_node_alloc_replacement(b, op);
2255 if (IS_ERR(n1))
2256 goto err;
2257
2258 split = set_blocks(btree_bset_first(n1),
2259 block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5;
2260
2261 if (split) {
2262 unsigned int keys = 0;
2263
2264 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2265
2266 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2267 if (IS_ERR(n2))
2268 goto err_free1;
2269
2270 if (!b->parent) {
2271 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2272 if (IS_ERR(n3))
2273 goto err_free2;
2274 }
2275
2276 mutex_lock(&n1->write_lock);
2277 mutex_lock(&n2->write_lock);
2278
2279 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2280
2281 /*
2282 * Has to be a linear search because we don't have an auxiliary
2283 * search tree yet
2284 */
2285
2286 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2287 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2288 keys));
2289
2290 bkey_copy_key(&n1->key,
2291 bset_bkey_idx(btree_bset_first(n1), keys));
2292 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2293
2294 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2295 btree_bset_first(n1)->keys = keys;
2296
2297 memcpy(btree_bset_first(n2)->start,
2298 bset_bkey_last(btree_bset_first(n1)),
2299 btree_bset_first(n2)->keys * sizeof(uint64_t));
2300
2301 bkey_copy_key(&n2->key, &b->key);
2302
2303 bch_keylist_add(&parent_keys, &n2->key);
2304 bch_btree_node_write(n2, &cl);
2305 mutex_unlock(&n2->write_lock);
2306 rw_unlock(true, n2);
2307 } else {
2308 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2309
2310 mutex_lock(&n1->write_lock);
2311 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2312 }
2313
2314 bch_keylist_add(&parent_keys, &n1->key);
2315 bch_btree_node_write(n1, &cl);
2316 mutex_unlock(&n1->write_lock);
2317
2318 if (n3) {
2319 /* Depth increases, make a new root */
2320 mutex_lock(&n3->write_lock);
2321 bkey_copy_key(&n3->key, &MAX_KEY);
2322 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2323 bch_btree_node_write(n3, &cl);
2324 mutex_unlock(&n3->write_lock);
2325
2326 closure_sync(&cl);
2327 bch_btree_set_root(n3);
2328 rw_unlock(true, n3);
2329 } else if (!b->parent) {
2330 /* Root filled up but didn't need to be split */
2331 closure_sync(&cl);
2332 bch_btree_set_root(n1);
2333 } else {
2334 /* Split a non root node */
2335 closure_sync(&cl);
2336 make_btree_freeing_key(b, parent_keys.top);
2337 bch_keylist_push(&parent_keys);
2338
2339 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2340 BUG_ON(!bch_keylist_empty(&parent_keys));
2341 }
2342
2343 btree_node_free(b);
2344 rw_unlock(true, n1);
2345
2346 bch_time_stats_update(&b->c->btree_split_time, start_time);
2347
2348 return 0;
2349err_free2:
2350 bkey_put(b->c, &n2->key);
2351 btree_node_free(n2);
2352 rw_unlock(true, n2);
2353err_free1:
2354 bkey_put(b->c, &n1->key);
2355 btree_node_free(n1);
2356 rw_unlock(true, n1);
2357err:
2358 WARN(1, "bcache: btree split failed (level %u)", b->level);
2359
2360 if (n3 == ERR_PTR(-EAGAIN) ||
2361 n2 == ERR_PTR(-EAGAIN) ||
2362 n1 == ERR_PTR(-EAGAIN))
2363 return -EAGAIN;
2364
2365 return -ENOMEM;
2366}
2367
2368static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2369 struct keylist *insert_keys,
2370 atomic_t *journal_ref,
2371 struct bkey *replace_key)
2372{
2373 struct closure cl;
2374
2375 BUG_ON(b->level && replace_key);
2376
2377 closure_init_stack(&cl);
2378
2379 mutex_lock(&b->write_lock);
2380
2381 if (write_block(b) != btree_bset_last(b) &&
2382 b->keys.last_set_unwritten)
2383 bch_btree_init_next(b); /* just wrote a set */
2384
2385 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2386 mutex_unlock(&b->write_lock);
2387 goto split;
2388 }
2389
2390 BUG_ON(write_block(b) != btree_bset_last(b));
2391
2392 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2393 if (!b->level)
2394 bch_btree_leaf_dirty(b, journal_ref);
2395 else
2396 bch_btree_node_write(b, &cl);
2397 }
2398
2399 mutex_unlock(&b->write_lock);
2400
2401 /* wait for btree node write if necessary, after unlock */
2402 closure_sync(&cl);
2403
2404 return 0;
2405split:
2406 if (current->bio_list) {
2407 op->lock = b->c->root->level + 1;
2408 return -EAGAIN;
2409 } else if (op->lock <= b->c->root->level) {
2410 op->lock = b->c->root->level + 1;
2411 return -EINTR;
2412 } else {
2413 /* Invalidated all iterators */
2414 int ret = btree_split(b, op, insert_keys, replace_key);
2415
2416 if (bch_keylist_empty(insert_keys))
2417 return 0;
2418 else if (!ret)
2419 return -EINTR;
2420 return ret;
2421 }
2422}
2423
2424int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2425 struct bkey *check_key)
2426{
2427 int ret = -EINTR;
2428 uint64_t btree_ptr = b->key.ptr[0];
2429 unsigned long seq = b->seq;
2430 struct keylist insert;
2431 bool upgrade = op->lock == -1;
2432
2433 bch_keylist_init(&insert);
2434
2435 if (upgrade) {
2436 rw_unlock(false, b);
2437 rw_lock(true, b, b->level);
2438
2439 if (b->key.ptr[0] != btree_ptr ||
2440 b->seq != seq + 1) {
2441 op->lock = b->level;
2442 goto out;
2443 }
2444 }
2445
2446 SET_KEY_PTRS(check_key, 1);
2447 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2448
2449 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2450
2451 bch_keylist_add(&insert, check_key);
2452
2453 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2454
2455 BUG_ON(!ret && !bch_keylist_empty(&insert));
2456out:
2457 if (upgrade)
2458 downgrade_write(&b->lock);
2459 return ret;
2460}
2461
2462struct btree_insert_op {
2463 struct btree_op op;
2464 struct keylist *keys;
2465 atomic_t *journal_ref;
2466 struct bkey *replace_key;
2467};
2468
2469static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2470{
2471 struct btree_insert_op *op = container_of(b_op,
2472 struct btree_insert_op, op);
2473
2474 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2475 op->journal_ref, op->replace_key);
2476 if (ret && !bch_keylist_empty(op->keys))
2477 return ret;
2478 else
2479 return MAP_DONE;
2480}
2481
2482int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2483 atomic_t *journal_ref, struct bkey *replace_key)
2484{
2485 struct btree_insert_op op;
2486 int ret = 0;
2487
2488 BUG_ON(current->bio_list);
2489 BUG_ON(bch_keylist_empty(keys));
2490
2491 bch_btree_op_init(&op.op, 0);
2492 op.keys = keys;
2493 op.journal_ref = journal_ref;
2494 op.replace_key = replace_key;
2495
2496 while (!ret && !bch_keylist_empty(keys)) {
2497 op.op.lock = 0;
2498 ret = bch_btree_map_leaf_nodes(&op.op, c,
2499 &START_KEY(keys->keys),
2500 btree_insert_fn);
2501 }
2502
2503 if (ret) {
2504 struct bkey *k;
2505
2506 pr_err("error %i\n", ret);
2507
2508 while ((k = bch_keylist_pop(keys)))
2509 bkey_put(c, k);
2510 } else if (op.op.insert_collision)
2511 ret = -ESRCH;
2512
2513 return ret;
2514}
2515
2516void bch_btree_set_root(struct btree *b)
2517{
2518 unsigned int i;
2519 struct closure cl;
2520
2521 closure_init_stack(&cl);
2522
2523 trace_bcache_btree_set_root(b);
2524
2525 BUG_ON(!b->written);
2526
2527 for (i = 0; i < KEY_PTRS(&b->key); i++)
2528 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2529
2530 mutex_lock(&b->c->bucket_lock);
2531 list_del_init(&b->list);
2532 mutex_unlock(&b->c->bucket_lock);
2533
2534 b->c->root = b;
2535
2536 bch_journal_meta(b->c, &cl);
2537 closure_sync(&cl);
2538}
2539
2540/* Map across nodes or keys */
2541
2542static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2543 struct bkey *from,
2544 btree_map_nodes_fn *fn, int flags)
2545{
2546 int ret = MAP_CONTINUE;
2547
2548 if (b->level) {
2549 struct bkey *k;
2550 struct btree_iter iter;
2551
2552 bch_btree_iter_init(&b->keys, &iter, from);
2553
2554 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2555 bch_ptr_bad))) {
2556 ret = bcache_btree(map_nodes_recurse, k, b,
2557 op, from, fn, flags);
2558 from = NULL;
2559
2560 if (ret != MAP_CONTINUE)
2561 return ret;
2562 }
2563 }
2564
2565 if (!b->level || flags == MAP_ALL_NODES)
2566 ret = fn(op, b);
2567
2568 return ret;
2569}
2570
2571int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2572 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2573{
2574 return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
2575}
2576
2577int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2578 struct bkey *from, btree_map_keys_fn *fn,
2579 int flags)
2580{
2581 int ret = MAP_CONTINUE;
2582 struct bkey *k;
2583 struct btree_iter iter;
2584
2585 bch_btree_iter_init(&b->keys, &iter, from);
2586
2587 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2588 ret = !b->level
2589 ? fn(op, b, k)
2590 : bcache_btree(map_keys_recurse, k,
2591 b, op, from, fn, flags);
2592 from = NULL;
2593
2594 if (ret != MAP_CONTINUE)
2595 return ret;
2596 }
2597
2598 if (!b->level && (flags & MAP_END_KEY))
2599 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2600 KEY_OFFSET(&b->key), 0));
2601
2602 return ret;
2603}
2604
