Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * lm80.c - From lm_sensors, Linux kernel modules for hardware
4 * monitoring
5 * Copyright (C) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
6 * and Philip Edelbrock <phil@netroedge.com>
7 *
8 * Ported to Linux 2.6 by Tiago Sousa <mirage@kaotik.org>
9 */
10
11#include <linux/module.h>
12#include <linux/init.h>
13#include <linux/slab.h>
14#include <linux/jiffies.h>
15#include <linux/i2c.h>
16#include <linux/hwmon.h>
17#include <linux/hwmon-sysfs.h>
18#include <linux/err.h>
19#include <linux/mutex.h>
20
21/* Addresses to scan */
22static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d,
23 0x2e, 0x2f, I2C_CLIENT_END };
24
25/* Many LM80 constants specified below */
26
27/* The LM80 registers */
28#define LM80_REG_IN_MAX(nr) (0x2a + (nr) * 2)
29#define LM80_REG_IN_MIN(nr) (0x2b + (nr) * 2)
30#define LM80_REG_IN(nr) (0x20 + (nr))
31
32#define LM80_REG_FAN1 0x28
33#define LM80_REG_FAN2 0x29
34#define LM80_REG_FAN_MIN(nr) (0x3b + (nr))
35
36#define LM80_REG_TEMP 0x27
37#define LM80_REG_TEMP_HOT_MAX 0x38
38#define LM80_REG_TEMP_HOT_HYST 0x39
39#define LM80_REG_TEMP_OS_MAX 0x3a
40#define LM80_REG_TEMP_OS_HYST 0x3b
41
42#define LM80_REG_CONFIG 0x00
43#define LM80_REG_ALARM1 0x01
44#define LM80_REG_ALARM2 0x02
45#define LM80_REG_MASK1 0x03
46#define LM80_REG_MASK2 0x04
47#define LM80_REG_FANDIV 0x05
48#define LM80_REG_RES 0x06
49
50#define LM96080_REG_CONV_RATE 0x07
51#define LM96080_REG_MAN_ID 0x3e
52#define LM96080_REG_DEV_ID 0x3f
53
54
55/*
56 * Conversions. Rounding and limit checking is only done on the TO_REG
57 * variants. Note that you should be a bit careful with which arguments
58 * these macros are called: arguments may be evaluated more than once.
59 * Fixing this is just not worth it.
60 */
61
62#define IN_TO_REG(val) (clamp_val(((val) + 5) / 10, 0, 255))
63#define IN_FROM_REG(val) ((val) * 10)
64
65static inline unsigned char FAN_TO_REG(unsigned rpm, unsigned div)
66{
67 if (rpm == 0)
68 return 255;
69 rpm = clamp_val(rpm, 1, 1000000);
70 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
71}
72
73#define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \
74 (val) == 255 ? 0 : 1350000/((div) * (val)))
75
76#define TEMP_FROM_REG(reg) ((reg) * 125 / 32)
77#define TEMP_TO_REG(temp) (DIV_ROUND_CLOSEST(clamp_val((temp), \
78 -128000, 127000), 1000) << 8)
79
80#define DIV_FROM_REG(val) (1 << (val))
81
82enum temp_index {
83 t_input = 0,
84 t_hot_max,
85 t_hot_hyst,
86 t_os_max,
87 t_os_hyst,
88 t_num_temp
89};
90
91static const u8 temp_regs[t_num_temp] = {
92 [t_input] = LM80_REG_TEMP,
93 [t_hot_max] = LM80_REG_TEMP_HOT_MAX,
94 [t_hot_hyst] = LM80_REG_TEMP_HOT_HYST,
95 [t_os_max] = LM80_REG_TEMP_OS_MAX,
96 [t_os_hyst] = LM80_REG_TEMP_OS_HYST,
97};
98
99enum in_index {
100 i_input = 0,
101 i_max,
102 i_min,
103 i_num_in
104};
105
106enum fan_index {
107 f_input,
108 f_min,
109 f_num_fan
110};
111
112/*
113 * Client data (each client gets its own)
114 */
115
116struct lm80_data {
117 struct i2c_client *client;
118 struct mutex update_lock;
119 char error; /* !=0 if error occurred during last update */
120 bool valid; /* true if following fields are valid */
121 unsigned long last_updated; /* In jiffies */
122
123 u8 in[i_num_in][7]; /* Register value, 1st index is enum in_index */
124 u8 fan[f_num_fan][2]; /* Register value, 1st index enum fan_index */
125 u8 fan_div[2]; /* Register encoding, shifted right */
126 s16 temp[t_num_temp]; /* Register values, normalized to 16 bit */
127 u16 alarms; /* Register encoding, combined */
128};
129
130static int lm80_read_value(struct i2c_client *client, u8 reg)
131{
132 return i2c_smbus_read_byte_data(client, reg);
133}
134
135static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value)
136{
137 return i2c_smbus_write_byte_data(client, reg, value);
138}
139
140/* Called when we have found a new LM80 and after read errors */
141static void lm80_init_client(struct i2c_client *client)
142{
143 /*
144 * Reset all except Watchdog values and last conversion values
145 * This sets fan-divs to 2, among others. This makes most other
146 * initializations unnecessary
147 */
148 lm80_write_value(client, LM80_REG_CONFIG, 0x80);
149 /* Set 11-bit temperature resolution */
150 lm80_write_value(client, LM80_REG_RES, 0x08);
151
152 /* Start monitoring */
153 lm80_write_value(client, LM80_REG_CONFIG, 0x01);
154}
155
156static struct lm80_data *lm80_update_device(struct device *dev)
157{
158 struct lm80_data *data = dev_get_drvdata(dev);
159 struct i2c_client *client = data->client;
160 int i;
161 int rv;
162 int prev_rv;
163 struct lm80_data *ret = data;
164
165 mutex_lock(&data->update_lock);
166
167 if (data->error)
168 lm80_init_client(client);
169
