Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
4 * monitoring
5 * Based on lm75.c and lm85.c
6 * Supports adm1030 / adm1031
7 * Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
8 * Reworked by Jean Delvare <jdelvare@suse.de>
9 */
10
11#include <linux/module.h>
12#include <linux/init.h>
13#include <linux/slab.h>
14#include <linux/jiffies.h>
15#include <linux/i2c.h>
16#include <linux/hwmon.h>
17#include <linux/hwmon-sysfs.h>
18#include <linux/err.h>
19#include <linux/mutex.h>
20
21/* Following macros takes channel parameter starting from 0 to 2 */
22#define ADM1031_REG_FAN_SPEED(nr) (0x08 + (nr))
23#define ADM1031_REG_FAN_DIV(nr) (0x20 + (nr))
24#define ADM1031_REG_PWM (0x22)
25#define ADM1031_REG_FAN_MIN(nr) (0x10 + (nr))
26#define ADM1031_REG_FAN_FILTER (0x23)
27
28#define ADM1031_REG_TEMP_OFFSET(nr) (0x0d + (nr))
29#define ADM1031_REG_TEMP_MAX(nr) (0x14 + 4 * (nr))
30#define ADM1031_REG_TEMP_MIN(nr) (0x15 + 4 * (nr))
31#define ADM1031_REG_TEMP_CRIT(nr) (0x16 + 4 * (nr))
32
33#define ADM1031_REG_TEMP(nr) (0x0a + (nr))
34#define ADM1031_REG_AUTO_TEMP(nr) (0x24 + (nr))
35
36#define ADM1031_REG_STATUS(nr) (0x2 + (nr))
37
38#define ADM1031_REG_CONF1 0x00
39#define ADM1031_REG_CONF2 0x01
40#define ADM1031_REG_EXT_TEMP 0x06
41
42#define ADM1031_CONF1_MONITOR_ENABLE 0x01 /* Monitoring enable */
43#define ADM1031_CONF1_PWM_INVERT 0x08 /* PWM Invert */
44#define ADM1031_CONF1_AUTO_MODE 0x80 /* Auto FAN */
45
46#define ADM1031_CONF2_PWM1_ENABLE 0x01
47#define ADM1031_CONF2_PWM2_ENABLE 0x02
48#define ADM1031_CONF2_TACH1_ENABLE 0x04
49#define ADM1031_CONF2_TACH2_ENABLE 0x08
50#define ADM1031_CONF2_TEMP_ENABLE(chan) (0x10 << (chan))
51
52#define ADM1031_UPDATE_RATE_MASK 0x1c
53#define ADM1031_UPDATE_RATE_SHIFT 2
54
55/* Addresses to scan */
56static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
57
58enum chips { adm1030, adm1031 };
59
60typedef u8 auto_chan_table_t[8][2];
61
62/* Each client has this additional data */
63struct adm1031_data {
64 struct i2c_client *client;
65 const struct attribute_group *groups[3];
66 struct mutex update_lock;
67 int chip_type;
68 bool valid; /* true if following fields are valid */
69 unsigned long last_updated; /* In jiffies */
70 unsigned int update_interval; /* In milliseconds */
71 /*
72 * The chan_select_table contains the possible configurations for
73 * auto fan control.
74 */
75 const auto_chan_table_t *chan_select_table;
76 u16 alarm;
77 u8 conf1;
78 u8 conf2;
79 u8 fan[2];
80 u8 fan_div[2];
81 u8 fan_min[2];
82 u8 pwm[2];
83 u8 old_pwm[2];
84 s8 temp[3];
85 u8 ext_temp[3];
86 u8 auto_temp[3];
87 u8 auto_temp_min[3];
88 u8 auto_temp_off[3];
89 u8 auto_temp_max[3];
90 s8 temp_offset[3];
91 s8 temp_min[3];
92 s8 temp_max[3];
93 s8 temp_crit[3];
94};
95
96static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
97{
98 return i2c_smbus_read_byte_data(client, reg);
99}
100
101static inline int
102adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
103{
104 return i2c_smbus_write_byte_data(client, reg, value);
105}
106
107static struct adm1031_data *adm1031_update_device(struct device *dev)
108{
109 struct adm1031_data *data = dev_get_drvdata(dev);
110 struct i2c_client *client = data->client;
111 unsigned long next_update;
112 int chan;
113
114 mutex_lock(&data->update_lock);
115
116 next_update = data->last_updated
117 + msecs_to_jiffies(data->update_interval);
118 if (time_after(jiffies, next_update) || !data->valid) {
119
120 dev_dbg(&client->dev, "Starting adm1031 update\n");
121 for (chan = 0;
122 chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
123 u8 oldh, newh;
124
125 oldh =
126 adm1031_read_value(client, ADM1031_REG_TEMP(chan));
127 data->ext_temp[chan] =
128 adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
129 newh =
130 adm1031_read_value(client, ADM1031_REG_TEMP(chan));
131 if (newh != oldh) {
132 data->ext_temp[chan] =
133 adm1031_read_value(client,
134 ADM1031_REG_EXT_TEMP);
135#ifdef DEBUG
136 oldh =
137 adm1031_read_value(client,
138 ADM1031_REG_TEMP(chan));
139
140 /* oldh is actually newer */
141 if (newh != oldh)
142 dev_warn(&client->dev,
143 "Remote temperature may be wrong.\n");
144#endif
145 }
146 data->temp[chan] = newh;
147
148 data->temp_offset[chan] =
149 adm1031_read_value(client,
150 ADM1031_REG_TEMP_OFFSET(chan));
151 data->temp_min[chan] =
152 adm1031_read_value(client,
153 ADM1031_REG_TEMP_MIN(chan));
154 data->temp_max[chan] =
155 adm1031_read_value(client,
156 ADM1031_REG_TEMP_MAX(chan));
157 data->temp_crit[chan] =
158 adm1031_read_value(client,
159 ADM1031_REG_TEMP_CRIT(chan));
160 data->auto_temp[chan] =
161 adm1031_read_value(client,
162 ADM1031_REG_AUTO_TEMP(chan));
163
164 }
165
166 data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
167 data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
168
169 data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
170 | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
171 if (data->chip_type == adm1030)
172 data->alarm &= 0xc0ff;
173
174 for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
175 chan++) {
176 data->fan_div[chan] =
177 adm1031_read_value(client,
178 ADM1031_REG_FAN_DIV(chan));
179 data->fan_min[chan] =
180 adm1031_read_value(client,
181 ADM1031_REG_FAN_MIN(chan));
182 data->fan[chan] =
183 adm1031_read_value(client,
184 ADM1031_REG_FAN_SPEED(chan));
185 data->pwm[chan] =
186 (adm1031_read_value(client,
187 ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
188 }
189 data->last_updated = jiffies;
190 data->valid = true;
191 }
192
193 mutex_unlock(&data->update_lock);
194
195 return data;
196}
197
198#define TEMP_TO_REG(val) (((val) < 0 ? ((val - 500) / 1000) : \
199 ((val + 500) / 1000)))
200
201#define TEMP_FROM_REG(val) ((val) * 1000)
202
203#define TEMP_FROM_REG_EXT(val, ext) (TEMP_FROM_REG(val) + (ext) * 125)
204
205#define TEMP_OFFSET_TO_REG(val) (TEMP_TO_REG(val) & 0x8f)
206#define TEMP_OFFSET_FROM_REG(val) TEMP_FROM_REG((val) < 0 ? \
207 (val) | 0x70 : (val))
208
209#define FAN_FROM_REG(reg, div) ((reg) ? \
210 (11250 * 60) / ((reg) * (div)) : 0)
211
212static int FAN_TO_REG(int reg, int div)
213{
214 int tmp;
215 tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div);
216 return tmp > 255 ? 255 : tmp;
217}
218
219#define FAN_DIV_FROM_REG(reg) (1<<(((reg)&0xc0)>>6))
220
221#define PWM_TO_REG(val) (clamp_val((val), 0, 255) >> 4)
222#define PWM_FROM_REG(val) ((val) << 4)
223
224#define FAN_CHAN_FROM_REG(reg) (((reg) >> 5) & 7)
225#define FAN_CHAN_TO_REG(val, reg) \
226 (((reg) & 0x1F) | (((val) << 5) & 0xe0))
227
228#define AUTO_TEMP_MIN_TO_REG(val, reg) \
229 ((((val) / 500) & 0xf8) | ((reg) & 0x7))
230#define AUTO_TEMP_RANGE_FROM_REG(reg) (5000 * (1 << ((reg) & 0x7)))
231#define AUTO_TEMP_MIN_FROM_REG(reg) (1000 * ((((reg) >> 3) & 0x1f) << 2))
232
233#define AUTO_TEMP_MIN_FROM_REG_DEG(reg) ((((reg) >> 3) & 0x1f) << 2)
234
235#define AUTO_TEMP_OFF_FROM_REG(reg) \
236 (AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
237
238#define AUTO_TEMP_MAX_FROM_REG(reg) \
239 (AUTO_TEMP_RANGE_FROM_REG(reg) + \
240 AUTO_TEMP_MIN_FROM_REG(reg))
241
242static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
243{
244 int ret;
245 int range = ((val - AUTO_TEMP_MIN_FROM_REG(reg)) * 10) / (16 - pwm);
246
247 ret = ((reg & 0xf8) |
248 (range < 10000 ? 0 :
249 range < 20000 ? 1 :
250 range < 40000 ? 2 : range < 80000 ? 3 : 4));
251 return ret;
252}
253
254/* FAN auto control */
255#define GET_FAN_AUTO_BITFIELD(data, idx) \
256 (*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
257
258/*
259 * The tables below contains the possible values for the auto fan
260 * control bitfields. the index in the table is the register value.
