Linux Audio

Check our new training course

Loading...
v6.8
   1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
   2/**************************************************************************
   3 *
   4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 **************************************************************************/
  28/*
  29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  30 */
  31
  32#define pr_fmt(fmt) "[TTM] " fmt
  33
  34#include <drm/ttm/ttm_bo.h>
 
  35#include <drm/ttm/ttm_placement.h>
  36#include <drm/ttm/ttm_tt.h>
  37
  38#include <linux/jiffies.h>
  39#include <linux/slab.h>
  40#include <linux/sched.h>
  41#include <linux/mm.h>
  42#include <linux/file.h>
  43#include <linux/module.h>
  44#include <linux/atomic.h>
  45#include <linux/dma-resv.h>
  46
  47#include "ttm_module.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48
  49static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  50					struct ttm_placement *placement)
  51{
  52	struct drm_printer p = drm_debug_printer(TTM_PFX);
  53	struct ttm_resource_manager *man;
  54	int i, mem_type;
  55
 
 
 
  56	for (i = 0; i < placement->num_placement; i++) {
  57		mem_type = placement->placement[i].mem_type;
  58		drm_printf(&p, "  placement[%d]=0x%08X (%d)\n",
  59			   i, placement->placement[i].flags, mem_type);
  60		man = ttm_manager_type(bo->bdev, mem_type);
  61		ttm_resource_manager_debug(man, &p);
 
 
  62	}
  63}
  64
  65/**
  66 * ttm_bo_move_to_lru_tail
  67 *
  68 * @bo: The buffer object.
  69 *
  70 * Move this BO to the tail of all lru lists used to lookup and reserve an
  71 * object. This function must be called with struct ttm_global::lru_lock
  72 * held, and is used to make a BO less likely to be considered for eviction.
  73 */
  74void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo)
  75{
  76	dma_resv_assert_held(bo->base.resv);
 
  77
  78	if (bo->resource)
  79		ttm_resource_move_to_lru_tail(bo->resource);
  80}
  81EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
  82
  83/**
  84 * ttm_bo_set_bulk_move - update BOs bulk move object
  85 *
  86 * @bo: The buffer object.
  87 * @bulk: bulk move structure
  88 *
  89 * Update the BOs bulk move object, making sure that resources are added/removed
  90 * as well. A bulk move allows to move many resource on the LRU at once,
  91 * resulting in much less overhead of maintaining the LRU.
  92 * The only requirement is that the resources stay together on the LRU and are
  93 * never separated. This is enforces by setting the bulk_move structure on a BO.
  94 * ttm_lru_bulk_move_tail() should be used to move all resources to the tail of
  95 * their LRU list.
  96 */
  97void ttm_bo_set_bulk_move(struct ttm_buffer_object *bo,
  98			  struct ttm_lru_bulk_move *bulk)
 
  99{
 100	dma_resv_assert_held(bo->base.resv);
 
 101
 102	if (bo->bulk_move == bulk)
 103		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105	spin_lock(&bo->bdev->lru_lock);
 106	if (bo->resource)
 107		ttm_resource_del_bulk_move(bo->resource, bo);
 108	bo->bulk_move = bulk;
 109	if (bo->resource)
 110		ttm_resource_add_bulk_move(bo->resource, bo);
 111	spin_unlock(&bo->bdev->lru_lock);
 112}
 113EXPORT_SYMBOL(ttm_bo_set_bulk_move);
 114
 115static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 116				  struct ttm_resource *mem, bool evict,
 117				  struct ttm_operation_ctx *ctx,
 118				  struct ttm_place *hop)
 119{
 120	struct ttm_device *bdev = bo->bdev;
 121	bool old_use_tt, new_use_tt;
 122	int ret;
 123
 124	old_use_tt = !bo->resource || ttm_manager_type(bdev, bo->resource->mem_type)->use_tt;
 125	new_use_tt = ttm_manager_type(bdev, mem->mem_type)->use_tt;
 
 
 
 
 126
 127	ttm_bo_unmap_virtual(bo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 128
 129	/*
 130	 * Create and bind a ttm if required.
 131	 */
 132
 133	if (new_use_tt) {
 134		/* Zero init the new TTM structure if the old location should
 135		 * have used one as well.
 136		 */
 137		ret = ttm_tt_create(bo, old_use_tt);
 
 
 
 
 138		if (ret)
 139			goto out_err;
 140
 141		if (mem->mem_type != TTM_PL_SYSTEM) {
 142			ret = ttm_tt_populate(bo->bdev, bo->ttm, ctx);
 143			if (ret)
 144				goto out_err;
 145		}
 
 
 
 
 
 
 
 
 146	}
 147
 148	ret = dma_resv_reserve_fences(bo->base.resv, 1);
 149	if (ret)
 150		goto out_err;
 
 
 
 
 
 
 
 
 151
 152	ret = bdev->funcs->move(bo, evict, ctx, mem, hop);
 153	if (ret) {
 154		if (ret == -EMULTIHOP)
 155			return ret;
 
 
 
 
 
 
 
 156		goto out_err;
 157	}
 158
 159	ctx->bytes_moved += bo->base.size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160	return 0;
 161
 162out_err:
 163	if (!old_use_tt)
 164		ttm_bo_tt_destroy(bo);
 
 
 
 
 165
 166	return ret;
 167}
 168
 169/*
 170 * Call bo::reserved.
 171 * Will release GPU memory type usage on destruction.
 172 * This is the place to put in driver specific hooks to release
 173 * driver private resources.
 174 * Will release the bo::reserved lock.
 175 */
 176
 177static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 178{
 179	if (bo->bdev->funcs->delete_mem_notify)
 180		bo->bdev->funcs->delete_mem_notify(bo);
 
 
 
 
 
 
 
 181
 182	ttm_bo_tt_destroy(bo);
 183	ttm_resource_free(bo, &bo->resource);
 184}
 185
 186static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
 187{
 188	int r;
 
 
 
 
 
 189
 190	if (bo->base.resv == &bo->base._resv)
 191		return 0;
 192
 193	BUG_ON(!dma_resv_trylock(&bo->base._resv));
 
 
 
 
 194
 195	r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
 196	dma_resv_unlock(&bo->base._resv);
 197	if (r)
 198		return r;
 199
 200	if (bo->type != ttm_bo_type_sg) {
 201		/* This works because the BO is about to be destroyed and nobody
 202		 * reference it any more. The only tricky case is the trylock on
 203		 * the resv object while holding the lru_lock.
 204		 */
 205		spin_lock(&bo->bdev->lru_lock);
 206		bo->base.resv = &bo->base._resv;
 207		spin_unlock(&bo->bdev->lru_lock);
 208	}
 
 
 
 209
 210	return r;
 211}
 212
 213static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
 214{
 215	struct dma_resv *resv = &bo->base._resv;
 216	struct dma_resv_iter cursor;
 217	struct dma_fence *fence;
 
 
 
 
 218
 219	dma_resv_iter_begin(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP);
 220	dma_resv_for_each_fence_unlocked(&cursor, fence) {
 221		if (!fence->ops->signaled)
 222			dma_fence_enable_sw_signaling(fence);
 223	}
 224	dma_resv_iter_end(&cursor);
 
 
 
 
 
 
 
 
 
 
 225}
 226
 227/**
 228 * ttm_bo_cleanup_refs
 229 * If bo idle, remove from lru lists, and unref.
 230 * If not idle, block if possible.
 231 *
 232 * Must be called with lru_lock and reservation held, this function
 233 * will drop the lru lock and optionally the reservation lock before returning.
 234 *
 235 * @bo:                    The buffer object to clean-up
 236 * @interruptible:         Any sleeps should occur interruptibly.
 237 * @no_wait_gpu:           Never wait for gpu. Return -EBUSY instead.
 238 * @unlock_resv:           Unlock the reservation lock as well.
 239 */
 240
 241static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
 242			       bool interruptible, bool no_wait_gpu,
 243			       bool unlock_resv)
 244{
 245	struct dma_resv *resv = &bo->base._resv;
 
 
 
 246	int ret;
 247
 248	if (dma_resv_test_signaled(resv, DMA_RESV_USAGE_BOOKKEEP))
 249		ret = 0;
 250	else
 251		ret = -EBUSY;
 252
 253	if (ret && !no_wait_gpu) {
 254		long lret;
 255
 256		if (unlock_resv)
 257			dma_resv_unlock(bo->base.resv);
 258		spin_unlock(&bo->bdev->lru_lock);
 259
 260		lret = dma_resv_wait_timeout(resv, DMA_RESV_USAGE_BOOKKEEP,
 261					     interruptible,
 262					     30 * HZ);
 263
 264		if (lret < 0)
 265			return lret;
 266		else if (lret == 0)
 267			return -EBUSY;
 
 
 
 268
 269		spin_lock(&bo->bdev->lru_lock);
 270		if (unlock_resv && !dma_resv_trylock(bo->base.resv)) {
 271			/*
 272			 * We raced, and lost, someone else holds the reservation now,
 273			 * and is probably busy in ttm_bo_cleanup_memtype_use.
 274			 *
 275			 * Even if it's not the case, because we finished waiting any
 276			 * delayed destruction would succeed, so just return success
 277			 * here.
 278			 */
 279			spin_unlock(&bo->bdev->lru_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 280			return 0;
 281		}
 282		ret = 0;
 283	}
 284
 285	if (ret) {
 286		if (unlock_resv)
 287			dma_resv_unlock(bo->base.resv);
 288		spin_unlock(&bo->bdev->lru_lock);
 289		return ret;
 290	}
 291
 292	spin_unlock(&bo->bdev->lru_lock);
 
 
 
 
 293	ttm_bo_cleanup_memtype_use(bo);
 294
 295	if (unlock_resv)
 296		dma_resv_unlock(bo->base.resv);
 297
 298	return 0;
 299}
 300
 301/*
 302 * Block for the dma_resv object to become idle, lock the buffer and clean up
 303 * the resource and tt object.
 304 */
 305static void ttm_bo_delayed_delete(struct work_struct *work)
 
 306{
 307	struct ttm_buffer_object *bo;
 
 
 308
 309	bo = container_of(work, typeof(*bo), delayed_delete);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 310
 311	dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, false,
 312			      MAX_SCHEDULE_TIMEOUT);
 313	dma_resv_lock(bo->base.resv, NULL);
 314	ttm_bo_cleanup_memtype_use(bo);
 315	dma_resv_unlock(bo->base.resv);
 316	ttm_bo_put(bo);
 317}
 318
 319static void ttm_bo_release(struct kref *kref)
 320{
 321	struct ttm_buffer_object *bo =
 322	    container_of(kref, struct ttm_buffer_object, kref);
 323	struct ttm_device *bdev = bo->bdev;
 324	int ret;
 325
 326	WARN_ON_ONCE(bo->pin_count);
 327	WARN_ON_ONCE(bo->bulk_move);
 328
 329	if (!bo->deleted) {
 330		ret = ttm_bo_individualize_resv(bo);
 331		if (ret) {
 332			/* Last resort, if we fail to allocate memory for the
 333			 * fences block for the BO to become idle
 334			 */
 335			dma_resv_wait_timeout(bo->base.resv,
 336					      DMA_RESV_USAGE_BOOKKEEP, false,
 337					      30 * HZ);
 338		}
 339
 340		if (bo->bdev->funcs->release_notify)
 341			bo->bdev->funcs->release_notify(bo);
 342
 343		drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node);
 344		ttm_mem_io_free(bdev, bo->resource);
 345
 346		if (!dma_resv_test_signaled(bo->base.resv,
 347					    DMA_RESV_USAGE_BOOKKEEP) ||
 348		    (want_init_on_free() && (bo->ttm != NULL)) ||
 349		    !dma_resv_trylock(bo->base.resv)) {
 350			/* The BO is not idle, resurrect it for delayed destroy */
 351			ttm_bo_flush_all_fences(bo);
 352			bo->deleted = true;
 353
 354			spin_lock(&bo->bdev->lru_lock);
 355
 356			/*
 357			 * Make pinned bos immediately available to
 358			 * shrinkers, now that they are queued for
 359			 * destruction.
 360			 *
 361			 * FIXME: QXL is triggering this. Can be removed when the
 362			 * driver is fixed.
 363			 */
 364			if (bo->pin_count) {
 365				bo->pin_count = 0;
 366				ttm_resource_move_to_lru_tail(bo->resource);
 367			}
 368
 369			kref_init(&bo->kref);
 370			spin_unlock(&bo->bdev->lru_lock);
 