170 if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
171 dev_dbg(dev, "Starting lm80 update\n");
172 for (i = 0; i <= 6; i++) {
173 rv = lm80_read_value(client, LM80_REG_IN(i));
174 if (rv < 0)
175 goto abort;
176 data->in[i_input][i] = rv;
177
178 rv = lm80_read_value(client, LM80_REG_IN_MIN(i));
179 if (rv < 0)
180 goto abort;
181 data->in[i_min][i] = rv;
182
183 rv = lm80_read_value(client, LM80_REG_IN_MAX(i));
184 if (rv < 0)
185 goto abort;
186 data->in[i_max][i] = rv;
187 }
188
189 rv = lm80_read_value(client, LM80_REG_FAN1);
190 if (rv < 0)
191 goto abort;
192 data->fan[f_input][0] = rv;
193
194 rv = lm80_read_value(client, LM80_REG_FAN_MIN(1));
195 if (rv < 0)
196 goto abort;
197 data->fan[f_min][0] = rv;
198
199 rv = lm80_read_value(client, LM80_REG_FAN2);
200 if (rv < 0)
201 goto abort;
202 data->fan[f_input][1] = rv;
203
204 rv = lm80_read_value(client, LM80_REG_FAN_MIN(2));
205 if (rv < 0)
206 goto abort;
207 data->fan[f_min][1] = rv;
208
209 prev_rv = rv = lm80_read_value(client, LM80_REG_TEMP);
210 if (rv < 0)
211 goto abort;
212 rv = lm80_read_value(client, LM80_REG_RES);
213 if (rv < 0)
214 goto abort;
215 data->temp[t_input] = (prev_rv << 8) | (rv & 0xf0);
216
217 for (i = t_input + 1; i < t_num_temp; i++) {
218 rv = lm80_read_value(client, temp_regs[i]);
219 if (rv < 0)
220 goto abort;
221 data->temp[i] = rv << 8;
222 }
223
224 rv = lm80_read_value(client, LM80_REG_FANDIV);
225 if (rv < 0)
226 goto abort;
227 data->fan_div[0] = (rv >> 2) & 0x03;
228 data->fan_div[1] = (rv >> 4) & 0x03;
229
230 prev_rv = rv = lm80_read_value(client, LM80_REG_ALARM1);
231 if (rv < 0)
232 goto abort;
233 rv = lm80_read_value(client, LM80_REG_ALARM2);
234 if (rv < 0)
235 goto abort;
236 data->alarms = prev_rv + (rv << 8);
237
238 data->last_updated = jiffies;
239 data->valid = true;
240 data->error = 0;
241 }
242 goto done;
243
244abort:
245 ret = ERR_PTR(rv);
246 data->valid = false;
247 data->error = 1;
248
249done:
250 mutex_unlock(&data->update_lock);
251
252 return ret;
253}
254
255/*
256 * Sysfs stuff
257 */
258
259static ssize_t in_show(struct device *dev, struct device_attribute *attr,
260 char *buf)
261{
262 struct lm80_data *data = lm80_update_device(dev);
263 int index = to_sensor_dev_attr_2(attr)->index;
264 int nr = to_sensor_dev_attr_2(attr)->nr;
265
266 if (IS_ERR(data))
267 return PTR_ERR(data);
268 return sprintf(buf, "%d\n", IN_FROM_REG(data->in[nr][index]));
269}
270
271static ssize_t in_store(struct device *dev, struct device_attribute *attr,
272 const char *buf, size_t count)
273{
274 struct lm80_data *data = dev_get_drvdata(dev);
275 struct i2c_client *client = data->client;
276 int index = to_sensor_dev_attr_2(attr)->index;
277 int nr = to_sensor_dev_attr_2(attr)->nr;
278 long val;
279 u8 reg;
280 int err = kstrtol(buf, 10, &val);
281 if (err < 0)
282 return err;
283
284 reg = nr == i_min ? LM80_REG_IN_MIN(index) : LM80_REG_IN_MAX(index);
285
286 mutex_lock(&data->update_lock);
287 data->in[nr][index] = IN_TO_REG(val);
288 lm80_write_value(client, reg, data->in[nr][index]);
289 mutex_unlock(&data->update_lock);
290 return count;
291}
292
293static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
294 char *buf)
295{
296 int index = to_sensor_dev_attr_2(attr)->index;
297 int nr = to_sensor_dev_attr_2(attr)->nr;
298 struct lm80_data *data = lm80_update_device(dev);
299 if (IS_ERR(data))
300 return PTR_ERR(data);
301 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr][index],
302 DIV_FROM_REG(data->fan_div[index])));
303}
304
305static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr,
306 char *buf)
307{
308 int nr = to_sensor_dev_attr(attr)->index;
309 struct lm80_data *data = lm80_update_device(dev);
310 if (IS_ERR(data))
311 return PTR_ERR(data);
312 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
313}
314
315static ssize_t fan_store(struct device *dev, struct device_attribute *attr,
316 const char *buf, size_t count)
317{
318 int index = to_sensor_dev_attr_2(attr)->index;
319 int nr = to_sensor_dev_attr_2(attr)->nr;
320 struct lm80_data *data = dev_get_drvdata(dev);
321 struct i2c_client *client = data->client;
322 unsigned long val;
323 int err = kstrtoul(buf, 10, &val);
324 if (err < 0)
325 return err;
326
327 mutex_lock(&data->update_lock);
328 data->fan[nr][index] = FAN_TO_REG(val,
329 DIV_FROM_REG(data->fan_div[index]));
330 lm80_write_value(client, LM80_REG_FAN_MIN(index + 1),
331 data->fan[nr][index]);
332 mutex_unlock(&data->update_lock);
333 return count;
334}
335
336/*
337 * Note: we save and restore the fan minimum here, because its value is
338 * determined in part by the fan divisor. This follows the principle of
339 * least surprise; the user doesn't expect the fan minimum to change just
340 * because the divisor changed.
