Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
   4 *	       monitoring
   5 * Based on lm75.c and lm85.c
   6 * Supports adm1030 / adm1031
   7 * Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
   8 * Reworked by Jean Delvare <jdelvare@suse.de>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/module.h>
  12#include <linux/init.h>
  13#include <linux/slab.h>
  14#include <linux/jiffies.h>
  15#include <linux/i2c.h>
  16#include <linux/hwmon.h>
  17#include <linux/hwmon-sysfs.h>
  18#include <linux/err.h>
  19#include <linux/mutex.h>
  20
  21/* Following macros takes channel parameter starting from 0 to 2 */
  22#define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
  23#define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
  24#define ADM1031_REG_PWM			(0x22)
  25#define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
  26#define ADM1031_REG_FAN_FILTER		(0x23)
  27
  28#define ADM1031_REG_TEMP_OFFSET(nr)	(0x0d + (nr))
  29#define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
  30#define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
  31#define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))
  32
  33#define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
  34#define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))
  35
  36#define ADM1031_REG_STATUS(nr)		(0x2 + (nr))
  37
  38#define ADM1031_REG_CONF1		0x00
  39#define ADM1031_REG_CONF2		0x01
  40#define ADM1031_REG_EXT_TEMP		0x06
  41
  42#define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
  43#define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
  44#define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */
  45
  46#define ADM1031_CONF2_PWM1_ENABLE	0x01
  47#define ADM1031_CONF2_PWM2_ENABLE	0x02
  48#define ADM1031_CONF2_TACH1_ENABLE	0x04
  49#define ADM1031_CONF2_TACH2_ENABLE	0x08
  50#define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))
  51
  52#define ADM1031_UPDATE_RATE_MASK	0x1c
  53#define ADM1031_UPDATE_RATE_SHIFT	2
  54
  55/* Addresses to scan */
  56static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  57
  58enum chips { adm1030, adm1031 };
  59
  60typedef u8 auto_chan_table_t[8][2];
  61
  62/* Each client has this additional data */
  63struct adm1031_data {
  64	struct i2c_client *client;
  65	const struct attribute_group *groups[3];
  66	struct mutex update_lock;
  67	int chip_type;
  68	bool valid;		/* true if following fields are valid */
  69	unsigned long last_updated;	/* In jiffies */
  70	unsigned int update_interval;	/* In milliseconds */
  71	/*
  72	 * The chan_select_table contains the possible configurations for
  73	 * auto fan control.
  74	 */
  75	const auto_chan_table_t *chan_select_table;
  76	u16 alarm;
  77	u8 conf1;
  78	u8 conf2;
  79	u8 fan[2];
  80	u8 fan_div[2];
  81	u8 fan_min[2];
  82	u8 pwm[2];
  83	u8 old_pwm[2];
  84	s8 temp[3];
  85	u8 ext_temp[3];
  86	u8 auto_temp[3];
  87	u8 auto_temp_min[3];
  88	u8 auto_temp_off[3];
  89	u8 auto_temp_max[3];
  90	s8 temp_offset[3];
  91	s8 temp_min[3];
  92	s8 temp_max[3];
  93	s8 temp_crit[3];
  94};
  95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
  97{
  98	return i2c_smbus_read_byte_data(client, reg);
  99}
 100
 101static inline int
 102adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
 103{
 104	return i2c_smbus_write_byte_data(client, reg, value);
 105}
 106
 107static struct adm1031_data *adm1031_update_device(struct device *dev)
 108{
 109	struct adm1031_data *data = dev_get_drvdata(dev);
 110	struct i2c_client *client = data->client;
 111	unsigned long next_update;
 112	int chan;
 113
 114	mutex_lock(&data->update_lock);
 115
 116	next_update = data->last_updated
 117	  + msecs_to_jiffies(data->update_interval);
 118	if (time_after(jiffies, next_update) || !data->valid) {
 119
 120		dev_dbg(&client->dev, "Starting adm1031 update\n");
 121		for (chan = 0;
 122		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
 123			u8 oldh, newh;
 124
 125			oldh =
 126			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
 127			data->ext_temp[chan] =
 128			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
 129			newh =
 130			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
 131			if (newh != oldh) {
 132				data->ext_temp[chan] =
 133				    adm1031_read_value(client,
 134						       ADM1031_REG_EXT_TEMP);
 135#ifdef DEBUG
 136				oldh =
 137				    adm1031_read_value(client,
 138						       ADM1031_REG_TEMP(chan));
 139
 140				/* oldh is actually newer */
 141				if (newh != oldh)
 142					dev_warn(&client->dev,
 143					  "Remote temperature may be wrong.\n");
 144#endif
 145			}
 146			data->temp[chan] = newh;
 147
 148			data->temp_offset[chan] =
 149			    adm1031_read_value(client,
 150					       ADM1031_REG_TEMP_OFFSET(chan));
 151			data->temp_min[chan] =
 152			    adm1031_read_value(client,
 153					       ADM1031_REG_TEMP_MIN(chan));
 154			data->temp_max[chan] =
 155			    adm1031_read_value(client,
 156					       ADM1031_REG_TEMP_MAX(chan));
 157			data->temp_crit[chan] =
 158			    adm1031_read_value(client,
 159					       ADM1031_REG_TEMP_CRIT(chan));
 160			data->auto_temp[chan] =
 161			    adm1031_read_value(client,
 162					       ADM1031_REG_AUTO_TEMP(chan));
 163
 164		}
 165
 166		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
 167		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
 168
 169		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
 170		    | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
 171		if (data->chip_type == adm1030)
 172			data->alarm &= 0xc0ff;
 173
 174		for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
 175		     chan++) {
 176			data->fan_div[chan] =
 177			    adm1031_read_value(client,
 178					       ADM1031_REG_FAN_DIV(chan));
 179			data->fan_min[chan] =
 180			    adm1031_read_value(client,
 181					       ADM1031_REG_FAN_MIN(chan));
 182			data->fan[chan] =
 183			    adm1031_read_value(client,
 184					       ADM1031_REG_FAN_SPEED(chan));
 185			data->pwm[chan] =
 186			  (adm1031_read_value(client,
 187					ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
 188		}
 189		data->last_updated = jiffies;
 190		data->valid = true;
 191	}
 192
 193	mutex_unlock(&data->update_lock);
 194
 195	return data;
 196}
 197
 198#define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
 199					((val + 500) / 1000)))
 200
 201#define TEMP_FROM_REG(val)		((val) * 1000)
 202
 203#define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)
 204
 205#define TEMP_OFFSET_TO_REG(val)		(TEMP_TO_REG(val) & 0x8f)
 206#define TEMP_OFFSET_FROM_REG(val)	TEMP_FROM_REG((val) < 0 ? \
 207						      (val) | 0x70 : (val))
 208
 209#define FAN_FROM_REG(reg, div)		((reg) ? \
 210					 (11250 * 60) / ((reg) * (div)) : 0)
 211
 212static int FAN_TO_REG(int reg, int div)
 213{
 214	int tmp;
 215	tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div);
 216	return tmp > 255 ? 255 : tmp;
 217}
 218
 219#define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))
 220
 221#define PWM_TO_REG(val)			(clamp_val((val), 0, 255) >> 4)
 222#define PWM_FROM_REG(val)		((val) << 4)
 223
 224#define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
 225#define FAN_CHAN_TO_REG(val, reg)	\
 226	(((reg) & 0x1F) | (((val) << 5) & 0xe0))
 227
 228#define AUTO_TEMP_MIN_TO_REG(val, reg)	\
 229	((((val) / 500) & 0xf8) | ((reg) & 0x7))
 230#define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1 << ((reg) & 0x7)))
 231#define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))
 232
 233#define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)
 234
 235#define AUTO_TEMP_OFF_FROM_REG(reg)		\
 236	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
 237
 238#define AUTO_TEMP_MAX_FROM_REG(reg)		\
 239	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
 240	AUTO_TEMP_MIN_FROM_REG(reg))
 241
 242static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
 243{
 244	int ret;
 245	int range = ((val - AUTO_TEMP_MIN_FROM_REG(reg)) * 10) / (16 - pwm);
 246
 
