Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * lm80.c - From lm_sensors, Linux kernel modules for hardware
4 * monitoring
5 * Copyright (C) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
6 * and Philip Edelbrock <phil@netroedge.com>
7 *
8 * Ported to Linux 2.6 by Tiago Sousa <mirage@kaotik.org>
9 */
10
11#include <linux/module.h>
12#include <linux/init.h>
13#include <linux/slab.h>
14#include <linux/jiffies.h>
15#include <linux/i2c.h>
16#include <linux/hwmon.h>
17#include <linux/hwmon-sysfs.h>
18#include <linux/err.h>
19#include <linux/mutex.h>
20
21/* Addresses to scan */
22static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d,
23 0x2e, 0x2f, I2C_CLIENT_END };
24
25/* Many LM80 constants specified below */
26
27/* The LM80 registers */
28#define LM80_REG_IN_MAX(nr) (0x2a + (nr) * 2)
29#define LM80_REG_IN_MIN(nr) (0x2b + (nr) * 2)
30#define LM80_REG_IN(nr) (0x20 + (nr))
31
32#define LM80_REG_FAN1 0x28
33#define LM80_REG_FAN2 0x29
34#define LM80_REG_FAN_MIN(nr) (0x3b + (nr))
35
36#define LM80_REG_TEMP 0x27
37#define LM80_REG_TEMP_HOT_MAX 0x38
38#define LM80_REG_TEMP_HOT_HYST 0x39
39#define LM80_REG_TEMP_OS_MAX 0x3a
40#define LM80_REG_TEMP_OS_HYST 0x3b
41
42#define LM80_REG_CONFIG 0x00
43#define LM80_REG_ALARM1 0x01
44#define LM80_REG_ALARM2 0x02
45#define LM80_REG_MASK1 0x03
46#define LM80_REG_MASK2 0x04
47#define LM80_REG_FANDIV 0x05
48#define LM80_REG_RES 0x06
49
50#define LM96080_REG_CONV_RATE 0x07
51#define LM96080_REG_MAN_ID 0x3e
52#define LM96080_REG_DEV_ID 0x3f
53
54
55/*
56 * Conversions. Rounding and limit checking is only done on the TO_REG
57 * variants. Note that you should be a bit careful with which arguments
58 * these macros are called: arguments may be evaluated more than once.
59 * Fixing this is just not worth it.
60 */
61
62#define IN_TO_REG(val) (clamp_val(((val) + 5) / 10, 0, 255))
63#define IN_FROM_REG(val) ((val) * 10)
64
65static inline unsigned char FAN_TO_REG(unsigned rpm, unsigned div)
66{
67 if (rpm == 0)
68 return 255;
69 rpm = clamp_val(rpm, 1, 1000000);
70 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
71}
72
73#define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \
74 (val) == 255 ? 0 : 1350000/((div) * (val)))
75
76#define TEMP_FROM_REG(reg) ((reg) * 125 / 32)
77#define TEMP_TO_REG(temp) (DIV_ROUND_CLOSEST(clamp_val((temp), \
78 -128000, 127000), 1000) << 8)
79
80#define DIV_FROM_REG(val) (1 << (val))
81
82enum temp_index {
83 t_input = 0,
84 t_hot_max,
85 t_hot_hyst,
86 t_os_max,
87 t_os_hyst,
88 t_num_temp
89};
90
91static const u8 temp_regs[t_num_temp] = {
92 [t_input] = LM80_REG_TEMP,
93 [t_hot_max] = LM80_REG_TEMP_HOT_MAX,
94 [t_hot_hyst] = LM80_REG_TEMP_HOT_HYST,
95 [t_os_max] = LM80_REG_TEMP_OS_MAX,
96 [t_os_hyst] = LM80_REG_TEMP_OS_HYST,
97};
98
99enum in_index {
100 i_input = 0,
101 i_max,
102 i_min,
103 i_num_in
104};
105
106enum fan_index {
107 f_input,
108 f_min,
109 f_num_fan
110};
111
112/*
113 * Client data (each client gets its own)
114 */
115
116struct lm80_data {
117 struct i2c_client *client;
118 struct mutex update_lock;
119 char error; /* !=0 if error occurred during last update */
120 bool valid; /* true if following fields are valid */
121 unsigned long last_updated; /* In jiffies */
122
123 u8 in[i_num_in][7]; /* Register value, 1st index is enum in_index */
124 u8 fan[f_num_fan][2]; /* Register value, 1st index enum fan_index */
125 u8 fan_div[2]; /* Register encoding, shifted right */
126 s16 temp[t_num_temp]; /* Register values, normalized to 16 bit */
127 u16 alarms; /* Register encoding, combined */
128};
129
130static int lm80_read_value(struct i2c_client *client, u8 reg)
131{
132 return i2c_smbus_read_byte_data(client, reg);
133}
134
135static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value)
136{
137 return i2c_smbus_write_byte_data(client, reg, value);
138}
139
140/* Called when we have found a new LM80 and after read errors */
141static void lm80_init_client(struct i2c_client *client)
142{
143 /*
144 * Reset all except Watchdog values and last conversion values
145 * This sets fan-divs to 2, among others. This makes most other
146 * initializations unnecessary
147 */
148 lm80_write_value(client, LM80_REG_CONFIG, 0x80);
149 /* Set 11-bit temperature resolution */
150 lm80_write_value(client, LM80_REG_RES, 0x08);
151
152 /* Start monitoring */
153 lm80_write_value(client, LM80_REG_CONFIG, 0x01);
154}
155
156static struct lm80_data *lm80_update_device(struct device *dev)
157{
158 struct lm80_data *data = dev_get_drvdata(dev);
159 struct i2c_client *client = data->client;
160 int i;
161 int rv;
162 int prev_rv;
163 struct lm80_data *ret = data;
164
165 mutex_lock(&data->update_lock);
166
167 if (data->error)
168 lm80_init_client(client);
169
