Linux Audio

Check our new training course

Loading...
v6.8
   1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
   2/**************************************************************************
   3 *
   4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 **************************************************************************/
  28/*
  29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  30 */
  31
  32#define pr_fmt(fmt) "[TTM] " fmt
  33
  34#include <drm/ttm/ttm_bo.h>
  35#include <drm/ttm/ttm_placement.h>
  36#include <drm/ttm/ttm_tt.h>
  37
  38#include <linux/jiffies.h>
  39#include <linux/slab.h>
  40#include <linux/sched.h>
  41#include <linux/mm.h>
  42#include <linux/file.h>
  43#include <linux/module.h>
  44#include <linux/atomic.h>
  45#include <linux/dma-resv.h>
  46
  47#include "ttm_module.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48
  49static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  50					struct ttm_placement *placement)
  51{
  52	struct drm_printer p = drm_debug_printer(TTM_PFX);
  53	struct ttm_resource_manager *man;
  54	int i, mem_type;
  55
 
 
 
  56	for (i = 0; i < placement->num_placement; i++) {
  57		mem_type = placement->placement[i].mem_type;
  58		drm_printf(&p, "  placement[%d]=0x%08X (%d)\n",
  59			   i, placement->placement[i].flags, mem_type);
  60		man = ttm_manager_type(bo->bdev, mem_type);
  61		ttm_resource_manager_debug(man, &p);
 
 
  62	}
  63}
  64
  65/**
  66 * ttm_bo_move_to_lru_tail
  67 *
  68 * @bo: The buffer object.
  69 *
  70 * Move this BO to the tail of all lru lists used to lookup and reserve an
  71 * object. This function must be called with struct ttm_global::lru_lock
  72 * held, and is used to make a BO less likely to be considered for eviction.
  73 */
  74void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo)
  75{
  76	dma_resv_assert_held(bo->base.resv);
 
  77
  78	if (bo->resource)
  79		ttm_resource_move_to_lru_tail(bo->resource);
  80}
  81EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
  82
  83/**
  84 * ttm_bo_set_bulk_move - update BOs bulk move object
  85 *
  86 * @bo: The buffer object.
  87 * @bulk: bulk move structure
  88 *
  89 * Update the BOs bulk move object, making sure that resources are added/removed
  90 * as well. A bulk move allows to move many resource on the LRU at once,
  91 * resulting in much less overhead of maintaining the LRU.
  92 * The only requirement is that the resources stay together on the LRU and are
  93 * never separated. This is enforces by setting the bulk_move structure on a BO.
  94 * ttm_lru_bulk_move_tail() should be used to move all resources to the tail of
  95 * their LRU list.
  96 */
  97void ttm_bo_set_bulk_move(struct ttm_buffer_object *bo,
  98			  struct ttm_lru_bulk_move *bulk)
 
  99{
 100	dma_resv_assert_held(bo->base.resv);
 
 101
 102	if (bo->bulk_move == bulk)
 103		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105	spin_lock(&bo->bdev->lru_lock);
 106	if (bo->resource)
 107		ttm_resource_del_bulk_move(bo->resource, bo);
 108	bo->bulk_move = bulk;
 109	if (bo->resource)
 110		ttm_resource_add_bulk_move(bo->resource, bo);
 111	spin_unlock(&bo->bdev->lru_lock);
 
 
 
 
 
 
 
 
 112}
 113EXPORT_SYMBOL(ttm_bo_set_bulk_move);
 114
 115static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 116				  struct ttm_resource *mem, bool evict,
 117				  struct ttm_operation_ctx *ctx,
 118				  struct ttm_place *hop)
 119{
 120	struct ttm_device *bdev = bo->bdev;
 121	bool old_use_tt, new_use_tt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122	int ret;
 123
 124	old_use_tt = !bo->resource || ttm_manager_type(bdev, bo->resource->mem_type)->use_tt;
 125	new_use_tt = ttm_manager_type(bdev, mem->mem_type)->use_tt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126
 127	ttm_bo_unmap_virtual(bo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 128
 129	/*
 130	 * Create and bind a ttm if required.
 131	 */
 132
 133	if (new_use_tt) {
 134		/* Zero init the new TTM structure if the old location should
 135		 * have used one as well.
 136		 */
 137		ret = ttm_tt_create(bo, old_use_tt);
 
 
 
 
 138		if (ret)
 139			goto out_err;
 140
 141		if (mem->mem_type != TTM_PL_SYSTEM) {
 142			ret = ttm_tt_populate(bo->bdev, bo->ttm, ctx);
 143			if (ret)
 144				goto out_err;
 145		}
 
 
 
 
 
 
 
 
 146	}
 147
 148	ret = dma_resv_reserve_fences(bo->base.resv, 1);
 149	if (ret)
 150		goto out_err;
 
 
 
 
 
 
 
 
 151
 152	ret = bdev->funcs->move(bo, evict, ctx, mem, hop);
 153	if (ret) {
 154		if (ret == -EMULTIHOP)
 155			return ret;
 
 
 
 
 
 
 156		goto out_err;
 157	}
 158
 159	ctx->bytes_moved += bo->base.size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160	return 0;
 161
 162out_err:
 163	if (!old_use_tt)
 164		ttm_bo_tt_destroy(bo);
 
 
 
 
 165
 166	return ret;
 167}
 168
 169/*
 170 * Call bo::reserved.
 171 * Will release GPU memory type usage on destruction.
 172 * This is the place to put in driver specific hooks to release
 173 * driver private resources.
 174 * Will release the bo::reserved lock.
 175 */
 176
 177static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 178{
 179	if (bo->bdev->funcs->delete_mem_notify)
 180		bo->bdev->funcs->delete_mem_notify(bo);
 
 
 
 
 
 
 
 
 
 181
 182	ttm_bo_tt_destroy(bo);
 183	ttm_resource_free(bo, &bo->resource);
 
 
 
 184}
 185
 186static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
 187{
 188	int r;
 
 
 
 
 
 
 189
 190	if (bo->base.resv == &bo->base._resv)
 191		return 0;
 
 
 
 
 
 
 
 
 192
 193	BUG_ON(!dma_resv_trylock(&bo->base._resv));
 194
 195	r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
 196	dma_resv_unlock(&bo->base._resv);
 197	if (r)
 198		return r;
 199
 200	if (bo->type != ttm_bo_type_sg) {
 201		/* This works because the BO is about to be destroyed and nobody
 202		 * reference it any more. The only tricky case is the trylock on
 203		 * the resv object while holding the lru_lock.
 204		 */
 205		spin_lock(&bo->bdev->lru_lock);
 206		bo->base.resv = &bo->base._resv;
 207		spin_unlock(&bo->bdev->lru_lock);
 208	}
 209
 210	return r;
 211}
 212
 213static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
 214{
 215	struct dma_resv *resv = &bo->base._resv;
 216	struct dma_resv_iter cursor;
 217	struct dma_fence *fence;
 218
 219	dma_resv_iter_begin(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP);
 220	dma_resv_for_each_fence_unlocked(&cursor, fence) {
 221		if (!fence->ops->signaled)
 222			dma_fence_enable_sw_signaling(fence);
 
 223	}
 224	dma_resv_iter_end(&cursor);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225}
 226
 227/**
 228 * ttm_bo_cleanup_refs
 229 * If bo idle, remove from lru lists, and unref.
 230 * If not idle, block if possible.
 231 *
 232 * Must be called with lru_lock and reservation held, this function
 233 * will drop the lru lock and optionally the reservation lock before returning.
 234 *
 235 * @bo:                    The buffer object to clean-up
 236 * @interruptible:         Any sleeps should occur interruptibly.
 237 * @no_wait_gpu:           Never wait for gpu. Return -EBUSY instead.
 238 * @unlock_resv:           Unlock the reservation lock as well.
 239 */
 240
 241static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
 242			       bool interruptible, bool no_wait_gpu,
 243			       bool unlock_resv)
 244{
 245	struct dma_resv *resv = &bo->base._resv;
 246	int ret;
 
 
 
 247
 248	if (dma_resv_test_signaled(resv, DMA_RESV_USAGE_BOOKKEEP))
 249		ret = 0;
 250	else
 251		ret = -EBUSY;
 252
 253	if (ret && !no_wait_gpu) {
 254		long lret;
 255
 256		if (unlock_resv)
 257			dma_resv_unlock(bo->base.resv);
 258		spin_unlock(&bo->bdev->lru_lock);
 259
 260		lret = dma_resv_wait_timeout(resv, DMA_RESV_USAGE_BOOKKEEP,
 261					     interruptible,
 262					     30 * HZ);
 263
 264		if (lret < 0)
 265			return lret;
 266		else if (lret == 0)
 267			return -EBUSY;
 268
 269		spin_lock(&bo->bdev->lru_lock);
 270		if (unlock_resv && !dma_resv_trylock(bo->base.resv)) {
 271			/*
 272			 * We raced, and lost, someone else holds the reservation now,
 273			 * and is probably busy in ttm_bo_cleanup_memtype_use.
 274			 *
 275			 * Even if it's not the case, because we finished waiting any
 276			 * delayed destruction would succeed, so just return success
 277			 * here.
 278			 */
 279			spin_unlock(&bo->bdev->lru_lock);
 280			return 0;
 281		}
 282		ret = 0;
 283	}
 284
 285	if (ret) {
 286		if (unlock_resv)
 287			dma_resv_unlock(bo->base.resv);
 288		spin_unlock(&bo->bdev->lru_lock);
 
 289		return ret;
 290	}
 291
 292	spin_unlock(&bo->bdev->lru_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 293	ttm_bo_cleanup_memtype_use(bo);
 294
 295	if (unlock_resv)
 296		dma_resv_unlock(bo->base.resv);
 297
 298	return 0;
 299}
 300
 301/*
 302 * Block for the dma_resv object to become idle, lock the buffer and clean up
 303 * the resource and tt object.
 304 */
 305static void ttm_bo_delayed_delete(struct work_struct *work)
 306{
 307	struct ttm_buffer_object *bo;
 308
 309	bo = container_of(work, typeof(*bo), delayed_delete);
 310
 311	dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, false,
 312			      MAX_SCHEDULE_TIMEOUT);
 313	dma_resv_lock(bo->base.resv, NULL);
 314	ttm_bo_cleanup_memtype_use(bo);
 315	dma_resv_unlock(bo->base.resv);
 316	ttm_bo_put(bo);
 317}
 318
 319static void ttm_bo_release(struct kref *kref)
 320{
 321	struct ttm_buffer_object *bo =
 322	    container_of(kref, struct ttm_buffer_object, kref);
 323	struct ttm_device *bdev = bo->bdev;
 324	int ret;
 325
 326	WARN_ON_ONCE(bo->pin_count);
 327	WARN_ON_ONCE(bo->bulk_move);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 328
 329	if (!bo->deleted) {
 330		ret = ttm_bo_individualize_resv(bo);
 331		if (ret) {
 332			/* Last resort, if we fail to allocate memory for the
 333			 * fences block for the BO to become idle
 334			 */
 335			dma_resv_wait_timeout(bo->base.resv,
 336					      DMA_RESV_USAGE_BOOKKEEP, false,
 337					      30 * HZ);
 338		}
 339
 340		if (bo->bdev->funcs->release_notify)
 341			bo->bdev->funcs->release_notify(bo);
 342
 343		drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node);
 344		ttm_mem_io_free(bdev, bo->resource);
 345
 346		if (!dma_resv_test_signaled(bo->base.resv,
 347					    DMA_RESV_USAGE_BOOKKEEP) ||
 348		    (want_init_on_free() && (bo->ttm != NULL)) ||
 349		    !dma_resv_trylock(bo->base.resv)) {
 350			/* The BO is not idle, resurrect it for delayed destroy */
 351			ttm_bo_flush_all_fences(bo);
 352			bo->deleted = true;
 353
 354			spin_lock(&bo->bdev->lru_lock);
 355
 356			/*
 357			 * Make pinned bos immediately available to
 358			 * shrinkers, now that they are queued for
 359			 * destruction.
 360			 *
 361			 * FIXME: QXL is triggering this. Can be removed when the
 362			 * driver is fixed.
 363			 */
 364			if (bo->pin_count) {
 365				bo->pin_count = 0;
 366				ttm_resource_move_to_lru_tail(bo->resource);
 367			}
 368
 369			kref_init(&bo->kref);
 370			spin_unlock(&bo->bdev->lru_lock);
 371
 372			INIT_WORK(&bo->delayed_delete, ttm_bo_delayed_delete);
 
 
 
 373
 374			/* Schedule the worker on the closest NUMA node. This
 375			 * improves performance since system memory might be
 376			 * cleared on free and that is best done on a CPU core
 377			 * close to it.
 378			 */
 379			queue_work_node(bdev->pool.nid, bdev->wq, &bo->delayed_delete);
 380			return;
 381		}
 382
 383		ttm_bo_cleanup_memtype_use(bo);
 384		dma_resv_unlock(bo->base.resv);
 
 
 
 
 
