Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
7 * of the device.
8 *
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
13 *
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
16 *
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
20 *
21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22 */
23
24#include "bcache.h"
25#include "btree.h"
26#include "debug.h"
27#include "extents.h"
28
29#include <linux/slab.h>
30#include <linux/bitops.h>
31#include <linux/hash.h>
32#include <linux/kthread.h>
33#include <linux/prefetch.h>
34#include <linux/random.h>
35#include <linux/rcupdate.h>
36#include <linux/sched/clock.h>
37#include <linux/rculist.h>
38#include <linux/delay.h>
39#include <trace/events/bcache.h>
40
41/*
42 * Todo:
43 * register_bcache: Return errors out to userspace correctly
44 *
45 * Writeback: don't undirty key until after a cache flush
46 *
47 * Create an iterator for key pointers
48 *
49 * On btree write error, mark bucket such that it won't be freed from the cache
50 *
51 * Journalling:
52 * Check for bad keys in replay
53 * Propagate barriers
54 * Refcount journal entries in journal_replay
55 *
56 * Garbage collection:
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
59 *
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
63 *
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
66 * from being starved
67 *
68 * Add a tracepoint or somesuch to watch for writeback starvation
69 *
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
72 * obvious.
73 *
74 * Plugging?
75 *
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
78 *
79 * Superblock needs to be fleshed out for multiple cache devices
80 *
81 * Add a sysfs tunable for the number of writeback IOs in flight
82 *
83 * Add a sysfs tunable for the number of open data buckets
84 *
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
87 *
88 * Test module load/unload
89 */
90
91#define MAX_NEED_GC 64
92#define MAX_SAVE_PRIO 72
93#define MAX_GC_TIMES 100
94#define MIN_GC_NODES 100
95#define GC_SLEEP_MS 100
96
97#define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
98
99#define PTR_HASH(c, k) \
100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101
102static struct workqueue_struct *btree_io_wq;
103
104#define insert_lock(s, b) ((b)->level <= (s)->lock)
105
106
107static inline struct bset *write_block(struct btree *b)
108{
109 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache);
110}
111
112static void bch_btree_init_next(struct btree *b)
113{
114 /* If not a leaf node, always sort */
115 if (b->level && b->keys.nsets)
116 bch_btree_sort(&b->keys, &b->c->sort);
117 else
118 bch_btree_sort_lazy(&b->keys, &b->c->sort);
119
120 if (b->written < btree_blocks(b))
121 bch_bset_init_next(&b->keys, write_block(b),
122 bset_magic(&b->c->cache->sb));
123
124}
125
126/* Btree key manipulation */
127
128void bkey_put(struct cache_set *c, struct bkey *k)
129{
130 unsigned int i;
131
132 for (i = 0; i < KEY_PTRS(k); i++)
133 if (ptr_available(c, k, i))
134 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
135}
136
137/* Btree IO */
138
139static uint64_t btree_csum_set(struct btree *b, struct bset *i)
140{
141 uint64_t crc = b->key.ptr[0];
142 void *data = (void *) i + 8, *end = bset_bkey_last(i);
143
144 crc = crc64_be(crc, data, end - data);
145 return crc ^ 0xffffffffffffffffULL;
146}
147
148void bch_btree_node_read_done(struct btree *b)
149{
150 const char *err = "bad btree header";
151 struct bset *i = btree_bset_first(b);
152 struct btree_iter *iter;
153
154 /*
155 * c->fill_iter can allocate an iterator with more memory space
156 * than static MAX_BSETS.
157 * See the comment arount cache_set->fill_iter.
158 */
159 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
160 iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size;
161 iter->used = 0;
162
163#ifdef CONFIG_BCACHE_DEBUG
164 iter->b = &b->keys;
165#endif
166
167 if (!i->seq)
168 goto err;
169
170 for (;
171 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
172 i = write_block(b)) {
173 err = "unsupported bset version";
174 if (i->version > BCACHE_BSET_VERSION)
175 goto err;
176
177 err = "bad btree header";
178 if (b->written + set_blocks(i, block_bytes(b->c->cache)) >
179 btree_blocks(b))
180 goto err;
181
182 err = "bad magic";
183 if (i->magic != bset_magic(&b->c->cache->sb))
184 goto err;
185
186 err = "bad checksum";
187 switch (i->version) {
188 case 0:
189 if (i->csum != csum_set(i))
190 goto err;
191 break;
192 case BCACHE_BSET_VERSION:
193 if (i->csum != btree_csum_set(b, i))
194 goto err;
195 break;
196 }
197
198 err = "empty set";
199 if (i != b->keys.set[0].data && !i->keys)
200 goto err;
201
202 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
203
204 b->written += set_blocks(i, block_bytes(b->c->cache));
205 }
206
207 err = "corrupted btree";
208 for (i = write_block(b);
209 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
210 i = ((void *) i) + block_bytes(b->c->cache))
211 if (i->seq == b->keys.set[0].data->seq)
212 goto err;
213
214 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
215
216 i = b->keys.set[0].data;
217 err = "short btree key";
218 if (b->keys.set[0].size &&
219 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
220 goto err;
221
222 if (b->written < btree_blocks(b))
223 bch_bset_init_next(&b->keys, write_block(b),
224 bset_magic(&b->c->cache->sb));
225out:
226 mempool_free(iter, &b->c->fill_iter);
227 return;
228err:
229 set_btree_node_io_error(b);
230 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
231 err, PTR_BUCKET_NR(b->c, &b->key, 0),
232 bset_block_offset(b, i), i->keys);
233 goto out;
234}
235
236static void btree_node_read_endio(struct bio *bio)
237{
238 struct closure *cl = bio->bi_private;
239
240 closure_put(cl);
241}
242
243static void bch_btree_node_read(struct btree *b)
244{
245 uint64_t start_time = local_clock();
246 struct closure cl;
247 struct bio *bio;
248
249 trace_bcache_btree_read(b);
250
251 closure_init_stack(&cl);
252
253 bio = bch_bbio_alloc(b->c);
254 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
255 bio->bi_end_io = btree_node_read_endio;
256 bio->bi_private = &cl;
257 bio->bi_opf = REQ_OP_READ | REQ_META;
258
259 bch_bio_map(bio, b->keys.set[0].data);
260
261 bch_submit_bbio(bio, b->c, &b->key, 0);
262 closure_sync(&cl);
263
264 if (bio->bi_status)
265 set_btree_node_io_error(b);
266
267 bch_bbio_free(bio, b->c);
268
269 if (btree_node_io_error(b))
270 goto err;
271
272 bch_btree_node_read_done(b);
273 bch_time_stats_update(&b->c->btree_read_time, start_time);
274
275 return;
276err:
277 bch_cache_set_error(b->c, "io error reading bucket %zu",
278 PTR_BUCKET_NR(b->c, &b->key, 0));
279}
280
281static void btree_complete_write(struct btree *b, struct btree_write *w)
282{
283 if (w->prio_blocked &&
284 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
285 wake_up_allocators(b->c);
286
287 if (w->journal) {
288 atomic_dec_bug(w->journal);
289 __closure_wake_up(&b->c->journal.wait);
290 }
291
292 w->prio_blocked = 0;
293 w->journal = NULL;
294}
295
296static CLOSURE_CALLBACK(btree_node_write_unlock)
297{
298 closure_type(b, struct btree, io);
299
300 up(&b->io_mutex);
301}
302
303static CLOSURE_CALLBACK(__btree_node_write_done)
304{
305 closure_type(b, struct btree, io);
306 struct btree_write *w = btree_prev_write(b);
307
308 bch_bbio_free(b->bio, b->c);
309 b->bio = NULL;
310 btree_complete_write(b, w);
311
312 if (btree_node_dirty(b))
313 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
314
315 closure_return_with_destructor(cl, btree_node_write_unlock);
316}
317
318static CLOSURE_CALLBACK(btree_node_write_done)
319{
320 closure_type(b, struct btree, io);
321
322 bio_free_pages(b->bio);
323 __btree_node_write_done(&cl->work);
324}
325
326static void btree_node_write_endio(struct bio *bio)
327{
328 struct closure *cl = bio->bi_private;
329 struct btree *b = container_of(cl, struct btree, io);
330
331 if (bio->bi_status)
332 set_btree_node_io_error(b);
333
334 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
335 closure_put(cl);
336}
337
338static void do_btree_node_write(struct btree *b)
339{
340 struct closure *cl = &b->io;
341 struct bset *i = btree_bset_last(b);
342 BKEY_PADDED(key) k;
343
344 i->version = BCACHE_BSET_VERSION;
345 i->csum = btree_csum_set(b, i);
346
347 BUG_ON(b->bio);
348 b->bio = bch_bbio_alloc(b->c);
349
350 b->bio->bi_end_io = btree_node_write_endio;
351 b->bio->bi_private = cl;
352 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c->cache));
353 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
354 bch_bio_map(b->bio, i);
355
356 /*
357 * If we're appending to a leaf node, we don't technically need FUA -
358 * this write just needs to be persisted before the next journal write,
359 * which will be marked FLUSH|FUA.
360 *
361 * Similarly if we're writing a new btree root - the pointer is going to
362 * be in the next journal entry.
363 *
364 * But if we're writing a new btree node (that isn't a root) or
365 * appending to a non leaf btree node, we need either FUA or a flush
366 * when we write the parent with the new pointer. FUA is cheaper than a
367 * flush, and writes appending to leaf nodes aren't blocking anything so
368 * just make all btree node writes FUA to keep things sane.
369 */
370
371 bkey_copy(&k.key, &b->key);
372 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
373 bset_sector_offset(&b->keys, i));
374
375 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
376 struct bio_vec *bv;
377 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
378 struct bvec_iter_all iter_all;
379
380 bio_for_each_segment_all(bv, b->bio, iter_all) {
381 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
382 addr += PAGE_SIZE;
383 }
384
385 bch_submit_bbio(b->bio, b->c, &k.key, 0);
386
387 continue_at(cl, btree_node_write_done, NULL);
388 } else {
389 /*
390 * No problem for multipage bvec since the bio is
391 * just allocated
392 */
393 b->bio->bi_vcnt = 0;
394 bch_bio_map(b->bio, i);
395
396 bch_submit_bbio(b->bio, b->c, &k.key, 0);
397
398 closure_sync(cl);
399 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
400 }
401}
402
403void __bch_btree_node_write(struct btree *b, struct closure *parent)
404{
405 struct bset *i = btree_bset_last(b);
406
407 lockdep_assert_held(&b->write_lock);
408
409 trace_bcache_btree_write(b);
410
411 BUG_ON(current->bio_list);
412 BUG_ON(b->written >= btree_blocks(b));
413 BUG_ON(b->written && !i->keys);
414 BUG_ON(btree_bset_first(b)->seq != i->seq);
415 bch_check_keys(&b->keys, "writing");
416
417 cancel_delayed_work(&b->work);
418
419 /* If caller isn't waiting for write, parent refcount is cache set */
420 down(&b->io_mutex);
421 closure_init(&b->io, parent ?: &b->c->cl);
422
423 clear_bit(BTREE_NODE_dirty, &b->flags);
424 change_bit(BTREE_NODE_write_idx, &b->flags);
425
426 do_btree_node_write(b);
427
428 atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size,
429 &b->c->cache->btree_sectors_written);
430
431 b->written += set_blocks(i, block_bytes(b->c->cache));
432}
433
434void bch_btree_node_write(struct btree *b, struct closure *parent)
435{
436 unsigned int nsets = b->keys.nsets;
437
438 lockdep_assert_held(&b->lock);
439
440 __bch_btree_node_write(b, parent);
441
442 /*
443 * do verify if there was more than one set initially (i.e. we did a
444 * sort) and we sorted down to a single set:
445 */
446 if (nsets && !b->keys.nsets)
447 bch_btree_verify(b);
448
449 bch_btree_init_next(b);
450}
451
452static void bch_btree_node_write_sync(struct btree *b)
453{
454 struct closure cl;
455
456 closure_init_stack(&cl);
457
458 mutex_lock(&b->write_lock);
459 bch_btree_node_write(b, &cl);
460 mutex_unlock(&b->write_lock);
461
462 closure_sync(&cl);
463}
464
465static void btree_node_write_work(struct work_struct *w)
466{
467 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
468
469 mutex_lock(&b->write_lock);
470 if (btree_node_dirty(b))
471 __bch_btree_node_write(b, NULL);
472 mutex_unlock(&b->write_lock);
473}
474
475static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
476{
477 struct bset *i = btree_bset_last(b);
478 struct btree_write *w = btree_current_write(b);
479
480 lockdep_assert_held(&b->write_lock);
481
482 BUG_ON(!b->written);
483 BUG_ON(!i->keys);
484
485 if (!btree_node_dirty(b))
486 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
487
488 set_btree_node_dirty(b);
489
490 /*
491 * w->journal is always the oldest journal pin of all bkeys
492 * in the leaf node, to make sure the oldest jset seq won't
493 * be increased before this btree node is flushed.
494 */
495 if (journal_ref) {
496 if (w->journal &&
497 journal_pin_cmp(b->c, w->journal, journal_ref)) {
498 atomic_dec_bug(w->journal);
499 w->journal = NULL;
500 }
501
502 if (!w->journal) {
503 w->journal = journal_ref;
504 atomic_inc(w->journal);
505 }
506 }
507
508 /* Force write if set is too big */
509 if (set_bytes(i) > PAGE_SIZE - 48 &&
510 !current->bio_list)
511 bch_btree_node_write(b, NULL);
512}
513
514/*
515 * Btree in memory cache - allocation/freeing
516 * mca -> memory cache
517 */
518
519#define mca_reserve(c) (((!IS_ERR_OR_NULL(c->root) && c->root->level) \
520 ? c->root->level : 1) * 8 + 16)
521#define mca_can_free(c) \
522 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
523
524static void mca_data_free(struct btree *b)
525{
526 BUG_ON(b->io_mutex.count != 1);
527
528 bch_btree_keys_free(&b->keys);
529
530 b->c->btree_cache_used--;
531 list_move(&b->list, &b->c->btree_cache_freed);
532}
533
534static void mca_bucket_free(struct btree *b)
535{
536 BUG_ON(btree_node_dirty(b));
537
538 b->key.ptr[0] = 0;
539 hlist_del_init_rcu(&b->hash);
540 list_move(&b->list, &b->c->btree_cache_freeable);
541}
542
543static unsigned int btree_order(struct bkey *k)
544{
545 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
546}
547
548static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
549{
550 if (!bch_btree_keys_alloc(&b->keys,
551 max_t(unsigned int,
552 ilog2(b->c->btree_pages),
553 btree_order(k)),
554 gfp)) {
555 b->c->btree_cache_used++;
556 list_move(&b->list, &b->c->btree_cache);
557 } else {
558 list_move(&b->list, &b->c->btree_cache_freed);
559 }
560}
561
562#define cmp_int(l, r) ((l > r) - (l < r))
563
564#ifdef CONFIG_PROVE_LOCKING
565static int btree_lock_cmp_fn(const struct lockdep_map *_a,
566 const struct lockdep_map *_b)
567{
568 const struct btree *a = container_of(_a, struct btree, lock.dep_map);
569 const struct btree *b = container_of(_b, struct btree, lock.dep_map);
570
571 return -cmp_int(a->level, b->level) ?: bkey_cmp(&a->key, &b->key);
572}
573
574static void btree_lock_print_fn(const struct lockdep_map *map)
575{
576 const struct btree *b = container_of(map, struct btree, lock.dep_map);
577
578 printk(KERN_CONT " l=%u %llu:%llu", b->level,
579 KEY_INODE(&b->key), KEY_OFFSET(&b->key));
580}
581#endif
582
583static struct btree *mca_bucket_alloc(struct cache_set *c,
584 struct bkey *k, gfp_t gfp)
585{
586 /*
587 * kzalloc() is necessary here for initialization,
588 * see code comments in bch_btree_keys_init().
589 */
590 struct btree *b = kzalloc(sizeof(struct btree), gfp);
591
592 if (!b)
593 return NULL;
594
595 init_rwsem(&b->lock);
596 lock_set_cmp_fn(&b->lock, btree_lock_cmp_fn, btree_lock_print_fn);
597 mutex_init(&b->write_lock);
598 lockdep_set_novalidate_class(&b->write_lock);
599 INIT_LIST_HEAD(&b->list);
600 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
601 b->c = c;
602 sema_init(&b->io_mutex, 1);
603
604 mca_data_alloc(b, k, gfp);
605 return b;
606}
607
608static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
609{
610 struct closure cl;
611
612 closure_init_stack(&cl);
613 lockdep_assert_held(&b->c->bucket_lock);
614
615 if (!down_write_trylock(&b->lock))
616 return -ENOMEM;
617
618 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
619
620 if (b->keys.page_order < min_order)
621 goto out_unlock;
622
623 if (!flush) {
624 if (btree_node_dirty(b))
625 goto out_unlock;
626
627 if (down_trylock(&b->io_mutex))
628 goto out_unlock;
629 up(&b->io_mutex);
630 }
631
632retry:
633 /*
634 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
635 * __bch_btree_node_write(). To avoid an extra flush, acquire
636 * b->write_lock before checking BTREE_NODE_dirty bit.
637 */
638 mutex_lock(&b->write_lock);
639 /*
640 * If this btree node is selected in btree_flush_write() by journal
641 * code, delay and retry until the node is flushed by journal code
642 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
643 */
644 if (btree_node_journal_flush(b)) {
645 pr_debug("bnode %p is flushing by journal, retry\n", b);
646 mutex_unlock(&b->write_lock);
647 udelay(1);
648 goto retry;
649 }
650
651 if (btree_node_dirty(b))
652 __bch_btree_node_write(b, &cl);
653 mutex_unlock(&b->write_lock);
654
655 closure_sync(&cl);
656
657 /* wait for any in flight btree write */
658 down(&b->io_mutex);
659 up(&b->io_mutex);
660
661 return 0;
662out_unlock:
663 rw_unlock(true, b);
664 return -ENOMEM;
665}
666
667static unsigned long bch_mca_scan(struct shrinker *shrink,
668 struct shrink_control *sc)
669{
670 struct cache_set *c = shrink->private_data;
671 struct btree *b, *t;
672 unsigned long i, nr = sc->nr_to_scan;
673 unsigned long freed = 0;
674 unsigned int btree_cache_used;
675
676 if (c->shrinker_disabled)
677 return SHRINK_STOP;
678
679 if (c->btree_cache_alloc_lock)
680 return SHRINK_STOP;
681
682 /* Return -1 if we can't do anything right now */
683 if (sc->gfp_mask & __GFP_IO)
684 mutex_lock(&c->bucket_lock);
685 else if (!mutex_trylock(&c->bucket_lock))
686 return -1;
687
688 /*
689 * It's _really_ critical that we don't free too many btree nodes - we
690 * have to always leave ourselves a reserve. The reserve is how we
691 * guarantee that allocating memory for a new btree node can always
692 * succeed, so that inserting keys into the btree can always succeed and
693 * IO can always make forward progress:
694 */
695 nr /= c->btree_pages;
696 if (nr == 0)
697 nr = 1;
698 nr = min_t(unsigned long, nr, mca_can_free(c));
699
700 i = 0;
701 btree_cache_used = c->btree_cache_used;
702 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
703 if (nr <= 0)
704 goto out;
705
706 if (!mca_reap(b, 0, false)) {
707 mca_data_free(b);
708 rw_unlock(true, b);
709 freed++;
710 }
711 nr--;
712 i++;
713 }
714
715 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
716 if (nr <= 0 || i >= btree_cache_used)
717 goto out;
718
719 if (!mca_reap(b, 0, false)) {
720 mca_bucket_free(b);
721 mca_data_free(b);
722 rw_unlock(true, b);
723 freed++;
724 }
725
726 nr--;
727 i++;
728 }
729out:
730 mutex_unlock(&c->bucket_lock);
731 return freed * c->btree_pages;
732}
733
734static unsigned long bch_mca_count(struct shrinker *shrink,
735 struct shrink_control *sc)
736{
737 struct cache_set *c = shrink->private_data;
738
739 if (c->shrinker_disabled)
740 return 0;
741
742 if (c->btree_cache_alloc_lock)
743 return 0;
744
745 return mca_can_free(c) * c->btree_pages;
746}
747
748void bch_btree_cache_free(struct cache_set *c)
749{
750 struct btree *b;
751 struct closure cl;
752
753 closure_init_stack(&cl);
754
755 if (c->shrink)
756 shrinker_free(c->shrink);
757
758 mutex_lock(&c->bucket_lock);
759
760#ifdef CONFIG_BCACHE_DEBUG
761 if (c->verify_data)
762 list_move(&c->verify_data->list, &c->btree_cache);
763
764 free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb)));
765#endif
766
767 list_splice(&c->btree_cache_freeable,
768 &c->btree_cache);
769
770 while (!list_empty(&c->btree_cache)) {
771 b = list_first_entry(&c->btree_cache, struct btree, list);
772
773 /*
774 * This function is called by cache_set_free(), no I/O
775 * request on cache now, it is unnecessary to acquire
776 * b->write_lock before clearing BTREE_NODE_dirty anymore.