170 if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
171 dev_dbg(dev, "Starting lm80 update\n");
172 for (i = 0; i <= 6; i++) {
173 rv = lm80_read_value(client, LM80_REG_IN(i));
174 if (rv < 0)
175 goto abort;
176 data->in[i_input][i] = rv;
177
178 rv = lm80_read_value(client, LM80_REG_IN_MIN(i));
179 if (rv < 0)
180 goto abort;
181 data->in[i_min][i] = rv;
182
183 rv = lm80_read_value(client, LM80_REG_IN_MAX(i));
184 if (rv < 0)
185 goto abort;
186 data->in[i_max][i] = rv;
187 }
188
189 rv = lm80_read_value(client, LM80_REG_FAN1);
190 if (rv < 0)
191 goto abort;
192 data->fan[f_input][0] = rv;
193
194 rv = lm80_read_value(client, LM80_REG_FAN_MIN(1));
195 if (rv < 0)
196 goto abort;
197 data->fan[f_min][0] = rv;
198
199 rv = lm80_read_value(client, LM80_REG_FAN2);
200 if (rv < 0)
201 goto abort;
202 data->fan[f_input][1] = rv;
203
204 rv = lm80_read_value(client, LM80_REG_FAN_MIN(2));
205 if (rv < 0)
206 goto abort;
207 data->fan[f_min][1] = rv;
208
209 prev_rv = rv = lm80_read_value(client, LM80_REG_TEMP);
210 if (rv < 0)
211 goto abort;
212 rv = lm80_read_value(client, LM80_REG_RES);
213 if (rv < 0)
214 goto abort;
215 data->temp[t_input] = (prev_rv << 8) | (rv & 0xf0);
216
217 for (i = t_input + 1; i < t_num_temp; i++) {
218 rv = lm80_read_value(client, temp_regs[i]);
219 if (rv < 0)
220 goto abort;
221 data->temp[i] = rv << 8;
222 }
223
224 rv = lm80_read_value(client, LM80_REG_FANDIV);
225 if (rv < 0)
226 goto abort;
227 data->fan_div[0] = (rv >> 2) & 0x03;
228 data->fan_div[1] = (rv >> 4) & 0x03;
229
230 prev_rv = rv = lm80_read_value(client, LM80_REG_ALARM1);
231 if (rv < 0)
232 goto abort;
233 rv = lm80_read_value(client, LM80_REG_ALARM2);
234 if (rv < 0)
235 goto abort;
236 data->alarms = prev_rv + (rv << 8);
237
238 data->last_updated = jiffies;
239 data->valid = true;
240 data->error = 0;
241 }
242 goto done;
243
244abort:
245 ret = ERR_PTR(rv);
246 data->valid = false;
247 data->error = 1;
248
249done:
250 mutex_unlock(&data->update_lock);
251
252 return ret;
253}
254
255/*
256 * Sysfs stuff
257 */
258
259static ssize_t in_show(struct device *dev, struct device_attribute *attr,
260 char *buf)
261{
262 struct lm80_data *data = lm80_update_device(dev);
263 int index = to_sensor_dev_attr_2(attr)->index;
264 int nr = to_sensor_dev_attr_2(attr)->nr;
265
266 if (IS_ERR(data))
267 return PTR_ERR(data);
268 return sprintf(buf, "%d\n", IN_FROM_REG(data->in[nr][index]));
269}
270
271static ssize_t in_store(struct device *dev, struct device_attribute *attr,
272 const char *buf, size_t count)
273{
274 struct lm80_data *data = dev_get_drvdata(dev);
275 struct i2c_client *client = data->client;
276 int index = to_sensor_dev_attr_2(attr)->index;
277 int nr = to_sensor_dev_attr_2(attr)->nr;
278 long val;
279 u8 reg;
280 int err = kstrtol(buf, 10, &val);
281 if (err < 0)
282 return err;
283
284 reg = nr == i_min ? LM80_REG_IN_MIN(index) : LM80_REG_IN_MAX(index);
285
286 mutex_lock(&data->update_lock);
287 data->in[nr][index] = IN_TO_REG(val);
288 lm80_write_value(client, reg, data->in[nr][index]);
289 mutex_unlock(&data->update_lock);
290 return count;
291}
292
293static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
294 char *buf)
295{
296 int index = to_sensor_dev_attr_2(attr)->index;
297 int nr = to_sensor_dev_attr_2(attr)->nr;
298 struct lm80_data *data = lm80_update_device(dev);
299 if (IS_ERR(data))
300 return PTR_ERR(data);
301 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr][index],
302 DIV_FROM_REG(data->fan_div[index])));
303}
304
305static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr,
306 char *buf)
307{
308 int nr = to_sensor_dev_attr(attr)->index;
309 struct lm80_data *data = lm80_update_device(dev);
310 if (IS_ERR(data))
311 return PTR_ERR(data);
312 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
313}
314
315static ssize_t fan_store(struct device *dev, struct device_attribute *attr,
316 const char *buf, size_t count)
317{
318 int index = to_sensor_dev_attr_2(attr)->index;
319 int nr = to_sensor_dev_attr_2(attr)->nr;
320 struct lm80_data *data = dev_get_drvdata(dev);
321 struct i2c_client *client = data->client;
322 unsigned long val;
323 int err = kstrtoul(buf, 10, &val);
324 if (err < 0)
325 return err;
326
327 mutex_lock(&data->update_lock);
328 data->fan[nr][index] = FAN_TO_REG(val,
329 DIV_FROM_REG(data->fan_div[index]));
330 lm80_write_value(client, LM80_REG_FAN_MIN(index + 1),
331 data->fan[nr][index]);
332 mutex_unlock(&data->update_lock);
333 return count;
334}
335
336/*
337 * Note: we save and restore the fan minimum here, because its value is
338 * determined in part by the fan divisor. This follows the principle of
339 * least surprise; the user doesn't expect the fan minimum to change just
340 * because the divisor changed.