 
 385	}
 
 
 
 
 
 
 
 
 386
 387	atomic_dec(&ttm_glob.bo_count);
 388	bo->destroy(bo);
 
 
 
 
 
 
 
 
 
 
 389}
 390
 391/**
 392 * ttm_bo_put
 393 *
 394 * @bo: The buffer object.
 395 *
 396 * Unreference a buffer object.
 397 */
 398void ttm_bo_put(struct ttm_buffer_object *bo)
 399{
 
 
 
 
 
 400	kref_put(&bo->kref, ttm_bo_release);
 
 401}
 402EXPORT_SYMBOL(ttm_bo_put);
 403
 404static int ttm_bo_bounce_temp_buffer(struct ttm_buffer_object *bo,
 405				     struct ttm_resource **mem,
 406				     struct ttm_operation_ctx *ctx,
 407				     struct ttm_place *hop)
 408{
 409	struct ttm_placement hop_placement;
 410	struct ttm_resource *hop_mem;
 411	int ret;
 412
 413	hop_placement.num_placement = hop_placement.num_busy_placement = 1;
 414	hop_placement.placement = hop_placement.busy_placement = hop;
 415
 416	/* find space in the bounce domain */
 417	ret = ttm_bo_mem_space(bo, &hop_placement, &hop_mem, ctx);
 418	if (ret)
 419		return ret;
 420	/* move to the bounce domain */
 421	ret = ttm_bo_handle_move_mem(bo, hop_mem, false, ctx, NULL);
 422	if (ret) {
 423		ttm_resource_free(bo, &hop_mem);
 424		return ret;
 425	}
 426	return 0;
 427}
 
 428
 429static int ttm_bo_evict(struct ttm_buffer_object *bo,
 430			struct ttm_operation_ctx *ctx)
 431{
 432	struct ttm_device *bdev = bo->bdev;
 433	struct ttm_resource *evict_mem;
 434	struct ttm_placement placement;
 435	struct ttm_place hop;
 436	int ret = 0;
 437
 438	memset(&hop, 0, sizeof(hop));
 
 
 439
 440	dma_resv_assert_held(bo->base.resv);
 
 
 
 
 
 441
 442	placement.num_placement = 0;
 443	placement.num_busy_placement = 0;
 444	bdev->funcs->evict_flags(bo, &placement);
 445
 446	if (!placement.num_placement && !placement.num_busy_placement) {
 447		ret = ttm_bo_wait_ctx(bo, ctx);
 448		if (ret)
 449			return ret;
 450
 451		/*
 452		 * Since we've already synced, this frees backing store
 453		 * immediately.
 454		 */
 455		return ttm_bo_pipeline_gutting(bo);
 456	}
 457
 458	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
 459	if (ret) {
 460		if (ret != -ERESTARTSYS) {
 461			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
 462			       bo);
 463			ttm_bo_mem_space_debug(bo, &placement);
 464		}
 465		goto out;
 466	}
 467
 468	do {
 469		ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop);
 470		if (ret != -EMULTIHOP)
 471			break;
 472
 473		ret = ttm_bo_bounce_temp_buffer(bo, &evict_mem, ctx, &hop);
 474	} while (!ret);
 475
 476	if (ret) {
 477		ttm_resource_free(bo, &evict_mem);
 478		if (ret != -ERESTARTSYS && ret != -EINTR)
 479			pr_err("Buffer eviction failed\n");
 
 
 480	}
 
 481out:
 482	return ret;
 483}
 484
 485/**
 486 * ttm_bo_eviction_valuable
 487 *
 488 * @bo: The buffer object to evict
 489 * @place: the placement we need to make room for
 490 *
 491 * Check if it is valuable to evict the BO to make room for the given placement.
 492 */
 493bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
 494			      const struct ttm_place *place)
 495{
 496	struct ttm_resource *res = bo->resource;
 497	struct ttm_device *bdev = bo->bdev;
 498
 499	dma_resv_assert_held(bo->base.resv);
 500	if (bo->resource->mem_type == TTM_PL_SYSTEM)
 501		return true;
 502
 503	/* Don't evict this BO if it's outside of the
 504	 * requested placement range
 505	 */
 506	return ttm_resource_intersects(bdev, res, place, bo->base.size);
 507}
 508EXPORT_SYMBOL(ttm_bo_eviction_valuable);
 509
 510/*
 511 * Check the target bo is allowable to be evicted or swapout, including cases:
 512 *
 513 * a. if share same reservation object with ctx->resv, have assumption
 514 * reservation objects should already be locked, so not lock again and
 515 * return true directly when either the opreation allow_reserved_eviction
 516 * or the target bo already is in delayed free list;
 517 *
 518 * b. Otherwise, trylock it.
 519 */
 520static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo,
 521					   struct ttm_operation_ctx *ctx,
 522					   const struct ttm_place *place,
 523					   bool *locked, bool *busy)
 524{
 525	bool ret = false;
 526
 527	if (bo->pin_count) {
 528		*locked = false;
 529		if (busy)
 530			*busy = false;
 531		return false;
 532	}
 533
 534	if (bo->base.resv == ctx->resv) {
 535		dma_resv_assert_held(bo->base.resv);
 536		if (ctx->allow_res_evict)
 537			ret = true;
 538		*locked = false;
 539		if (busy)
 540			*busy = false;
 541	} else {
 542		ret = dma_resv_trylock(bo->base.resv);
 543		*locked = ret;
 544		if (busy)
 545			*busy = !ret;
 546	}
 547
 548	if (ret && place && (bo->resource->mem_type != place->mem_type ||
 549		!bo->bdev->funcs->eviction_valuable(bo, place))) {
 550		ret = false;
 551		if (*locked) {
 552			dma_resv_unlock(bo->base.resv);
 553			*locked = false;
 554		}
 555	}
 556
 557	return ret;
 558}
 559
 560/**
 561 * ttm_mem_evict_wait_busy - wait for a busy BO to become available
 562 *
 563 * @busy_bo: BO which couldn't be locked with trylock
 564 * @ctx: operation context
 565 * @ticket: acquire ticket
 566 *
 567 * Try to lock a busy buffer object to avoid failing eviction.
 568 */
 569static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo,
 570				   struct ttm_operation_ctx *ctx,
 571				   struct ww_acquire_ctx *ticket)
 572{
 573	int r;
 574
 575	if (!busy_bo || !ticket)
 576		return -EBUSY;
 577
 578	if (ctx->interruptible)
 579		r = dma_resv_lock_interruptible(busy_bo->base.resv,
 580							  ticket);
 581	else
 582		r = dma_resv_lock(busy_bo->base.resv, ticket);
 583
 584	/*
 585	 * TODO: It would be better to keep the BO locked until allocation is at
 586	 * least tried one more time, but that would mean a much larger rework
 587	 * of TTM.
 588	 */
 589	if (!r)
 590		dma_resv_unlock(busy_bo->base.resv);
 591
 592	return r == -EDEADLK ? -EBUSY : r;
 593}
 
 
 594
 595int ttm_mem_evict_first(struct ttm_device *bdev,
 596			struct ttm_resource_manager *man,
 597			const struct ttm_place *place,
 598			struct ttm_operation_ctx *ctx,
 599			struct ww_acquire_ctx *ticket)
 600{
 601	struct ttm_buffer_object *bo = NULL, *busy_bo = NULL;
 602	struct ttm_resource_cursor cursor;
 603	struct ttm_resource *res;
 604	bool locked = false;
 605	int ret;
 606
 607	spin_lock(&bdev->lru_lock);
 608	ttm_resource_manager_for_each_res(man, &cursor, res) {
 609		bool busy;
 610
 611		if (!ttm_bo_evict_swapout_allowable(res->bo, ctx, place,
 612						    &locked, &busy)) {
 613			if (busy && !busy_bo && ticket !=
 614			    dma_resv_locking_ctx(res->bo->base.resv))
 615				busy_bo = res->bo;
 616			continue;
 617		}
 618
 619		if (ttm_bo_get_unless_zero(res->bo)) {
 620			bo = res->bo;
 621			break;
 622		}
 623		if (locked)
 624			dma_resv_unlock(res->bo->base.resv);
 625	}
 626
 627	if (!bo) {
 628		if (busy_bo && !ttm_bo_get_unless_zero(busy_bo))
 629			busy_bo = NULL;
 630		spin_unlock(&bdev->lru_lock);
 631		ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket);
 632		if (busy_bo)
 633			ttm_bo_put(busy_bo);
 634		return ret;
 635	}
 636
 637	if (bo->deleted) {
 638		ret = ttm_bo_cleanup_refs(bo, ctx->interruptible,
 639					  ctx->no_wait_gpu, locked);
 640		ttm_bo_put(bo);
 641		return ret;
 642	}
 643
 644	spin_unlock(&bdev->lru_lock);
 645
 646	ret = ttm_bo_evict(bo, ctx);
 647	if (locked)
 648		ttm_bo_unreserve(bo);
 649	else
 650		ttm_bo_move_to_lru_tail_unlocked(bo);
 651
 652	ttm_bo_put(bo);
 653	return ret;
 654}
 655
 656/**
 657 * ttm_bo_pin - Pin the buffer object.
 658 * @bo: The buffer object to pin
 659 *
 660 * Make sure the buffer is not evicted any more during memory pressure.
 661 * @bo must be unpinned again by calling ttm_bo_unpin().
 662 */
 663void ttm_bo_pin(struct ttm_buffer_object *bo)
 664{
 665	dma_resv_assert_held(bo->base.resv);
 666	WARN_ON_ONCE(!kref_read(&bo->kref));
 667	spin_lock(&bo->bdev->lru_lock);
 668	if (bo->resource)
 669		ttm_resource_del_bulk_move(bo->resource, bo);
 670	++bo->pin_count;
 671	spin_unlock(&bo->bdev->lru_lock);
 672}
 673EXPORT_SYMBOL(ttm_bo_pin);
 674
 675/**
 676 * ttm_bo_unpin - Unpin the buffer object.
 677 * @bo: The buffer object to unpin
 678 *
 679 * Allows the buffer object to be evicted again during memory pressure.
 680 */
 681void ttm_bo_unpin(struct ttm_buffer_object *bo)
 682{
 683	dma_resv_assert_held(bo->base.resv);
 684	WARN_ON_ONCE(!kref_read(&bo->kref));
 685	if (WARN_ON_ONCE(!bo->pin_count))
 686		return;
 687
 688	spin_lock(&bo->bdev->lru_lock);
 689	--bo->pin_count;
 690	if (bo->resource)
 691		ttm_resource_add_bulk_move(bo->resource, bo);
 692	spin_unlock(&bo->bdev->lru_lock);
 693}
 694EXPORT_SYMBOL(ttm_bo_unpin);
 695
 696/*
 697 * Add the last move fence to the BO as kernel dependency and reserve a new
 698 * fence slot.
 699 */
 700static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
 701				 struct ttm_resource_manager *man,
 702				 struct ttm_resource *mem,
 703				 bool no_wait_gpu)
 704{
 705	struct dma_fence *fence;
 706	int ret;
 707
 708	spin_lock(&man->move_lock);
 709	fence = dma_fence_get(man->move);
 710	spin_unlock(&man->move_lock);
 711
 712	if (!fence)
 713		return 0;
 714
 715	if (no_wait_gpu) {
 716		ret = dma_fence_is_signaled(fence) ? 0 : -EBUSY;
 717		dma_fence_put(fence);
 718		return ret;
 719	}
 720
 721	dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL);
 722
 723	ret = dma_resv_reserve_fences(bo->base.resv, 1);
 724	dma_fence_put(fence);
 725	return ret;
 726}
 727
 728/*
 729 * Repeatedly evict memory from the LRU for @mem_type until we create enough
 730 * space, or we've evicted everything and there isn't enough space.
 731 */
 732static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
 733				  const struct ttm_place *place,
 734				  struct ttm_resource **mem,
 735				  struct ttm_operation_ctx *ctx)
 736{
 737	struct ttm_device *bdev = bo->bdev;
 738	struct ttm_resource_manager *man;
 739	struct ww_acquire_ctx *ticket;
 
 
 740	int ret;
 741
 742	man = ttm_manager_type(bdev, place->mem_type);
 743	ticket = dma_resv_locking_ctx(bo->base.resv);
 744	do {
 745		ret = ttm_resource_alloc(bo, place, mem);
 746		if (likely(!ret))
 747			break;
 748		if (unlikely(ret != -ENOSPC))
 749			return ret;
 750		ret = ttm_mem_evict_first(bdev, man, place, ctx,
 751					  ticket);
 
 
 752		if (unlikely(ret != 0))
 753			return ret;
 754	} while (1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755
 756	return ttm_bo_add_move_fence(bo, man, *mem, ctx->no_wait_gpu);
 
 
 