 247	ret = ((reg & 0xf8) |
 248	       (range < 10000 ? 0 :
 249		range < 20000 ? 1 :
 250		range < 40000 ? 2 : range < 80000 ? 3 : 4));
 251	return ret;
 252}
 253
 254/* FAN auto control */
 255#define GET_FAN_AUTO_BITFIELD(data, idx)	\
 256	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
 257
 258/*
 259 * The tables below contains the possible values for the auto fan
 260 * control bitfields. the index in the table is the register value.
 261 * MSb is the auto fan control enable bit, so the four first entries
 262 * in the table disables auto fan control when both bitfields are zero.
 263 */
 264static const auto_chan_table_t auto_channel_select_table_adm1031 = {
 265	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
 266	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
 267	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
 268	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
 269	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
 270};
 271
 272static const auto_chan_table_t auto_channel_select_table_adm1030 = {
 273	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
 274	{ 2 /* 0b10 */		, 0 },
 275	{ 0xff /* invalid */	, 0 },
 276	{ 0xff /* invalid */	, 0 },
 277	{ 3 /* 0b11 */		, 0 },
 278};
 279
 280/*
 281 * That function checks if a bitfield is valid and returns the other bitfield
 282 * nearest match if no exact match where found.
 283 */
 284static int
 285get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg)
 286{
 287	int i;
 288	int first_match = -1, exact_match = -1;
 289	u8 other_reg_val =
 290	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
 291
 292	if (val == 0)
 293		return 0;
 294
 295	for (i = 0; i < 8; i++) {
 296		if ((val == (*data->chan_select_table)[i][chan]) &&
 297		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
 298		     other_reg_val)) {
 299			/* We found an exact match */
 300			exact_match = i;
 301			break;
 302		} else if (val == (*data->chan_select_table)[i][chan] &&
 303			   first_match == -1) {
 304			/*
 305			 * Save the first match in case of an exact match has
 306			 * not been found
 307			 */
 308			first_match = i;
 309		}
 310	}
 311
 312	if (exact_match >= 0)
 313		return exact_match;
 314	else if (first_match >= 0)
 315		return first_match;
 316
 317	return -EINVAL;
 318}
 319
 320static ssize_t fan_auto_channel_show(struct device *dev,
 321				     struct device_attribute *attr, char *buf)
 322{
 323	int nr = to_sensor_dev_attr(attr)->index;
 324	struct adm1031_data *data = adm1031_update_device(dev);
 325	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
 326}
 327
 328static ssize_t
 329fan_auto_channel_store(struct device *dev, struct device_attribute *attr,
 330		       const char *buf, size_t count)
 331{
 332	struct adm1031_data *data = dev_get_drvdata(dev);
 333	struct i2c_client *client = data->client;
 334	int nr = to_sensor_dev_attr(attr)->index;
 335	long val;
 336	u8 reg;
 337	int ret;
 338	u8 old_fan_mode;
 339
 340	ret = kstrtol(buf, 10, &val);
 341	if (ret)
 342		return ret;
 343
 344	old_fan_mode = data->conf1;
 345
 346	mutex_lock(&data->update_lock);
 347
 348	ret = get_fan_auto_nearest(data, nr, val, data->conf1);
 349	if (ret < 0) {
 350		mutex_unlock(&data->update_lock);
 351		return ret;
 352	}
 353	reg = ret;
 354	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
 355	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
 356	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
 357		if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
 358			/*
 359			 * Switch to Auto Fan Mode
 360			 * Save PWM registers
 361			 * Set PWM registers to 33% Both
 362			 */
 363			data->old_pwm[0] = data->pwm[0];
 364			data->old_pwm[1] = data->pwm[1];
 365			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
 366		} else {
 367			/* Switch to Manual Mode */
 368			data->pwm[0] = data->old_pwm[0];
 369			data->pwm[1] = data->old_pwm[1];
 370			/* Restore PWM registers */
 371			adm1031_write_value(client, ADM1031_REG_PWM,
 372					    data->pwm[0] | (data->pwm[1] << 4));
 373		}
 374	}
 375	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
 376	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
 377	mutex_unlock(&data->update_lock);
 378	return count;
 379}
 380
 381static SENSOR_DEVICE_ATTR_RW(auto_fan1_channel, fan_auto_channel, 0);
 382static SENSOR_DEVICE_ATTR_RW(auto_fan2_channel, fan_auto_channel, 1);
 
 
 383
 384/* Auto Temps */
 385static ssize_t auto_temp_off_show(struct device *dev,
 386				  struct device_attribute *attr, char *buf)
 387{
 388	int nr = to_sensor_dev_attr(attr)->index;
 389	struct adm1031_data *data = adm1031_update_device(dev);
 390	return sprintf(buf, "%d\n",
 391		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
 392}
 393static ssize_t auto_temp_min_show(struct device *dev,
 394				  struct device_attribute *attr, char *buf)
 395{
 396	int nr = to_sensor_dev_attr(attr)->index;
 397	struct adm1031_data *data = adm1031_update_device(dev);
 398	return sprintf(buf, "%d\n",
 399		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
 400}
 401static ssize_t
 402auto_temp_min_store(struct device *dev, struct device_attribute *attr,
 403		    const char *buf, size_t count)
 404{
 405	struct adm1031_data *data = dev_get_drvdata(dev);
 406	struct i2c_client *client = data->client;
 407	int nr = to_sensor_dev_attr(attr)->index;
 408	long val;
 409	int ret;
 410
 411	ret = kstrtol(buf, 10, &val);
 412	if (ret)
 413		return ret;
 414
 415	val = clamp_val(val, 0, 127000);
 416	mutex_lock(&data->update_lock);
 417	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
 418	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
 419			    data->auto_temp[nr]);
 420	mutex_unlock(&data->update_lock);
 421	return count;
 422}
 423static ssize_t auto_temp_max_show(struct device *dev,
 424				  struct device_attribute *attr, char *buf)
 425{
 426	int nr = to_sensor_dev_attr(attr)->index;
 427	struct adm1031_data *data = adm1031_update_device(dev);
 428	return sprintf(buf, "%d\n",
 429		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
 430}
 431static ssize_t
 432auto_temp_max_store(struct device *dev, struct device_attribute *attr,
 433		    const char *buf, size_t count)
 434{
 435	struct adm1031_data *data = dev_get_drvdata(dev);
 436	struct i2c_client *client = data->client;
 437	int nr = to_sensor_dev_attr(attr)->index;
 438	long val;
 439	int ret;
 440
 441	ret = kstrtol(buf, 10, &val);
 442	if (ret)
 443		return ret;
 444
 445	val = clamp_val(val, 0, 127000);
 446	mutex_lock(&data->update_lock);
 447	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
 448						  data->pwm[nr]);
 449	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
 450			    data->temp_max[nr]);
 451	mutex_unlock(&data->update_lock);
 452	return count;
 453}
 454
 455static SENSOR_DEVICE_ATTR_RO(auto_temp1_off, auto_temp_off, 0);
 456static SENSOR_DEVICE_ATTR_RW(auto_temp1_min, auto_temp_min, 0);
 457static SENSOR_DEVICE_ATTR_RW(auto_temp1_max, auto_temp_max, 0);
 458static SENSOR_DEVICE_ATTR_RO(auto_temp2_off, auto_temp_off, 1);
 459static SENSOR_DEVICE_ATTR_RW(auto_temp2_min, auto_temp_min, 1);
 460static SENSOR_DEVICE_ATTR_RW(auto_temp2_max, auto_temp_max, 1);
 461static SENSOR_DEVICE_ATTR_RO(auto_temp3_off, auto_temp_off, 2);
 462static SENSOR_DEVICE_ATTR_RW(auto_temp3_min, auto_temp_min, 2);
 463static SENSOR_DEVICE_ATTR_RW(auto_temp3_max, auto_temp_max, 2);
 
 
 464
 465/* pwm */
 466static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
 467			char *buf)
 468{
 469	int nr = to_sensor_dev_attr(attr)->index;
 470	struct adm1031_data *data = adm1031_update_device(dev);
 471	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
 472}
 473static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
 474			 const char *buf, size_t count)
 475{
 476	struct adm1031_data *data = dev_get_drvdata(dev);
 477	struct i2c_client *client = data->client;
 478	int nr = to_sensor_dev_attr(attr)->index;
 479	long val;
 480	int ret, reg;
 481
 482	ret = kstrtol(buf, 10, &val);
 483	if (ret)
 484		return ret;
 485
 486	mutex_lock(&data->update_lock);
 487	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
 488	    (((val>>4) & 0xf) != 5)) {
 489		/* In automatic mode, the only PWM accepted is 33% */
 490		mutex_unlock(&data->update_lock);
 491		return -EINVAL;
 492	}
 493	data->pwm[nr] = PWM_TO_REG(val);
 494	reg = adm1031_read_value(client, ADM1031_REG_PWM);
 495	adm1031_write_value(client, ADM1031_REG_PWM,
 496			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
 497			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
 498	mutex_unlock(&data->update_lock);
 499	return count;
 500}
 501
 502static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
 503static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
 504static SENSOR_DEVICE_ATTR_RW(auto_fan1_min_pwm, pwm, 0);
 505static SENSOR_DEVICE_ATTR_RW(auto_fan2_min_pwm, pwm, 1);
 
 
 506
 507/* Fans */
 508
 509/*
 510 * That function checks the cases where the fan reading is not
 511 * relevant.  It is used to provide 0 as fan reading when the fan is
 512 * not supposed to run
 513 */
 514static int trust_fan_readings(struct adm1031_data *data, int chan)
 515{
 516	int res = 0;
 517
 518	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
 519		switch (data->conf1 & 0x60) {
 520		case 0x00:
 521			/*
 522			 * remote temp1 controls fan1,
 523			 * remote temp2 controls fan2
 524			 */
 525			res = data->temp[chan+1] >=
 526			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
 527			break;
 528		case 0x20:	/* remote temp1 controls both fans */
 529			res =
 530			    data->temp[1] >=
 531			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
 532			break;
 533		case 0x40:	/* remote temp2 controls both fans */
 534			res =
 535			    data->temp[2] >=
 536			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
 537			break;
 538		case 0x60:	/* max controls both fans */
 539			res =
 540			    data->temp[0] >=
 541			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
 542			    || data->temp[1] >=
 543			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
 544			    || (data->chip_type == adm1031
 545				&& data->temp[2] >=
 546				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
 547			break;
 548		}
 549	} else {
 550		res = data->pwm[chan] > 0;
 551	}
 552	return res;
 553}
 554
 555static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
 556			char *buf)
 