2605int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2606 struct bkey *from, btree_map_keys_fn *fn, int flags)
2607{
2608 return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
2609}
2610
2611/* Keybuf code */
2612
2613static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2614{
2615 /* Overlapping keys compare equal */
2616 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2617 return -1;
2618 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2619 return 1;
2620 return 0;
2621}
2622
2623static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2624 struct keybuf_key *r)
2625{
2626 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2627}
2628
2629struct refill {
2630 struct btree_op op;
2631 unsigned int nr_found;
2632 struct keybuf *buf;
2633 struct bkey *end;
2634 keybuf_pred_fn *pred;
2635};
2636
2637static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2638 struct bkey *k)
2639{
2640 struct refill *refill = container_of(op, struct refill, op);
2641 struct keybuf *buf = refill->buf;
2642 int ret = MAP_CONTINUE;
2643
2644 if (bkey_cmp(k, refill->end) > 0) {
2645 ret = MAP_DONE;
2646 goto out;
2647 }
2648
2649 if (!KEY_SIZE(k)) /* end key */
2650 goto out;
2651
2652 if (refill->pred(buf, k)) {
2653 struct keybuf_key *w;
2654
2655 spin_lock(&buf->lock);
2656
2657 w = array_alloc(&buf->freelist);
2658 if (!w) {
2659 spin_unlock(&buf->lock);
2660 return MAP_DONE;
2661 }
2662
2663 w->private = NULL;
2664 bkey_copy(&w->key, k);
2665
2666 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2667 array_free(&buf->freelist, w);
2668 else
2669 refill->nr_found++;
2670
2671 if (array_freelist_empty(&buf->freelist))
2672 ret = MAP_DONE;
2673
2674 spin_unlock(&buf->lock);
2675 }
2676out:
2677 buf->last_scanned = *k;
2678 return ret;
2679}
2680
2681void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2682 struct bkey *end, keybuf_pred_fn *pred)
2683{
2684 struct bkey start = buf->last_scanned;
2685 struct refill refill;
2686
2687 cond_resched();
2688
2689 bch_btree_op_init(&refill.op, -1);
2690 refill.nr_found = 0;
2691 refill.buf = buf;
2692 refill.end = end;
2693 refill.pred = pred;
2694
2695 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2696 refill_keybuf_fn, MAP_END_KEY);
2697
2698 trace_bcache_keyscan(refill.nr_found,
2699 KEY_INODE(&start), KEY_OFFSET(&start),
2700 KEY_INODE(&buf->last_scanned),
2701 KEY_OFFSET(&buf->last_scanned));
2702
2703 spin_lock(&buf->lock);
2704
2705 if (!RB_EMPTY_ROOT(&buf->keys)) {
2706 struct keybuf_key *w;
2707
2708 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2709 buf->start = START_KEY(&w->key);
2710
2711 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2712 buf->end = w->key;
2713 } else {
2714 buf->start = MAX_KEY;
2715 buf->end = MAX_KEY;
2716 }
2717
2718 spin_unlock(&buf->lock);
2719}
2720
2721static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2722{
2723 rb_erase(&w->node, &buf->keys);
2724 array_free(&buf->freelist, w);
2725}
2726
2727void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2728{
2729 spin_lock(&buf->lock);
2730 __bch_keybuf_del(buf, w);
2731 spin_unlock(&buf->lock);
2732}
2733
2734bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2735 struct bkey *end)
2736{
2737 bool ret = false;
2738 struct keybuf_key *p, *w, s;
2739
2740 s.key = *start;
2741
2742 if (bkey_cmp(end, &buf->start) <= 0 ||
2743 bkey_cmp(start, &buf->end) >= 0)
2744 return false;
2745
2746 spin_lock(&buf->lock);
2747 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2748
2749 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2750 p = w;
2751 w = RB_NEXT(w, node);
2752
2753 if (p->private)
2754 ret = true;
2755 else
2756 __bch_keybuf_del(buf, p);
2757 }
2758
2759 spin_unlock(&buf->lock);
2760 return ret;
2761}
2762
2763struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2764{
2765 struct keybuf_key *w;
2766
2767 spin_lock(&buf->lock);
2768
2769 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2770
2771 while (w && w->private)
2772 w = RB_NEXT(w, node);
2773
2774 if (w)
2775 w->private = ERR_PTR(-EINTR);
2776
2777 spin_unlock(&buf->lock);
2778 return w;
2779}
2780
2781struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2782 struct keybuf *buf,
2783 struct bkey *end,
2784 keybuf_pred_fn *pred)
2785{
2786 struct keybuf_key *ret;
2787
2788 while (1) {
2789 ret = bch_keybuf_next(buf);
2790 if (ret)
2791 break;
2792
2793 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2794 pr_debug("scan finished\n");
2795 break;
2796 }
2797
2798 bch_refill_keybuf(c, buf, end, pred);
2799 }
2800
2801 return ret;
2802}
2803
2804void bch_keybuf_init(struct keybuf *buf)
2805{
2806 buf->last_scanned = MAX_KEY;
2807 buf->keys = RB_ROOT;
2808
2809 spin_lock_init(&buf->lock);
2810 array_allocator_init(&buf->freelist);
2811}
2812
2813void bch_btree_exit(void)
2814{
2815 if (btree_io_wq)
2816 destroy_workqueue(btree_io_wq);
2817}
2818
2819int __init bch_btree_init(void)
2820{
2821 btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0);
2822 if (!btree_io_wq)
2823 return -ENOMEM;
2824
2825 return 0;
2826}
1/*
2 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
3 *
4 * Uses a block device as cache for other block devices; optimized for SSDs.
5 * All allocation is done in buckets, which should match the erase block size
6 * of the device.
7 *
8 * Buckets containing cached data are kept on a heap sorted by priority;
9 * bucket priority is increased on cache hit, and periodically all the buckets
10 * on the heap have their priority scaled down. This currently is just used as
11 * an LRU but in the future should allow for more intelligent heuristics.
12 *
13 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14 * counter. Garbage collection is used to remove stale pointers.
15 *
16 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17 * as keys are inserted we only sort the pages that have not yet been written.
18 * When garbage collection is run, we resort the entire node.
19 *
20 * All configuration is done via sysfs; see Documentation/bcache.txt.
21 */
22
23#include "bcache.h"
24#include "btree.h"
25#include "debug.h"
26#include "extents.h"
27
28#include <linux/slab.h>
29#include <linux/bitops.h>
30#include <linux/freezer.h>
31#include <linux/hash.h>
32#include <linux/kthread.h>
33#include <linux/prefetch.h>
34#include <linux/random.h>
35#include <linux/rcupdate.h>
36#include <trace/events/bcache.h>
37
38/*
39 * Todo:
40 * register_bcache: Return errors out to userspace correctly
41 *
42 * Writeback: don't undirty key until after a cache flush
43 *
44 * Create an iterator for key pointers
45 *
46 * On btree write error, mark bucket such that it won't be freed from the cache
47 *
48 * Journalling:
49 * Check for bad keys in replay
50 * Propagate barriers
51 * Refcount journal entries in journal_replay
52 *
53 * Garbage collection:
54 * Finish incremental gc
55 * Gc should free old UUIDs, data for invalid UUIDs
56 *
57 * Provide a way to list backing device UUIDs we have data cached for, and
58 * probably how long it's been since we've seen them, and a way to invalidate
59 * dirty data for devices that will never be attached again
60 *
61 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
62 * that based on that and how much dirty data we have we can keep writeback
63 * from being starved
64 *
65 * Add a tracepoint or somesuch to watch for writeback starvation
66 *
67 * When btree depth > 1 and splitting an interior node, we have to make sure
68 * alloc_bucket() cannot fail. This should be true but is not completely
69 * obvious.
70 *
71 * Plugging?
72 *
73 * If data write is less than hard sector size of ssd, round up offset in open
74 * bucket to the next whole sector
75 *
76 * Superblock needs to be fleshed out for multiple cache devices
77 *
78 * Add a sysfs tunable for the number of writeback IOs in flight
79 *
80 * Add a sysfs tunable for the number of open data buckets
81 *
82 * IO tracking: Can we track when one process is doing io on behalf of another?
83 * IO tracking: Don't use just an average, weigh more recent stuff higher
84 *
85 * Test module load/unload
86 */
87
88#define MAX_NEED_GC 64
89#define MAX_SAVE_PRIO 72
90
91#define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
92
93#define PTR_HASH(c, k) \
94 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
95
96#define insert_lock(s, b) ((b)->level <= (s)->lock)
97
98/*
99 * These macros are for recursing down the btree - they handle the details of
100 * locking and looking up nodes in the cache for you. They're best treated as
101 * mere syntax when reading code that uses them.
102 *
103 * op->lock determines whether we take a read or a write lock at a given depth.
104 * If you've got a read lock and find that you need a write lock (i.e. you're
105 * going to have to split), set op->lock and return -EINTR; btree_root() will
106 * call you again and you'll have the correct lock.