777 */
778 if (btree_node_dirty(b)) {
779 btree_complete_write(b, btree_current_write(b));
780 clear_bit(BTREE_NODE_dirty, &b->flags);
781 }
782 mca_data_free(b);
783 }
784
785 while (!list_empty(&c->btree_cache_freed)) {
786 b = list_first_entry(&c->btree_cache_freed,
787 struct btree, list);
788 list_del(&b->list);
789 cancel_delayed_work_sync(&b->work);
790 kfree(b);
791 }
792
793 mutex_unlock(&c->bucket_lock);
794}
795
796int bch_btree_cache_alloc(struct cache_set *c)
797{
798 unsigned int i;
799
800 for (i = 0; i < mca_reserve(c); i++)
801 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
802 return -ENOMEM;
803
804 list_splice_init(&c->btree_cache,
805 &c->btree_cache_freeable);
806
807#ifdef CONFIG_BCACHE_DEBUG
808 mutex_init(&c->verify_lock);
809
810 c->verify_ondisk = (void *)
811 __get_free_pages(GFP_KERNEL|__GFP_COMP,
812 ilog2(meta_bucket_pages(&c->cache->sb)));
813 if (!c->verify_ondisk) {
814 /*
815 * Don't worry about the mca_rereserve buckets
816 * allocated in previous for-loop, they will be
817 * handled properly in bch_cache_set_unregister().
818 */
819 return -ENOMEM;
820 }
821
822 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
823
824 if (c->verify_data &&
825 c->verify_data->keys.set->data)
826 list_del_init(&c->verify_data->list);
827 else
828 c->verify_data = NULL;
829#endif
830
831 c->shrink = shrinker_alloc(0, "md-bcache:%pU", c->set_uuid);
832 if (!c->shrink) {
833 pr_warn("bcache: %s: could not allocate shrinker\n", __func__);
834 return 0;
835 }
836
837 c->shrink->count_objects = bch_mca_count;
838 c->shrink->scan_objects = bch_mca_scan;
839 c->shrink->seeks = 4;
840 c->shrink->batch = c->btree_pages * 2;
841 c->shrink->private_data = c;
842
843 shrinker_register(c->shrink);
844
845 return 0;
846}
847
848/* Btree in memory cache - hash table */
849
850static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
851{
852 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
853}
854
855static struct btree *mca_find(struct cache_set *c, struct bkey *k)
856{
857 struct btree *b;
858
859 rcu_read_lock();
860 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
861 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
862 goto out;
863 b = NULL;
864out:
865 rcu_read_unlock();
866 return b;
867}
868
869static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
870{
871 spin_lock(&c->btree_cannibalize_lock);
872 if (likely(c->btree_cache_alloc_lock == NULL)) {
873 c->btree_cache_alloc_lock = current;
874 } else if (c->btree_cache_alloc_lock != current) {
875 if (op)
876 prepare_to_wait(&c->btree_cache_wait, &op->wait,
877 TASK_UNINTERRUPTIBLE);
878 spin_unlock(&c->btree_cannibalize_lock);
879 return -EINTR;
880 }
881 spin_unlock(&c->btree_cannibalize_lock);
882
883 return 0;
884}
885
886static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
887 struct bkey *k)
888{
889 struct btree *b;
890
891 trace_bcache_btree_cache_cannibalize(c);
892
893 if (mca_cannibalize_lock(c, op))
894 return ERR_PTR(-EINTR);
895
896 list_for_each_entry_reverse(b, &c->btree_cache, list)
897 if (!mca_reap(b, btree_order(k), false))
898 return b;
899
900 list_for_each_entry_reverse(b, &c->btree_cache, list)
901 if (!mca_reap(b, btree_order(k), true))
902 return b;
903
904 WARN(1, "btree cache cannibalize failed\n");
905 return ERR_PTR(-ENOMEM);
906}
907
908/*
909 * We can only have one thread cannibalizing other cached btree nodes at a time,
910 * or we'll deadlock. We use an open coded mutex to ensure that, which a
911 * cannibalize_bucket() will take. This means every time we unlock the root of
912 * the btree, we need to release this lock if we have it held.
913 */
914void bch_cannibalize_unlock(struct cache_set *c)
915{
916 spin_lock(&c->btree_cannibalize_lock);
917 if (c->btree_cache_alloc_lock == current) {
918 c->btree_cache_alloc_lock = NULL;
919 wake_up(&c->btree_cache_wait);
920 }
921 spin_unlock(&c->btree_cannibalize_lock);
922}
923
924static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
925 struct bkey *k, int level)
926{
927 struct btree *b;
928
929 BUG_ON(current->bio_list);
930
931 lockdep_assert_held(&c->bucket_lock);
932
933 if (mca_find(c, k))
934 return NULL;
935
936 /* btree_free() doesn't free memory; it sticks the node on the end of
937 * the list. Check if there's any freed nodes there:
938 */
939 list_for_each_entry(b, &c->btree_cache_freeable, list)
940 if (!mca_reap(b, btree_order(k), false))
941 goto out;
942
943 /* We never free struct btree itself, just the memory that holds the on
944 * disk node. Check the freed list before allocating a new one:
945 */
946 list_for_each_entry(b, &c->btree_cache_freed, list)
947 if (!mca_reap(b, 0, false)) {
948 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
949 if (!b->keys.set[0].data)
950 goto err;
951 else
952 goto out;
953 }
954
955 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
956 if (!b)
957 goto err;
958
959 BUG_ON(!down_write_trylock(&b->lock));
960 if (!b->keys.set->data)
961 goto err;
962out:
963 BUG_ON(b->io_mutex.count != 1);
964
965 bkey_copy(&b->key, k);
966 list_move(&b->list, &c->btree_cache);
967 hlist_del_init_rcu(&b->hash);
968 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
969
970 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
971 b->parent = (void *) ~0UL;
972 b->flags = 0;
973 b->written = 0;
974 b->level = level;
975
976 if (!b->level)
977 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
978 &b->c->expensive_debug_checks);
979 else
980 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
981 &b->c->expensive_debug_checks);
982
983 return b;
984err:
985 if (b)
986 rw_unlock(true, b);
987
988 b = mca_cannibalize(c, op, k);
989 if (!IS_ERR(b))
990 goto out;
991
992 return b;
993}
994
995/*
996 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
997 * in from disk if necessary.
998 *
999 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN.
1000 *
1001 * The btree node will have either a read or a write lock held, depending on
1002 * level and op->lock.
1003 *
1004 * Note: Only error code or btree pointer will be returned, it is unncessary
1005 * for callers to check NULL pointer.
1006 */
1007struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
1008 struct bkey *k, int level, bool write,
1009 struct btree *parent)
1010{
1011 int i = 0;
1012 struct btree *b;
1013
1014 BUG_ON(level < 0);
1015retry:
1016 b = mca_find(c, k);
1017
1018 if (!b) {
1019 if (current->bio_list)
1020 return ERR_PTR(-EAGAIN);
1021
1022 mutex_lock(&c->bucket_lock);
1023 b = mca_alloc(c, op, k, level);
1024 mutex_unlock(&c->bucket_lock);
1025
1026 if (!b)
1027 goto retry;
1028 if (IS_ERR(b))
1029 return b;
1030
1031 bch_btree_node_read(b);
1032
1033 if (!write)
1034 downgrade_write(&b->lock);
1035 } else {
1036 rw_lock(write, b, level);
1037 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1038 rw_unlock(write, b);
1039 goto retry;
1040 }
1041 BUG_ON(b->level != level);
1042 }
1043
1044 if (btree_node_io_error(b)) {
1045 rw_unlock(write, b);
1046 return ERR_PTR(-EIO);
1047 }
1048
1049 BUG_ON(!b->written);
1050
1051 b->parent = parent;
1052
1053 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1054 prefetch(b->keys.set[i].tree);
1055 prefetch(b->keys.set[i].data);
1056 }
1057
1058 for (; i <= b->keys.nsets; i++)
1059 prefetch(b->keys.set[i].data);
1060
1061 return b;
1062}
1063
1064static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1065{
1066 struct btree *b;
1067
1068 mutex_lock(&parent->c->bucket_lock);
1069 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1070 mutex_unlock(&parent->c->bucket_lock);
1071
1072 if (!IS_ERR_OR_NULL(b)) {
1073 b->parent = parent;
1074 bch_btree_node_read(b);
1075 rw_unlock(true, b);
1076 }
1077}
1078
1079/* Btree alloc */
1080
1081static void btree_node_free(struct btree *b)
1082{
1083 trace_bcache_btree_node_free(b);
1084
1085 BUG_ON(b == b->c->root);
1086
1087retry:
1088 mutex_lock(&b->write_lock);
1089 /*
1090 * If the btree node is selected and flushing in btree_flush_write(),
1091 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1092 * then it is safe to free the btree node here. Otherwise this btree
1093 * node will be in race condition.
1094 */
1095 if (btree_node_journal_flush(b)) {
1096 mutex_unlock(&b->write_lock);
1097 pr_debug("bnode %p journal_flush set, retry\n", b);
1098 udelay(1);
1099 goto retry;
1100 }
1101
1102 if (btree_node_dirty(b)) {
1103 btree_complete_write(b, btree_current_write(b));
1104 clear_bit(BTREE_NODE_dirty, &b->flags);
1105 }
1106
1107 mutex_unlock(&b->write_lock);
1108
1109 cancel_delayed_work(&b->work);
1110
1111 mutex_lock(&b->c->bucket_lock);
1112 bch_bucket_free(b->c, &b->key);
1113 mca_bucket_free(b);
1114 mutex_unlock(&b->c->bucket_lock);
1115}
1116
1117/*
1118 * Only error code or btree pointer will be returned, it is unncessary for
1119 * callers to check NULL pointer.
1120 */
1121struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1122 int level, bool wait,
1123 struct btree *parent)
1124{
1125 BKEY_PADDED(key) k;
1126 struct btree *b;
1127
1128 mutex_lock(&c->bucket_lock);
1129retry:
1130 /* return ERR_PTR(-EAGAIN) when it fails */
1131 b = ERR_PTR(-EAGAIN);
1132 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait))
1133 goto err;
1134
1135 bkey_put(c, &k.key);
1136 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1137
1138 b = mca_alloc(c, op, &k.key, level);
1139 if (IS_ERR(b))
1140 goto err_free;
1141
1142 if (!b) {
1143 cache_bug(c,
1144 "Tried to allocate bucket that was in btree cache");
1145 goto retry;
1146 }
1147
1148 b->parent = parent;
1149 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb));
1150
1151 mutex_unlock(&c->bucket_lock);
1152
1153 trace_bcache_btree_node_alloc(b);
1154 return b;
1155err_free:
1156 bch_bucket_free(c, &k.key);
1157err:
1158 mutex_unlock(&c->bucket_lock);
1159
1160 trace_bcache_btree_node_alloc_fail(c);
1161 return b;
1162}
1163
1164static struct btree *bch_btree_node_alloc(struct cache_set *c,
1165 struct btree_op *op, int level,
1166 struct btree *parent)
1167{
1168 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1169}
1170
1171static struct btree *btree_node_alloc_replacement(struct btree *b,
1172 struct btree_op *op)
1173{
1174 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1175
1176 if (!IS_ERR(n)) {
1177 mutex_lock(&n->write_lock);
1178 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1179 bkey_copy_key(&n->key, &b->key);
1180 mutex_unlock(&n->write_lock);
1181 }
1182
1183 return n;
1184}
1185
1186static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1187{
1188 unsigned int i;
1189
1190 mutex_lock(&b->c->bucket_lock);
1191
1192 atomic_inc(&b->c->prio_blocked);
1193
1194 bkey_copy(k, &b->key);
1195 bkey_copy_key(k, &ZERO_KEY);
1196
1197 for (i = 0; i < KEY_PTRS(k); i++)
1198 SET_PTR_GEN(k, i,
1199 bch_inc_gen(b->c->cache,
1200 PTR_BUCKET(b->c, &b->key, i)));
1201
1202 mutex_unlock(&b->c->bucket_lock);
1203}
1204
1205static int btree_check_reserve(struct btree *b, struct btree_op *op)
1206{
1207 struct cache_set *c = b->c;
1208 struct cache *ca = c->cache;
1209 unsigned int reserve = (c->root->level - b->level) * 2 + 1;
1210
1211 mutex_lock(&c->bucket_lock);
1212
1213 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1214 if (op)
1215 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1216 TASK_UNINTERRUPTIBLE);
1217 mutex_unlock(&c->bucket_lock);
1218 return -EINTR;
1219 }
1220
1221 mutex_unlock(&c->bucket_lock);
1222
1223 return mca_cannibalize_lock(b->c, op);
1224}
1225
1226/* Garbage collection */
1227
1228static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1229 struct bkey *k)
1230{
1231 uint8_t stale = 0;
1232 unsigned int i;
1233 struct bucket *g;
1234
1235 /*
1236 * ptr_invalid() can't return true for the keys that mark btree nodes as
1237 * freed, but since ptr_bad() returns true we'll never actually use them
1238 * for anything and thus we don't want mark their pointers here
1239 */
1240 if (!bkey_cmp(k, &ZERO_KEY))
1241 return stale;
1242
1243 for (i = 0; i < KEY_PTRS(k); i++) {
1244 if (!ptr_available(c, k, i))
1245 continue;
1246
1247 g = PTR_BUCKET(c, k, i);
1248
1249 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1250 g->last_gc = PTR_GEN(k, i);
1251
1252 if (ptr_stale(c, k, i)) {
1253 stale = max(stale, ptr_stale(c, k, i));
1254 continue;
1255 }
1256
1257 cache_bug_on(GC_MARK(g) &&
1258 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1259 c, "inconsistent ptrs: mark = %llu, level = %i",
1260 GC_MARK(g), level);
1261
1262 if (level)
1263 SET_GC_MARK(g, GC_MARK_METADATA);
1264 else if (KEY_DIRTY(k))
1265 SET_GC_MARK(g, GC_MARK_DIRTY);
1266 else if (!GC_MARK(g))
1267 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1268
1269 /* guard against overflow */
1270 SET_GC_SECTORS_USED(g, min_t(unsigned int,
1271 GC_SECTORS_USED(g) + KEY_SIZE(k),
1272 MAX_GC_SECTORS_USED));
1273
1274 BUG_ON(!GC_SECTORS_USED(g));
1275 }
1276
1277 return stale;
1278}
1279
1280#define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1281
1282void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1283{
1284 unsigned int i;
1285
1286 for (i = 0; i < KEY_PTRS(k); i++)
1287 if (ptr_available(c, k, i) &&
1288 !ptr_stale(c, k, i)) {
1289 struct bucket *b = PTR_BUCKET(c, k, i);
1290
1291 b->gen = PTR_GEN(k, i);
1292
1293 if (level && bkey_cmp(k, &ZERO_KEY))
1294 b->prio = BTREE_PRIO;
1295 else if (!level && b->prio == BTREE_PRIO)
1296 b->prio = INITIAL_PRIO;
1297 }
1298
1299 __bch_btree_mark_key(c, level, k);
1300}
1301
1302void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1303{
1304 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1305}
1306
1307static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1308{
1309 uint8_t stale = 0;
1310 unsigned int keys = 0, good_keys = 0;
1311 struct bkey *k;
1312 struct btree_iter iter;
1313 struct bset_tree *t;
1314
1315 gc->nodes++;
1316
1317 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1318 stale = max(stale, btree_mark_key(b, k));
1319 keys++;
1320
1321 if (bch_ptr_bad(&b->keys, k))
1322 continue;
1323
1324 gc->key_bytes += bkey_u64s(k);
1325 gc->nkeys++;
1326 good_keys++;
1327
1328 gc->data += KEY_SIZE(k);
1329 }
1330
1331 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1332 btree_bug_on(t->size &&
1333 bset_written(&b->keys, t) &&
1334 bkey_cmp(&b->key, &t->end) < 0,
1335 b, "found short btree key in gc");
1336
1337 if (b->c->gc_always_rewrite)
1338 return true;
1339
1340 if (stale > 10)
1341 return true;
1342
1343 if ((keys - good_keys) * 2 > keys)
1344 return true;
1345
1346 return false;
1347}
1348
1349#define GC_MERGE_NODES 4U
1350
1351struct gc_merge_info {
1352 struct btree *b;
1353 unsigned int keys;
1354};
1355
1356static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1357 struct keylist *insert_keys,
1358 atomic_t *journal_ref,
1359 struct bkey *replace_key);
1360
1361static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1362 struct gc_stat *gc, struct gc_merge_info *r)
1363{
1364 unsigned int i, nodes = 0, keys = 0, blocks;
1365 struct btree *new_nodes[GC_MERGE_NODES];
1366 struct keylist keylist;
1367 struct closure cl;
1368 struct bkey *k;
1369
1370 bch_keylist_init(&keylist);
1371
1372 if (btree_check_reserve(b, NULL))
1373 return 0;
1374
1375 memset(new_nodes, 0, sizeof(new_nodes));
1376 closure_init_stack(&cl);
1377
1378 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1379 keys += r[nodes++].keys;
1380
1381 blocks = btree_default_blocks(b->c) * 2 / 3;
1382
1383 if (nodes < 2 ||
1384 __set_blocks(b->keys.set[0].data, keys,
1385 block_bytes(b->c->cache)) > blocks * (nodes - 1))
1386 return 0;
1387
1388 for (i = 0; i < nodes; i++) {
1389 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1390 if (IS_ERR(new_nodes[i]))
1391 goto out_nocoalesce;
1392 }
1393
1394 /*
1395 * We have to check the reserve here, after we've allocated our new
1396 * nodes, to make sure the insert below will succeed - we also check
1397 * before as an optimization to potentially avoid a bunch of expensive
1398 * allocs/sorts
1399 */
1400 if (btree_check_reserve(b, NULL))
1401 goto out_nocoalesce;
1402
1403 for (i = 0; i < nodes; i++)
1404 mutex_lock(&new_nodes[i]->write_lock);
1405
1406 for (i = nodes - 1; i > 0; --i) {
1407 struct bset *n1 = btree_bset_first(new_nodes[i]);
1408 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1409 struct bkey *k, *last = NULL;
1410
1411 keys = 0;
1412
1413 if (i > 1) {
1414 for (k = n2->start;
1415 k < bset_bkey_last(n2);
1416 k = bkey_next(k)) {
1417 if (__set_blocks(n1, n1->keys + keys +
1418 bkey_u64s(k),
1419 block_bytes(b->c->cache)) > blocks)
1420 break;
1421
1422 last = k;
1423 keys += bkey_u64s(k);
1424 }
1425 } else {
1426 /*
1427 * Last node we're not getting rid of - we're getting
1428 * rid of the node at r[0]. Have to try and fit all of
1429 * the remaining keys into this node; we can't ensure
1430 * they will always fit due to rounding and variable
1431 * length keys (shouldn't be possible in practice,
1432 * though)
1433 */
1434 if (__set_blocks(n1, n1->keys + n2->keys,
1435 block_bytes(b->c->cache)) >
1436 btree_blocks(new_nodes[i]))
1437 goto out_unlock_nocoalesce;
1438
1439 keys = n2->keys;
1440 /* Take the key of the node we're getting rid of */
1441 last = &r->b->key;
1442 }
1443
1444 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) >
1445 btree_blocks(new_nodes[i]));
1446
1447 if (last)
1448 bkey_copy_key(&new_nodes[i]->key, last);
1449
1450 memcpy(bset_bkey_last(n1),
1451 n2->start,
1452 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1453
1454 n1->keys += keys;
1455 r[i].keys = n1->keys;
1456
1457 memmove(n2->start,
1458 bset_bkey_idx(n2, keys),
1459 (void *) bset_bkey_last(n2) -
1460 (void *) bset_bkey_idx(n2, keys));
1461
1462 n2->keys -= keys;
1463
1464 if (__bch_keylist_realloc(&keylist,
1465 bkey_u64s(&new_nodes[i]->key)))
1466 goto out_unlock_nocoalesce;
1467
1468 bch_btree_node_write(new_nodes[i], &cl);
1469 bch_keylist_add(&keylist, &new_nodes[i]->key);
1470 }
1471
1472 for (i = 0; i < nodes; i++)
1473 mutex_unlock(&new_nodes[i]->write_lock);
1474
1475 closure_sync(&cl);
1476
1477 /* We emptied out this node */
1478 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1479 btree_node_free(new_nodes[0]);
1480 rw_unlock(true, new_nodes[0]);
1481 new_nodes[0] = NULL;
1482
1483 for (i = 0; i < nodes; i++) {
1484 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1485 goto out_nocoalesce;
1486
1487 make_btree_freeing_key(r[i].b, keylist.top);
1488 bch_keylist_push(&keylist);
1489 }
1490
1491 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1492 BUG_ON(!bch_keylist_empty(&keylist));
1493
1494 for (i = 0; i < nodes; i++) {
1495 btree_node_free(r[i].b);
1496 rw_unlock(true, r[i].b);
1497
1498 r[i].b = new_nodes[i];
1499 }
1500
1501 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1502 r[nodes - 1].b = ERR_PTR(-EINTR);
1503
1504 trace_bcache_btree_gc_coalesce(nodes);
1505 gc->nodes--;
1506
1507 bch_keylist_free(&keylist);
1508
1509 /* Invalidated our iterator */
1510 return -EINTR;
1511
1512out_unlock_nocoalesce:
1513 for (i = 0; i < nodes; i++)
1514 mutex_unlock(&new_nodes[i]->write_lock);
1515
1516out_nocoalesce:
1517 closure_sync(&cl);
1518
1519 while ((k = bch_keylist_pop(&keylist)))
1520 if (!bkey_cmp(k, &ZERO_KEY))
1521 atomic_dec(&b->c->prio_blocked);
1522 bch_keylist_free(&keylist);
1523
1524 for (i = 0; i < nodes; i++)
1525 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1526 btree_node_free(new_nodes[i]);
1527 rw_unlock(true, new_nodes[i]);
1528 }
1529 return 0;
1530}
1531
1532static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1533 struct btree *replace)
1534{
1535 struct keylist keys;
1536 struct btree *n;
1537
1538 if (btree_check_reserve(b, NULL))
1539 return 0;
1540
1541 n = btree_node_alloc_replacement(replace, NULL);
1542 if (IS_ERR(n))
1543 return 0;
1544
1545 /* recheck reserve after allocating replacement node */
1546 if (btree_check_reserve(b, NULL)) {
1547 btree_node_free(n);
1548 rw_unlock(true, n);
1549 return 0;
1550 }
1551
1552 bch_btree_node_write_sync(n);
1553
1554 bch_keylist_init(&keys);
1555 bch_keylist_add(&keys, &n->key);
1556
1557 make_btree_freeing_key(replace, keys.top);
1558 bch_keylist_push(&keys);
1559
1560 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1561 BUG_ON(!bch_keylist_empty(&keys));
1562
1563 btree_node_free(replace);
1564 rw_unlock(true, n);
1565
1566 /* Invalidated our iterator */
1567 return -EINTR;
1568}
1569
1570static unsigned int btree_gc_count_keys(struct btree *b)
1571{
1572 struct bkey *k;
1573 struct btree_iter iter;
1574 unsigned int ret = 0;
1575
1576 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1577 ret += bkey_u64s(k);
1578
1579 return ret;
1580}
1581
1582static size_t btree_gc_min_nodes(struct cache_set *c)
1583{
1584 size_t min_nodes;
1585
1586 /*
1587 * Since incremental GC would stop 100ms when front
1588 * side I/O comes, so when there are many btree nodes,
1589 * if GC only processes constant (100) nodes each time,
1590 * GC would last a long time, and the front side I/Os
1591 * would run out of the buckets (since no new bucket
1592 * can be allocated during GC), and be blocked again.