341 */
342static ssize_t fan_div_store(struct device *dev,
343 struct device_attribute *attr, const char *buf,
344 size_t count)
345{
346 int nr = to_sensor_dev_attr(attr)->index;
347 struct lm80_data *data = dev_get_drvdata(dev);
348 struct i2c_client *client = data->client;
349 unsigned long min, val;
350 u8 reg;
351 int rv;
352
353 rv = kstrtoul(buf, 10, &val);
354 if (rv < 0)
355 return rv;
356
357 /* Save fan_min */
358 mutex_lock(&data->update_lock);
359 min = FAN_FROM_REG(data->fan[f_min][nr],
360 DIV_FROM_REG(data->fan_div[nr]));
361
362 switch (val) {
363 case 1:
364 data->fan_div[nr] = 0;
365 break;
366 case 2:
367 data->fan_div[nr] = 1;
368 break;
369 case 4:
370 data->fan_div[nr] = 2;
371 break;
372 case 8:
373 data->fan_div[nr] = 3;
374 break;
375 default:
376 dev_err(dev,
377 "fan_div value %ld not supported. Choose one of 1, 2, 4 or 8!\n",
378 val);
379 mutex_unlock(&data->update_lock);
380 return -EINVAL;
381 }
382
383 rv = lm80_read_value(client, LM80_REG_FANDIV);
384 if (rv < 0) {
385 mutex_unlock(&data->update_lock);
386 return rv;
387 }
388 reg = (rv & ~(3 << (2 * (nr + 1))))
389 | (data->fan_div[nr] << (2 * (nr + 1)));
390 lm80_write_value(client, LM80_REG_FANDIV, reg);
391
392 /* Restore fan_min */
393 data->fan[f_min][nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
394 lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1),
395 data->fan[f_min][nr]);
396 mutex_unlock(&data->update_lock);
397
398 return count;
399}
400
401static ssize_t temp_show(struct device *dev, struct device_attribute *devattr,
402 char *buf)
403{
404 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
405 struct lm80_data *data = lm80_update_device(dev);
406 if (IS_ERR(data))
407 return PTR_ERR(data);
408 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[attr->index]));
409}
410
411static ssize_t temp_store(struct device *dev,
412 struct device_attribute *devattr, const char *buf,
413 size_t count)
414{
415 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
416 struct lm80_data *data = dev_get_drvdata(dev);
417 struct i2c_client *client = data->client;
418 int nr = attr->index;
419 long val;
420 int err = kstrtol(buf, 10, &val);
421 if (err < 0)
422 return err;
423
424 mutex_lock(&data->update_lock);
425 data->temp[nr] = TEMP_TO_REG(val);
426 lm80_write_value(client, temp_regs[nr], data->temp[nr] >> 8);
427 mutex_unlock(&data->update_lock);
428 return count;
429}
430
431static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
432 char *buf)
433{
434 struct lm80_data *data = lm80_update_device(dev);
435 if (IS_ERR(data))
436 return PTR_ERR(data);
437 return sprintf(buf, "%u\n", data->alarms);
438}
439
440static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
441 char *buf)
442{
443 int bitnr = to_sensor_dev_attr(attr)->index;
444 struct lm80_data *data = lm80_update_device(dev);
445 if (IS_ERR(data))
446 return PTR_ERR(data);
447 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
448}
449
450static SENSOR_DEVICE_ATTR_2_RW(in0_min, in, i_min, 0);
451static SENSOR_DEVICE_ATTR_2_RW(in1_min, in, i_min, 1);
452static SENSOR_DEVICE_ATTR_2_RW(in2_min, in, i_min, 2);
453static SENSOR_DEVICE_ATTR_2_RW(in3_min, in, i_min, 3);
454static SENSOR_DEVICE_ATTR_2_RW(in4_min, in, i_min, 4);
455static SENSOR_DEVICE_ATTR_2_RW(in5_min, in, i_min, 5);
456static SENSOR_DEVICE_ATTR_2_RW(in6_min, in, i_min, 6);
457static SENSOR_DEVICE_ATTR_2_RW(in0_max, in, i_max, 0);
458static SENSOR_DEVICE_ATTR_2_RW(in1_max, in, i_max, 1);
459static SENSOR_DEVICE_ATTR_2_RW(in2_max, in, i_max, 2);
460static SENSOR_DEVICE_ATTR_2_RW(in3_max, in, i_max, 3);
461static SENSOR_DEVICE_ATTR_2_RW(in4_max, in, i_max, 4);
462static SENSOR_DEVICE_ATTR_2_RW(in5_max, in, i_max, 5);
463static SENSOR_DEVICE_ATTR_2_RW(in6_max, in, i_max, 6);
464static SENSOR_DEVICE_ATTR_2_RO(in0_input, in, i_input, 0);
465static SENSOR_DEVICE_ATTR_2_RO(in1_input, in, i_input, 1);
466static SENSOR_DEVICE_ATTR_2_RO(in2_input, in, i_input, 2);
467static SENSOR_DEVICE_ATTR_2_RO(in3_input, in, i_input, 3);
468static SENSOR_DEVICE_ATTR_2_RO(in4_input, in, i_input, 4);
469static SENSOR_DEVICE_ATTR_2_RO(in5_input, in, i_input, 5);
470static SENSOR_DEVICE_ATTR_2_RO(in6_input, in, i_input, 6);
471static SENSOR_DEVICE_ATTR_2_RW(fan1_min, fan, f_min, 0);
472static SENSOR_DEVICE_ATTR_2_RW(fan2_min, fan, f_min, 1);
473static SENSOR_DEVICE_ATTR_2_RO(fan1_input, fan, f_input, 0);
474static SENSOR_DEVICE_ATTR_2_RO(fan2_input, fan, f_input, 1);
475static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
476static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
477static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, t_input);
478static SENSOR_DEVICE_ATTR_RW(temp1_max, temp, t_hot_max);
479static SENSOR_DEVICE_ATTR_RW(temp1_max_hyst, temp, t_hot_hyst);
480static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp, t_os_max);
481static SENSOR_DEVICE_ATTR_RW(temp1_crit_hyst, temp, t_os_hyst);
482static DEVICE_ATTR_RO(alarms);
483static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
484static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
485static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
486static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
487static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 4);
488static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 5);
489static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 6);
490static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 10);
491static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 11);
492static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 8);
493static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 13);
494
495/*
496 * Real code
497 */
498
499static struct attribute *lm80_attrs[] = {
500 &sensor_dev_attr_in0_min.dev_attr.attr,
501 &sensor_dev_attr_in1_min.dev_attr.attr,
502 &sensor_dev_attr_in2_min.dev_attr.attr,
503 &sensor_dev_attr_in3_min.dev_attr.attr,
504 &sensor_dev_attr_in4_min.dev_attr.attr,
505 &sensor_dev_attr_in5_min.dev_attr.attr,
506 &sensor_dev_attr_in6_min.dev_attr.attr,
507 &sensor_dev_attr_in0_max.dev_attr.attr,
508 &sensor_dev_attr_in1_max.dev_attr.attr,
509 &sensor_dev_attr_in2_max.dev_attr.attr,
510 &sensor_dev_attr_in3_max.dev_attr.attr,