 557{
 558	int nr = to_sensor_dev_attr(attr)->index;
 559	struct adm1031_data *data = adm1031_update_device(dev);
 560	int value;
 561
 562	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
 563				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
 564	return sprintf(buf, "%d\n", value);
 565}
 566
 567static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr,
 568			    char *buf)
 569{
 570	int nr = to_sensor_dev_attr(attr)->index;
 571	struct adm1031_data *data = adm1031_update_device(dev);
 572	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
 573}
 574static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
 575			    char *buf)
 576{
 577	int nr = to_sensor_dev_attr(attr)->index;
 578	struct adm1031_data *data = adm1031_update_device(dev);
 579	return sprintf(buf, "%d\n",
 580		       FAN_FROM_REG(data->fan_min[nr],
 581				    FAN_DIV_FROM_REG(data->fan_div[nr])));
 582}
 583static ssize_t fan_min_store(struct device *dev,
 584			     struct device_attribute *attr, const char *buf,
 585			     size_t count)
 586{
 587	struct adm1031_data *data = dev_get_drvdata(dev);
 588	struct i2c_client *client = data->client;
 589	int nr = to_sensor_dev_attr(attr)->index;
 590	long val;
 591	int ret;
 592
 593	ret = kstrtol(buf, 10, &val);
 594	if (ret)
 595		return ret;
 596
 597	mutex_lock(&data->update_lock);
 598	if (val) {
 599		data->fan_min[nr] =
 600			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
 601	} else {
 602		data->fan_min[nr] = 0xff;
 603	}
 604	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
 605	mutex_unlock(&data->update_lock);
 606	return count;
 607}
 608static ssize_t fan_div_store(struct device *dev,
 609			     struct device_attribute *attr, const char *buf,
 610			     size_t count)
 611{
 612	struct adm1031_data *data = dev_get_drvdata(dev);
 613	struct i2c_client *client = data->client;
 614	int nr = to_sensor_dev_attr(attr)->index;
 615	long val;
 616	u8 tmp;
 617	int old_div;
 618	int new_min;
 619	int ret;
 620
 621	ret = kstrtol(buf, 10, &val);
 622	if (ret)
 623		return ret;
 624
 625	tmp = val == 8 ? 0xc0 :
 626	      val == 4 ? 0x80 :
 627	      val == 2 ? 0x40 :
 628	      val == 1 ? 0x00 :
 629	      0xff;
 630	if (tmp == 0xff)
 631		return -EINVAL;
 632
 633	mutex_lock(&data->update_lock);
 634	/* Get fresh readings */
 635	data->fan_div[nr] = adm1031_read_value(client,
 636					       ADM1031_REG_FAN_DIV(nr));
 637	data->fan_min[nr] = adm1031_read_value(client,
 638					       ADM1031_REG_FAN_MIN(nr));
 639
 640	/* Write the new clock divider and fan min */
 641	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
 642	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
 643	new_min = data->fan_min[nr] * old_div / val;
 644	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
 645
 646	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
 647			    data->fan_div[nr]);
 648	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
 649			    data->fan_min[nr]);
 650
 651	/* Invalidate the cache: fan speed is no longer valid */
 652	data->valid = false;
 653	mutex_unlock(&data->update_lock);
 654	return count;
 655}
 656
 657static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
 658static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
 659static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
 660static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
 661static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
 662static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
 
 
 
 
 
 663
 664/* Temps */
 665static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
 666			 char *buf)
 667{
 668	int nr = to_sensor_dev_attr(attr)->index;
 669	struct adm1031_data *data = adm1031_update_device(dev);
 670	int ext;
 671	ext = nr == 0 ?
 672	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
 673	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
 674	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
 675}
 676static ssize_t temp_offset_show(struct device *dev,
 677				struct device_attribute *attr, char *buf)
 678{
 679	int nr = to_sensor_dev_attr(attr)->index;
 680	struct adm1031_data *data = adm1031_update_device(dev);
 681	return sprintf(buf, "%d\n",
 682		       TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
 683}
 684static ssize_t temp_min_show(struct device *dev,
 685			     struct device_attribute *attr, char *buf)
 686{
 687	int nr = to_sensor_dev_attr(attr)->index;
 688	struct adm1031_data *data = adm1031_update_device(dev);
 689	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
 690}
 691static ssize_t temp_max_show(struct device *dev,
 692			     struct device_attribute *attr, char *buf)
 693{
 694	int nr = to_sensor_dev_attr(attr)->index;
 695	struct adm1031_data *data = adm1031_update_device(dev);
 696	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
 697}
 698static ssize_t temp_crit_show(struct device *dev,
 699			      struct device_attribute *attr, char *buf)
 700{
 701	int nr = to_sensor_dev_attr(attr)->index;
 702	struct adm1031_data *data = adm1031_update_device(dev);
 703	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
 704}
 705static ssize_t temp_offset_store(struct device *dev,
 706				 struct device_attribute *attr,
 707				 const char *buf, size_t count)
 708{
 709	struct adm1031_data *data = dev_get_drvdata(dev);
 710	struct i2c_client *client = data->client;
 711	int nr = to_sensor_dev_attr(attr)->index;
 712	long val;
 713	int ret;
 714
 715	ret = kstrtol(buf, 10, &val);
 716	if (ret)
 717		return ret;
 718
 719	val = clamp_val(val, -15000, 15000);
 720	mutex_lock(&data->update_lock);
 721	data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
 722	adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
 723			    data->temp_offset[nr]);
 724	mutex_unlock(&data->update_lock);
 725	return count;
 726}
 727static ssize_t temp_min_store(struct device *dev,
 728			      struct device_attribute *attr, const char *buf,
 729			      size_t count)
 730{
 731	struct adm1031_data *data = dev_get_drvdata(dev);
 732	struct i2c_client *client = data->client;
 733	int nr = to_sensor_dev_attr(attr)->index;
 734	long val;
 735	int ret;
 736
 737	ret = kstrtol(buf, 10, &val);
 738	if (ret)
 739		return ret;
 740
 741	val = clamp_val(val, -55000, 127000);
 742	mutex_lock(&data->update_lock);
 743	data->temp_min[nr] = TEMP_TO_REG(val);
 744	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
 745			    data->temp_min[nr]);
 746	mutex_unlock(&data->update_lock);
 747	return count;
 748}
 749static ssize_t temp_max_store(struct device *dev,
 750			      struct device_attribute *attr, const char *buf,
 751			      size_t count)
 752{
 753	struct adm1031_data *data = dev_get_drvdata(dev);
 754	struct i2c_client *client = data->client;
 755	int nr = to_sensor_dev_attr(attr)->index;
 756	long val;
 757	int ret;
 758
 759	ret = kstrtol(buf, 10, &val);
 760	if (ret)
 761		return ret;
 762
 763	val = clamp_val(val, -55000, 127000);
 764	mutex_lock(&data->update_lock);
 765	data->temp_max[nr] = TEMP_TO_REG(val);
 766	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
 767			    data->temp_max[nr]);
 768	mutex_unlock(&data->update_lock);
 769	return count;
 770}
 771static ssize_t temp_crit_store(struct device *dev,
 772			       struct device_attribute *attr, const char *buf,
 773			       size_t count)
 774{
 775	struct adm1031_data *data = dev_get_drvdata(dev);
 776	struct i2c_client *client = data->client;
 777	int nr = to_sensor_dev_attr(attr)->index;
 778	long val;
 779	int ret;
 780
 781	ret = kstrtol(buf, 10, &val);
 782	if (ret)
 783		return ret;
 784
 785	val = clamp_val(val, -55000, 127000);
 786	mutex_lock(&data->update_lock);
 787	data->temp_crit[nr] = TEMP_TO_REG(val);
 788	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
 789			    data->temp_crit[nr]);
 790	mutex_unlock(&data->update_lock);
 791	return count;
 792}
 793
 794static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
 795static SENSOR_DEVICE_ATTR_RW(temp1_offset, temp_offset, 0);
 796static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
 797static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
 798static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp_crit, 0);
 799static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
 800static SENSOR_DEVICE_ATTR_RW(temp2_offset, temp_offset, 1);
 801static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
 802static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
 803static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp_crit, 1);
 804static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
 805static SENSOR_DEVICE_ATTR_RW(temp3_offset, temp_offset, 2);
 806static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
 807static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
 808static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp_crit, 2);
 809
 810/* Alarms */
 811static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
 812			   char *buf)
 813{
 814	struct adm1031_data *data = adm1031_update_device(dev);
 815	return sprintf(buf, "%d\n", data->alarm);
 816}
 817
 818static DEVICE_ATTR_RO(alarms);
 819
 820static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
 821			  char *buf)
 822{
 823	int bitnr = to_sensor_dev_attr(attr)->index;
 824	struct adm1031_data *data = adm1031_update_device(dev);
 825	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
 826}
 827
 828static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 0);
 829static SENSOR_DEVICE_ATTR_RO(fan1_fault, alarm, 1);
 830static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, alarm, 2);
 831static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, alarm, 3);
 832static SENSOR_DEVICE_ATTR_RO(temp2_crit_alarm, alarm, 4);
 833static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 5);
 834static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 6);
 835static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, alarm, 7);
 836static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 8);
 837static SENSOR_DEVICE_ATTR_RO(fan2_fault, alarm, 9);
 838static SENSOR_DEVICE_ATTR_RO(temp3_max_alarm, alarm, 10);
 839static SENSOR_DEVICE_ATTR_RO(temp3_min_alarm, alarm, 11);
 840static SENSOR_DEVICE_ATTR_RO(temp3_crit_alarm, alarm, 12);
 841static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 13);
 842static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 14);
 843
 844/* Update Interval */
 845static const unsigned int update_intervals[] = {
 846	16000, 8000, 4000, 2000, 1000, 500, 250, 125,
 847};
 848
 849static ssize_t update_interval_show(struct device *dev,
 850				    struct device_attribute *attr, char *buf)
 851{
 852	struct adm1031_data *data = dev_get_drvdata(dev);
 