261 * MSb is the auto fan control enable bit, so the four first entries
262 * in the table disables auto fan control when both bitfields are zero.
263 */
264static const auto_chan_table_t auto_channel_select_table_adm1031 = {
265 { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
266 { 2 /* 0b010 */ , 4 /* 0b100 */ },
267 { 2 /* 0b010 */ , 2 /* 0b010 */ },
268 { 4 /* 0b100 */ , 4 /* 0b100 */ },
269 { 7 /* 0b111 */ , 7 /* 0b111 */ },
270};
271
272static const auto_chan_table_t auto_channel_select_table_adm1030 = {
273 { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
274 { 2 /* 0b10 */ , 0 },
275 { 0xff /* invalid */ , 0 },
276 { 0xff /* invalid */ , 0 },
277 { 3 /* 0b11 */ , 0 },
278};
279
280/*
281 * That function checks if a bitfield is valid and returns the other bitfield
282 * nearest match if no exact match where found.
283 */
284static int
285get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg)
286{
287 int i;
288 int first_match = -1, exact_match = -1;
289 u8 other_reg_val =
290 (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
291
292 if (val == 0)
293 return 0;
294
295 for (i = 0; i < 8; i++) {
296 if ((val == (*data->chan_select_table)[i][chan]) &&
297 ((*data->chan_select_table)[i][chan ? 0 : 1] ==
298 other_reg_val)) {
299 /* We found an exact match */
300 exact_match = i;
301 break;
302 } else if (val == (*data->chan_select_table)[i][chan] &&
303 first_match == -1) {
304 /*
305 * Save the first match in case of an exact match has
306 * not been found
307 */
308 first_match = i;
309 }
310 }
311
312 if (exact_match >= 0)
313 return exact_match;
314 else if (first_match >= 0)
315 return first_match;
316
317 return -EINVAL;
318}
319
320static ssize_t fan_auto_channel_show(struct device *dev,
321 struct device_attribute *attr, char *buf)
322{
323 int nr = to_sensor_dev_attr(attr)->index;
324 struct adm1031_data *data = adm1031_update_device(dev);
325 return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
326}
327
328static ssize_t
329fan_auto_channel_store(struct device *dev, struct device_attribute *attr,
330 const char *buf, size_t count)
331{
332 struct adm1031_data *data = dev_get_drvdata(dev);
333 struct i2c_client *client = data->client;
334 int nr = to_sensor_dev_attr(attr)->index;
335 long val;
336 u8 reg;
337 int ret;
338 u8 old_fan_mode;
339
340 ret = kstrtol(buf, 10, &val);
341 if (ret)
342 return ret;
343
344 old_fan_mode = data->conf1;
345
346 mutex_lock(&data->update_lock);
347
348 ret = get_fan_auto_nearest(data, nr, val, data->conf1);
349 if (ret < 0) {
350 mutex_unlock(&data->update_lock);
351 return ret;
352 }
353 reg = ret;
354 data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
355 if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
356 (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
357 if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
358 /*
359 * Switch to Auto Fan Mode
360 * Save PWM registers
361 * Set PWM registers to 33% Both
362 */
363 data->old_pwm[0] = data->pwm[0];
364 data->old_pwm[1] = data->pwm[1];
365 adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
366 } else {
367 /* Switch to Manual Mode */
368 data->pwm[0] = data->old_pwm[0];
369 data->pwm[1] = data->old_pwm[1];
370 /* Restore PWM registers */
371 adm1031_write_value(client, ADM1031_REG_PWM,
372 data->pwm[0] | (data->pwm[1] << 4));
373 }
374 }
375 data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
376 adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
377 mutex_unlock(&data->update_lock);
378 return count;
379}
380
381static SENSOR_DEVICE_ATTR_RW(auto_fan1_channel, fan_auto_channel, 0);
382static SENSOR_DEVICE_ATTR_RW(auto_fan2_channel, fan_auto_channel, 1);
383
384/* Auto Temps */
385static ssize_t auto_temp_off_show(struct device *dev,
386 struct device_attribute *attr, char *buf)
387{
388 int nr = to_sensor_dev_attr(attr)->index;
389 struct adm1031_data *data = adm1031_update_device(dev);
390 return sprintf(buf, "%d\n",
391 AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
392}
393static ssize_t auto_temp_min_show(struct device *dev,
394 struct device_attribute *attr, char *buf)
395{
396 int nr = to_sensor_dev_attr(attr)->index;
397 struct adm1031_data *data = adm1031_update_device(dev);
398 return sprintf(buf, "%d\n",
399 AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
400}
401static ssize_t
402auto_temp_min_store(struct device *dev, struct device_attribute *attr,
403 const char *buf, size_t count)
404{
405 struct adm1031_data *data = dev_get_drvdata(dev);
406 struct i2c_client *client = data->client;
407 int nr = to_sensor_dev_attr(attr)->index;
408 long val;
409 int ret;
410
411 ret = kstrtol(buf, 10, &val);
412 if (ret)
413 return ret;
414
415 val = clamp_val(val, 0, 127000);
416 mutex_lock(&data->update_lock);
417 data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
418 adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
419 data->auto_temp[nr]);
420 mutex_unlock(&data->update_lock);
421 return count;
422}
423static ssize_t auto_temp_max_show(struct device *dev,
424 struct device_attribute *attr, char *buf)
425{
426 int nr = to_sensor_dev_attr(attr)->index;
427 struct adm1031_data *data = adm1031_update_device(dev);
428 return sprintf(buf, "%d\n",
429 AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
430}
431static ssize_t
432auto_temp_max_store(struct device *dev, struct device_attribute *attr,
433 const char *buf, size_t count)
434{
435 struct adm1031_data *data = dev_get_drvdata(dev);
436 struct i2c_client *client = data->client;
437 int nr = to_sensor_dev_attr(attr)->index;
438 long val;
439 int ret;
440
441 ret = kstrtol(buf, 10, &val);
442 if (ret)
443 return ret;
444
445 val = clamp_val(val, 0, 127000);
446 mutex_lock(&data->update_lock);
447 data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
448 data->pwm[nr]);
449 adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
450 data->temp_max[nr]);
451 mutex_unlock(&data->update_lock);
452 return count;
453}
454
455static SENSOR_DEVICE_ATTR_RO(auto_temp1_off, auto_temp_off, 0);
456static SENSOR_DEVICE_ATTR_RW(auto_temp1_min, auto_temp_min, 0);
457static SENSOR_DEVICE_ATTR_RW(auto_temp1_max, auto_temp_max, 0);
458static SENSOR_DEVICE_ATTR_RO(auto_temp2_off, auto_temp_off, 1);
459static SENSOR_DEVICE_ATTR_RW(auto_temp2_min, auto_temp_min, 1);
460static SENSOR_DEVICE_ATTR_RW(auto_temp2_max, auto_temp_max, 1);
461static SENSOR_DEVICE_ATTR_RO(auto_temp3_off, auto_temp_off, 2);
462static SENSOR_DEVICE_ATTR_RW(auto_temp3_min, auto_temp_min, 2);
463static SENSOR_DEVICE_ATTR_RW(auto_temp3_max, auto_temp_max, 2);
464
465/* pwm */
466static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
467 char *buf)
468{
469 int nr = to_sensor_dev_attr(attr)->index;
470 struct adm1031_data *data = adm1031_update_device(dev);
471 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
472}
473static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
474 const char *buf, size_t count)
475{
476 struct adm1031_data *data = dev_get_drvdata(dev);
477 struct i2c_client *client = data->client;
478 int nr = to_sensor_dev_attr(attr)->index;
479 long val;
480 int ret, reg;
481
482 ret = kstrtol(buf, 10, &val);
483 if (ret)
484 return ret;
485
486 mutex_lock(&data->update_lock);
487 if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
488 (((val>>4) & 0xf) != 5)) {
489 /* In automatic mode, the only PWM accepted is 33% */
490 mutex_unlock(&data->update_lock);
491 return -EINVAL;
492 }
493 data->pwm[nr] = PWM_TO_REG(val);
494 reg = adm1031_read_value(client, ADM1031_REG_PWM);
495 adm1031_write_value(client, ADM1031_REG_PWM,
496 nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
497 : (data->pwm[nr] & 0xf) | (reg & 0xf0));
498 mutex_unlock(&data->update_lock);
499 return count;
500}
501
502static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
503static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
504static SENSOR_DEVICE_ATTR_RW(auto_fan1_min_pwm, pwm, 0);
505static SENSOR_DEVICE_ATTR_RW(auto_fan2_min_pwm, pwm, 1);
506
507/* Fans */
508
509/*
510 * That function checks the cases where the fan reading is not
511 * relevant. It is used to provide 0 as fan reading when the fan is
512 * not supposed to run
513 */
514static int trust_fan_readings(struct adm1031_data *data, int chan)
515{
516 int res = 0;
517
518 if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
519 switch (data->conf1 & 0x60) {
520 case 0x00:
521 /*
522 * remote temp1 controls fan1,
523 * remote temp2 controls fan2
524 */
525 res = data->temp[chan+1] >=
526 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
527 break;
528 case 0x20: /* remote temp1 controls both fans */
529 res =
530 data->temp[1] >=
531 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
532 break;
533 case 0x40: /* remote temp2 controls both fans */
534 res =
535 data->temp[2] >=
536 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
537 break;
538 case 0x60: /* max controls both fans */
539 res =
540 data->temp[0] >=
541 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
542 || data->temp[1] >=
543 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
544 || (data->chip_type == adm1031
545 && data->temp[2] >=
546 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
547 break;
548 }
549 } else {
550 res = data->pwm[chan] > 0;
551 }
552 return res;
553}
554
555static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
556 char *buf)
557{
558 int nr = to_sensor_dev_attr(attr)->index;
559 struct adm1031_data *data = adm1031_update_device(dev);
560 int value;
561
562 value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
563 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
564 return sprintf(buf, "%d\n", value);
565}
566
567static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr,
568 char *buf)
569{
570 int nr = to_sensor_dev_attr(attr)->index;
571 struct adm1031_data *data = adm1031_update_device(dev);
572 return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
573}
574static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
575 char *buf)
576{
577 int nr = to_sensor_dev_attr(attr)->index;