 757}
 758
 759/**
 760 * ttm_bo_mem_space
 761 *
 762 * @bo: Pointer to a struct ttm_buffer_object. the data of which
 763 * we want to allocate space for.
 764 * @placement: Proposed new placement for the buffer object.
 765 * @mem: A struct ttm_resource.
 766 * @ctx: if and how to sleep, lock buffers and alloc memory
 767 *
 768 * Allocate memory space for the buffer object pointed to by @bo, using
 769 * the placement flags in @placement, potentially evicting other idle buffer objects.
 770 * This function may sleep while waiting for space to become available.
 771 * Returns:
 772 * -EBUSY: No space available (only if no_wait == 1).
 773 * -ENOMEM: Could not allocate memory for the buffer object, either due to
 774 * fragmentation or concurrent allocators.
 775 * -ERESTARTSYS: An interruptible sleep was interrupted by a signal.
 776 */
 777int ttm_bo_mem_space(struct ttm_buffer_object *bo,
 778			struct ttm_placement *placement,
 779			struct ttm_resource **mem,
 780			struct ttm_operation_ctx *ctx)
 781{
 782	struct ttm_device *bdev = bo->bdev;
 
 
 
 
 783	bool type_found = false;
 
 
 784	int i, ret;
 785
 786	ret = dma_resv_reserve_fences(bo->base.resv, 1);
 787	if (unlikely(ret))
 788		return ret;
 789
 790	for (i = 0; i < placement->num_placement; ++i) {
 791		const struct ttm_place *place = &placement->placement[i];
 792		struct ttm_resource_manager *man;
 
 
 
 793
 794		man = ttm_manager_type(bdev, place->mem_type);
 795		if (!man || !ttm_resource_manager_used(man))
 796			continue;
 
 797
 798		type_found = true;
 799		ret = ttm_resource_alloc(bo, place, mem);
 800		if (ret == -ENOSPC)
 801			continue;
 802		if (unlikely(ret))
 803			goto error;
 804
 805		ret = ttm_bo_add_move_fence(bo, man, *mem, ctx->no_wait_gpu);
 806		if (unlikely(ret)) {
 807			ttm_resource_free(bo, mem);
 808			if (ret == -EBUSY)
 809				continue;
 
 
 
 810
 811			goto error;
 
 
 
 
 
 
 
 812		}
 
 
 
 
 
 
 
 813		return 0;
 814	}
 815
 816	for (i = 0; i < placement->num_busy_placement; ++i) {
 817		const struct ttm_place *place = &placement->busy_placement[i];
 818		struct ttm_resource_manager *man;
 819
 820		man = ttm_manager_type(bdev, place->mem_type);
 821		if (!man || !ttm_resource_manager_used(man))
 
 
 
 
 
 
 
 
 
 
 822			continue;
 823
 824		type_found = true;
 825		ret = ttm_bo_mem_force_space(bo, place, mem, ctx);
 826		if (likely(!ret))
 827			return 0;
 
 
 
 
 828
 829		if (ret && ret != -EBUSY)
 830			goto error;
 831	}
 832
 833	ret = -ENOMEM;
 834	if (!type_found) {
 835		pr_err(TTM_PFX "No compatible memory type found\n");
 836		ret = -EINVAL;
 837	}
 
 838
 839error:
 
 
 
 
 
 
 
 
 
 840	return ret;
 841}
 842EXPORT_SYMBOL(ttm_bo_mem_space);
 843
 844static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
 845			      struct ttm_placement *placement,
 846			      struct ttm_operation_ctx *ctx)
 847{
 848	struct ttm_resource *mem;
 849	struct ttm_place hop;
 850	int ret;
 
 
 
 
 851
 852	dma_resv_assert_held(bo->base.resv);
 
 
 
 
 
 
 
 
 
 853
 854	/*
 855	 * Determine where to move the buffer.
 856	 *
 857	 * If driver determines move is going to need
 858	 * an extra step then it will return -EMULTIHOP
 859	 * and the buffer will be moved to the temporary
 860	 * stop and the driver will be called to make
 861	 * the second hop.
 862	 */
 863	ret = ttm_bo_mem_space(bo, placement, &mem, ctx);
 
 
 864	if (ret)
 865		return ret;
 866bounce:
 867	ret = ttm_bo_handle_move_mem(bo, mem, false, ctx, &hop);
 868	if (ret == -EMULTIHOP) {
 869		ret = ttm_bo_bounce_temp_buffer(bo, &mem, ctx, &hop);
 870		if (ret)
 871			goto out;
 872		/* try and move to final place now. */
 873		goto bounce;
 874	}
 875out:
 876	if (ret)
 877		ttm_resource_free(bo, &mem);
 
 
 
 
 878	return ret;
 879}
 880
 881/**
 882 * ttm_bo_validate
 883 *
 884 * @bo: The buffer object.
 885 * @placement: Proposed placement for the buffer object.
 886 * @ctx: validation parameters.
 887 *
 888 * Changes placement and caching policy of the buffer object
 889 * according proposed placement.
 890 * Returns
 891 * -EINVAL on invalid proposed placement.
 892 * -ENOMEM on out-of-memory condition.
 893 * -EBUSY if no_wait is true and buffer busy.
 894 * -ERESTARTSYS if interrupted by a signal.
 895 */
 
 
 
 
 
 896int ttm_bo_validate(struct ttm_buffer_object *bo,
 897		    struct ttm_placement *placement,
 898		    struct ttm_operation_ctx *ctx)
 
 899{
 900	int ret;
 901
 902	dma_resv_assert_held(bo->base.resv);
 903
 
 
 
 
 904	/*
 905	 * Remove the backing store if no placement is given.
 906	 */
 907	if (!placement->num_placement && !placement->num_busy_placement)
 908		return ttm_bo_pipeline_gutting(bo);
 909
 910	/* Check whether we need to move buffer. */
 911	if (bo->resource && ttm_resource_compat(bo->resource, placement))
 912		return 0;
 913
 914	/* Moving of pinned BOs is forbidden */
 915	if (bo->pin_count)
 916		return -EINVAL;
 917
 918	ret = ttm_bo_move_buffer(bo, placement, ctx);
 919	if (ret)
 920		return ret;
 921
 922	/*
 923	 * We might need to add a TTM.
 924	 */
 925	if (!bo->resource || bo->resource->mem_type == TTM_PL_SYSTEM) {
 926		ret = ttm_tt_create(bo, true);
 927		if (ret)
 928			return ret;
 929	}
 930	return 0;
 931}
 932EXPORT_SYMBOL(ttm_bo_validate);
 933
 934/**
 935 * ttm_bo_init_reserved
 936 *
 937 * @bdev: Pointer to a ttm_device struct.
 938 * @bo: Pointer to a ttm_buffer_object to be initialized.
 939 * @type: Requested type of buffer object.
 940 * @placement: Initial placement for buffer object.
 941 * @alignment: Data alignment in pages.
 942 * @ctx: TTM operation context for memory allocation.
 943 * @sg: Scatter-gather table.
 944 * @resv: Pointer to a dma_resv, or NULL to let ttm allocate one.
 945 * @destroy: Destroy function. Use NULL for kfree().
 946 *
 947 * This function initializes a pre-allocated struct ttm_buffer_object.
 948 * As this object may be part of a larger structure, this function,
 949 * together with the @destroy function, enables driver-specific objects
 950 * derived from a ttm_buffer_object.
 951 *
 952 * On successful return, the caller owns an object kref to @bo. The kref and
 953 * list_kref are usually set to 1, but note that in some situations, other
 954 * tasks may already be holding references to @bo as well.
 955 * Furthermore, if resv == NULL, the buffer's reservation lock will be held,
 956 * and it is the caller's responsibility to call ttm_bo_unreserve.
 957 *
 958 * If a failure occurs, the function will call the @destroy function. Thus,
 959 * after a failure, dereferencing @bo is illegal and will likely cause memory
 960 * corruption.
 961 *
 962 * Returns
 963 * -ENOMEM: Out of memory.
 964 * -EINVAL: Invalid placement flags.
 965 * -ERESTARTSYS: Interrupted by signal while sleeping waiting for resources.
 966 */
 967int ttm_bo_init_reserved(struct ttm_device *bdev, struct ttm_buffer_object *bo,
 968			 enum ttm_bo_type type, struct ttm_placement *placement,
 969			 uint32_t alignment, struct ttm_operation_ctx *ctx,
 970			 struct sg_table *sg, struct dma_resv *resv,
 971			 void (*destroy) (struct ttm_buffer_object *))
 972{
 973	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974
 975	kref_init(&bo->kref);
 
 
 
 
 
 
 
 
 976	bo->bdev = bdev;
 
 977	bo->type = type;
 978	bo->page_alignment = alignment;
 979	bo->destroy = destroy;
 980	bo->pin_count = 0;
 
 
 
 
 
 
 
 
 
 
 
 981	bo->sg = sg;
 982	bo->bulk_move = NULL;
 983	if (resv)
 984		bo->base.resv = resv;
 985	else
 986		bo->base.resv = &bo->base._resv;
 987	atomic_inc(&ttm_glob.bo_count);
 988
 989	/*
 990	 * For ttm_bo_type_device buffers, allocate
 991	 * address space from the device.
 992	 */
 993	if (bo->type == ttm_bo_type_device || bo->type == ttm_bo_type_sg) {
 994		ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node,
 995					 PFN_UP(bo->base.size));
 996		if (ret)
 997			goto err_put;
 998	}
 999
1000	/* passed reservation objects should already be locked,
1001	 * since otherwise lockdep will be angered in radeon.
1002	 */
1003	if (!resv)
1004		WARN_ON(!dma_resv_trylock(bo->base.resv));
1005	else
1006		dma_resv_assert_held(resv);
1007
1008	ret = ttm_bo_validate(bo, placement, ctx);
1009	if (unlikely(ret))
1010		goto err_unlock;
1011
 
1012	return 0;
1013
1014err_unlock:
1015	if (!resv)
1016		dma_resv_unlock(bo->base.resv);
1017
1018err_put:
1019	ttm_bo_put(bo);
1020	return ret;
1021}
1022EXPORT_SYMBOL(ttm_bo_init_reserved);
1023
1024/**
1025 * ttm_bo_init_validate
1026 *
1027 * @bdev: Pointer to a ttm_device struct.
1028 * @bo: Pointer to a ttm_buffer_object to be initialized.
1029 * @type: Requested type of buffer object.
1030 * @placement: Initial placement for buffer object.
1031 * @alignment: Data alignment in pages.
1032 * @interruptible: If needing to sleep to wait for GPU resources,
1033 * sleep interruptible.
1034 * pinned in physical memory. If this behaviour is not desired, this member
1035 * holds a pointer to a persistent shmem object. Typically, this would
1036 * point to the shmem object backing a GEM object if TTM is used to back a
1037 * GEM user interface.
1038 * @sg: Scatter-gather table.
1039 * @resv: Pointer to a dma_resv, or NULL to let ttm allocate one.
1040 * @destroy: Destroy function. Use NULL for kfree().
1041 *
1042 * This function initializes a pre-allocated struct ttm_buffer_object.
1043 * As this object may be part of a larger structure, this function,
1044 * together with the @destroy function,
1045 * enables driver-specific objects derived from a ttm_buffer_object.
1046 *
1047 * On successful return, the caller owns an object kref to @bo. The kref and
1048 * list_kref are usually set to 1, but note that in some situations, other
1049 * tasks may already be holding references to @bo as well.
1050 *
1051 * If a failure occurs, the function will call the @destroy function, Thus,
1052 * after a failure, dereferencing @bo is illegal and will likely cause memory
1053 * corruption.
1054 *
1055 * Returns
1056 * -ENOMEM: Out of memory.
1057 * -EINVAL: Invalid placement flags.
1058 * -ERESTARTSYS: Interrupted by signal while sleeping waiting for resources.
1059 */
1060int ttm_bo_init_validate(struct ttm_device *bdev, struct ttm_buffer_object *bo,
1061			 enum ttm_bo_type type, struct ttm_placement *placement,
1062			 uint32_t alignment, bool interruptible,
1063			 struct sg_table *sg, struct dma_resv *resv,
1064			 void (*destroy) (struct ttm_buffer_object *))
1065{
1066	struct ttm_operation_ctx ctx = { interruptible, false };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1067	int ret;
1068
1069	ret = ttm_bo_init_reserved(bdev, bo, type, placement, alignment, &ctx,
1070				   sg, resv, destroy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071	if (ret)
1072		return ret;
 
1073
1074	if (!resv)
1075		ttm_bo_unreserve(bo);
 
 
 
 
 
 
 
 
 
1076
1077	return 0;
1078}
1079EXPORT_SYMBOL(ttm_bo_init_validate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080
1081/*
1082 * buffer object vm functions.
1083 */
1084
1085/**
1086 * ttm_bo_unmap_virtual
1087 *
1088 * @bo: tear down the virtual mappings for this BO
1089 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1090void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1091{
1092	struct ttm_device *bdev = bo->bdev;
 
1093
1094	drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
1095	ttm_mem_io_free(bdev, bo->resource);
 
1096}
 
 
1097EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1098
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1099/**
1100 * ttm_bo_wait_ctx - wait for buffer idle.
1101 *
1102 * @bo:  The buffer object.
1103 * @ctx: defines how to wait
1104 *
1105 * Waits for the buffer to be idle. Used timeout depends on the context.
1106 * Returns -EBUSY if wait timed outt, -ERESTARTSYS if interrupted by a signal or
1107 * zero on success.
 