 853
 854	return sprintf(buf, "%u\n", data->update_interval);
 855}
 856
 857static ssize_t update_interval_store(struct device *dev,
 858				     struct device_attribute *attr,
 859				     const char *buf, size_t count)
 860{
 861	struct adm1031_data *data = dev_get_drvdata(dev);
 862	struct i2c_client *client = data->client;
 863	unsigned long val;
 864	int i, err;
 865	u8 reg;
 866
 867	err = kstrtoul(buf, 10, &val);
 868	if (err)
 869		return err;
 870
 871	/*
 872	 * Find the nearest update interval from the table.
 873	 * Use it to determine the matching update rate.
 874	 */
 875	for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
 876		if (val >= update_intervals[i])
 877			break;
 878	}
 879	/* if not found, we point to the last entry (lowest update interval) */
 880
 881	/* set the new update rate while preserving other settings */
 882	reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
 883	reg &= ~ADM1031_UPDATE_RATE_MASK;
 884	reg |= i << ADM1031_UPDATE_RATE_SHIFT;
 885	adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
 886
 887	mutex_lock(&data->update_lock);
 888	data->update_interval = update_intervals[i];
 889	mutex_unlock(&data->update_lock);
 890
 891	return count;
 892}
 893
 894static DEVICE_ATTR_RW(update_interval);
 
 895
 896static struct attribute *adm1031_attributes[] = {
 897	&sensor_dev_attr_fan1_input.dev_attr.attr,
 898	&sensor_dev_attr_fan1_div.dev_attr.attr,
 899	&sensor_dev_attr_fan1_min.dev_attr.attr,
 900	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
 901	&sensor_dev_attr_fan1_fault.dev_attr.attr,
 902	&sensor_dev_attr_pwm1.dev_attr.attr,
 903	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
 904	&sensor_dev_attr_temp1_input.dev_attr.attr,
 905	&sensor_dev_attr_temp1_offset.dev_attr.attr,
 906	&sensor_dev_attr_temp1_min.dev_attr.attr,
 907	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
 908	&sensor_dev_attr_temp1_max.dev_attr.attr,
 909	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
 910	&sensor_dev_attr_temp1_crit.dev_attr.attr,
 911	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
 912	&sensor_dev_attr_temp2_input.dev_attr.attr,
 913	&sensor_dev_attr_temp2_offset.dev_attr.attr,
 914	&sensor_dev_attr_temp2_min.dev_attr.attr,
 915	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
 916	&sensor_dev_attr_temp2_max.dev_attr.attr,
 917	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
 918	&sensor_dev_attr_temp2_crit.dev_attr.attr,
 919	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
 920	&sensor_dev_attr_temp2_fault.dev_attr.attr,
 921
 922	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
 923	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
 924	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
 925
 926	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
 927	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
 928	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
 929
 930	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
 931
 932	&dev_attr_update_interval.attr,
 933	&dev_attr_alarms.attr,
 934
 935	NULL
 936};
 937
 938static const struct attribute_group adm1031_group = {
 939	.attrs = adm1031_attributes,
 940};
 941
 942static struct attribute *adm1031_attributes_opt[] = {
 943	&sensor_dev_attr_fan2_input.dev_attr.attr,
 944	&sensor_dev_attr_fan2_div.dev_attr.attr,
 945	&sensor_dev_attr_fan2_min.dev_attr.attr,
 946	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
 947	&sensor_dev_attr_fan2_fault.dev_attr.attr,
 948	&sensor_dev_attr_pwm2.dev_attr.attr,
 949	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
 950	&sensor_dev_attr_temp3_input.dev_attr.attr,
 951	&sensor_dev_attr_temp3_offset.dev_attr.attr,
 952	&sensor_dev_attr_temp3_min.dev_attr.attr,
 953	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
 954	&sensor_dev_attr_temp3_max.dev_attr.attr,
 955	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
 956	&sensor_dev_attr_temp3_crit.dev_attr.attr,
 957	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
 958	&sensor_dev_attr_temp3_fault.dev_attr.attr,
 959	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
 960	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
 961	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
 962	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
 963	NULL
 964};
 965
 966static const struct attribute_group adm1031_group_opt = {
 967	.attrs = adm1031_attributes_opt,
 968};
 969
 970/* Return 0 if detection is successful, -ENODEV otherwise */
 971static int adm1031_detect(struct i2c_client *client,
 972			  struct i2c_board_info *info)
 973{
 974	struct i2c_adapter *adapter = client->adapter;
 975	const char *name;
 976	int id, co;
 977
 978	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
 979		return -ENODEV;
 980
 981	id = i2c_smbus_read_byte_data(client, 0x3d);
 982	co = i2c_smbus_read_byte_data(client, 0x3e);
 983
 984	if (!((id == 0x31 || id == 0x30) && co == 0x41))
 985		return -ENODEV;
 986	name = (id == 0x30) ? "adm1030" : "adm1031";
 987
 988	strscpy(info->type, name, I2C_NAME_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 989
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 990	return 0;
 991}
 992
 993static void adm1031_init_client(struct i2c_client *client)
 994{
 995	unsigned int read_val;
 996	unsigned int mask;
 997	int i;
 998	struct adm1031_data *data = i2c_get_clientdata(client);
 999
1000	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
1001	if (data->chip_type == adm1031) {
1002		mask |= (ADM1031_CONF2_PWM2_ENABLE |
1003			ADM1031_CONF2_TACH2_ENABLE);
1004	}
1005	/* Initialize the ADM1031 chip (enables fan speed reading ) */
1006	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
1007	if ((read_val | mask) != read_val)
1008		adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
1009
1010	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
1011	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
1012		adm1031_write_value(client, ADM1031_REG_CONF1,
1013				    read_val | ADM1031_CONF1_MONITOR_ENABLE);
1014	}
1015
1016	/* Read the chip's update rate */
1017	mask = ADM1031_UPDATE_RATE_MASK;
1018	read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
1019	i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
1020	/* Save it as update interval */
1021	data->update_interval = update_intervals[i];
1022}
1023
1024static const struct i2c_device_id adm1031_id[];
1025
1026static int adm1031_probe(struct i2c_client *client)
1027{
1028	struct device *dev = &client->dev;
1029	struct device *hwmon_dev;
1030	struct adm1031_data *data;
 
1031
1032	data = devm_kzalloc(dev, sizeof(struct adm1031_data), GFP_KERNEL);
1033	if (!data)
1034		return -ENOMEM;
1035
1036	i2c_set_clientdata(client, data);
1037	data->client = client;
1038	data->chip_type = i2c_match_id(adm1031_id, client)->driver_data;
1039	mutex_init(&data->update_lock);
1040
1041	if (data->chip_type == adm1030)
1042		data->chan_select_table = &auto_channel_select_table_adm1030;
1043	else
1044		data->chan_select_table = &auto_channel_select_table_adm1031;
1045
1046	/* Initialize the ADM1031 chip */
1047	adm1031_init_client(client);
 
 
 
 
 
 
 
 
 
 
 
 
1048
1049	/* sysfs hooks */
1050	data->groups[0] = &adm1031_group;
1051	if (data->chip_type == adm1031)
1052		data->groups[1] = &adm1031_group_opt;
1053
1054	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1055							   data, data->groups);
1056	return PTR_ERR_OR_ZERO(hwmon_dev);
1057}
1058
1059static const struct i2c_device_id adm1031_id[] = {
1060	{ "adm1030", adm1030 },
1061	{ "adm1031", adm1031 },
1062	{ }
1063};
1064MODULE_DEVICE_TABLE(i2c, adm1031_id);
 
 
 
 
 
 
 
 
 
1065
1066static struct i2c_driver adm1031_driver = {
1067	.class		= I2C_CLASS_HWMON,
1068	.driver = {
1069		.name = "adm1031",
1070	},
1071	.probe		= adm1031_probe,
1072	.id_table	= adm1031_id,
1073	.detect		= adm1031_detect,
1074	.address_list	= normal_i2c,
1075};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1076
1077module_i2c_driver(adm1031_driver);
1078
1079MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1080MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1081MODULE_LICENSE("GPL");
v3.15
 