578 struct adm1031_data *data = adm1031_update_device(dev);
579 return sprintf(buf, "%d\n",
580 FAN_FROM_REG(data->fan_min[nr],
581 FAN_DIV_FROM_REG(data->fan_div[nr])));
582}
583static ssize_t fan_min_store(struct device *dev,
584 struct device_attribute *attr, const char *buf,
585 size_t count)
586{
587 struct adm1031_data *data = dev_get_drvdata(dev);
588 struct i2c_client *client = data->client;
589 int nr = to_sensor_dev_attr(attr)->index;
590 long val;
591 int ret;
592
593 ret = kstrtol(buf, 10, &val);
594 if (ret)
595 return ret;
596
597 mutex_lock(&data->update_lock);
598 if (val) {
599 data->fan_min[nr] =
600 FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
601 } else {
602 data->fan_min[nr] = 0xff;
603 }
604 adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
605 mutex_unlock(&data->update_lock);
606 return count;
607}
608static ssize_t fan_div_store(struct device *dev,
609 struct device_attribute *attr, const char *buf,
610 size_t count)
611{
612 struct adm1031_data *data = dev_get_drvdata(dev);
613 struct i2c_client *client = data->client;
614 int nr = to_sensor_dev_attr(attr)->index;
615 long val;
616 u8 tmp;
617 int old_div;
618 int new_min;
619 int ret;
620
621 ret = kstrtol(buf, 10, &val);
622 if (ret)
623 return ret;
624
625 tmp = val == 8 ? 0xc0 :
626 val == 4 ? 0x80 :
627 val == 2 ? 0x40 :
628 val == 1 ? 0x00 :
629 0xff;
630 if (tmp == 0xff)
631 return -EINVAL;
632
633 mutex_lock(&data->update_lock);
634 /* Get fresh readings */
635 data->fan_div[nr] = adm1031_read_value(client,
636 ADM1031_REG_FAN_DIV(nr));
637 data->fan_min[nr] = adm1031_read_value(client,
638 ADM1031_REG_FAN_MIN(nr));
639
640 /* Write the new clock divider and fan min */
641 old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
642 data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
643 new_min = data->fan_min[nr] * old_div / val;
644 data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
645
646 adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
647 data->fan_div[nr]);
648 adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
649 data->fan_min[nr]);
650
651 /* Invalidate the cache: fan speed is no longer valid */
652 data->valid = false;
653 mutex_unlock(&data->update_lock);
654 return count;
655}
656
657static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
658static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
659static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
660static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
661static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
662static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
663
664/* Temps */
665static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
666 char *buf)
667{
668 int nr = to_sensor_dev_attr(attr)->index;
669 struct adm1031_data *data = adm1031_update_device(dev);
670 int ext;
671 ext = nr == 0 ?
672 ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
673 (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
674 return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
675}
676static ssize_t temp_offset_show(struct device *dev,
677 struct device_attribute *attr, char *buf)
678{
679 int nr = to_sensor_dev_attr(attr)->index;
680 struct adm1031_data *data = adm1031_update_device(dev);
681 return sprintf(buf, "%d\n",
682 TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
683}
684static ssize_t temp_min_show(struct device *dev,
685 struct device_attribute *attr, char *buf)
686{
687 int nr = to_sensor_dev_attr(attr)->index;
688 struct adm1031_data *data = adm1031_update_device(dev);
689 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
690}
691static ssize_t temp_max_show(struct device *dev,
692 struct device_attribute *attr, char *buf)
693{
694 int nr = to_sensor_dev_attr(attr)->index;
695 struct adm1031_data *data = adm1031_update_device(dev);
696 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
697}
698static ssize_t temp_crit_show(struct device *dev,
699 struct device_attribute *attr, char *buf)
700{
701 int nr = to_sensor_dev_attr(attr)->index;
702 struct adm1031_data *data = adm1031_update_device(dev);
703 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
704}
705static ssize_t temp_offset_store(struct device *dev,
706 struct device_attribute *attr,
707 const char *buf, size_t count)
708{
709 struct adm1031_data *data = dev_get_drvdata(dev);
710 struct i2c_client *client = data->client;
711 int nr = to_sensor_dev_attr(attr)->index;
712 long val;
713 int ret;
714
715 ret = kstrtol(buf, 10, &val);
716 if (ret)
717 return ret;
718
719 val = clamp_val(val, -15000, 15000);
720 mutex_lock(&data->update_lock);
721 data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
722 adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
723 data->temp_offset[nr]);
724 mutex_unlock(&data->update_lock);
725 return count;
726}
727static ssize_t temp_min_store(struct device *dev,
728 struct device_attribute *attr, const char *buf,
729 size_t count)
730{
731 struct adm1031_data *data = dev_get_drvdata(dev);
732 struct i2c_client *client = data->client;
733 int nr = to_sensor_dev_attr(attr)->index;
734 long val;
735 int ret;
736
737 ret = kstrtol(buf, 10, &val);
738 if (ret)
739 return ret;
740
741 val = clamp_val(val, -55000, 127000);
742 mutex_lock(&data->update_lock);
743 data->temp_min[nr] = TEMP_TO_REG(val);
744 adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
745 data->temp_min[nr]);
746 mutex_unlock(&data->update_lock);
747 return count;
748}
749static ssize_t temp_max_store(struct device *dev,
750 struct device_attribute *attr, const char *buf,
751 size_t count)
752{
753 struct adm1031_data *data = dev_get_drvdata(dev);
754 struct i2c_client *client = data->client;
755 int nr = to_sensor_dev_attr(attr)->index;
756 long val;
757 int ret;
758
759 ret = kstrtol(buf, 10, &val);
760 if (ret)
761 return ret;
762
763 val = clamp_val(val, -55000, 127000);
764 mutex_lock(&data->update_lock);
765 data->temp_max[nr] = TEMP_TO_REG(val);
766 adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
767 data->temp_max[nr]);
768 mutex_unlock(&data->update_lock);
769 return count;
770}
771static ssize_t temp_crit_store(struct device *dev,
772 struct device_attribute *attr, const char *buf,
773 size_t count)
774{
775 struct adm1031_data *data = dev_get_drvdata(dev);
776 struct i2c_client *client = data->client;
777 int nr = to_sensor_dev_attr(attr)->index;
778 long val;
779 int ret;
780
781 ret = kstrtol(buf, 10, &val);
782 if (ret)
783 return ret;
784
785 val = clamp_val(val, -55000, 127000);
786 mutex_lock(&data->update_lock);
787 data->temp_crit[nr] = TEMP_TO_REG(val);
788 adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
789 data->temp_crit[nr]);
790 mutex_unlock(&data->update_lock);
791 return count;
792}
793
794static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
795static SENSOR_DEVICE_ATTR_RW(temp1_offset, temp_offset, 0);
796static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
797static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
798static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp_crit, 0);
799static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
800static SENSOR_DEVICE_ATTR_RW(temp2_offset, temp_offset, 1);
801static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
802static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
803static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp_crit, 1);
804static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
805static SENSOR_DEVICE_ATTR_RW(temp3_offset, temp_offset, 2);
806static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
807static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
808static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp_crit, 2);
809
810/* Alarms */
811static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
812 char *buf)
813{
814 struct adm1031_data *data = adm1031_update_device(dev);
815 return sprintf(buf, "%d\n", data->alarm);
816}
817
818static DEVICE_ATTR_RO(alarms);
819
820static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
821 char *buf)
822{
823 int bitnr = to_sensor_dev_attr(attr)->index;
824 struct adm1031_data *data = adm1031_update_device(dev);
825 return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
826}
827
828static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 0);
829static SENSOR_DEVICE_ATTR_RO(fan1_fault, alarm, 1);
830static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, alarm, 2);
831static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, alarm, 3);
832static SENSOR_DEVICE_ATTR_RO(temp2_crit_alarm, alarm, 4);
833static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 5);
834static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 6);
835static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, alarm, 7);
836static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 8);
837static SENSOR_DEVICE_ATTR_RO(fan2_fault, alarm, 9);
838static SENSOR_DEVICE_ATTR_RO(temp3_max_alarm, alarm, 10);
839static SENSOR_DEVICE_ATTR_RO(temp3_min_alarm, alarm, 11);
840static SENSOR_DEVICE_ATTR_RO(temp3_crit_alarm, alarm, 12);
841static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 13);
842static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 14);
843
844/* Update Interval */
845static const unsigned int update_intervals[] = {
846 16000, 8000, 4000, 2000, 1000, 500, 250, 125,
847};
848
849static ssize_t update_interval_show(struct device *dev,
850 struct device_attribute *attr, char *buf)
851{
852 struct adm1031_data *data = dev_get_drvdata(dev);
853
854 return sprintf(buf, "%u\n", data->update_interval);
855}
856
857static ssize_t update_interval_store(struct device *dev,
858 struct device_attribute *attr,
859 const char *buf, size_t count)
860{
861 struct adm1031_data *data = dev_get_drvdata(dev);
862 struct i2c_client *client = data->client;
863 unsigned long val;
864 int i, err;
865 u8 reg;
866
867 err = kstrtoul(buf, 10, &val);
868 if (err)
869 return err;
870
871 /*
872 * Find the nearest update interval from the table.