341 */
342static ssize_t fan_div_store(struct device *dev,
343 struct device_attribute *attr, const char *buf,
344 size_t count)
345{
346 int nr = to_sensor_dev_attr(attr)->index;
347 struct lm80_data *data = dev_get_drvdata(dev);
348 struct i2c_client *client = data->client;
349 unsigned long min, val;
350 u8 reg;
351 int rv;
352
353 rv = kstrtoul(buf, 10, &val);
354 if (rv < 0)
355 return rv;
356
357 /* Save fan_min */
358 mutex_lock(&data->update_lock);
359 min = FAN_FROM_REG(data->fan[f_min][nr],
360 DIV_FROM_REG(data->fan_div[nr]));
361
362 switch (val) {
363 case 1:
364 data->fan_div[nr] = 0;
365 break;
366 case 2:
367 data->fan_div[nr] = 1;
368 break;
369 case 4:
370 data->fan_div[nr] = 2;
371 break;
372 case 8:
373 data->fan_div[nr] = 3;
374 break;
375 default:
376 dev_err(dev,
377 "fan_div value %ld not supported. Choose one of 1, 2, 4 or 8!\n",
378 val);
379 mutex_unlock(&data->update_lock);
380 return -EINVAL;
381 }
382
383 rv = lm80_read_value(client, LM80_REG_FANDIV);
384 if (rv < 0) {
385 mutex_unlock(&data->update_lock);
386 return rv;
387 }
388 reg = (rv & ~(3 << (2 * (nr + 1))))
389 | (data->fan_div[nr] << (2 * (nr + 1)));
390 lm80_write_value(client, LM80_REG_FANDIV, reg);
391
392 /* Restore fan_min */
393 data->fan[f_min][nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
394 lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1),
395 data->fan[f_min][nr]);
396 mutex_unlock(&data->update_lock);
397
398 return count;
399}
400
401static ssize_t temp_show(struct device *dev, struct device_attribute *devattr,
402 char *buf)
403{
404 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
405 struct lm80_data *data = lm80_update_device(dev);
406 if (IS_ERR(data))
407 return PTR_ERR(data);
408 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[attr->index]));
409}
410
411static ssize_t temp_store(struct device *dev,
412 struct device_attribute *devattr, const char *buf,
413 size_t count)
414{
415 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
416 struct lm80_data *data = dev_get_drvdata(dev);
417 struct i2c_client *client = data->client;
418 int nr = attr->index;
419 long val;
420 int err = kstrtol(buf, 10, &val);
421 if (err < 0)
422 return err;
423
424 mutex_lock(&data->update_lock);
425 data->temp[nr] = TEMP_TO_REG(val);
426 lm80_write_value(client, temp_regs[nr], data->temp[nr] >> 8);
427 mutex_unlock(&data->update_lock);
428 return count;
429}
430
431static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
432 char *buf)
433{
434 struct lm80_data *data = lm80_update_device(dev);
435 if (IS_ERR(data))
436 return PTR_ERR(data);
437 return sprintf(buf, "%u\n", data->alarms);
438}
439
440static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
441 char *buf)
442{
443 int bitnr = to_sensor_dev_attr(attr)->index;
444 struct lm80_data *data = lm80_update_device(dev);
445 if (IS_ERR(data))
446 return PTR_ERR(data);
447 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
448}
449
450static SENSOR_DEVICE_ATTR_2_RW(in0_min, in, i_min, 0);
451static SENSOR_DEVICE_ATTR_2_RW(in1_min, in, i_min, 1);
452static SENSOR_DEVICE_ATTR_2_RW(in2_min, in, i_min, 2);
453static SENSOR_DEVICE_ATTR_2_RW(in3_min, in, i_min, 3);
454static SENSOR_DEVICE_ATTR_2_RW(in4_min, in, i_min, 4);
455static SENSOR_DEVICE_ATTR_2_RW(in5_min, in, i_min, 5);
456static SENSOR_DEVICE_ATTR_2_RW(in6_min, in, i_min, 6);
457static SENSOR_DEVICE_ATTR_2_RW(in0_max, in, i_max, 0);
458static SENSOR_DEVICE_ATTR_2_RW(in1_max, in, i_max, 1);
459static SENSOR_DEVICE_ATTR_2_RW(in2_max, in, i_max, 2);
460static SENSOR_DEVICE_ATTR_2_RW(in3_max, in, i_max, 3);
461static SENSOR_DEVICE_ATTR_2_RW(in4_max, in, i_max, 4);
462static SENSOR_DEVICE_ATTR_2_RW(in5_max, in, i_max, 5);
463static SENSOR_DEVICE_ATTR_2_RW(in6_max, in, i_max, 6);
464static SENSOR_DEVICE_ATTR_2_RO(in0_input, in, i_input, 0);
465static SENSOR_DEVICE_ATTR_2_RO(in1_input, in, i_input, 1);
466static SENSOR_DEVICE_ATTR_2_RO(in2_input, in, i_input, 2);
467static SENSOR_DEVICE_ATTR_2_RO(in3_input, in, i_input, 3);
468static SENSOR_DEVICE_ATTR_2_RO(in4_input, in, i_input, 4);
469static SENSOR_DEVICE_ATTR_2_RO(in5_input, in, i_input, 5);
470static SENSOR_DEVICE_ATTR_2_RO(in6_input, in, i_input, 6);
471static SENSOR_DEVICE_ATTR_2_RW(fan1_min, fan, f_min, 0);
472static SENSOR_DEVICE_ATTR_2_RW(fan2_min, fan, f_min, 1);
473static SENSOR_DEVICE_ATTR_2_RO(fan1_input, fan, f_input, 0);
474static SENSOR_DEVICE_ATTR_2_RO(fan2_input, fan, f_input, 1);
475static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
476static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
477static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, t_input);
478static SENSOR_DEVICE_ATTR_RW(temp1_max, temp, t_hot_max);
479static SENSOR_DEVICE_ATTR_RW(temp1_max_hyst, temp, t_hot_hyst);
480static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp, t_os_max);
481static SENSOR_DEVICE_ATTR_RW(temp1_crit_hyst, temp, t_os_hyst);
482static DEVICE_ATTR_RO(alarms);
483static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
484static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
485static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
486static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
487static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 4);
488static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 5);
489static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 6);
490static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 10);
491static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 11);
492static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 8);
493static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 13);
494
495/*
496 * Real code
497 */
498
499static struct attribute *lm80_attrs[] = {
500 &sensor_dev_attr_in0_min.dev_attr.attr,
501 &sensor_dev_attr_in1_min.dev_attr.attr,
502 &sensor_dev_attr_in2_min.dev_attr.attr,
503 &sensor_dev_attr_in3_min.dev_attr.attr,
504 &sensor_dev_attr_in4_min.dev_attr.attr,
505 &sensor_dev_attr_in5_min.dev_attr.attr,
506 &sensor_dev_attr_in6_min.dev_attr.attr,
507 &sensor_dev_attr_in0_max.dev_attr.attr,
508 &sensor_dev_attr_in1_max.dev_attr.attr,
509 &sensor_dev_attr_in2_max.dev_attr.attr,
510 &sensor_dev_attr_in3_max.dev_attr.attr,