1593 * So GC should not process constant nodes, but varied
1594 * nodes according to the number of btree nodes, which
1595 * realized by dividing GC into constant(100) times,
1596 * so when there are many btree nodes, GC can process
1597 * more nodes each time, otherwise, GC will process less
1598 * nodes each time (but no less than MIN_GC_NODES)
1599 */
1600 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1601 if (min_nodes < MIN_GC_NODES)
1602 min_nodes = MIN_GC_NODES;
1603
1604 return min_nodes;
1605}
1606
1607
1608static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1609 struct closure *writes, struct gc_stat *gc)
1610{
1611 int ret = 0;
1612 bool should_rewrite;
1613 struct bkey *k;
1614 struct btree_iter iter;
1615 struct gc_merge_info r[GC_MERGE_NODES];
1616 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1617
1618 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1619
1620 for (i = r; i < r + ARRAY_SIZE(r); i++)
1621 i->b = ERR_PTR(-EINTR);
1622
1623 while (1) {
1624 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1625 if (k) {
1626 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1627 true, b);
1628 if (IS_ERR(r->b)) {
1629 ret = PTR_ERR(r->b);
1630 break;
1631 }
1632
1633 r->keys = btree_gc_count_keys(r->b);
1634
1635 ret = btree_gc_coalesce(b, op, gc, r);
1636 if (ret)
1637 break;
1638 }
1639
1640 if (!last->b)
1641 break;
1642
1643 if (!IS_ERR(last->b)) {
1644 should_rewrite = btree_gc_mark_node(last->b, gc);
1645 if (should_rewrite) {
1646 ret = btree_gc_rewrite_node(b, op, last->b);
1647 if (ret)
1648 break;
1649 }
1650
1651 if (last->b->level) {
1652 ret = btree_gc_recurse(last->b, op, writes, gc);
1653 if (ret)
1654 break;
1655 }
1656
1657 bkey_copy_key(&b->c->gc_done, &last->b->key);
1658
1659 /*
1660 * Must flush leaf nodes before gc ends, since replace
1661 * operations aren't journalled
1662 */
1663 mutex_lock(&last->b->write_lock);
1664 if (btree_node_dirty(last->b))
1665 bch_btree_node_write(last->b, writes);
1666 mutex_unlock(&last->b->write_lock);
1667 rw_unlock(true, last->b);
1668 }
1669
1670 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1671 r->b = NULL;
1672
1673 if (atomic_read(&b->c->search_inflight) &&
1674 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1675 gc->nodes_pre = gc->nodes;
1676 ret = -EAGAIN;
1677 break;
1678 }
1679
1680 if (need_resched()) {
1681 ret = -EAGAIN;
1682 break;
1683 }
1684 }
1685
1686 for (i = r; i < r + ARRAY_SIZE(r); i++)
1687 if (!IS_ERR_OR_NULL(i->b)) {
1688 mutex_lock(&i->b->write_lock);
1689 if (btree_node_dirty(i->b))
1690 bch_btree_node_write(i->b, writes);
1691 mutex_unlock(&i->b->write_lock);
1692 rw_unlock(true, i->b);
1693 }
1694
1695 return ret;
1696}
1697
1698static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1699 struct closure *writes, struct gc_stat *gc)
1700{
1701 struct btree *n = NULL;
1702 int ret = 0;
1703 bool should_rewrite;
1704
1705 should_rewrite = btree_gc_mark_node(b, gc);
1706 if (should_rewrite) {
1707 n = btree_node_alloc_replacement(b, NULL);
1708
1709 if (!IS_ERR(n)) {
1710 bch_btree_node_write_sync(n);
1711
1712 bch_btree_set_root(n);
1713 btree_node_free(b);
1714 rw_unlock(true, n);
1715
1716 return -EINTR;
1717 }
1718 }
1719
1720 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1721
1722 if (b->level) {
1723 ret = btree_gc_recurse(b, op, writes, gc);
1724 if (ret)
1725 return ret;
1726 }
1727
1728 bkey_copy_key(&b->c->gc_done, &b->key);
1729
1730 return ret;
1731}
1732
1733static void btree_gc_start(struct cache_set *c)
1734{
1735 struct cache *ca;
1736 struct bucket *b;
1737
1738 if (!c->gc_mark_valid)
1739 return;
1740
1741 mutex_lock(&c->bucket_lock);
1742
1743 c->gc_mark_valid = 0;
1744 c->gc_done = ZERO_KEY;
1745
1746 ca = c->cache;
1747 for_each_bucket(b, ca) {
1748 b->last_gc = b->gen;
1749 if (!atomic_read(&b->pin)) {
1750 SET_GC_MARK(b, 0);
1751 SET_GC_SECTORS_USED(b, 0);
1752 }
1753 }
1754
1755 mutex_unlock(&c->bucket_lock);
1756}
1757
1758static void bch_btree_gc_finish(struct cache_set *c)
1759{
1760 struct bucket *b;
1761 struct cache *ca;
1762 unsigned int i, j;
1763 uint64_t *k;
1764
1765 mutex_lock(&c->bucket_lock);
1766
1767 set_gc_sectors(c);
1768 c->gc_mark_valid = 1;
1769 c->need_gc = 0;
1770
1771 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1772 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1773 GC_MARK_METADATA);
1774
1775 /* don't reclaim buckets to which writeback keys point */
1776 rcu_read_lock();
1777 for (i = 0; i < c->devices_max_used; i++) {
1778 struct bcache_device *d = c->devices[i];
1779 struct cached_dev *dc;
1780 struct keybuf_key *w, *n;
1781
1782 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1783 continue;
1784 dc = container_of(d, struct cached_dev, disk);
1785
1786 spin_lock(&dc->writeback_keys.lock);
1787 rbtree_postorder_for_each_entry_safe(w, n,
1788 &dc->writeback_keys.keys, node)
1789 for (j = 0; j < KEY_PTRS(&w->key); j++)
1790 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1791 GC_MARK_DIRTY);
1792 spin_unlock(&dc->writeback_keys.lock);
1793 }
1794 rcu_read_unlock();
1795
1796 c->avail_nbuckets = 0;
1797
1798 ca = c->cache;
1799 ca->invalidate_needs_gc = 0;
1800
1801 for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++)
1802 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1803
1804 for (k = ca->prio_buckets;
1805 k < ca->prio_buckets + prio_buckets(ca) * 2; k++)
1806 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1807
1808 for_each_bucket(b, ca) {
1809 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1810
1811 if (atomic_read(&b->pin))
1812 continue;
1813
1814 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1815
1816 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1817 c->avail_nbuckets++;
1818 }
1819
1820 mutex_unlock(&c->bucket_lock);
1821}
1822
1823static void bch_btree_gc(struct cache_set *c)
1824{
1825 int ret;
1826 struct gc_stat stats;
1827 struct closure writes;
1828 struct btree_op op;
1829 uint64_t start_time = local_clock();
1830
1831 trace_bcache_gc_start(c);
1832
1833 memset(&stats, 0, sizeof(struct gc_stat));
1834 closure_init_stack(&writes);
1835 bch_btree_op_init(&op, SHRT_MAX);
1836
1837 btree_gc_start(c);
1838
1839 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1840 do {
1841 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
1842 closure_sync(&writes);
1843 cond_resched();
1844
1845 if (ret == -EAGAIN)
1846 schedule_timeout_interruptible(msecs_to_jiffies
1847 (GC_SLEEP_MS));
1848 else if (ret)
1849 pr_warn("gc failed!\n");
1850 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1851
1852 bch_btree_gc_finish(c);
1853 wake_up_allocators(c);
1854
1855 bch_time_stats_update(&c->btree_gc_time, start_time);
1856
1857 stats.key_bytes *= sizeof(uint64_t);
1858 stats.data <<= 9;
1859 bch_update_bucket_in_use(c, &stats);
1860 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1861
1862 trace_bcache_gc_end(c);
1863
1864 bch_moving_gc(c);
1865}
1866
1867static bool gc_should_run(struct cache_set *c)
1868{
1869 struct cache *ca = c->cache;
1870
1871 if (ca->invalidate_needs_gc)
1872 return true;
1873
1874 if (atomic_read(&c->sectors_to_gc) < 0)
1875 return true;
1876
1877 return false;
1878}
1879
1880static int bch_gc_thread(void *arg)
1881{
1882 struct cache_set *c = arg;
1883
1884 while (1) {
1885 wait_event_interruptible(c->gc_wait,
1886 kthread_should_stop() ||
1887 test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1888 gc_should_run(c));
1889
1890 if (kthread_should_stop() ||
1891 test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1892 break;
1893
1894 set_gc_sectors(c);
1895 bch_btree_gc(c);
1896 }
1897
1898 wait_for_kthread_stop();
1899 return 0;
1900}
1901
1902int bch_gc_thread_start(struct cache_set *c)
1903{
1904 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1905 return PTR_ERR_OR_ZERO(c->gc_thread);
1906}
1907
1908/* Initial partial gc */
1909
1910static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1911{
1912 int ret = 0;
1913 struct bkey *k, *p = NULL;
1914 struct btree_iter iter;
1915
1916 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1917 bch_initial_mark_key(b->c, b->level, k);
1918
1919 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1920
1921 if (b->level) {
1922 bch_btree_iter_init(&b->keys, &iter, NULL);
1923
1924 do {
1925 k = bch_btree_iter_next_filter(&iter, &b->keys,
1926 bch_ptr_bad);
1927 if (k) {
1928 btree_node_prefetch(b, k);
1929 /*
1930 * initiallize c->gc_stats.nodes
1931 * for incremental GC
1932 */
1933 b->c->gc_stats.nodes++;
1934 }
1935
1936 if (p)
1937 ret = bcache_btree(check_recurse, p, b, op);
1938
1939 p = k;
1940 } while (p && !ret);
1941 }
1942
1943 return ret;
1944}
1945
1946
1947static int bch_btree_check_thread(void *arg)
1948{
1949 int ret;
1950 struct btree_check_info *info = arg;
1951 struct btree_check_state *check_state = info->state;
1952 struct cache_set *c = check_state->c;
1953 struct btree_iter iter;
1954 struct bkey *k, *p;
1955 int cur_idx, prev_idx, skip_nr;
1956
1957 k = p = NULL;
1958 cur_idx = prev_idx = 0;
1959 ret = 0;
1960
1961 /* root node keys are checked before thread created */
1962 bch_btree_iter_init(&c->root->keys, &iter, NULL);
1963 k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
1964 BUG_ON(!k);
1965
1966 p = k;
1967 while (k) {
1968 /*
1969 * Fetch a root node key index, skip the keys which
1970 * should be fetched by other threads, then check the
1971 * sub-tree indexed by the fetched key.
1972 */
1973 spin_lock(&check_state->idx_lock);
1974 cur_idx = check_state->key_idx;
1975 check_state->key_idx++;
1976 spin_unlock(&check_state->idx_lock);
1977
1978 skip_nr = cur_idx - prev_idx;
1979
1980 while (skip_nr) {
1981 k = bch_btree_iter_next_filter(&iter,
1982 &c->root->keys,
1983 bch_ptr_bad);
1984 if (k)
1985 p = k;
1986 else {
1987 /*
1988 * No more keys to check in root node,
1989 * current checking threads are enough,
1990 * stop creating more.
1991 */
1992 atomic_set(&check_state->enough, 1);
1993 /* Update check_state->enough earlier */
1994 smp_mb__after_atomic();
1995 goto out;
1996 }
1997 skip_nr--;
1998 cond_resched();
1999 }
2000
2001 if (p) {
2002 struct btree_op op;
2003
2004 btree_node_prefetch(c->root, p);
2005 c->gc_stats.nodes++;
2006 bch_btree_op_init(&op, 0);
2007 ret = bcache_btree(check_recurse, p, c->root, &op);
2008 /*
2009 * The op may be added to cache_set's btree_cache_wait
2010 * in mca_cannibalize(), must ensure it is removed from
2011 * the list and release btree_cache_alloc_lock before
2012 * free op memory.
2013 * Otherwise, the btree_cache_wait will be damaged.
2014 */
2015 bch_cannibalize_unlock(c);
2016 finish_wait(&c->btree_cache_wait, &(&op)->wait);
2017 if (ret)
2018 goto out;
2019 }
2020 p = NULL;
2021 prev_idx = cur_idx;
2022 cond_resched();
2023 }
2024
2025out:
2026 info->result = ret;
2027 /* update check_state->started among all CPUs */
2028 smp_mb__before_atomic();
2029 if (atomic_dec_and_test(&check_state->started))
2030 wake_up(&check_state->wait);
2031
2032 return ret;
2033}
2034
2035
2036
2037static int bch_btree_chkthread_nr(void)
2038{
2039 int n = num_online_cpus()/2;
2040
2041 if (n == 0)
2042 n = 1;
2043 else if (n > BCH_BTR_CHKTHREAD_MAX)
2044 n = BCH_BTR_CHKTHREAD_MAX;
2045
2046 return n;
2047}
2048
2049int bch_btree_check(struct cache_set *c)
2050{
2051 int ret = 0;
2052 int i;
2053 struct bkey *k = NULL;
2054 struct btree_iter iter;
2055 struct btree_check_state check_state;
2056
2057 /* check and mark root node keys */
2058 for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
2059 bch_initial_mark_key(c, c->root->level, k);
2060
2061 bch_initial_mark_key(c, c->root->level + 1, &c->root->key);
2062
2063 if (c->root->level == 0)
2064 return 0;
2065
2066 memset(&check_state, 0, sizeof(struct btree_check_state));
2067 check_state.c = c;
2068 check_state.total_threads = bch_btree_chkthread_nr();
2069 check_state.key_idx = 0;
2070 spin_lock_init(&check_state.idx_lock);
2071 atomic_set(&check_state.started, 0);
2072 atomic_set(&check_state.enough, 0);
2073 init_waitqueue_head(&check_state.wait);
2074
2075 rw_lock(0, c->root, c->root->level);
2076 /*
2077 * Run multiple threads to check btree nodes in parallel,
2078 * if check_state.enough is non-zero, it means current
2079 * running check threads are enough, unncessary to create
2080 * more.