   1/*
   2 * adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
   3 *	       monitoring
   4 * Based on lm75.c and lm85.c
   5 * Supports adm1030 / adm1031
   6 * Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
   7 * Reworked by Jean Delvare <jdelvare@suse.de>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/init.h>
  26#include <linux/slab.h>
  27#include <linux/jiffies.h>
  28#include <linux/i2c.h>
  29#include <linux/hwmon.h>
  30#include <linux/hwmon-sysfs.h>
  31#include <linux/err.h>
  32#include <linux/mutex.h>
  33
  34/* Following macros takes channel parameter starting from 0 to 2 */
  35#define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
  36#define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
  37#define ADM1031_REG_PWM			(0x22)
  38#define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
  39#define ADM1031_REG_FAN_FILTER		(0x23)
  40
  41#define ADM1031_REG_TEMP_OFFSET(nr)	(0x0d + (nr))
  42#define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
  43#define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
  44#define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))
  45
  46#define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
  47#define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))
  48
  49#define ADM1031_REG_STATUS(nr)		(0x2 + (nr))
  50
  51#define ADM1031_REG_CONF1		0x00
  52#define ADM1031_REG_CONF2		0x01
  53#define ADM1031_REG_EXT_TEMP		0x06
  54
  55#define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
  56#define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
  57#define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */
  58
  59#define ADM1031_CONF2_PWM1_ENABLE	0x01
  60#define ADM1031_CONF2_PWM2_ENABLE	0x02
  61#define ADM1031_CONF2_TACH1_ENABLE	0x04
  62#define ADM1031_CONF2_TACH2_ENABLE	0x08
  63#define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))
  64
  65#define ADM1031_UPDATE_RATE_MASK	0x1c
  66#define ADM1031_UPDATE_RATE_SHIFT	2
  67
  68/* Addresses to scan */
  69static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  70
  71enum chips { adm1030, adm1031 };
  72
  73typedef u8 auto_chan_table_t[8][2];
  74
  75/* Each client has this additional data */
  76struct adm1031_data {
  77	struct device *hwmon_dev;
 
  78	struct mutex update_lock;
  79	int chip_type;
  80	char valid;		/* !=0 if following fields are valid */
  81	unsigned long last_updated;	/* In jiffies */
  82	unsigned int update_interval;	/* In milliseconds */
  83	/*
  84	 * The chan_select_table contains the possible configurations for
  85	 * auto fan control.
  86	 */
  87	const auto_chan_table_t *chan_select_table;
  88	u16 alarm;
  89	u8 conf1;
  90	u8 conf2;
  91	u8 fan[2];
  92	u8 fan_div[2];
  93	u8 fan_min[2];
  94	u8 pwm[2];
  95	u8 old_pwm[2];
  96	s8 temp[3];
  97	u8 ext_temp[3];
  98	u8 auto_temp[3];
  99	u8 auto_temp_min[3];
 100	u8 auto_temp_off[3];
 101	u8 auto_temp_max[3];
 102	s8 temp_offset[3];
 103	s8 temp_min[3];
 104	s8 temp_max[3];
 105	s8 temp_crit[3];
 106};
 107
 108static int adm1031_probe(struct i2c_client *client,
 109			 const struct i2c_device_id *id);
 110static int adm1031_detect(struct i2c_client *client,
 111			  struct i2c_board_info *info);
 112static void adm1031_init_client(struct i2c_client *client);
 113static int adm1031_remove(struct i2c_client *client);
 114static struct adm1031_data *adm1031_update_device(struct device *dev);
 115
 116static const struct i2c_device_id adm1031_id[] = {
 117	{ "adm1030", adm1030 },
 118	{ "adm1031", adm1031 },
 119	{ }
 120};
 121MODULE_DEVICE_TABLE(i2c, adm1031_id);
 122
 123/* This is the driver that will be inserted */
 124static struct i2c_driver adm1031_driver = {
 125	.class		= I2C_CLASS_HWMON,
 126	.driver = {
 127		.name = "adm1031",
 128	},
 129	.probe		= adm1031_probe,
 130	.remove		= adm1031_remove,
 131	.id_table	= adm1031_id,
 132	.detect		= adm1031_detect,
 133	.address_list	= normal_i2c,
 134};
 135
 136static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
 137{
 138	return i2c_smbus_read_byte_data(client, reg);
 139}
 140
 141static inline int
 142adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
 143{
 144	return i2c_smbus_write_byte_data(client, reg, value);
 145}
 146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147
 148#define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
 149					((val + 500) / 1000)))
 150
 151#define TEMP_FROM_REG(val)		((val) * 1000)
 152
 153#define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)
 154
 155#define TEMP_OFFSET_TO_REG(val)		(TEMP_TO_REG(val) & 0x8f)
 156#define TEMP_OFFSET_FROM_REG(val)	TEMP_FROM_REG((val) < 0 ? \
 157						      (val) | 0x70 : (val))
 158
 159#define FAN_FROM_REG(reg, div)		((reg) ? \
 160					 (11250 * 60) / ((reg) * (div)) : 0)
 161
 162static int FAN_TO_REG(int reg, int div)
 163{
 164	int tmp;
 165	tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div);
 166	return tmp > 255 ? 255 : tmp;
 167}
 168
 169#define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))
 170
 171#define PWM_TO_REG(val)			(clamp_val((val), 0, 255) >> 4)
 172#define PWM_FROM_REG(val)		((val) << 4)
 173
 174#define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
 175#define FAN_CHAN_TO_REG(val, reg)	\
 176	(((reg) & 0x1F) | (((val) << 5) & 0xe0))
 177
 178#define AUTO_TEMP_MIN_TO_REG(val, reg)	\
 179	((((val) / 500) & 0xf8) | ((reg) & 0x7))
 180#define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1 << ((reg) & 0x7)))
 181#define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))
 182
 183#define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)
 184
 185#define AUTO_TEMP_OFF_FROM_REG(reg)		\
 186	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
 187
 188#define AUTO_TEMP_MAX_FROM_REG(reg)		\
 189	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
 190	AUTO_TEMP_MIN_FROM_REG(reg))
 191
 192static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
 193{
 194	int ret;
 195	int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
 196
 197	range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
 198	ret = ((reg & 0xf8) |
 199	       (range < 10000 ? 0 :
 200		range < 20000 ? 1 :
 201		range < 40000 ? 2 : range < 80000 ? 3 : 4));
 202	return ret;
 203}
 204
 205/* FAN auto control */
 206#define GET_FAN_AUTO_BITFIELD(data, idx)	\
 207	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
 208
 209/*
 210 * The tables below contains the possible values for the auto fan
 211 * control bitfields. the index in the table is the register value.
 212 * MSb is the auto fan control enable bit, so the four first entries
 213 * in the table disables auto fan control when both bitfields are zero.
 214 */
 215static const auto_chan_table_t auto_channel_select_table_adm1031 = {
 216	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
 217	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
 218	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
 219	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
 220	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
 221};
 222
 223static const auto_chan_table_t auto_channel_select_table_adm1030 = {
 224	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
 225	{ 2 /* 0b10 */		, 0 },
 226	{ 0xff /* invalid */	, 0 },
 227	{ 0xff /* invalid */	, 0 },
 228	{ 3 /* 0b11 */		, 0 },
 229};
 230
 231/*
 232 * That function checks if a bitfield is valid and returns the other bitfield
 233 * nearest match if no exact match where found.
 234 */
 235static int
 236get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg)
 237{
 238	int i;
 239	int first_match = -1, exact_match = -1;
 240	u8 other_reg_val =
 241	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
 242
 243	if (val == 0)
 244		return 0;
 245
 246	for (i = 0; i < 8; i++) {
 247		if ((val == (*data->chan_select_table)[i][chan]) &&
 248		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
 249		     other_reg_val)) {
 250			/* We found an exact match */
 251			exact_match = i;
 252			break;
 253		} else if (val == (*data->chan_select_table)[i][chan] &&
 254			   first_match == -1) {
 255			/*
 256			 * Save the first match in case of an exact match has
 257			 * not been found
 258			 */
 259			first_match = i;
 260		}
 261	}
 262
 263	if (exact_match >= 0)
 264		return exact_match;
 265	else if (first_match >= 0)
 266		return first_match;
 267
 268	return -EINVAL;
 269}
 270
 271static ssize_t show_fan_auto_channel(struct device *dev,
 272				     struct device_attribute *attr, char *buf)
 273{
 274	int nr = to_sensor_dev_attr(attr)->index;
 275	struct adm1031_data *data = adm1031_update_device(dev);
 276	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
 277}
 278
 279static ssize_t
 280set_fan_auto_channel(struct device *dev, struct device_attribute *attr,
 281		     const char *buf, size_t count)
 282{
 283	struct i2c_client *client = to_i2c_client(dev);
 284	struct adm1031_data *data = i2c_get_clientdata(client);
 285	int nr = to_sensor_dev_attr(attr)->index;
 286	long val;
 287	u8 reg;
 288	int ret;
 289	u8 old_fan_mode;
 290
 291	ret = kstrtol(buf, 10, &val);
 292	if (ret)
 293		return ret;
 294
 295	old_fan_mode = data->conf1;
 296
 297	mutex_lock(&data->update_lock);
 298
 299	ret = get_fan_auto_nearest(data, nr, val, data->conf1);
 300	if (ret < 0) {
 301		mutex_unlock(&data->update_lock);
 302		return ret;
 303	}
 304	reg = ret;
 305	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
 306	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
 307	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
 308		if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
 309			/*
 310			 * Switch to Auto Fan Mode
 311			 * Save PWM registers
 312			 * Set PWM registers to 33% Both
 313			 */
 314			data->old_pwm[0] = data->pwm[0];
 315			data->old_pwm[1] = data->pwm[1];
 316			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
 317		} else {
 318			/* Switch to Manual Mode */
 319			data->pwm[0] = data->old_pwm[0];
 320			data->pwm[1] = data->old_pwm[1];
 321			/* Restore PWM registers */
 322			adm1031_write_value(client, ADM1031_REG_PWM,
 323					    data->pwm[0] | (data->pwm[1] << 4));
 324		}
 325	}
 326	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
 327	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
 328	mutex_unlock(&data->update_lock);
 329	return count;
 330}
 331
 332static SENSOR_DEVICE_ATTR(auto_fan1_channel, S_IRUGO | S_IWUSR,
 333		show_fan_auto_channel, set_fan_auto_channel, 0);
 334static SENSOR_DEVICE_ATTR(auto_fan2_channel, S_IRUGO | S_IWUSR,
 335		show_fan_auto_channel, set_fan_auto_channel, 1);
 336
 337/* Auto Temps */
 338static ssize_t show_auto_temp_off(struct device *dev,
 339				  struct device_attribute *attr, char *buf)
 340{
 341	int nr = to_sensor_dev_attr(attr)->index;
 342	struct adm1031_data *data = adm1031_update_device(dev);
 343	return sprintf(buf, "%d\n",
 344		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
 345}
 346static ssize_t show_auto_temp_min(struct device *dev,
 347				  struct device_attribute *attr, char *buf)
 348{
 349	int nr = to_sensor_dev_attr(attr)->index;
 350	struct adm1031_data *data = adm1031_update_device(dev);
 351	return sprintf(buf, "%d\n",
 352		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
 353}
 354static ssize_t
 355set_auto_temp_min(struct device *dev, struct device_attribute *attr,
 356		  const char *buf, size_t count)
 357{
 358	struct i2c_client *client = to_i2c_client(dev);
 359	struct adm1031_data *data = i2c_get_clientdata(client);
 360	int nr = to_sensor_dev_attr(attr)->index;
 361	long val;
 362	int ret;
 363
 364	ret = kstrtol(buf, 10, &val);
 365	if (ret)
 366		return ret;
 367
 