511 &sensor_dev_attr_in4_max.dev_attr.attr,
512 &sensor_dev_attr_in5_max.dev_attr.attr,
513 &sensor_dev_attr_in6_max.dev_attr.attr,
514 &sensor_dev_attr_in0_input.dev_attr.attr,
515 &sensor_dev_attr_in1_input.dev_attr.attr,
516 &sensor_dev_attr_in2_input.dev_attr.attr,
517 &sensor_dev_attr_in3_input.dev_attr.attr,
518 &sensor_dev_attr_in4_input.dev_attr.attr,
519 &sensor_dev_attr_in5_input.dev_attr.attr,
520 &sensor_dev_attr_in6_input.dev_attr.attr,
521 &sensor_dev_attr_fan1_min.dev_attr.attr,
522 &sensor_dev_attr_fan2_min.dev_attr.attr,
523 &sensor_dev_attr_fan1_input.dev_attr.attr,
524 &sensor_dev_attr_fan2_input.dev_attr.attr,
525 &sensor_dev_attr_fan1_div.dev_attr.attr,
526 &sensor_dev_attr_fan2_div.dev_attr.attr,
527 &sensor_dev_attr_temp1_input.dev_attr.attr,
528 &sensor_dev_attr_temp1_max.dev_attr.attr,
529 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
530 &sensor_dev_attr_temp1_crit.dev_attr.attr,
531 &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
532 &dev_attr_alarms.attr,
533 &sensor_dev_attr_in0_alarm.dev_attr.attr,
534 &sensor_dev_attr_in1_alarm.dev_attr.attr,
535 &sensor_dev_attr_in2_alarm.dev_attr.attr,
536 &sensor_dev_attr_in3_alarm.dev_attr.attr,
537 &sensor_dev_attr_in4_alarm.dev_attr.attr,
538 &sensor_dev_attr_in5_alarm.dev_attr.attr,
539 &sensor_dev_attr_in6_alarm.dev_attr.attr,
540 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
541 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
542 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
543 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
544 NULL
545};
546ATTRIBUTE_GROUPS(lm80);
547
548/* Return 0 if detection is successful, -ENODEV otherwise */
549static int lm80_detect(struct i2c_client *client, struct i2c_board_info *info)
550{
551 struct i2c_adapter *adapter = client->adapter;
552 int i, cur, man_id, dev_id;
553 const char *name = NULL;
554
555 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
556 return -ENODEV;
557
558 /* First check for unused bits, common to both chip types */
559 if ((lm80_read_value(client, LM80_REG_ALARM2) & 0xc0)
560 || (lm80_read_value(client, LM80_REG_CONFIG) & 0x80))
561 return -ENODEV;
562
563 /*
564 * The LM96080 has manufacturer and stepping/die rev registers so we
565 * can just check that. The LM80 does not have such registers so we
566 * have to use a more expensive trick.
567 */
568 man_id = lm80_read_value(client, LM96080_REG_MAN_ID);
569 dev_id = lm80_read_value(client, LM96080_REG_DEV_ID);
570 if (man_id == 0x01 && dev_id == 0x08) {
571 /* Check more unused bits for confirmation */
572 if (lm80_read_value(client, LM96080_REG_CONV_RATE) & 0xfe)
573 return -ENODEV;
574
575 name = "lm96080";
576 } else {
577 /* Check 6-bit addressing */
578 for (i = 0x2a; i <= 0x3d; i++) {
579 cur = i2c_smbus_read_byte_data(client, i);
580 if ((i2c_smbus_read_byte_data(client, i + 0x40) != cur)
581 || (i2c_smbus_read_byte_data(client, i + 0x80) != cur)
582 || (i2c_smbus_read_byte_data(client, i + 0xc0) != cur))
583 return -ENODEV;
584 }
585
586 name = "lm80";
587 }
588
589 strscpy(info->type, name, I2C_NAME_SIZE);
590
591 return 0;
592}
593
594static int lm80_probe(struct i2c_client *client)
595{
596 struct device *dev = &client->dev;
597 struct device *hwmon_dev;
598 struct lm80_data *data;
599
600 data = devm_kzalloc(dev, sizeof(struct lm80_data), GFP_KERNEL);
601 if (!data)
602 return -ENOMEM;
603
604 data->client = client;
605 mutex_init(&data->update_lock);
606
607 /* Initialize the LM80 chip */
608 lm80_init_client(client);
609
610 /* A few vars need to be filled upon startup */
611 data->fan[f_min][0] = lm80_read_value(client, LM80_REG_FAN_MIN(1));
612 data->fan[f_min][1] = lm80_read_value(client, LM80_REG_FAN_MIN(2));
613
614 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
615 data, lm80_groups);
616
617 return PTR_ERR_OR_ZERO(hwmon_dev);
618}
619
620/*
621 * Driver data (common to all clients)
622 */
623
624static const struct i2c_device_id lm80_id[] = {
625 { "lm80", 0 },
626 { "lm96080", 1 },
627 { }
628};
629MODULE_DEVICE_TABLE(i2c, lm80_id);
630
631static struct i2c_driver lm80_driver = {
632 .class = I2C_CLASS_HWMON,
633 .driver = {
634 .name = "lm80",
635 },
636 .probe = lm80_probe,
637 .id_table = lm80_id,
638 .detect = lm80_detect,
639 .address_list = normal_i2c,
640};
641
642module_i2c_driver(lm80_driver);
643
644MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and "
645 "Philip Edelbrock <phil@netroedge.com>");
646MODULE_DESCRIPTION("LM80 driver");
647MODULE_LICENSE("GPL");
1/*
2 * lm80.c - From lm_sensors, Linux kernel modules for hardware
3 * monitoring
4 * Copyright (C) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
5 * and Philip Edelbrock <phil@netroedge.com>
6 *
7 * Ported to Linux 2.6 by Tiago Sousa <mirage@kaotik.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 */
23
24#include <linux/module.h>
25#include <linux/init.h>
26#include <linux/slab.h>
27#include <linux/jiffies.h>
28#include <linux/i2c.h>
29#include <linux/hwmon.h>
30#include <linux/hwmon-sysfs.h>
31#include <linux/err.h>
32#include <linux/mutex.h>
33
34/* Addresses to scan */
35static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d,
36 0x2e, 0x2f, I2C_CLIENT_END };
37
38/* Many LM80 constants specified below */
39
40/* The LM80 registers */
41#define LM80_REG_IN_MAX(nr) (0x2a + (nr) * 2)
42#define LM80_REG_IN_MIN(nr) (0x2b + (nr) * 2)
43#define LM80_REG_IN(nr) (0x20 + (nr))
44
45#define LM80_REG_FAN1 0x28
46#define LM80_REG_FAN2 0x29
47#define LM80_REG_FAN_MIN(nr) (0x3b + (nr))
48
49#define LM80_REG_TEMP 0x27
50#define LM80_REG_TEMP_HOT_MAX 0x38
51#define LM80_REG_TEMP_HOT_HYST 0x39
52#define LM80_REG_TEMP_OS_MAX 0x3a
53#define LM80_REG_TEMP_OS_HYST 0x3b
54
55#define LM80_REG_CONFIG 0x00
56#define LM80_REG_ALARM1 0x01
57#define LM80_REG_ALARM2 0x02
58#define LM80_REG_MASK1 0x03
59#define LM80_REG_MASK2 0x04
60#define LM80_REG_FANDIV 0x05
61#define LM80_REG_RES 0x06
62
63#define LM96080_REG_CONV_RATE 0x07
64#define LM96080_REG_MAN_ID 0x3e
65#define LM96080_REG_DEV_ID 0x3f
66
67
68/*
69 * Conversions. Rounding and limit checking is only done on the TO_REG
70 * variants. Note that you should be a bit careful with which arguments
71 * these macros are called: arguments may be evaluated more than once.