2081 */
2082 for (i = 0; i < check_state.total_threads; i++) {
2083 /* fetch latest check_state.enough earlier */
2084 smp_mb__before_atomic();
2085 if (atomic_read(&check_state.enough))
2086 break;
2087
2088 check_state.infos[i].result = 0;
2089 check_state.infos[i].state = &check_state;
2090
2091 check_state.infos[i].thread =
2092 kthread_run(bch_btree_check_thread,
2093 &check_state.infos[i],
2094 "bch_btrchk[%d]", i);
2095 if (IS_ERR(check_state.infos[i].thread)) {
2096 pr_err("fails to run thread bch_btrchk[%d]\n", i);
2097 for (--i; i >= 0; i--)
2098 kthread_stop(check_state.infos[i].thread);
2099 ret = -ENOMEM;
2100 goto out;
2101 }
2102 atomic_inc(&check_state.started);
2103 }
2104
2105 /*
2106 * Must wait for all threads to stop.
2107 */
2108 wait_event(check_state.wait, atomic_read(&check_state.started) == 0);
2109
2110 for (i = 0; i < check_state.total_threads; i++) {
2111 if (check_state.infos[i].result) {
2112 ret = check_state.infos[i].result;
2113 goto out;
2114 }
2115 }
2116
2117out:
2118 rw_unlock(0, c->root);
2119 return ret;
2120}
2121
2122void bch_initial_gc_finish(struct cache_set *c)
2123{
2124 struct cache *ca = c->cache;
2125 struct bucket *b;
2126
2127 bch_btree_gc_finish(c);
2128
2129 mutex_lock(&c->bucket_lock);
2130
2131 /*
2132 * We need to put some unused buckets directly on the prio freelist in
2133 * order to get the allocator thread started - it needs freed buckets in
2134 * order to rewrite the prios and gens, and it needs to rewrite prios
2135 * and gens in order to free buckets.
2136 *
2137 * This is only safe for buckets that have no live data in them, which
2138 * there should always be some of.
2139 */
2140 for_each_bucket(b, ca) {
2141 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
2142 fifo_full(&ca->free[RESERVE_BTREE]))
2143 break;
2144
2145 if (bch_can_invalidate_bucket(ca, b) &&
2146 !GC_MARK(b)) {
2147 __bch_invalidate_one_bucket(ca, b);
2148 if (!fifo_push(&ca->free[RESERVE_PRIO],
2149 b - ca->buckets))
2150 fifo_push(&ca->free[RESERVE_BTREE],
2151 b - ca->buckets);
2152 }
2153 }
2154
2155 mutex_unlock(&c->bucket_lock);
2156}
2157
2158/* Btree insertion */
2159
2160static bool btree_insert_key(struct btree *b, struct bkey *k,
2161 struct bkey *replace_key)
2162{
2163 unsigned int status;
2164
2165 BUG_ON(bkey_cmp(k, &b->key) > 0);
2166
2167 status = bch_btree_insert_key(&b->keys, k, replace_key);
2168 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2169 bch_check_keys(&b->keys, "%u for %s", status,
2170 replace_key ? "replace" : "insert");
2171
2172 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2173 status);
2174 return true;
2175 } else
2176 return false;
2177}
2178
2179static size_t insert_u64s_remaining(struct btree *b)
2180{
2181 long ret = bch_btree_keys_u64s_remaining(&b->keys);
2182
2183 /*
2184 * Might land in the middle of an existing extent and have to split it
2185 */
2186 if (b->keys.ops->is_extents)
2187 ret -= KEY_MAX_U64S;
2188
2189 return max(ret, 0L);
2190}
2191
2192static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2193 struct keylist *insert_keys,
2194 struct bkey *replace_key)
2195{
2196 bool ret = false;
2197 int oldsize = bch_count_data(&b->keys);
2198
2199 while (!bch_keylist_empty(insert_keys)) {
2200 struct bkey *k = insert_keys->keys;
2201
2202 if (bkey_u64s(k) > insert_u64s_remaining(b))
2203 break;
2204
2205 if (bkey_cmp(k, &b->key) <= 0) {
2206 if (!b->level)
2207 bkey_put(b->c, k);
2208
2209 ret |= btree_insert_key(b, k, replace_key);
2210 bch_keylist_pop_front(insert_keys);
2211 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2212 BKEY_PADDED(key) temp;
2213 bkey_copy(&temp.key, insert_keys->keys);
2214
2215 bch_cut_back(&b->key, &temp.key);
2216 bch_cut_front(&b->key, insert_keys->keys);
2217
2218 ret |= btree_insert_key(b, &temp.key, replace_key);
2219 break;
2220 } else {
2221 break;
2222 }
2223 }
2224
2225 if (!ret)
2226 op->insert_collision = true;
2227
2228 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2229
2230 BUG_ON(bch_count_data(&b->keys) < oldsize);
2231 return ret;
2232}
2233
2234static int btree_split(struct btree *b, struct btree_op *op,
2235 struct keylist *insert_keys,
2236 struct bkey *replace_key)
2237{
2238 bool split;
2239 struct btree *n1, *n2 = NULL, *n3 = NULL;
2240 uint64_t start_time = local_clock();
2241 struct closure cl;
2242 struct keylist parent_keys;
2243
2244 closure_init_stack(&cl);
2245 bch_keylist_init(&parent_keys);
2246
2247 if (btree_check_reserve(b, op)) {
2248 if (!b->level)
2249 return -EINTR;
2250 else
2251 WARN(1, "insufficient reserve for split\n");
2252 }
2253
2254 n1 = btree_node_alloc_replacement(b, op);
2255 if (IS_ERR(n1))
2256 goto err;
2257
2258 split = set_blocks(btree_bset_first(n1),
2259 block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5;
2260
2261 if (split) {
2262 unsigned int keys = 0;
2263
2264 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2265
2266 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2267 if (IS_ERR(n2))
2268 goto err_free1;
2269
2270 if (!b->parent) {
2271 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2272 if (IS_ERR(n3))
2273 goto err_free2;
2274 }
2275
2276 mutex_lock(&n1->write_lock);
2277 mutex_lock(&n2->write_lock);
2278
2279 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2280
2281 /*
2282 * Has to be a linear search because we don't have an auxiliary
2283 * search tree yet
2284 */
2285
2286 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2287 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2288 keys));
2289
2290 bkey_copy_key(&n1->key,
2291 bset_bkey_idx(btree_bset_first(n1), keys));
2292 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2293
2294 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2295 btree_bset_first(n1)->keys = keys;
2296
2297 memcpy(btree_bset_first(n2)->start,
2298 bset_bkey_last(btree_bset_first(n1)),
2299 btree_bset_first(n2)->keys * sizeof(uint64_t));
2300
2301 bkey_copy_key(&n2->key, &b->key);
2302
2303 bch_keylist_add(&parent_keys, &n2->key);
2304 bch_btree_node_write(n2, &cl);
2305 mutex_unlock(&n2->write_lock);
2306 rw_unlock(true, n2);
2307 } else {
2308 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2309
2310 mutex_lock(&n1->write_lock);
2311 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2312 }
2313
2314 bch_keylist_add(&parent_keys, &n1->key);
2315 bch_btree_node_write(n1, &cl);
2316 mutex_unlock(&n1->write_lock);
2317
2318 if (n3) {
2319 /* Depth increases, make a new root */
2320 mutex_lock(&n3->write_lock);
2321 bkey_copy_key(&n3->key, &MAX_KEY);
2322 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2323 bch_btree_node_write(n3, &cl);
2324 mutex_unlock(&n3->write_lock);
2325
2326 closure_sync(&cl);
2327 bch_btree_set_root(n3);
2328 rw_unlock(true, n3);
2329 } else if (!b->parent) {
2330 /* Root filled up but didn't need to be split */
2331 closure_sync(&cl);
2332 bch_btree_set_root(n1);
2333 } else {
2334 /* Split a non root node */
2335 closure_sync(&cl);
2336 make_btree_freeing_key(b, parent_keys.top);
2337 bch_keylist_push(&parent_keys);
2338
2339 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2340 BUG_ON(!bch_keylist_empty(&parent_keys));
2341 }
2342
2343 btree_node_free(b);
2344 rw_unlock(true, n1);
2345
2346 bch_time_stats_update(&b->c->btree_split_time, start_time);
2347
2348 return 0;
2349err_free2:
2350 bkey_put(b->c, &n2->key);
2351 btree_node_free(n2);
2352 rw_unlock(true, n2);
2353err_free1:
2354 bkey_put(b->c, &n1->key);
2355 btree_node_free(n1);
2356 rw_unlock(true, n1);
2357err:
2358 WARN(1, "bcache: btree split failed (level %u)", b->level);
2359
2360 if (n3 == ERR_PTR(-EAGAIN) ||
2361 n2 == ERR_PTR(-EAGAIN) ||
2362 n1 == ERR_PTR(-EAGAIN))
2363 return -EAGAIN;
2364
2365 return -ENOMEM;
2366}
2367
2368static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2369 struct keylist *insert_keys,
2370 atomic_t *journal_ref,
2371 struct bkey *replace_key)
2372{
2373 struct closure cl;
2374
2375 BUG_ON(b->level && replace_key);
2376
2377 closure_init_stack(&cl);
2378
2379 mutex_lock(&b->write_lock);
2380
2381 if (write_block(b) != btree_bset_last(b) &&
2382 b->keys.last_set_unwritten)
2383 bch_btree_init_next(b); /* just wrote a set */
2384
2385 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2386 mutex_unlock(&b->write_lock);
2387 goto split;
2388 }
2389
2390 BUG_ON(write_block(b) != btree_bset_last(b));
2391
2392 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2393 if (!b->level)
2394 bch_btree_leaf_dirty(b, journal_ref);
2395 else
2396 bch_btree_node_write(b, &cl);
2397 }
2398
2399 mutex_unlock(&b->write_lock);
2400
2401 /* wait for btree node write if necessary, after unlock */
2402 closure_sync(&cl);
2403
2404 return 0;
2405split:
2406 if (current->bio_list) {
2407 op->lock = b->c->root->level + 1;
2408 return -EAGAIN;
2409 } else if (op->lock <= b->c->root->level) {
2410 op->lock = b->c->root->level + 1;
2411 return -EINTR;
2412 } else {
2413 /* Invalidated all iterators */
2414 int ret = btree_split(b, op, insert_keys, replace_key);
2415
2416 if (bch_keylist_empty(insert_keys))
2417 return 0;
2418 else if (!ret)
2419 return -EINTR;
2420 return ret;
2421 }
2422}
2423
2424int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2425 struct bkey *check_key)
2426{
2427 int ret = -EINTR;
2428 uint64_t btree_ptr = b->key.ptr[0];
2429 unsigned long seq = b->seq;
2430 struct keylist insert;
2431 bool upgrade = op->lock == -1;
2432
2433 bch_keylist_init(&insert);
2434
2435 if (upgrade) {
2436 rw_unlock(false, b);
2437 rw_lock(true, b, b->level);
2438
2439 if (b->key.ptr[0] != btree_ptr ||
2440 b->seq != seq + 1) {
2441 op->lock = b->level;
2442 goto out;
2443 }
2444 }
2445
2446 SET_KEY_PTRS(check_key, 1);
2447 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2448
2449 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2450
2451 bch_keylist_add(&insert, check_key);
2452
2453 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2454
2455 BUG_ON(!ret && !bch_keylist_empty(&insert));
2456out:
2457 if (upgrade)
2458 downgrade_write(&b->lock);
2459 return ret;
2460}
2461
2462struct btree_insert_op {
2463 struct btree_op op;
2464 struct keylist *keys;
2465 atomic_t *journal_ref;
2466 struct bkey *replace_key;
2467};
2468
2469static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2470{
2471 struct btree_insert_op *op = container_of(b_op,
2472 struct btree_insert_op, op);
2473
2474 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2475 op->journal_ref, op->replace_key);
2476 if (ret && !bch_keylist_empty(op->keys))
2477 return ret;
2478 else
2479 return MAP_DONE;
2480}
2481
2482int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2483 atomic_t *journal_ref, struct bkey *replace_key)
2484{
2485 struct btree_insert_op op;
2486 int ret = 0;
2487
2488 BUG_ON(current->bio_list);
2489 BUG_ON(bch_keylist_empty(keys));
2490
2491 bch_btree_op_init(&op.op, 0);
2492 op.keys = keys;
2493 op.journal_ref = journal_ref;
2494 op.replace_key = replace_key;
2495
2496 while (!ret && !bch_keylist_empty(keys)) {
2497 op.op.lock = 0;
2498 ret = bch_btree_map_leaf_nodes(&op.op, c,
2499 &START_KEY(keys->keys),
2500 btree_insert_fn);
2501 }
2502
2503 if (ret) {
2504 struct bkey *k;
2505
2506 pr_err("error %i\n", ret);
2507
2508 while ((k = bch_keylist_pop(keys)))
2509 bkey_put(c, k);
2510 } else if (op.op.insert_collision)
2511 ret = -ESRCH;
2512
2513 return ret;
2514}
2515
2516void bch_btree_set_root(struct btree *b)
2517{
2518 unsigned int i;
2519 struct closure cl;
2520
2521 closure_init_stack(&cl);
2522
2523 trace_bcache_btree_set_root(b);
2524
2525 BUG_ON(!b->written);
2526
2527 for (i = 0; i < KEY_PTRS(&b->key); i++)
2528 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2529
2530 mutex_lock(&b->c->bucket_lock);
2531 list_del_init(&b->list);
2532 mutex_unlock(&b->c->bucket_lock);
2533
2534 b->c->root = b;
2535
2536 bch_journal_meta(b->c, &cl);
2537 closure_sync(&cl);
2538}
2539
2540/* Map across nodes or keys */
2541
2542static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2543 struct bkey *from,
2544 btree_map_nodes_fn *fn, int flags)
2545{
2546 int ret = MAP_CONTINUE;
2547
2548 if (b->level) {
2549 struct bkey *k;
2550 struct btree_iter iter;
2551
2552 bch_btree_iter_init(&b->keys, &iter, from);
2553
2554 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2555 bch_ptr_bad))) {
2556 ret = bcache_btree(map_nodes_recurse, k, b,
2557 op, from, fn, flags);
2558 from = NULL;
2559
2560 if (ret != MAP_CONTINUE)
2561 return ret;
2562 }
2563 }
2564
2565 if (!b->level || flags == MAP_ALL_NODES)
2566 ret = fn(op, b);
2567
2568 return ret;
2569}
2570
2571int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2572 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2573{
2574 return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
2575}
2576
2577int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2578 struct bkey *from, btree_map_keys_fn *fn,
2579 int flags)
2580{
2581 int ret = MAP_CONTINUE;
2582 struct bkey *k;
2583 struct btree_iter iter;
2584
2585 bch_btree_iter_init(&b->keys, &iter, from);
2586
2587 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2588 ret = !b->level
2589 ? fn(op, b, k)
2590 : bcache_btree(map_keys_recurse, k,
2591 b, op, from, fn, flags);
2592 from = NULL;
2593
2594 if (ret != MAP_CONTINUE)
2595 return ret;
2596 }
2597
2598 if (!b->level && (flags & MAP_END_KEY))
2599 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2600 KEY_OFFSET(&b->key), 0));
2601
2602 return ret;
2603}
2604
2605int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2606 struct bkey *from, btree_map_keys_fn *fn, int flags)
2607{
2608 return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
2609}
2610
2611/* Keybuf code */
2612
2613static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2614{
2615 /* Overlapping keys compare equal */
2616 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2617 return -1;
2618 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2619 return 1;
2620 return 0;
2621}
2622
2623static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2624 struct keybuf_key *r)
2625{
2626 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2627}
2628
2629struct refill {
2630 struct btree_op op;
2631 unsigned int nr_found;
2632 struct keybuf *buf;
2633 struct bkey *end;
2634 keybuf_pred_fn *pred;
2635};
2636
2637static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2638 struct bkey *k)
2639{
2640 struct refill *refill = container_of(op, struct refill, op);
2641 struct keybuf *buf = refill->buf;
2642 int ret = MAP_CONTINUE;
2643
2644 if (bkey_cmp(k, refill->end) > 0) {
2645 ret = MAP_DONE;
2646 goto out;
2647 }
2648
2649 if (!KEY_SIZE(k)) /* end key */
2650 goto out;
2651
2652 if (refill->pred(buf, k)) {
2653 struct keybuf_key *w;
2654
2655 spin_lock(&buf->lock);
2656
2657 w = array_alloc(&buf->freelist);
2658 if (!w) {
2659 spin_unlock(&buf->lock);
2660 return MAP_DONE;
2661 }
2662
2663 w->private = NULL;
2664 bkey_copy(&w->key, k);
2665
2666 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2667 array_free(&buf->freelist, w);
2668 else
2669 refill->nr_found++;
2670
2671 if (array_freelist_empty(&buf->freelist))
2672 ret = MAP_DONE;
2673
2674 spin_unlock(&buf->lock);
2675 }
2676out:
2677 buf->last_scanned = *k;
2678 return ret;
2679}
2680
2681void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2682 struct bkey *end, keybuf_pred_fn *pred)
2683{
2684 struct bkey start = buf->last_scanned;
2685 struct refill refill;
2686
2687 cond_resched();
2688
2689 bch_btree_op_init(&refill.op, -1);
2690 refill.nr_found = 0;
2691 refill.buf = buf;
2692 refill.end = end;
2693 refill.pred = pred;
2694
2695 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2696 refill_keybuf_fn, MAP_END_KEY);
2697
2698 trace_bcache_keyscan(refill.nr_found,
2699 KEY_INODE(&start), KEY_OFFSET(&start),
2700 KEY_INODE(&buf->last_scanned),
2701 KEY_OFFSET(&buf->last_scanned));
2702
2703 spin_lock(&buf->lock);
2704
2705 if (!RB_EMPTY_ROOT(&buf->keys)) {
2706 struct keybuf_key *w;
2707
2708 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2709 buf->start = START_KEY(&w->key);
2710
2711 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2712 buf->end = w->key;
2713 } else {
2714 buf->start = MAX_KEY;
2715 buf->end = MAX_KEY;
2716 }
2717
2718 spin_unlock(&buf->lock);
2719}
2720
2721static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2722{
2723 rb_erase(&w->node, &buf->keys);
2724 array_free(&buf->freelist, w);
2725}
2726
2727void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2728{
2729 spin_lock(&buf->lock);
2730 __bch_keybuf_del(buf, w);
2731 spin_unlock(&buf->lock);
2732}
2733
2734bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2735 struct bkey *end)
2736{
2737 bool ret = false;
2738 struct keybuf_key *p, *w, s;
2739
2740 s.key = *start;
2741
2742 if (bkey_cmp(end, &buf->start) <= 0 ||
2743 bkey_cmp(start, &buf->end) >= 0)
2744 return false;
2745
2746 spin_lock(&buf->lock);
2747 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2748
2749 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2750 p = w;
2751 w = RB_NEXT(w, node);
2752
2753 if (p->private)
2754 ret = true;
2755 else
2756 __bch_keybuf_del(buf, p);
2757 }
2758
2759 spin_unlock(&buf->lock);
2760 return ret;
2761}
2762
2763struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2764{
2765 struct keybuf_key *w;
2766
2767 spin_lock(&buf->lock);
2768
2769 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2770
2771 while (w && w->private)
2772 w = RB_NEXT(w, node);
2773
2774 if (w)
2775 w->private = ERR_PTR(-EINTR);
2776
2777 spin_unlock(&buf->lock);
2778 return w;
2779}
2780
2781struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2782 struct keybuf *buf,
2783 struct bkey *end,
2784 keybuf_pred_fn *pred)
2785{
2786 struct keybuf_key *ret;
2787
2788 while (1) {
2789 ret = bch_keybuf_next(buf);
2790 if (ret)
2791 break;
2792
2793 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2794 pr_debug("scan finished\n");
2795 break;
2796 }
2797
2798 bch_refill_keybuf(c, buf, end, pred);
2799 }
2800
2801 return ret;
2802}
2803
2804void bch_keybuf_init(struct keybuf *buf)
2805{
2806 buf->last_scanned = MAX_KEY;
2807 buf->keys = RB_ROOT;
2808
2809 spin_lock_init(&buf->lock);
2810 array_allocator_init(&buf->freelist);
2811}
2812
2813void bch_btree_exit(void)
2814{
2815 if (btree_io_wq)
2816 destroy_workqueue(btree_io_wq);
2817}
2818
2819int __init bch_btree_init(void)
2820{
2821 btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0);
2822 if (!btree_io_wq)
2823 return -ENOMEM;
2824
2825 return 0;
2826}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
7 * of the device.