511 &sensor_dev_attr_in4_max.dev_attr.attr,
512 &sensor_dev_attr_in5_max.dev_attr.attr,
513 &sensor_dev_attr_in6_max.dev_attr.attr,
514 &sensor_dev_attr_in0_input.dev_attr.attr,
515 &sensor_dev_attr_in1_input.dev_attr.attr,
516 &sensor_dev_attr_in2_input.dev_attr.attr,
517 &sensor_dev_attr_in3_input.dev_attr.attr,
518 &sensor_dev_attr_in4_input.dev_attr.attr,
519 &sensor_dev_attr_in5_input.dev_attr.attr,
520 &sensor_dev_attr_in6_input.dev_attr.attr,
521 &sensor_dev_attr_fan1_min.dev_attr.attr,
522 &sensor_dev_attr_fan2_min.dev_attr.attr,
523 &sensor_dev_attr_fan1_input.dev_attr.attr,
524 &sensor_dev_attr_fan2_input.dev_attr.attr,
525 &sensor_dev_attr_fan1_div.dev_attr.attr,
526 &sensor_dev_attr_fan2_div.dev_attr.attr,
527 &sensor_dev_attr_temp1_input.dev_attr.attr,
528 &sensor_dev_attr_temp1_max.dev_attr.attr,
529 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
530 &sensor_dev_attr_temp1_crit.dev_attr.attr,
531 &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
532 &dev_attr_alarms.attr,
533 &sensor_dev_attr_in0_alarm.dev_attr.attr,
534 &sensor_dev_attr_in1_alarm.dev_attr.attr,
535 &sensor_dev_attr_in2_alarm.dev_attr.attr,
536 &sensor_dev_attr_in3_alarm.dev_attr.attr,
537 &sensor_dev_attr_in4_alarm.dev_attr.attr,
538 &sensor_dev_attr_in5_alarm.dev_attr.attr,
539 &sensor_dev_attr_in6_alarm.dev_attr.attr,
540 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
541 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
542 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
543 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
544 NULL
545};
546ATTRIBUTE_GROUPS(lm80);
547
548/* Return 0 if detection is successful, -ENODEV otherwise */
549static int lm80_detect(struct i2c_client *client, struct i2c_board_info *info)
550{
551 struct i2c_adapter *adapter = client->adapter;
552 int i, cur, man_id, dev_id;
553 const char *name = NULL;
554
555 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
556 return -ENODEV;
557
558 /* First check for unused bits, common to both chip types */
559 if ((lm80_read_value(client, LM80_REG_ALARM2) & 0xc0)
560 || (lm80_read_value(client, LM80_REG_CONFIG) & 0x80))
561 return -ENODEV;
562
563 /*
564 * The LM96080 has manufacturer and stepping/die rev registers so we
565 * can just check that. The LM80 does not have such registers so we
566 * have to use a more expensive trick.
567 */
568 man_id = lm80_read_value(client, LM96080_REG_MAN_ID);
569 dev_id = lm80_read_value(client, LM96080_REG_DEV_ID);
570 if (man_id == 0x01 && dev_id == 0x08) {
571 /* Check more unused bits for confirmation */
572 if (lm80_read_value(client, LM96080_REG_CONV_RATE) & 0xfe)
573 return -ENODEV;
574
575 name = "lm96080";
576 } else {
577 /* Check 6-bit addressing */
578 for (i = 0x2a; i <= 0x3d; i++) {
579 cur = i2c_smbus_read_byte_data(client, i);
580 if ((i2c_smbus_read_byte_data(client, i + 0x40) != cur)
581 || (i2c_smbus_read_byte_data(client, i + 0x80) != cur)
582 || (i2c_smbus_read_byte_data(client, i + 0xc0) != cur))
583 return -ENODEV;
584 }
585
586 name = "lm80";
587 }
588
589 strscpy(info->type, name, I2C_NAME_SIZE);
590
591 return 0;
592}
593
594static int lm80_probe(struct i2c_client *client)
595{
596 struct device *dev = &client->dev;
597 struct device *hwmon_dev;
598 struct lm80_data *data;
599
600 data = devm_kzalloc(dev, sizeof(struct lm80_data), GFP_KERNEL);
601 if (!data)
602 return -ENOMEM;
603
604 data->client = client;
605 mutex_init(&data->update_lock);
606
607 /* Initialize the LM80 chip */
608 lm80_init_client(client);
609
610 /* A few vars need to be filled upon startup */
611 data->fan[f_min][0] = lm80_read_value(client, LM80_REG_FAN_MIN(1));
612 data->fan[f_min][1] = lm80_read_value(client, LM80_REG_FAN_MIN(2));
613
614 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
615 data, lm80_groups);
616
617 return PTR_ERR_OR_ZERO(hwmon_dev);
618}
619
620/*
621 * Driver data (common to all clients)
622 */
623
624static const struct i2c_device_id lm80_id[] = {
625 { "lm80", 0 },
626 { "lm96080", 1 },
627 { }
628};
629MODULE_DEVICE_TABLE(i2c, lm80_id);
630
631static struct i2c_driver lm80_driver = {
632 .class = I2C_CLASS_HWMON,
633 .driver = {
634 .name = "lm80",
635 },
636 .probe = lm80_probe,
637 .id_table = lm80_id,
638 .detect = lm80_detect,
639 .address_list = normal_i2c,
640};
641
642module_i2c_driver(lm80_driver);
643
644MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and "
645 "Philip Edelbrock <phil@netroedge.com>");
646MODULE_DESCRIPTION("LM80 driver");
647MODULE_LICENSE("GPL");
1/*
2 * lm80.c - From lm_sensors, Linux kernel modules for hardware
3 * monitoring
4 * Copyright (C) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
5 * and Philip Edelbrock <phil@netroedge.com>
6 *
7 * Ported to Linux 2.6 by Tiago Sousa <mirage@kaotik.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 */
23
24#include <linux/module.h>
25#include <linux/init.h>
26#include <linux/slab.h>
27#include <linux/jiffies.h>
28#include <linux/i2c.h>
29#include <linux/hwmon.h>
30#include <linux/hwmon-sysfs.h>
31#include <linux/err.h>
32#include <linux/mutex.h>
33
34/* Addresses to scan */
35static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d,
36 0x2e, 0x2f, I2C_CLIENT_END };
37
38/* Many LM80 constants specified below */
39
40/* The LM80 registers */
41#define LM80_REG_IN_MAX(nr) (0x2a + (nr) * 2)
42#define LM80_REG_IN_MIN(nr) (0x2b + (nr) * 2)
43#define LM80_REG_IN(nr) (0x20 + (nr))
44
45#define LM80_REG_FAN1 0x28
46#define LM80_REG_FAN2 0x29
47#define LM80_REG_FAN_MIN(nr) (0x3b + (nr))
48
49#define LM80_REG_TEMP 0x27
50#define LM80_REG_TEMP_HOT_MAX 0x38
51#define LM80_REG_TEMP_HOT_HYST 0x39
52#define LM80_REG_TEMP_OS_MAX 0x3a
53#define LM80_REG_TEMP_OS_HYST 0x3b
54
55#define LM80_REG_CONFIG 0x00
56#define LM80_REG_ALARM1 0x01
57#define LM80_REG_ALARM2 0x02
58#define LM80_REG_MASK1 0x03
59#define LM80_REG_MASK2 0x04
60#define LM80_REG_FANDIV 0x05
61#define LM80_REG_RES 0x06
62
63#define LM96080_REG_CONV_RATE 0x07
64#define LM96080_REG_MAN_ID 0x3e
65#define LM96080_REG_DEV_ID 0x3f
66
67
68/*
69 * Conversions. Rounding and limit checking is only done on the TO_REG
70 * variants. Note that you should be a bit careful with which arguments
71 * these macros are called: arguments may be evaluated more than once.