72 * Fixing this is just not worth it.
73 */
74
75#define IN_TO_REG(val) (clamp_val(((val) + 5) / 10, 0, 255))
76#define IN_FROM_REG(val) ((val) * 10)
77
78static inline unsigned char FAN_TO_REG(unsigned rpm, unsigned div)
79{
80 if (rpm == 0)
81 return 255;
82 rpm = clamp_val(rpm, 1, 1000000);
83 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
84}
85
86#define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \
87 (val) == 255 ? 0 : 1350000/((div) * (val)))
88
89#define TEMP_FROM_REG(reg) ((reg) * 125 / 32)
90#define TEMP_TO_REG(temp) (DIV_ROUND_CLOSEST(clamp_val((temp), \
91 -128000, 127000), 1000) << 8)
92
93#define DIV_FROM_REG(val) (1 << (val))
94
95enum temp_index {
96 t_input = 0,
97 t_hot_max,
98 t_hot_hyst,
99 t_os_max,
100 t_os_hyst,
101 t_num_temp
102};
103
104static const u8 temp_regs[t_num_temp] = {
105 [t_input] = LM80_REG_TEMP,
106 [t_hot_max] = LM80_REG_TEMP_HOT_MAX,
107 [t_hot_hyst] = LM80_REG_TEMP_HOT_HYST,
108 [t_os_max] = LM80_REG_TEMP_OS_MAX,
109 [t_os_hyst] = LM80_REG_TEMP_OS_HYST,
110};
111
112enum in_index {
113 i_input = 0,
114 i_max,
115 i_min,
116 i_num_in
117};
118
119enum fan_index {
120 f_input,
121 f_min,
122 f_num_fan
123};
124
125/*
126 * Client data (each client gets its own)
127 */
128
129struct lm80_data {
130 struct i2c_client *client;
131 struct mutex update_lock;
132 char error; /* !=0 if error occurred during last update */
133 char valid; /* !=0 if following fields are valid */
134 unsigned long last_updated; /* In jiffies */
135
136 u8 in[i_num_in][7]; /* Register value, 1st index is enum in_index */
137 u8 fan[f_num_fan][2]; /* Register value, 1st index enum fan_index */
138 u8 fan_div[2]; /* Register encoding, shifted right */
139 s16 temp[t_num_temp]; /* Register values, normalized to 16 bit */
140 u16 alarms; /* Register encoding, combined */
141};
142
143static int lm80_read_value(struct i2c_client *client, u8 reg)
144{
145 return i2c_smbus_read_byte_data(client, reg);
146}
147
148static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value)
149{
150 return i2c_smbus_write_byte_data(client, reg, value);
151}
152
153/* Called when we have found a new LM80 and after read errors */
154static void lm80_init_client(struct i2c_client *client)
155{
156 /*
157 * Reset all except Watchdog values and last conversion values
158 * This sets fan-divs to 2, among others. This makes most other
159 * initializations unnecessary
160 */
161 lm80_write_value(client, LM80_REG_CONFIG, 0x80);
162 /* Set 11-bit temperature resolution */
163 lm80_write_value(client, LM80_REG_RES, 0x08);
164
165 /* Start monitoring */
166 lm80_write_value(client, LM80_REG_CONFIG, 0x01);
167}
168
169static struct lm80_data *lm80_update_device(struct device *dev)
170{
171 struct lm80_data *data = dev_get_drvdata(dev);
172 struct i2c_client *client = data->client;
173 int i;
174 int rv;
175 int prev_rv;
176 struct lm80_data *ret = data;
177
178 mutex_lock(&data->update_lock);
179
180 if (data->error)
181 lm80_init_client(client);
182
183 if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
184 dev_dbg(dev, "Starting lm80 update\n");
185 for (i = 0; i <= 6; i++) {
186 rv = lm80_read_value(client, LM80_REG_IN(i));
187 if (rv < 0)
188 goto abort;
189 data->in[i_input][i] = rv;
190
191 rv = lm80_read_value(client, LM80_REG_IN_MIN(i));
192 if (rv < 0)
193 goto abort;
194 data->in[i_min][i] = rv;
195
196 rv = lm80_read_value(client, LM80_REG_IN_MAX(i));
197 if (rv < 0)
198 goto abort;
199 data->in[i_max][i] = rv;
200 }
201
202 rv = lm80_read_value(client, LM80_REG_FAN1);
203 if (rv < 0)
204 goto abort;
205 data->fan[f_input][0] = rv;
206
207 rv = lm80_read_value(client, LM80_REG_FAN_MIN(1));
208 if (rv < 0)
209 goto abort;
210 data->fan[f_min][0] = rv;
211
212 rv = lm80_read_value(client, LM80_REG_FAN2);
213 if (rv < 0)
214 goto abort;
215 data->fan[f_input][1] = rv;
216