 368	mutex_lock(&data->update_lock);
 369	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
 370	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
 371			    data->auto_temp[nr]);
 372	mutex_unlock(&data->update_lock);
 373	return count;
 374}
 375static ssize_t show_auto_temp_max(struct device *dev,
 376				  struct device_attribute *attr, char *buf)
 377{
 378	int nr = to_sensor_dev_attr(attr)->index;
 379	struct adm1031_data *data = adm1031_update_device(dev);
 380	return sprintf(buf, "%d\n",
 381		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
 382}
 383static ssize_t
 384set_auto_temp_max(struct device *dev, struct device_attribute *attr,
 385		  const char *buf, size_t count)
 386{
 387	struct i2c_client *client = to_i2c_client(dev);
 388	struct adm1031_data *data = i2c_get_clientdata(client);
 389	int nr = to_sensor_dev_attr(attr)->index;
 390	long val;
 391	int ret;
 392
 393	ret = kstrtol(buf, 10, &val);
 394	if (ret)
 395		return ret;
 396
 
 397	mutex_lock(&data->update_lock);
 398	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
 399						  data->pwm[nr]);
 400	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
 401			    data->temp_max[nr]);
 402	mutex_unlock(&data->update_lock);
 403	return count;
 404}
 405
 406#define auto_temp_reg(offset)						\
 407static SENSOR_DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO,		\
 408		show_auto_temp_off, NULL, offset - 1);			\
 409static SENSOR_DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR,	\
 410		show_auto_temp_min, set_auto_temp_min, offset - 1);	\
 411static SENSOR_DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR,	\
 412		show_auto_temp_max, set_auto_temp_max, offset - 1)
 413
 414auto_temp_reg(1);
 415auto_temp_reg(2);
 416auto_temp_reg(3);
 417
 418/* pwm */
 419static ssize_t show_pwm(struct device *dev,
 420			struct device_attribute *attr, char *buf)
 421{
 422	int nr = to_sensor_dev_attr(attr)->index;
 423	struct adm1031_data *data = adm1031_update_device(dev);
 424	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
 425}
 426static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
 427		       const char *buf, size_t count)
 428{
 429	struct i2c_client *client = to_i2c_client(dev);
 430	struct adm1031_data *data = i2c_get_clientdata(client);
 431	int nr = to_sensor_dev_attr(attr)->index;
 432	long val;
 433	int ret, reg;
 434
 435	ret = kstrtol(buf, 10, &val);
 436	if (ret)
 437		return ret;
 438
 439	mutex_lock(&data->update_lock);
 440	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
 441	    (((val>>4) & 0xf) != 5)) {
 442		/* In automatic mode, the only PWM accepted is 33% */
 443		mutex_unlock(&data->update_lock);
 444		return -EINVAL;
 445	}
 446	data->pwm[nr] = PWM_TO_REG(val);
 447	reg = adm1031_read_value(client, ADM1031_REG_PWM);
 448	adm1031_write_value(client, ADM1031_REG_PWM,
 449			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
 450			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
 451	mutex_unlock(&data->update_lock);
 452	return count;
 453}
 454
 455static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 0);
 456static SENSOR_DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 1);
 457static SENSOR_DEVICE_ATTR(auto_fan1_min_pwm, S_IRUGO | S_IWUSR,
 458		show_pwm, set_pwm, 0);
 459static SENSOR_DEVICE_ATTR(auto_fan2_min_pwm, S_IRUGO | S_IWUSR,
 460		show_pwm, set_pwm, 1);
 461
 462/* Fans */
 463
 464/*
 465 * That function checks the cases where the fan reading is not
 466 * relevant.  It is used to provide 0 as fan reading when the fan is
 467 * not supposed to run
 468 */
 469static int trust_fan_readings(struct adm1031_data *data, int chan)
 470{
 471	int res = 0;
 472
 473	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
 474		switch (data->conf1 & 0x60) {
 475		case 0x00:
 476			/*
 477			 * remote temp1 controls fan1,
 478			 * remote temp2 controls fan2
 479			 */
 480			res = data->temp[chan+1] >=
 481			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
 482			break;
 483		case 0x20:	/* remote temp1 controls both fans */
 484			res =
 485			    data->temp[1] >=
 486			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
 487			break;
 488		case 0x40:	/* remote temp2 controls both fans */
 489			res =
 490			    data->temp[2] >=
 491			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
 492			break;
 493		case 0x60:	/* max controls both fans */
 494			res =
 495			    data->temp[0] >=
 496			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
 497			    || data->temp[1] >=
 498			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
 499			    || (data->chip_type == adm1031
 500				&& data->temp[2] >=
 501				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
 502			break;
 503		}
 504	} else {
 505		res = data->pwm[chan] > 0;
 506	}
 507	return res;
 508}
 509
 510
 511static ssize_t show_fan(struct device *dev,
 512			struct device_attribute *attr, char *buf)
 513{
 514	int nr = to_sensor_dev_attr(attr)->index;
 515	struct adm1031_data *data = adm1031_update_device(dev);
 516	int value;
 517
 518	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
 519				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
 520	return sprintf(buf, "%d\n", value);
 521}
 522
 523static ssize_t show_fan_div(struct device *dev,
 524			    struct device_attribute *attr, char *buf)
 525{
 526	int nr = to_sensor_dev_attr(attr)->index;
 527	struct adm1031_data *data = adm1031_update_device(dev);
 528	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
 529}
 530static ssize_t show_fan_min(struct device *dev,
 531			    struct device_attribute *attr, char *buf)
 532{
 533	int nr = to_sensor_dev_attr(attr)->index;
 534	struct adm1031_data *data = adm1031_update_device(dev);
 535	return sprintf(buf, "%d\n",
 536		       FAN_FROM_REG(data->fan_min[nr],
 537				    FAN_DIV_FROM_REG(data->fan_div[nr])));
 538}
 539static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
 540			   const char *buf, size_t count)
 
 541{
 542	struct i2c_client *client = to_i2c_client(dev);
 543	struct adm1031_data *data = i2c_get_clientdata(client);
 544	int nr = to_sensor_dev_attr(attr)->index;
 545	long val;
 546	int ret;
 547
 548	ret = kstrtol(buf, 10, &val);
 549	if (ret)
 550		return ret;
 551
 552	mutex_lock(&data->update_lock);
 553	if (val) {
 554		data->fan_min[nr] =
 555			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
 556	} else {
 557		data->fan_min[nr] = 0xff;
 558	}
 559	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
 560	mutex_unlock(&data->update_lock);
 561	return count;
 562}
 563static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
 564			   const char *buf, size_t count)
 