107 */
108
109/**
110 * btree - recurse down the btree on a specified key
111 * @fn: function to call, which will be passed the child node
112 * @key: key to recurse on
113 * @b: parent btree node
114 * @op: pointer to struct btree_op
115 */
116#define btree(fn, key, b, op, ...) \
117({ \
118 int _r, l = (b)->level - 1; \
119 bool _w = l <= (op)->lock; \
120 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, _w);\
121 if (!IS_ERR(_child)) { \
122 _child->parent = (b); \
123 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
124 rw_unlock(_w, _child); \
125 } else \
126 _r = PTR_ERR(_child); \
127 _r; \
128})
129
130/**
131 * btree_root - call a function on the root of the btree
132 * @fn: function to call, which will be passed the child node
133 * @c: cache set
134 * @op: pointer to struct btree_op
135 */
136#define btree_root(fn, c, op, ...) \
137({ \
138 int _r = -EINTR; \
139 do { \
140 struct btree *_b = (c)->root; \
141 bool _w = insert_lock(op, _b); \
142 rw_lock(_w, _b, _b->level); \
143 if (_b == (c)->root && \
144 _w == insert_lock(op, _b)) { \
145 _b->parent = NULL; \
146 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
147 } \
148 rw_unlock(_w, _b); \
149 bch_cannibalize_unlock(c); \
150 if (_r == -EINTR) \
151 schedule(); \
152 } while (_r == -EINTR); \
153 \
154 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
155 _r; \
156})
157
158static inline struct bset *write_block(struct btree *b)
159{
160 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
161}
162
163static void bch_btree_init_next(struct btree *b)
164{
165 /* If not a leaf node, always sort */
166 if (b->level && b->keys.nsets)
167 bch_btree_sort(&b->keys, &b->c->sort);
168 else
169 bch_btree_sort_lazy(&b->keys, &b->c->sort);
170
171 if (b->written < btree_blocks(b))
172 bch_bset_init_next(&b->keys, write_block(b),
173 bset_magic(&b->c->sb));
174
175}
176
177/* Btree key manipulation */
178
179void bkey_put(struct cache_set *c, struct bkey *k)
180{
181 unsigned i;
182
183 for (i = 0; i < KEY_PTRS(k); i++)
184 if (ptr_available(c, k, i))
185 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
186}
187
188/* Btree IO */
189
190static uint64_t btree_csum_set(struct btree *b, struct bset *i)
191{
192 uint64_t crc = b->key.ptr[0];
193 void *data = (void *) i + 8, *end = bset_bkey_last(i);
194
195 crc = bch_crc64_update(crc, data, end - data);
196 return crc ^ 0xffffffffffffffffULL;
197}
198
199void bch_btree_node_read_done(struct btree *b)
200{
201 const char *err = "bad btree header";
202 struct bset *i = btree_bset_first(b);
203 struct btree_iter *iter;
204
205 iter = mempool_alloc(b->c->fill_iter, GFP_NOWAIT);
206 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
207 iter->used = 0;
208
209#ifdef CONFIG_BCACHE_DEBUG
210 iter->b = &b->keys;
211#endif
212
213 if (!i->seq)
214 goto err;
215
216 for (;
217 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
218 i = write_block(b)) {
219 err = "unsupported bset version";
220 if (i->version > BCACHE_BSET_VERSION)
221 goto err;
222
223 err = "bad btree header";
224 if (b->written + set_blocks(i, block_bytes(b->c)) >
225 btree_blocks(b))
226 goto err;
227
228 err = "bad magic";
229 if (i->magic != bset_magic(&b->c->sb))
230 goto err;
231
232 err = "bad checksum";
233 switch (i->version) {
234 case 0:
235 if (i->csum != csum_set(i))
236 goto err;
237 break;
238 case BCACHE_BSET_VERSION:
239 if (i->csum != btree_csum_set(b, i))
240 goto err;
241 break;
242 }
243
244 err = "empty set";
245 if (i != b->keys.set[0].data && !i->keys)
246 goto err;
247
248 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
249
250 b->written += set_blocks(i, block_bytes(b->c));
251 }
252
253 err = "corrupted btree";
254 for (i = write_block(b);
255 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
256 i = ((void *) i) + block_bytes(b->c))
257 if (i->seq == b->keys.set[0].data->seq)
258 goto err;
259
260 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
261
262 i = b->keys.set[0].data;
263 err = "short btree key";
264 if (b->keys.set[0].size &&
265 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
266 goto err;
267
268 if (b->written < btree_blocks(b))
269 bch_bset_init_next(&b->keys, write_block(b),
270 bset_magic(&b->c->sb));
271out:
272 mempool_free(iter, b->c->fill_iter);
273 return;
274err:
275 set_btree_node_io_error(b);
276 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
277 err, PTR_BUCKET_NR(b->c, &b->key, 0),
278 bset_block_offset(b, i), i->keys);
279 goto out;
280}
281
282static void btree_node_read_endio(struct bio *bio, int error)
283{
284 struct closure *cl = bio->bi_private;
285 closure_put(cl);
286}
287
288static void bch_btree_node_read(struct btree *b)
289{
290 uint64_t start_time = local_clock();
291 struct closure cl;
292 struct bio *bio;
293
294 trace_bcache_btree_read(b);
295
296 closure_init_stack(&cl);
297
298 bio = bch_bbio_alloc(b->c);
299 bio->bi_rw = REQ_META|READ_SYNC;
300 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
301 bio->bi_end_io = btree_node_read_endio;
302 bio->bi_private = &cl;
303
304 bch_bio_map(bio, b->keys.set[0].data);
305
306 bch_submit_bbio(bio, b->c, &b->key, 0);
307 closure_sync(&cl);
308
309 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
310 set_btree_node_io_error(b);
311
312 bch_bbio_free(bio, b->c);
313
314 if (btree_node_io_error(b))
315 goto err;
316
317 bch_btree_node_read_done(b);
318 bch_time_stats_update(&b->c->btree_read_time, start_time);
319
320 return;
321err:
322 bch_cache_set_error(b->c, "io error reading bucket %zu",
323 PTR_BUCKET_NR(b->c, &b->key, 0));
324}
325
326static void btree_complete_write(struct btree *b, struct btree_write *w)
327{
328 if (w->prio_blocked &&
329 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
330 wake_up_allocators(b->c);
331
332 if (w->journal) {
333 atomic_dec_bug(w->journal);
334 __closure_wake_up(&b->c->journal.wait);
335 }
336
337 w->prio_blocked = 0;
338 w->journal = NULL;
339}
340
341static void btree_node_write_unlock(struct closure *cl)
342{
343 struct btree *b = container_of(cl, struct btree, io);
344
345 up(&b->io_mutex);
346}
347
348static void __btree_node_write_done(struct closure *cl)
349{
350 struct btree *b = container_of(cl, struct btree, io);
351 struct btree_write *w = btree_prev_write(b);
352
353 bch_bbio_free(b->bio, b->c);
354 b->bio = NULL;
355 btree_complete_write(b, w);
356
357 if (btree_node_dirty(b))
358 schedule_delayed_work(&b->work, 30 * HZ);
359
360 closure_return_with_destructor(cl, btree_node_write_unlock);
361}
362
363static void btree_node_write_done(struct closure *cl)
364{
365 struct btree *b = container_of(cl, struct btree, io);
366 struct bio_vec *bv;
367 int n;
368
369 bio_for_each_segment_all(bv, b->bio, n)
370 __free_page(bv->bv_page);
371
372 __btree_node_write_done(cl);
373}
374
375static void btree_node_write_endio(struct bio *bio, int error)
376{
377 struct closure *cl = bio->bi_private;
378 struct btree *b = container_of(cl, struct btree, io);
379
380 if (error)
381 set_btree_node_io_error(b);
382
383 bch_bbio_count_io_errors(b->c, bio, error, "writing btree");
384 closure_put(cl);
385}
386
387static void do_btree_node_write(struct btree *b)
388{
389 struct closure *cl = &b->io;
390 struct bset *i = btree_bset_last(b);
391 BKEY_PADDED(key) k;
392
393 i->version = BCACHE_BSET_VERSION;
394 i->csum = btree_csum_set(b, i);
395
396 BUG_ON(b->bio);
397 b->bio = bch_bbio_alloc(b->c);
398
399 b->bio->bi_end_io = btree_node_write_endio;
400 b->bio->bi_private = cl;
401 b->bio->bi_rw = REQ_META|WRITE_SYNC|REQ_FUA;
402 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
403 bch_bio_map(b->bio, i);
404
405 /*
406 * If we're appending to a leaf node, we don't technically need FUA -
407 * this write just needs to be persisted before the next journal write,
408 * which will be marked FLUSH|FUA.
409 *
410 * Similarly if we're writing a new btree root - the pointer is going to
411 * be in the next journal entry.
412 *
413 * But if we're writing a new btree node (that isn't a root) or
414 * appending to a non leaf btree node, we need either FUA or a flush
415 * when we write the parent with the new pointer. FUA is cheaper than a
416 * flush, and writes appending to leaf nodes aren't blocking anything so
417 * just make all btree node writes FUA to keep things sane.
418 */
419
420 bkey_copy(&k.key, &b->key);
421 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
422 bset_sector_offset(&b->keys, i));
423
424 if (!bio_alloc_pages(b->bio, GFP_NOIO)) {
425 int j;
426 struct bio_vec *bv;
427 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
428
429 bio_for_each_segment_all(bv, b->bio, j)
430 memcpy(page_address(bv->bv_page),
431 base + j * PAGE_SIZE, PAGE_SIZE);
432
433 bch_submit_bbio(b->bio, b->c, &k.key, 0);
434
435 continue_at(cl, btree_node_write_done, NULL);
436 } else {
437 b->bio->bi_vcnt = 0;
438 bch_bio_map(b->bio, i);
439
440 bch_submit_bbio(b->bio, b->c, &k.key, 0);
441
442 closure_sync(cl);
443 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
444 }
445}
446
447void __bch_btree_node_write(struct btree *b, struct closure *parent)
448{
449 struct bset *i = btree_bset_last(b);
450
451 lockdep_assert_held(&b->write_lock);
452
453 trace_bcache_btree_write(b);
454
455 BUG_ON(current->bio_list);
456 BUG_ON(b->written >= btree_blocks(b));
457 BUG_ON(b->written && !i->keys);
458 BUG_ON(btree_bset_first(b)->seq != i->seq);
459 bch_check_keys(&b->keys, "writing");
460
461 cancel_delayed_work(&b->work);
462
463 /* If caller isn't waiting for write, parent refcount is cache set */
464 down(&b->io_mutex);
465 closure_init(&b->io, parent ?: &b->c->cl);
466
467 clear_bit(BTREE_NODE_dirty, &b->flags);
468 change_bit(BTREE_NODE_write_idx, &b->flags);
469
470 do_btree_node_write(b);
471
472 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
473 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
474
475 b->written += set_blocks(i, block_bytes(b->c));
476}
477
478void bch_btree_node_write(struct btree *b, struct closure *parent)
479{
480 unsigned nsets = b->keys.nsets;
481
482 lockdep_assert_held(&b->lock);
483
484 __bch_btree_node_write(b, parent);
485
486 /*
487 * do verify if there was more than one set initially (i.e. we did a
488 * sort) and we sorted down to a single set:
489 */
490 if (nsets && !b->keys.nsets)
491 bch_btree_verify(b);
492
493 bch_btree_init_next(b);
494}
495
496static void bch_btree_node_write_sync(struct btree *b)
497{
498 struct closure cl;
499
500 closure_init_stack(&cl);
501
502 mutex_lock(&b->write_lock);
503 bch_btree_node_write(b, &cl);
504 mutex_unlock(&b->write_lock);
505
506 closure_sync(&cl);
507}
508
509static void btree_node_write_work(struct work_struct *w)
510{
511 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
512
513 mutex_lock(&b->write_lock);
514 if (btree_node_dirty(b))
515 __bch_btree_node_write(b, NULL);
516 mutex_unlock(&b->write_lock);
517}
518
519static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
520{
521 struct bset *i = btree_bset_last(b);
522 struct btree_write *w = btree_current_write(b);
523