8 *
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
13 *
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
16 *
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
20 *
21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22 */
23
24#include "bcache.h"
25#include "btree.h"
26#include "debug.h"
27#include "extents.h"
28
29#include <linux/slab.h>
30#include <linux/bitops.h>
31#include <linux/hash.h>
32#include <linux/kthread.h>
33#include <linux/prefetch.h>
34#include <linux/random.h>
35#include <linux/rcupdate.h>
36#include <linux/sched/clock.h>
37#include <linux/rculist.h>
38#include <linux/delay.h>
39#include <trace/events/bcache.h>
40
41/*
42 * Todo:
43 * register_bcache: Return errors out to userspace correctly
44 *
45 * Writeback: don't undirty key until after a cache flush
46 *
47 * Create an iterator for key pointers
48 *
49 * On btree write error, mark bucket such that it won't be freed from the cache
50 *
51 * Journalling:
52 * Check for bad keys in replay
53 * Propagate barriers
54 * Refcount journal entries in journal_replay
55 *
56 * Garbage collection:
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
59 *
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
63 *
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
66 * from being starved
67 *
68 * Add a tracepoint or somesuch to watch for writeback starvation
69 *
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
72 * obvious.
73 *
74 * Plugging?
75 *
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
78 *
79 * Superblock needs to be fleshed out for multiple cache devices
80 *
81 * Add a sysfs tunable for the number of writeback IOs in flight
82 *
83 * Add a sysfs tunable for the number of open data buckets
84 *
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
87 *
88 * Test module load/unload
89 */
90
91#define MAX_NEED_GC 64
92#define MAX_SAVE_PRIO 72
93#define MAX_GC_TIMES 100
94#define MIN_GC_NODES 100
95#define GC_SLEEP_MS 100
96
97#define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
98
99#define PTR_HASH(c, k) \
100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101
102#define insert_lock(s, b) ((b)->level <= (s)->lock)
103
104
105static inline struct bset *write_block(struct btree *b)
106{
107 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
108}
109
110static void bch_btree_init_next(struct btree *b)
111{
112 /* If not a leaf node, always sort */
113 if (b->level && b->keys.nsets)
114 bch_btree_sort(&b->keys, &b->c->sort);
115 else
116 bch_btree_sort_lazy(&b->keys, &b->c->sort);
117
118 if (b->written < btree_blocks(b))
119 bch_bset_init_next(&b->keys, write_block(b),
120 bset_magic(&b->c->sb));
121
122}
123
124/* Btree key manipulation */
125
126void bkey_put(struct cache_set *c, struct bkey *k)
127{
128 unsigned int i;
129
130 for (i = 0; i < KEY_PTRS(k); i++)
131 if (ptr_available(c, k, i))
132 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
133}
134
135/* Btree IO */
136
137static uint64_t btree_csum_set(struct btree *b, struct bset *i)
138{
139 uint64_t crc = b->key.ptr[0];
140 void *data = (void *) i + 8, *end = bset_bkey_last(i);
141
142 crc = bch_crc64_update(crc, data, end - data);
143 return crc ^ 0xffffffffffffffffULL;
144}
145
146void bch_btree_node_read_done(struct btree *b)
147{
148 const char *err = "bad btree header";
149 struct bset *i = btree_bset_first(b);
150 struct btree_iter *iter;
151
152 /*
153 * c->fill_iter can allocate an iterator with more memory space
154 * than static MAX_BSETS.
155 * See the comment arount cache_set->fill_iter.
156 */
157 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
158 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
159 iter->used = 0;
160
161#ifdef CONFIG_BCACHE_DEBUG
162 iter->b = &b->keys;
163#endif
164
165 if (!i->seq)
166 goto err;
167
168 for (;
169 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
170 i = write_block(b)) {
171 err = "unsupported bset version";
172 if (i->version > BCACHE_BSET_VERSION)
173 goto err;
174
175 err = "bad btree header";
176 if (b->written + set_blocks(i, block_bytes(b->c)) >
177 btree_blocks(b))
178 goto err;
179
180 err = "bad magic";
181 if (i->magic != bset_magic(&b->c->sb))
182 goto err;
183
184 err = "bad checksum";
185 switch (i->version) {
186 case 0:
187 if (i->csum != csum_set(i))
188 goto err;
189 break;
190 case BCACHE_BSET_VERSION:
191 if (i->csum != btree_csum_set(b, i))
192 goto err;
193 break;
194 }
195
196 err = "empty set";
197 if (i != b->keys.set[0].data && !i->keys)
198 goto err;
199
200 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
201
202 b->written += set_blocks(i, block_bytes(b->c));
203 }
204
205 err = "corrupted btree";
206 for (i = write_block(b);
207 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
208 i = ((void *) i) + block_bytes(b->c))
209 if (i->seq == b->keys.set[0].data->seq)
210 goto err;
211
212 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
213
214 i = b->keys.set[0].data;
215 err = "short btree key";
216 if (b->keys.set[0].size &&
217 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
218 goto err;
219
220 if (b->written < btree_blocks(b))
221 bch_bset_init_next(&b->keys, write_block(b),
222 bset_magic(&b->c->sb));
223out:
224 mempool_free(iter, &b->c->fill_iter);
225 return;
226err:
227 set_btree_node_io_error(b);
228 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
229 err, PTR_BUCKET_NR(b->c, &b->key, 0),
230 bset_block_offset(b, i), i->keys);
231 goto out;
232}
233
234static void btree_node_read_endio(struct bio *bio)
235{
236 struct closure *cl = bio->bi_private;
237
238 closure_put(cl);
239}
240
241static void bch_btree_node_read(struct btree *b)
242{
243 uint64_t start_time = local_clock();
244 struct closure cl;
245 struct bio *bio;
246
247 trace_bcache_btree_read(b);
248
249 closure_init_stack(&cl);
250
251 bio = bch_bbio_alloc(b->c);
252 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
253 bio->bi_end_io = btree_node_read_endio;
254 bio->bi_private = &cl;
255 bio->bi_opf = REQ_OP_READ | REQ_META;
256
257 bch_bio_map(bio, b->keys.set[0].data);
258
259 bch_submit_bbio(bio, b->c, &b->key, 0);
260 closure_sync(&cl);
261
262 if (bio->bi_status)
263 set_btree_node_io_error(b);
264
265 bch_bbio_free(bio, b->c);
266
267 if (btree_node_io_error(b))
268 goto err;
269
270 bch_btree_node_read_done(b);
271 bch_time_stats_update(&b->c->btree_read_time, start_time);
272
273 return;
274err:
275 bch_cache_set_error(b->c, "io error reading bucket %zu",
276 PTR_BUCKET_NR(b->c, &b->key, 0));
277}
278
279static void btree_complete_write(struct btree *b, struct btree_write *w)
280{
281 if (w->prio_blocked &&
282 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
283 wake_up_allocators(b->c);
284
285 if (w->journal) {
286 atomic_dec_bug(w->journal);
287 __closure_wake_up(&b->c->journal.wait);
288 }
289
290 w->prio_blocked = 0;
291 w->journal = NULL;
292}
293
294static void btree_node_write_unlock(struct closure *cl)
295{
296 struct btree *b = container_of(cl, struct btree, io);
297
298 up(&b->io_mutex);
299}
300
301static void __btree_node_write_done(struct closure *cl)
302{
303 struct btree *b = container_of(cl, struct btree, io);
304 struct btree_write *w = btree_prev_write(b);
305
306 bch_bbio_free(b->bio, b->c);
307 b->bio = NULL;
308 btree_complete_write(b, w);
309
310 if (btree_node_dirty(b))
311 schedule_delayed_work(&b->work, 30 * HZ);
312
313 closure_return_with_destructor(cl, btree_node_write_unlock);
314}
315
316static void btree_node_write_done(struct closure *cl)
317{
318 struct btree *b = container_of(cl, struct btree, io);
319
320 bio_free_pages(b->bio);
321 __btree_node_write_done(cl);
322}
323
324static void btree_node_write_endio(struct bio *bio)
325{
326 struct closure *cl = bio->bi_private;
327 struct btree *b = container_of(cl, struct btree, io);
328
329 if (bio->bi_status)
330 set_btree_node_io_error(b);
331
332 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
333 closure_put(cl);
334}
335
336static void do_btree_node_write(struct btree *b)
337{
338 struct closure *cl = &b->io;
339 struct bset *i = btree_bset_last(b);
340 BKEY_PADDED(key) k;
341
342 i->version = BCACHE_BSET_VERSION;
343 i->csum = btree_csum_set(b, i);
344
345 BUG_ON(b->bio);
346 b->bio = bch_bbio_alloc(b->c);
347
348 b->bio->bi_end_io = btree_node_write_endio;
349 b->bio->bi_private = cl;
350 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
351 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
352 bch_bio_map(b->bio, i);
353
354 /*
355 * If we're appending to a leaf node, we don't technically need FUA -
356 * this write just needs to be persisted before the next journal write,
357 * which will be marked FLUSH|FUA.
358 *
359 * Similarly if we're writing a new btree root - the pointer is going to
360 * be in the next journal entry.
361 *
362 * But if we're writing a new btree node (that isn't a root) or
363 * appending to a non leaf btree node, we need either FUA or a flush
364 * when we write the parent with the new pointer. FUA is cheaper than a
365 * flush, and writes appending to leaf nodes aren't blocking anything so
366 * just make all btree node writes FUA to keep things sane.
367 */
368
369 bkey_copy(&k.key, &b->key);
370 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
371 bset_sector_offset(&b->keys, i));
372
373 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
374 struct bio_vec *bv;
375 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
376 struct bvec_iter_all iter_all;
377
378 bio_for_each_segment_all(bv, b->bio, iter_all) {
379 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
380 addr += PAGE_SIZE;
381 }
382
383 bch_submit_bbio(b->bio, b->c, &k.key, 0);
384
385 continue_at(cl, btree_node_write_done, NULL);
386 } else {
387 /*
388 * No problem for multipage bvec since the bio is
389 * just allocated
390 */
391 b->bio->bi_vcnt = 0;
392 bch_bio_map(b->bio, i);
393
394 bch_submit_bbio(b->bio, b->c, &k.key, 0);
395
396 closure_sync(cl);
397 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
398 }
399}
400
401void __bch_btree_node_write(struct btree *b, struct closure *parent)
402{
403 struct bset *i = btree_bset_last(b);
404
405 lockdep_assert_held(&b->write_lock);
406
407 trace_bcache_btree_write(b);
408
409 BUG_ON(current->bio_list);
410 BUG_ON(b->written >= btree_blocks(b));
411 BUG_ON(b->written && !i->keys);
412 BUG_ON(btree_bset_first(b)->seq != i->seq);
413 bch_check_keys(&b->keys, "writing");
414
415 cancel_delayed_work(&b->work);
416
417 /* If caller isn't waiting for write, parent refcount is cache set */
418 down(&b->io_mutex);
419 closure_init(&b->io, parent ?: &b->c->cl);
420
421 clear_bit(BTREE_NODE_dirty, &b->flags);
422 change_bit(BTREE_NODE_write_idx, &b->flags);
423
424 do_btree_node_write(b);
425
426 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
427 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
428
429 b->written += set_blocks(i, block_bytes(b->c));
430}
431
432void bch_btree_node_write(struct btree *b, struct closure *parent)
433{
434 unsigned int nsets = b->keys.nsets;
435
436 lockdep_assert_held(&b->lock);
437
438 __bch_btree_node_write(b, parent);
439
440 /*
441 * do verify if there was more than one set initially (i.e. we did a
442 * sort) and we sorted down to a single set:
443 */
444 if (nsets && !b->keys.nsets)
445 bch_btree_verify(b);
446
447 bch_btree_init_next(b);
448}
449
450static void bch_btree_node_write_sync(struct btree *b)
451{
452 struct closure cl;
453
454 closure_init_stack(&cl);
455
456 mutex_lock(&b->write_lock);
457 bch_btree_node_write(b, &cl);
458 mutex_unlock(&b->write_lock);
459
460 closure_sync(&cl);
461}
462
463static void btree_node_write_work(struct work_struct *w)
464{
465 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
466
467 mutex_lock(&b->write_lock);
468 if (btree_node_dirty(b))
469 __bch_btree_node_write(b, NULL);
470 mutex_unlock(&b->write_lock);
471}
472
473static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
474{
475 struct bset *i = btree_bset_last(b);
476 struct btree_write *w = btree_current_write(b);
477
478 lockdep_assert_held(&b->write_lock);
479
480 BUG_ON(!b->written);
481 BUG_ON(!i->keys);
482
483 if (!btree_node_dirty(b))
484 schedule_delayed_work(&b->work, 30 * HZ);
485
486 set_btree_node_dirty(b);
487
488 /*
489 * w->journal is always the oldest journal pin of all bkeys
490 * in the leaf node, to make sure the oldest jset seq won't
491 * be increased before this btree node is flushed.
492 */
493 if (journal_ref) {
494 if (w->journal &&
495 journal_pin_cmp(b->c, w->journal, journal_ref)) {
496 atomic_dec_bug(w->journal);
497 w->journal = NULL;
498 }
499
500 if (!w->journal) {
501 w->journal = journal_ref;
502 atomic_inc(w->journal);
503 }
504 }
505
506 /* Force write if set is too big */
507 if (set_bytes(i) > PAGE_SIZE - 48 &&
508 !current->bio_list)
509 bch_btree_node_write(b, NULL);
510}
511
512/*
513 * Btree in memory cache - allocation/freeing
514 * mca -> memory cache
515 */
516
517#define mca_reserve(c) (((c->root && c->root->level) \
518 ? c->root->level : 1) * 8 + 16)
519#define mca_can_free(c) \
520 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
521
522static void mca_data_free(struct btree *b)
523{
524 BUG_ON(b->io_mutex.count != 1);
525
526 bch_btree_keys_free(&b->keys);
527
528 b->c->btree_cache_used--;
529 list_move(&b->list, &b->c->btree_cache_freed);
530}
531
532static void mca_bucket_free(struct btree *b)
533{
534 BUG_ON(btree_node_dirty(b));
535
536 b->key.ptr[0] = 0;
537 hlist_del_init_rcu(&b->hash);
538 list_move(&b->list, &b->c->btree_cache_freeable);
539}
540
541static unsigned int btree_order(struct bkey *k)
542{
543 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
544}
545
546static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
547{
548 if (!bch_btree_keys_alloc(&b->keys,
549 max_t(unsigned int,
550 ilog2(b->c->btree_pages),
551 btree_order(k)),
552 gfp)) {
553 b->c->btree_cache_used++;
554 list_move(&b->list, &b->c->btree_cache);
555 } else {
556 list_move(&b->list, &b->c->btree_cache_freed);
557 }
558}
559
560static struct btree *mca_bucket_alloc(struct cache_set *c,
561 struct bkey *k, gfp_t gfp)
562{
563 /*
564 * kzalloc() is necessary here for initialization,
565 * see code comments in bch_btree_keys_init().
566 */
567 struct btree *b = kzalloc(sizeof(struct btree), gfp);
568
569 if (!b)
570 return NULL;
571
572 init_rwsem(&b->lock);
573 lockdep_set_novalidate_class(&b->lock);
574 mutex_init(&b->write_lock);
575 lockdep_set_novalidate_class(&b->write_lock);
576 INIT_LIST_HEAD(&b->list);
577 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
578 b->c = c;
579 sema_init(&b->io_mutex, 1);
580
581 mca_data_alloc(b, k, gfp);
582 return b;
583}
584
585static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
586{
587 struct closure cl;
588
589 closure_init_stack(&cl);
590 lockdep_assert_held(&b->c->bucket_lock);
591
592 if (!down_write_trylock(&b->lock))
593 return -ENOMEM;
594
595 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
596
597 if (b->keys.page_order < min_order)
598 goto out_unlock;
599
600 if (!flush) {
601 if (btree_node_dirty(b))
602 goto out_unlock;
603
604 if (down_trylock(&b->io_mutex))
605 goto out_unlock;
606 up(&b->io_mutex);
607 }
608
609retry:
610 /*
611 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
612 * __bch_btree_node_write(). To avoid an extra flush, acquire
613 * b->write_lock before checking BTREE_NODE_dirty bit.
614 */
615 mutex_lock(&b->write_lock);
616 /*
617 * If this btree node is selected in btree_flush_write() by journal
618 * code, delay and retry until the node is flushed by journal code
619 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
620 */
621 if (btree_node_journal_flush(b)) {
622 pr_debug("bnode %p is flushing by journal, retry\n", b);
623 mutex_unlock(&b->write_lock);
624 udelay(1);
625 goto retry;
626 }
627
628 if (btree_node_dirty(b))
629 __bch_btree_node_write(b, &cl);
630 mutex_unlock(&b->write_lock);
631
632 closure_sync(&cl);
633
634 /* wait for any in flight btree write */
635 down(&b->io_mutex);
636 up(&b->io_mutex);
637
638 return 0;
639out_unlock:
640 rw_unlock(true, b);
641 return -ENOMEM;
642}
643
644static unsigned long bch_mca_scan(struct shrinker *shrink,
645 struct shrink_control *sc)
646{
647 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
648 struct btree *b, *t;
649 unsigned long i, nr = sc->nr_to_scan;
650 unsigned long freed = 0;
651 unsigned int btree_cache_used;
652
653 if (c->shrinker_disabled)
654 return SHRINK_STOP;
655
656 if (c->btree_cache_alloc_lock)
657 return SHRINK_STOP;
658
659 /* Return -1 if we can't do anything right now */
660 if (sc->gfp_mask & __GFP_IO)
661 mutex_lock(&c->bucket_lock);
662 else if (!mutex_trylock(&c->bucket_lock))
663 return -1;
664
665 /*
666 * It's _really_ critical that we don't free too many btree nodes - we
667 * have to always leave ourselves a reserve. The reserve is how we
668 * guarantee that allocating memory for a new btree node can always
669 * succeed, so that inserting keys into the btree can always succeed and
670 * IO can always make forward progress:
671 */
672 nr /= c->btree_pages;
673 if (nr == 0)
674 nr = 1;
675 nr = min_t(unsigned long, nr, mca_can_free(c));
676
677 i = 0;
678 btree_cache_used = c->btree_cache_used;
679 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
680 if (nr <= 0)
681 goto out;
682
683 if (!mca_reap(b, 0, false)) {
684 mca_data_free(b);
685 rw_unlock(true, b);
686 freed++;
687 }
688 nr--;
689 i++;
690 }
691
692 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
693 if (nr <= 0 || i >= btree_cache_used)
694 goto out;
695
696 if (!mca_reap(b, 0, false)) {
697 mca_bucket_free(b);
698 mca_data_free(b);
699 rw_unlock(true, b);
700 freed++;
701 }
702
703 nr--;
704 i++;
705 }
706out:
707 mutex_unlock(&c->bucket_lock);
708 return freed * c->btree_pages;
709}
710
711static unsigned long bch_mca_count(struct shrinker *shrink,
712 struct shrink_control *sc)
713{
714 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
715
716 if (c->shrinker_disabled)
717 return 0;
718
719 if (c->btree_cache_alloc_lock)
720 return 0;
721
722 return mca_can_free(c) * c->btree_pages;
723}
724
725void bch_btree_cache_free(struct cache_set *c)
726{
727 struct btree *b;
728 struct closure cl;
729
730 closure_init_stack(&cl);
731
732 if (c->shrink.list.next)
733 unregister_shrinker(&c->shrink);
734
735 mutex_lock(&c->bucket_lock);
736
737#ifdef CONFIG_BCACHE_DEBUG
738 if (c->verify_data)
739 list_move(&c->verify_data->list, &c->btree_cache);
740
741 free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->sb)));
742#endif
743
744 list_splice(&c->btree_cache_freeable,
745 &c->btree_cache);
746
747 while (!list_empty(&c->btree_cache)) {
748 b = list_first_entry(&c->btree_cache, struct btree, list);
749
750 /*
751 * This function is called by cache_set_free(), no I/O
752 * request on cache now, it is unnecessary to acquire
753 * b->write_lock before clearing BTREE_NODE_dirty anymore.