873 * Use it to determine the matching update rate.
874 */
875 for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
876 if (val >= update_intervals[i])
877 break;
878 }
879 /* if not found, we point to the last entry (lowest update interval) */
880
881 /* set the new update rate while preserving other settings */
882 reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
883 reg &= ~ADM1031_UPDATE_RATE_MASK;
884 reg |= i << ADM1031_UPDATE_RATE_SHIFT;
885 adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
886
887 mutex_lock(&data->update_lock);
888 data->update_interval = update_intervals[i];
889 mutex_unlock(&data->update_lock);
890
891 return count;
892}
893
894static DEVICE_ATTR_RW(update_interval);
895
896static struct attribute *adm1031_attributes[] = {
897 &sensor_dev_attr_fan1_input.dev_attr.attr,
898 &sensor_dev_attr_fan1_div.dev_attr.attr,
899 &sensor_dev_attr_fan1_min.dev_attr.attr,
900 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
901 &sensor_dev_attr_fan1_fault.dev_attr.attr,
902 &sensor_dev_attr_pwm1.dev_attr.attr,
903 &sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
904 &sensor_dev_attr_temp1_input.dev_attr.attr,
905 &sensor_dev_attr_temp1_offset.dev_attr.attr,
906 &sensor_dev_attr_temp1_min.dev_attr.attr,
907 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
908 &sensor_dev_attr_temp1_max.dev_attr.attr,
909 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
910 &sensor_dev_attr_temp1_crit.dev_attr.attr,
911 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
912 &sensor_dev_attr_temp2_input.dev_attr.attr,
913 &sensor_dev_attr_temp2_offset.dev_attr.attr,
914 &sensor_dev_attr_temp2_min.dev_attr.attr,
915 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
916 &sensor_dev_attr_temp2_max.dev_attr.attr,
917 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
918 &sensor_dev_attr_temp2_crit.dev_attr.attr,
919 &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
920 &sensor_dev_attr_temp2_fault.dev_attr.attr,
921
922 &sensor_dev_attr_auto_temp1_off.dev_attr.attr,
923 &sensor_dev_attr_auto_temp1_min.dev_attr.attr,
924 &sensor_dev_attr_auto_temp1_max.dev_attr.attr,
925
926 &sensor_dev_attr_auto_temp2_off.dev_attr.attr,
927 &sensor_dev_attr_auto_temp2_min.dev_attr.attr,
928 &sensor_dev_attr_auto_temp2_max.dev_attr.attr,
929
930 &sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
931
932 &dev_attr_update_interval.attr,
933 &dev_attr_alarms.attr,
934
935 NULL
936};
937
938static const struct attribute_group adm1031_group = {
939 .attrs = adm1031_attributes,
940};
941
942static struct attribute *adm1031_attributes_opt[] = {
943 &sensor_dev_attr_fan2_input.dev_attr.attr,
944 &sensor_dev_attr_fan2_div.dev_attr.attr,
945 &sensor_dev_attr_fan2_min.dev_attr.attr,
946 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
947 &sensor_dev_attr_fan2_fault.dev_attr.attr,
948 &sensor_dev_attr_pwm2.dev_attr.attr,
949 &sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
950 &sensor_dev_attr_temp3_input.dev_attr.attr,
951 &sensor_dev_attr_temp3_offset.dev_attr.attr,
952 &sensor_dev_attr_temp3_min.dev_attr.attr,
953 &sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
954 &sensor_dev_attr_temp3_max.dev_attr.attr,
955 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
956 &sensor_dev_attr_temp3_crit.dev_attr.attr,
957 &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
958 &sensor_dev_attr_temp3_fault.dev_attr.attr,
959 &sensor_dev_attr_auto_temp3_off.dev_attr.attr,
960 &sensor_dev_attr_auto_temp3_min.dev_attr.attr,
961 &sensor_dev_attr_auto_temp3_max.dev_attr.attr,
962 &sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
963 NULL
964};
965
966static const struct attribute_group adm1031_group_opt = {
967 .attrs = adm1031_attributes_opt,
968};
969
970/* Return 0 if detection is successful, -ENODEV otherwise */
971static int adm1031_detect(struct i2c_client *client,
972 struct i2c_board_info *info)
973{
974 struct i2c_adapter *adapter = client->adapter;
975 const char *name;
976 int id, co;
977
978 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
979 return -ENODEV;
980
981 id = i2c_smbus_read_byte_data(client, 0x3d);
982 co = i2c_smbus_read_byte_data(client, 0x3e);
983
984 if (!((id == 0x31 || id == 0x30) && co == 0x41))
985 return -ENODEV;
986 name = (id == 0x30) ? "adm1030" : "adm1031";
987
988 strscpy(info->type, name, I2C_NAME_SIZE);
989
990 return 0;
991}
992
993static void adm1031_init_client(struct i2c_client *client)
994{
995 unsigned int read_val;
996 unsigned int mask;
997 int i;
998 struct adm1031_data *data = i2c_get_clientdata(client);
999
1000 mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
1001 if (data->chip_type == adm1031) {
1002 mask |= (ADM1031_CONF2_PWM2_ENABLE |
1003 ADM1031_CONF2_TACH2_ENABLE);
1004 }
1005 /* Initialize the ADM1031 chip (enables fan speed reading ) */
1006 read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
1007 if ((read_val | mask) != read_val)
1008 adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
1009
1010 read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
1011 if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
1012 adm1031_write_value(client, ADM1031_REG_CONF1,
1013 read_val | ADM1031_CONF1_MONITOR_ENABLE);
1014 }
1015
1016 /* Read the chip's update rate */
1017 mask = ADM1031_UPDATE_RATE_MASK;
1018 read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
1019 i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
1020 /* Save it as update interval */
1021 data->update_interval = update_intervals[i];
1022}
1023
1024static const struct i2c_device_id adm1031_id[];
1025
1026static int adm1031_probe(struct i2c_client *client)
1027{
1028 struct device *dev = &client->dev;
1029 struct device *hwmon_dev;
1030 struct adm1031_data *data;
1031
1032 data = devm_kzalloc(dev, sizeof(struct adm1031_data), GFP_KERNEL);
1033 if (!data)
1034 return -ENOMEM;
1035
1036 i2c_set_clientdata(client, data);
1037 data->client = client;
1038 data->chip_type = i2c_match_id(adm1031_id, client)->driver_data;
1039 mutex_init(&data->update_lock);
1040
1041 if (data->chip_type == adm1030)
1042 data->chan_select_table = &auto_channel_select_table_adm1030;
1043 else
1044 data->chan_select_table = &auto_channel_select_table_adm1031;
1045
1046 /* Initialize the ADM1031 chip */
1047 adm1031_init_client(client);
1048
1049 /* sysfs hooks */
1050 data->groups[0] = &adm1031_group;
1051 if (data->chip_type == adm1031)
1052 data->groups[1] = &adm1031_group_opt;
1053
1054 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1055 data, data->groups);
1056 return PTR_ERR_OR_ZERO(hwmon_dev);
1057}
1058
1059static const struct i2c_device_id adm1031_id[] = {
1060 { "adm1030", adm1030 },
1061 { "adm1031", adm1031 },
1062 { }
1063};
1064MODULE_DEVICE_TABLE(i2c, adm1031_id);
1065
1066static struct i2c_driver adm1031_driver = {
1067 .class = I2C_CLASS_HWMON,
1068 .driver = {
1069 .name = "adm1031",
1070 },
1071 .probe = adm1031_probe,
1072 .id_table = adm1031_id,
1073 .detect = adm1031_detect,
1074 .address_list = normal_i2c,
1075};
1076
1077module_i2c_driver(adm1031_driver);
1078
1079MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1080MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1081MODULE_LICENSE("GPL");
1/*
2 * adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
3 * monitoring
4 * Based on lm75.c and lm85.c
5 * Supports adm1030 / adm1031
6 * Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
7 * Reworked by Jean Delvare <jdelvare@suse.de>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 */