 565{
 566	struct i2c_client *client = to_i2c_client(dev);
 567	struct adm1031_data *data = i2c_get_clientdata(client);
 568	int nr = to_sensor_dev_attr(attr)->index;
 569	long val;
 570	u8 tmp;
 571	int old_div;
 572	int new_min;
 573	int ret;
 574
 575	ret = kstrtol(buf, 10, &val);
 576	if (ret)
 577		return ret;
 578
 579	tmp = val == 8 ? 0xc0 :
 580	      val == 4 ? 0x80 :
 581	      val == 2 ? 0x40 :
 582	      val == 1 ? 0x00 :
 583	      0xff;
 584	if (tmp == 0xff)
 585		return -EINVAL;
 586
 587	mutex_lock(&data->update_lock);
 588	/* Get fresh readings */
 589	data->fan_div[nr] = adm1031_read_value(client,
 590					       ADM1031_REG_FAN_DIV(nr));
 591	data->fan_min[nr] = adm1031_read_value(client,
 592					       ADM1031_REG_FAN_MIN(nr));
 593
 594	/* Write the new clock divider and fan min */
 595	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
 596	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
 597	new_min = data->fan_min[nr] * old_div / val;
 598	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
 599
 600	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
 601			    data->fan_div[nr]);
 602	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
 603			    data->fan_min[nr]);
 604
 605	/* Invalidate the cache: fan speed is no longer valid */
 606	data->valid = 0;
 607	mutex_unlock(&data->update_lock);
 608	return count;
 609}
 610
 611#define fan_offset(offset)						\
 612static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
 613		show_fan, NULL, offset - 1);				\
 614static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
 615		show_fan_min, set_fan_min, offset - 1);			\
 616static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR,		\
 617		show_fan_div, set_fan_div, offset - 1)
 618
 619fan_offset(1);
 620fan_offset(2);
 621
 622
 623/* Temps */
 624static ssize_t show_temp(struct device *dev,
 625			 struct device_attribute *attr, char *buf)
 626{
 627	int nr = to_sensor_dev_attr(attr)->index;
 628	struct adm1031_data *data = adm1031_update_device(dev);
 629	int ext;
 630	ext = nr == 0 ?
 631	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
 632	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
 633	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
 634}
 635static ssize_t show_temp_offset(struct device *dev,
 636				struct device_attribute *attr, char *buf)
 637{
 638	int nr = to_sensor_dev_attr(attr)->index;
 639	struct adm1031_data *data = adm1031_update_device(dev);
 640	return sprintf(buf, "%d\n",
 641		       TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
 642}
 643static ssize_t show_temp_min(struct device *dev,
 644			     struct device_attribute *attr, char *buf)
 645{
 646	int nr = to_sensor_dev_attr(attr)->index;
 647	struct adm1031_data *data = adm1031_update_device(dev);
 648	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
 649}
 650static ssize_t show_temp_max(struct device *dev,
 651			     struct device_attribute *attr, char *buf)
 652{
 653	int nr = to_sensor_dev_attr(attr)->index;
 654	struct adm1031_data *data = adm1031_update_device(dev);
 655	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
 656}
 657static ssize_t show_temp_crit(struct device *dev,
 658			      struct device_attribute *attr, char *buf)
 659{
 660	int nr = to_sensor_dev_attr(attr)->index;
 661	struct adm1031_data *data = adm1031_update_device(dev);
 662	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
 663}
 664static ssize_t set_temp_offset(struct device *dev,
 665			       struct device_attribute *attr, const char *buf,
 666			       size_t count)
 667{
 668	struct i2c_client *client = to_i2c_client(dev);
 669	struct adm1031_data *data = i2c_get_clientdata(client);
 670	int nr = to_sensor_dev_attr(attr)->index;
 671	long val;
 672	int ret;
 673
 674	ret = kstrtol(buf, 10, &val);
 675	if (ret)
 676		return ret;
 677
 678	val = clamp_val(val, -15000, 15000);
 679	mutex_lock(&data->update_lock);
 680	data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
 681	adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
 682			    data->temp_offset[nr]);
 683	mutex_unlock(&data->update_lock);
 684	return count;
 685}
 686static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
 687			    const char *buf, size_t count)
 
 688{
 689	struct i2c_client *client = to_i2c_client(dev);
 690	struct adm1031_data *data = i2c_get_clientdata(client);
 691	int nr = to_sensor_dev_attr(attr)->index;
 692	long val;
 693	int ret;
 694
 695	ret = kstrtol(buf, 10, &val);
 696	if (ret)
 697		return ret;
 698
 699	val = clamp_val(val, -55000, nr == 0 ? 127750 : 127875);
 700	mutex_lock(&data->update_lock);
 701	data->temp_min[nr] = TEMP_TO_REG(val);
 702	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
 703			    data->temp_min[nr]);
 704	mutex_unlock(&data->update_lock);
 705	return count;
 706}
 707static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
 708			    const char *buf, size_t count)
 
 709{
 710	struct i2c_client *client = to_i2c_client(dev);
 711	struct adm1031_data *data = i2c_get_clientdata(client);
 712	int nr = to_sensor_dev_attr(attr)->index;
 713	long val;
 714	int ret;
 715
 716	ret = kstrtol(buf, 10, &val);
 717	if (ret)
 718		return ret;
 719
 720	val = clamp_val(val, -55000, nr == 0 ? 127750 : 127875);
 721	mutex_lock(&data->update_lock);
 722	data->temp_max[nr] = TEMP_TO_REG(val);
 723	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
 724			    data->temp_max[nr]);
 725	mutex_unlock(&data->update_lock);
 726	return count;
 727}
 728static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
 729			     const char *buf, size_t count)
 