754 */
755 if (btree_node_dirty(b)) {
756 btree_complete_write(b, btree_current_write(b));
757 clear_bit(BTREE_NODE_dirty, &b->flags);
758 }
759 mca_data_free(b);
760 }
761
762 while (!list_empty(&c->btree_cache_freed)) {
763 b = list_first_entry(&c->btree_cache_freed,
764 struct btree, list);
765 list_del(&b->list);
766 cancel_delayed_work_sync(&b->work);
767 kfree(b);
768 }
769
770 mutex_unlock(&c->bucket_lock);
771}
772
773int bch_btree_cache_alloc(struct cache_set *c)
774{
775 unsigned int i;
776
777 for (i = 0; i < mca_reserve(c); i++)
778 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
779 return -ENOMEM;
780
781 list_splice_init(&c->btree_cache,
782 &c->btree_cache_freeable);
783
784#ifdef CONFIG_BCACHE_DEBUG
785 mutex_init(&c->verify_lock);
786
787 c->verify_ondisk = (void *)
788 __get_free_pages(GFP_KERNEL|__GFP_COMP, ilog2(meta_bucket_pages(&c->sb)));
789 if (!c->verify_ondisk) {
790 /*
791 * Don't worry about the mca_rereserve buckets
792 * allocated in previous for-loop, they will be
793 * handled properly in bch_cache_set_unregister().
794 */
795 return -ENOMEM;
796 }
797
798 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
799
800 if (c->verify_data &&
801 c->verify_data->keys.set->data)
802 list_del_init(&c->verify_data->list);
803 else
804 c->verify_data = NULL;
805#endif
806
807 c->shrink.count_objects = bch_mca_count;
808 c->shrink.scan_objects = bch_mca_scan;
809 c->shrink.seeks = 4;
810 c->shrink.batch = c->btree_pages * 2;
811
812 if (register_shrinker(&c->shrink))
813 pr_warn("bcache: %s: could not register shrinker\n",
814 __func__);
815
816 return 0;
817}
818
819/* Btree in memory cache - hash table */
820
821static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
822{
823 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
824}
825
826static struct btree *mca_find(struct cache_set *c, struct bkey *k)
827{
828 struct btree *b;
829
830 rcu_read_lock();
831 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
832 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
833 goto out;
834 b = NULL;
835out:
836 rcu_read_unlock();
837 return b;
838}
839
840static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
841{
842 spin_lock(&c->btree_cannibalize_lock);
843 if (likely(c->btree_cache_alloc_lock == NULL)) {
844 c->btree_cache_alloc_lock = current;
845 } else if (c->btree_cache_alloc_lock != current) {
846 if (op)
847 prepare_to_wait(&c->btree_cache_wait, &op->wait,
848 TASK_UNINTERRUPTIBLE);
849 spin_unlock(&c->btree_cannibalize_lock);
850 return -EINTR;
851 }
852 spin_unlock(&c->btree_cannibalize_lock);
853
854 return 0;
855}
856
857static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
858 struct bkey *k)
859{
860 struct btree *b;
861
862 trace_bcache_btree_cache_cannibalize(c);
863
864 if (mca_cannibalize_lock(c, op))
865 return ERR_PTR(-EINTR);
866
867 list_for_each_entry_reverse(b, &c->btree_cache, list)
868 if (!mca_reap(b, btree_order(k), false))
869 return b;
870
871 list_for_each_entry_reverse(b, &c->btree_cache, list)
872 if (!mca_reap(b, btree_order(k), true))
873 return b;
874
875 WARN(1, "btree cache cannibalize failed\n");
876 return ERR_PTR(-ENOMEM);
877}
878
879/*
880 * We can only have one thread cannibalizing other cached btree nodes at a time,
881 * or we'll deadlock. We use an open coded mutex to ensure that, which a
882 * cannibalize_bucket() will take. This means every time we unlock the root of
883 * the btree, we need to release this lock if we have it held.
884 */
885static void bch_cannibalize_unlock(struct cache_set *c)
886{
887 spin_lock(&c->btree_cannibalize_lock);
888 if (c->btree_cache_alloc_lock == current) {
889 c->btree_cache_alloc_lock = NULL;
890 wake_up(&c->btree_cache_wait);
891 }
892 spin_unlock(&c->btree_cannibalize_lock);
893}
894
895static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
896 struct bkey *k, int level)
897{
898 struct btree *b;
899
900 BUG_ON(current->bio_list);
901
902 lockdep_assert_held(&c->bucket_lock);
903
904 if (mca_find(c, k))
905 return NULL;
906
907 /* btree_free() doesn't free memory; it sticks the node on the end of
908 * the list. Check if there's any freed nodes there:
909 */
910 list_for_each_entry(b, &c->btree_cache_freeable, list)
911 if (!mca_reap(b, btree_order(k), false))
912 goto out;
913
914 /* We never free struct btree itself, just the memory that holds the on
915 * disk node. Check the freed list before allocating a new one:
916 */
917 list_for_each_entry(b, &c->btree_cache_freed, list)
918 if (!mca_reap(b, 0, false)) {
919 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
920 if (!b->keys.set[0].data)
921 goto err;
922 else
923 goto out;
924 }
925
926 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
927 if (!b)
928 goto err;
929
930 BUG_ON(!down_write_trylock(&b->lock));
931 if (!b->keys.set->data)
932 goto err;
933out:
934 BUG_ON(b->io_mutex.count != 1);
935
936 bkey_copy(&b->key, k);
937 list_move(&b->list, &c->btree_cache);
938 hlist_del_init_rcu(&b->hash);
939 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
940
941 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
942 b->parent = (void *) ~0UL;
943 b->flags = 0;
944 b->written = 0;
945 b->level = level;
946
947 if (!b->level)
948 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
949 &b->c->expensive_debug_checks);
950 else
951 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
952 &b->c->expensive_debug_checks);
953
954 return b;
955err:
956 if (b)
957 rw_unlock(true, b);
958
959 b = mca_cannibalize(c, op, k);
960 if (!IS_ERR(b))
961 goto out;
962
963 return b;
964}
965
966/*
967 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
968 * in from disk if necessary.
969 *
970 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN.
971 *
972 * The btree node will have either a read or a write lock held, depending on
973 * level and op->lock.
974 */
975struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
976 struct bkey *k, int level, bool write,
977 struct btree *parent)
978{
979 int i = 0;
980 struct btree *b;
981
982 BUG_ON(level < 0);
983retry:
984 b = mca_find(c, k);
985
986 if (!b) {
987 if (current->bio_list)
988 return ERR_PTR(-EAGAIN);
989
990 mutex_lock(&c->bucket_lock);
991 b = mca_alloc(c, op, k, level);
992 mutex_unlock(&c->bucket_lock);
993
994 if (!b)
995 goto retry;
996 if (IS_ERR(b))
997 return b;
998
999 bch_btree_node_read(b);
1000
1001 if (!write)
1002 downgrade_write(&b->lock);
1003 } else {
1004 rw_lock(write, b, level);
1005 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1006 rw_unlock(write, b);
1007 goto retry;
1008 }
1009 BUG_ON(b->level != level);
1010 }
1011
1012 if (btree_node_io_error(b)) {
1013 rw_unlock(write, b);
1014 return ERR_PTR(-EIO);
1015 }
1016
1017 BUG_ON(!b->written);
1018
1019 b->parent = parent;
1020
1021 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1022 prefetch(b->keys.set[i].tree);
1023 prefetch(b->keys.set[i].data);
1024 }
1025
1026 for (; i <= b->keys.nsets; i++)
1027 prefetch(b->keys.set[i].data);
1028
1029 return b;
1030}
1031
1032static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1033{
1034 struct btree *b;
1035
1036 mutex_lock(&parent->c->bucket_lock);
1037 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1038 mutex_unlock(&parent->c->bucket_lock);
1039
1040 if (!IS_ERR_OR_NULL(b)) {
1041 b->parent = parent;
1042 bch_btree_node_read(b);
1043 rw_unlock(true, b);
1044 }
1045}
1046
1047/* Btree alloc */
1048
1049static void btree_node_free(struct btree *b)
1050{
1051 trace_bcache_btree_node_free(b);
1052
1053 BUG_ON(b == b->c->root);
1054
1055retry:
1056 mutex_lock(&b->write_lock);
1057 /*
1058 * If the btree node is selected and flushing in btree_flush_write(),
1059 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1060 * then it is safe to free the btree node here. Otherwise this btree
1061 * node will be in race condition.
1062 */
1063 if (btree_node_journal_flush(b)) {
1064 mutex_unlock(&b->write_lock);
1065 pr_debug("bnode %p journal_flush set, retry\n", b);
1066 udelay(1);
1067 goto retry;
1068 }
1069
1070 if (btree_node_dirty(b)) {
1071 btree_complete_write(b, btree_current_write(b));
1072 clear_bit(BTREE_NODE_dirty, &b->flags);
1073 }
1074
1075 mutex_unlock(&b->write_lock);
1076
1077 cancel_delayed_work(&b->work);
1078
1079 mutex_lock(&b->c->bucket_lock);
1080 bch_bucket_free(b->c, &b->key);
1081 mca_bucket_free(b);
1082 mutex_unlock(&b->c->bucket_lock);
1083}
1084
1085struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1086 int level, bool wait,
1087 struct btree *parent)
1088{
1089 BKEY_PADDED(key) k;
1090 struct btree *b = ERR_PTR(-EAGAIN);
1091
1092 mutex_lock(&c->bucket_lock);
1093retry:
1094 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1095 goto err;
1096
1097 bkey_put(c, &k.key);
1098 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1099
1100 b = mca_alloc(c, op, &k.key, level);
1101 if (IS_ERR(b))
1102 goto err_free;
1103
1104 if (!b) {
1105 cache_bug(c,
1106 "Tried to allocate bucket that was in btree cache");
1107 goto retry;
1108 }
1109
1110 b->parent = parent;
1111 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1112
1113 mutex_unlock(&c->bucket_lock);
1114
1115 trace_bcache_btree_node_alloc(b);
1116 return b;
1117err_free:
1118 bch_bucket_free(c, &k.key);
1119err:
1120 mutex_unlock(&c->bucket_lock);
1121
1122 trace_bcache_btree_node_alloc_fail(c);
1123 return b;
1124}
1125
1126static struct btree *bch_btree_node_alloc(struct cache_set *c,
1127 struct btree_op *op, int level,
1128 struct btree *parent)
1129{
1130 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1131}
1132
1133static struct btree *btree_node_alloc_replacement(struct btree *b,
1134 struct btree_op *op)
1135{
1136 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1137
1138 if (!IS_ERR_OR_NULL(n)) {
1139 mutex_lock(&n->write_lock);
1140 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1141 bkey_copy_key(&n->key, &b->key);
1142 mutex_unlock(&n->write_lock);
1143 }
1144
1145 return n;
1146}
1147
1148static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1149{
1150 unsigned int i;
1151
1152 mutex_lock(&b->c->bucket_lock);
1153
1154 atomic_inc(&b->c->prio_blocked);
1155
1156 bkey_copy(k, &b->key);
1157 bkey_copy_key(k, &ZERO_KEY);
1158
1159 for (i = 0; i < KEY_PTRS(k); i++)
1160 SET_PTR_GEN(k, i,
1161 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1162 PTR_BUCKET(b->c, &b->key, i)));
1163
1164 mutex_unlock(&b->c->bucket_lock);
1165}
1166
1167static int btree_check_reserve(struct btree *b, struct btree_op *op)
1168{
1169 struct cache_set *c = b->c;
1170 struct cache *ca;
1171 unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
1172
1173 mutex_lock(&c->bucket_lock);
1174
1175 for_each_cache(ca, c, i)
1176 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1177 if (op)
1178 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1179 TASK_UNINTERRUPTIBLE);
1180 mutex_unlock(&c->bucket_lock);
1181 return -EINTR;
1182 }
1183
1184 mutex_unlock(&c->bucket_lock);
1185
1186 return mca_cannibalize_lock(b->c, op);
1187}
1188
1189/* Garbage collection */
1190
1191static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1192 struct bkey *k)
1193{
1194 uint8_t stale = 0;
1195 unsigned int i;
1196 struct bucket *g;
1197
1198 /*
1199 * ptr_invalid() can't return true for the keys that mark btree nodes as
1200 * freed, but since ptr_bad() returns true we'll never actually use them
1201 * for anything and thus we don't want mark their pointers here
1202 */
1203 if (!bkey_cmp(k, &ZERO_KEY))
1204 return stale;
1205
1206 for (i = 0; i < KEY_PTRS(k); i++) {
1207 if (!ptr_available(c, k, i))
1208 continue;
1209
1210 g = PTR_BUCKET(c, k, i);
1211
1212 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1213 g->last_gc = PTR_GEN(k, i);
1214
1215 if (ptr_stale(c, k, i)) {
1216 stale = max(stale, ptr_stale(c, k, i));
1217 continue;
1218 }
1219
1220 cache_bug_on(GC_MARK(g) &&
1221 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1222 c, "inconsistent ptrs: mark = %llu, level = %i",
1223 GC_MARK(g), level);
1224
1225 if (level)
1226 SET_GC_MARK(g, GC_MARK_METADATA);
1227 else if (KEY_DIRTY(k))
1228 SET_GC_MARK(g, GC_MARK_DIRTY);
1229 else if (!GC_MARK(g))
1230 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1231
1232 /* guard against overflow */
1233 SET_GC_SECTORS_USED(g, min_t(unsigned int,
1234 GC_SECTORS_USED(g) + KEY_SIZE(k),
1235 MAX_GC_SECTORS_USED));
1236
1237 BUG_ON(!GC_SECTORS_USED(g));
1238 }
1239
1240 return stale;
1241}
1242
1243#define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1244
1245void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1246{
1247 unsigned int i;
1248
1249 for (i = 0; i < KEY_PTRS(k); i++)
1250 if (ptr_available(c, k, i) &&
1251 !ptr_stale(c, k, i)) {
1252 struct bucket *b = PTR_BUCKET(c, k, i);
1253
1254 b->gen = PTR_GEN(k, i);
1255
1256 if (level && bkey_cmp(k, &ZERO_KEY))
1257 b->prio = BTREE_PRIO;
1258 else if (!level && b->prio == BTREE_PRIO)
1259 b->prio = INITIAL_PRIO;
1260 }
1261
1262 __bch_btree_mark_key(c, level, k);
1263}
1264
1265void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1266{
1267 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1268}
1269
1270static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1271{
1272 uint8_t stale = 0;
1273 unsigned int keys = 0, good_keys = 0;
1274 struct bkey *k;
1275 struct btree_iter iter;
1276 struct bset_tree *t;
1277
1278 gc->nodes++;
1279
1280 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1281 stale = max(stale, btree_mark_key(b, k));
1282 keys++;
1283
1284 if (bch_ptr_bad(&b->keys, k))
1285 continue;
1286
1287 gc->key_bytes += bkey_u64s(k);
1288 gc->nkeys++;
1289 good_keys++;
1290
1291 gc->data += KEY_SIZE(k);
1292 }
1293
1294 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1295 btree_bug_on(t->size &&
1296 bset_written(&b->keys, t) &&
1297 bkey_cmp(&b->key, &t->end) < 0,
1298 b, "found short btree key in gc");
1299
1300 if (b->c->gc_always_rewrite)
1301 return true;
1302
1303 if (stale > 10)
1304 return true;
1305
1306 if ((keys - good_keys) * 2 > keys)
1307 return true;
1308
1309 return false;
1310}
1311
1312#define GC_MERGE_NODES 4U
1313
1314struct gc_merge_info {
1315 struct btree *b;
1316 unsigned int keys;
1317};
1318
1319static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1320 struct keylist *insert_keys,
1321 atomic_t *journal_ref,
1322 struct bkey *replace_key);
1323
1324static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1325 struct gc_stat *gc, struct gc_merge_info *r)
1326{
1327 unsigned int i, nodes = 0, keys = 0, blocks;
1328 struct btree *new_nodes[GC_MERGE_NODES];
1329 struct keylist keylist;
1330 struct closure cl;
1331 struct bkey *k;
1332
1333 bch_keylist_init(&keylist);
1334
1335 if (btree_check_reserve(b, NULL))
1336 return 0;
1337
1338 memset(new_nodes, 0, sizeof(new_nodes));
1339 closure_init_stack(&cl);
1340
1341 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1342 keys += r[nodes++].keys;
1343
1344 blocks = btree_default_blocks(b->c) * 2 / 3;
1345
1346 if (nodes < 2 ||
1347 __set_blocks(b->keys.set[0].data, keys,
1348 block_bytes(b->c)) > blocks * (nodes - 1))
1349 return 0;
1350
1351 for (i = 0; i < nodes; i++) {
1352 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1353 if (IS_ERR_OR_NULL(new_nodes[i]))
1354 goto out_nocoalesce;
1355 }
1356
1357 /*
1358 * We have to check the reserve here, after we've allocated our new
1359 * nodes, to make sure the insert below will succeed - we also check
1360 * before as an optimization to potentially avoid a bunch of expensive
1361 * allocs/sorts
1362 */
1363 if (btree_check_reserve(b, NULL))
1364 goto out_nocoalesce;
1365
1366 for (i = 0; i < nodes; i++)
1367 mutex_lock(&new_nodes[i]->write_lock);
1368
1369 for (i = nodes - 1; i > 0; --i) {
1370 struct bset *n1 = btree_bset_first(new_nodes[i]);
1371 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1372 struct bkey *k, *last = NULL;
1373
1374 keys = 0;
1375
1376 if (i > 1) {
1377 for (k = n2->start;
1378 k < bset_bkey_last(n2);
1379 k = bkey_next(k)) {
1380 if (__set_blocks(n1, n1->keys + keys +
1381 bkey_u64s(k),
1382 block_bytes(b->c)) > blocks)
1383 break;
1384
1385 last = k;
1386 keys += bkey_u64s(k);
1387 }
1388 } else {
1389 /*
1390 * Last node we're not getting rid of - we're getting
1391 * rid of the node at r[0]. Have to try and fit all of
1392 * the remaining keys into this node; we can't ensure
1393 * they will always fit due to rounding and variable
1394 * length keys (shouldn't be possible in practice,
1395 * though)
1396 */
1397 if (__set_blocks(n1, n1->keys + n2->keys,
1398 block_bytes(b->c)) >
1399 btree_blocks(new_nodes[i]))
1400 goto out_unlock_nocoalesce;
1401
1402 keys = n2->keys;
1403 /* Take the key of the node we're getting rid of */
1404 last = &r->b->key;
1405 }
1406
1407 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1408 btree_blocks(new_nodes[i]));
1409
1410 if (last)
1411 bkey_copy_key(&new_nodes[i]->key, last);
1412
1413 memcpy(bset_bkey_last(n1),
1414 n2->start,
1415 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1416
1417 n1->keys += keys;
1418 r[i].keys = n1->keys;
1419
1420 memmove(n2->start,
1421 bset_bkey_idx(n2, keys),
1422 (void *) bset_bkey_last(n2) -
1423 (void *) bset_bkey_idx(n2, keys));
1424
1425 n2->keys -= keys;
1426
1427 if (__bch_keylist_realloc(&keylist,
1428 bkey_u64s(&new_nodes[i]->key)))
1429 goto out_unlock_nocoalesce;
1430
1431 bch_btree_node_write(new_nodes[i], &cl);
1432 bch_keylist_add(&keylist, &new_nodes[i]->key);
1433 }
1434
1435 for (i = 0; i < nodes; i++)
1436 mutex_unlock(&new_nodes[i]->write_lock);
1437
1438 closure_sync(&cl);
1439
1440 /* We emptied out this node */
1441 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1442 btree_node_free(new_nodes[0]);
1443 rw_unlock(true, new_nodes[0]);
1444 new_nodes[0] = NULL;
1445
1446 for (i = 0; i < nodes; i++) {
1447 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1448 goto out_nocoalesce;
1449
1450 make_btree_freeing_key(r[i].b, keylist.top);
1451 bch_keylist_push(&keylist);
1452 }
1453
1454 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1455 BUG_ON(!bch_keylist_empty(&keylist));
1456
1457 for (i = 0; i < nodes; i++) {
1458 btree_node_free(r[i].b);
1459 rw_unlock(true, r[i].b);
1460
1461 r[i].b = new_nodes[i];
1462 }
1463
1464 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1465 r[nodes - 1].b = ERR_PTR(-EINTR);
1466
1467 trace_bcache_btree_gc_coalesce(nodes);
1468 gc->nodes--;
1469
1470 bch_keylist_free(&keylist);
1471
1472 /* Invalidated our iterator */
1473 return -EINTR;
1474
1475out_unlock_nocoalesce:
1476 for (i = 0; i < nodes; i++)
1477 mutex_unlock(&new_nodes[i]->write_lock);
1478
1479out_nocoalesce:
1480 closure_sync(&cl);
1481
1482 while ((k = bch_keylist_pop(&keylist)))
1483 if (!bkey_cmp(k, &ZERO_KEY))
1484 atomic_dec(&b->c->prio_blocked);
1485 bch_keylist_free(&keylist);
1486
1487 for (i = 0; i < nodes; i++)
1488 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1489 btree_node_free(new_nodes[i]);
1490 rw_unlock(true, new_nodes[i]);
1491 }
1492 return 0;
1493}
1494
1495static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1496 struct btree *replace)
1497{
1498 struct keylist keys;
1499 struct btree *n;
1500
1501 if (btree_check_reserve(b, NULL))
1502 return 0;
1503
1504 n = btree_node_alloc_replacement(replace, NULL);
1505
1506 /* recheck reserve after allocating replacement node */
1507 if (btree_check_reserve(b, NULL)) {
1508 btree_node_free(n);
1509 rw_unlock(true, n);
1510 return 0;
1511 }
1512
1513 bch_btree_node_write_sync(n);
1514
1515 bch_keylist_init(&keys);
1516 bch_keylist_add(&keys, &n->key);
1517
1518 make_btree_freeing_key(replace, keys.top);
1519 bch_keylist_push(&keys);
1520
1521 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1522 BUG_ON(!bch_keylist_empty(&keys));
1523
1524 btree_node_free(replace);
1525 rw_unlock(true, n);
1526
1527 /* Invalidated our iterator */
1528 return -EINTR;
1529}
1530
1531static unsigned int btree_gc_count_keys(struct btree *b)
1532{
1533 struct bkey *k;
1534 struct btree_iter iter;
1535 unsigned int ret = 0;
1536
1537 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1538 ret += bkey_u64s(k);
1539
1540 return ret;
1541}
1542
1543static size_t btree_gc_min_nodes(struct cache_set *c)
1544{
1545 size_t min_nodes;
1546
1547 /*
1548 * Since incremental GC would stop 100ms when front
1549 * side I/O comes, so when there are many btree nodes,
1550 * if GC only processes constant (100) nodes each time,
1551 * GC would last a long time, and the front side I/Os
1552 * would run out of the buckets (since no new bucket
1553 * can be allocated during GC), and be blocked again.