1108 */
1109int ttm_bo_wait_ctx(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx)
 
1110{
1111	long ret;
 
1112
1113	if (ctx->no_wait_gpu) {
1114		if (dma_resv_test_signaled(bo->base.resv,
1115					   DMA_RESV_USAGE_BOOKKEEP))
1116			return 0;
1117		else
1118			return -EBUSY;
 
 
 
 
 
 
1119	}
1120
1121	ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
1122				    ctx->interruptible, 15 * HZ);
1123	if (unlikely(ret < 0))
1124		return ret;
1125	if (unlikely(ret == 0))
1126		return -EBUSY;
 
 
 
 
 
 
1127	return 0;
 
 
 
1128}
1129EXPORT_SYMBOL(ttm_bo_wait_ctx);
1130
1131int ttm_bo_swapout(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx,
1132		   gfp_t gfp_flags)
1133{
1134	struct ttm_place place;
1135	bool locked;
1136	long ret;
 
 
1137
1138	/*
1139	 * While the bo may already reside in SYSTEM placement, set
1140	 * SYSTEM as new placement to cover also the move further below.
1141	 * The driver may use the fact that we're moving from SYSTEM
1142	 * as an indication that we're about to swap out.
1143	 */
1144	memset(&place, 0, sizeof(place));
1145	place.mem_type = bo->resource->mem_type;
1146	if (!ttm_bo_evict_swapout_allowable(bo, ctx, &place, &locked, NULL))
1147		return -EBUSY;
1148
1149	if (!bo->ttm || !ttm_tt_is_populated(bo->ttm) ||
1150	    bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL ||
1151	    bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED ||
1152	    !ttm_bo_get_unless_zero(bo)) {
1153		if (locked)
1154			dma_resv_unlock(bo->base.resv);
1155		return -EBUSY;
1156	}
 
 
 
 
 
 
1157
1158	if (bo->deleted) {
1159		ret = ttm_bo_cleanup_refs(bo, false, false, locked);
1160		ttm_bo_put(bo);
1161		return ret == -EBUSY ? -ENOSPC : ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162	}
 
 
 
1163
1164	/* TODO: Cleanup the locking */
1165	spin_unlock(&bo->bdev->lru_lock);
 
 
1166
1167	/*
1168	 * Move to system cached
1169	 */
1170	if (bo->resource->mem_type != TTM_PL_SYSTEM) {
1171		struct ttm_resource *evict_mem;
1172		struct ttm_place hop;
1173
1174		memset(&hop, 0, sizeof(hop));
1175		place.mem_type = TTM_PL_SYSTEM;
1176		ret = ttm_resource_alloc(bo, &place, &evict_mem);
1177		if (unlikely(ret))
1178			goto out;
1179
1180		ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop);
1181		if (unlikely(ret != 0)) {
1182			WARN(ret == -EMULTIHOP, "Unexpected multihop in swaput - likely driver bug.\n");
1183			ttm_resource_free(bo, &evict_mem);
1184			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185		}
1186	}
1187
1188	/*
1189	 * Make sure BO is idle.
 
 
 
 
 
 
1190	 */
1191	ret = ttm_bo_wait_ctx(bo, ctx);
 
 
 
 
1192	if (unlikely(ret != 0))
1193		goto out;
1194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1195	ttm_bo_unmap_virtual(bo);
1196
1197	/*
1198	 * Swap out. Buffer will be swapped in again as soon as
1199	 * anyone tries to access a ttm page.
1200	 */
1201	if (bo->bdev->funcs->swap_notify)
1202		bo->bdev->funcs->swap_notify(bo);
1203
1204	if (ttm_tt_is_populated(bo->ttm))
1205		ret = ttm_tt_swapout(bo->bdev, bo->ttm, gfp_flags);
 
 
1206out:
1207
1208	/*
 
1209	 * Unreserve without putting on LRU to avoid swapping out an
1210	 * already swapped buffer.
1211	 */
1212	if (locked)
1213		dma_resv_unlock(bo->base.resv);
1214	ttm_bo_put(bo);
1215	return ret == -EBUSY ? -ENOSPC : ret;
 
1216}
1217
1218void ttm_bo_tt_destroy(struct ttm_buffer_object *bo)
1219{
1220	if (bo->ttm == NULL)
1221		return;
1222
1223	ttm_tt_unpopulate(bo->bdev, bo->ttm);
1224	ttm_tt_destroy(bo->bdev, bo->ttm);
1225	bo->ttm = NULL;
1226}
v3.5.6
 
   1/**************************************************************************
   2 *
   3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   4 * All Rights Reserved.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the
   8 * "Software"), to deal in the Software without restriction, including
   9 * without limitation the rights to use, copy, modify, merge, publish,
  10 * distribute, sub license, and/or sell copies of the Software, and to
  11 * permit persons to whom the Software is furnished to do so, subject to
  12 * the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the
  15 * next paragraph) shall be included in all copies or substantial portions
  16 * of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25 *
  26 **************************************************************************/
  27/*
  28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  29 */
  30
  31#define pr_fmt(fmt) "[TTM] " fmt
  32
  33#include "ttm/ttm_module.h"
  34#include "ttm/ttm_bo_driver.h"
  35#include "ttm/ttm_placement.h"
 
  36#include <linux/jiffies.h>
  37#include <linux/slab.h>
  38#include <linux/sched.h>
  39#include <linux/mm.h>
  40#include <linux/file.h>
  41#include <linux/module.h>
  42#include <linux/atomic.h>
 
  43
  44#define TTM_ASSERT_LOCKED(param)
  45#define TTM_DEBUG(fmt, arg...)
  46#define TTM_BO_HASH_ORDER 13
  47
  48static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
  49static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
  50static void ttm_bo_global_kobj_release(struct kobject *kobj);
  51
  52static struct attribute ttm_bo_count = {
  53	.name = "bo_count",
  54	.mode = S_IRUGO
  55};
  56
  57static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
  58{
  59	int i;
  60
  61	for (i = 0; i <= TTM_PL_PRIV5; i++)
  62		if (flags & (1 << i)) {
  63			*mem_type = i;
  64			return 0;
  65		}
  66	return -EINVAL;
  67}
  68
  69static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
  70{
  71	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
  72
  73	pr_err("    has_type: %d\n", man->has_type);
  74	pr_err("    use_type: %d\n", man->use_type);
  75	pr_err("    flags: 0x%08X\n", man->flags);
  76	pr_err("    gpu_offset: 0x%08lX\n", man->gpu_offset);
  77	pr_err("    size: %llu\n", man->size);
  78	pr_err("    available_caching: 0x%08X\n", man->available_caching);
  79	pr_err("    default_caching: 0x%08X\n", man->default_caching);
  80	if (mem_type != TTM_PL_SYSTEM)
  81		(*man->func->debug)(man, TTM_PFX);
  82}
  83
  84static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  85					struct ttm_placement *placement)
  86{
  87	int i, ret, mem_type;
 
 
  88
  89	pr_err("No space for %p (%lu pages, %luK, %luM)\n",
  90	       bo, bo->mem.num_pages, bo->mem.size >> 10,
  91	       bo->mem.size >> 20);
  92	for (i = 0; i < placement->num_placement; i++) {
  93		ret = ttm_mem_type_from_flags(placement->placement[i],
  94						&mem_type);
  95		if (ret)
  96			return;
  97		pr_err("  placement[%d]=0x%08X (%d)\n",
  98		       i, placement->placement[i], mem_type);
  99		ttm_mem_type_debug(bo->bdev, mem_type);
 100	}
 101}
 102
 103static ssize_t ttm_bo_global_show(struct kobject *kobj,
 104				  struct attribute *attr,
 105				  char *buffer)
 
 
 
 
 
 
 
 106{
 107	struct ttm_bo_global *glob =
 108		container_of(kobj, struct ttm_bo_global, kobj);
 109
 110	return snprintf(buffer, PAGE_SIZE, "%lu\n",
 111			(unsigned long) atomic_read(&glob->bo_count));
 112}
 
 113
 114static struct attribute *ttm_bo_global_attrs[] = {
 115	&ttm_bo_count,
 116	NULL
 117};
 118
 119static const struct sysfs_ops ttm_bo_global_ops = {
 120	.show = &ttm_bo_global_show
 121};
 122
 123static struct kobj_type ttm_bo_glob_kobj_type  = {
 124	.release = &ttm_bo_global_kobj_release,
 125	.sysfs_ops = &ttm_bo_global_ops,
 126	.default_attrs = ttm_bo_global_attrs
 127};
 128
 129
 130static inline uint32_t ttm_bo_type_flags(unsigned type)
 131{
 132	return 1 << (type);
 133}
 134
 135static void ttm_bo_release_list(struct kref *list_kref)
 136{
 137	struct ttm_buffer_object *bo =
 138	    container_of(list_kref, struct ttm_buffer_object, list_kref);
 139	struct ttm_bo_device *bdev = bo->bdev;
 140	size_t acc_size = bo->acc_size;
 141
 142	BUG_ON(atomic_read(&bo->list_kref.refcount));
 143	BUG_ON(atomic_read(&bo->kref.refcount));
 144	BUG_ON(atomic_read(&bo->cpu_writers));
 145	BUG_ON(bo->sync_obj != NULL);
 146	BUG_ON(bo->mem.mm_node != NULL);
 147	BUG_ON(!list_empty(&bo->lru));
 148	BUG_ON(!list_empty(&bo->ddestroy));
 149
 150	if (bo->ttm)
 151		ttm_tt_destroy(bo->ttm);
 152	atomic_dec(&bo->glob->bo_count);
 153	if (bo->destroy)
 154		bo->destroy(bo);
 155	else {
 156		kfree(bo);
 157	}
 158	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
 159}
 160
 161int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
 162{
 163	if (interruptible) {
 164		return wait_event_interruptible(bo->event_queue,
 165					       atomic_read(&bo->reserved) == 0);
 166	} else {
 167		wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
 168		return 0;
 169	}
 170}
 171EXPORT_SYMBOL(ttm_bo_wait_unreserved);
 172
 173void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
 174{
 175	struct ttm_bo_device *bdev = bo->bdev;
 176	struct ttm_mem_type_manager *man;
 177
 178	BUG_ON(!atomic_read(&bo->reserved));
 179
 180	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
 181
 182		BUG_ON(!list_empty(&bo->lru));
 183
 184		man = &bdev->man[bo->mem.mem_type];
 185		list_add_tail(&bo->lru, &man->lru);
 186		kref_get(&bo->list_kref);
 187
 188		if (bo->ttm != NULL) {
 189			list_add_tail(&bo->swap, &bo->glob->swap_lru);
 190			kref_get(&bo->list_kref);
 191		}
 192	}
 193}
 
 194
 195int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
 
 
 