 
 371
 372			INIT_WORK(&bo->delayed_delete, ttm_bo_delayed_delete);
 
 
 
 
 
 
 373
 374			/* Schedule the worker on the closest NUMA node. This
 375			 * improves performance since system memory might be
 376			 * cleared on free and that is best done on a CPU core
 377			 * close to it.
 378			 */
 379			queue_work_node(bdev->pool.nid, bdev->wq, &bo->delayed_delete);
 380			return;
 381		}
 382
 383		ttm_bo_cleanup_memtype_use(bo);
 384		dma_resv_unlock(bo->base.resv);
 
 385	}
 
 386
 387	atomic_dec(&ttm_glob.bo_count);
 388	bo->destroy(bo);
 
 
 
 
 
 
 
 
 
 
 
 389}
 390
 391/**
 392 * ttm_bo_put
 393 *
 394 * @bo: The buffer object.
 395 *
 396 * Unreference a buffer object.
 397 */
 398void ttm_bo_put(struct ttm_buffer_object *bo)
 399{
 
 
 
 400	kref_put(&bo->kref, ttm_bo_release);
 401}
 402EXPORT_SYMBOL(ttm_bo_put);
 403
 404static int ttm_bo_bounce_temp_buffer(struct ttm_buffer_object *bo,
 405				     struct ttm_resource **mem,
 406				     struct ttm_operation_ctx *ctx,
 407				     struct ttm_place *hop)
 408{
 409	struct ttm_placement hop_placement;
 410	struct ttm_resource *hop_mem;
 411	int ret;
 412
 413	hop_placement.num_placement = hop_placement.num_busy_placement = 1;
 414	hop_placement.placement = hop_placement.busy_placement = hop;
 415
 416	/* find space in the bounce domain */
 417	ret = ttm_bo_mem_space(bo, &hop_placement, &hop_mem, ctx);
 418	if (ret)
 419		return ret;
 420	/* move to the bounce domain */
 421	ret = ttm_bo_handle_move_mem(bo, hop_mem, false, ctx, NULL);
 422	if (ret) {
 423		ttm_resource_free(bo, &hop_mem);
 424		return ret;
 425	}
 426	return 0;
 427}
 
 428
 429static int ttm_bo_evict(struct ttm_buffer_object *bo,
 430			struct ttm_operation_ctx *ctx)
 431{
 432	struct ttm_device *bdev = bo->bdev;
 433	struct ttm_resource *evict_mem;
 434	struct ttm_placement placement;
 435	struct ttm_place hop;
 436	int ret = 0;
 437
 438	memset(&hop, 0, sizeof(hop));
 
 
 439
 440	dma_resv_assert_held(bo->base.resv);
 441
 442	placement.num_placement = 0;
 443	placement.num_busy_placement = 0;
 444	bdev->funcs->evict_flags(bo, &placement);
 
 445
 446	if (!placement.num_placement && !placement.num_busy_placement) {
 447		ret = ttm_bo_wait_ctx(bo, ctx);
 448		if (ret)
 449			return ret;
 450
 451		/*
 452		 * Since we've already synced, this frees backing store
 453		 * immediately.
 454		 */
 455		return ttm_bo_pipeline_gutting(bo);
 456	}
 457
 458	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
 
 
 
 
 
 
 459	if (ret) {
 460		if (ret != -ERESTARTSYS) {
 461			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
 462			       bo);
 463			ttm_bo_mem_space_debug(bo, &placement);
 464		}
 465		goto out;
 466	}
 467
 468	do {
 469		ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop);
 470		if (ret != -EMULTIHOP)
 471			break;
 472
 473		ret = ttm_bo_bounce_temp_buffer(bo, &evict_mem, ctx, &hop);
 474	} while (!ret);
 475
 476	if (ret) {
 477		ttm_resource_free(bo, &evict_mem);
 478		if (ret != -ERESTARTSYS && ret != -EINTR)
 479			pr_err("Buffer eviction failed\n");
 
 
 480	}
 
 481out:
 482	return ret;
 483}
 484
 485/**
 486 * ttm_bo_eviction_valuable
 487 *
 488 * @bo: The buffer object to evict
 489 * @place: the placement we need to make room for
 490 *
 491 * Check if it is valuable to evict the BO to make room for the given placement.
 492 */
 493bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
 494			      const struct ttm_place *place)
 495{
 496	struct ttm_resource *res = bo->resource;
 497	struct ttm_device *bdev = bo->bdev;
 498
 499	dma_resv_assert_held(bo->base.resv);
 500	if (bo->resource->mem_type == TTM_PL_SYSTEM)
 501		return true;
 502
 503	/* Don't evict this BO if it's outside of the
 504	 * requested placement range
 505	 */
 506	return ttm_resource_intersects(bdev, res, place, bo->base.size);
 507}
 508EXPORT_SYMBOL(ttm_bo_eviction_valuable);
 509
 510/*
 511 * Check the target bo is allowable to be evicted or swapout, including cases:
 512 *
 513 * a. if share same reservation object with ctx->resv, have assumption
 514 * reservation objects should already be locked, so not lock again and
 515 * return true directly when either the opreation allow_reserved_eviction
 516 * or the target bo already is in delayed free list;
 517 *
 518 * b. Otherwise, trylock it.
 519 */
 520static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo,
 521					   struct ttm_operation_ctx *ctx,
 522					   const struct ttm_place *place,
 523					   bool *locked, bool *busy)
 524{
 525	bool ret = false;
 526
 527	if (bo->pin_count) {
 528		*locked = false;
 529		if (busy)
 530			*busy = false;
 531		return false;
 532	}
 533
 534	if (bo->base.resv == ctx->resv) {
 535		dma_resv_assert_held(bo->base.resv);
 536		if (ctx->allow_res_evict)
 537			ret = true;
 538		*locked = false;
 539		if (busy)
 540			*busy = false;
 541	} else {
 542		ret = dma_resv_trylock(bo->base.resv);
 543		*locked = ret;
 544		if (busy)
 545			*busy = !ret;
 546	}
 547
 548	if (ret && place && (bo->resource->mem_type != place->mem_type ||
 549		!bo->bdev->funcs->eviction_valuable(bo, place))) {
 550		ret = false;
 551		if (*locked) {
 552			dma_resv_unlock(bo->base.resv);
 553			*locked = false;
 554		}
 555	}
 556
 557	return ret;
 558}
 559
 560/**
 561 * ttm_mem_evict_wait_busy - wait for a busy BO to become available
 562 *
 563 * @busy_bo: BO which couldn't be locked with trylock
 564 * @ctx: operation context
 565 * @ticket: acquire ticket
 566 *
 567 * Try to lock a busy buffer object to avoid failing eviction.
 568 */
 569static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo,
 570				   struct ttm_operation_ctx *ctx,
 571				   struct ww_acquire_ctx *ticket)
 572{
 573	int r;
 574
 575	if (!busy_bo || !ticket)
 576		return -EBUSY;
 577
 578	if (ctx->interruptible)
 579		r = dma_resv_lock_interruptible(busy_bo->base.resv,
 580							  ticket);
 581	else
 582		r = dma_resv_lock(busy_bo->base.resv, ticket);
 583
 584	/*
 585	 * TODO: It would be better to keep the BO locked until allocation is at
 586	 * least tried one more time, but that would mean a much larger rework
 587	 * of TTM.
 588	 */
 589	if (!r)
 590		dma_resv_unlock(busy_bo->base.resv);
 591
 592	return r == -EDEADLK ? -EBUSY : r;
 593}
 594
 595int ttm_mem_evict_first(struct ttm_device *bdev,
 596			struct ttm_resource_manager *man,
 597			const struct ttm_place *place,
 598			struct ttm_operation_ctx *ctx,
 599			struct ww_acquire_ctx *ticket)
 600{
 601	struct ttm_buffer_object *bo = NULL, *busy_bo = NULL;
 602	struct ttm_resource_cursor cursor;
 603	struct ttm_resource *res;
 604	bool locked = false;
 605	int ret;
 606
 607	spin_lock(&bdev->lru_lock);
 608	ttm_resource_manager_for_each_res(man, &cursor, res) {
 609		bool busy;
 610
 611		if (!ttm_bo_evict_swapout_allowable(res->bo, ctx, place,
 612						    &locked, &busy)) {
 613			if (busy && !busy_bo && ticket !=
 614			    dma_resv_locking_ctx(res->bo->base.resv))
 615				busy_bo = res->bo;
 616			continue;
 617		}
 618
 619		if (ttm_bo_get_unless_zero(res->bo)) {
 620			bo = res->bo;
 
 
 621			break;
 622		}
 623		if (locked)
 624			dma_resv_unlock(res->bo->base.resv);
 625	}
 626
 627	if (!bo) {
 628		if (busy_bo && !ttm_bo_get_unless_zero(busy_bo))
 629			busy_bo = NULL;
 630		spin_unlock(&bdev->lru_lock);
 631		ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket);
 632		if (busy_bo)
 633			ttm_bo_put(busy_bo);
 634		return ret;
 635	}
 636
 637	if (bo->deleted) {
 638		ret = ttm_bo_cleanup_refs(bo, ctx->interruptible,
 639					  ctx->no_wait_gpu, locked);
 640		ttm_bo_put(bo);
 
 
 641		return ret;
 642	}
 643
 644	spin_unlock(&bdev->lru_lock);
 645
 646	ret = ttm_bo_evict(bo, ctx);
 647	if (locked)
 648		ttm_bo_unreserve(bo);
 649	else
 650		ttm_bo_move_to_lru_tail_unlocked(bo);
 651
 652	ttm_bo_put(bo);
 653	return ret;
 654}
 655
 656/**
 657 * ttm_bo_pin - Pin the buffer object.
 658 * @bo: The buffer object to pin
 659 *
 660 * Make sure the buffer is not evicted any more during memory pressure.
 661 * @bo must be unpinned again by calling ttm_bo_unpin().
 662 */
 663void ttm_bo_pin(struct ttm_buffer_object *bo)
 664{
 665	dma_resv_assert_held(bo->base.resv);
 666	WARN_ON_ONCE(!kref_read(&bo->kref));
 667	spin_lock(&bo->bdev->lru_lock);
 668	if (bo->resource)
 669		ttm_resource_del_bulk_move(bo->resource, bo);
 670	++bo->pin_count;
 671	spin_unlock(&bo->bdev->lru_lock);
 672}
 673EXPORT_SYMBOL(ttm_bo_pin);
 674
 675/**
 676 * ttm_bo_unpin - Unpin the buffer object.
 677 * @bo: The buffer object to unpin
 678 *
 679 * Allows the buffer object to be evicted again during memory pressure.
 680 */
 681void ttm_bo_unpin(struct ttm_buffer_object *bo)
 682{
 683	dma_resv_assert_held(bo->base.resv);
 684	WARN_ON_ONCE(!kref_read(&bo->kref));
 685	if (WARN_ON_ONCE(!bo->pin_count))
 686		return;
 687
 688	spin_lock(&bo->bdev->lru_lock);
 689	--bo->pin_count;
 690	if (bo->resource)
 691		ttm_resource_add_bulk_move(bo->resource, bo);
 692	spin_unlock(&bo->bdev->lru_lock);
 693}
 694EXPORT_SYMBOL(ttm_bo_unpin);
 695
 696/*
 697 * Add the last move fence to the BO as kernel dependency and reserve a new
 698 * fence slot.
 699 */
 700static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
 701				 struct ttm_resource_manager *man,
 702				 struct ttm_resource *mem,
 703				 bool no_wait_gpu)
 704{
 705	struct dma_fence *fence;
 706	int ret;
 707
 708	spin_lock(&man->move_lock);
 709	fence = dma_fence_get(man->move);
 710	spin_unlock(&man->move_lock);
 711
 712	if (!fence)
 713		return 0;
 714
 715	if (no_wait_gpu) {
 716		ret = dma_fence_is_signaled(fence) ? 0 : -EBUSY;
 717		dma_fence_put(fence);
 718		return ret;
 719	}
 720
 721	dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL);
 722
 723	ret = dma_resv_reserve_fences(bo->base.resv, 1);
 724	dma_fence_put(fence);
 725	return ret;
 726}
 