524 lockdep_assert_held(&b->write_lock);
525
526 BUG_ON(!b->written);
527 BUG_ON(!i->keys);
528
529 if (!btree_node_dirty(b))
530 schedule_delayed_work(&b->work, 30 * HZ);
531
532 set_btree_node_dirty(b);
533
534 if (journal_ref) {
535 if (w->journal &&
536 journal_pin_cmp(b->c, w->journal, journal_ref)) {
537 atomic_dec_bug(w->journal);
538 w->journal = NULL;
539 }
540
541 if (!w->journal) {
542 w->journal = journal_ref;
543 atomic_inc(w->journal);
544 }
545 }
546
547 /* Force write if set is too big */
548 if (set_bytes(i) > PAGE_SIZE - 48 &&
549 !current->bio_list)
550 bch_btree_node_write(b, NULL);
551}
552
553/*
554 * Btree in memory cache - allocation/freeing
555 * mca -> memory cache
556 */
557
558#define mca_reserve(c) (((c->root && c->root->level) \
559 ? c->root->level : 1) * 8 + 16)
560#define mca_can_free(c) \
561 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
562
563static void mca_data_free(struct btree *b)
564{
565 BUG_ON(b->io_mutex.count != 1);
566
567 bch_btree_keys_free(&b->keys);
568
569 b->c->btree_cache_used--;
570 list_move(&b->list, &b->c->btree_cache_freed);
571}
572
573static void mca_bucket_free(struct btree *b)
574{
575 BUG_ON(btree_node_dirty(b));
576
577 b->key.ptr[0] = 0;
578 hlist_del_init_rcu(&b->hash);
579 list_move(&b->list, &b->c->btree_cache_freeable);
580}
581
582static unsigned btree_order(struct bkey *k)
583{
584 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
585}
586
587static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
588{
589 if (!bch_btree_keys_alloc(&b->keys,
590 max_t(unsigned,
591 ilog2(b->c->btree_pages),
592 btree_order(k)),
593 gfp)) {
594 b->c->btree_cache_used++;
595 list_move(&b->list, &b->c->btree_cache);
596 } else {
597 list_move(&b->list, &b->c->btree_cache_freed);
598 }
599}
600
601static struct btree *mca_bucket_alloc(struct cache_set *c,
602 struct bkey *k, gfp_t gfp)
603{
604 struct btree *b = kzalloc(sizeof(struct btree), gfp);
605 if (!b)
606 return NULL;
607
608 init_rwsem(&b->lock);
609 lockdep_set_novalidate_class(&b->lock);
610 mutex_init(&b->write_lock);
611 lockdep_set_novalidate_class(&b->write_lock);
612 INIT_LIST_HEAD(&b->list);
613 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
614 b->c = c;
615 sema_init(&b->io_mutex, 1);
616
617 mca_data_alloc(b, k, gfp);
618 return b;
619}
620
621static int mca_reap(struct btree *b, unsigned min_order, bool flush)
622{
623 struct closure cl;
624
625 closure_init_stack(&cl);
626 lockdep_assert_held(&b->c->bucket_lock);
627
628 if (!down_write_trylock(&b->lock))
629 return -ENOMEM;
630
631 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
632
633 if (b->keys.page_order < min_order)
634 goto out_unlock;
635
636 if (!flush) {
637 if (btree_node_dirty(b))
638 goto out_unlock;
639
640 if (down_trylock(&b->io_mutex))
641 goto out_unlock;
642 up(&b->io_mutex);
643 }
644
645 mutex_lock(&b->write_lock);
646 if (btree_node_dirty(b))
647 __bch_btree_node_write(b, &cl);
648 mutex_unlock(&b->write_lock);
649
650 closure_sync(&cl);
651
652 /* wait for any in flight btree write */
653 down(&b->io_mutex);
654 up(&b->io_mutex);
655
656 return 0;
657out_unlock:
658 rw_unlock(true, b);
659 return -ENOMEM;
660}
661
662static unsigned long bch_mca_scan(struct shrinker *shrink,
663 struct shrink_control *sc)
664{
665 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
666 struct btree *b, *t;
667 unsigned long i, nr = sc->nr_to_scan;
668 unsigned long freed = 0;
669
670 if (c->shrinker_disabled)
671 return SHRINK_STOP;
672
673 if (c->btree_cache_alloc_lock)
674 return SHRINK_STOP;
675
676 /* Return -1 if we can't do anything right now */
677 if (sc->gfp_mask & __GFP_IO)
678 mutex_lock(&c->bucket_lock);
679 else if (!mutex_trylock(&c->bucket_lock))
680 return -1;
681
682 /*
683 * It's _really_ critical that we don't free too many btree nodes - we
684 * have to always leave ourselves a reserve. The reserve is how we
685 * guarantee that allocating memory for a new btree node can always
686 * succeed, so that inserting keys into the btree can always succeed and
687 * IO can always make forward progress:
688 */
689 nr /= c->btree_pages;
690 nr = min_t(unsigned long, nr, mca_can_free(c));
691
692 i = 0;
693 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
694 if (freed >= nr)
695 break;
696
697 if (++i > 3 &&
698 !mca_reap(b, 0, false)) {
699 mca_data_free(b);
700 rw_unlock(true, b);
701 freed++;
702 }
703 }
704
705 for (i = 0; (nr--) && i < c->btree_cache_used; i++) {
706 if (list_empty(&c->btree_cache))
707 goto out;
708
709 b = list_first_entry(&c->btree_cache, struct btree, list);
710 list_rotate_left(&c->btree_cache);
711
712 if (!b->accessed &&
713 !mca_reap(b, 0, false)) {
714 mca_bucket_free(b);
715 mca_data_free(b);
716 rw_unlock(true, b);
717 freed++;
718 } else
719 b->accessed = 0;
720 }
721out:
722 mutex_unlock(&c->bucket_lock);
723 return freed;
724}
725
726static unsigned long bch_mca_count(struct shrinker *shrink,
727 struct shrink_control *sc)
728{
729 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
730
731 if (c->shrinker_disabled)
732 return 0;
733
734 if (c->btree_cache_alloc_lock)
735 return 0;
736
737 return mca_can_free(c) * c->btree_pages;
738}
739
740void bch_btree_cache_free(struct cache_set *c)
741{
742 struct btree *b;
743 struct closure cl;
744 closure_init_stack(&cl);
745
746 if (c->shrink.list.next)
747 unregister_shrinker(&c->shrink);
748
749 mutex_lock(&c->bucket_lock);
750
751#ifdef CONFIG_BCACHE_DEBUG
752 if (c->verify_data)
753 list_move(&c->verify_data->list, &c->btree_cache);
754
755 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
756#endif
757
758 list_splice(&c->btree_cache_freeable,
759 &c->btree_cache);
760
761 while (!list_empty(&c->btree_cache)) {
762 b = list_first_entry(&c->btree_cache, struct btree, list);
763
764 if (btree_node_dirty(b))
765 btree_complete_write(b, btree_current_write(b));
766 clear_bit(BTREE_NODE_dirty, &b->flags);
767
768 mca_data_free(b);
769 }
770
771 while (!list_empty(&c->btree_cache_freed)) {
772 b = list_first_entry(&c->btree_cache_freed,
773 struct btree, list);
774 list_del(&b->list);
775 cancel_delayed_work_sync(&b->work);
776 kfree(b);
777 }
778
779 mutex_unlock(&c->bucket_lock);
780}
781
782int bch_btree_cache_alloc(struct cache_set *c)
783{
784 unsigned i;
785
786 for (i = 0; i < mca_reserve(c); i++)
787 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
788 return -ENOMEM;
789
790 list_splice_init(&c->btree_cache,
791 &c->btree_cache_freeable);
792
793#ifdef CONFIG_BCACHE_DEBUG
794 mutex_init(&c->verify_lock);
795
796 c->verify_ondisk = (void *)
797 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
798
799 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
800
801 if (c->verify_data &&
802 c->verify_data->keys.set->data)
803 list_del_init(&c->verify_data->list);
804 else
805 c->verify_data = NULL;
806#endif
807
808 c->shrink.count_objects = bch_mca_count;
809 c->shrink.scan_objects = bch_mca_scan;
810 c->shrink.seeks = 4;
811 c->shrink.batch = c->btree_pages * 2;
812 register_shrinker(&c->shrink);
813
814 return 0;
815}
816
817/* Btree in memory cache - hash table */
818
819static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
820{
821 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
822}
823
824static struct btree *mca_find(struct cache_set *c, struct bkey *k)
825{
826 struct btree *b;
827
828 rcu_read_lock();
829 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
830 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
831 goto out;
832 b = NULL;
833out:
834 rcu_read_unlock();
835 return b;
836}
837
838static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
839{
840 struct task_struct *old;
841
842 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
843 if (old && old != current) {
844 if (op)
845 prepare_to_wait(&c->btree_cache_wait, &op->wait,
846 TASK_UNINTERRUPTIBLE);
847 return -EINTR;
848 }
849
850 return 0;
851}
852
853static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
854 struct bkey *k)
855{
856 struct btree *b;
857
858 trace_bcache_btree_cache_cannibalize(c);
859
860 if (mca_cannibalize_lock(c, op))
861 return ERR_PTR(-EINTR);
862
863 list_for_each_entry_reverse(b, &c->btree_cache, list)
864 if (!mca_reap(b, btree_order(k), false))
865 return b;
866
867 list_for_each_entry_reverse(b, &c->btree_cache, list)
868 if (!mca_reap(b, btree_order(k), true))
869 return b;
870
871 WARN(1, "btree cache cannibalize failed\n");
872 return ERR_PTR(-ENOMEM);
873}
874
875/*
876 * We can only have one thread cannibalizing other cached btree nodes at a time,
877 * or we'll deadlock. We use an open coded mutex to ensure that, which a
878 * cannibalize_bucket() will take. This means every time we unlock the root of
879 * the btree, we need to release this lock if we have it held.
880 */
881static void bch_cannibalize_unlock(struct cache_set *c)
882{
883 if (c->btree_cache_alloc_lock == current) {
884 c->btree_cache_alloc_lock = NULL;
885 wake_up(&c->btree_cache_wait);
886 }
887}
888
889static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
890 struct bkey *k, int level)
891{
892 struct btree *b;
893
894 BUG_ON(current->bio_list);
895
896 lockdep_assert_held(&c->bucket_lock);
897
898 if (mca_find(c, k))
899 return NULL;
900
901 /* btree_free() doesn't free memory; it sticks the node on the end of
902 * the list. Check if there's any freed nodes there:
903 */
904 list_for_each_entry(b, &c->btree_cache_freeable, list)
905 if (!mca_reap(b, btree_order(k), false))
906 goto out;
907
908 /* We never free struct btree itself, just the memory that holds the on
909 * disk node. Check the freed list before allocating a new one:
910 */
911 list_for_each_entry(b, &c->btree_cache_freed, list)
912 if (!mca_reap(b, 0, false)) {
913 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
914 if (!b->keys.set[0].data)
915 goto err;
916 else
917 goto out;
918 }
919
920 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
921 if (!b)
922 goto err;
923
924 BUG_ON(!down_write_trylock(&b->lock));
925 if (!b->keys.set->data)
926 goto err;
927out:
928 BUG_ON(b->io_mutex.count != 1);
929
930 bkey_copy(&b->key, k);
931 list_move(&b->list, &c->btree_cache);
932 hlist_del_init_rcu(&b->hash);
933 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
934
935 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
936 b->parent = (void *) ~0UL;
937 b->flags = 0;
938 b->written = 0;
939 b->level = level;
940
941 if (!b->level)
942 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
943 &b->c->expensive_debug_checks);
944 else
945 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
946 &b->c->expensive_debug_checks);
947
948 return b;
949err:
950 if (b)
951 rw_unlock(true, b);
952
953 b = mca_cannibalize(c, op, k);
954 if (!IS_ERR(b))
955 goto out;
956
957 return b;
958}
959
960/**
961 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
962 * in from disk if necessary.
963 *
964 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
965 *
966 * The btree node will have either a read or a write lock held, depending on
967 * level and op->lock.