1554 * So GC should not process constant nodes, but varied
1555 * nodes according to the number of btree nodes, which
1556 * realized by dividing GC into constant(100) times,
1557 * so when there are many btree nodes, GC can process
1558 * more nodes each time, otherwise, GC will process less
1559 * nodes each time (but no less than MIN_GC_NODES)
1560 */
1561 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1562 if (min_nodes < MIN_GC_NODES)
1563 min_nodes = MIN_GC_NODES;
1564
1565 return min_nodes;
1566}
1567
1568
1569static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1570 struct closure *writes, struct gc_stat *gc)
1571{
1572 int ret = 0;
1573 bool should_rewrite;
1574 struct bkey *k;
1575 struct btree_iter iter;
1576 struct gc_merge_info r[GC_MERGE_NODES];
1577 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1578
1579 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1580
1581 for (i = r; i < r + ARRAY_SIZE(r); i++)
1582 i->b = ERR_PTR(-EINTR);
1583
1584 while (1) {
1585 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1586 if (k) {
1587 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1588 true, b);
1589 if (IS_ERR(r->b)) {
1590 ret = PTR_ERR(r->b);
1591 break;
1592 }
1593
1594 r->keys = btree_gc_count_keys(r->b);
1595
1596 ret = btree_gc_coalesce(b, op, gc, r);
1597 if (ret)
1598 break;
1599 }
1600
1601 if (!last->b)
1602 break;
1603
1604 if (!IS_ERR(last->b)) {
1605 should_rewrite = btree_gc_mark_node(last->b, gc);
1606 if (should_rewrite) {
1607 ret = btree_gc_rewrite_node(b, op, last->b);
1608 if (ret)
1609 break;
1610 }
1611
1612 if (last->b->level) {
1613 ret = btree_gc_recurse(last->b, op, writes, gc);
1614 if (ret)
1615 break;
1616 }
1617
1618 bkey_copy_key(&b->c->gc_done, &last->b->key);
1619
1620 /*
1621 * Must flush leaf nodes before gc ends, since replace
1622 * operations aren't journalled
1623 */
1624 mutex_lock(&last->b->write_lock);
1625 if (btree_node_dirty(last->b))
1626 bch_btree_node_write(last->b, writes);
1627 mutex_unlock(&last->b->write_lock);
1628 rw_unlock(true, last->b);
1629 }
1630
1631 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1632 r->b = NULL;
1633
1634 if (atomic_read(&b->c->search_inflight) &&
1635 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1636 gc->nodes_pre = gc->nodes;
1637 ret = -EAGAIN;
1638 break;
1639 }
1640
1641 if (need_resched()) {
1642 ret = -EAGAIN;
1643 break;
1644 }
1645 }
1646
1647 for (i = r; i < r + ARRAY_SIZE(r); i++)
1648 if (!IS_ERR_OR_NULL(i->b)) {
1649 mutex_lock(&i->b->write_lock);
1650 if (btree_node_dirty(i->b))
1651 bch_btree_node_write(i->b, writes);
1652 mutex_unlock(&i->b->write_lock);
1653 rw_unlock(true, i->b);
1654 }
1655
1656 return ret;
1657}
1658
1659static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1660 struct closure *writes, struct gc_stat *gc)
1661{
1662 struct btree *n = NULL;
1663 int ret = 0;
1664 bool should_rewrite;
1665
1666 should_rewrite = btree_gc_mark_node(b, gc);
1667 if (should_rewrite) {
1668 n = btree_node_alloc_replacement(b, NULL);
1669
1670 if (!IS_ERR_OR_NULL(n)) {
1671 bch_btree_node_write_sync(n);
1672
1673 bch_btree_set_root(n);
1674 btree_node_free(b);
1675 rw_unlock(true, n);
1676
1677 return -EINTR;
1678 }
1679 }
1680
1681 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1682
1683 if (b->level) {
1684 ret = btree_gc_recurse(b, op, writes, gc);
1685 if (ret)
1686 return ret;
1687 }
1688
1689 bkey_copy_key(&b->c->gc_done, &b->key);
1690
1691 return ret;
1692}
1693
1694static void btree_gc_start(struct cache_set *c)
1695{
1696 struct cache *ca;
1697 struct bucket *b;
1698 unsigned int i;
1699
1700 if (!c->gc_mark_valid)
1701 return;
1702
1703 mutex_lock(&c->bucket_lock);
1704
1705 c->gc_mark_valid = 0;
1706 c->gc_done = ZERO_KEY;
1707
1708 for_each_cache(ca, c, i)
1709 for_each_bucket(b, ca) {
1710 b->last_gc = b->gen;
1711 if (!atomic_read(&b->pin)) {
1712 SET_GC_MARK(b, 0);
1713 SET_GC_SECTORS_USED(b, 0);
1714 }
1715 }
1716
1717 mutex_unlock(&c->bucket_lock);
1718}
1719
1720static void bch_btree_gc_finish(struct cache_set *c)
1721{
1722 struct bucket *b;
1723 struct cache *ca;
1724 unsigned int i;
1725
1726 mutex_lock(&c->bucket_lock);
1727
1728 set_gc_sectors(c);
1729 c->gc_mark_valid = 1;
1730 c->need_gc = 0;
1731
1732 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1733 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1734 GC_MARK_METADATA);
1735
1736 /* don't reclaim buckets to which writeback keys point */
1737 rcu_read_lock();
1738 for (i = 0; i < c->devices_max_used; i++) {
1739 struct bcache_device *d = c->devices[i];
1740 struct cached_dev *dc;
1741 struct keybuf_key *w, *n;
1742 unsigned int j;
1743
1744 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1745 continue;
1746 dc = container_of(d, struct cached_dev, disk);
1747
1748 spin_lock(&dc->writeback_keys.lock);
1749 rbtree_postorder_for_each_entry_safe(w, n,
1750 &dc->writeback_keys.keys, node)
1751 for (j = 0; j < KEY_PTRS(&w->key); j++)
1752 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1753 GC_MARK_DIRTY);
1754 spin_unlock(&dc->writeback_keys.lock);
1755 }
1756 rcu_read_unlock();
1757
1758 c->avail_nbuckets = 0;
1759 for_each_cache(ca, c, i) {
1760 uint64_t *i;
1761
1762 ca->invalidate_needs_gc = 0;
1763
1764 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1765 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1766
1767 for (i = ca->prio_buckets;
1768 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1769 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1770
1771 for_each_bucket(b, ca) {
1772 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1773
1774 if (atomic_read(&b->pin))
1775 continue;
1776
1777 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1778
1779 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1780 c->avail_nbuckets++;
1781 }
1782 }
1783
1784 mutex_unlock(&c->bucket_lock);
1785}
1786
1787static void bch_btree_gc(struct cache_set *c)
1788{
1789 int ret;
1790 struct gc_stat stats;
1791 struct closure writes;
1792 struct btree_op op;
1793 uint64_t start_time = local_clock();
1794
1795 trace_bcache_gc_start(c);
1796
1797 memset(&stats, 0, sizeof(struct gc_stat));
1798 closure_init_stack(&writes);
1799 bch_btree_op_init(&op, SHRT_MAX);
1800
1801 btree_gc_start(c);
1802
1803 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1804 do {
1805 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
1806 closure_sync(&writes);
1807 cond_resched();
1808
1809 if (ret == -EAGAIN)
1810 schedule_timeout_interruptible(msecs_to_jiffies
1811 (GC_SLEEP_MS));
1812 else if (ret)
1813 pr_warn("gc failed!\n");
1814 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1815
1816 bch_btree_gc_finish(c);
1817 wake_up_allocators(c);
1818
1819 bch_time_stats_update(&c->btree_gc_time, start_time);
1820
1821 stats.key_bytes *= sizeof(uint64_t);
1822 stats.data <<= 9;
1823 bch_update_bucket_in_use(c, &stats);
1824 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1825
1826 trace_bcache_gc_end(c);
1827
1828 bch_moving_gc(c);
1829}
1830
1831static bool gc_should_run(struct cache_set *c)
1832{
1833 struct cache *ca;
1834 unsigned int i;
1835
1836 for_each_cache(ca, c, i)
1837 if (ca->invalidate_needs_gc)
1838 return true;
1839
1840 if (atomic_read(&c->sectors_to_gc) < 0)
1841 return true;
1842
1843 return false;
1844}
1845
1846static int bch_gc_thread(void *arg)
1847{
1848 struct cache_set *c = arg;
1849
1850 while (1) {
1851 wait_event_interruptible(c->gc_wait,
1852 kthread_should_stop() ||
1853 test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1854 gc_should_run(c));
1855
1856 if (kthread_should_stop() ||
1857 test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1858 break;
1859
1860 set_gc_sectors(c);
1861 bch_btree_gc(c);
1862 }
1863
1864 wait_for_kthread_stop();
1865 return 0;
1866}
1867
1868int bch_gc_thread_start(struct cache_set *c)
1869{
1870 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1871 return PTR_ERR_OR_ZERO(c->gc_thread);
1872}
1873
1874/* Initial partial gc */
1875
1876static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1877{
1878 int ret = 0;
1879 struct bkey *k, *p = NULL;
1880 struct btree_iter iter;
1881
1882 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1883 bch_initial_mark_key(b->c, b->level, k);
1884
1885 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1886
1887 if (b->level) {
1888 bch_btree_iter_init(&b->keys, &iter, NULL);
1889
1890 do {
1891 k = bch_btree_iter_next_filter(&iter, &b->keys,
1892 bch_ptr_bad);
1893 if (k) {
1894 btree_node_prefetch(b, k);
1895 /*
1896 * initiallize c->gc_stats.nodes
1897 * for incremental GC
1898 */
1899 b->c->gc_stats.nodes++;
1900 }
1901
1902 if (p)
1903 ret = bcache_btree(check_recurse, p, b, op);
1904
1905 p = k;
1906 } while (p && !ret);
1907 }
1908
1909 return ret;
1910}
1911
1912
1913static int bch_btree_check_thread(void *arg)
1914{
1915 int ret;
1916 struct btree_check_info *info = arg;
1917 struct btree_check_state *check_state = info->state;
1918 struct cache_set *c = check_state->c;
1919 struct btree_iter iter;
1920 struct bkey *k, *p;
1921 int cur_idx, prev_idx, skip_nr;
1922
1923 k = p = NULL;
1924 cur_idx = prev_idx = 0;
1925 ret = 0;
1926
1927 /* root node keys are checked before thread created */
1928 bch_btree_iter_init(&c->root->keys, &iter, NULL);
1929 k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
1930 BUG_ON(!k);
1931
1932 p = k;
1933 while (k) {
1934 /*
1935 * Fetch a root node key index, skip the keys which
1936 * should be fetched by other threads, then check the
1937 * sub-tree indexed by the fetched key.
1938 */
1939 spin_lock(&check_state->idx_lock);
1940 cur_idx = check_state->key_idx;
1941 check_state->key_idx++;
1942 spin_unlock(&check_state->idx_lock);
1943
1944 skip_nr = cur_idx - prev_idx;
1945
1946 while (skip_nr) {
1947 k = bch_btree_iter_next_filter(&iter,
1948 &c->root->keys,
1949 bch_ptr_bad);
1950 if (k)
1951 p = k;
1952 else {
1953 /*
1954 * No more keys to check in root node,
1955 * current checking threads are enough,
1956 * stop creating more.
1957 */
1958 atomic_set(&check_state->enough, 1);
1959 /* Update check_state->enough earlier */
1960 smp_mb__after_atomic();
1961 goto out;
1962 }
1963 skip_nr--;
1964 cond_resched();
1965 }
1966
1967 if (p) {
1968 struct btree_op op;
1969
1970 btree_node_prefetch(c->root, p);
1971 c->gc_stats.nodes++;
1972 bch_btree_op_init(&op, 0);
1973 ret = bcache_btree(check_recurse, p, c->root, &op);
1974 if (ret)
1975 goto out;
1976 }
1977 p = NULL;
1978 prev_idx = cur_idx;
1979 cond_resched();
1980 }
1981
1982out:
1983 info->result = ret;
1984 /* update check_state->started among all CPUs */
1985 smp_mb__before_atomic();
1986 if (atomic_dec_and_test(&check_state->started))
1987 wake_up(&check_state->wait);
1988
1989 return ret;
1990}
1991
1992
1993
1994static int bch_btree_chkthread_nr(void)
1995{
1996 int n = num_online_cpus()/2;
1997
1998 if (n == 0)
1999 n = 1;
2000 else if (n > BCH_BTR_CHKTHREAD_MAX)
2001 n = BCH_BTR_CHKTHREAD_MAX;
2002
2003 return n;
2004}
2005
2006int bch_btree_check(struct cache_set *c)
2007{
2008 int ret = 0;
2009 int i;
2010 struct bkey *k = NULL;
2011 struct btree_iter iter;
2012 struct btree_check_state *check_state;
2013 char name[32];
2014
2015 /* check and mark root node keys */
2016 for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
2017 bch_initial_mark_key(c, c->root->level, k);
2018
2019 bch_initial_mark_key(c, c->root->level + 1, &c->root->key);
2020
2021 if (c->root->level == 0)
2022 return 0;
2023
2024 check_state = kzalloc(sizeof(struct btree_check_state), GFP_KERNEL);
2025 if (!check_state)
2026 return -ENOMEM;
2027
2028 check_state->c = c;
2029 check_state->total_threads = bch_btree_chkthread_nr();
2030 check_state->key_idx = 0;
2031 spin_lock_init(&check_state->idx_lock);
2032 atomic_set(&check_state->started, 0);
2033 atomic_set(&check_state->enough, 0);
2034 init_waitqueue_head(&check_state->wait);
2035
2036 /*
2037 * Run multiple threads to check btree nodes in parallel,
2038 * if check_state->enough is non-zero, it means current
2039 * running check threads are enough, unncessary to create
2040 * more.