 727
 728/*
 729 * Repeatedly evict memory from the LRU for @mem_type until we create enough
 730 * space, or we've evicted everything and there isn't enough space.
 731 */
 732static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
 733				  const struct ttm_place *place,
 734				  struct ttm_resource **mem,
 735				  struct ttm_operation_ctx *ctx)
 736{
 737	struct ttm_device *bdev = bo->bdev;
 738	struct ttm_resource_manager *man;
 739	struct ww_acquire_ctx *ticket;
 
 740	int ret;
 741
 742	man = ttm_manager_type(bdev, place->mem_type);
 743	ticket = dma_resv_locking_ctx(bo->base.resv);
 744	do {
 745		ret = ttm_resource_alloc(bo, place, mem);
 746		if (likely(!ret))
 747			break;
 748		if (unlikely(ret != -ENOSPC))
 749			return ret;
 750		ret = ttm_mem_evict_first(bdev, man, place, ctx,
 751					  ticket);
 
 
 752		if (unlikely(ret != 0))
 753			return ret;
 754	} while (1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755
 756	return ttm_bo_add_move_fence(bo, man, *mem, ctx->no_wait_gpu);
 
 
 
 757}
 758
 759/**
 760 * ttm_bo_mem_space
 761 *
 762 * @bo: Pointer to a struct ttm_buffer_object. the data of which
 763 * we want to allocate space for.
 764 * @placement: Proposed new placement for the buffer object.
 765 * @mem: A struct ttm_resource.
 766 * @ctx: if and how to sleep, lock buffers and alloc memory
 767 *
 768 * Allocate memory space for the buffer object pointed to by @bo, using
 769 * the placement flags in @placement, potentially evicting other idle buffer objects.
 770 * This function may sleep while waiting for space to become available.
 771 * Returns:
 772 * -EBUSY: No space available (only if no_wait == 1).
 773 * -ENOMEM: Could not allocate memory for the buffer object, either due to
 774 * fragmentation or concurrent allocators.
 775 * -ERESTARTSYS: An interruptible sleep was interrupted by a signal.
 776 */
 777int ttm_bo_mem_space(struct ttm_buffer_object *bo,
 778			struct ttm_placement *placement,
 779			struct ttm_resource **mem,
 780			struct ttm_operation_ctx *ctx)
 781{
 782	struct ttm_device *bdev = bo->bdev;
 
 
 
 
 783	bool type_found = false;
 
 
 784	int i, ret;
 785
 786	ret = dma_resv_reserve_fences(bo->base.resv, 1);
 787	if (unlikely(ret))
 788		return ret;
 789
 790	for (i = 0; i < placement->num_placement; ++i) {
 791		const struct ttm_place *place = &placement->placement[i];
 792		struct ttm_resource_manager *man;
 
 
 
 793
 794		man = ttm_manager_type(bdev, place->mem_type);
 795		if (!man || !ttm_resource_manager_used(man))
 796			continue;
 
 797
 798		type_found = true;
 799		ret = ttm_resource_alloc(bo, place, mem);
 800		if (ret == -ENOSPC)
 801			continue;
 802		if (unlikely(ret))
 803			goto error;
 804
 805		ret = ttm_bo_add_move_fence(bo, man, *mem, ctx->no_wait_gpu);
 806		if (unlikely(ret)) {
 807			ttm_resource_free(bo, mem);
 808			if (ret == -EBUSY)
 809				continue;
 
 
 
 810
 811			goto error;
 
 
 
 
 
 
 
 812		}
 
 
 
 
 
 
 
 813		return 0;
 814	}
 815
 816	for (i = 0; i < placement->num_busy_placement; ++i) {
 817		const struct ttm_place *place = &placement->busy_placement[i];
 818		struct ttm_resource_manager *man;
 819
 820		man = ttm_manager_type(bdev, place->mem_type);
 821		if (!man || !ttm_resource_manager_used(man))
 
 
 
 
 
 
 
 
 
 
 822			continue;
 823
 824		type_found = true;
 825		ret = ttm_bo_mem_force_space(bo, place, mem, ctx);
 826		if (likely(!ret))
 827			return 0;
 
 
 
 
 828
 829		if (ret && ret != -EBUSY)
 830			goto error;
 831	}
 832
 833	ret = -ENOMEM;
 834	if (!type_found) {
 835		pr_err(TTM_PFX "No compatible memory type found\n");
 836		ret = -EINVAL;
 837	}
 
 838
 839error:
 
 
 
 
 
 
 
 
 
 840	return ret;
 841}
 842EXPORT_SYMBOL(ttm_bo_mem_space);
 843
 844static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
 845			      struct ttm_placement *placement,
 846			      struct ttm_operation_ctx *ctx)
 
 847{
 848	struct ttm_resource *mem;
 849	struct ttm_place hop;
 850	int ret;
 851
 852	dma_resv_assert_held(bo->base.resv);
 853
 854	/*
 855	 * Determine where to move the buffer.
 856	 *
 857	 * If driver determines move is going to need
 858	 * an extra step then it will return -EMULTIHOP
 859	 * and the buffer will be moved to the temporary
 860	 * stop and the driver will be called to make
 861	 * the second hop.
 862	 */
 863	ret = ttm_bo_mem_space(bo, placement, &mem, ctx);
 
 
 864	if (ret)
 865		return ret;
 866bounce:
 867	ret = ttm_bo_handle_move_mem(bo, mem, false, ctx, &hop);
 868	if (ret == -EMULTIHOP) {
 869		ret = ttm_bo_bounce_temp_buffer(bo, &mem, ctx, &hop);
 870		if (ret)
 871			goto out;
 872		/* try and move to final place now. */
 873		goto bounce;
 874	}
 875out:
 876	if (ret)
 877		ttm_resource_free(bo, &mem);
 
 
 
 
 
 878	return ret;
 879}
 880
 881/**
 882 * ttm_bo_validate
 883 *
 884 * @bo: The buffer object.
 885 * @placement: Proposed placement for the buffer object.
 886 * @ctx: validation parameters.
 887 *
 888 * Changes placement and caching policy of the buffer object
 889 * according proposed placement.
 890 * Returns
 891 * -EINVAL on invalid proposed placement.
 892 * -ENOMEM on out-of-memory condition.
 893 * -EBUSY if no_wait is true and buffer busy.
 894 * -ERESTARTSYS if interrupted by a signal.
 895 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 896int ttm_bo_validate(struct ttm_buffer_object *bo,
 897		    struct ttm_placement *placement,
 898		    struct ttm_operation_ctx *ctx)
 
 899{
 900	int ret;
 
 901
 902	dma_resv_assert_held(bo->base.resv);
 903
 
 
 
 
 904	/*
 905	 * Remove the backing store if no placement is given.
 906	 */
 907	if (!placement->num_placement && !placement->num_busy_placement)
 908		return ttm_bo_pipeline_gutting(bo);
 909
 910	/* Check whether we need to move buffer. */
 911	if (bo->resource && ttm_resource_compat(bo->resource, placement))
 912		return 0;
 913
 914	/* Moving of pinned BOs is forbidden */
 915	if (bo->pin_count)
 916		return -EINVAL;
 917
 918	ret = ttm_bo_move_buffer(bo, placement, ctx);
 919	if (ret)
 920		return ret;
 921
 922	/*
 923	 * We might need to add a TTM.
 924	 */
 925	if (!bo->resource || bo->resource->mem_type == TTM_PL_SYSTEM) {
 926		ret = ttm_tt_create(bo, true);
 927		if (ret)
 928			return ret;
 929	}
 930	return 0;
 931}
 932EXPORT_SYMBOL(ttm_bo_validate);
 933
 934/**
 935 * ttm_bo_init_reserved
 936 *
 937 * @bdev: Pointer to a ttm_device struct.
 938 * @bo: Pointer to a ttm_buffer_object to be initialized.
 939 * @type: Requested type of buffer object.
 940 * @placement: Initial placement for buffer object.
 941 * @alignment: Data alignment in pages.
 942 * @ctx: TTM operation context for memory allocation.
 943 * @sg: Scatter-gather table.
 944 * @resv: Pointer to a dma_resv, or NULL to let ttm allocate one.
 945 * @destroy: Destroy function. Use NULL for kfree().
 946 *
 947 * This function initializes a pre-allocated struct ttm_buffer_object.
 948 * As this object may be part of a larger structure, this function,
 949 * together with the @destroy function, enables driver-specific objects
 950 * derived from a ttm_buffer_object.
 951 *
 952 * On successful return, the caller owns an object kref to @bo. The kref and
 953 * list_kref are usually set to 1, but note that in some situations, other
 954 * tasks may already be holding references to @bo as well.
 955 * Furthermore, if resv == NULL, the buffer's reservation lock will be held,
 956 * and it is the caller's responsibility to call ttm_bo_unreserve.
 957 *
 958 * If a failure occurs, the function will call the @destroy function. Thus,
 959 * after a failure, dereferencing @bo is illegal and will likely cause memory
 960 * corruption.
 961 *
 962 * Returns
 963 * -ENOMEM: Out of memory.
 964 * -EINVAL: Invalid placement flags.
 965 * -ERESTARTSYS: Interrupted by signal while sleeping waiting for resources.
 966 */
 967int ttm_bo_init_reserved(struct ttm_device *bdev, struct ttm_buffer_object *bo,
 968			 enum ttm_bo_type type, struct ttm_placement *placement,
 969			 uint32_t alignment, struct ttm_operation_ctx *ctx,
 970			 struct sg_table *sg, struct dma_resv *resv,
 971			 void (*destroy) (struct ttm_buffer_object *))
 972{
 973	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974
 975	kref_init(&bo->kref);
 
 
 
 
 
 
 
 976	bo->bdev = bdev;
 
 977	bo->type = type;
 978	bo->page_alignment = alignment;
 979	bo->destroy = destroy;
 980	bo->pin_count = 0;
 
 
 
 
 
 
 
 
 
 981	bo->sg = sg;
 982	bo->bulk_move = NULL;
 983	if (resv)
 984		bo->base.resv = resv;
 985	else
 986		bo->base.resv = &bo->base._resv;
 987	atomic_inc(&ttm_glob.bo_count);
 988
 989	/*
 990	 * For ttm_bo_type_device buffers, allocate
 991	 * address space from the device.
 992	 */
 993	if (bo->type == ttm_bo_type_device || bo->type == ttm_bo_type_sg) {
 994		ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node,
 995					 PFN_UP(bo->base.size));
 996		if (ret)
 997			goto err_put;
 998	}
 999
1000	/* passed reservation objects should already be locked,
1001	 * since otherwise lockdep will be angered in radeon.
1002	 */
1003	if (!resv)
1004		WARN_ON(!dma_resv_trylock(bo->base.resv));
1005	else
1006		dma_resv_assert_held(resv);
1007
1008	ret = ttm_bo_validate(bo, placement, ctx);
1009	if (unlikely(ret))
1010		goto err_unlock;
1011
1012	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1013
1014err_unlock:
1015	if (!resv)
1016		dma_resv_unlock(bo->base.resv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1017
1018err_put:
1019	ttm_bo_put(bo);
1020	return ret;
1021}
1022EXPORT_SYMBOL(ttm_bo_init_reserved);
1023
1024/**
1025 * ttm_bo_init_validate
1026 *
1027 * @bdev: Pointer to a ttm_device struct.
1028 * @bo: Pointer to a ttm_buffer_object to be initialized.
1029 * @type: Requested type of buffer object.
1030 * @placement: Initial placement for buffer object.
1031 * @alignment: Data alignment in pages.
1032 * @interruptible: If needing to sleep to wait for GPU resources,
1033 * sleep interruptible.
1034 * pinned in physical memory. If this behaviour is not desired, this member
1035 * holds a pointer to a persistent shmem object. Typically, this would
1036 * point to the shmem object backing a GEM object if TTM is used to back a
1037 * GEM user interface.
1038 * @sg: Scatter-gather table.
1039 * @resv: Pointer to a dma_resv, or NULL to let ttm allocate one.
1040 * @destroy: Destroy function. Use NULL for kfree().
1041 *
1042 * This function initializes a pre-allocated struct ttm_buffer_object.
1043 * As this object may be part of a larger structure, this function,
1044 * together with the @destroy function,
1045 * enables driver-specific objects derived from a ttm_buffer_object.
1046 *
1047 * On successful return, the caller owns an object kref to @bo. The kref and
1048 * list_kref are usually set to 1, but note that in some situations, other
1049 * tasks may already be holding references to @bo as well.
1050 *
1051 * If a failure occurs, the function will call the @destroy function, Thus,
1052 * after a failure, dereferencing @bo is illegal and will likely cause memory
1053 * corruption.
1054 *
1055 * Returns
1056 * -ENOMEM: Out of memory.
1057 * -EINVAL: Invalid placement flags.
1058 * -ERESTARTSYS: Interrupted by signal while sleeping waiting for resources.
1059 */
1060int ttm_bo_init_validate(struct ttm_device *bdev, struct ttm_buffer_object *bo,
1061			 enum ttm_bo_type type, struct ttm_placement *placement,
1062			 uint32_t alignment, bool interruptible,
1063			 struct sg_table *sg, struct dma_resv *resv,
1064			 void (*destroy) (struct ttm_buffer_object *))
1065{
1066	struct ttm_operation_ctx ctx = { interruptible, false };
 