23
24#include <linux/module.h>
25#include <linux/init.h>
26#include <linux/slab.h>
27#include <linux/jiffies.h>
28#include <linux/i2c.h>
29#include <linux/hwmon.h>
30#include <linux/hwmon-sysfs.h>
31#include <linux/err.h>
32#include <linux/mutex.h>
33
34/* Following macros takes channel parameter starting from 0 to 2 */
35#define ADM1031_REG_FAN_SPEED(nr) (0x08 + (nr))
36#define ADM1031_REG_FAN_DIV(nr) (0x20 + (nr))
37#define ADM1031_REG_PWM (0x22)
38#define ADM1031_REG_FAN_MIN(nr) (0x10 + (nr))
39#define ADM1031_REG_FAN_FILTER (0x23)
40
41#define ADM1031_REG_TEMP_OFFSET(nr) (0x0d + (nr))
42#define ADM1031_REG_TEMP_MAX(nr) (0x14 + 4 * (nr))
43#define ADM1031_REG_TEMP_MIN(nr) (0x15 + 4 * (nr))
44#define ADM1031_REG_TEMP_CRIT(nr) (0x16 + 4 * (nr))
45
46#define ADM1031_REG_TEMP(nr) (0x0a + (nr))
47#define ADM1031_REG_AUTO_TEMP(nr) (0x24 + (nr))
48
49#define ADM1031_REG_STATUS(nr) (0x2 + (nr))
50
51#define ADM1031_REG_CONF1 0x00
52#define ADM1031_REG_CONF2 0x01
53#define ADM1031_REG_EXT_TEMP 0x06
54
55#define ADM1031_CONF1_MONITOR_ENABLE 0x01 /* Monitoring enable */
56#define ADM1031_CONF1_PWM_INVERT 0x08 /* PWM Invert */
57#define ADM1031_CONF1_AUTO_MODE 0x80 /* Auto FAN */
58
59#define ADM1031_CONF2_PWM1_ENABLE 0x01
60#define ADM1031_CONF2_PWM2_ENABLE 0x02
61#define ADM1031_CONF2_TACH1_ENABLE 0x04
62#define ADM1031_CONF2_TACH2_ENABLE 0x08
63#define ADM1031_CONF2_TEMP_ENABLE(chan) (0x10 << (chan))
64
65#define ADM1031_UPDATE_RATE_MASK 0x1c
66#define ADM1031_UPDATE_RATE_SHIFT 2
67
68/* Addresses to scan */
69static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
70
71enum chips { adm1030, adm1031 };
72
73typedef u8 auto_chan_table_t[8][2];
74
75/* Each client has this additional data */
76struct adm1031_data {
77 struct i2c_client *client;
78 const struct attribute_group *groups[3];
79 struct mutex update_lock;
80 int chip_type;
81 char valid; /* !=0 if following fields are valid */
82 unsigned long last_updated; /* In jiffies */
83 unsigned int update_interval; /* In milliseconds */
84 /*
85 * The chan_select_table contains the possible configurations for
86 * auto fan control.
87 */
88 const auto_chan_table_t *chan_select_table;
89 u16 alarm;
90 u8 conf1;
91 u8 conf2;
92 u8 fan[2];
93 u8 fan_div[2];
94 u8 fan_min[2];
95 u8 pwm[2];
96 u8 old_pwm[2];
97 s8 temp[3];
98 u8 ext_temp[3];
99 u8 auto_temp[3];
100 u8 auto_temp_min[3];
101 u8 auto_temp_off[3];
102 u8 auto_temp_max[3];
103 s8 temp_offset[3];
104 s8 temp_min[3];
105 s8 temp_max[3];
106 s8 temp_crit[3];
107};
108
109static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
110{
111 return i2c_smbus_read_byte_data(client, reg);
112}
113
114static inline int
115adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
116{
117 return i2c_smbus_write_byte_data(client, reg, value);
118}
119
120static struct adm1031_data *adm1031_update_device(struct device *dev)
121{
122 struct adm1031_data *data = dev_get_drvdata(dev);
123 struct i2c_client *client = data->client;
124 unsigned long next_update;
125 int chan;
126
127 mutex_lock(&data->update_lock);
128
129 next_update = data->last_updated
130 + msecs_to_jiffies(data->update_interval);
131 if (time_after(jiffies, next_update) || !data->valid) {
132
133 dev_dbg(&client->dev, "Starting adm1031 update\n");
134 for (chan = 0;
135 chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
136 u8 oldh, newh;
137
138 oldh =
139 adm1031_read_value(client, ADM1031_REG_TEMP(chan));
140 data->ext_temp[chan] =
141 adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
142 newh =
143 adm1031_read_value(client, ADM1031_REG_TEMP(chan));
144 if (newh != oldh) {
145 data->ext_temp[chan] =
146 adm1031_read_value(client,
147 ADM1031_REG_EXT_TEMP);
148#ifdef DEBUG
149 oldh =
150 adm1031_read_value(client,
151 ADM1031_REG_TEMP(chan));
152
153 /* oldh is actually newer */
154 if (newh != oldh)
155 dev_warn(&client->dev,
156 "Remote temperature may be wrong.\n");
157#endif
158 }
159 data->temp[chan] = newh;
160
161 data->temp_offset[chan] =
162 adm1031_read_value(client,
163 ADM1031_REG_TEMP_OFFSET(chan));
164 data->temp_min[chan] =
165 adm1031_read_value(client,
166 ADM1031_REG_TEMP_MIN(chan));
167 data->temp_max[chan] =
168 adm1031_read_value(client,
169 ADM1031_REG_TEMP_MAX(chan));
170 data->temp_crit[chan] =
171 adm1031_read_value(client,
172 ADM1031_REG_TEMP_CRIT(chan));
173 data->auto_temp[chan] =
174 adm1031_read_value(client,
175 ADM1031_REG_AUTO_TEMP(chan));
176
177 }
178
179 data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
180 data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
181
182 data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
183 | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
184 if (data->chip_type == adm1030)
185 data->alarm &= 0xc0ff;
186
187 for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
188 chan++) {
189 data->fan_div[chan] =
190 adm1031_read_value(client,
191 ADM1031_REG_FAN_DIV(chan));
192 data->fan_min[chan] =
193 adm1031_read_value(client,
194 ADM1031_REG_FAN_MIN(chan));
195 data->fan[chan] =
196 adm1031_read_value(client,
197 ADM1031_REG_FAN_SPEED(chan));
198 data->pwm[chan] =
199 (adm1031_read_value(client,
200 ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
201 }
202 data->last_updated = jiffies;
203 data->valid = 1;
204 }
205
206 mutex_unlock(&data->update_lock);
207
208 return data;
209}
210
211#define TEMP_TO_REG(val) (((val) < 0 ? ((val - 500) / 1000) : \
212 ((val + 500) / 1000)))
213
214#define TEMP_FROM_REG(val) ((val) * 1000)
215
216#define TEMP_FROM_REG_EXT(val, ext) (TEMP_FROM_REG(val) + (ext) * 125)
217
218#define TEMP_OFFSET_TO_REG(val) (TEMP_TO_REG(val) & 0x8f)
219#define TEMP_OFFSET_FROM_REG(val) TEMP_FROM_REG((val) < 0 ? \
220 (val) | 0x70 : (val))
221
222#define FAN_FROM_REG(reg, div) ((reg) ? \
223 (11250 * 60) / ((reg) * (div)) : 0)
224
225static int FAN_TO_REG(int reg, int div)
226{
227 int tmp;
228 tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div);
229 return tmp > 255 ? 255 : tmp;
230}
231
232#define FAN_DIV_FROM_REG(reg) (1<<(((reg)&0xc0)>>6))
233
234#define PWM_TO_REG(val) (clamp_val((val), 0, 255) >> 4)
235#define PWM_FROM_REG(val) ((val) << 4)
236
237#define FAN_CHAN_FROM_REG(reg) (((reg) >> 5) & 7)
238#define FAN_CHAN_TO_REG(val, reg) \
239 (((reg) & 0x1F) | (((val) << 5) & 0xe0))
240
241#define AUTO_TEMP_MIN_TO_REG(val, reg) \
242 ((((val) / 500) & 0xf8) | ((reg) & 0x7))
243#define AUTO_TEMP_RANGE_FROM_REG(reg) (5000 * (1 << ((reg) & 0x7)))
244#define AUTO_TEMP_MIN_FROM_REG(reg) (1000 * ((((reg) >> 3) & 0x1f) << 2))
245
246#define AUTO_TEMP_MIN_FROM_REG_DEG(reg) ((((reg) >> 3) & 0x1f) << 2)
247
248#define AUTO_TEMP_OFF_FROM_REG(reg) \
249 (AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
250
251#define AUTO_TEMP_MAX_FROM_REG(reg) \
252 (AUTO_TEMP_RANGE_FROM_REG(reg) + \
253 AUTO_TEMP_MIN_FROM_REG(reg))
254
255static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
256{
257 int ret;
258 int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
259
260 range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
261 ret = ((reg & 0xf8) |
262 (range < 10000 ? 0 :
263 range < 20000 ? 1 :
264 range < 40000 ? 2 : range < 80000 ? 3 : 4));
265 return ret;
266}
267
268/* FAN auto control */
269#define GET_FAN_AUTO_BITFIELD(data, idx) \
270 (*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
271
272/*
273 * The tables below contains the possible values for the auto fan
274 * control bitfields. the index in the table is the register value.