72 * Fixing this is just not worth it.
73 */
74
75#define IN_TO_REG(val) (clamp_val(((val) + 5) / 10, 0, 255))
76#define IN_FROM_REG(val) ((val) * 10)
77
78static inline unsigned char FAN_TO_REG(unsigned rpm, unsigned div)
79{
80 if (rpm == 0)
81 return 255;
82 rpm = clamp_val(rpm, 1, 1000000);
83 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
84}
85
86#define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \
87 (val) == 255 ? 0 : 1350000/((div) * (val)))
88
89static inline long TEMP_FROM_REG(u16 temp)
90{
91 long res;
92
93 temp >>= 4;
94 if (temp < 0x0800)
95 res = 625 * (long) temp;
96 else
97 res = ((long) temp - 0x01000) * 625;
98
99 return res / 10;
100}
101
102#define TEMP_LIMIT_FROM_REG(val) (((val) > 0x80 ? \
103 (val) - 0x100 : (val)) * 1000)
104
105#define TEMP_LIMIT_TO_REG(val) clamp_val((val) < 0 ? \
106 ((val) - 500) / 1000 : ((val) + 500) / 1000, 0, 255)
107
108#define DIV_FROM_REG(val) (1 << (val))
109
110/*
111 * Client data (each client gets its own)
112 */
113
114struct lm80_data {
115 struct i2c_client *client;
116 struct mutex update_lock;
117 char error; /* !=0 if error occurred during last update */
118 char valid; /* !=0 if following fields are valid */
119 unsigned long last_updated; /* In jiffies */
120
121 u8 in[7]; /* Register value */
122 u8 in_max[7]; /* Register value */
123 u8 in_min[7]; /* Register value */
124 u8 fan[2]; /* Register value */
125 u8 fan_min[2]; /* Register value */
126 u8 fan_div[2]; /* Register encoding, shifted right */
127 u16 temp; /* Register values, shifted right */
128 u8 temp_hot_max; /* Register value */
129 u8 temp_hot_hyst; /* Register value */
130 u8 temp_os_max; /* Register value */
131 u8 temp_os_hyst; /* Register value */
132 u16 alarms; /* Register encoding, combined */
133};
134
135/*
136 * Functions declaration
137 */
138
139static int lm80_probe(struct i2c_client *client,
140 const struct i2c_device_id *id);
141static int lm80_detect(struct i2c_client *client, struct i2c_board_info *info);
142static void lm80_init_client(struct i2c_client *client);
143static struct lm80_data *lm80_update_device(struct device *dev);
144static int lm80_read_value(struct i2c_client *client, u8 reg);
145static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value);
146
147/*
148 * Driver data (common to all clients)
149 */
150
151static const struct i2c_device_id lm80_id[] = {
152 { "lm80", 0 },
153 { "lm96080", 1 },
154 { }
155};
156MODULE_DEVICE_TABLE(i2c, lm80_id);
157
158static struct i2c_driver lm80_driver = {
159 .class = I2C_CLASS_HWMON,
160 .driver = {
161 .name = "lm80",
162 },
163 .probe = lm80_probe,
164 .id_table = lm80_id,
165 .detect = lm80_detect,
166 .address_list = normal_i2c,
167};
168
169/*
170 * Sysfs stuff
171 */
172
173#define show_in(suffix, value) \
174static ssize_t show_in_##suffix(struct device *dev, \
175 struct device_attribute *attr, char *buf) \
176{ \
177 int nr = to_sensor_dev_attr(attr)->index; \
178 struct lm80_data *data = lm80_update_device(dev); \
179 if (IS_ERR(data)) \
180 return PTR_ERR(data); \
181 return sprintf(buf, "%d\n", IN_FROM_REG(data->value[nr])); \
182}
183show_in(min, in_min)
184show_in(max, in_max)
185show_in(input, in)
186
187#define set_in(suffix, value, reg) \
188static ssize_t set_in_##suffix(struct device *dev, \
189 struct device_attribute *attr, const char *buf, size_t count) \
190{ \
191 int nr = to_sensor_dev_attr(attr)->index; \
192 struct lm80_data *data = dev_get_drvdata(dev); \
193 struct i2c_client *client = data->client; \
194 long val; \
195 int err = kstrtol(buf, 10, &val); \
196 if (err < 0) \
197 return err; \
198\
199 mutex_lock(&data->update_lock);\
200 data->value[nr] = IN_TO_REG(val); \
201 lm80_write_value(client, reg(nr), data->value[nr]); \
202 mutex_unlock(&data->update_lock);\
203 return count; \
204}
205set_in(min, in_min, LM80_REG_IN_MIN)
206set_in(max, in_max, LM80_REG_IN_MAX)
207
208#define show_fan(suffix, value) \
209static ssize_t show_fan_##suffix(struct device *dev, \
210 struct device_attribute *attr, char *buf) \
211{ \
212 int nr = to_sensor_dev_attr(attr)->index; \
213 struct lm80_data *data = lm80_update_device(dev); \
214 if (IS_ERR(data)) \
215 return PTR_ERR(data); \
216 return sprintf(buf, "%d\n", FAN_FROM_REG(data->value[nr], \
217 DIV_FROM_REG(data->fan_div[nr]))); \
218}
219show_fan(min, fan_min)
220show_fan(input, fan)
221
222static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
223 char *buf)
224{
225 int nr = to_sensor_dev_attr(attr)->index;
226 struct lm80_data *data = lm80_update_device(dev);
227 if (IS_ERR(data))
228 return PTR_ERR(data);
229 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
230}
231
232static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
233 const char *buf, size_t count)
234{
235 int nr = to_sensor_dev_attr(attr)->index;
236 struct lm80_data *data = dev_get_drvdata(dev);
237 struct i2c_client *client = data->client;
238 unsigned long val;
239 int err = kstrtoul(buf, 10, &val);
240 if (err < 0)
241 return err;
242
243 mutex_lock(&data->update_lock);
244 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
245 lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1), data->fan_min[nr]);
246 mutex_unlock(&data->update_lock);
247 return count;
248}
249
250/*
251 * Note: we save and restore the fan minimum here, because its value is
252 * determined in part by the fan divisor. This follows the principle of
253 * least surprise; the user doesn't expect the fan minimum to change just
254 * because the divisor changed.