968 */
969struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
970 struct bkey *k, int level, bool write)
971{
972 int i = 0;
973 struct btree *b;
974
975 BUG_ON(level < 0);
976retry:
977 b = mca_find(c, k);
978
979 if (!b) {
980 if (current->bio_list)
981 return ERR_PTR(-EAGAIN);
982
983 mutex_lock(&c->bucket_lock);
984 b = mca_alloc(c, op, k, level);
985 mutex_unlock(&c->bucket_lock);
986
987 if (!b)
988 goto retry;
989 if (IS_ERR(b))
990 return b;
991
992 bch_btree_node_read(b);
993
994 if (!write)
995 downgrade_write(&b->lock);
996 } else {
997 rw_lock(write, b, level);
998 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
999 rw_unlock(write, b);
1000 goto retry;
1001 }
1002 BUG_ON(b->level != level);
1003 }
1004
1005 b->accessed = 1;
1006
1007 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1008 prefetch(b->keys.set[i].tree);
1009 prefetch(b->keys.set[i].data);
1010 }
1011
1012 for (; i <= b->keys.nsets; i++)
1013 prefetch(b->keys.set[i].data);
1014
1015 if (btree_node_io_error(b)) {
1016 rw_unlock(write, b);
1017 return ERR_PTR(-EIO);
1018 }
1019
1020 BUG_ON(!b->written);
1021
1022 return b;
1023}
1024
1025static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level)
1026{
1027 struct btree *b;
1028
1029 mutex_lock(&c->bucket_lock);
1030 b = mca_alloc(c, NULL, k, level);
1031 mutex_unlock(&c->bucket_lock);
1032
1033 if (!IS_ERR_OR_NULL(b)) {
1034 bch_btree_node_read(b);
1035 rw_unlock(true, b);
1036 }
1037}
1038
1039/* Btree alloc */
1040
1041static void btree_node_free(struct btree *b)
1042{
1043 trace_bcache_btree_node_free(b);
1044
1045 BUG_ON(b == b->c->root);
1046
1047 mutex_lock(&b->write_lock);
1048
1049 if (btree_node_dirty(b))
1050 btree_complete_write(b, btree_current_write(b));
1051 clear_bit(BTREE_NODE_dirty, &b->flags);
1052
1053 mutex_unlock(&b->write_lock);
1054
1055 cancel_delayed_work(&b->work);
1056
1057 mutex_lock(&b->c->bucket_lock);
1058 bch_bucket_free(b->c, &b->key);
1059 mca_bucket_free(b);
1060 mutex_unlock(&b->c->bucket_lock);
1061}
1062
1063struct btree *bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1064 int level)
1065{
1066 BKEY_PADDED(key) k;
1067 struct btree *b = ERR_PTR(-EAGAIN);
1068
1069 mutex_lock(&c->bucket_lock);
1070retry:
1071 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, op != NULL))
1072 goto err;
1073
1074 bkey_put(c, &k.key);
1075 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1076
1077 b = mca_alloc(c, op, &k.key, level);
1078 if (IS_ERR(b))
1079 goto err_free;
1080
1081 if (!b) {
1082 cache_bug(c,
1083 "Tried to allocate bucket that was in btree cache");
1084 goto retry;
1085 }
1086
1087 b->accessed = 1;
1088 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1089
1090 mutex_unlock(&c->bucket_lock);
1091
1092 trace_bcache_btree_node_alloc(b);
1093 return b;
1094err_free:
1095 bch_bucket_free(c, &k.key);
1096err:
1097 mutex_unlock(&c->bucket_lock);
1098
1099 trace_bcache_btree_node_alloc_fail(b);
1100 return b;
1101}
1102
1103static struct btree *btree_node_alloc_replacement(struct btree *b,
1104 struct btree_op *op)
1105{
1106 struct btree *n = bch_btree_node_alloc(b->c, op, b->level);
1107 if (!IS_ERR_OR_NULL(n)) {
1108 mutex_lock(&n->write_lock);
1109 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1110 bkey_copy_key(&n->key, &b->key);
1111 mutex_unlock(&n->write_lock);
1112 }
1113
1114 return n;
1115}
1116
1117static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1118{
1119 unsigned i;
1120
1121 mutex_lock(&b->c->bucket_lock);
1122
1123 atomic_inc(&b->c->prio_blocked);
1124
1125 bkey_copy(k, &b->key);
1126 bkey_copy_key(k, &ZERO_KEY);
1127
1128 for (i = 0; i < KEY_PTRS(k); i++)
1129 SET_PTR_GEN(k, i,
1130 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1131 PTR_BUCKET(b->c, &b->key, i)));
1132
1133 mutex_unlock(&b->c->bucket_lock);
1134}
1135
1136static int btree_check_reserve(struct btree *b, struct btree_op *op)
1137{
1138 struct cache_set *c = b->c;
1139 struct cache *ca;
1140 unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
1141
1142 mutex_lock(&c->bucket_lock);
1143
1144 for_each_cache(ca, c, i)
1145 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1146 if (op)
1147 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1148 TASK_UNINTERRUPTIBLE);
1149 mutex_unlock(&c->bucket_lock);
1150 return -EINTR;
1151 }
1152
1153 mutex_unlock(&c->bucket_lock);
1154
1155 return mca_cannibalize_lock(b->c, op);
1156}
1157
1158/* Garbage collection */
1159
1160static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1161 struct bkey *k)
1162{
1163 uint8_t stale = 0;
1164 unsigned i;
1165 struct bucket *g;
1166
1167 /*
1168 * ptr_invalid() can't return true for the keys that mark btree nodes as
1169 * freed, but since ptr_bad() returns true we'll never actually use them
1170 * for anything and thus we don't want mark their pointers here
1171 */
1172 if (!bkey_cmp(k, &ZERO_KEY))
1173 return stale;
1174
1175 for (i = 0; i < KEY_PTRS(k); i++) {
1176 if (!ptr_available(c, k, i))
1177 continue;
1178
1179 g = PTR_BUCKET(c, k, i);
1180
1181 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1182 g->last_gc = PTR_GEN(k, i);
1183
1184 if (ptr_stale(c, k, i)) {
1185 stale = max(stale, ptr_stale(c, k, i));
1186 continue;
1187 }
1188
1189 cache_bug_on(GC_MARK(g) &&
1190 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1191 c, "inconsistent ptrs: mark = %llu, level = %i",
1192 GC_MARK(g), level);
1193
1194 if (level)
1195 SET_GC_MARK(g, GC_MARK_METADATA);
1196 else if (KEY_DIRTY(k))
1197 SET_GC_MARK(g, GC_MARK_DIRTY);
1198 else if (!GC_MARK(g))
1199 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1200
1201 /* guard against overflow */
1202 SET_GC_SECTORS_USED(g, min_t(unsigned,
1203 GC_SECTORS_USED(g) + KEY_SIZE(k),
1204 MAX_GC_SECTORS_USED));
1205
1206 BUG_ON(!GC_SECTORS_USED(g));
1207 }
1208
1209 return stale;
1210}
1211
1212#define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1213
1214void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1215{
1216 unsigned i;
1217
1218 for (i = 0; i < KEY_PTRS(k); i++)
1219 if (ptr_available(c, k, i) &&
1220 !ptr_stale(c, k, i)) {
1221 struct bucket *b = PTR_BUCKET(c, k, i);
1222
1223 b->gen = PTR_GEN(k, i);
1224
1225 if (level && bkey_cmp(k, &ZERO_KEY))
1226 b->prio = BTREE_PRIO;
1227 else if (!level && b->prio == BTREE_PRIO)
1228 b->prio = INITIAL_PRIO;
1229 }
1230
1231 __bch_btree_mark_key(c, level, k);
1232}
1233
1234static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1235{
1236 uint8_t stale = 0;
1237 unsigned keys = 0, good_keys = 0;
1238 struct bkey *k;
1239 struct btree_iter iter;
1240 struct bset_tree *t;
1241
1242 gc->nodes++;
1243
1244 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1245 stale = max(stale, btree_mark_key(b, k));
1246 keys++;
1247
1248 if (bch_ptr_bad(&b->keys, k))
1249 continue;
1250
1251 gc->key_bytes += bkey_u64s(k);
1252 gc->nkeys++;
1253 good_keys++;
1254
1255 gc->data += KEY_SIZE(k);
1256 }
1257
1258 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1259 btree_bug_on(t->size &&
1260 bset_written(&b->keys, t) &&
1261 bkey_cmp(&b->key, &t->end) < 0,
1262 b, "found short btree key in gc");
1263
1264 if (b->c->gc_always_rewrite)
1265 return true;
1266
1267 if (stale > 10)
1268 return true;
1269
1270 if ((keys - good_keys) * 2 > keys)
1271 return true;
1272
1273 return false;
1274}
1275
1276#define GC_MERGE_NODES 4U
1277
1278struct gc_merge_info {
1279 struct btree *b;
1280 unsigned keys;
1281};
1282
1283static int bch_btree_insert_node(struct btree *, struct btree_op *,
1284 struct keylist *, atomic_t *, struct bkey *);
1285
1286static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1287 struct gc_stat *gc, struct gc_merge_info *r)
1288{
1289 unsigned i, nodes = 0, keys = 0, blocks;
1290 struct btree *new_nodes[GC_MERGE_NODES];
1291 struct keylist keylist;
1292 struct closure cl;
1293 struct bkey *k;
1294
1295 bch_keylist_init(&keylist);
1296
1297 if (btree_check_reserve(b, NULL))
1298 return 0;
1299
1300 memset(new_nodes, 0, sizeof(new_nodes));
1301 closure_init_stack(&cl);
1302
1303 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1304 keys += r[nodes++].keys;
1305
1306 blocks = btree_default_blocks(b->c) * 2 / 3;
1307
1308 if (nodes < 2 ||
1309 __set_blocks(b->keys.set[0].data, keys,
1310 block_bytes(b->c)) > blocks * (nodes - 1))
1311 return 0;
1312
1313 for (i = 0; i < nodes; i++) {
1314 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1315 if (IS_ERR_OR_NULL(new_nodes[i]))
1316 goto out_nocoalesce;
1317 }
1318
1319 /*
1320 * We have to check the reserve here, after we've allocated our new
1321 * nodes, to make sure the insert below will succeed - we also check
1322 * before as an optimization to potentially avoid a bunch of expensive
1323 * allocs/sorts
1324 */
1325 if (btree_check_reserve(b, NULL))
1326 goto out_nocoalesce;
1327
1328 for (i = 0; i < nodes; i++)
1329 mutex_lock(&new_nodes[i]->write_lock);
1330
1331 for (i = nodes - 1; i > 0; --i) {
1332 struct bset *n1 = btree_bset_first(new_nodes[i]);
1333 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1334 struct bkey *k, *last = NULL;
1335
1336 keys = 0;
1337
1338 if (i > 1) {
1339 for (k = n2->start;
1340 k < bset_bkey_last(n2);
1341 k = bkey_next(k)) {
1342 if (__set_blocks(n1, n1->keys + keys +
1343 bkey_u64s(k),
1344 block_bytes(b->c)) > blocks)
1345 break;
1346
1347 last = k;
1348 keys += bkey_u64s(k);
1349 }
1350 } else {
1351 /*
1352 * Last node we're not getting rid of - we're getting
1353 * rid of the node at r[0]. Have to try and fit all of
1354 * the remaining keys into this node; we can't ensure
1355 * they will always fit due to rounding and variable
1356 * length keys (shouldn't be possible in practice,
1357 * though)
1358 */
1359 if (__set_blocks(n1, n1->keys + n2->keys,
1360 block_bytes(b->c)) >
1361 btree_blocks(new_nodes[i]))
1362 goto out_nocoalesce;
1363
1364 keys = n2->keys;
1365 /* Take the key of the node we're getting rid of */
1366 last = &r->b->key;
1367 }
1368
1369 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1370 btree_blocks(new_nodes[i]));
1371
1372 if (last)
1373 bkey_copy_key(&new_nodes[i]->key, last);
1374
1375 memcpy(bset_bkey_last(n1),
1376 n2->start,
1377 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1378
1379 n1->keys += keys;
1380 r[i].keys = n1->keys;
1381
1382 memmove(n2->start,
1383 bset_bkey_idx(n2, keys),
1384 (void *) bset_bkey_last(n2) -
1385 (void *) bset_bkey_idx(n2, keys));
1386
1387 n2->keys -= keys;
1388
1389 if (__bch_keylist_realloc(&keylist,
1390 bkey_u64s(&new_nodes[i]->key)))
1391 goto out_nocoalesce;
1392
1393 bch_btree_node_write(new_nodes[i], &cl);
1394 bch_keylist_add(&keylist, &new_nodes[i]->key);
1395 }
1396
1397 for (i = 0; i < nodes; i++)
1398 mutex_unlock(&new_nodes[i]->write_lock);
1399
1400 closure_sync(&cl);
1401
1402 /* We emptied out this node */