 196{
 197	int put_count = 0;
 198
 199	if (!list_empty(&bo->swap)) {
 200		list_del_init(&bo->swap);
 201		++put_count;
 202	}
 203	if (!list_empty(&bo->lru)) {
 204		list_del_init(&bo->lru);
 205		++put_count;
 206	}
 207
 208	/*
 209	 * TODO: Add a driver hook to delete from
 210	 * driver-specific LRU's here.
 211	 */
 212
 213	return put_count;
 214}
 215
 216int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
 217			  bool interruptible,
 218			  bool no_wait, bool use_sequence, uint32_t sequence)
 219{
 220	struct ttm_bo_global *glob = bo->glob;
 221	int ret;
 222
 223	while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
 224		/**
 225		 * Deadlock avoidance for multi-bo reserving.
 226		 */
 227		if (use_sequence && bo->seq_valid) {
 228			/**
 229			 * We've already reserved this one.
 230			 */
 231			if (unlikely(sequence == bo->val_seq))
 232				return -EDEADLK;
 233			/**
 234			 * Already reserved by a thread that will not back
 235			 * off for us. We need to back off.
 236			 */
 237			if (unlikely(sequence - bo->val_seq < (1 << 31)))
 238				return -EAGAIN;
 239		}
 240
 241		if (no_wait)
 242			return -EBUSY;
 243
 244		spin_unlock(&glob->lru_lock);
 245		ret = ttm_bo_wait_unreserved(bo, interruptible);
 246		spin_lock(&glob->lru_lock);
 247
 248		if (unlikely(ret))
 249			return ret;
 250	}
 251
 252	if (use_sequence) {
 253		/**
 254		 * Wake up waiters that may need to recheck for deadlock,
 255		 * if we decreased the sequence number.
 256		 */
 257		if (unlikely((bo->val_seq - sequence < (1 << 31))
 258			     || !bo->seq_valid))
 259			wake_up_all(&bo->event_queue);
 260
 261		bo->val_seq = sequence;
 262		bo->seq_valid = true;
 263	} else {
 264		bo->seq_valid = false;
 265	}
 266
 267	return 0;
 268}
 269EXPORT_SYMBOL(ttm_bo_reserve);
 270
 271static void ttm_bo_ref_bug(struct kref *list_kref)
 272{
 273	BUG();
 274}
 275
 276void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
 277			 bool never_free)
 278{
 279	kref_sub(&bo->list_kref, count,
 280		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
 281}
 282
 283int ttm_bo_reserve(struct ttm_buffer_object *bo,
 284		   bool interruptible,
 285		   bool no_wait, bool use_sequence, uint32_t sequence)
 286{
 287	struct ttm_bo_global *glob = bo->glob;
 288	int put_count = 0;
 289	int ret;
 290
 291	spin_lock(&glob->lru_lock);
 292	ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
 293				    sequence);
 294	if (likely(ret == 0))
 295		put_count = ttm_bo_del_from_lru(bo);
 296	spin_unlock(&glob->lru_lock);
 297
 298	ttm_bo_list_ref_sub(bo, put_count, true);
 299
 300	return ret;
 301}
 302
 303void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
 304{
 305	ttm_bo_add_to_lru(bo);
 306	atomic_set(&bo->reserved, 0);
 307	wake_up_all(&bo->event_queue);
 308}
 309
 310void ttm_bo_unreserve(struct ttm_buffer_object *bo)
 311{
 312	struct ttm_bo_global *glob = bo->glob;
 313
 314	spin_lock(&glob->lru_lock);
 315	ttm_bo_unreserve_locked(bo);
 316	spin_unlock(&glob->lru_lock);
 317}
 318EXPORT_SYMBOL(ttm_bo_unreserve);
 319
 320/*
 321 * Call bo->mutex locked.
 322 */
 323static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
 324{
 325	struct ttm_bo_device *bdev = bo->bdev;
 326	struct ttm_bo_global *glob = bo->glob;
 327	int ret = 0;
 328	uint32_t page_flags = 0;
 329
 330	TTM_ASSERT_LOCKED(&bo->mutex);
 331	bo->ttm = NULL;
 332
 333	if (bdev->need_dma32)
 334		page_flags |= TTM_PAGE_FLAG_DMA32;
 335
 336	switch (bo->type) {
 337	case ttm_bo_type_device:
 338		if (zero_alloc)
 339			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
 340	case ttm_bo_type_kernel:
 341		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 342						      page_flags, glob->dummy_read_page);
 343		if (unlikely(bo->ttm == NULL))
 344			ret = -ENOMEM;
 345		break;
 346	case ttm_bo_type_sg:
 347		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 348						      page_flags | TTM_PAGE_FLAG_SG,
 349						      glob->dummy_read_page);
 350		if (unlikely(bo->ttm == NULL)) {
 351			ret = -ENOMEM;
 352			break;
 353		}
 354		bo->ttm->sg = bo->sg;
 355		break;
 356	default:
 357		pr_err("Illegal buffer object type\n");
 358		ret = -EINVAL;
 359		break;
 360	}
 361
 362	return ret;
 363}
 364
 365static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 366				  struct ttm_mem_reg *mem,
 367				  bool evict, bool interruptible,
 368				  bool no_wait_reserve, bool no_wait_gpu)
 369{
 370	struct ttm_bo_device *bdev = bo->bdev;
 371	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
 372	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
 373	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
 374	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
 375	int ret = 0;
 376
 377	if (old_is_pci || new_is_pci ||
 378	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
 379		ret = ttm_mem_io_lock(old_man, true);
 380		if (unlikely(ret != 0))
 381			goto out_err;
 382		ttm_bo_unmap_virtual_locked(bo);
 383		ttm_mem_io_unlock(old_man);
 384	}
 385
 386	/*
 387	 * Create and bind a ttm if required.
 388	 */
 389
 390	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
 391		if (bo->ttm == NULL) {
 392			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
 393			ret = ttm_bo_add_ttm(bo, zero);
 394			if (ret)
 395				goto out_err;
 396		}
 397
 398		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
 399		if (ret)
 400			goto out_err;
 401
 402		if (mem->mem_type != TTM_PL_SYSTEM) {
 403			ret = ttm_tt_bind(bo->ttm, mem);
 404			if (ret)
 405				goto out_err;
 406		}
 407
 408		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
 409			if (bdev->driver->move_notify)
 410				bdev->driver->move_notify(bo, mem);
 411			bo->mem = *mem;
 412			mem->mm_node = NULL;
 413			goto moved;
 414		}
 415	}
 416
 417	if (bdev->driver->move_notify)
 418		bdev->driver->move_notify(bo, mem);
 419
 420	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
 421	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
 422		ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
 423	else if (bdev->driver->move)
 424		ret = bdev->driver->move(bo, evict, interruptible,
 425					 no_wait_reserve, no_wait_gpu, mem);
 426	else
 427		ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
 428
 
 429	if (ret) {
 430		if (bdev->driver->move_notify) {
 431			struct ttm_mem_reg tmp_mem = *mem;
 432			*mem = bo->mem;
 433			bo->mem = tmp_mem;
 434			bdev->driver->move_notify(bo, mem);
 435			bo->mem = *mem;
 436		}
 437
 438		goto out_err;
 439	}
 440
 441moved:
 442	if (bo->evicted) {
 443		ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
 444		if (ret)
 445			pr_err("Can not flush read caches\n");
 446		bo->evicted = false;
 447	}
 448
 449	if (bo->mem.mm_node) {
 450		bo->offset = (bo->mem.start << PAGE_SHIFT) +
 451		    bdev->man[bo->mem.mem_type].gpu_offset;
 452		bo->cur_placement = bo->mem.placement;
 453	} else
 454		bo->offset = 0;
 455
 456	return 0;
 457
 458out_err:
 459	new_man = &bdev->man[bo->mem.mem_type];
 460	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
 461		ttm_tt_unbind(bo->ttm);
 462		ttm_tt_destroy(bo->ttm);
 463		bo->ttm = NULL;
 464	}
 465
 466	return ret;
 467}
 468
 469/**
 470 * Call bo::reserved.
 471 * Will release GPU memory type usage on destruction.
 472 * This is the place to put in driver specific hooks to release
 473 * driver private resources.
 474 * Will release the bo::reserved lock.
 475 */
 476
 477static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 478{
 479	if (bo->bdev->driver->move_notify)
 480		bo->bdev->driver->move_notify(bo, NULL);
 481
 482	if (bo->ttm) {
 483		ttm_tt_unbind(bo->ttm);
 484		ttm_tt_destroy(bo->ttm);
 485		bo->ttm = NULL;
 486	}
 487	ttm_bo_mem_put(bo, &bo->mem);
 488
 489	atomic_set(&bo->reserved, 0);
 490
 491	/*
 492	 * Make processes trying to reserve really pick it up.
 493	 */
 494	smp_mb__after_atomic_dec();
 495	wake_up_all(&bo->event_queue);
 496}
 497
 498static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
 499{
 500	struct ttm_bo_device *bdev = bo->bdev;
 501	struct ttm_bo_global *glob = bo->glob;
 502	struct ttm_bo_driver *driver;
 503	void *sync_obj = NULL;
 504	void *sync_obj_arg;
 505	int put_count;
 506	int ret;
 507
 508	spin_lock(&bdev->fence_lock);
 509	(void) ttm_bo_wait(bo, false, false, true);
 510	if (!bo->sync_obj) {
 511
 512		spin_lock(&glob->lru_lock);
 513
 514		/**
 515		 * Lock inversion between bo:reserve and bdev::fence_lock here,
 516		 * but that's OK, since we're only trylocking.
 517		 */
 518
 519		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
 520
 521		if (unlikely(ret == -EBUSY))
 522			goto queue;
 
 
 
 
 
 
 
 
 
 
 
 
 523
 524		spin_unlock(&bdev->fence_lock);
 525		put_count = ttm_bo_del_from_lru(bo);
 526
 527		spin_unlock(&glob->lru_lock);
 528		ttm_bo_cleanup_memtype_use(bo);
 
 
 
 529
 530		ttm_bo_list_ref_sub(bo, put_count, true);
 531
 532		return;
 533	} else {
 534		spin_lock(&glob->lru_lock);
 535	}
 536queue:
 537	driver = bdev->driver;
 538	if (bo->sync_obj)
 539		sync_obj = driver->sync_obj_ref(bo->sync_obj);
 540	sync_obj_arg = bo->sync_obj_arg;
 541
 542	kref_get(&bo->list_kref);
 543	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
 544	spin_unlock(&glob->lru_lock);
 545	spin_unlock(&bdev->fence_lock);
 546
 547	if (sync_obj) {
 548		driver->sync_obj_flush(sync_obj, sync_obj_arg);
 549		driver->sync_obj_unref(&sync_obj);
 550	}
 551	schedule_delayed_work(&bdev->wq,
 552			      ((HZ / 100) < 1) ? 1 : HZ / 100);
 553}
 554
 555/**
 556 * function ttm_bo_cleanup_refs
 557 * If bo idle, remove from delayed- and lru lists, and unref.
 558 * If not idle, do nothing.
 559 *
 560 * @interruptible         Any sleeps should occur interruptibly.
 561 * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
 562 * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
 
 
 
 
 563 */
 564
 565static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
 566			       bool interruptible,
 567			       bool no_wait_reserve,
 568			       bool no_wait_gpu)
 569{
 570	struct ttm_bo_device *bdev = bo->bdev;
 571	struct ttm_bo_global *glob = bo->glob;
 572	int put_count;
 573	int ret = 0;
 574
 575retry:
 576	spin_lock(&bdev->fence_lock);
 577	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 578	spin_unlock(&bdev->fence_lock);
 579
 580	if (unlikely(ret != 0))
 581		return ret;
 582
 583	spin_lock(&glob->lru_lock);
 
 
 
 
 
 
 
 
 
 
 
 584
 585	if (unlikely(list_empty(&bo->ddestroy))) {
 586		spin_unlock(&glob->lru_lock);
 587		return 0;
 
 
 
 
 
 
 
 
 
 
 
 588	}
 589
 590	ret = ttm_bo_reserve_locked(bo, interruptible,
 591				    no_wait_reserve, false, 0);
 592
 593	if (unlikely(ret != 0)) {
 594		spin_unlock(&glob->lru_lock);
 595		return ret;
 596	}
 597
 598	/**
 599	 * We can re-check for sync object without taking
 600	 * the bo::lock since setting the sync object requires
 601	 * also bo::reserved. A busy object at this point may
 602	 * be caused by another thread recently starting an accelerated
 603	 * eviction.
 604	 */
 605
 606	if (unlikely(bo->sync_obj)) {
 607		atomic_set(&bo->reserved, 0);
 608		wake_up_all(&bo->event_queue);
 609		spin_unlock(&glob->lru_lock);
 610		goto retry;
 611	}
 612
 613	put_count = ttm_bo_del_from_lru(bo);
 614	list_del_init(&bo->ddestroy);
 615	++put_count;
 616
 617	spin_unlock(&glob->lru_lock);
 618	ttm_bo_cleanup_memtype_use(bo);
 619
 620	ttm_bo_list_ref_sub(bo, put_count, true);
 
 621
 622	return 0;
 623}
 624
 625/**
 626 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
 627 * encountered buffers.
 628 */
 
 
 
 
 
 629
 630static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
 
 
 
 
 
 
 
 
 631{
 632	struct ttm_bo_global *glob = bdev->glob;
 633	struct ttm_buffer_object *entry = NULL;
 634	int ret = 0;
 
 635
 636	spin_lock(&glob->lru_lock);
 637	if (list_empty(&bdev->ddestroy))
 638		goto out_unlock;
 639
 640	entry = list_first_entry(&bdev->ddestroy,
 641		struct ttm_buffer_object, ddestroy);
 642	kref_get(&entry->list_kref);
 643
 644	for (;;) {
 645		struct ttm_buffer_object *nentry = NULL;
 646
 647		if (entry->ddestroy.next != &bdev->ddestroy) {
 648			nentry = list_first_entry(&entry->ddestroy,
 649				struct ttm_buffer_object, ddestroy);
 650			kref_get(&nentry->list_kref);
 651		}
 652
 653		spin_unlock(&glob->lru_lock);
 654		ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
 655					  !remove_all);
 656		kref_put(&entry->list_kref, ttm_bo_release_list);
 657		entry = nentry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 658
 659		if (ret || !entry)
 660			goto out;
 661
 662		spin_lock(&glob->lru_lock);
 663		if (list_empty(&entry->ddestroy))
 664			break;
 665	}
 666
 667out_unlock:
 668	spin_unlock(&glob->lru_lock);
 669out:
 670	if (entry)
 671		kref_put(&entry->list_kref, ttm_bo_release_list);
 672	return ret;
 673}
 