217 rv = lm80_read_value(client, LM80_REG_FAN_MIN(2));
218 if (rv < 0)
219 goto abort;
220 data->fan[f_min][1] = rv;
221
222 prev_rv = rv = lm80_read_value(client, LM80_REG_TEMP);
223 if (rv < 0)
224 goto abort;
225 rv = lm80_read_value(client, LM80_REG_RES);
226 if (rv < 0)
227 goto abort;
228 data->temp[t_input] = (prev_rv << 8) | (rv & 0xf0);
229
230 for (i = t_input + 1; i < t_num_temp; i++) {
231 rv = lm80_read_value(client, temp_regs[i]);
232 if (rv < 0)
233 goto abort;
234 data->temp[i] = rv << 8;
235 }
236
237 rv = lm80_read_value(client, LM80_REG_FANDIV);
238 if (rv < 0)
239 goto abort;
240 data->fan_div[0] = (rv >> 2) & 0x03;
241 data->fan_div[1] = (rv >> 4) & 0x03;
242
243 prev_rv = rv = lm80_read_value(client, LM80_REG_ALARM1);
244 if (rv < 0)
245 goto abort;
246 rv = lm80_read_value(client, LM80_REG_ALARM2);
247 if (rv < 0)
248 goto abort;
249 data->alarms = prev_rv + (rv << 8);
250
251 data->last_updated = jiffies;
252 data->valid = 1;
253 data->error = 0;
254 }
255 goto done;
256
257abort:
258 ret = ERR_PTR(rv);
259 data->valid = 0;
260 data->error = 1;
261
262done:
263 mutex_unlock(&data->update_lock);
264
265 return ret;
266}
267
268/*
269 * Sysfs stuff
270 */
271
272static ssize_t show_in(struct device *dev, struct device_attribute *attr,
273 char *buf)
274{
275 struct lm80_data *data = lm80_update_device(dev);
276 int index = to_sensor_dev_attr_2(attr)->index;
277 int nr = to_sensor_dev_attr_2(attr)->nr;
278
279 if (IS_ERR(data))
280 return PTR_ERR(data);
281 return sprintf(buf, "%d\n", IN_FROM_REG(data->in[nr][index]));
282}
283
284static ssize_t set_in(struct device *dev, struct device_attribute *attr,
285 const char *buf, size_t count)
286{
287 struct lm80_data *data = dev_get_drvdata(dev);
288 struct i2c_client *client = data->client;
289 int index = to_sensor_dev_attr_2(attr)->index;
290 int nr = to_sensor_dev_attr_2(attr)->nr;
291 long val;
292 u8 reg;
293 int err = kstrtol(buf, 10, &val);
294 if (err < 0)
295 return err;
296
297 reg = nr == i_min ? LM80_REG_IN_MIN(index) : LM80_REG_IN_MAX(index);
298
299 mutex_lock(&data->update_lock);
300 data->in[nr][index] = IN_TO_REG(val);
301 lm80_write_value(client, reg, data->in[nr][index]);
302 mutex_unlock(&data->update_lock);
303 return count;
304}
305
306static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
307 char *buf)
308{
309 int index = to_sensor_dev_attr_2(attr)->index;
310 int nr = to_sensor_dev_attr_2(attr)->nr;
311 struct lm80_data *data = lm80_update_device(dev);
312 if (IS_ERR(data))
313 return PTR_ERR(data);
314 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr][index],
315 DIV_FROM_REG(data->fan_div[index])));
316}
317
318static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
319 char *buf)
320{
321 int nr = to_sensor_dev_attr(attr)->index;
322 struct lm80_data *data = lm80_update_device(dev);
323 if (IS_ERR(data))
324 return PTR_ERR(data);
325 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
326}
327
328static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
329 const char *buf, size_t count)
330{
331 int index = to_sensor_dev_attr_2(attr)->index;
332 int nr = to_sensor_dev_attr_2(attr)->nr;
333 struct lm80_data *data = dev_get_drvdata(dev);
334 struct i2c_client *client = data->client;
335 unsigned long val;
336 int err = kstrtoul(buf, 10, &val);
337 if (err < 0)
338 return err;
339
340 mutex_lock(&data->update_lock);
341 data->fan[nr][index] = FAN_TO_REG(val,
342 DIV_FROM_REG(data->fan_div[index]));
343 lm80_write_value(client, LM80_REG_FAN_MIN(index + 1),
344 data->fan[nr][index]);
345 mutex_unlock(&data->update_lock);
346 return count;
347}
348
349/*
350 * Note: we save and restore the fan minimum here, because its value is
351 * determined in part by the fan divisor. This follows the principle of
352 * least surprise; the user doesn't expect the fan minimum to change just
353 * because the divisor changed.