1403 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1404 btree_node_free(new_nodes[0]);
1405 rw_unlock(true, new_nodes[0]);
1406
1407 for (i = 0; i < nodes; i++) {
1408 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1409 goto out_nocoalesce;
1410
1411 make_btree_freeing_key(r[i].b, keylist.top);
1412 bch_keylist_push(&keylist);
1413 }
1414
1415 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1416 BUG_ON(!bch_keylist_empty(&keylist));
1417
1418 for (i = 0; i < nodes; i++) {
1419 btree_node_free(r[i].b);
1420 rw_unlock(true, r[i].b);
1421
1422 r[i].b = new_nodes[i];
1423 }
1424
1425 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1426 r[nodes - 1].b = ERR_PTR(-EINTR);
1427
1428 trace_bcache_btree_gc_coalesce(nodes);
1429 gc->nodes--;
1430
1431 bch_keylist_free(&keylist);
1432
1433 /* Invalidated our iterator */
1434 return -EINTR;
1435
1436out_nocoalesce:
1437 closure_sync(&cl);
1438 bch_keylist_free(&keylist);
1439
1440 while ((k = bch_keylist_pop(&keylist)))
1441 if (!bkey_cmp(k, &ZERO_KEY))
1442 atomic_dec(&b->c->prio_blocked);
1443
1444 for (i = 0; i < nodes; i++)
1445 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1446 btree_node_free(new_nodes[i]);
1447 rw_unlock(true, new_nodes[i]);
1448 }
1449 return 0;
1450}
1451
1452static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1453 struct btree *replace)
1454{
1455 struct keylist keys;
1456 struct btree *n;
1457
1458 if (btree_check_reserve(b, NULL))
1459 return 0;
1460
1461 n = btree_node_alloc_replacement(replace, NULL);
1462
1463 /* recheck reserve after allocating replacement node */
1464 if (btree_check_reserve(b, NULL)) {
1465 btree_node_free(n);
1466 rw_unlock(true, n);
1467 return 0;
1468 }
1469
1470 bch_btree_node_write_sync(n);
1471
1472 bch_keylist_init(&keys);
1473 bch_keylist_add(&keys, &n->key);
1474
1475 make_btree_freeing_key(replace, keys.top);
1476 bch_keylist_push(&keys);
1477
1478 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1479 BUG_ON(!bch_keylist_empty(&keys));
1480
1481 btree_node_free(replace);
1482 rw_unlock(true, n);
1483
1484 /* Invalidated our iterator */
1485 return -EINTR;
1486}
1487
1488static unsigned btree_gc_count_keys(struct btree *b)
1489{
1490 struct bkey *k;
1491 struct btree_iter iter;
1492 unsigned ret = 0;
1493
1494 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1495 ret += bkey_u64s(k);
1496
1497 return ret;
1498}
1499
1500static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1501 struct closure *writes, struct gc_stat *gc)
1502{
1503 int ret = 0;
1504 bool should_rewrite;
1505 struct bkey *k;
1506 struct btree_iter iter;
1507 struct gc_merge_info r[GC_MERGE_NODES];
1508 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1509
1510 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1511
1512 for (i = r; i < r + ARRAY_SIZE(r); i++)
1513 i->b = ERR_PTR(-EINTR);
1514
1515 while (1) {
1516 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1517 if (k) {
1518 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1519 true);
1520 if (IS_ERR(r->b)) {
1521 ret = PTR_ERR(r->b);
1522 break;
1523 }
1524
1525 r->keys = btree_gc_count_keys(r->b);
1526
1527 ret = btree_gc_coalesce(b, op, gc, r);
1528 if (ret)
1529 break;
1530 }
1531
1532 if (!last->b)
1533 break;
1534
1535 if (!IS_ERR(last->b)) {
1536 should_rewrite = btree_gc_mark_node(last->b, gc);
1537 if (should_rewrite) {
1538 ret = btree_gc_rewrite_node(b, op, last->b);
1539 if (ret)
1540 break;
1541 }
1542
1543 if (last->b->level) {
1544 ret = btree_gc_recurse(last->b, op, writes, gc);
1545 if (ret)
1546 break;
1547 }
1548
1549 bkey_copy_key(&b->c->gc_done, &last->b->key);
1550
1551 /*
1552 * Must flush leaf nodes before gc ends, since replace
1553 * operations aren't journalled
1554 */
1555 mutex_lock(&last->b->write_lock);
1556 if (btree_node_dirty(last->b))
1557 bch_btree_node_write(last->b, writes);
1558 mutex_unlock(&last->b->write_lock);
1559 rw_unlock(true, last->b);
1560 }
1561
1562 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1563 r->b = NULL;
1564
1565 if (need_resched()) {
1566 ret = -EAGAIN;
1567 break;
1568 }
1569 }
1570
1571 for (i = r; i < r + ARRAY_SIZE(r); i++)
1572 if (!IS_ERR_OR_NULL(i->b)) {
1573 mutex_lock(&i->b->write_lock);
1574 if (btree_node_dirty(i->b))
1575 bch_btree_node_write(i->b, writes);
1576 mutex_unlock(&i->b->write_lock);
1577 rw_unlock(true, i->b);
1578 }
1579
1580 return ret;
1581}
1582
1583static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1584 struct closure *writes, struct gc_stat *gc)
1585{
1586 struct btree *n = NULL;
1587 int ret = 0;
1588 bool should_rewrite;
1589
1590 should_rewrite = btree_gc_mark_node(b, gc);
1591 if (should_rewrite) {
1592 n = btree_node_alloc_replacement(b, NULL);
1593
1594 if (!IS_ERR_OR_NULL(n)) {
1595 bch_btree_node_write_sync(n);
1596
1597 bch_btree_set_root(n);
1598 btree_node_free(b);
1599 rw_unlock(true, n);
1600
1601 return -EINTR;
1602 }
1603 }
1604
1605 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1606
1607 if (b->level) {
1608 ret = btree_gc_recurse(b, op, writes, gc);
1609 if (ret)
1610 return ret;
1611 }
1612
1613 bkey_copy_key(&b->c->gc_done, &b->key);
1614
1615 return ret;
1616}
1617
1618static void btree_gc_start(struct cache_set *c)
1619{
1620 struct cache *ca;
1621 struct bucket *b;
1622 unsigned i;
1623
1624 if (!c->gc_mark_valid)
1625 return;
1626
1627 mutex_lock(&c->bucket_lock);
1628
1629 c->gc_mark_valid = 0;
1630 c->gc_done = ZERO_KEY;
1631
1632 for_each_cache(ca, c, i)
1633 for_each_bucket(b, ca) {
1634 b->last_gc = b->gen;
1635 if (!atomic_read(&b->pin)) {
1636 SET_GC_MARK(b, 0);
1637 SET_GC_SECTORS_USED(b, 0);
1638 }
1639 }
1640
1641 mutex_unlock(&c->bucket_lock);
1642}
1643
1644static size_t bch_btree_gc_finish(struct cache_set *c)
1645{
1646 size_t available = 0;
1647 struct bucket *b;
1648 struct cache *ca;
1649 unsigned i;
1650
1651 mutex_lock(&c->bucket_lock);
1652
1653 set_gc_sectors(c);
1654 c->gc_mark_valid = 1;
1655 c->need_gc = 0;
1656
1657 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1658 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1659 GC_MARK_METADATA);
1660
1661 /* don't reclaim buckets to which writeback keys point */
1662 rcu_read_lock();
1663 for (i = 0; i < c->nr_uuids; i++) {
1664 struct bcache_device *d = c->devices[i];
1665 struct cached_dev *dc;
1666 struct keybuf_key *w, *n;
1667 unsigned j;
1668
1669 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1670 continue;
1671 dc = container_of(d, struct cached_dev, disk);
1672
1673 spin_lock(&dc->writeback_keys.lock);
1674 rbtree_postorder_for_each_entry_safe(w, n,
1675 &dc->writeback_keys.keys, node)
1676 for (j = 0; j < KEY_PTRS(&w->key); j++)
1677 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1678 GC_MARK_DIRTY);
1679 spin_unlock(&dc->writeback_keys.lock);
1680 }
1681 rcu_read_unlock();
1682
1683 for_each_cache(ca, c, i) {
1684 uint64_t *i;
1685
1686 ca->invalidate_needs_gc = 0;
1687
1688 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1689 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1690
1691 for (i = ca->prio_buckets;
1692 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1693 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1694
1695 for_each_bucket(b, ca) {
1696 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1697
1698 if (atomic_read(&b->pin))
1699 continue;
1700
1701 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1702
1703 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1704 available++;
1705 }
1706 }
1707
1708 mutex_unlock(&c->bucket_lock);
1709 return available;
1710}
1711
1712static void bch_btree_gc(struct cache_set *c)
1713{
1714 int ret;
1715 unsigned long available;
1716 struct gc_stat stats;
1717 struct closure writes;
1718 struct btree_op op;
1719 uint64_t start_time = local_clock();
1720
1721 trace_bcache_gc_start(c);
1722
1723 memset(&stats, 0, sizeof(struct gc_stat));
1724 closure_init_stack(&writes);
1725 bch_btree_op_init(&op, SHRT_MAX);
1726
1727 btree_gc_start(c);
1728
1729 do {
1730 ret = btree_root(gc_root, c, &op, &writes, &stats);
1731 closure_sync(&writes);
1732
1733 if (ret && ret != -EAGAIN)
1734 pr_warn("gc failed!");
1735 } while (ret);
1736
1737 available = bch_btree_gc_finish(c);
1738 wake_up_allocators(c);
1739
1740 bch_time_stats_update(&c->btree_gc_time, start_time);
1741
1742 stats.key_bytes *= sizeof(uint64_t);
1743 stats.data <<= 9;
1744 stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
1745 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1746
1747 trace_bcache_gc_end(c);
1748
1749 bch_moving_gc(c);
1750}
1751
1752static int bch_gc_thread(void *arg)
1753{
1754 struct cache_set *c = arg;
1755 struct cache *ca;
1756 unsigned i;
1757
1758 while (1) {
1759again:
1760 bch_btree_gc(c);
1761
1762 set_current_state(TASK_INTERRUPTIBLE);
1763 if (kthread_should_stop())
1764 break;
1765
1766 mutex_lock(&c->bucket_lock);
1767
1768 for_each_cache(ca, c, i)
1769 if (ca->invalidate_needs_gc) {
1770 mutex_unlock(&c->bucket_lock);
1771 set_current_state(TASK_RUNNING);
1772 goto again;
1773 }
1774
1775 mutex_unlock(&c->bucket_lock);
1776
1777 try_to_freeze();
1778 schedule();
1779 }
1780
1781 return 0;
1782}
1783
1784int bch_gc_thread_start(struct cache_set *c)
1785{
1786 c->gc_thread = kthread_create(bch_gc_thread, c, "bcache_gc");
1787 if (IS_ERR(c->gc_thread))
1788 return PTR_ERR(c->gc_thread);
1789
1790 set_task_state(c->gc_thread, TASK_INTERRUPTIBLE);
1791 return 0;
1792}
1793
1794/* Initial partial gc */
1795
1796static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1797{
1798 int ret = 0;
1799 struct bkey *k, *p = NULL;
1800 struct btree_iter iter;
1801
1802 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1803 bch_initial_mark_key(b->c, b->level, k);
1804
1805 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1806
1807 if (b->level) {
1808 bch_btree_iter_init(&b->keys, &iter, NULL);
1809
1810 do {
1811 k = bch_btree_iter_next_filter(&iter, &b->keys,
1812 bch_ptr_bad);
1813 if (k)
1814 btree_node_prefetch(b->c, k, b->level - 1);
1815
1816 if (p)
1817 ret = btree(check_recurse, p, b, op);
1818
1819 p = k;
1820 } while (p && !ret);
1821 }
1822
1823 return ret;
1824}
1825
1826int bch_btree_check(struct cache_set *c)
1827{
1828 struct btree_op op;
1829
1830 bch_btree_op_init(&op, SHRT_MAX);
1831
1832 return btree_root(check_recurse, c, &op);
1833}
1834
1835void bch_initial_gc_finish(struct cache_set *c)
1836{
1837 struct cache *ca;
1838 struct bucket *b;
1839 unsigned i;
1840
1841 bch_btree_gc_finish(c);
1842
1843 mutex_lock(&c->bucket_lock);
1844
1845 /*
1846 * We need to put some unused buckets directly on the prio freelist in
1847 * order to get the allocator thread started - it needs freed buckets in
1848 * order to rewrite the prios and gens, and it needs to rewrite prios
1849 * and gens in order to free buckets.