275 * MSb is the auto fan control enable bit, so the four first entries
276 * in the table disables auto fan control when both bitfields are zero.
277 */
278static const auto_chan_table_t auto_channel_select_table_adm1031 = {
279 { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
280 { 2 /* 0b010 */ , 4 /* 0b100 */ },
281 { 2 /* 0b010 */ , 2 /* 0b010 */ },
282 { 4 /* 0b100 */ , 4 /* 0b100 */ },
283 { 7 /* 0b111 */ , 7 /* 0b111 */ },
284};
285
286static const auto_chan_table_t auto_channel_select_table_adm1030 = {
287 { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
288 { 2 /* 0b10 */ , 0 },
289 { 0xff /* invalid */ , 0 },
290 { 0xff /* invalid */ , 0 },
291 { 3 /* 0b11 */ , 0 },
292};
293
294/*
295 * That function checks if a bitfield is valid and returns the other bitfield
296 * nearest match if no exact match where found.
297 */
298static int
299get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg)
300{
301 int i;
302 int first_match = -1, exact_match = -1;
303 u8 other_reg_val =
304 (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
305
306 if (val == 0)
307 return 0;
308
309 for (i = 0; i < 8; i++) {
310 if ((val == (*data->chan_select_table)[i][chan]) &&
311 ((*data->chan_select_table)[i][chan ? 0 : 1] ==
312 other_reg_val)) {
313 /* We found an exact match */
314 exact_match = i;
315 break;
316 } else if (val == (*data->chan_select_table)[i][chan] &&
317 first_match == -1) {
318 /*
319 * Save the first match in case of an exact match has
320 * not been found
321 */
322 first_match = i;
323 }
324 }
325
326 if (exact_match >= 0)
327 return exact_match;
328 else if (first_match >= 0)
329 return first_match;
330
331 return -EINVAL;
332}
333
334static ssize_t show_fan_auto_channel(struct device *dev,
335 struct device_attribute *attr, char *buf)
336{
337 int nr = to_sensor_dev_attr(attr)->index;
338 struct adm1031_data *data = adm1031_update_device(dev);
339 return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
340}
341
342static ssize_t
343set_fan_auto_channel(struct device *dev, struct device_attribute *attr,
344 const char *buf, size_t count)
345{
346 struct adm1031_data *data = dev_get_drvdata(dev);
347 struct i2c_client *client = data->client;
348 int nr = to_sensor_dev_attr(attr)->index;
349 long val;
350 u8 reg;
351 int ret;
352 u8 old_fan_mode;
353
354 ret = kstrtol(buf, 10, &val);
355 if (ret)
356 return ret;
357
358 old_fan_mode = data->conf1;
359
360 mutex_lock(&data->update_lock);
361
362 ret = get_fan_auto_nearest(data, nr, val, data->conf1);
363 if (ret < 0) {
364 mutex_unlock(&data->update_lock);
365 return ret;
366 }
367 reg = ret;
368 data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
369 if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
370 (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
371 if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
372 /*
373 * Switch to Auto Fan Mode
374 * Save PWM registers
375 * Set PWM registers to 33% Both
376 */
377 data->old_pwm[0] = data->pwm[0];
378 data->old_pwm[1] = data->pwm[1];
379 adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
380 } else {
381 /* Switch to Manual Mode */
382 data->pwm[0] = data->old_pwm[0];
383 data->pwm[1] = data->old_pwm[1];
384 /* Restore PWM registers */
385 adm1031_write_value(client, ADM1031_REG_PWM,
386 data->pwm[0] | (data->pwm[1] << 4));
387 }
388 }
389 data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
390 adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
391 mutex_unlock(&data->update_lock);
392 return count;
393}
394
395static SENSOR_DEVICE_ATTR(auto_fan1_channel, S_IRUGO | S_IWUSR,
396 show_fan_auto_channel, set_fan_auto_channel, 0);
397static SENSOR_DEVICE_ATTR(auto_fan2_channel, S_IRUGO | S_IWUSR,
398 show_fan_auto_channel, set_fan_auto_channel, 1);
399
400/* Auto Temps */
401static ssize_t show_auto_temp_off(struct device *dev,
402 struct device_attribute *attr, char *buf)
403{
404 int nr = to_sensor_dev_attr(attr)->index;
405 struct adm1031_data *data = adm1031_update_device(dev);
406 return sprintf(buf, "%d\n",
407 AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
408}
409static ssize_t show_auto_temp_min(struct device *dev,
410 struct device_attribute *attr, char *buf)
411{
412 int nr = to_sensor_dev_attr(attr)->index;
413 struct adm1031_data *data = adm1031_update_device(dev);
414 return sprintf(buf, "%d\n",
415 AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
416}
417static ssize_t
418set_auto_temp_min(struct device *dev, struct device_attribute *attr,
419 const char *buf, size_t count)
420{
421 struct adm1031_data *data = dev_get_drvdata(dev);
422 struct i2c_client *client = data->client;
423 int nr = to_sensor_dev_attr(attr)->index;
424 long val;
425 int ret;
426
427 ret = kstrtol(buf, 10, &val);
428 if (ret)
429 return ret;
430
431 val = clamp_val(val, 0, 127000);
432 mutex_lock(&data->update_lock);
433 data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
434 adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
435 data->auto_temp[nr]);
436 mutex_unlock(&data->update_lock);
437 return count;
438}
439static ssize_t show_auto_temp_max(struct device *dev,
440 struct device_attribute *attr, char *buf)
441{
442 int nr = to_sensor_dev_attr(attr)->index;
443 struct adm1031_data *data = adm1031_update_device(dev);
444 return sprintf(buf, "%d\n",
445 AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
446}
447static ssize_t
448set_auto_temp_max(struct device *dev, struct device_attribute *attr,
449 const char *buf, size_t count)
450{
451 struct adm1031_data *data = dev_get_drvdata(dev);
452 struct i2c_client *client = data->client;
453 int nr = to_sensor_dev_attr(attr)->index;
454 long val;
455 int ret;
456
457 ret = kstrtol(buf, 10, &val);
458 if (ret)
459 return ret;
460
461 val = clamp_val(val, 0, 127000);
462 mutex_lock(&data->update_lock);
463 data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
464 data->pwm[nr]);
465 adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
466 data->temp_max[nr]);
467 mutex_unlock(&data->update_lock);
468 return count;
469}
470
471#define auto_temp_reg(offset) \
472static SENSOR_DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO, \
473 show_auto_temp_off, NULL, offset - 1); \
474static SENSOR_DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR, \
475 show_auto_temp_min, set_auto_temp_min, offset - 1); \
476static SENSOR_DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR, \
477 show_auto_temp_max, set_auto_temp_max, offset - 1)
478
479auto_temp_reg(1);
480auto_temp_reg(2);
481auto_temp_reg(3);
482
483/* pwm */
484static ssize_t show_pwm(struct device *dev,
485 struct device_attribute *attr, char *buf)
486{
487 int nr = to_sensor_dev_attr(attr)->index;
488 struct adm1031_data *data = adm1031_update_device(dev);
489 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
490}
491static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
492 const char *buf, size_t count)
493{
494 struct adm1031_data *data = dev_get_drvdata(dev);
495 struct i2c_client *client = data->client;
496 int nr = to_sensor_dev_attr(attr)->index;
497 long val;
498 int ret, reg;
499
500 ret = kstrtol(buf, 10, &val);
501 if (ret)
502 return ret;
503
504 mutex_lock(&data->update_lock);
505 if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
506 (((val>>4) & 0xf) != 5)) {
507 /* In automatic mode, the only PWM accepted is 33% */
508 mutex_unlock(&data->update_lock);
509 return -EINVAL;
510 }
511 data->pwm[nr] = PWM_TO_REG(val);
512 reg = adm1031_read_value(client, ADM1031_REG_PWM);
513 adm1031_write_value(client, ADM1031_REG_PWM,
514 nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
515 : (data->pwm[nr] & 0xf) | (reg & 0xf0));
516 mutex_unlock(&data->update_lock);
517 return count;
518}
519
520static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 0);
521static SENSOR_DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 1);
522static SENSOR_DEVICE_ATTR(auto_fan1_min_pwm, S_IRUGO | S_IWUSR,
523 show_pwm, set_pwm, 0);
524static SENSOR_DEVICE_ATTR(auto_fan2_min_pwm, S_IRUGO | S_IWUSR,
525 show_pwm, set_pwm, 1);
526
527/* Fans */
528
529/*
530 * That function checks the cases where the fan reading is not
531 * relevant. It is used to provide 0 as fan reading when the fan is
532 * not supposed to run
533 */
534static int trust_fan_readings(struct adm1031_data *data, int chan)
535{
536 int res = 0;
537
538 if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
539 switch (data->conf1 & 0x60) {
540 case 0x00:
541 /*
542 * remote temp1 controls fan1,
543 * remote temp2 controls fan2
544 */
545 res = data->temp[chan+1] >=
546 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
547 break;
548 case 0x20: /* remote temp1 controls both fans */
549 res =
550 data->temp[1] >=
551 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
552 break;
553 case 0x40: /* remote temp2 controls both fans */
554 res =
555 data->temp[2] >=
556 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
557 break;
558 case 0x60: /* max controls both fans */
559 res =
560 data->temp[0] >=
561 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
562 || data->temp[1] >=
563 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
564 || (data->chip_type == adm1031
565 && data->temp[2] >=
566 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
567 break;
568 }
569 } else {
570 res = data->pwm[chan] > 0;
571 }
572 return res;
573}
574
575
576static ssize_t show_fan(struct device *dev,
577 struct device_attribute *attr, char *buf)
578{
579 int nr = to_sensor_dev_attr(attr)->index;
580 struct adm1031_data *data = adm1031_update_device(dev);
581 int value;
582
583 value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
584 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
585 return sprintf(buf, "%d\n", value);
586}
587
588static ssize_t show_fan_div(struct device *dev,
589 struct device_attribute *attr, char *buf)
590{
591 int nr = to_sensor_dev_attr(attr)->index;