255 */
256static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
257 const char *buf, size_t count)
258{
259 int nr = to_sensor_dev_attr(attr)->index;
260 struct lm80_data *data = dev_get_drvdata(dev);
261 struct i2c_client *client = data->client;
262 unsigned long min, val;
263 u8 reg;
264 int err = kstrtoul(buf, 10, &val);
265 if (err < 0)
266 return err;
267
268 /* Save fan_min */
269 mutex_lock(&data->update_lock);
270 min = FAN_FROM_REG(data->fan_min[nr],
271 DIV_FROM_REG(data->fan_div[nr]));
272
273 switch (val) {
274 case 1:
275 data->fan_div[nr] = 0;
276 break;
277 case 2:
278 data->fan_div[nr] = 1;
279 break;
280 case 4:
281 data->fan_div[nr] = 2;
282 break;
283 case 8:
284 data->fan_div[nr] = 3;
285 break;
286 default:
287 dev_err(dev,
288 "fan_div value %ld not supported. Choose one of 1, 2, 4 or 8!\n",
289 val);
290 mutex_unlock(&data->update_lock);
291 return -EINVAL;
292 }
293
294 reg = (lm80_read_value(client, LM80_REG_FANDIV) & ~(3 << (2 * (nr + 1))))
295 | (data->fan_div[nr] << (2 * (nr + 1)));
296 lm80_write_value(client, LM80_REG_FANDIV, reg);
297
298 /* Restore fan_min */
299 data->fan_min[nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
300 lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1), data->fan_min[nr]);
301 mutex_unlock(&data->update_lock);
302
303 return count;
304}
305
306static ssize_t show_temp_input1(struct device *dev,
307 struct device_attribute *attr, char *buf)
308{
309 struct lm80_data *data = lm80_update_device(dev);
310 if (IS_ERR(data))
311 return PTR_ERR(data);
312 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp));
313}
314
315#define show_temp(suffix, value) \
316static ssize_t show_temp_##suffix(struct device *dev, \
317 struct device_attribute *attr, char *buf) \
318{ \
319 struct lm80_data *data = lm80_update_device(dev); \
320 if (IS_ERR(data)) \
321 return PTR_ERR(data); \
322 return sprintf(buf, "%d\n", TEMP_LIMIT_FROM_REG(data->value)); \
323}
324show_temp(hot_max, temp_hot_max);
325show_temp(hot_hyst, temp_hot_hyst);
326show_temp(os_max, temp_os_max);
327show_temp(os_hyst, temp_os_hyst);
328
329#define set_temp(suffix, value, reg) \
330static ssize_t set_temp_##suffix(struct device *dev, \
331 struct device_attribute *attr, const char *buf, size_t count) \
332{ \
333 struct lm80_data *data = dev_get_drvdata(dev); \
334 struct i2c_client *client = data->client; \
335 long val; \
336 int err = kstrtol(buf, 10, &val); \
337 if (err < 0) \
338 return err; \
339\
340 mutex_lock(&data->update_lock); \
341 data->value = TEMP_LIMIT_TO_REG(val); \
342 lm80_write_value(client, reg, data->value); \
343 mutex_unlock(&data->update_lock); \
344 return count; \
345}
346set_temp(hot_max, temp_hot_max, LM80_REG_TEMP_HOT_MAX);
347set_temp(hot_hyst, temp_hot_hyst, LM80_REG_TEMP_HOT_HYST);
348set_temp(os_max, temp_os_max, LM80_REG_TEMP_OS_MAX);
349set_temp(os_hyst, temp_os_hyst, LM80_REG_TEMP_OS_HYST);
350
351static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
352 char *buf)
353{
354 struct lm80_data *data = lm80_update_device(dev);
355 if (IS_ERR(data))
356 return PTR_ERR(data);
357 return sprintf(buf, "%u\n", data->alarms);
358}
359
360static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
361 char *buf)
362{
363 int bitnr = to_sensor_dev_attr(attr)->index;
364 struct lm80_data *data = lm80_update_device(dev);
365 if (IS_ERR(data))
366 return PTR_ERR(data);
367 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
368}
369
370static SENSOR_DEVICE_ATTR(in0_min, S_IWUSR | S_IRUGO,
371 show_in_min, set_in_min, 0);
372static SENSOR_DEVICE_ATTR(in1_min, S_IWUSR | S_IRUGO,
373 show_in_min, set_in_min, 1);
374static SENSOR_DEVICE_ATTR(in2_min, S_IWUSR | S_IRUGO,
375 show_in_min, set_in_min, 2);
376static SENSOR_DEVICE_ATTR(in3_min, S_IWUSR | S_IRUGO,
377 show_in_min, set_in_min, 3);
378static SENSOR_DEVICE_ATTR(in4_min, S_IWUSR | S_IRUGO,
379 show_in_min, set_in_min, 4);
380static SENSOR_DEVICE_ATTR(in5_min, S_IWUSR | S_IRUGO,
381 show_in_min, set_in_min, 5);
382static SENSOR_DEVICE_ATTR(in6_min, S_IWUSR | S_IRUGO,
383 show_in_min, set_in_min, 6);
384static SENSOR_DEVICE_ATTR(in0_max, S_IWUSR | S_IRUGO,
385 show_in_max, set_in_max, 0);
386static SENSOR_DEVICE_ATTR(in1_max, S_IWUSR | S_IRUGO,
387 show_in_max, set_in_max, 1);
388static SENSOR_DEVICE_ATTR(in2_max, S_IWUSR | S_IRUGO,
389 show_in_max, set_in_max, 2);
390static SENSOR_DEVICE_ATTR(in3_max, S_IWUSR | S_IRUGO,
391 show_in_max, set_in_max, 3);
392static SENSOR_DEVICE_ATTR(in4_max, S_IWUSR | S_IRUGO,
393 show_in_max, set_in_max, 4);
394static SENSOR_DEVICE_ATTR(in5_max, S_IWUSR | S_IRUGO,
395 show_in_max, set_in_max, 5);
396static SENSOR_DEVICE_ATTR(in6_max, S_IWUSR | S_IRUGO,
397 show_in_max, set_in_max, 6);
398static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, show_in_input, NULL, 0);
399static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_in_input, NULL, 1);
400static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_in_input, NULL, 2);