1850 *
1851 * This is only safe for buckets that have no live data in them, which
1852 * there should always be some of.
1853 */
1854 for_each_cache(ca, c, i) {
1855 for_each_bucket(b, ca) {
1856 if (fifo_full(&ca->free[RESERVE_PRIO]))
1857 break;
1858
1859 if (bch_can_invalidate_bucket(ca, b) &&
1860 !GC_MARK(b)) {
1861 __bch_invalidate_one_bucket(ca, b);
1862 fifo_push(&ca->free[RESERVE_PRIO],
1863 b - ca->buckets);
1864 }
1865 }
1866 }
1867
1868 mutex_unlock(&c->bucket_lock);
1869}
1870
1871/* Btree insertion */
1872
1873static bool btree_insert_key(struct btree *b, struct bkey *k,
1874 struct bkey *replace_key)
1875{
1876 unsigned status;
1877
1878 BUG_ON(bkey_cmp(k, &b->key) > 0);
1879
1880 status = bch_btree_insert_key(&b->keys, k, replace_key);
1881 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1882 bch_check_keys(&b->keys, "%u for %s", status,
1883 replace_key ? "replace" : "insert");
1884
1885 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1886 status);
1887 return true;
1888 } else
1889 return false;
1890}
1891
1892static size_t insert_u64s_remaining(struct btree *b)
1893{
1894 long ret = bch_btree_keys_u64s_remaining(&b->keys);
1895
1896 /*
1897 * Might land in the middle of an existing extent and have to split it
1898 */
1899 if (b->keys.ops->is_extents)
1900 ret -= KEY_MAX_U64S;
1901
1902 return max(ret, 0L);
1903}
1904
1905static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1906 struct keylist *insert_keys,
1907 struct bkey *replace_key)
1908{
1909 bool ret = false;
1910 int oldsize = bch_count_data(&b->keys);
1911
1912 while (!bch_keylist_empty(insert_keys)) {
1913 struct bkey *k = insert_keys->keys;
1914
1915 if (bkey_u64s(k) > insert_u64s_remaining(b))
1916 break;
1917
1918 if (bkey_cmp(k, &b->key) <= 0) {
1919 if (!b->level)
1920 bkey_put(b->c, k);
1921
1922 ret |= btree_insert_key(b, k, replace_key);
1923 bch_keylist_pop_front(insert_keys);
1924 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
1925 BKEY_PADDED(key) temp;
1926 bkey_copy(&temp.key, insert_keys->keys);
1927
1928 bch_cut_back(&b->key, &temp.key);
1929 bch_cut_front(&b->key, insert_keys->keys);
1930
1931 ret |= btree_insert_key(b, &temp.key, replace_key);
1932 break;
1933 } else {
1934 break;
1935 }
1936 }
1937
1938 if (!ret)
1939 op->insert_collision = true;
1940
1941 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
1942
1943 BUG_ON(bch_count_data(&b->keys) < oldsize);
1944 return ret;
1945}
1946
1947static int btree_split(struct btree *b, struct btree_op *op,
1948 struct keylist *insert_keys,
1949 struct bkey *replace_key)
1950{
1951 bool split;
1952 struct btree *n1, *n2 = NULL, *n3 = NULL;
1953 uint64_t start_time = local_clock();
1954 struct closure cl;
1955 struct keylist parent_keys;
1956
1957 closure_init_stack(&cl);
1958 bch_keylist_init(&parent_keys);
1959
1960 if (btree_check_reserve(b, op)) {
1961 if (!b->level)
1962 return -EINTR;
1963 else
1964 WARN(1, "insufficient reserve for split\n");
1965 }
1966
1967 n1 = btree_node_alloc_replacement(b, op);
1968 if (IS_ERR(n1))
1969 goto err;
1970
1971 split = set_blocks(btree_bset_first(n1),
1972 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
1973
1974 if (split) {
1975 unsigned keys = 0;
1976
1977 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
1978
1979 n2 = bch_btree_node_alloc(b->c, op, b->level);
1980 if (IS_ERR(n2))
1981 goto err_free1;
1982
1983 if (!b->parent) {
1984 n3 = bch_btree_node_alloc(b->c, op, b->level + 1);
1985 if (IS_ERR(n3))
1986 goto err_free2;
1987 }
1988
1989 mutex_lock(&n1->write_lock);
1990 mutex_lock(&n2->write_lock);
1991
1992 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
1993
1994 /*
1995 * Has to be a linear search because we don't have an auxiliary
1996 * search tree yet
1997 */
1998
1999 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2000 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2001 keys));
2002
2003 bkey_copy_key(&n1->key,
2004 bset_bkey_idx(btree_bset_first(n1), keys));
2005 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2006
2007 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2008 btree_bset_first(n1)->keys = keys;
2009
2010 memcpy(btree_bset_first(n2)->start,
2011 bset_bkey_last(btree_bset_first(n1)),
2012 btree_bset_first(n2)->keys * sizeof(uint64_t));
2013
2014 bkey_copy_key(&n2->key, &b->key);
2015
2016 bch_keylist_add(&parent_keys, &n2->key);
2017 bch_btree_node_write(n2, &cl);
2018 mutex_unlock(&n2->write_lock);
2019 rw_unlock(true, n2);
2020 } else {
2021 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2022
2023 mutex_lock(&n1->write_lock);
2024 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2025 }
2026
2027 bch_keylist_add(&parent_keys, &n1->key);
2028 bch_btree_node_write(n1, &cl);
2029 mutex_unlock(&n1->write_lock);
2030
2031 if (n3) {
2032 /* Depth increases, make a new root */
2033 mutex_lock(&n3->write_lock);
2034 bkey_copy_key(&n3->key, &MAX_KEY);
2035 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2036 bch_btree_node_write(n3, &cl);
2037 mutex_unlock(&n3->write_lock);
2038
2039 closure_sync(&cl);
2040 bch_btree_set_root(n3);
2041 rw_unlock(true, n3);
2042 } else if (!b->parent) {
2043 /* Root filled up but didn't need to be split */
2044 closure_sync(&cl);
2045 bch_btree_set_root(n1);
2046 } else {
2047 /* Split a non root node */
2048 closure_sync(&cl);
2049 make_btree_freeing_key(b, parent_keys.top);
2050 bch_keylist_push(&parent_keys);
2051
2052 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2053 BUG_ON(!bch_keylist_empty(&parent_keys));
2054 }
2055
2056 btree_node_free(b);
2057 rw_unlock(true, n1);
2058
2059 bch_time_stats_update(&b->c->btree_split_time, start_time);
2060
2061 return 0;
2062err_free2:
2063 bkey_put(b->c, &n2->key);
2064 btree_node_free(n2);
2065 rw_unlock(true, n2);
2066err_free1:
2067 bkey_put(b->c, &n1->key);
2068 btree_node_free(n1);
2069 rw_unlock(true, n1);
2070err:
2071 WARN(1, "bcache: btree split failed (level %u)", b->level);
2072
2073 if (n3 == ERR_PTR(-EAGAIN) ||
2074 n2 == ERR_PTR(-EAGAIN) ||
2075 n1 == ERR_PTR(-EAGAIN))
2076 return -EAGAIN;
2077
2078 return -ENOMEM;
2079}
2080
2081static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2082 struct keylist *insert_keys,
2083 atomic_t *journal_ref,
2084 struct bkey *replace_key)
2085{
2086 struct closure cl;
2087
2088 BUG_ON(b->level && replace_key);
2089
2090 closure_init_stack(&cl);
2091
2092 mutex_lock(&b->write_lock);
2093
2094 if (write_block(b) != btree_bset_last(b) &&
2095 b->keys.last_set_unwritten)
2096 bch_btree_init_next(b); /* just wrote a set */
2097
2098 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2099 mutex_unlock(&b->write_lock);
2100 goto split;
2101 }
2102
2103 BUG_ON(write_block(b) != btree_bset_last(b));
2104
2105 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2106 if (!b->level)
2107 bch_btree_leaf_dirty(b, journal_ref);
2108 else
2109 bch_btree_node_write(b, &cl);
2110 }
2111
2112 mutex_unlock(&b->write_lock);
2113
2114 /* wait for btree node write if necessary, after unlock */
2115 closure_sync(&cl);
2116
2117 return 0;
2118split:
2119 if (current->bio_list) {
2120 op->lock = b->c->root->level + 1;
2121 return -EAGAIN;
2122 } else if (op->lock <= b->c->root->level) {
2123 op->lock = b->c->root->level + 1;
2124 return -EINTR;
2125 } else {
2126 /* Invalidated all iterators */
2127 int ret = btree_split(b, op, insert_keys, replace_key);
2128
2129 if (bch_keylist_empty(insert_keys))
2130 return 0;
2131 else if (!ret)
2132 return -EINTR;
2133 return ret;
2134 }
2135}
2136
2137int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2138 struct bkey *check_key)
2139{
2140 int ret = -EINTR;
2141 uint64_t btree_ptr = b->key.ptr[0];
2142 unsigned long seq = b->seq;
2143 struct keylist insert;
2144 bool upgrade = op->lock == -1;
2145
2146 bch_keylist_init(&insert);
2147
2148 if (upgrade) {
2149 rw_unlock(false, b);
2150 rw_lock(true, b, b->level);
2151
2152 if (b->key.ptr[0] != btree_ptr ||
2153 b->seq != seq + 1)
2154 goto out;
2155 }
2156
2157 SET_KEY_PTRS(check_key, 1);
2158 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2159
2160 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2161
2162 bch_keylist_add(&insert, check_key);
2163
2164 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2165