592 struct adm1031_data *data = adm1031_update_device(dev);
593 return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
594}
595static ssize_t show_fan_min(struct device *dev,
596 struct device_attribute *attr, char *buf)
597{
598 int nr = to_sensor_dev_attr(attr)->index;
599 struct adm1031_data *data = adm1031_update_device(dev);
600 return sprintf(buf, "%d\n",
601 FAN_FROM_REG(data->fan_min[nr],
602 FAN_DIV_FROM_REG(data->fan_div[nr])));
603}
604static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
605 const char *buf, size_t count)
606{
607 struct adm1031_data *data = dev_get_drvdata(dev);
608 struct i2c_client *client = data->client;
609 int nr = to_sensor_dev_attr(attr)->index;
610 long val;
611 int ret;
612
613 ret = kstrtol(buf, 10, &val);
614 if (ret)
615 return ret;
616
617 mutex_lock(&data->update_lock);
618 if (val) {
619 data->fan_min[nr] =
620 FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
621 } else {
622 data->fan_min[nr] = 0xff;
623 }
624 adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
625 mutex_unlock(&data->update_lock);
626 return count;
627}
628static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
629 const char *buf, size_t count)
630{
631 struct adm1031_data *data = dev_get_drvdata(dev);
632 struct i2c_client *client = data->client;
633 int nr = to_sensor_dev_attr(attr)->index;
634 long val;
635 u8 tmp;
636 int old_div;
637 int new_min;
638 int ret;
639
640 ret = kstrtol(buf, 10, &val);
641 if (ret)
642 return ret;
643
644 tmp = val == 8 ? 0xc0 :
645 val == 4 ? 0x80 :
646 val == 2 ? 0x40 :
647 val == 1 ? 0x00 :
648 0xff;
649 if (tmp == 0xff)
650 return -EINVAL;
651
652 mutex_lock(&data->update_lock);
653 /* Get fresh readings */
654 data->fan_div[nr] = adm1031_read_value(client,
655 ADM1031_REG_FAN_DIV(nr));
656 data->fan_min[nr] = adm1031_read_value(client,
657 ADM1031_REG_FAN_MIN(nr));
658
659 /* Write the new clock divider and fan min */
660 old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
661 data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
662 new_min = data->fan_min[nr] * old_div / val;
663 data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
664
665 adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
666 data->fan_div[nr]);
667 adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
668 data->fan_min[nr]);
669
670 /* Invalidate the cache: fan speed is no longer valid */
671 data->valid = 0;
672 mutex_unlock(&data->update_lock);
673 return count;
674}
675
676#define fan_offset(offset) \
677static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
678 show_fan, NULL, offset - 1); \
679static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
680 show_fan_min, set_fan_min, offset - 1); \
681static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
682 show_fan_div, set_fan_div, offset - 1)
683
684fan_offset(1);
685fan_offset(2);
686
687
688/* Temps */
689static ssize_t show_temp(struct device *dev,
690 struct device_attribute *attr, char *buf)
691{
692 int nr = to_sensor_dev_attr(attr)->index;
693 struct adm1031_data *data = adm1031_update_device(dev);
694 int ext;
695 ext = nr == 0 ?
696 ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
697 (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
698 return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
699}
700static ssize_t show_temp_offset(struct device *dev,
701 struct device_attribute *attr, char *buf)
702{
703 int nr = to_sensor_dev_attr(attr)->index;
704 struct adm1031_data *data = adm1031_update_device(dev);
705 return sprintf(buf, "%d\n",
706 TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
707}
708static ssize_t show_temp_min(struct device *dev,
709 struct device_attribute *attr, char *buf)
710{
711 int nr = to_sensor_dev_attr(attr)->index;
712 struct adm1031_data *data = adm1031_update_device(dev);
713 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
714}
715static ssize_t show_temp_max(struct device *dev,
716 struct device_attribute *attr, char *buf)
717{
718 int nr = to_sensor_dev_attr(attr)->index;
719 struct adm1031_data *data = adm1031_update_device(dev);
720 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
721}
722static ssize_t show_temp_crit(struct device *dev,
723 struct device_attribute *attr, char *buf)
724{
725 int nr = to_sensor_dev_attr(attr)->index;
726 struct adm1031_data *data = adm1031_update_device(dev);
727 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
728}
729static ssize_t set_temp_offset(struct device *dev,
730 struct device_attribute *attr, const char *buf,
731 size_t count)
732{
733 struct adm1031_data *data = dev_get_drvdata(dev);
734 struct i2c_client *client = data->client;
735 int nr = to_sensor_dev_attr(attr)->index;
736 long val;
737 int ret;
738
739 ret = kstrtol(buf, 10, &val);
740 if (ret)
741 return ret;
742
743 val = clamp_val(val, -15000, 15000);
744 mutex_lock(&data->update_lock);
745 data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
746 adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
747 data->temp_offset[nr]);
748 mutex_unlock(&data->update_lock);
749 return count;
750}
751static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
752 const char *buf, size_t count)
753{
754 struct adm1031_data *data = dev_get_drvdata(dev);
755 struct i2c_client *client = data->client;
756 int nr = to_sensor_dev_attr(attr)->index;
757 long val;
758 int ret;
759
760 ret = kstrtol(buf, 10, &val);
761 if (ret)
762 return ret;
763
764 val = clamp_val(val, -55000, 127000);
765 mutex_lock(&data->update_lock);
766 data->temp_min[nr] = TEMP_TO_REG(val);
767 adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
768 data->temp_min[nr]);
769 mutex_unlock(&data->update_lock);
770 return count;
771}
772static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
773 const char *buf, size_t count)
774{
775 struct adm1031_data *data = dev_get_drvdata(dev);
776 struct i2c_client *client = data->client;
777 int nr = to_sensor_dev_attr(attr)->index;
778 long val;
779 int ret;
780
781 ret = kstrtol(buf, 10, &val);
782 if (ret)
783 return ret;
784
785 val = clamp_val(val, -55000, 127000);
786 mutex_lock(&data->update_lock);
787 data->temp_max[nr] = TEMP_TO_REG(val);
788 adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
789 data->temp_max[nr]);
790 mutex_unlock(&data->update_lock);
791 return count;
792}
793static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
794 const char *buf, size_t count)
795{
796 struct adm1031_data *data = dev_get_drvdata(dev);
797 struct i2c_client *client = data->client;
798 int nr = to_sensor_dev_attr(attr)->index;
799 long val;
800 int ret;
801
802 ret = kstrtol(buf, 10, &val);
803 if (ret)
804 return ret;
805
806 val = clamp_val(val, -55000, 127000);
807 mutex_lock(&data->update_lock);
808 data->temp_crit[nr] = TEMP_TO_REG(val);
809 adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
810 data->temp_crit[nr]);
811 mutex_unlock(&data->update_lock);
812 return count;
813}
814
815#define temp_reg(offset) \
816static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
817 show_temp, NULL, offset - 1); \
818static SENSOR_DEVICE_ATTR(temp##offset##_offset, S_IRUGO | S_IWUSR, \
819 show_temp_offset, set_temp_offset, offset - 1); \
820static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
821 show_temp_min, set_temp_min, offset - 1); \
822static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
823 show_temp_max, set_temp_max, offset - 1); \
824static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR, \
825 show_temp_crit, set_temp_crit, offset - 1)
826
827temp_reg(1);
828temp_reg(2);
829temp_reg(3);
830
831/* Alarms */
832static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
833 char *buf)
834{
835 struct adm1031_data *data = adm1031_update_device(dev);
836 return sprintf(buf, "%d\n", data->alarm);
837}
838
839static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
840
841static ssize_t show_alarm(struct device *dev,
842 struct device_attribute *attr, char *buf)
843{
844 int bitnr = to_sensor_dev_attr(attr)->index;
845 struct adm1031_data *data = adm1031_update_device(dev);
846 return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
847}
848
849static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 0);
850static SENSOR_DEVICE_ATTR(fan1_fault, S_IRUGO, show_alarm, NULL, 1);
851static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 2);
852static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
853static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 4);
854static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 5);
855static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
856static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 7);
857static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 8);
858static SENSOR_DEVICE_ATTR(fan2_fault, S_IRUGO, show_alarm, NULL, 9);
859static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 10);
860static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
861static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 12);
862static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 13);
863static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 14);
864
865/* Update Interval */
866static const unsigned int update_intervals[] = {
867 16000, 8000, 4000, 2000, 1000, 500, 250, 125,
868};
869
870static ssize_t show_update_interval(struct device *dev,
871 struct device_attribute *attr, char *buf)
872{
873 struct adm1031_data *data = dev_get_drvdata(dev);
874
875 return sprintf(buf, "%u\n", data->update_interval);
876}
877
878static ssize_t set_update_interval(struct device *dev,
879 struct device_attribute *attr,
880 const char *buf, size_t count)
881{
882 struct adm1031_data *data = dev_get_drvdata(dev);
883 struct i2c_client *client = data->client;
884 unsigned long val;
885 int i, err;
886 u8 reg;
887
888 err = kstrtoul(buf, 10, &val);
889 if (err)
890 return err;
891
892 /*
893 * Find the nearest update interval from the table.