1067	int ret;
1068
1069	ret = ttm_bo_init_reserved(bdev, bo, type, placement, alignment, &ctx,
1070				   sg, resv, destroy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071	if (ret)
1072		return ret;
 
1073
1074	if (!resv)
1075		ttm_bo_unreserve(bo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1076
1077	return 0;
 
 
1078}
1079EXPORT_SYMBOL(ttm_bo_init_validate);
1080
1081/*
1082 * buffer object vm functions.
1083 */
1084
1085/**
1086 * ttm_bo_unmap_virtual
1087 *
1088 * @bo: tear down the virtual mappings for this BO
1089 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1090void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1091{
1092	struct ttm_device *bdev = bo->bdev;
 
1093
1094	drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
1095	ttm_mem_io_free(bdev, bo->resource);
 
1096}
 
 
1097EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1098
1099/**
1100 * ttm_bo_wait_ctx - wait for buffer idle.
1101 *
1102 * @bo:  The buffer object.
1103 * @ctx: defines how to wait
1104 *
1105 * Waits for the buffer to be idle. Used timeout depends on the context.
1106 * Returns -EBUSY if wait timed outt, -ERESTARTSYS if interrupted by a signal or
1107 * zero on success.
1108 */
1109int ttm_bo_wait_ctx(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx)
1110{
1111	long ret;
 
 
 
1112
1113	if (ctx->no_wait_gpu) {
1114		if (dma_resv_test_signaled(bo->base.resv,
1115					   DMA_RESV_USAGE_BOOKKEEP))
1116			return 0;
1117		else
 
 
 
 
 
 
 
 
 
 
 
1118			return -EBUSY;
1119	}
1120
1121	ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
1122				    ctx->interruptible, 15 * HZ);
1123	if (unlikely(ret < 0))
1124		return ret;
1125	if (unlikely(ret == 0))
1126		return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127	return 0;
1128}
1129EXPORT_SYMBOL(ttm_bo_wait_ctx);
1130
1131int ttm_bo_swapout(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx,
1132		   gfp_t gfp_flags)
1133{
1134	struct ttm_place place;
1135	bool locked;
1136	long ret;
1137
1138	/*
1139	 * While the bo may already reside in SYSTEM placement, set
1140	 * SYSTEM as new placement to cover also the move further below.
1141	 * The driver may use the fact that we're moving from SYSTEM
1142	 * as an indication that we're about to swap out.
1143	 */
1144	memset(&place, 0, sizeof(place));
1145	place.mem_type = bo->resource->mem_type;
1146	if (!ttm_bo_evict_swapout_allowable(bo, ctx, &place, &locked, NULL))
1147		return -EBUSY;
1148
1149	if (!bo->ttm || !ttm_tt_is_populated(bo->ttm) ||
1150	    bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL ||
1151	    bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED ||
1152	    !ttm_bo_get_unless_zero(bo)) {
1153		if (locked)
1154			dma_resv_unlock(bo->base.resv);
1155		return -EBUSY;
1156	}
1157
1158	if (bo->deleted) {
1159		ret = ttm_bo_cleanup_refs(bo, false, false, locked);
1160		ttm_bo_put(bo);
1161		return ret == -EBUSY ? -ENOSPC : ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162	}
1163
1164	/* TODO: Cleanup the locking */
1165	spin_unlock(&bo->bdev->lru_lock);
 
 
1166
1167	/*
1168	 * Move to system cached
1169	 */
1170	if (bo->resource->mem_type != TTM_PL_SYSTEM) {
1171		struct ttm_resource *evict_mem;
1172		struct ttm_place hop;
1173
1174		memset(&hop, 0, sizeof(hop));
1175		place.mem_type = TTM_PL_SYSTEM;
1176		ret = ttm_resource_alloc(bo, &place, &evict_mem);
1177		if (unlikely(ret))
1178			goto out;
1179
1180		ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop);
1181		if (unlikely(ret != 0)) {
1182			WARN(ret == -EMULTIHOP, "Unexpected multihop in swaput - likely driver bug.\n");
1183			ttm_resource_free(bo, &evict_mem);
1184			goto out;
1185		}
1186	}
1187
1188	/*
1189	 * Make sure BO is idle.
 
 
 
 
 
1190	 */
1191	ret = ttm_bo_wait_ctx(bo, ctx);
 
 
 
 
1192	if (unlikely(ret != 0))
1193		goto out;
1194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1195	ttm_bo_unmap_virtual(bo);
1196
1197	/*
1198	 * Swap out. Buffer will be swapped in again as soon as
1199	 * anyone tries to access a ttm page.
1200	 */
1201	if (bo->bdev->funcs->swap_notify)
1202		bo->bdev->funcs->swap_notify(bo);
1203
1204	if (ttm_tt_is_populated(bo->ttm))
1205		ret = ttm_tt_swapout(bo->bdev, bo->ttm, gfp_flags);
 
 
1206out:
1207
1208	/*
 
1209	 * Unreserve without putting on LRU to avoid swapping out an
1210	 * already swapped buffer.
1211	 */
1212	if (locked)
1213		dma_resv_unlock(bo->base.resv);
1214	ttm_bo_put(bo);
1215	return ret == -EBUSY ? -ENOSPC : ret;
1216}
1217
1218void ttm_bo_tt_destroy(struct ttm_buffer_object *bo)
1219{
1220	if (bo->ttm == NULL)
1221		return;
 
 
1222
1223	ttm_tt_unpopulate(bo->bdev, bo->ttm);
1224	ttm_tt_destroy(bo->bdev, bo->ttm);
1225	bo->ttm = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1226}
v3.15
 
   1/**************************************************************************
   2 *
   3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   4 * All Rights Reserved.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the
   8 * "Software"), to deal in the Software without restriction, including
   9 * without limitation the rights to use, copy, modify, merge, publish,
  10 * distribute, sub license, and/or sell copies of the Software, and to
  11 * permit persons to whom the Software is furnished to do so, subject to
  12 * the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the
  15 * next paragraph) shall be included in all copies or substantial portions
  16 * of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25 *
  26 **************************************************************************/
  27/*
  28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  29 */
  30
  31#define pr_fmt(fmt) "[TTM] " fmt
  32
  33#include <drm/ttm/ttm_module.h>
  34#include <drm/ttm/ttm_bo_driver.h>
  35#include <drm/ttm/ttm_placement.h>
 
 
  36#include <linux/jiffies.h>
  37#include <linux/slab.h>
  38#include <linux/sched.h>
  39#include <linux/mm.h>
  40#include <linux/file.h>
  41#include <linux/module.h>
  42#include <linux/atomic.h>
 
  43
  44#define TTM_ASSERT_LOCKED(param)
  45#define TTM_DEBUG(fmt, arg...)
  46#define TTM_BO_HASH_ORDER 13
  47
  48static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
  49static void ttm_bo_global_kobj_release(struct kobject *kobj);
  50
  51static struct attribute ttm_bo_count = {
  52	.name = "bo_count",
  53	.mode = S_IRUGO
  54};
  55
  56static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
  57{
  58	int i;
  59
  60	for (i = 0; i <= TTM_PL_PRIV5; i++)
  61		if (flags & (1 << i)) {
  62			*mem_type = i;
  63			return 0;
  64		}
  65	return -EINVAL;
  66}
  67
  68static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
  69{
  70	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
  71
  72	pr_err("    has_type: %d\n", man->has_type);
  73	pr_err("    use_type: %d\n", man->use_type);
  74	pr_err("    flags: 0x%08X\n", man->flags);
  75	pr_err("    gpu_offset: 0x%08lX\n", man->gpu_offset);
  76	pr_err("    size: %llu\n", man->size);
  77	pr_err("    available_caching: 0x%08X\n", man->available_caching);
  78	pr_err("    default_caching: 0x%08X\n", man->default_caching);
  79	if (mem_type != TTM_PL_SYSTEM)
  80		(*man->func->debug)(man, TTM_PFX);
  81}
  82
  83static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  84					struct ttm_placement *placement)
  85{
  86	int i, ret, mem_type;
 
 
  87
  88	pr_err("No space for %p (%lu pages, %luK, %luM)\n",
  89	       bo, bo->mem.num_pages, bo->mem.size >> 10,
  90	       bo->mem.size >> 20);
  91	for (i = 0; i < placement->num_placement; i++) {
  92		ret = ttm_mem_type_from_flags(placement->placement[i],
  93						&mem_type);
  94		if (ret)
  95			return;
  96		pr_err("  placement[%d]=0x%08X (%d)\n",
  97		       i, placement->placement[i], mem_type);
  98		ttm_mem_type_debug(bo->bdev, mem_type);
  99	}
 100}
 101
 102static ssize_t ttm_bo_global_show(struct kobject *kobj,
 103				  struct attribute *attr,
 104				  char *buffer)
 
 
 
 
 
 
 
 105{
 106	struct ttm_bo_global *glob =
 107		container_of(kobj, struct ttm_bo_global, kobj);
 108
 109	return snprintf(buffer, PAGE_SIZE, "%lu\n",
 110			(unsigned long) atomic_read(&glob->bo_count));
 111}
 
 112
 113static struct attribute *ttm_bo_global_attrs[] = {
 114	&ttm_bo_count,
 115	NULL
 116};
 117
 118static const struct sysfs_ops ttm_bo_global_ops = {
 119	.show = &ttm_bo_global_show
 120};
 121
 122static struct kobj_type ttm_bo_glob_kobj_type  = {
 123	.release = &ttm_bo_global_kobj_release,
 124	.sysfs_ops = &ttm_bo_global_ops,
 125	.default_attrs = ttm_bo_global_attrs
 126};
 127
 128
 129static inline uint32_t ttm_bo_type_flags(unsigned type)
 130{
 131	return 1 << (type);
 132}
 133
 134static void ttm_bo_release_list(struct kref *list_kref)
 135{
 136	struct ttm_buffer_object *bo =
 137	    container_of(list_kref, struct ttm_buffer_object, list_kref);
 138	struct ttm_bo_device *bdev = bo->bdev;
 139	size_t acc_size = bo->acc_size;
 140
 141	BUG_ON(atomic_read(&bo->list_kref.refcount));
 142	BUG_ON(atomic_read(&bo->kref.refcount));
 143	BUG_ON(atomic_read(&bo->cpu_writers));
 144	BUG_ON(bo->sync_obj != NULL);
 145	BUG_ON(bo->mem.mm_node != NULL);
 146	BUG_ON(!list_empty(&bo->lru));
 147	BUG_ON(!list_empty(&bo->ddestroy));
 148
 149	if (bo->ttm)
 150		ttm_tt_destroy(bo->ttm);
 151	atomic_dec(&bo->glob->bo_count);
 152	if (bo->resv == &bo->ttm_resv)
 153		reservation_object_fini(&bo->ttm_resv);
 154	mutex_destroy(&bo->wu_mutex);
 155	if (bo->destroy)
 156		bo->destroy(bo);
 157	else {
 158		kfree(bo);
 159	}
 160	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
 161}
 162
 163void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
 164{
 165	struct ttm_bo_device *bdev = bo->bdev;
 166	struct ttm_mem_type_manager *man;
 167
 168	lockdep_assert_held(&bo->resv->lock.base);
 169
 170	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
 171
 172		BUG_ON(!list_empty(&bo->lru));
 173
 174		man = &bdev->man[bo->mem.mem_type];
 175		list_add_tail(&bo->lru, &man->lru);
 176		kref_get(&bo->list_kref);
 177
 178		if (bo->ttm != NULL) {
 179			list_add_tail(&bo->swap, &bo->glob->swap_lru);
 180			kref_get(&bo->list_kref);
 181		}
 182	}
 183}
 184EXPORT_SYMBOL(ttm_bo_add_to_lru);
 185
 186int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
 187{
 188	int put_count = 0;
 189
 190	if (!list_empty(&bo->swap)) {
 191		list_del_init(&bo->swap);
 192		++put_count;
 193	}
 194	if (!list_empty(&bo->lru)) {
 195		list_del_init(&bo->lru);
 196		++put_count;
 197	}
 198
 199	/*
 200	 * TODO: Add a driver hook to delete from
 201	 * driver-specific LRU's here.
 202	 */
 203
 204	return put_count;
 