354 */
355static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
356 const char *buf, size_t count)
357{
358 int nr = to_sensor_dev_attr(attr)->index;
359 struct lm80_data *data = dev_get_drvdata(dev);
360 struct i2c_client *client = data->client;
361 unsigned long min, val;
362 u8 reg;
363 int err = kstrtoul(buf, 10, &val);
364 if (err < 0)
365 return err;
366
367 /* Save fan_min */
368 mutex_lock(&data->update_lock);
369 min = FAN_FROM_REG(data->fan[f_min][nr],
370 DIV_FROM_REG(data->fan_div[nr]));
371
372 switch (val) {
373 case 1:
374 data->fan_div[nr] = 0;
375 break;
376 case 2:
377 data->fan_div[nr] = 1;
378 break;
379 case 4:
380 data->fan_div[nr] = 2;
381 break;
382 case 8:
383 data->fan_div[nr] = 3;
384 break;
385 default:
386 dev_err(dev,
387 "fan_div value %ld not supported. Choose one of 1, 2, 4 or 8!\n",
388 val);
389 mutex_unlock(&data->update_lock);
390 return -EINVAL;
391 }
392
393 reg = (lm80_read_value(client, LM80_REG_FANDIV) &
394 ~(3 << (2 * (nr + 1)))) | (data->fan_div[nr] << (2 * (nr + 1)));
395 lm80_write_value(client, LM80_REG_FANDIV, reg);
396
397 /* Restore fan_min */
398 data->fan[f_min][nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
399 lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1),
400 data->fan[f_min][nr]);
401 mutex_unlock(&data->update_lock);
402
403 return count;
404}
405
406static ssize_t show_temp(struct device *dev, struct device_attribute *devattr,
407 char *buf)
408{
409 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
410 struct lm80_data *data = lm80_update_device(dev);
411 if (IS_ERR(data))
412 return PTR_ERR(data);
413 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[attr->index]));
414}
415
416static ssize_t set_temp(struct device *dev, struct device_attribute *devattr,
417 const char *buf, size_t count)
418{
419 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
420 struct lm80_data *data = dev_get_drvdata(dev);
421 struct i2c_client *client = data->client;
422 int nr = attr->index;
423 long val;
424 int err = kstrtol(buf, 10, &val);
425 if (err < 0)
426 return err;
427
428 mutex_lock(&data->update_lock);
429 data->temp[nr] = TEMP_TO_REG(val);
430 lm80_write_value(client, temp_regs[nr], data->temp[nr] >> 8);
431 mutex_unlock(&data->update_lock);
432 return count;
433}
434
435static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
436 char *buf)
437{
438 struct lm80_data *data = lm80_update_device(dev);
439 if (IS_ERR(data))
440 return PTR_ERR(data);
441 return sprintf(buf, "%u\n", data->alarms);
442}
443
444static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
445 char *buf)
446{
447 int bitnr = to_sensor_dev_attr(attr)->index;
448 struct lm80_data *data = lm80_update_device(dev);
449 if (IS_ERR(data))
450 return PTR_ERR(data);
451 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
452}
453
454static SENSOR_DEVICE_ATTR_2(in0_min, S_IWUSR | S_IRUGO,
455 show_in, set_in, i_min, 0);
456static SENSOR_DEVICE_ATTR_2(in1_min, S_IWUSR | S_IRUGO,
457 show_in, set_in, i_min, 1);
458static SENSOR_DEVICE_ATTR_2(in2_min, S_IWUSR | S_IRUGO,
459 show_in, set_in, i_min, 2);
460static SENSOR_DEVICE_ATTR_2(in3_min, S_IWUSR | S_IRUGO,
461 show_in, set_in, i_min, 3);
462static SENSOR_DEVICE_ATTR_2(in4_min, S_IWUSR | S_IRUGO,
463 show_in, set_in, i_min, 4);
464static SENSOR_DEVICE_ATTR_2(in5_min, S_IWUSR | S_IRUGO,
465 show_in, set_in, i_min, 5);
466static SENSOR_DEVICE_ATTR_2(in6_min, S_IWUSR | S_IRUGO,
467 show_in, set_in, i_min, 6);
468static SENSOR_DEVICE_ATTR_2(in0_max, S_IWUSR | S_IRUGO,
469 show_in, set_in, i_max, 0);
470static SENSOR_DEVICE_ATTR_2(in1_max, S_IWUSR | S_IRUGO,
471 show_in, set_in, i_max, 1);
472static SENSOR_DEVICE_ATTR_2(in2_max, S_IWUSR | S_IRUGO,
473 show_in, set_in, i_max, 2);
474static SENSOR_DEVICE_ATTR_2(in3_max, S_IWUSR | S_IRUGO,
475 show_in, set_in, i_max, 3);
476static SENSOR_DEVICE_ATTR_2(in4_max, S_IWUSR | S_IRUGO,
477 show_in, set_in, i_max, 4);
478static SENSOR_DEVICE_ATTR_2(in5_max, S_IWUSR | S_IRUGO,
479 show_in, set_in, i_max, 5);
480static SENSOR_DEVICE_ATTR_2(in6_max, S_IWUSR | S_IRUGO,
481 show_in, set_in, i_max, 6);
482static SENSOR_DEVICE_ATTR_2(in0_input, S_IRUGO, show_in, NULL, i_input, 0);
483static SENSOR_DEVICE_ATTR_2(in1_input, S_IRUGO, show_in, NULL, i_input, 1);
484static SENSOR_DEVICE_ATTR_2(in2_input, S_IRUGO, show_in, NULL, i_input, 2);
485static SENSOR_DEVICE_ATTR_2(in3_input, S_IRUGO, show_in, NULL, i_input, 3);
486static SENSOR_DEVICE_ATTR_2(in4_input, S_IRUGO, show_in, NULL, i_input, 4);
487static SENSOR_DEVICE_ATTR_2(in5_input, S_IRUGO, show_in, NULL, i_input, 5);
488static SENSOR_DEVICE_ATTR_2(in6_input, S_IRUGO, show_in, NULL, i_input, 6);
489static SENSOR_DEVICE_ATTR_2(fan1_min, S_IWUSR | S_IRUGO,
490 show_fan, set_fan_min, f_min, 0);
491static SENSOR_DEVICE_ATTR_2(fan2_min, S_IWUSR | S_IRUGO,
492 show_fan, set_fan_min, f_min, 1);
493static SENSOR_DEVICE_ATTR_2(fan1_input, S_IRUGO, show_fan, NULL, f_input, 0);
494static SENSOR_DEVICE_ATTR_2(fan2_input, S_IRUGO, show_fan, NULL, f_input, 1);
495static SENSOR_DEVICE_ATTR(fan1_div, S_IWUSR | S_IRUGO,
496 show_fan_div, set_fan_div, 0);
497static SENSOR_DEVICE_ATTR(fan2_div, S_IWUSR | S_IRUGO,
498 show_fan_div, set_fan_div, 1);
499static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, t_input);
500static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp,
501 set_temp, t_hot_max);
502static SENSOR_DEVICE_ATTR(temp1_max_hyst, S_IWUSR | S_IRUGO, show_temp,
503 set_temp, t_hot_hyst);
504static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp,
505 set_temp, t_os_max);
506static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temp,
507 set_temp, t_os_hyst);
508static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
509static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