894 * Use it to determine the matching update rate.
895 */
896 for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
897 if (val >= update_intervals[i])
898 break;
899 }
900 /* if not found, we point to the last entry (lowest update interval) */
901
902 /* set the new update rate while preserving other settings */
903 reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
904 reg &= ~ADM1031_UPDATE_RATE_MASK;
905 reg |= i << ADM1031_UPDATE_RATE_SHIFT;
906 adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
907
908 mutex_lock(&data->update_lock);
909 data->update_interval = update_intervals[i];
910 mutex_unlock(&data->update_lock);
911
912 return count;
913}
914
915static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval,
916 set_update_interval);
917
918static struct attribute *adm1031_attributes[] = {
919 &sensor_dev_attr_fan1_input.dev_attr.attr,
920 &sensor_dev_attr_fan1_div.dev_attr.attr,
921 &sensor_dev_attr_fan1_min.dev_attr.attr,
922 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
923 &sensor_dev_attr_fan1_fault.dev_attr.attr,
924 &sensor_dev_attr_pwm1.dev_attr.attr,
925 &sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
926 &sensor_dev_attr_temp1_input.dev_attr.attr,
927 &sensor_dev_attr_temp1_offset.dev_attr.attr,
928 &sensor_dev_attr_temp1_min.dev_attr.attr,
929 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
930 &sensor_dev_attr_temp1_max.dev_attr.attr,
931 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
932 &sensor_dev_attr_temp1_crit.dev_attr.attr,
933 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
934 &sensor_dev_attr_temp2_input.dev_attr.attr,
935 &sensor_dev_attr_temp2_offset.dev_attr.attr,
936 &sensor_dev_attr_temp2_min.dev_attr.attr,
937 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
938 &sensor_dev_attr_temp2_max.dev_attr.attr,
939 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
940 &sensor_dev_attr_temp2_crit.dev_attr.attr,
941 &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
942 &sensor_dev_attr_temp2_fault.dev_attr.attr,
943
944 &sensor_dev_attr_auto_temp1_off.dev_attr.attr,
945 &sensor_dev_attr_auto_temp1_min.dev_attr.attr,
946 &sensor_dev_attr_auto_temp1_max.dev_attr.attr,
947
948 &sensor_dev_attr_auto_temp2_off.dev_attr.attr,
949 &sensor_dev_attr_auto_temp2_min.dev_attr.attr,
950 &sensor_dev_attr_auto_temp2_max.dev_attr.attr,
951
952 &sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
953
954 &dev_attr_update_interval.attr,
955 &dev_attr_alarms.attr,
956
957 NULL
958};
959
960static const struct attribute_group adm1031_group = {
961 .attrs = adm1031_attributes,
962};
963
964static struct attribute *adm1031_attributes_opt[] = {
965 &sensor_dev_attr_fan2_input.dev_attr.attr,
966 &sensor_dev_attr_fan2_div.dev_attr.attr,
967 &sensor_dev_attr_fan2_min.dev_attr.attr,
968 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
969 &sensor_dev_attr_fan2_fault.dev_attr.attr,
970 &sensor_dev_attr_pwm2.dev_attr.attr,
971 &sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
972 &sensor_dev_attr_temp3_input.dev_attr.attr,
973 &sensor_dev_attr_temp3_offset.dev_attr.attr,
974 &sensor_dev_attr_temp3_min.dev_attr.attr,
975 &sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
976 &sensor_dev_attr_temp3_max.dev_attr.attr,
977 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
978 &sensor_dev_attr_temp3_crit.dev_attr.attr,
979 &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
980 &sensor_dev_attr_temp3_fault.dev_attr.attr,
981 &sensor_dev_attr_auto_temp3_off.dev_attr.attr,
982 &sensor_dev_attr_auto_temp3_min.dev_attr.attr,
983 &sensor_dev_attr_auto_temp3_max.dev_attr.attr,
984 &sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
985 NULL
986};
987
988static const struct attribute_group adm1031_group_opt = {
989 .attrs = adm1031_attributes_opt,
990};
991
992/* Return 0 if detection is successful, -ENODEV otherwise */
993static int adm1031_detect(struct i2c_client *client,
994 struct i2c_board_info *info)
995{
996 struct i2c_adapter *adapter = client->adapter;
997 const char *name;
998 int id, co;
999
1000 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1001 return -ENODEV;
1002
1003 id = i2c_smbus_read_byte_data(client, 0x3d);
1004 co = i2c_smbus_read_byte_data(client, 0x3e);
1005
1006 if (!((id == 0x31 || id == 0x30) && co == 0x41))
1007 return -ENODEV;
1008 name = (id == 0x30) ? "adm1030" : "adm1031";
1009
1010 strlcpy(info->type, name, I2C_NAME_SIZE);
1011
1012 return 0;
1013}
1014
1015static void adm1031_init_client(struct i2c_client *client)
1016{
1017 unsigned int read_val;
1018 unsigned int mask;
1019 int i;
1020 struct adm1031_data *data = i2c_get_clientdata(client);
1021
1022 mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
1023 if (data->chip_type == adm1031) {
1024 mask |= (ADM1031_CONF2_PWM2_ENABLE |
1025 ADM1031_CONF2_TACH2_ENABLE);
1026 }
1027 /* Initialize the ADM1031 chip (enables fan speed reading ) */
1028 read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
1029 if ((read_val | mask) != read_val)
1030 adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
1031
1032 read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
1033 if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
1034 adm1031_write_value(client, ADM1031_REG_CONF1,
1035 read_val | ADM1031_CONF1_MONITOR_ENABLE);
1036 }
1037
1038 /* Read the chip's update rate */
1039 mask = ADM1031_UPDATE_RATE_MASK;
1040 read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
1041 i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
1042 /* Save it as update interval */
1043 data->update_interval = update_intervals[i];
1044}
1045
1046static int adm1031_probe(struct i2c_client *client,
1047 const struct i2c_device_id *id)
1048{
1049 struct device *dev = &client->dev;
1050 struct device *hwmon_dev;
1051 struct adm1031_data *data;
1052
1053 data = devm_kzalloc(dev, sizeof(struct adm1031_data), GFP_KERNEL);
1054 if (!data)
1055 return -ENOMEM;
1056
1057 i2c_set_clientdata(client, data);
1058 data->client = client;
1059 data->chip_type = id->driver_data;
1060 mutex_init(&data->update_lock);
1061
1062 if (data->chip_type == adm1030)
1063 data->chan_select_table = &auto_channel_select_table_adm1030;
1064 else
1065 data->chan_select_table = &auto_channel_select_table_adm1031;
1066
1067 /* Initialize the ADM1031 chip */
1068 adm1031_init_client(client);
1069
1070 /* sysfs hooks */
1071 data->groups[0] = &adm1031_group;
1072 if (data->chip_type == adm1031)
1073 data->groups[1] = &adm1031_group_opt;
1074
1075 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1076 data, data->groups);
1077 return PTR_ERR_OR_ZERO(hwmon_dev);
1078}
1079
1080static const struct i2c_device_id adm1031_id[] = {
1081 { "adm1030", adm1030 },
1082 { "adm1031", adm1031 },
1083 { }
1084};
1085MODULE_DEVICE_TABLE(i2c, adm1031_id);
1086
1087static struct i2c_driver adm1031_driver = {
1088 .class = I2C_CLASS_HWMON,
1089 .driver = {
1090 .name = "adm1031",
1091 },
1092 .probe = adm1031_probe,
1093 .id_table = adm1031_id,
1094 .detect = adm1031_detect,
1095 .address_list = normal_i2c,
1096};
1097
1098module_i2c_driver(adm1031_driver);
1099
1100MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1101MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1102MODULE_LICENSE("GPL");