 205}
 
 206
 207static void ttm_bo_ref_bug(struct kref *list_kref)
 
 
 
 208{
 209	BUG();
 210}
 
 211
 212void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
 213			 bool never_free)
 214{
 215	kref_sub(&bo->list_kref, count,
 216		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
 217}
 218
 219void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
 220{
 221	int put_count;
 222
 223	spin_lock(&bo->glob->lru_lock);
 224	put_count = ttm_bo_del_from_lru(bo);
 225	spin_unlock(&bo->glob->lru_lock);
 226	ttm_bo_list_ref_sub(bo, put_count, true);
 227}
 228EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
 229
 230/*
 231 * Call bo->mutex locked.
 232 */
 233static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
 234{
 235	struct ttm_bo_device *bdev = bo->bdev;
 236	struct ttm_bo_global *glob = bo->glob;
 237	int ret = 0;
 238	uint32_t page_flags = 0;
 239
 240	TTM_ASSERT_LOCKED(&bo->mutex);
 241	bo->ttm = NULL;
 242
 243	if (bdev->need_dma32)
 244		page_flags |= TTM_PAGE_FLAG_DMA32;
 245
 246	switch (bo->type) {
 247	case ttm_bo_type_device:
 248		if (zero_alloc)
 249			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
 250	case ttm_bo_type_kernel:
 251		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 252						      page_flags, glob->dummy_read_page);
 253		if (unlikely(bo->ttm == NULL))
 254			ret = -ENOMEM;
 255		break;
 256	case ttm_bo_type_sg:
 257		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 258						      page_flags | TTM_PAGE_FLAG_SG,
 259						      glob->dummy_read_page);
 260		if (unlikely(bo->ttm == NULL)) {
 261			ret = -ENOMEM;
 262			break;
 263		}
 264		bo->ttm->sg = bo->sg;
 265		break;
 266	default:
 267		pr_err("Illegal buffer object type\n");
 268		ret = -EINVAL;
 269		break;
 270	}
 271
 272	return ret;
 273}
 274
 275static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 276				  struct ttm_mem_reg *mem,
 277				  bool evict, bool interruptible,
 278				  bool no_wait_gpu)
 279{
 280	struct ttm_bo_device *bdev = bo->bdev;
 281	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
 282	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
 283	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
 284	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
 285	int ret = 0;
 286
 287	if (old_is_pci || new_is_pci ||
 288	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
 289		ret = ttm_mem_io_lock(old_man, true);
 290		if (unlikely(ret != 0))
 291			goto out_err;
 292		ttm_bo_unmap_virtual_locked(bo);
 293		ttm_mem_io_unlock(old_man);
 294	}
 295
 296	/*
 297	 * Create and bind a ttm if required.
 298	 */
 299
 300	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
 301		if (bo->ttm == NULL) {
 302			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
 303			ret = ttm_bo_add_ttm(bo, zero);
 304			if (ret)
 305				goto out_err;
 306		}
 307
 308		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
 309		if (ret)
 310			goto out_err;
 311
 312		if (mem->mem_type != TTM_PL_SYSTEM) {
 313			ret = ttm_tt_bind(bo->ttm, mem);
 314			if (ret)
 315				goto out_err;
 316		}
 317
 318		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
 319			if (bdev->driver->move_notify)
 320				bdev->driver->move_notify(bo, mem);
 321			bo->mem = *mem;
 322			mem->mm_node = NULL;
 323			goto moved;
 324		}
 325	}
 326
 327	if (bdev->driver->move_notify)
 328		bdev->driver->move_notify(bo, mem);
 329
 330	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
 331	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
 332		ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
 333	else if (bdev->driver->move)
 334		ret = bdev->driver->move(bo, evict, interruptible,
 335					 no_wait_gpu, mem);
 336	else
 337		ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
 338
 
 339	if (ret) {
 340		if (bdev->driver->move_notify) {
 341			struct ttm_mem_reg tmp_mem = *mem;
 342			*mem = bo->mem;
 343			bo->mem = tmp_mem;
 344			bdev->driver->move_notify(bo, mem);
 345			bo->mem = *mem;
 346			*mem = tmp_mem;
 347		}
 348
 349		goto out_err;
 350	}
 351
 352moved:
 353	if (bo->evicted) {
 354		if (bdev->driver->invalidate_caches) {
 355			ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
 356			if (ret)
 357				pr_err("Can not flush read caches\n");
 358		}
 359		bo->evicted = false;
 360	}
 361
 362	if (bo->mem.mm_node) {
 363		bo->offset = (bo->mem.start << PAGE_SHIFT) +
 364		    bdev->man[bo->mem.mem_type].gpu_offset;
 365		bo->cur_placement = bo->mem.placement;
 366	} else
 367		bo->offset = 0;
 368
 369	return 0;
 370
 371out_err:
 372	new_man = &bdev->man[bo->mem.mem_type];
 373	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
 374		ttm_tt_unbind(bo->ttm);
 375		ttm_tt_destroy(bo->ttm);
 376		bo->ttm = NULL;
 377	}
 378
 379	return ret;
 380}
 381
 382/**
 383 * Call bo::reserved.
 384 * Will release GPU memory type usage on destruction.
 385 * This is the place to put in driver specific hooks to release
 386 * driver private resources.
 387 * Will release the bo::reserved lock.
 388 */
 389
 390static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 391{
 392	if (bo->bdev->driver->move_notify)
 393		bo->bdev->driver->move_notify(bo, NULL);
 394
 395	if (bo->ttm) {
 396		ttm_tt_unbind(bo->ttm);
 397		ttm_tt_destroy(bo->ttm);
 398		bo->ttm = NULL;
 399	}
 400	ttm_bo_mem_put(bo, &bo->mem);
 401
 402	ww_mutex_unlock (&bo->resv->lock);
 
 403}
 404
 405static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
 406{
 407	struct ttm_bo_device *bdev = bo->bdev;
 408	struct ttm_bo_global *glob = bo->glob;
 409	struct ttm_bo_driver *driver = bdev->driver;
 410	void *sync_obj = NULL;
 411	int put_count;
 412	int ret;
 413
 414	spin_lock(&glob->lru_lock);
 415	ret = __ttm_bo_reserve(bo, false, true, false, 0);
 416
 417	spin_lock(&bdev->fence_lock);
 418	(void) ttm_bo_wait(bo, false, false, true);
 419	if (!ret && !bo->sync_obj) {
 420		spin_unlock(&bdev->fence_lock);
 421		put_count = ttm_bo_del_from_lru(bo);
 422
 423		spin_unlock(&glob->lru_lock);
 424		ttm_bo_cleanup_memtype_use(bo);
 425
 426		ttm_bo_list_ref_sub(bo, put_count, true);
 427
 428		return;
 
 
 
 
 
 
 
 429	}
 430	if (bo->sync_obj)
 431		sync_obj = driver->sync_obj_ref(bo->sync_obj);
 432	spin_unlock(&bdev->fence_lock);
 433
 434	if (!ret) {
 
 435
 436		/*
 437		 * Make NO_EVICT bos immediately available to
 438		 * shrinkers, now that they are queued for
 439		 * destruction.
 440		 */
 441		if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
 442			bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
 443			ttm_bo_add_to_lru(bo);
 444		}
 445
 446		__ttm_bo_unreserve(bo);
 
 
 
 447	}
 448
 449	kref_get(&bo->list_kref);
 450	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
 451	spin_unlock(&glob->lru_lock);
 452
 453	if (sync_obj) {
 454		driver->sync_obj_flush(sync_obj);
 455		driver->sync_obj_unref(&sync_obj);
 456	}
 457	schedule_delayed_work(&bdev->wq,
 458			      ((HZ / 100) < 1) ? 1 : HZ / 100);
 459}
 460
 461/**
 462 * function ttm_bo_cleanup_refs_and_unlock
 463 * If bo idle, remove from delayed- and lru lists, and unref.
 464 * If not idle, do nothing.
 465 *
 466 * Must be called with lru_lock and reservation held, this function
 467 * will drop both before returning.
 468 *
 469 * @interruptible         Any sleeps should occur interruptibly.
 470 * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
 
 
 471 */
 472
 473static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
 474					  bool interruptible,
 475					  bool no_wait_gpu)
 476{
 477	struct ttm_bo_device *bdev = bo->bdev;
 478	struct ttm_bo_driver *driver = bdev->driver;
 479	struct ttm_bo_global *glob = bo->glob;
 480	int put_count;
 481	int ret;
 482
 483	spin_lock(&bdev->fence_lock);
 484	ret = ttm_bo_wait(bo, false, false, true);
 
 
 485
 486	if (ret && !no_wait_gpu) {
 487		void *sync_obj;
 488
 489		/*
 490		 * Take a reference to the fence and unreserve,
 491		 * at this point the buffer should be dead, so
 492		 * no new sync objects can be attached.
 493		 */
 494		sync_obj = driver->sync_obj_ref(bo->sync_obj);
 495		spin_unlock(&bdev->fence_lock);
 496
 497		__ttm_bo_unreserve(bo);
 498		spin_unlock(&glob->lru_lock);
 499
 500		ret = driver->sync_obj_wait(sync_obj, false, interruptible);
 501		driver->sync_obj_unref(&sync_obj);
 502		if (ret)
 503			return ret;
 504
 505		/*
 506		 * remove sync_obj with ttm_bo_wait, the wait should be
 507		 * finished, and no new wait object should have been added.
 508		 */
 509		spin_lock(&bdev->fence_lock);
 510		ret = ttm_bo_wait(bo, false, false, true);
 511		WARN_ON(ret);
 512		spin_unlock(&bdev->fence_lock);
 513		if (ret)
 514			return ret;
 515
 516		spin_lock(&glob->lru_lock);
 517		ret = __ttm_bo_reserve(bo, false, true, false, 0);
 518
 519		/*
 520		 * We raced, and lost, someone else holds the reservation now,
 521		 * and is probably busy in ttm_bo_cleanup_memtype_use.
 522		 *
 523		 * Even if it's not the case, because we finished waiting any
 524		 * delayed destruction would succeed, so just return success
 525		 * here.
 526		 */
 527		if (ret) {
 528			spin_unlock(&glob->lru_lock);
 529			return 0;
 530		}
 531	} else
 532		spin_unlock(&bdev->fence_lock);
 533
 534	if (ret || unlikely(list_empty(&bo->ddestroy))) {
 535		__ttm_bo_unreserve(bo);
 536		spin_unlock(&glob->lru_lock);
 
 537		return ret;
 538	}
 539
 540	put_count = ttm_bo_del_from_lru(bo);
 541	list_del_init(&bo->ddestroy);
 542	++put_count;
 543
 544	spin_unlock(&glob->lru_lock);
 545	ttm_bo_cleanup_memtype_use(bo);
 546
 547	ttm_bo_list_ref_sub(bo, put_count, true);
 
 548
 549	return 0;
 550}
 551
 552/**
 553 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
 554 * encountered buffers.
 555 */
 556
 557static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
 558{
 559	struct ttm_bo_global *glob = bdev->glob;
 560	struct ttm_buffer_object *entry = NULL;
 561	int ret = 0;
 562
 563	spin_lock(&glob->lru_lock);
 564	if (list_empty(&bdev->ddestroy))
 565		goto out_unlock;
 566
 567	entry = list_first_entry(&bdev->ddestroy,
 568		struct ttm_buffer_object, ddestroy);
 569	kref_get(&entry->list_kref);
 570
 571	for (;;) {
 572		struct ttm_buffer_object *nentry = NULL;
 573
 574		if (entry->ddestroy.next != &bdev->ddestroy) {
 575			nentry = list_first_entry(&entry->ddestroy,
 576				struct ttm_buffer_object, ddestroy);
 577			kref_get(&nentry->list_kref);
 578		}
 579
 580		ret = __ttm_bo_reserve(entry, false, true, false, 0);
 581		if (remove_all && ret) {
 582			spin_unlock(&glob->lru_lock);
 583			ret = __ttm_bo_reserve(entry, false, false,
 584					       false, 0);
 585			spin_lock(&glob->lru_lock);
 586		}
 587
 588		if (!ret)
 589			ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
 590							     !remove_all);
 591		else
 592			spin_unlock(&glob->lru_lock);
 