2166 BUG_ON(!ret && !bch_keylist_empty(&insert));
2167out:
2168 if (upgrade)
2169 downgrade_write(&b->lock);
2170 return ret;
2171}
2172
2173struct btree_insert_op {
2174 struct btree_op op;
2175 struct keylist *keys;
2176 atomic_t *journal_ref;
2177 struct bkey *replace_key;
2178};
2179
2180static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2181{
2182 struct btree_insert_op *op = container_of(b_op,
2183 struct btree_insert_op, op);
2184
2185 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2186 op->journal_ref, op->replace_key);
2187 if (ret && !bch_keylist_empty(op->keys))
2188 return ret;
2189 else
2190 return MAP_DONE;
2191}
2192
2193int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2194 atomic_t *journal_ref, struct bkey *replace_key)
2195{
2196 struct btree_insert_op op;
2197 int ret = 0;
2198
2199 BUG_ON(current->bio_list);
2200 BUG_ON(bch_keylist_empty(keys));
2201
2202 bch_btree_op_init(&op.op, 0);
2203 op.keys = keys;
2204 op.journal_ref = journal_ref;
2205 op.replace_key = replace_key;
2206
2207 while (!ret && !bch_keylist_empty(keys)) {
2208 op.op.lock = 0;
2209 ret = bch_btree_map_leaf_nodes(&op.op, c,
2210 &START_KEY(keys->keys),
2211 btree_insert_fn);
2212 }
2213
2214 if (ret) {
2215 struct bkey *k;
2216
2217 pr_err("error %i", ret);
2218
2219 while ((k = bch_keylist_pop(keys)))
2220 bkey_put(c, k);
2221 } else if (op.op.insert_collision)
2222 ret = -ESRCH;
2223
2224 return ret;
2225}
2226
2227void bch_btree_set_root(struct btree *b)
2228{
2229 unsigned i;
2230 struct closure cl;
2231
2232 closure_init_stack(&cl);
2233
2234 trace_bcache_btree_set_root(b);
2235
2236 BUG_ON(!b->written);
2237
2238 for (i = 0; i < KEY_PTRS(&b->key); i++)
2239 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2240
2241 mutex_lock(&b->c->bucket_lock);
2242 list_del_init(&b->list);
2243 mutex_unlock(&b->c->bucket_lock);
2244
2245 b->c->root = b;
2246
2247 bch_journal_meta(b->c, &cl);
2248 closure_sync(&cl);
2249}
2250
2251/* Map across nodes or keys */
2252
2253static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2254 struct bkey *from,
2255 btree_map_nodes_fn *fn, int flags)
2256{
2257 int ret = MAP_CONTINUE;
2258
2259 if (b->level) {
2260 struct bkey *k;
2261 struct btree_iter iter;
2262
2263 bch_btree_iter_init(&b->keys, &iter, from);
2264
2265 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2266 bch_ptr_bad))) {
2267 ret = btree(map_nodes_recurse, k, b,
2268 op, from, fn, flags);
2269 from = NULL;
2270
2271 if (ret != MAP_CONTINUE)
2272 return ret;
2273 }
2274 }
2275
2276 if (!b->level || flags == MAP_ALL_NODES)
2277 ret = fn(op, b);
2278
2279 return ret;
2280}
2281
2282int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2283 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2284{
2285 return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2286}
2287
2288static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2289 struct bkey *from, btree_map_keys_fn *fn,
2290 int flags)
2291{
2292 int ret = MAP_CONTINUE;
2293 struct bkey *k;
2294 struct btree_iter iter;
2295
2296 bch_btree_iter_init(&b->keys, &iter, from);
2297
2298 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2299 ret = !b->level
2300 ? fn(op, b, k)
2301 : btree(map_keys_recurse, k, b, op, from, fn, flags);
2302 from = NULL;
2303
2304 if (ret != MAP_CONTINUE)
2305 return ret;
2306 }
2307
2308 if (!b->level && (flags & MAP_END_KEY))
2309 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2310 KEY_OFFSET(&b->key), 0));
2311
2312 return ret;
2313}
2314
2315int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2316 struct bkey *from, btree_map_keys_fn *fn, int flags)
2317{
2318 return btree_root(map_keys_recurse, c, op, from, fn, flags);
2319}
2320
2321/* Keybuf code */
2322
2323static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2324{
2325 /* Overlapping keys compare equal */
2326 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2327 return -1;
2328 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2329 return 1;
2330 return 0;
2331}
2332
2333static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2334 struct keybuf_key *r)
2335{
2336 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2337}
2338
2339struct refill {
2340 struct btree_op op;
2341 unsigned nr_found;
2342 struct keybuf *buf;
2343 struct bkey *end;
2344 keybuf_pred_fn *pred;
2345};
2346
2347static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2348 struct bkey *k)
2349{
2350 struct refill *refill = container_of(op, struct refill, op);
2351 struct keybuf *buf = refill->buf;
2352 int ret = MAP_CONTINUE;
2353
2354 if (bkey_cmp(k, refill->end) >= 0) {
2355 ret = MAP_DONE;
2356 goto out;
2357 }
2358
2359 if (!KEY_SIZE(k)) /* end key */
2360 goto out;
2361
2362 if (refill->pred(buf, k)) {
2363 struct keybuf_key *w;
2364
2365 spin_lock(&buf->lock);
2366
2367 w = array_alloc(&buf->freelist);
2368 if (!w) {
2369 spin_unlock(&buf->lock);
2370 return MAP_DONE;
2371 }
2372
2373 w->private = NULL;
2374 bkey_copy(&w->key, k);
2375
2376 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2377 array_free(&buf->freelist, w);
2378 else
2379 refill->nr_found++;
2380
2381 if (array_freelist_empty(&buf->freelist))
2382 ret = MAP_DONE;
2383
2384 spin_unlock(&buf->lock);
2385 }
2386out:
2387 buf->last_scanned = *k;
2388 return ret;
2389}
2390
2391void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2392 struct bkey *end, keybuf_pred_fn *pred)
2393{
2394 struct bkey start = buf->last_scanned;
2395 struct refill refill;
2396
2397 cond_resched();
2398
2399 bch_btree_op_init(&refill.op, -1);
2400 refill.nr_found = 0;
2401 refill.buf = buf;
2402 refill.end = end;
2403 refill.pred = pred;
2404
2405 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2406 refill_keybuf_fn, MAP_END_KEY);
2407
2408 trace_bcache_keyscan(refill.nr_found,
2409 KEY_INODE(&start), KEY_OFFSET(&start),
2410 KEY_INODE(&buf->last_scanned),
2411 KEY_OFFSET(&buf->last_scanned));
2412
2413 spin_lock(&buf->lock);
2414
2415 if (!RB_EMPTY_ROOT(&buf->keys)) {
2416 struct keybuf_key *w;
2417 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2418 buf->start = START_KEY(&w->key);
2419
2420 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2421 buf->end = w->key;
2422 } else {
2423 buf->start = MAX_KEY;
2424 buf->end = MAX_KEY;
2425 }
2426
2427 spin_unlock(&buf->lock);
2428}
2429
2430static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2431{
2432 rb_erase(&w->node, &buf->keys);
2433 array_free(&buf->freelist, w);
2434}
2435
2436void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2437{
2438 spin_lock(&buf->lock);
2439 __bch_keybuf_del(buf, w);
2440 spin_unlock(&buf->lock);
2441}
2442
2443bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2444 struct bkey *end)
2445{
2446 bool ret = false;
2447 struct keybuf_key *p, *w, s;
2448 s.key = *start;
2449
2450 if (bkey_cmp(end, &buf->start) <= 0 ||
2451 bkey_cmp(start, &buf->end) >= 0)
2452 return false;
2453
2454 spin_lock(&buf->lock);
2455 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2456
2457 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2458 p = w;
2459 w = RB_NEXT(w, node);
2460
2461 if (p->private)
2462 ret = true;
2463 else
2464 __bch_keybuf_del(buf, p);
2465 }
2466
2467 spin_unlock(&buf->lock);
2468 return ret;
2469}
2470
2471struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2472{
2473 struct keybuf_key *w;
2474 spin_lock(&buf->lock);
2475
2476 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2477
2478 while (w && w->private)
2479 w = RB_NEXT(w, node);
2480
2481 if (w)
2482 w->private = ERR_PTR(-EINTR);
2483
2484 spin_unlock(&buf->lock);
2485 return w;
2486}
2487
2488struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2489 struct keybuf *buf,
2490 struct bkey *end,
2491 keybuf_pred_fn *pred)
2492{
2493 struct keybuf_key *ret;
2494
2495 while (1) {
2496 ret = bch_keybuf_next(buf);
2497 if (ret)
2498 break;
2499
2500 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2501 pr_debug("scan finished");
2502 break;
2503 }
2504
2505 bch_refill_keybuf(c, buf, end, pred);
2506 }
2507
2508 return ret;
2509}
2510
2511void bch_keybuf_init(struct keybuf *buf)
2512{
2513 buf->last_scanned = MAX_KEY;
2514 buf->keys = RB_ROOT;
2515
2516 spin_lock_init(&buf->lock);
2517 array_allocator_init(&buf->freelist);
2518}