401static SENSOR_DEVICE_ATTR(in3_input, S_IRUGO, show_in_input, NULL, 3);
402static SENSOR_DEVICE_ATTR(in4_input, S_IRUGO, show_in_input, NULL, 4);
403static SENSOR_DEVICE_ATTR(in5_input, S_IRUGO, show_in_input, NULL, 5);
404static SENSOR_DEVICE_ATTR(in6_input, S_IRUGO, show_in_input, NULL, 6);
405static SENSOR_DEVICE_ATTR(fan1_min, S_IWUSR | S_IRUGO,
406 show_fan_min, set_fan_min, 0);
407static SENSOR_DEVICE_ATTR(fan2_min, S_IWUSR | S_IRUGO,
408 show_fan_min, set_fan_min, 1);
409static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, show_fan_input, NULL, 0);
410static SENSOR_DEVICE_ATTR(fan2_input, S_IRUGO, show_fan_input, NULL, 1);
411static SENSOR_DEVICE_ATTR(fan1_div, S_IWUSR | S_IRUGO,
412 show_fan_div, set_fan_div, 0);
413static SENSOR_DEVICE_ATTR(fan2_div, S_IWUSR | S_IRUGO,
414 show_fan_div, set_fan_div, 1);
415static DEVICE_ATTR(temp1_input, S_IRUGO, show_temp_input1, NULL);
416static DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp_hot_max,
417 set_temp_hot_max);
418static DEVICE_ATTR(temp1_max_hyst, S_IWUSR | S_IRUGO, show_temp_hot_hyst,
419 set_temp_hot_hyst);
420static DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp_os_max,
421 set_temp_os_max);
422static DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temp_os_hyst,
423 set_temp_os_hyst);
424static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
425static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
426static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
427static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
428static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
429static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 4);
430static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 5);
431static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 6);
432static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
433static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
434static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 8);
435static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 13);
436
437/*
438 * Real code
439 */
440
441static struct attribute *lm80_attrs[] = {
442 &sensor_dev_attr_in0_min.dev_attr.attr,
443 &sensor_dev_attr_in1_min.dev_attr.attr,
444 &sensor_dev_attr_in2_min.dev_attr.attr,
445 &sensor_dev_attr_in3_min.dev_attr.attr,
446 &sensor_dev_attr_in4_min.dev_attr.attr,
447 &sensor_dev_attr_in5_min.dev_attr.attr,
448 &sensor_dev_attr_in6_min.dev_attr.attr,
449 &sensor_dev_attr_in0_max.dev_attr.attr,
450 &sensor_dev_attr_in1_max.dev_attr.attr,
451 &sensor_dev_attr_in2_max.dev_attr.attr,
452 &sensor_dev_attr_in3_max.dev_attr.attr,
453 &sensor_dev_attr_in4_max.dev_attr.attr,
454 &sensor_dev_attr_in5_max.dev_attr.attr,
455 &sensor_dev_attr_in6_max.dev_attr.attr,
456 &sensor_dev_attr_in0_input.dev_attr.attr,
457 &sensor_dev_attr_in1_input.dev_attr.attr,
458 &sensor_dev_attr_in2_input.dev_attr.attr,
459 &sensor_dev_attr_in3_input.dev_attr.attr,
460 &sensor_dev_attr_in4_input.dev_attr.attr,
461 &sensor_dev_attr_in5_input.dev_attr.attr,
462 &sensor_dev_attr_in6_input.dev_attr.attr,
463 &sensor_dev_attr_fan1_min.dev_attr.attr,
464 &sensor_dev_attr_fan2_min.dev_attr.attr,
465 &sensor_dev_attr_fan1_input.dev_attr.attr,
466 &sensor_dev_attr_fan2_input.dev_attr.attr,
467 &sensor_dev_attr_fan1_div.dev_attr.attr,
468 &sensor_dev_attr_fan2_div.dev_attr.attr,
469 &dev_attr_temp1_input.attr,
470 &dev_attr_temp1_max.attr,
471 &dev_attr_temp1_max_hyst.attr,
472 &dev_attr_temp1_crit.attr,
473 &dev_attr_temp1_crit_hyst.attr,
474 &dev_attr_alarms.attr,
475 &sensor_dev_attr_in0_alarm.dev_attr.attr,
476 &sensor_dev_attr_in1_alarm.dev_attr.attr,
477 &sensor_dev_attr_in2_alarm.dev_attr.attr,
478 &sensor_dev_attr_in3_alarm.dev_attr.attr,
479 &sensor_dev_attr_in4_alarm.dev_attr.attr,
480 &sensor_dev_attr_in5_alarm.dev_attr.attr,
481 &sensor_dev_attr_in6_alarm.dev_attr.attr,
482 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
483 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
484 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
485 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
486 NULL
487};
488ATTRIBUTE_GROUPS(lm80);
489
490/* Return 0 if detection is successful, -ENODEV otherwise */
491static int lm80_detect(struct i2c_client *client, struct i2c_board_info *info)
492{
493 struct i2c_adapter *adapter = client->adapter;
494 int i, cur, man_id, dev_id;
495 const char *name = NULL;
496
497 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
498 return -ENODEV;
499
500 /* First check for unused bits, common to both chip types */
501 if ((lm80_read_value(client, LM80_REG_ALARM2) & 0xc0)
502 || (lm80_read_value(client, LM80_REG_CONFIG) & 0x80))
503 return -ENODEV;
504
505 /*
506 * The LM96080 has manufacturer and stepping/die rev registers so we
507 * can just check that. The LM80 does not have such registers so we
508 * have to use a more expensive trick.