 674
 675static void ttm_bo_delayed_workqueue(struct work_struct *work)
 676{
 677	struct ttm_bo_device *bdev =
 678	    container_of(work, struct ttm_bo_device, wq.work);
 679
 680	if (ttm_bo_delayed_delete(bdev, false)) {
 681		schedule_delayed_work(&bdev->wq,
 682				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 683	}
 684}
 685
 686static void ttm_bo_release(struct kref *kref)
 687{
 688	struct ttm_buffer_object *bo =
 689	    container_of(kref, struct ttm_buffer_object, kref);
 690	struct ttm_bo_device *bdev = bo->bdev;
 691	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
 692
 693	if (likely(bo->vm_node != NULL)) {
 694		rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
 695		drm_mm_put_block(bo->vm_node);
 696		bo->vm_node = NULL;
 697	}
 698	write_unlock(&bdev->vm_lock);
 699	ttm_mem_io_lock(man, false);
 700	ttm_mem_io_free_vm(bo);
 701	ttm_mem_io_unlock(man);
 702	ttm_bo_cleanup_refs_or_queue(bo);
 703	kref_put(&bo->list_kref, ttm_bo_release_list);
 704	write_lock(&bdev->vm_lock);
 705}
 706
 707void ttm_bo_unref(struct ttm_buffer_object **p_bo)
 
 
 
 
 
 
 
 708{
 709	struct ttm_buffer_object *bo = *p_bo;
 710	struct ttm_bo_device *bdev = bo->bdev;
 711
 712	*p_bo = NULL;
 713	write_lock(&bdev->vm_lock);
 714	kref_put(&bo->kref, ttm_bo_release);
 715	write_unlock(&bdev->vm_lock);
 716}
 717EXPORT_SYMBOL(ttm_bo_unref);
 718
 719int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
 
 
 
 720{
 721	return cancel_delayed_work_sync(&bdev->wq);
 722}
 723EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
 
 
 
 724
 725void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
 726{
 727	if (resched)
 728		schedule_delayed_work(&bdev->wq,
 729				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 
 
 
 
 
 
 730}
 731EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
 732
 733static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
 734			bool no_wait_reserve, bool no_wait_gpu)
 735{
 736	struct ttm_bo_device *bdev = bo->bdev;
 737	struct ttm_mem_reg evict_mem;
 738	struct ttm_placement placement;
 
 739	int ret = 0;
 740
 741	spin_lock(&bdev->fence_lock);
 742	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 743	spin_unlock(&bdev->fence_lock);
 744
 745	if (unlikely(ret != 0)) {
 746		if (ret != -ERESTARTSYS) {
 747			pr_err("Failed to expire sync object before buffer eviction\n");
 748		}
 749		goto out;
 750	}
 751
 752	BUG_ON(!atomic_read(&bo->reserved));
 
 
 753
 754	evict_mem = bo->mem;
 755	evict_mem.mm_node = NULL;
 756	evict_mem.bus.io_reserved_vm = false;
 757	evict_mem.bus.io_reserved_count = 0;
 758
 759	placement.fpfn = 0;
 760	placement.lpfn = 0;
 761	placement.num_placement = 0;
 762	placement.num_busy_placement = 0;
 763	bdev->driver->evict_flags(bo, &placement);
 764	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
 765				no_wait_reserve, no_wait_gpu);
 
 766	if (ret) {
 767		if (ret != -ERESTARTSYS) {
 768			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
 769			       bo);
 770			ttm_bo_mem_space_debug(bo, &placement);
 771		}
 772		goto out;
 773	}
 774
 775	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
 776				     no_wait_reserve, no_wait_gpu);
 
 
 
 
 
 
 777	if (ret) {
 778		if (ret != -ERESTARTSYS)
 
 779			pr_err("Buffer eviction failed\n");
 780		ttm_bo_mem_put(bo, &evict_mem);
 781		goto out;
 782	}
 783	bo->evicted = true;
 784out:
 785	return ret;
 786}
 787
 788static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
 789				uint32_t mem_type,
 790				bool interruptible, bool no_wait_reserve,
 791				bool no_wait_gpu)
 
 
 
 
 
 
 792{
 793	struct ttm_bo_global *glob = bdev->glob;
 794	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 795	struct ttm_buffer_object *bo;
 796	int ret, put_count = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 797
 798retry:
 799	spin_lock(&glob->lru_lock);
 800	if (list_empty(&man->lru)) {
 801		spin_unlock(&glob->lru_lock);
 802		return -EBUSY;
 
 
 803	}
 804
 805	bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
 806	kref_get(&bo->list_kref);
 807
 808	if (!list_empty(&bo->ddestroy)) {
 809		spin_unlock(&glob->lru_lock);
 810		ret = ttm_bo_cleanup_refs(bo, interruptible,
 811					  no_wait_reserve, no_wait_gpu);
 812		kref_put(&bo->list_kref, ttm_bo_release_list);
 
 
 
 
 
 
 
 
 
 813
 814		if (likely(ret == 0 || ret == -ERESTARTSYS))
 815			return ret;
 816
 817		goto retry;
 818	}
 
 
 
 819
 820	ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
 
 
 
 
 
 
 821
 822	if (unlikely(ret == -EBUSY)) {
 823		spin_unlock(&glob->lru_lock);
 824		if (likely(!no_wait_gpu))
 825			ret = ttm_bo_wait_unreserved(bo, interruptible);
 826
 827		kref_put(&bo->list_kref, ttm_bo_release_list);
 
 
 
 
 
 
 
 
 
 
 828
 829		/**
 830		 * We *need* to retry after releasing the lru lock.
 831		 */
 
 
 
 
 
 
 
 
 832
 833		if (unlikely(ret != 0))
 834			return ret;
 835		goto retry;
 
 
 
 836	}
 837
 838	put_count = ttm_bo_del_from_lru(bo);
 839	spin_unlock(&glob->lru_lock);
 
 
 
 
 
 
 
 840
 841	BUG_ON(ret != 0);
 
 
 
 
 
 842
 843	ttm_bo_list_ref_sub(bo, put_count, true);
 844
 845	ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
 846	ttm_bo_unreserve(bo);
 
 
 
 847
 848	kref_put(&bo->list_kref, ttm_bo_release_list);
 849	return ret;
 850}
 851
 852void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 853{
 854	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
 
 
 
 855
 856	if (mem->mm_node)
 857		(*man->func->put_node)(man, mem);
 
 
 
 858}
 859EXPORT_SYMBOL(ttm_bo_mem_put);
 860
 861/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862 * Repeatedly evict memory from the LRU for @mem_type until we create enough
 863 * space, or we've evicted everything and there isn't enough space.
 864 */
 865static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
 866					uint32_t mem_type,
 867					struct ttm_placement *placement,
 868					struct ttm_mem_reg *mem,
 869					bool interruptible,
 870					bool no_wait_reserve,
 871					bool no_wait_gpu)
 872{
 873	struct ttm_bo_device *bdev = bo->bdev;
 874	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 875	int ret;
 876
 
 
 877	do {
 878		ret = (*man->func->get_node)(man, bo, placement, mem);
 879		if (unlikely(ret != 0))
 
 
 880			return ret;
 881		if (mem->mm_node)
 882			break;
 883		ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
 884						no_wait_reserve, no_wait_gpu);
 885		if (unlikely(ret != 0))
 886			return ret;
 887	} while (1);
 888	if (mem->mm_node == NULL)
 889		return -ENOMEM;
 890	mem->mem_type = mem_type;
 891	return 0;
 892}
 893
 894static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
 895				      uint32_t cur_placement,
 896				      uint32_t proposed_placement)
 897{
 898	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
 899	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
 900
 901	/**
 902	 * Keep current caching if possible.
 903	 */
 904
 905	if ((cur_placement & caching) != 0)
 906		result |= (cur_placement & caching);
 907	else if ((man->default_caching & caching) != 0)
 908		result |= man->default_caching;
 909	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
 910		result |= TTM_PL_FLAG_CACHED;
 911	else if ((TTM_PL_FLAG_WC & caching) != 0)
 912		result |= TTM_PL_FLAG_WC;
 913	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
 914		result |= TTM_PL_FLAG_UNCACHED;
 915
 916	return result;
 917}
 918
 919static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
 920				 uint32_t mem_type,
 921				 uint32_t proposed_placement,
 922				 uint32_t *masked_placement)
 923{
 924	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
 925
 926	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
 927		return false;
 928
 929	if ((proposed_placement & man->available_caching) == 0)
 930		return false;
 931
 932	cur_flags |= (proposed_placement & man->available_caching);
 933
 934	*masked_placement = cur_flags;
 935	return true;
 936}
 937
 938/**
 939 * Creates space for memory region @mem according to its type.
 
 
 
 
 
 
 940 *
 941 * This function first searches for free space in compatible memory types in
 942 * the priority order defined by the driver.  If free space isn't found, then
 943 * ttm_bo_mem_force_space is attempted in priority order to evict and find
 944 * space.
 
 
 
 
 945 */
 946int ttm_bo_mem_space(struct ttm_buffer_object *bo,
 947			struct ttm_placement *placement,
 948			struct ttm_mem_reg *mem,
 949			bool interruptible, bool no_wait_reserve,
 950			bool no_wait_gpu)
 951{
 952	struct ttm_bo_device *bdev = bo->bdev;
 953	struct ttm_mem_type_manager *man;
 954	uint32_t mem_type = TTM_PL_SYSTEM;
 955	uint32_t cur_flags = 0;
 956	bool type_found = false;
 957	bool type_ok = false;
 958	bool has_erestartsys = false;
 959	int i, ret;
 960
 961	mem->mm_node = NULL;
 
 
 
 962	for (i = 0; i < placement->num_placement; ++i) {
 963		ret = ttm_mem_type_from_flags(placement->placement[i],
 964						&mem_type);
 965		if (ret)
 966			return ret;
 967		man = &bdev->man[mem_type];
 968
 969		type_ok = ttm_bo_mt_compatible(man,
 970						mem_type,
 971						placement->placement[i],
 972						&cur_flags);
 973
 974		if (!type_ok)
 
 
 975			continue;
 
 
 976
 977		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
 978						  cur_flags);
 979		/*
 980		 * Use the access and other non-mapping-related flag bits from
 981		 * the memory placement flags to the current flags
 982		 */
 983		ttm_flag_masked(&cur_flags, placement->placement[i],
 984				~TTM_PL_MASK_MEMTYPE);
 985
 986		if (mem_type == TTM_PL_SYSTEM)
 987			break;
 988
 989		if (man->has_type && man->use_type) {
 990			type_found = true;
 991			ret = (*man->func->get_node)(man, bo, placement, mem);
 992			if (unlikely(ret))
 993				return ret;
 994		}
 995		if (mem->mm_node)
 996			break;
 997	}
 998
 999	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
1000		mem->mem_type = mem_type;
1001		mem->placement = cur_flags;
1002		return 0;
1003	}
1004
1005	if (!type_found)
1006		return -EINVAL;
 
1007
1008	for (i = 0; i < placement->num_busy_placement; ++i) {
1009		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1010						&mem_type);
1011		if (ret)
1012			return ret;
1013		man = &bdev->man[mem_type];
1014		if (!man->has_type)
1015			continue;
1016		if (!ttm_bo_mt_compatible(man,
1017						mem_type,
1018						placement->busy_placement[i],
1019						&cur_flags))
1020			continue;
1021
1022		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1023						  cur_flags);
1024		/*
1025		 * Use the access and other non-mapping-related flag bits from
1026		 * the memory placement flags to the current flags
1027		 */
1028		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1029				~TTM_PL_MASK_MEMTYPE);
1030
 
 
 
1031
1032		if (mem_type == TTM_PL_SYSTEM) {
1033			mem->mem_type = mem_type;
1034			mem->placement = cur_flags;
1035			mem->mm_node = NULL;
1036			return 0;
1037		}
1038
1039		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1040						interruptible, no_wait_reserve, no_wait_gpu);
1041		if (ret == 0 && mem->mm_node) {
1042			mem->placement = cur_flags;
1043			return 0;
1044		}
1045		if (ret == -ERESTARTSYS)
1046			has_erestartsys = true;
1047	}
1048	ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1049	return ret;
1050}
1051EXPORT_SYMBOL(ttm_bo_mem_space);
1052
1053int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
 
 
1054{
1055	if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1056		return -EBUSY;
1057
1058	return wait_event_interruptible(bo->event_queue,
1059					atomic_read(&bo->cpu_writers) == 0);
1060}
1061EXPORT_SYMBOL(ttm_bo_wait_cpu);
1062
1063int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1064			struct ttm_placement *placement,
1065			bool interruptible, bool no_wait_reserve,
1066			bool no_wait_gpu)
1067{
1068	int ret = 0;
1069	struct ttm_mem_reg mem;
1070	struct ttm_bo_device *bdev = bo->bdev;
1071
1072	BUG_ON(!atomic_read(&bo->reserved));
1073
1074	/*
1075	 * FIXME: It's possible to pipeline buffer moves.
1076	 * Have the driver move function wait for idle when necessary,
1077	 * instead of doing it here.
 