 593
 594		kref_put(&entry->list_kref, ttm_bo_release_list);
 595		entry = nentry;
 596
 597		if (ret || !entry)
 598			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 599
 600		spin_lock(&glob->lru_lock);
 601		if (list_empty(&entry->ddestroy))
 602			break;
 603	}
 604
 605out_unlock:
 606	spin_unlock(&glob->lru_lock);
 607out:
 608	if (entry)
 609		kref_put(&entry->list_kref, ttm_bo_release_list);
 610	return ret;
 611}
 612
 613static void ttm_bo_delayed_workqueue(struct work_struct *work)
 614{
 615	struct ttm_bo_device *bdev =
 616	    container_of(work, struct ttm_bo_device, wq.work);
 
 
 
 
 617
 618	if (ttm_bo_delayed_delete(bdev, false)) {
 619		schedule_delayed_work(&bdev->wq,
 620				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 621	}
 622}
 623
 624static void ttm_bo_release(struct kref *kref)
 625{
 626	struct ttm_buffer_object *bo =
 627	    container_of(kref, struct ttm_buffer_object, kref);
 628	struct ttm_bo_device *bdev = bo->bdev;
 629	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
 630
 631	drm_vma_offset_remove(&bdev->vma_manager, &bo->vma_node);
 632	ttm_mem_io_lock(man, false);
 633	ttm_mem_io_free_vm(bo);
 634	ttm_mem_io_unlock(man);
 635	ttm_bo_cleanup_refs_or_queue(bo);
 636	kref_put(&bo->list_kref, ttm_bo_release_list);
 637}
 638
 639void ttm_bo_unref(struct ttm_buffer_object **p_bo)
 
 
 
 
 
 
 
 640{
 641	struct ttm_buffer_object *bo = *p_bo;
 642
 643	*p_bo = NULL;
 644	kref_put(&bo->kref, ttm_bo_release);
 645}
 646EXPORT_SYMBOL(ttm_bo_unref);
 647
 648int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
 
 
 
 649{
 650	return cancel_delayed_work_sync(&bdev->wq);
 651}
 652EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
 
 
 
 653
 654void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
 655{
 656	if (resched)
 657		schedule_delayed_work(&bdev->wq,
 658				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 
 
 
 
 
 
 659}
 660EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
 661
 662static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
 663			bool no_wait_gpu)
 664{
 665	struct ttm_bo_device *bdev = bo->bdev;
 666	struct ttm_mem_reg evict_mem;
 667	struct ttm_placement placement;
 
 668	int ret = 0;
 669
 670	spin_lock(&bdev->fence_lock);
 671	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 672	spin_unlock(&bdev->fence_lock);
 673
 674	if (unlikely(ret != 0)) {
 675		if (ret != -ERESTARTSYS) {
 676			pr_err("Failed to expire sync object before buffer eviction\n");
 677		}
 678		goto out;
 679	}
 680
 681	lockdep_assert_held(&bo->resv->lock.base);
 
 
 
 682
 683	evict_mem = bo->mem;
 684	evict_mem.mm_node = NULL;
 685	evict_mem.bus.io_reserved_vm = false;
 686	evict_mem.bus.io_reserved_count = 0;
 
 
 687
 688	placement.fpfn = 0;
 689	placement.lpfn = 0;
 690	placement.num_placement = 0;
 691	placement.num_busy_placement = 0;
 692	bdev->driver->evict_flags(bo, &placement);
 693	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
 694				no_wait_gpu);
 695	if (ret) {
 696		if (ret != -ERESTARTSYS) {
 697			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
 698			       bo);
 699			ttm_bo_mem_space_debug(bo, &placement);
 700		}
 701		goto out;
 702	}
 703
 704	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
 705				     no_wait_gpu);
 
 
 
 
 
 
 706	if (ret) {
 707		if (ret != -ERESTARTSYS)
 
 708			pr_err("Buffer eviction failed\n");
 709		ttm_bo_mem_put(bo, &evict_mem);
 710		goto out;
 711	}
 712	bo->evicted = true;
 713out:
 714	return ret;
 715}
 716
 717static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
 718				uint32_t mem_type,
 719				bool interruptible,
 720				bool no_wait_gpu)
 
 
 
 
 
 
 721{
 722	struct ttm_bo_global *glob = bdev->glob;
 723	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 724	struct ttm_buffer_object *bo;
 725	int ret = -EBUSY, put_count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 726
 727	spin_lock(&glob->lru_lock);
 728	list_for_each_entry(bo, &man->lru, lru) {
 729		ret = __ttm_bo_reserve(bo, false, true, false, 0);
 730		if (!ret)
 731			break;
 
 
 
 732	}
 733
 734	if (ret) {
 735		spin_unlock(&glob->lru_lock);
 
 
 
 
 
 736		return ret;
 737	}
 738
 739	kref_get(&bo->list_kref);
 740
 741	if (!list_empty(&bo->ddestroy)) {
 742		ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
 743						     no_wait_gpu);
 744		kref_put(&bo->list_kref, ttm_bo_release_list);
 745		return ret;
 746	}
 747
 748	put_count = ttm_bo_del_from_lru(bo);
 749	spin_unlock(&glob->lru_lock);
 
 
 
 
 
 750
 751	BUG_ON(ret != 0);
 
 
 752
 753	ttm_bo_list_ref_sub(bo, put_count, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 754
 755	ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
 756	ttm_bo_unreserve(bo);
 
 
 
 
 
 
 
 
 
 
 757
 758	kref_put(&bo->list_kref, ttm_bo_release_list);
 759	return ret;
 
 
 
 760}
 
 761
 762void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
 
 
 
 
 
 
 
 763{
 764	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 765
 766	if (mem->mm_node)
 767		(*man->func->put_node)(man, mem);
 
 768}
 769EXPORT_SYMBOL(ttm_bo_mem_put);
 770
 771/**
 772 * Repeatedly evict memory from the LRU for @mem_type until we create enough
 773 * space, or we've evicted everything and there isn't enough space.
 774 */
 775static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
 776					uint32_t mem_type,
 777					struct ttm_placement *placement,
 778					struct ttm_mem_reg *mem,
 779					bool interruptible,
 780					bool no_wait_gpu)
 781{
 782	struct ttm_bo_device *bdev = bo->bdev;
 783	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 784	int ret;
 785
 
 
 786	do {
 787		ret = (*man->func->get_node)(man, bo, placement, mem);
 788		if (unlikely(ret != 0))
 
 
 789			return ret;
 790		if (mem->mm_node)
 791			break;
 792		ret = ttm_mem_evict_first(bdev, mem_type,
 793					  interruptible, no_wait_gpu);
 794		if (unlikely(ret != 0))
 795			return ret;
 796	} while (1);
 797	if (mem->mm_node == NULL)
 798		return -ENOMEM;
 799	mem->mem_type = mem_type;
 800	return 0;
 801}
 802
 803static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
 804				      uint32_t cur_placement,
 805				      uint32_t proposed_placement)
 806{
 807	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
 808	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
 809
 810	/**
 811	 * Keep current caching if possible.
 812	 */
 813
 814	if ((cur_placement & caching) != 0)
 815		result |= (cur_placement & caching);
 816	else if ((man->default_caching & caching) != 0)
 817		result |= man->default_caching;
 818	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
 819		result |= TTM_PL_FLAG_CACHED;
 820	else if ((TTM_PL_FLAG_WC & caching) != 0)
 821		result |= TTM_PL_FLAG_WC;
 822	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
 823		result |= TTM_PL_FLAG_UNCACHED;
 824
 825	return result;
 826}
 827
 828static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
 829				 uint32_t mem_type,
 830				 uint32_t proposed_placement,
 831				 uint32_t *masked_placement)
 832{
 833	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
 834
 835	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
 836		return false;
 837
 838	if ((proposed_placement & man->available_caching) == 0)
 839		return false;
 840
 841	cur_flags |= (proposed_placement & man->available_caching);
 842
 843	*masked_placement = cur_flags;
 844	return true;
 845}
 846
 847/**
 848 * Creates space for memory region @mem according to its type.
 
 
 
 
 
 
 849 *
 850 * This function first searches for free space in compatible memory types in
 851 * the priority order defined by the driver.  If free space isn't found, then
 852 * ttm_bo_mem_force_space is attempted in priority order to evict and find
 853 * space.
 
 
 
 
 854 */
 855int ttm_bo_mem_space(struct ttm_buffer_object *bo,
 856			struct ttm_placement *placement,
 857			struct ttm_mem_reg *mem,
 858			bool interruptible,
 859			bool no_wait_gpu)
 860{
 861	struct ttm_bo_device *bdev = bo->bdev;
 862	struct ttm_mem_type_manager *man;
 863	uint32_t mem_type = TTM_PL_SYSTEM;
 864	uint32_t cur_flags = 0;
 865	bool type_found = false;
 866	bool type_ok = false;
 867	bool has_erestartsys = false;
 868	int i, ret;
 869
 870	mem->mm_node = NULL;
 
 
 
 871	for (i = 0; i < placement->num_placement; ++i) {
 872		ret = ttm_mem_type_from_flags(placement->placement[i],
 873						&mem_type);
 874		if (ret)
 875			return ret;
 876		man = &bdev->man[mem_type];
 877
 878		type_ok = ttm_bo_mt_compatible(man,
 879						mem_type,
 880						placement->placement[i],
 881						&cur_flags);
 882
 883		if (!type_ok)
 
 
 884			continue;
 
 
 885
 886		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
 887						  cur_flags);
 888		/*
 889		 * Use the access and other non-mapping-related flag bits from
 890		 * the memory placement flags to the current flags
 891		 */
 892		ttm_flag_masked(&cur_flags, placement->placement[i],
 893				~TTM_PL_MASK_MEMTYPE);
 894
 895		if (mem_type == TTM_PL_SYSTEM)
 896			break;
 897
 898		if (man->has_type && man->use_type) {
 899			type_found = true;
 900			ret = (*man->func->get_node)(man, bo, placement, mem);
 901			if (unlikely(ret))
 902				return ret;
 903		}
 904		if (mem->mm_node)
 905			break;
 906	}
 907
 908	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
 909		mem->mem_type = mem_type;
 910		mem->placement = cur_flags;
 911		return 0;
 912	}
 913
 914	if (!type_found)
 915		return -EINVAL;
 
 916
 917	for (i = 0; i < placement->num_busy_placement; ++i) {
 918		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
 919						&mem_type);
 920		if (ret)
 921			return ret;
 922		man = &bdev->man[mem_type];
 923		if (!man->has_type)
 924			continue;
 925		if (!ttm_bo_mt_compatible(man,
 926						mem_type,
 927						placement->busy_placement[i],
 928						&cur_flags))
 929			continue;
 930
 931		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
 932						  cur_flags);
 933		/*
 934		 * Use the access and other non-mapping-related flag bits from
 935		 * the memory placement flags to the current flags
 936		 */
 937		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
 938				~TTM_PL_MASK_MEMTYPE);
 939
 
 
 
 940
 941		if (mem_type == TTM_PL_SYSTEM) {
 942			mem->mem_type = mem_type;
 943			mem->placement = cur_flags;
 944			mem->mm_node = NULL;
 945			return 0;
 946		}
 947
 948		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
 949						interruptible, no_wait_gpu);
 950		if (ret == 0 && mem->mm_node) {
 951			mem->placement = cur_flags;
 952			return 0;
 953		}
 954		if (ret == -ERESTARTSYS)
 955			has_erestartsys = true;
 956	}
 957	ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
 958	return ret;
 959}
 960EXPORT_SYMBOL(ttm_bo_mem_space);
 961
 962static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
 963			struct ttm_placement *placement,
 964			bool interruptible,
 965			bool no_wait_gpu)
 966{
 967	int ret = 0;
 968	struct ttm_mem_reg mem;
 969	struct ttm_bo_device *bdev = bo->bdev;
 970
 971	lockdep_assert_held(&bo->resv->lock.base);
 972
 973	/*
 974	 * FIXME: It's possible to pipeline buffer moves.
 975	 * Have the driver move function wait for idle when necessary,
 976	 * instead of doing it here.
 