509 */
510 man_id = lm80_read_value(client, LM96080_REG_MAN_ID);
511 dev_id = lm80_read_value(client, LM96080_REG_DEV_ID);
512 if (man_id == 0x01 && dev_id == 0x08) {
513 /* Check more unused bits for confirmation */
514 if (lm80_read_value(client, LM96080_REG_CONV_RATE) & 0xfe)
515 return -ENODEV;
516
517 name = "lm96080";
518 } else {
519 /* Check 6-bit addressing */
520 for (i = 0x2a; i <= 0x3d; i++) {
521 cur = i2c_smbus_read_byte_data(client, i);
522 if ((i2c_smbus_read_byte_data(client, i + 0x40) != cur)
523 || (i2c_smbus_read_byte_data(client, i + 0x80) != cur)
524 || (i2c_smbus_read_byte_data(client, i + 0xc0) != cur))
525 return -ENODEV;
526 }
527
528 name = "lm80";
529 }
530
531 strlcpy(info->type, name, I2C_NAME_SIZE);
532
533 return 0;
534}
535
536static int lm80_probe(struct i2c_client *client,
537 const struct i2c_device_id *id)
538{
539 struct device *dev = &client->dev;
540 struct device *hwmon_dev;
541 struct lm80_data *data;
542
543 data = devm_kzalloc(dev, sizeof(struct lm80_data), GFP_KERNEL);
544 if (!data)
545 return -ENOMEM;
546
547 data->client = client;
548 mutex_init(&data->update_lock);
549
550 /* Initialize the LM80 chip */
551 lm80_init_client(client);
552
553 /* A few vars need to be filled upon startup */
554 data->fan_min[0] = lm80_read_value(client, LM80_REG_FAN_MIN(1));
555 data->fan_min[1] = lm80_read_value(client, LM80_REG_FAN_MIN(2));
556
557 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
558 data, lm80_groups);
559
560 return PTR_ERR_OR_ZERO(hwmon_dev);
561}
562
563static int lm80_read_value(struct i2c_client *client, u8 reg)
564{
565 return i2c_smbus_read_byte_data(client, reg);
566}
567
568static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value)
569{
570 return i2c_smbus_write_byte_data(client, reg, value);
571}
572
573/* Called when we have found a new LM80. */
574static void lm80_init_client(struct i2c_client *client)
575{
576 /*
577 * Reset all except Watchdog values and last conversion values
578 * This sets fan-divs to 2, among others. This makes most other
579 * initializations unnecessary
580 */
581 lm80_write_value(client, LM80_REG_CONFIG, 0x80);
582 /* Set 11-bit temperature resolution */
583 lm80_write_value(client, LM80_REG_RES, 0x08);
584
585 /* Start monitoring */
586 lm80_write_value(client, LM80_REG_CONFIG, 0x01);
587}
588
589static struct lm80_data *lm80_update_device(struct device *dev)
590{
591 struct lm80_data *data = dev_get_drvdata(dev);
592 struct i2c_client *client = data->client;
593 int i;
594 int rv;
595 int prev_rv;
596 struct lm80_data *ret = data;
597
598 mutex_lock(&data->update_lock);
599
600 if (data->error)
601 lm80_init_client(client);
602
603 if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
604 dev_dbg(dev, "Starting lm80 update\n");
605 for (i = 0; i <= 6; i++) {
606 rv = lm80_read_value(client, LM80_REG_IN(i));
607 if (rv < 0)
608 goto abort;
609 data->in[i] = rv;
610
611 rv = lm80_read_value(client, LM80_REG_IN_MIN(i));
612 if (rv < 0)
613 goto abort;
614 data->in_min[i] = rv;
615
616 rv = lm80_read_value(client, LM80_REG_IN_MAX(i));
617 if (rv < 0)
618 goto abort;
619 data->in_max[i] = rv;
620 }
621
622 rv = lm80_read_value(client, LM80_REG_FAN1);
623 if (rv < 0)
624 goto abort;
625 data->fan[0] = rv;
626
627 rv = lm80_read_value(client, LM80_REG_FAN_MIN(1));
628 if (rv < 0)
629 goto abort;
630 data->fan_min[0] = rv;
631
632 rv = lm80_read_value(client, LM80_REG_FAN2);
633 if (rv < 0)
634 goto abort;
635 data->fan[1] = rv;
636
637 rv = lm80_read_value(client, LM80_REG_FAN_MIN(2));
638 if (rv < 0)
639 goto abort;
640 data->fan_min[1] = rv;
641
642 prev_rv = rv = lm80_read_value(client, LM80_REG_TEMP);
643 if (rv < 0)
644 goto abort;
645 rv = lm80_read_value(client, LM80_REG_RES);
646 if (rv < 0)
647 goto abort;
648 data->temp = (prev_rv << 8) | (rv & 0xf0);
649
650 rv = lm80_read_value(client, LM80_REG_TEMP_OS_MAX);
651 if (rv < 0)
652 goto abort;
653 data->temp_os_max = rv;
654
655 rv = lm80_read_value(client, LM80_REG_TEMP_OS_HYST);
656 if (rv < 0)
657 goto abort;
658 data->temp_os_hyst = rv;
659
660 rv = lm80_read_value(client, LM80_REG_TEMP_HOT_MAX);
661 if (rv < 0)
662 goto abort;
663 data->temp_hot_max = rv;
664
665 rv = lm80_read_value(client, LM80_REG_TEMP_HOT_HYST);
666 if (rv < 0)
667 goto abort;
668 data->temp_hot_hyst = rv;
669
670 rv = lm80_read_value(client, LM80_REG_FANDIV);
671 if (rv < 0)
672 goto abort;
673 data->fan_div[0] = (rv >> 2) & 0x03;
674 data->fan_div[1] = (rv >> 4) & 0x03;
675
676 prev_rv = rv = lm80_read_value(client, LM80_REG_ALARM1);
677 if (rv < 0)
678 goto abort;
679 rv = lm80_read_value(client, LM80_REG_ALARM2);
680 if (rv < 0)
681 goto abort;
682 data->alarms = prev_rv + (rv << 8);
683
684 data->last_updated = jiffies;
685 data->valid = 1;
686 data->error = 0;
687 }
688 goto done;
689
690abort:
691 ret = ERR_PTR(rv);
692 data->valid = 0;
693 data->error = 1;
694
695done:
696 mutex_unlock(&data->update_lock);
697
698 return ret;
699}
700
701module_i2c_driver(lm80_driver);
702
703MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and "
704 "Philip Edelbrock <phil@netroedge.com>");
705MODULE_DESCRIPTION("LM80 driver");
706MODULE_LICENSE("GPL");