 
 
 
1078	 */
1079	spin_lock(&bdev->fence_lock);
1080	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1081	spin_unlock(&bdev->fence_lock);
1082	if (ret)
1083		return ret;
1084	mem.num_pages = bo->num_pages;
1085	mem.size = mem.num_pages << PAGE_SHIFT;
1086	mem.page_alignment = bo->mem.page_alignment;
1087	mem.bus.io_reserved_vm = false;
1088	mem.bus.io_reserved_count = 0;
1089	/*
1090	 * Determine where to move the buffer.
1091	 */
1092	ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
 
1093	if (ret)
1094		goto out_unlock;
1095	ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1096out_unlock:
1097	if (ret && mem.mm_node)
1098		ttm_bo_mem_put(bo, &mem);
1099	return ret;
1100}
1101
1102static int ttm_bo_mem_compat(struct ttm_placement *placement,
1103			     struct ttm_mem_reg *mem)
1104{
1105	int i;
1106
1107	if (mem->mm_node && placement->lpfn != 0 &&
1108	    (mem->start < placement->fpfn ||
1109	     mem->start + mem->num_pages > placement->lpfn))
1110		return -1;
1111
1112	for (i = 0; i < placement->num_placement; i++) {
1113		if ((placement->placement[i] & mem->placement &
1114			TTM_PL_MASK_CACHING) &&
1115			(placement->placement[i] & mem->placement &
1116			TTM_PL_MASK_MEM))
1117			return i;
1118	}
1119	return -1;
1120}
1121
1122int ttm_bo_validate(struct ttm_buffer_object *bo,
1123			struct ttm_placement *placement,
1124			bool interruptible, bool no_wait_reserve,
1125			bool no_wait_gpu)
1126{
1127	int ret;
1128
1129	BUG_ON(!atomic_read(&bo->reserved));
1130	/* Check that range is valid */
1131	if (placement->lpfn || placement->fpfn)
1132		if (placement->fpfn > placement->lpfn ||
1133			(placement->lpfn - placement->fpfn) < bo->num_pages)
1134			return -EINVAL;
1135	/*
1136	 * Check whether we need to move buffer.
1137	 */
1138	ret = ttm_bo_mem_compat(placement, &bo->mem);
1139	if (ret < 0) {
1140		ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1141		if (ret)
1142			return ret;
1143	} else {
1144		/*
1145		 * Use the access and other non-mapping-related flag bits from
1146		 * the compatible memory placement flags to the active flags
1147		 */
1148		ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1149				~TTM_PL_MASK_MEMTYPE);
1150	}
 
 
1151	/*
1152	 * We might need to add a TTM.
1153	 */
1154	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1155		ret = ttm_bo_add_ttm(bo, true);
1156		if (ret)
1157			return ret;
1158	}
1159	return 0;
1160}
1161EXPORT_SYMBOL(ttm_bo_validate);
1162
1163int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1164				struct ttm_placement *placement)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1165{
1166	BUG_ON((placement->fpfn || placement->lpfn) &&
1167	       (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1168
1169	return 0;
1170}
1171
1172int ttm_bo_init(struct ttm_bo_device *bdev,
1173		struct ttm_buffer_object *bo,
1174		unsigned long size,
1175		enum ttm_bo_type type,
1176		struct ttm_placement *placement,
1177		uint32_t page_alignment,
1178		unsigned long buffer_start,
1179		bool interruptible,
1180		struct file *persistent_swap_storage,
1181		size_t acc_size,
1182		struct sg_table *sg,
1183		void (*destroy) (struct ttm_buffer_object *))
1184{
1185	int ret = 0;
1186	unsigned long num_pages;
1187	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1188
1189	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1190	if (ret) {
1191		pr_err("Out of kernel memory\n");
1192		if (destroy)
1193			(*destroy)(bo);
1194		else
1195			kfree(bo);
1196		return -ENOMEM;
1197	}
1198
1199	size += buffer_start & ~PAGE_MASK;
1200	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1201	if (num_pages == 0) {
1202		pr_err("Illegal buffer object size\n");
1203		if (destroy)
1204			(*destroy)(bo);
1205		else
1206			kfree(bo);
1207		ttm_mem_global_free(mem_glob, acc_size);
1208		return -EINVAL;
1209	}
1210	bo->destroy = destroy;
1211
1212	kref_init(&bo->kref);
1213	kref_init(&bo->list_kref);
1214	atomic_set(&bo->cpu_writers, 0);
1215	atomic_set(&bo->reserved, 1);
1216	init_waitqueue_head(&bo->event_queue);
1217	INIT_LIST_HEAD(&bo->lru);
1218	INIT_LIST_HEAD(&bo->ddestroy);
1219	INIT_LIST_HEAD(&bo->swap);
1220	INIT_LIST_HEAD(&bo->io_reserve_lru);
1221	bo->bdev = bdev;
1222	bo->glob = bdev->glob;
1223	bo->type = type;
1224	bo->num_pages = num_pages;
1225	bo->mem.size = num_pages << PAGE_SHIFT;
1226	bo->mem.mem_type = TTM_PL_SYSTEM;
1227	bo->mem.num_pages = bo->num_pages;
1228	bo->mem.mm_node = NULL;
1229	bo->mem.page_alignment = page_alignment;
1230	bo->mem.bus.io_reserved_vm = false;
1231	bo->mem.bus.io_reserved_count = 0;
1232	bo->buffer_start = buffer_start & PAGE_MASK;
1233	bo->priv_flags = 0;
1234	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1235	bo->seq_valid = false;
1236	bo->persistent_swap_storage = persistent_swap_storage;
1237	bo->acc_size = acc_size;
1238	bo->sg = sg;
1239	atomic_inc(&bo->glob->bo_count);
1240
1241	ret = ttm_bo_check_placement(bo, placement);
1242	if (unlikely(ret != 0))
1243		goto out_err;
 
1244
1245	/*
1246	 * For ttm_bo_type_device buffers, allocate
1247	 * address space from the device.
1248	 */
1249	if (bo->type == ttm_bo_type_device ||
1250	    bo->type == ttm_bo_type_sg) {
1251		ret = ttm_bo_setup_vm(bo);
1252		if (ret)
1253			goto out_err;
1254	}
1255
1256	ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1257	if (ret)
1258		goto out_err;
 
 
 
 
 
 
 
 
1259
1260	ttm_bo_unreserve(bo);
1261	return 0;
1262
1263out_err:
1264	ttm_bo_unreserve(bo);
1265	ttm_bo_unref(&bo);
1266
 
 
1267	return ret;
1268}
1269EXPORT_SYMBOL(ttm_bo_init);
1270
1271size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1272		       unsigned long bo_size,
1273		       unsigned struct_size)
1274{
1275	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1276	size_t size = 0;
1277
1278	size += ttm_round_pot(struct_size);
1279	size += PAGE_ALIGN(npages * sizeof(void *));
1280	size += ttm_round_pot(sizeof(struct ttm_tt));
1281	return size;
1282}
1283EXPORT_SYMBOL(ttm_bo_acc_size);
1284
1285size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1286			   unsigned long bo_size,
1287			   unsigned struct_size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1288{
1289	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1290	size_t size = 0;
1291
1292	size += ttm_round_pot(struct_size);
1293	size += PAGE_ALIGN(npages * sizeof(void *));
1294	size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1295	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1296	return size;
1297}
1298EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1299
1300int ttm_bo_create(struct ttm_bo_device *bdev,
1301			unsigned long size,
1302			enum ttm_bo_type type,
1303			struct ttm_placement *placement,
1304			uint32_t page_alignment,
1305			unsigned long buffer_start,
1306			bool interruptible,
1307			struct file *persistent_swap_storage,
1308			struct ttm_buffer_object **p_bo)
1309{
1310	struct ttm_buffer_object *bo;
1311	size_t acc_size;
1312	int ret;
1313
1314	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1315	if (unlikely(bo == NULL))
1316		return -ENOMEM;
1317
1318	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1319	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1320				buffer_start, interruptible,
1321			  persistent_swap_storage, acc_size, NULL, NULL);
1322	if (likely(ret == 0))
1323		*p_bo = bo;
1324
1325	return ret;
1326}
1327EXPORT_SYMBOL(ttm_bo_create);
1328
1329static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1330					unsigned mem_type, bool allow_errors)
1331{
1332	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1333	struct ttm_bo_global *glob = bdev->glob;
1334	int ret;
1335
1336	/*
1337	 * Can't use standard list traversal since we're unlocking.
1338	 */
1339
1340	spin_lock(&glob->lru_lock);
1341	while (!list_empty(&man->lru)) {
1342		spin_unlock(&glob->lru_lock);
1343		ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1344		if (ret) {
1345			if (allow_errors) {
1346				return ret;
1347			} else {
1348				pr_err("Cleanup eviction failed\n");
1349			}
1350		}
1351		spin_lock(&glob->lru_lock);
1352	}
1353	spin_unlock(&glob->lru_lock);
1354	return 0;
1355}
1356
1357int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1358{
1359	struct ttm_mem_type_manager *man;
1360	int ret = -EINVAL;
1361
1362	if (mem_type >= TTM_NUM_MEM_TYPES) {
1363		pr_err("Illegal memory type %d\n", mem_type);
1364		return ret;
1365	}
1366	man = &bdev->man[mem_type];
1367
1368	if (!man->has_type) {
1369		pr_err("Trying to take down uninitialized memory manager type %u\n",
1370		       mem_type);
1371		return ret;
1372	}
1373
1374	man->use_type = false;
1375	man->has_type = false;
1376
1377	ret = 0;
1378	if (mem_type > 0) {
1379		ttm_bo_force_list_clean(bdev, mem_type, false);
1380
1381		ret = (*man->func->takedown)(man);
1382	}
1383
1384	return ret;
1385}
1386EXPORT_SYMBOL(ttm_bo_clean_mm);
1387
1388int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1389{
1390	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1391
1392	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1393		pr_err("Illegal memory manager memory type %u\n", mem_type);
1394		return -EINVAL;
1395	}
1396
1397	if (!man->has_type) {
1398		pr_err("Memory type %u has not been initialized\n", mem_type);
1399		return 0;
1400	}
1401
1402	return ttm_bo_force_list_clean(bdev, mem_type, true);
1403}
1404EXPORT_SYMBOL(ttm_bo_evict_mm);
1405
1406int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1407			unsigned long p_size)
1408{
1409	int ret = -EINVAL;
1410	struct ttm_mem_type_manager *man;
1411
1412	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1413	man = &bdev->man[type];
1414	BUG_ON(man->has_type);
1415	man->io_reserve_fastpath = true;
1416	man->use_io_reserve_lru = false;
1417	mutex_init(&man->io_reserve_mutex);
1418	INIT_LIST_HEAD(&man->io_reserve_lru);
1419
1420	ret = bdev->driver->init_mem_type(bdev, type, man);
1421	if (ret)
1422		return ret;
1423	man->bdev = bdev;
1424
1425	ret = 0;
1426	if (type != TTM_PL_SYSTEM) {
1427		ret = (*man->func->init)(man, p_size);
1428		if (ret)
1429			return ret;
1430	}
1431	man->has_type = true;
1432	man->use_type = true;
1433	man->size = p_size;
1434
1435	INIT_LIST_HEAD(&man->lru);
1436
1437	return 0;
1438}
1439EXPORT_SYMBOL(ttm_bo_init_mm);
1440
1441static void ttm_bo_global_kobj_release(struct kobject *kobj)
1442{
1443	struct ttm_bo_global *glob =
1444		container_of(kobj, struct ttm_bo_global, kobj);
1445
1446	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1447	__free_page(glob->dummy_read_page);
1448	kfree(glob);
1449}
1450
1451void ttm_bo_global_release(struct drm_global_reference *ref)
1452{
1453	struct ttm_bo_global *glob = ref->object;
1454
1455	kobject_del(&glob->kobj);
1456	kobject_put(&glob->kobj);
1457}
1458EXPORT_SYMBOL(ttm_bo_global_release);
1459
1460int ttm_bo_global_init(struct drm_global_reference *ref)
1461{
1462	struct ttm_bo_global_ref *bo_ref =
1463		container_of(ref, struct ttm_bo_global_ref, ref);
1464	struct ttm_bo_global *glob = ref->object;
1465	int ret;
1466
1467	mutex_init(&glob->device_list_mutex);
1468	spin_lock_init(&glob->lru_lock);
1469	glob->mem_glob = bo_ref->mem_glob;
1470	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1471
1472	if (unlikely(glob->dummy_read_page == NULL)) {
1473		ret = -ENOMEM;
1474		goto out_no_drp;
1475	}
1476
1477	INIT_LIST_HEAD(&glob->swap_lru);
1478	INIT_LIST_HEAD(&glob->device_list);
1479
1480	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1481	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1482	if (unlikely(ret != 0)) {
1483		pr_err("Could not register buffer object swapout\n");
1484		goto out_no_shrink;
1485	}
1486
1487	atomic_set(&glob->bo_count, 0);
1488
1489	ret = kobject_init_and_add(
1490		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1491	if (unlikely(ret != 0))
1492		kobject_put(&glob->kobj);
1493	return ret;
1494out_no_shrink:
1495	__free_page(glob->dummy_read_page);
1496out_no_drp:
1497	kfree(glob);
1498	return ret;
1499}
1500EXPORT_SYMBOL(ttm_bo_global_init);
1501
1502
1503int ttm_bo_device_release(struct ttm_bo_device *bdev)
1504{
1505	int ret = 0;
1506	unsigned i = TTM_NUM_MEM_TYPES;
1507	struct ttm_mem_type_manager *man;
1508	struct ttm_bo_global *glob = bdev->glob;
1509
1510	while (i--) {
1511		man = &bdev->man[i];
1512		if (man->has_type) {
1513			man->use_type = false;
1514			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1515				ret = -EBUSY;
1516				pr_err("DRM memory manager type %d is not clean\n",
1517				       i);
1518			}
1519			man->has_type = false;
1520		}
1521	}
1522
1523	mutex_lock(&glob->device_list_mutex);
1524	list_del(&bdev->device_list);
1525	mutex_unlock(&glob->device_list_mutex);
1526
1527	cancel_delayed_work_sync(&bdev->wq);
1528
1529	while (ttm_bo_delayed_delete(bdev, true))
1530		;
1531
1532	spin_lock(&glob->lru_lock);
1533	if (list_empty(&bdev->ddestroy))
1534		TTM_DEBUG("Delayed destroy list was clean\n");
1535
1536	if (list_empty(&bdev->man[0].lru))
1537		TTM_DEBUG("Swap list was clean\n");
1538	spin_unlock(&glob->lru_lock);
1539
1540	BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1541	write_lock(&bdev->vm_lock);
1542	drm_mm_takedown(&bdev->addr_space_mm);
1543	write_unlock(&bdev->vm_lock);
1544
1545	return ret;
1546}
1547EXPORT_SYMBOL(ttm_bo_device_release);
1548
1549int ttm_bo_device_init(struct ttm_bo_device *bdev,
1550		       struct ttm_bo_global *glob,
1551		       struct ttm_bo_driver *driver,
1552		       uint64_t file_page_offset,
1553		       bool need_dma32)
1554{
1555	int ret = -EINVAL;
1556
1557	rwlock_init(&bdev->vm_lock);
1558	bdev->driver = driver;
1559
1560	memset(bdev->man, 0, sizeof(bdev->man));
1561
1562	/*
1563	 * Initialize the system memory buffer type.
1564	 * Other types need to be driver / IOCTL initialized.
1565	 */
1566	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1567	if (unlikely(ret != 0))
1568		goto out_no_sys;
1569
1570	bdev->addr_space_rb = RB_ROOT;
1571	ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1572	if (unlikely(ret != 0))
1573		goto out_no_addr_mm;
1574
1575	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1576	bdev->nice_mode = true;
1577	INIT_LIST_HEAD(&bdev->ddestroy);
1578	bdev->dev_mapping = NULL;
1579	bdev->glob = glob;
1580	bdev->need_dma32 = need_dma32;
1581	bdev->val_seq = 0;
1582	spin_lock_init(&bdev->fence_lock);
1583	mutex_lock(&glob->device_list_mutex);
1584	list_add_tail(&bdev->device_list, &glob->device_list);
1585	mutex_unlock(&glob->device_list_mutex);
1586
1587	return 0;
1588out_no_addr_mm:
1589	ttm_bo_clean_mm(bdev, 0);
1590out_no_sys:
1591	return ret;
1592}
1593EXPORT_SYMBOL(ttm_bo_device_init);
1594
1595/*
1596 * buffer object vm functions.
1597 */
1598
1599bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1600{
1601	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1602
1603	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1604		if (mem->mem_type == TTM_PL_SYSTEM)
1605			return false;
1606
1607		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1608			return false;
1609
1610		if (mem->placement & TTM_PL_FLAG_CACHED)
1611			return false;
1612	}
1613	return true;
1614}
1615
1616void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1617{
1618	struct ttm_bo_device *bdev = bo->bdev;
1619	loff_t offset = (loff_t) bo->addr_space_offset;
1620	loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1621
1622	if (!bdev->dev_mapping)
1623		return;
1624	unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1625	ttm_mem_io_free_vm(bo);
1626}
1627
1628void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1629{
1630	struct ttm_bo_device *bdev = bo->bdev;
1631	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1632
1633	ttm_mem_io_lock(man, false);
1634	ttm_bo_unmap_virtual_locked(bo);
1635	ttm_mem_io_unlock(man);
1636}
1637
1638
1639EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1640
1641static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1642{
1643	struct ttm_bo_device *bdev = bo->bdev;
1644	struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1645	struct rb_node *parent = NULL;
1646	struct ttm_buffer_object *cur_bo;
1647	unsigned long offset = bo->vm_node->start;
1648	unsigned long cur_offset;
1649
1650	while (*cur) {
1651		parent = *cur;
1652		cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1653		cur_offset = cur_bo->vm_node->start;
1654		if (offset < cur_offset)
1655			cur = &parent->rb_left;
1656		else if (offset > cur_offset)
1657			cur = &parent->rb_right;
1658		else
1659			BUG();
1660	}
1661
1662	rb_link_node(&bo->vm_rb, parent, cur);
1663	rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1664}
1665
1666/**
1667 * ttm_bo_setup_vm:
1668 *
1669 * @bo: the buffer to allocate address space for
 