 
 
 
 977	 */
 978	spin_lock(&bdev->fence_lock);
 979	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 980	spin_unlock(&bdev->fence_lock);
 981	if (ret)
 982		return ret;
 983	mem.num_pages = bo->num_pages;
 984	mem.size = mem.num_pages << PAGE_SHIFT;
 985	mem.page_alignment = bo->mem.page_alignment;
 986	mem.bus.io_reserved_vm = false;
 987	mem.bus.io_reserved_count = 0;
 988	/*
 989	 * Determine where to move the buffer.
 990	 */
 991	ret = ttm_bo_mem_space(bo, placement, &mem,
 992			       interruptible, no_wait_gpu);
 993	if (ret)
 994		goto out_unlock;
 995	ret = ttm_bo_handle_move_mem(bo, &mem, false,
 996				     interruptible, no_wait_gpu);
 997out_unlock:
 998	if (ret && mem.mm_node)
 999		ttm_bo_mem_put(bo, &mem);
1000	return ret;
1001}
1002
1003static bool ttm_bo_mem_compat(struct ttm_placement *placement,
1004			      struct ttm_mem_reg *mem,
1005			      uint32_t *new_flags)
1006{
1007	int i;
1008
1009	if (mem->mm_node && placement->lpfn != 0 &&
1010	    (mem->start < placement->fpfn ||
1011	     mem->start + mem->num_pages > placement->lpfn))
1012		return false;
1013
1014	for (i = 0; i < placement->num_placement; i++) {
1015		*new_flags = placement->placement[i];
1016		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1017		    (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1018			return true;
1019	}
1020
1021	for (i = 0; i < placement->num_busy_placement; i++) {
1022		*new_flags = placement->busy_placement[i];
1023		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1024		    (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1025			return true;
1026	}
1027
1028	return false;
1029}
1030
1031int ttm_bo_validate(struct ttm_buffer_object *bo,
1032			struct ttm_placement *placement,
1033			bool interruptible,
1034			bool no_wait_gpu)
1035{
1036	int ret;
1037	uint32_t new_flags;
1038
1039	lockdep_assert_held(&bo->resv->lock.base);
1040	/* Check that range is valid */
1041	if (placement->lpfn || placement->fpfn)
1042		if (placement->fpfn > placement->lpfn ||
1043			(placement->lpfn - placement->fpfn) < bo->num_pages)
1044			return -EINVAL;
1045	/*
1046	 * Check whether we need to move buffer.
1047	 */
1048	if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1049		ret = ttm_bo_move_buffer(bo, placement, interruptible,
1050					 no_wait_gpu);
1051		if (ret)
1052			return ret;
1053	} else {
1054		/*
1055		 * Use the access and other non-mapping-related flag bits from
1056		 * the compatible memory placement flags to the active flags
1057		 */
1058		ttm_flag_masked(&bo->mem.placement, new_flags,
1059				~TTM_PL_MASK_MEMTYPE);
1060	}
 
 
1061	/*
1062	 * We might need to add a TTM.
1063	 */
1064	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1065		ret = ttm_bo_add_ttm(bo, true);
1066		if (ret)
1067			return ret;
1068	}
1069	return 0;
1070}
1071EXPORT_SYMBOL(ttm_bo_validate);
1072
1073int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1074				struct ttm_placement *placement)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1075{
1076	BUG_ON((placement->fpfn || placement->lpfn) &&
1077	       (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1078
1079	return 0;
1080}
1081
1082int ttm_bo_init(struct ttm_bo_device *bdev,
1083		struct ttm_buffer_object *bo,
1084		unsigned long size,
1085		enum ttm_bo_type type,
1086		struct ttm_placement *placement,
1087		uint32_t page_alignment,
1088		bool interruptible,
1089		struct file *persistent_swap_storage,
1090		size_t acc_size,
1091		struct sg_table *sg,
1092		void (*destroy) (struct ttm_buffer_object *))
1093{
1094	int ret = 0;
1095	unsigned long num_pages;
1096	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1097	bool locked;
1098
1099	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1100	if (ret) {
1101		pr_err("Out of kernel memory\n");
1102		if (destroy)
1103			(*destroy)(bo);
1104		else
1105			kfree(bo);
1106		return -ENOMEM;
1107	}
1108
1109	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1110	if (num_pages == 0) {
1111		pr_err("Illegal buffer object size\n");
1112		if (destroy)
1113			(*destroy)(bo);
1114		else
1115			kfree(bo);
1116		ttm_mem_global_free(mem_glob, acc_size);
1117		return -EINVAL;
1118	}
1119	bo->destroy = destroy;
1120
1121	kref_init(&bo->kref);
1122	kref_init(&bo->list_kref);
1123	atomic_set(&bo->cpu_writers, 0);
1124	INIT_LIST_HEAD(&bo->lru);
1125	INIT_LIST_HEAD(&bo->ddestroy);
1126	INIT_LIST_HEAD(&bo->swap);
1127	INIT_LIST_HEAD(&bo->io_reserve_lru);
1128	mutex_init(&bo->wu_mutex);
1129	bo->bdev = bdev;
1130	bo->glob = bdev->glob;
1131	bo->type = type;
1132	bo->num_pages = num_pages;
1133	bo->mem.size = num_pages << PAGE_SHIFT;
1134	bo->mem.mem_type = TTM_PL_SYSTEM;
1135	bo->mem.num_pages = bo->num_pages;
1136	bo->mem.mm_node = NULL;
1137	bo->mem.page_alignment = page_alignment;
1138	bo->mem.bus.io_reserved_vm = false;
1139	bo->mem.bus.io_reserved_count = 0;
1140	bo->priv_flags = 0;
1141	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1142	bo->persistent_swap_storage = persistent_swap_storage;
1143	bo->acc_size = acc_size;
1144	bo->sg = sg;
1145	bo->resv = &bo->ttm_resv;
1146	reservation_object_init(bo->resv);
1147	atomic_inc(&bo->glob->bo_count);
1148	drm_vma_node_reset(&bo->vma_node);
1149
1150	ret = ttm_bo_check_placement(bo, placement);
1151
1152	/*
1153	 * For ttm_bo_type_device buffers, allocate
1154	 * address space from the device.
1155	 */
1156	if (likely(!ret) &&
1157	    (bo->type == ttm_bo_type_device ||
1158	     bo->type == ttm_bo_type_sg))
1159		ret = drm_vma_offset_add(&bdev->vma_manager, &bo->vma_node,
1160					 bo->mem.num_pages);
 
1161
1162	locked = ww_mutex_trylock(&bo->resv->lock);
1163	WARN_ON(!locked);
1164
1165	if (likely(!ret))
1166		ret = ttm_bo_validate(bo, placement, interruptible, false);
1167
1168	ttm_bo_unreserve(bo);
1169
 
1170	if (unlikely(ret))
1171		ttm_bo_unref(&bo);
1172
1173	return ret;
1174}
1175EXPORT_SYMBOL(ttm_bo_init);
1176
1177size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1178		       unsigned long bo_size,
1179		       unsigned struct_size)
1180{
1181	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1182	size_t size = 0;
1183
1184	size += ttm_round_pot(struct_size);
1185	size += PAGE_ALIGN(npages * sizeof(void *));
1186	size += ttm_round_pot(sizeof(struct ttm_tt));
1187	return size;
1188}
1189EXPORT_SYMBOL(ttm_bo_acc_size);
1190
1191size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1192			   unsigned long bo_size,
1193			   unsigned struct_size)
1194{
1195	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1196	size_t size = 0;
1197
1198	size += ttm_round_pot(struct_size);
1199	size += PAGE_ALIGN(npages * sizeof(void *));
1200	size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1201	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1202	return size;
1203}
1204EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1205
1206int ttm_bo_create(struct ttm_bo_device *bdev,
1207			unsigned long size,
1208			enum ttm_bo_type type,
1209			struct ttm_placement *placement,
1210			uint32_t page_alignment,
1211			bool interruptible,
1212			struct file *persistent_swap_storage,
1213			struct ttm_buffer_object **p_bo)
1214{
1215	struct ttm_buffer_object *bo;
1216	size_t acc_size;
1217	int ret;
1218
1219	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1220	if (unlikely(bo == NULL))
1221		return -ENOMEM;
1222
1223	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1224	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1225			  interruptible, persistent_swap_storage, acc_size,
1226			  NULL, NULL);
1227	if (likely(ret == 0))
1228		*p_bo = bo;
1229
 