2041 */
2042 for (i = 0; i < check_state->total_threads; i++) {
2043 /* fetch latest check_state->enough earlier */
2044 smp_mb__before_atomic();
2045 if (atomic_read(&check_state->enough))
2046 break;
2047
2048 check_state->infos[i].result = 0;
2049 check_state->infos[i].state = check_state;
2050 snprintf(name, sizeof(name), "bch_btrchk[%u]", i);
2051 atomic_inc(&check_state->started);
2052
2053 check_state->infos[i].thread =
2054 kthread_run(bch_btree_check_thread,
2055 &check_state->infos[i],
2056 name);
2057 if (IS_ERR(check_state->infos[i].thread)) {
2058 pr_err("fails to run thread bch_btrchk[%d]\n", i);
2059 for (--i; i >= 0; i--)
2060 kthread_stop(check_state->infos[i].thread);
2061 ret = -ENOMEM;
2062 goto out;
2063 }
2064 }
2065
2066 wait_event_interruptible(check_state->wait,
2067 atomic_read(&check_state->started) == 0 ||
2068 test_bit(CACHE_SET_IO_DISABLE, &c->flags));
2069
2070 for (i = 0; i < check_state->total_threads; i++) {
2071 if (check_state->infos[i].result) {
2072 ret = check_state->infos[i].result;
2073 goto out;
2074 }
2075 }
2076
2077out:
2078 kfree(check_state);
2079 return ret;
2080}
2081
2082void bch_initial_gc_finish(struct cache_set *c)
2083{
2084 struct cache *ca;
2085 struct bucket *b;
2086 unsigned int i;
2087
2088 bch_btree_gc_finish(c);
2089
2090 mutex_lock(&c->bucket_lock);
2091
2092 /*
2093 * We need to put some unused buckets directly on the prio freelist in
2094 * order to get the allocator thread started - it needs freed buckets in
2095 * order to rewrite the prios and gens, and it needs to rewrite prios
2096 * and gens in order to free buckets.
2097 *
2098 * This is only safe for buckets that have no live data in them, which
2099 * there should always be some of.
2100 */
2101 for_each_cache(ca, c, i) {
2102 for_each_bucket(b, ca) {
2103 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
2104 fifo_full(&ca->free[RESERVE_BTREE]))
2105 break;
2106
2107 if (bch_can_invalidate_bucket(ca, b) &&
2108 !GC_MARK(b)) {
2109 __bch_invalidate_one_bucket(ca, b);
2110 if (!fifo_push(&ca->free[RESERVE_PRIO],
2111 b - ca->buckets))
2112 fifo_push(&ca->free[RESERVE_BTREE],
2113 b - ca->buckets);
2114 }
2115 }
2116 }
2117
2118 mutex_unlock(&c->bucket_lock);
2119}
2120
2121/* Btree insertion */
2122
2123static bool btree_insert_key(struct btree *b, struct bkey *k,
2124 struct bkey *replace_key)
2125{
2126 unsigned int status;
2127
2128 BUG_ON(bkey_cmp(k, &b->key) > 0);
2129
2130 status = bch_btree_insert_key(&b->keys, k, replace_key);
2131 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2132 bch_check_keys(&b->keys, "%u for %s", status,
2133 replace_key ? "replace" : "insert");
2134
2135 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2136 status);
2137 return true;
2138 } else
2139 return false;
2140}
2141
2142static size_t insert_u64s_remaining(struct btree *b)
2143{
2144 long ret = bch_btree_keys_u64s_remaining(&b->keys);
2145
2146 /*
2147 * Might land in the middle of an existing extent and have to split it
2148 */
2149 if (b->keys.ops->is_extents)
2150 ret -= KEY_MAX_U64S;
2151
2152 return max(ret, 0L);
2153}
2154
2155static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2156 struct keylist *insert_keys,
2157 struct bkey *replace_key)
2158{
2159 bool ret = false;
2160 int oldsize = bch_count_data(&b->keys);
2161
2162 while (!bch_keylist_empty(insert_keys)) {
2163 struct bkey *k = insert_keys->keys;
2164
2165 if (bkey_u64s(k) > insert_u64s_remaining(b))
2166 break;
2167
2168 if (bkey_cmp(k, &b->key) <= 0) {
2169 if (!b->level)
2170 bkey_put(b->c, k);
2171
2172 ret |= btree_insert_key(b, k, replace_key);
2173 bch_keylist_pop_front(insert_keys);
2174 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2175 BKEY_PADDED(key) temp;
2176 bkey_copy(&temp.key, insert_keys->keys);
2177
2178 bch_cut_back(&b->key, &temp.key);
2179 bch_cut_front(&b->key, insert_keys->keys);
2180
2181 ret |= btree_insert_key(b, &temp.key, replace_key);
2182 break;
2183 } else {
2184 break;
2185 }
2186 }
2187
2188 if (!ret)
2189 op->insert_collision = true;
2190
2191 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2192
2193 BUG_ON(bch_count_data(&b->keys) < oldsize);
2194 return ret;
2195}
2196
2197static int btree_split(struct btree *b, struct btree_op *op,
2198 struct keylist *insert_keys,
2199 struct bkey *replace_key)
2200{
2201 bool split;
2202 struct btree *n1, *n2 = NULL, *n3 = NULL;
2203 uint64_t start_time = local_clock();
2204 struct closure cl;
2205 struct keylist parent_keys;
2206
2207 closure_init_stack(&cl);
2208 bch_keylist_init(&parent_keys);
2209
2210 if (btree_check_reserve(b, op)) {
2211 if (!b->level)
2212 return -EINTR;
2213 else
2214 WARN(1, "insufficient reserve for split\n");
2215 }
2216
2217 n1 = btree_node_alloc_replacement(b, op);
2218 if (IS_ERR(n1))
2219 goto err;
2220
2221 split = set_blocks(btree_bset_first(n1),
2222 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2223
2224 if (split) {
2225 unsigned int keys = 0;
2226
2227 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2228
2229 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2230 if (IS_ERR(n2))
2231 goto err_free1;
2232
2233 if (!b->parent) {
2234 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2235 if (IS_ERR(n3))
2236 goto err_free2;
2237 }
2238
2239 mutex_lock(&n1->write_lock);
2240 mutex_lock(&n2->write_lock);
2241
2242 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2243
2244 /*
2245 * Has to be a linear search because we don't have an auxiliary
2246 * search tree yet
2247 */
2248
2249 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2250 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2251 keys));
2252
2253 bkey_copy_key(&n1->key,
2254 bset_bkey_idx(btree_bset_first(n1), keys));
2255 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2256
2257 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2258 btree_bset_first(n1)->keys = keys;
2259
2260 memcpy(btree_bset_first(n2)->start,
2261 bset_bkey_last(btree_bset_first(n1)),
2262 btree_bset_first(n2)->keys * sizeof(uint64_t));
2263
2264 bkey_copy_key(&n2->key, &b->key);
2265
2266 bch_keylist_add(&parent_keys, &n2->key);
2267 bch_btree_node_write(n2, &cl);
2268 mutex_unlock(&n2->write_lock);
2269 rw_unlock(true, n2);
2270 } else {
2271 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2272
2273 mutex_lock(&n1->write_lock);
2274 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2275 }
2276
2277 bch_keylist_add(&parent_keys, &n1->key);
2278 bch_btree_node_write(n1, &cl);
2279 mutex_unlock(&n1->write_lock);
2280
2281 if (n3) {
2282 /* Depth increases, make a new root */
2283 mutex_lock(&n3->write_lock);
2284 bkey_copy_key(&n3->key, &MAX_KEY);
2285 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2286 bch_btree_node_write(n3, &cl);
2287 mutex_unlock(&n3->write_lock);
2288
2289 closure_sync(&cl);
2290 bch_btree_set_root(n3);
2291 rw_unlock(true, n3);
2292 } else if (!b->parent) {
2293 /* Root filled up but didn't need to be split */
2294 closure_sync(&cl);
2295 bch_btree_set_root(n1);
2296 } else {
2297 /* Split a non root node */
2298 closure_sync(&cl);
2299 make_btree_freeing_key(b, parent_keys.top);
2300 bch_keylist_push(&parent_keys);
2301
2302 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2303 BUG_ON(!bch_keylist_empty(&parent_keys));
2304 }
2305
2306 btree_node_free(b);
2307 rw_unlock(true, n1);
2308
2309 bch_time_stats_update(&b->c->btree_split_time, start_time);
2310
2311 return 0;
2312err_free2:
2313 bkey_put(b->c, &n2->key);
2314 btree_node_free(n2);
2315 rw_unlock(true, n2);
2316err_free1:
2317 bkey_put(b->c, &n1->key);
2318 btree_node_free(n1);
2319 rw_unlock(true, n1);
2320err:
2321 WARN(1, "bcache: btree split failed (level %u)", b->level);
2322
2323 if (n3 == ERR_PTR(-EAGAIN) ||
2324 n2 == ERR_PTR(-EAGAIN) ||
2325 n1 == ERR_PTR(-EAGAIN))
2326 return -EAGAIN;
2327
2328 return -ENOMEM;
2329}
2330
2331static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2332 struct keylist *insert_keys,
2333 atomic_t *journal_ref,
2334 struct bkey *replace_key)
2335{
2336 struct closure cl;
2337
2338 BUG_ON(b->level && replace_key);
2339
2340 closure_init_stack(&cl);
2341
2342 mutex_lock(&b->write_lock);
2343
2344 if (write_block(b) != btree_bset_last(b) &&
2345 b->keys.last_set_unwritten)
2346 bch_btree_init_next(b); /* just wrote a set */
2347
2348 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2349 mutex_unlock(&b->write_lock);
2350 goto split;
2351 }
2352
2353 BUG_ON(write_block(b) != btree_bset_last(b));
2354
2355 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2356 if (!b->level)
2357 bch_btree_leaf_dirty(b, journal_ref);
2358 else
2359 bch_btree_node_write(b, &cl);
2360 }
2361
2362 mutex_unlock(&b->write_lock);
2363
2364 /* wait for btree node write if necessary, after unlock */
2365 closure_sync(&cl);
2366
2367 return 0;
2368split:
2369 if (current->bio_list) {
2370 op->lock = b->c->root->level + 1;
2371 return -EAGAIN;
2372 } else if (op->lock <= b->c->root->level) {
2373 op->lock = b->c->root->level + 1;
2374 return -EINTR;
2375 } else {
2376 /* Invalidated all iterators */
2377 int ret = btree_split(b, op, insert_keys, replace_key);
2378
2379 if (bch_keylist_empty(insert_keys))
2380 return 0;
2381 else if (!ret)
2382 return -EINTR;
2383 return ret;
2384 }
2385}
2386
2387int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2388 struct bkey *check_key)
2389{
2390 int ret = -EINTR;
2391 uint64_t btree_ptr = b->key.ptr[0];
2392 unsigned long seq = b->seq;
2393 struct keylist insert;
2394 bool upgrade = op->lock == -1;
2395
2396 bch_keylist_init(&insert);
2397
2398 if (upgrade) {
2399 rw_unlock(false, b);
2400 rw_lock(true, b, b->level);
2401
2402 if (b->key.ptr[0] != btree_ptr ||
2403 b->seq != seq + 1) {
2404 op->lock = b->level;
2405 goto out;
2406 }
2407 }
2408
2409 SET_KEY_PTRS(check_key, 1);
2410 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2411
2412 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2413
2414 bch_keylist_add(&insert, check_key);
2415
2416 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2417
2418 BUG_ON(!ret && !bch_keylist_empty(&insert));
2419out:
2420 if (upgrade)
2421 downgrade_write(&b->lock);
2422 return ret;
2423}
2424
2425struct btree_insert_op {
2426 struct btree_op op;
2427 struct keylist *keys;
2428 atomic_t *journal_ref;
2429 struct bkey *replace_key;
2430};
2431
2432static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2433{
2434 struct btree_insert_op *op = container_of(b_op,
2435 struct btree_insert_op, op);
2436
2437 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2438 op->journal_ref, op->replace_key);
2439 if (ret && !bch_keylist_empty(op->keys))
2440 return ret;
2441 else
2442 return MAP_DONE;
2443}
2444
2445int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2446 atomic_t *journal_ref, struct bkey *replace_key)
2447{
2448 struct btree_insert_op op;
2449 int ret = 0;
2450
2451 BUG_ON(current->bio_list);
2452 BUG_ON(bch_keylist_empty(keys));
2453
2454 bch_btree_op_init(&op.op, 0);
2455 op.keys = keys;
2456 op.journal_ref = journal_ref;
2457 op.replace_key = replace_key;
2458
2459 while (!ret && !bch_keylist_empty(keys)) {
2460 op.op.lock = 0;
2461 ret = bch_btree_map_leaf_nodes(&op.op, c,
2462 &START_KEY(keys->keys),
2463 btree_insert_fn);
2464 }
2465
2466 if (ret) {
2467 struct bkey *k;
2468
2469 pr_err("error %i\n", ret);
2470
2471 while ((k = bch_keylist_pop(keys)))
2472 bkey_put(c, k);
2473 } else if (op.op.insert_collision)
2474 ret = -ESRCH;
2475
2476 return ret;
2477}
2478
2479void bch_btree_set_root(struct btree *b)
2480{
2481 unsigned int i;
2482 struct closure cl;
2483
2484 closure_init_stack(&cl);
2485
2486 trace_bcache_btree_set_root(b);
2487
2488 BUG_ON(!b->written);
2489
2490 for (i = 0; i < KEY_PTRS(&b->key); i++)
2491 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2492
2493 mutex_lock(&b->c->bucket_lock);
2494 list_del_init(&b->list);
2495 mutex_unlock(&b->c->bucket_lock);
2496
2497 b->c->root = b;
2498
2499 bch_journal_meta(b->c, &cl);
2500 closure_sync(&cl);
2501}
2502
2503/* Map across nodes or keys */
2504
2505static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2506 struct bkey *from,
2507 btree_map_nodes_fn *fn, int flags)
2508{
2509 int ret = MAP_CONTINUE;
2510
2511 if (b->level) {
2512 struct bkey *k;
2513 struct btree_iter iter;
2514
2515 bch_btree_iter_init(&b->keys, &iter, from);
2516
2517 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2518 bch_ptr_bad))) {
2519 ret = bcache_btree(map_nodes_recurse, k, b,
2520 op, from, fn, flags);
2521 from = NULL;
2522
2523 if (ret != MAP_CONTINUE)
2524 return ret;
2525 }
2526 }
2527
2528 if (!b->level || flags == MAP_ALL_NODES)
2529 ret = fn(op, b);
2530
2531 return ret;
2532}
2533
2534int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2535 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2536{
2537 return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
2538}
2539
2540int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2541 struct bkey *from, btree_map_keys_fn *fn,
2542 int flags)
2543{
2544 int ret = MAP_CONTINUE;
2545 struct bkey *k;
2546 struct btree_iter iter;
2547
2548 bch_btree_iter_init(&b->keys, &iter, from);
2549
2550 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2551 ret = !b->level
2552 ? fn(op, b, k)
2553 : bcache_btree(map_keys_recurse, k,
2554 b, op, from, fn, flags);
2555 from = NULL;
2556
2557 if (ret != MAP_CONTINUE)
2558 return ret;
2559 }
2560
2561 if (!b->level && (flags & MAP_END_KEY))
2562 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2563 KEY_OFFSET(&b->key), 0));
2564
2565 return ret;
2566}
2567
2568int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2569 struct bkey *from, btree_map_keys_fn *fn, int flags)
2570{
2571 return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
2572}
2573
2574/* Keybuf code */
2575
2576static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2577{
2578 /* Overlapping keys compare equal */
2579 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2580 return -1;
2581 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2582 return 1;
2583 return 0;
2584}
2585
2586static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2587 struct keybuf_key *r)
2588{
2589 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2590}
2591
2592struct refill {
2593 struct btree_op op;
2594 unsigned int nr_found;
2595 struct keybuf *buf;
2596 struct bkey *end;
2597 keybuf_pred_fn *pred;
2598};
2599
2600static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2601 struct bkey *k)
2602{
2603 struct refill *refill = container_of(op, struct refill, op);
2604 struct keybuf *buf = refill->buf;
2605 int ret = MAP_CONTINUE;
2606
2607 if (bkey_cmp(k, refill->end) > 0) {
2608 ret = MAP_DONE;
2609 goto out;
2610 }
2611
2612 if (!KEY_SIZE(k)) /* end key */
2613 goto out;
2614
2615 if (refill->pred(buf, k)) {
2616 struct keybuf_key *w;
2617
2618 spin_lock(&buf->lock);
2619
2620 w = array_alloc(&buf->freelist);
2621 if (!w) {
2622 spin_unlock(&buf->lock);
2623 return MAP_DONE;
2624 }
2625
2626 w->private = NULL;
2627 bkey_copy(&w->key, k);
2628
2629 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2630 array_free(&buf->freelist, w);
2631 else
2632 refill->nr_found++;
2633
2634 if (array_freelist_empty(&buf->freelist))
2635 ret = MAP_DONE;
2636
2637 spin_unlock(&buf->lock);
2638 }
2639out:
2640 buf->last_scanned = *k;
2641 return ret;
2642}
2643
2644void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2645 struct bkey *end, keybuf_pred_fn *pred)
2646{
2647 struct bkey start = buf->last_scanned;
2648 struct refill refill;
2649
2650 cond_resched();
2651
2652 bch_btree_op_init(&refill.op, -1);
2653 refill.nr_found = 0;
2654 refill.buf = buf;
2655 refill.end = end;
2656 refill.pred = pred;
2657
2658 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2659 refill_keybuf_fn, MAP_END_KEY);
2660
2661 trace_bcache_keyscan(refill.nr_found,
2662 KEY_INODE(&start), KEY_OFFSET(&start),
2663 KEY_INODE(&buf->last_scanned),
2664 KEY_OFFSET(&buf->last_scanned));
2665
2666 spin_lock(&buf->lock);
2667
2668 if (!RB_EMPTY_ROOT(&buf->keys)) {
2669 struct keybuf_key *w;
2670
2671 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2672 buf->start = START_KEY(&w->key);
2673
2674 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2675 buf->end = w->key;
2676 } else {
2677 buf->start = MAX_KEY;
2678 buf->end = MAX_KEY;
2679 }
2680
2681 spin_unlock(&buf->lock);
2682}
2683
2684static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2685{
2686 rb_erase(&w->node, &buf->keys);
2687 array_free(&buf->freelist, w);
2688}
2689
2690void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2691{
2692 spin_lock(&buf->lock);
2693 __bch_keybuf_del(buf, w);
2694 spin_unlock(&buf->lock);
2695}
2696
2697bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2698 struct bkey *end)
2699{
2700 bool ret = false;
2701 struct keybuf_key *p, *w, s;
2702
2703 s.key = *start;
2704
2705 if (bkey_cmp(end, &buf->start) <= 0 ||
2706 bkey_cmp(start, &buf->end) >= 0)
2707 return false;
2708
2709 spin_lock(&buf->lock);
2710 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2711
2712 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2713 p = w;
2714 w = RB_NEXT(w, node);
2715
2716 if (p->private)
2717 ret = true;
2718 else
2719 __bch_keybuf_del(buf, p);
2720 }
2721
2722 spin_unlock(&buf->lock);
2723 return ret;
2724}
2725
2726struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2727{
2728 struct keybuf_key *w;
2729
2730 spin_lock(&buf->lock);
2731
2732 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2733
2734 while (w && w->private)
2735 w = RB_NEXT(w, node);
2736
2737 if (w)
2738 w->private = ERR_PTR(-EINTR);
2739
2740 spin_unlock(&buf->lock);
2741 return w;
2742}
2743
2744struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2745 struct keybuf *buf,
2746 struct bkey *end,
2747 keybuf_pred_fn *pred)
2748{
2749 struct keybuf_key *ret;
2750
2751 while (1) {
2752 ret = bch_keybuf_next(buf);
2753 if (ret)
2754 break;
2755
2756 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2757 pr_debug("scan finished\n");
2758 break;
2759 }
2760
2761 bch_refill_keybuf(c, buf, end, pred);
2762 }
2763
2764 return ret;
2765}
2766
2767void bch_keybuf_init(struct keybuf *buf)
2768{
2769 buf->last_scanned = MAX_KEY;
2770 buf->keys = RB_ROOT;
2771
2772 spin_lock_init(&buf->lock);
2773 array_allocator_init(&buf->freelist);
2774}