1670 *
1671 * Allocate address space in the drm device so that applications
1672 * can mmap the buffer and access the contents. This only
1673 * applies to ttm_bo_type_device objects as others are not
1674 * placed in the drm device address space.
1675 */
1676
1677static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1678{
1679	struct ttm_bo_device *bdev = bo->bdev;
1680	int ret;
1681
1682retry_pre_get:
1683	ret = drm_mm_pre_get(&bdev->addr_space_mm);
1684	if (unlikely(ret != 0))
1685		return ret;
1686
1687	write_lock(&bdev->vm_lock);
1688	bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1689					 bo->mem.num_pages, 0, 0);
1690
1691	if (unlikely(bo->vm_node == NULL)) {
1692		ret = -ENOMEM;
1693		goto out_unlock;
1694	}
1695
1696	bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1697					      bo->mem.num_pages, 0);
1698
1699	if (unlikely(bo->vm_node == NULL)) {
1700		write_unlock(&bdev->vm_lock);
1701		goto retry_pre_get;
1702	}
1703
1704	ttm_bo_vm_insert_rb(bo);
1705	write_unlock(&bdev->vm_lock);
1706	bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1707
1708	return 0;
1709out_unlock:
1710	write_unlock(&bdev->vm_lock);
1711	return ret;
1712}
 
1713
1714int ttm_bo_wait(struct ttm_buffer_object *bo,
1715		bool lazy, bool interruptible, bool no_wait)
1716{
1717	struct ttm_bo_driver *driver = bo->bdev->driver;
1718	struct ttm_bo_device *bdev = bo->bdev;
1719	void *sync_obj;
1720	void *sync_obj_arg;
1721	int ret = 0;
1722
1723	if (likely(bo->sync_obj == NULL))
1724		return 0;
 
 
 
 
 
 
 
 
1725
1726	while (bo->sync_obj) {
1727
1728		if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1729			void *tmp_obj = bo->sync_obj;
1730			bo->sync_obj = NULL;
1731			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1732			spin_unlock(&bdev->fence_lock);
1733			driver->sync_obj_unref(&tmp_obj);
1734			spin_lock(&bdev->fence_lock);
1735			continue;
1736		}
1737
1738		if (no_wait)
1739			return -EBUSY;
1740
1741		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1742		sync_obj_arg = bo->sync_obj_arg;
1743		spin_unlock(&bdev->fence_lock);
1744		ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1745					    lazy, interruptible);
1746		if (unlikely(ret != 0)) {
1747			driver->sync_obj_unref(&sync_obj);
1748			spin_lock(&bdev->fence_lock);
1749			return ret;
1750		}
1751		spin_lock(&bdev->fence_lock);
1752		if (likely(bo->sync_obj == sync_obj &&
1753			   bo->sync_obj_arg == sync_obj_arg)) {
1754			void *tmp_obj = bo->sync_obj;
1755			bo->sync_obj = NULL;
1756			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1757				  &bo->priv_flags);
1758			spin_unlock(&bdev->fence_lock);
1759			driver->sync_obj_unref(&sync_obj);
1760			driver->sync_obj_unref(&tmp_obj);
1761			spin_lock(&bdev->fence_lock);
1762		} else {
1763			spin_unlock(&bdev->fence_lock);
1764			driver->sync_obj_unref(&sync_obj);
1765			spin_lock(&bdev->fence_lock);
1766		}
1767	}
1768	return 0;
1769}
1770EXPORT_SYMBOL(ttm_bo_wait);
1771
1772int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1773{
1774	struct ttm_bo_device *bdev = bo->bdev;
1775	int ret = 0;
1776
1777	/*
1778	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1779	 */
 
 
 
 
 
 
 
 
 
1780
1781	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1782	if (unlikely(ret != 0))
1783		return ret;
1784	spin_lock(&bdev->fence_lock);
1785	ret = ttm_bo_wait(bo, false, true, no_wait);
1786	spin_unlock(&bdev->fence_lock);
1787	if (likely(ret == 0))
1788		atomic_inc(&bo->cpu_writers);
1789	ttm_bo_unreserve(bo);
1790	return ret;
1791}
1792EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1793
1794void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1795{
1796	if (atomic_dec_and_test(&bo->cpu_writers))
1797		wake_up_all(&bo->event_queue);
1798}
1799EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1800
1801/**
1802 * A buffer object shrink method that tries to swap out the first
1803 * buffer object on the bo_global::swap_lru list.
1804 */
1805
1806static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1807{
1808	struct ttm_bo_global *glob =
1809	    container_of(shrink, struct ttm_bo_global, shrink);
1810	struct ttm_buffer_object *bo;
1811	int ret = -EBUSY;
1812	int put_count;
1813	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1814
1815	spin_lock(&glob->lru_lock);
1816	while (ret == -EBUSY) {
1817		if (unlikely(list_empty(&glob->swap_lru))) {
1818			spin_unlock(&glob->lru_lock);
1819			return -EBUSY;
1820		}
1821
1822		bo = list_first_entry(&glob->swap_lru,
1823				      struct ttm_buffer_object, swap);
1824		kref_get(&bo->list_kref);
1825
1826		if (!list_empty(&bo->ddestroy)) {
1827			spin_unlock(&glob->lru_lock);
1828			(void) ttm_bo_cleanup_refs(bo, false, false, false);
1829			kref_put(&bo->list_kref, ttm_bo_release_list);
1830			spin_lock(&glob->lru_lock);
1831			continue;
1832		}
1833
1834		/**
1835		 * Reserve buffer. Since we unlock while sleeping, we need
1836		 * to re-check that nobody removed us from the swap-list while
1837		 * we slept.
1838		 */
1839
1840		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1841		if (unlikely(ret == -EBUSY)) {
1842			spin_unlock(&glob->lru_lock);
1843			ttm_bo_wait_unreserved(bo, false);
1844			kref_put(&bo->list_kref, ttm_bo_release_list);
1845			spin_lock(&glob->lru_lock);
1846		}
1847	}
1848
1849	BUG_ON(ret != 0);
1850	put_count = ttm_bo_del_from_lru(bo);
1851	spin_unlock(&glob->lru_lock);
1852
1853	ttm_bo_list_ref_sub(bo, put_count, true);
1854
1855	/**
1856	 * Wait for GPU, then move to system cached.
1857	 */
1858
1859	spin_lock(&bo->bdev->fence_lock);
1860	ret = ttm_bo_wait(bo, false, false, false);
1861	spin_unlock(&bo->bdev->fence_lock);
1862
1863	if (unlikely(ret != 0))
1864		goto out;
1865
1866	if ((bo->mem.placement & swap_placement) != swap_placement) {
1867		struct ttm_mem_reg evict_mem;
1868
1869		evict_mem = bo->mem;
1870		evict_mem.mm_node = NULL;
1871		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1872		evict_mem.mem_type = TTM_PL_SYSTEM;
1873
1874		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1875					     false, false, false);
1876		if (unlikely(ret != 0))
1877			goto out;
1878	}
1879
1880	ttm_bo_unmap_virtual(bo);
1881
1882	/**
1883	 * Swap out. Buffer will be swapped in again as soon as
1884	 * anyone tries to access a ttm page.
1885	 */
 
 
1886
1887	if (bo->bdev->driver->swap_notify)
1888		bo->bdev->driver->swap_notify(bo);
1889
1890	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1891out:
1892
1893	/**
1894	 *
1895	 * Unreserve without putting on LRU to avoid swapping out an
1896	 * already swapped buffer.
1897	 */
1898
1899	atomic_set(&bo->reserved, 0);
1900	wake_up_all(&bo->event_queue);
1901	kref_put(&bo->list_kref, ttm_bo_release_list);
1902	return ret;
1903}
1904
1905void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1906{
1907	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1908		;
 
 
 
 
1909}
1910EXPORT_SYMBOL(ttm_bo_swapout_all);