 
1230	return ret;
1231}
1232EXPORT_SYMBOL(ttm_bo_create);
1233
1234static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1235					unsigned mem_type, bool allow_errors)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1236{
1237	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1238	struct ttm_bo_global *glob = bdev->glob;
1239	int ret;
1240
1241	/*
1242	 * Can't use standard list traversal since we're unlocking.
1243	 */
1244
1245	spin_lock(&glob->lru_lock);
1246	while (!list_empty(&man->lru)) {
1247		spin_unlock(&glob->lru_lock);
1248		ret = ttm_mem_evict_first(bdev, mem_type, false, false);
1249		if (ret) {
1250			if (allow_errors) {
1251				return ret;
1252			} else {
1253				pr_err("Cleanup eviction failed\n");
1254			}
1255		}
1256		spin_lock(&glob->lru_lock);
1257	}
1258	spin_unlock(&glob->lru_lock);
1259	return 0;
1260}
1261
1262int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1263{
1264	struct ttm_mem_type_manager *man;
1265	int ret = -EINVAL;
1266
1267	if (mem_type >= TTM_NUM_MEM_TYPES) {
1268		pr_err("Illegal memory type %d\n", mem_type);
1269		return ret;
1270	}
1271	man = &bdev->man[mem_type];
1272
1273	if (!man->has_type) {
1274		pr_err("Trying to take down uninitialized memory manager type %u\n",
1275		       mem_type);
1276		return ret;
1277	}
1278
1279	man->use_type = false;
1280	man->has_type = false;
1281
1282	ret = 0;
1283	if (mem_type > 0) {
1284		ttm_bo_force_list_clean(bdev, mem_type, false);
1285
1286		ret = (*man->func->takedown)(man);
1287	}
1288
1289	return ret;
1290}
1291EXPORT_SYMBOL(ttm_bo_clean_mm);
1292
1293int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1294{
1295	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1296
1297	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1298		pr_err("Illegal memory manager memory type %u\n", mem_type);
1299		return -EINVAL;
1300	}
1301
1302	if (!man->has_type) {
1303		pr_err("Memory type %u has not been initialized\n", mem_type);
1304		return 0;
1305	}
1306
1307	return ttm_bo_force_list_clean(bdev, mem_type, true);
1308}
1309EXPORT_SYMBOL(ttm_bo_evict_mm);
1310
1311int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1312			unsigned long p_size)
1313{
1314	int ret = -EINVAL;
1315	struct ttm_mem_type_manager *man;
1316
1317	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1318	man = &bdev->man[type];
1319	BUG_ON(man->has_type);
1320	man->io_reserve_fastpath = true;
1321	man->use_io_reserve_lru = false;
1322	mutex_init(&man->io_reserve_mutex);
1323	INIT_LIST_HEAD(&man->io_reserve_lru);
1324
1325	ret = bdev->driver->init_mem_type(bdev, type, man);
1326	if (ret)
1327		return ret;
1328	man->bdev = bdev;
1329
1330	ret = 0;
1331	if (type != TTM_PL_SYSTEM) {
1332		ret = (*man->func->init)(man, p_size);
1333		if (ret)
1334			return ret;
1335	}
1336	man->has_type = true;
1337	man->use_type = true;
1338	man->size = p_size;
1339
1340	INIT_LIST_HEAD(&man->lru);
1341
1342	return 0;
1343}
1344EXPORT_SYMBOL(ttm_bo_init_mm);
1345
1346static void ttm_bo_global_kobj_release(struct kobject *kobj)
1347{
1348	struct ttm_bo_global *glob =
1349		container_of(kobj, struct ttm_bo_global, kobj);
1350
1351	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1352	__free_page(glob->dummy_read_page);
1353	kfree(glob);
1354}
1355
1356void ttm_bo_global_release(struct drm_global_reference *ref)
1357{
1358	struct ttm_bo_global *glob = ref->object;
1359
1360	kobject_del(&glob->kobj);
1361	kobject_put(&glob->kobj);
1362}
1363EXPORT_SYMBOL(ttm_bo_global_release);
1364
1365int ttm_bo_global_init(struct drm_global_reference *ref)
1366{
1367	struct ttm_bo_global_ref *bo_ref =
1368		container_of(ref, struct ttm_bo_global_ref, ref);
1369	struct ttm_bo_global *glob = ref->object;
1370	int ret;
1371
1372	mutex_init(&glob->device_list_mutex);
1373	spin_lock_init(&glob->lru_lock);
1374	glob->mem_glob = bo_ref->mem_glob;
1375	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1376
1377	if (unlikely(glob->dummy_read_page == NULL)) {
1378		ret = -ENOMEM;
1379		goto out_no_drp;
1380	}
1381
1382	INIT_LIST_HEAD(&glob->swap_lru);
1383	INIT_LIST_HEAD(&glob->device_list);
1384
1385	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1386	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1387	if (unlikely(ret != 0)) {
1388		pr_err("Could not register buffer object swapout\n");
1389		goto out_no_shrink;
1390	}
1391
1392	atomic_set(&glob->bo_count, 0);
1393
1394	ret = kobject_init_and_add(
1395		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1396	if (unlikely(ret != 0))
1397		kobject_put(&glob->kobj);
1398	return ret;
1399out_no_shrink:
1400	__free_page(glob->dummy_read_page);
1401out_no_drp:
1402	kfree(glob);
1403	return ret;
1404}
1405EXPORT_SYMBOL(ttm_bo_global_init);
1406
1407
1408int ttm_bo_device_release(struct ttm_bo_device *bdev)
1409{
1410	int ret = 0;
1411	unsigned i = TTM_NUM_MEM_TYPES;
1412	struct ttm_mem_type_manager *man;
1413	struct ttm_bo_global *glob = bdev->glob;
1414
1415	while (i--) {
1416		man = &bdev->man[i];
1417		if (man->has_type) {
1418			man->use_type = false;
1419			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1420				ret = -EBUSY;
1421				pr_err("DRM memory manager type %d is not clean\n",
1422				       i);
1423			}
1424			man->has_type = false;
1425		}
1426	}
1427
1428	mutex_lock(&glob->device_list_mutex);
1429	list_del(&bdev->device_list);
1430	mutex_unlock(&glob->device_list_mutex);
1431
1432	cancel_delayed_work_sync(&bdev->wq);
1433
1434	while (ttm_bo_delayed_delete(bdev, true))
1435		;
1436
1437	spin_lock(&glob->lru_lock);
1438	if (list_empty(&bdev->ddestroy))
1439		TTM_DEBUG("Delayed destroy list was clean\n");
1440
1441	if (list_empty(&bdev->man[0].lru))
1442		TTM_DEBUG("Swap list was clean\n");
1443	spin_unlock(&glob->lru_lock);
1444
1445	drm_vma_offset_manager_destroy(&bdev->vma_manager);
1446
1447	return ret;
1448}
1449EXPORT_SYMBOL(ttm_bo_device_release);
1450
1451int ttm_bo_device_init(struct ttm_bo_device *bdev,
1452		       struct ttm_bo_global *glob,
1453		       struct ttm_bo_driver *driver,
1454		       struct address_space *mapping,
1455		       uint64_t file_page_offset,
1456		       bool need_dma32)
1457{
1458	int ret = -EINVAL;
1459
1460	bdev->driver = driver;
1461
1462	memset(bdev->man, 0, sizeof(bdev->man));
1463
1464	/*
1465	 * Initialize the system memory buffer type.
1466	 * Other types need to be driver / IOCTL initialized.
1467	 */
1468	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1469	if (unlikely(ret != 0))
1470		goto out_no_sys;
1471
1472	drm_vma_offset_manager_init(&bdev->vma_manager, file_page_offset,
1473				    0x10000000);
1474	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1475	INIT_LIST_HEAD(&bdev->ddestroy);
1476	bdev->dev_mapping = mapping;
1477	bdev->glob = glob;
1478	bdev->need_dma32 = need_dma32;
1479	bdev->val_seq = 0;
1480	spin_lock_init(&bdev->fence_lock);
1481	mutex_lock(&glob->device_list_mutex);
1482	list_add_tail(&bdev->device_list, &glob->device_list);
1483	mutex_unlock(&glob->device_list_mutex);
1484
1485	return 0;
1486out_no_sys:
1487	return ret;
1488}
1489EXPORT_SYMBOL(ttm_bo_device_init);
1490
1491/*
1492 * buffer object vm functions.
1493 */
1494
1495bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1496{
1497	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1498
1499	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1500		if (mem->mem_type == TTM_PL_SYSTEM)
1501			return false;
1502
1503		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1504			return false;
1505
1506		if (mem->placement & TTM_PL_FLAG_CACHED)
1507			return false;
1508	}
1509	return true;
1510}
1511
1512void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1513{
1514	struct ttm_bo_device *bdev = bo->bdev;
1515
1516	drm_vma_node_unmap(&bo->vma_node, bdev->dev_mapping);
1517	ttm_mem_io_free_vm(bo);
1518}
1519
1520void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1521{
1522	struct ttm_bo_device *bdev = bo->bdev;
1523	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1524
1525	ttm_mem_io_lock(man, false);
1526	ttm_bo_unmap_virtual_locked(bo);
1527	ttm_mem_io_unlock(man);
1528}
1529
1530
1531EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1532
1533
1534int ttm_bo_wait(struct ttm_buffer_object *bo,
1535		bool lazy, bool interruptible, bool no_wait)
 
 
 
 
 
 
 
 
1536{
1537	struct ttm_bo_driver *driver = bo->bdev->driver;
1538	struct ttm_bo_device *bdev = bo->bdev;
1539	void *sync_obj;
1540	int ret = 0;
1541
1542	if (likely(bo->sync_obj == NULL))
1543		return 0;
1544
1545	while (bo->sync_obj) {
1546
1547		if (driver->sync_obj_signaled(bo->sync_obj)) {
1548			void *tmp_obj = bo->sync_obj;
1549			bo->sync_obj = NULL;
1550			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1551			spin_unlock(&bdev->fence_lock);
1552			driver->sync_obj_unref(&tmp_obj);
1553			spin_lock(&bdev->fence_lock);
1554			continue;
1555		}
1556
1557		if (no_wait)
1558			return -EBUSY;
 
1559
1560		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1561		spin_unlock(&bdev->fence_lock);
1562		ret = driver->sync_obj_wait(sync_obj,
1563					    lazy, interruptible);
1564		if (unlikely(ret != 0)) {
1565			driver->sync_obj_unref(&sync_obj);
1566			spin_lock(&bdev->fence_lock);
1567			return ret;
1568		}
1569		spin_lock(&bdev->fence_lock);
1570		if (likely(bo->sync_obj == sync_obj)) {
1571			void *tmp_obj = bo->sync_obj;
1572			bo->sync_obj = NULL;
1573			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1574				  &bo->priv_flags);
1575			spin_unlock(&bdev->fence_lock);
1576			driver->sync_obj_unref(&sync_obj);
1577			driver->sync_obj_unref(&tmp_obj);
1578			spin_lock(&bdev->fence_lock);
1579		} else {
1580			spin_unlock(&bdev->fence_lock);
1581			driver->sync_obj_unref(&sync_obj);
1582			spin_lock(&bdev->fence_lock);
1583		}
1584	}
1585	return 0;
1586}
1587EXPORT_SYMBOL(ttm_bo_wait);
1588
1589int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
 
1590{
1591	struct ttm_bo_device *bdev = bo->bdev;
1592	int ret = 0;
 
1593
1594	/*
1595	 * Using ttm_bo_reserve makes sure the lru lists are updated.
 
 
 
1596	 */
1597
1598	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1599	if (unlikely(ret != 0))
1600		return ret;
1601	spin_lock(&bdev->fence_lock);
1602	ret = ttm_bo_wait(bo, false, true, no_wait);
1603	spin_unlock(&bdev->fence_lock);
1604	if (likely(ret == 0))
1605		atomic_inc(&bo->cpu_writers);
1606	ttm_bo_unreserve(bo);
1607	return ret;
1608}
1609EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1610
1611void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1612{
1613	atomic_dec(&bo->cpu_writers);
1614}
1615EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1616
1617/**
1618 * A buffer object shrink method that tries to swap out the first
1619 * buffer object on the bo_global::swap_lru list.
1620 */
1621
1622static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1623{
1624	struct ttm_bo_global *glob =
1625	    container_of(shrink, struct ttm_bo_global, shrink);
1626	struct ttm_buffer_object *bo;
1627	int ret = -EBUSY;
1628	int put_count;
1629	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1630
1631	spin_lock(&glob->lru_lock);
1632	list_for_each_entry(bo, &glob->swap_lru, swap) {
1633		ret = __ttm_bo_reserve(bo, false, true, false, 0);
1634		if (!ret)
1635			break;
1636	}
1637
1638	if (ret) {
1639		spin_unlock(&glob->lru_lock);
1640		return ret;
1641	}
1642
1643	kref_get(&bo->list_kref);
 
 
 
 
 
 
 
 
 
 
 
1644
1645	if (!list_empty(&bo->ddestroy)) {
1646		ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1647		kref_put(&bo->list_kref, ttm_bo_release_list);
1648		return ret;
 
 
1649	}
1650
1651	put_count = ttm_bo_del_from_lru(bo);
1652	spin_unlock(&glob->lru_lock);
1653
1654	ttm_bo_list_ref_sub(bo, put_count, true);
1655
1656	/**
1657	 * Wait for GPU, then move to system cached.
1658	 */
1659
1660	spin_lock(&bo->bdev->fence_lock);
1661	ret = ttm_bo_wait(bo, false, false, false);
1662	spin_unlock(&bo->bdev->fence_lock);
1663
1664	if (unlikely(ret != 0))
1665		goto out;
1666
1667	if ((bo->mem.placement & swap_placement) != swap_placement) {
1668		struct ttm_mem_reg evict_mem;
1669
1670		evict_mem = bo->mem;
1671		evict_mem.mm_node = NULL;
1672		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1673		evict_mem.mem_type = TTM_PL_SYSTEM;
1674
1675		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1676					     false, false);
1677		if (unlikely(ret != 0))
1678			goto out;
1679	}
1680
1681	ttm_bo_unmap_virtual(bo);
1682
1683	/**
1684	 * Swap out. Buffer will be swapped in again as soon as
1685	 * anyone tries to access a ttm page.
1686	 */
 
 
1687
1688	if (bo->bdev->driver->swap_notify)
1689		bo->bdev->driver->swap_notify(bo);
1690
1691	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1692out:
1693
1694	/**
1695	 *
1696	 * Unreserve without putting on LRU to avoid swapping out an
1697	 * already swapped buffer.
1698	 */
1699
1700	__ttm_bo_unreserve(bo);
1701	kref_put(&bo->list_kref, ttm_bo_release_list);
1702	return ret;
1703}
1704
1705void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1706{
1707	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1708		;
1709}
1710EXPORT_SYMBOL(ttm_bo_swapout_all);
1711
1712/**
1713 * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
1714 * unreserved
1715 *
1716 * @bo: Pointer to buffer
1717 */
1718int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
1719{
1720	int ret;
1721
1722	/*
1723	 * In the absense of a wait_unlocked API,
1724	 * Use the bo::wu_mutex to avoid triggering livelocks due to
1725	 * concurrent use of this function. Note that this use of
1726	 * bo::wu_mutex can go away if we change locking order to
1727	 * mmap_sem -> bo::reserve.
1728	 */
1729	ret = mutex_lock_interruptible(&bo->wu_mutex);
1730	if (unlikely(ret != 0))
1731		return -ERESTARTSYS;
1732	if (!ww_mutex_is_locked(&bo->resv->lock))
1733		goto out_unlock;
1734	ret = __ttm_bo_reserve(bo, true, false, false, NULL);
1735	if (unlikely(ret != 0))
1736		goto out_unlock;
1737	__ttm_bo_unreserve(bo);
1738
1739out_unlock:
1740	mutex_unlock(&bo->wu_mutex);
1741	return ret;
1742}