 730{
 731	struct i2c_client *client = to_i2c_client(dev);
 732	struct adm1031_data *data = i2c_get_clientdata(client);
 733	int nr = to_sensor_dev_attr(attr)->index;
 734	long val;
 735	int ret;
 736
 737	ret = kstrtol(buf, 10, &val);
 738	if (ret)
 739		return ret;
 740
 741	val = clamp_val(val, -55000, nr == 0 ? 127750 : 127875);
 742	mutex_lock(&data->update_lock);
 743	data->temp_crit[nr] = TEMP_TO_REG(val);
 744	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
 745			    data->temp_crit[nr]);
 746	mutex_unlock(&data->update_lock);
 747	return count;
 748}
 749
 750#define temp_reg(offset)						\
 751static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
 752		show_temp, NULL, offset - 1);				\
 753static SENSOR_DEVICE_ATTR(temp##offset##_offset, S_IRUGO | S_IWUSR,	\
 754		show_temp_offset, set_temp_offset, offset - 1);		\
 755static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
 756		show_temp_min, set_temp_min, offset - 1);		\
 757static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
 758		show_temp_max, set_temp_max, offset - 1);		\
 759static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR,	\
 760		show_temp_crit, set_temp_crit, offset - 1)
 761
 762temp_reg(1);
 763temp_reg(2);
 764temp_reg(3);
 765
 766/* Alarms */
 767static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
 768			   char *buf)
 769{
 770	struct adm1031_data *data = adm1031_update_device(dev);
 771	return sprintf(buf, "%d\n", data->alarm);
 772}
 773
 774static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
 775
 776static ssize_t show_alarm(struct device *dev,
 777			  struct device_attribute *attr, char *buf)
 778{
 779	int bitnr = to_sensor_dev_attr(attr)->index;
 780	struct adm1031_data *data = adm1031_update_device(dev);
 781	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
 782}
 783
 784static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 0);
 785static SENSOR_DEVICE_ATTR(fan1_fault, S_IRUGO, show_alarm, NULL, 1);
 786static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 2);
 787static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
 788static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 4);
 789static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 5);
 790static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
 791static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 7);
 792static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 8);
 793static SENSOR_DEVICE_ATTR(fan2_fault, S_IRUGO, show_alarm, NULL, 9);
 794static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 10);
 795static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
 796static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 12);
 797static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 13);
 798static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 14);
 799
 800/* Update Interval */
 801static const unsigned int update_intervals[] = {
 802	16000, 8000, 4000, 2000, 1000, 500, 250, 125,
 803};
 804
 805static ssize_t show_update_interval(struct device *dev,
 806				    struct device_attribute *attr, char *buf)
 807{
 808	struct i2c_client *client = to_i2c_client(dev);
 809	struct adm1031_data *data = i2c_get_clientdata(client);
 810
 811	return sprintf(buf, "%u\n", data->update_interval);
 812}
 813
 814static ssize_t set_update_interval(struct device *dev,
 815				   struct device_attribute *attr,
 816				   const char *buf, size_t count)
 817{
 818	struct i2c_client *client = to_i2c_client(dev);
 819	struct adm1031_data *data = i2c_get_clientdata(client);
 820	unsigned long val;
 821	int i, err;
 822	u8 reg;
 823
 824	err = kstrtoul(buf, 10, &val);
 825	if (err)
 826		return err;
 827
 828	/*
 829	 * Find the nearest update interval from the table.
 830	 * Use it to determine the matching update rate.
 831	 */
 832	for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
 833		if (val >= update_intervals[i])
 834			break;
 835	}
 836	/* if not found, we point to the last entry (lowest update interval) */
 837
 838	/* set the new update rate while preserving other settings */
 839	reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
 840	reg &= ~ADM1031_UPDATE_RATE_MASK;
 841	reg |= i << ADM1031_UPDATE_RATE_SHIFT;
 842	adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
 843
 844	mutex_lock(&data->update_lock);
 845	data->update_interval = update_intervals[i];
 846	mutex_unlock(&data->update_lock);
 847
 848	return count;
 849}
 850
 851static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval,
 852		   set_update_interval);
 853
 854static struct attribute *adm1031_attributes[] = {
 855	&sensor_dev_attr_fan1_input.dev_attr.attr,
 856	&sensor_dev_attr_fan1_div.dev_attr.attr,
 857	&sensor_dev_attr_fan1_min.dev_attr.attr,
 858	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
 859	&sensor_dev_attr_fan1_fault.dev_attr.attr,
 860	&sensor_dev_attr_pwm1.dev_attr.attr,
 861	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
 862	&sensor_dev_attr_temp1_input.dev_attr.attr,
 863	&sensor_dev_attr_temp1_offset.dev_attr.attr,
 864	&sensor_dev_attr_temp1_min.dev_attr.attr,
 865	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
 866	&sensor_dev_attr_temp1_max.dev_attr.attr,
 867	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
 868	&sensor_dev_attr_temp1_crit.dev_attr.attr,
 869	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
 870	&sensor_dev_attr_temp2_input.dev_attr.attr,
 871	&sensor_dev_attr_temp2_offset.dev_attr.attr,
 872	&sensor_dev_attr_temp2_min.dev_attr.attr,
 873	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
 874	&sensor_dev_attr_temp2_max.dev_attr.attr,
 875	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
 876	&sensor_dev_attr_temp2_crit.dev_attr.attr,
 877	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
 878	&sensor_dev_attr_temp2_fault.dev_attr.attr,
 879
 880	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
 881	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
 882	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
 883
 884	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
 885	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
 886	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
 887
 888	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
 889
 890	&dev_attr_update_interval.attr,
 891	&dev_attr_alarms.attr,
 892
 893	NULL
 894};
 895
 896static const struct attribute_group adm1031_group = {
 897	.attrs = adm1031_attributes,
 898};
 899
 900static struct attribute *adm1031_attributes_opt[] = {
 901	&sensor_dev_attr_fan2_input.dev_attr.attr,
 902	&sensor_dev_attr_fan2_div.dev_attr.attr,
 903	&sensor_dev_attr_fan2_min.dev_attr.attr,
 904	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
 905	&sensor_dev_attr_fan2_fault.dev_attr.attr,
 906	&sensor_dev_attr_pwm2.dev_attr.attr,
 907	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
 908	&sensor_dev_attr_temp3_input.dev_attr.attr,
 909	&sensor_dev_attr_temp3_offset.dev_attr.attr,
 910	&sensor_dev_attr_temp3_min.dev_attr.attr,
 911	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
 912	&sensor_dev_attr_temp3_max.dev_attr.attr,
 913	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
 914	&sensor_dev_attr_temp3_crit.dev_attr.attr,
 915	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
 916	&sensor_dev_attr_temp3_fault.dev_attr.attr,
 917	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
 918	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
 919	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
 920	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
 921	NULL
 922};
 923
 924static const struct attribute_group adm1031_group_opt = {
 925	.attrs = adm1031_attributes_opt,
 926};
 927
 928/* Return 0 if detection is successful, -ENODEV otherwise */
 929static int adm1031_detect(struct i2c_client *client,
 930			  struct i2c_board_info *info)
 931{
 932	struct i2c_adapter *adapter = client->adapter;
 933	const char *name;
 934	int id, co;
 935
 936	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
 937		return -ENODEV;
 938
 939	id = i2c_smbus_read_byte_data(client, 0x3d);
 940	co = i2c_smbus_read_byte_data(client, 0x3e);
 941
 942	if (!((id == 0x31 || id == 0x30) && co == 0x41))
 943		return -ENODEV;
 944	name = (id == 0x30) ? "adm1030" : "adm1031";
 945
 946	strlcpy(info->type, name, I2C_NAME_SIZE);
 947
 948	return 0;
 949}
 950
 951static int adm1031_probe(struct i2c_client *client,
 952			 const struct i2c_device_id *id)
 953{
 954	struct adm1031_data *data;
 955	int err;
 956
 957	data = devm_kzalloc(&client->dev, sizeof(struct adm1031_data),
 958			    GFP_KERNEL);
 959	if (!data)
 960		return -ENOMEM;
 961
 962	i2c_set_clientdata(client, data);
 963	data->chip_type = id->driver_data;
 964	mutex_init(&data->update_lock);
 965
 966	if (data->chip_type == adm1030)
 967		data->chan_select_table = &auto_channel_select_table_adm1030;
 968	else
 969		data->chan_select_table = &auto_channel_select_table_adm1031;
 970
 971	/* Initialize the ADM1031 chip */
 972	adm1031_init_client(client);
 973
 974	/* Register sysfs hooks */
 975	err = sysfs_create_group(&client->dev.kobj, &adm1031_group);
 976	if (err)
 977		return err;
 978
 979	if (data->chip_type == adm1031) {
 980		err = sysfs_create_group(&client->dev.kobj, &adm1031_group_opt);
 981		if (err)
 982			goto exit_remove;
 983	}
 984
 985	data->hwmon_dev = hwmon_device_register(&client->dev);
 986	if (IS_ERR(data->hwmon_dev)) {
 987		err = PTR_ERR(data->hwmon_dev);
 988		goto exit_remove;
 989	}
 990
 991	return 0;
 992
 993exit_remove:
 994	sysfs_remove_group(&client->dev.kobj, &adm1031_group);
 995	sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
 996	return err;
 997}
 998
 999static int adm1031_remove(struct i2c_client *client)
1000{
1001	struct adm1031_data *data = i2c_get_clientdata(client);
1002
1003	hwmon_device_unregister(data->hwmon_dev);
1004	sysfs_remove_group(&client->dev.kobj, &adm1031_group);
1005	sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
1006	return 0;
1007}
1008
1009static void adm1031_init_client(struct i2c_client *client)
1010{
1011	unsigned int read_val;
1012	unsigned int mask;
1013	int i;
1014	struct adm1031_data *data = i2c_get_clientdata(client);
1015
1016	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
1017	if (data->chip_type == adm1031) {
1018		mask |= (ADM1031_CONF2_PWM2_ENABLE |
1019			ADM1031_CONF2_TACH2_ENABLE);
1020	}
1021	/* Initialize the ADM1031 chip (enables fan speed reading ) */
1022	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
1023	if ((read_val | mask) != read_val)
1024		adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
1025
1026	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
1027	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
1028		adm1031_write_value(client, ADM1031_REG_CONF1,
1029				    read_val | ADM1031_CONF1_MONITOR_ENABLE);
1030	}
1031
1032	/* Read the chip's update rate */
1033	mask = ADM1031_UPDATE_RATE_MASK;
1034	read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
1035	i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
1036	/* Save it as update interval */
1037	data->update_interval = update_intervals[i];
1038}
1039
1040static struct adm1031_data *adm1031_update_device(struct device *dev)
 
 
1041{
1042	struct i2c_client *client = to_i2c_client(dev);
1043	struct adm1031_data *data = i2c_get_clientdata(client);
1044	unsigned long next_update;
1045	int chan;
1046
1047	mutex_lock(&data->update_lock);
 
 
1048
1049	next_update = data->last_updated
1050	  + msecs_to_jiffies(data->update_interval);
1051	if (time_after(jiffies, next_update) || !data->valid) {
 
1052
1053		dev_dbg(&client->dev, "Starting adm1031 update\n");
1054		for (chan = 0;
1055		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
1056			u8 oldh, newh;
1057
1058			oldh =
1059			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
1060			data->ext_temp[chan] =
1061			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
1062			newh =
1063			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
1064			if (newh != oldh) {
1065				data->ext_temp[chan] =
1066				    adm1031_read_value(client,
1067						       ADM1031_REG_EXT_TEMP);
1068#ifdef DEBUG
1069				oldh =
1070				    adm1031_read_value(client,
1071						       ADM1031_REG_TEMP(chan));
1072
1073				/* oldh is actually newer */
1074				if (newh != oldh)
1075					dev_warn(&client->dev,
1076					  "Remote temperature may be wrong.\n");
1077#endif
1078			}
1079			data->temp[chan] = newh;
 
 
1080
1081			data->temp_offset[chan] =
1082			    adm1031_read_value(client,
1083					       ADM1031_REG_TEMP_OFFSET(chan));
1084			data->temp_min[chan] =
1085			    adm1031_read_value(client,
1086					       ADM1031_REG_TEMP_MIN(chan));
1087			data->temp_max[chan] =
1088			    adm1031_read_value(client,
1089					       ADM1031_REG_TEMP_MAX(chan));
1090			data->temp_crit[chan] =
1091			    adm1031_read_value(client,
1092					       ADM1031_REG_TEMP_CRIT(chan));
1093			data->auto_temp[chan] =
1094			    adm1031_read_value(client,
1095					       ADM1031_REG_AUTO_TEMP(chan));
1096
1097		}
1098
1099		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
1100		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
1101
1102		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
1103		    | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
1104		if (data->chip_type == adm1030)
1105			data->alarm &= 0xc0ff;
1106
1107		for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
1108		     chan++) {
1109			data->fan_div[chan] =
1110			    adm1031_read_value(client,
1111					       ADM1031_REG_FAN_DIV(chan));
1112			data->fan_min[chan] =
1113			    adm1031_read_value(client,
1114					       ADM1031_REG_FAN_MIN(chan));
1115			data->fan[chan] =
1116			    adm1031_read_value(client,
1117					       ADM1031_REG_FAN_SPEED(chan));
1118			data->pwm[chan] =
1119			  (adm1031_read_value(client,
1120					ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
1121		}
1122		data->last_updated = jiffies;
1123		data->valid = 1;
1124	}
1125
1126	mutex_unlock(&data->update_lock);
1127
1128	return data;
1129}
1130
1131module_i2c_driver(adm1031_driver);
1132
1133MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1134MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1135MODULE_LICENSE("GPL");