510static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
511static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
512static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
513static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 4);
514static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 5);
515static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 6);
516static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
517static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
518static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 8);
519static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 13);
520
521/*
522 * Real code
523 */
524
525static struct attribute *lm80_attrs[] = {
526 &sensor_dev_attr_in0_min.dev_attr.attr,
527 &sensor_dev_attr_in1_min.dev_attr.attr,
528 &sensor_dev_attr_in2_min.dev_attr.attr,
529 &sensor_dev_attr_in3_min.dev_attr.attr,
530 &sensor_dev_attr_in4_min.dev_attr.attr,
531 &sensor_dev_attr_in5_min.dev_attr.attr,
532 &sensor_dev_attr_in6_min.dev_attr.attr,
533 &sensor_dev_attr_in0_max.dev_attr.attr,
534 &sensor_dev_attr_in1_max.dev_attr.attr,
535 &sensor_dev_attr_in2_max.dev_attr.attr,
536 &sensor_dev_attr_in3_max.dev_attr.attr,
537 &sensor_dev_attr_in4_max.dev_attr.attr,
538 &sensor_dev_attr_in5_max.dev_attr.attr,
539 &sensor_dev_attr_in6_max.dev_attr.attr,
540 &sensor_dev_attr_in0_input.dev_attr.attr,
541 &sensor_dev_attr_in1_input.dev_attr.attr,
542 &sensor_dev_attr_in2_input.dev_attr.attr,
543 &sensor_dev_attr_in3_input.dev_attr.attr,
544 &sensor_dev_attr_in4_input.dev_attr.attr,
545 &sensor_dev_attr_in5_input.dev_attr.attr,
546 &sensor_dev_attr_in6_input.dev_attr.attr,
547 &sensor_dev_attr_fan1_min.dev_attr.attr,
548 &sensor_dev_attr_fan2_min.dev_attr.attr,
549 &sensor_dev_attr_fan1_input.dev_attr.attr,
550 &sensor_dev_attr_fan2_input.dev_attr.attr,
551 &sensor_dev_attr_fan1_div.dev_attr.attr,
552 &sensor_dev_attr_fan2_div.dev_attr.attr,
553 &sensor_dev_attr_temp1_input.dev_attr.attr,
554 &sensor_dev_attr_temp1_max.dev_attr.attr,
555 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
556 &sensor_dev_attr_temp1_crit.dev_attr.attr,
557 &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
558 &dev_attr_alarms.attr,
559 &sensor_dev_attr_in0_alarm.dev_attr.attr,
560 &sensor_dev_attr_in1_alarm.dev_attr.attr,
561 &sensor_dev_attr_in2_alarm.dev_attr.attr,
562 &sensor_dev_attr_in3_alarm.dev_attr.attr,
563 &sensor_dev_attr_in4_alarm.dev_attr.attr,
564 &sensor_dev_attr_in5_alarm.dev_attr.attr,
565 &sensor_dev_attr_in6_alarm.dev_attr.attr,
566 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
567 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
568 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
569 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
570 NULL
571};
572ATTRIBUTE_GROUPS(lm80);
573
574/* Return 0 if detection is successful, -ENODEV otherwise */
575static int lm80_detect(struct i2c_client *client, struct i2c_board_info *info)
576{
577 struct i2c_adapter *adapter = client->adapter;
578 int i, cur, man_id, dev_id;
579 const char *name = NULL;
580
581 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
582 return -ENODEV;
583
584 /* First check for unused bits, common to both chip types */
585 if ((lm80_read_value(client, LM80_REG_ALARM2) & 0xc0)
586 || (lm80_read_value(client, LM80_REG_CONFIG) & 0x80))
587 return -ENODEV;
588
589 /*
590 * The LM96080 has manufacturer and stepping/die rev registers so we
591 * can just check that. The LM80 does not have such registers so we
592 * have to use a more expensive trick.
593 */
594 man_id = lm80_read_value(client, LM96080_REG_MAN_ID);
595 dev_id = lm80_read_value(client, LM96080_REG_DEV_ID);
596 if (man_id == 0x01 && dev_id == 0x08) {
597 /* Check more unused bits for confirmation */
598 if (lm80_read_value(client, LM96080_REG_CONV_RATE) & 0xfe)
599 return -ENODEV;
600
601 name = "lm96080";
602 } else {
603 /* Check 6-bit addressing */
604 for (i = 0x2a; i <= 0x3d; i++) {
605 cur = i2c_smbus_read_byte_data(client, i);
606 if ((i2c_smbus_read_byte_data(client, i + 0x40) != cur)
607 || (i2c_smbus_read_byte_data(client, i + 0x80) != cur)
608 || (i2c_smbus_read_byte_data(client, i + 0xc0) != cur))
609 return -ENODEV;
610 }
611
612 name = "lm80";
613 }
614
615 strlcpy(info->type, name, I2C_NAME_SIZE);
616
617 return 0;
618}
619
620static int lm80_probe(struct i2c_client *client,
621 const struct i2c_device_id *id)
622{
623 struct device *dev = &client->dev;
624 struct device *hwmon_dev;
625 struct lm80_data *data;
626
627 data = devm_kzalloc(dev, sizeof(struct lm80_data), GFP_KERNEL);
628 if (!data)
629 return -ENOMEM;
630
631 data->client = client;
632 mutex_init(&data->update_lock);
633
634 /* Initialize the LM80 chip */
635 lm80_init_client(client);
636
637 /* A few vars need to be filled upon startup */
638 data->fan[f_min][0] = lm80_read_value(client, LM80_REG_FAN_MIN(1));
639 data->fan[f_min][1] = lm80_read_value(client, LM80_REG_FAN_MIN(2));
640
641 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
642 data, lm80_groups);
643
644 return PTR_ERR_OR_ZERO(hwmon_dev);
645}
646
647/*
648 * Driver data (common to all clients)
649 */
650
651static const struct i2c_device_id lm80_id[] = {
652 { "lm80", 0 },
653 { "lm96080", 1 },
654 { }
655};
656MODULE_DEVICE_TABLE(i2c, lm80_id);
657
658static struct i2c_driver lm80_driver = {
659 .class = I2C_CLASS_HWMON,
660 .driver = {
661 .name = "lm80",
662 },
663 .probe = lm80_probe,
664 .id_table = lm80_id,
665 .detect = lm80_detect,
666 .address_list = normal_i2c,
667};
668
669module_i2c_driver(lm80_driver);
670
671MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and "
672 "Philip Edelbrock <phil@netroedge.com>");
673MODULE_DESCRIPTION("LM80 driver");
674MODULE_LICENSE("GPL");