Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Ptrace user space interface.
4 *
5 * Copyright IBM Corp. 1999, 2010
6 * Author(s): Denis Joseph Barrow
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 */
9
10#include "asm/ptrace.h"
11#include <linux/kernel.h>
12#include <linux/sched.h>
13#include <linux/sched/task_stack.h>
14#include <linux/mm.h>
15#include <linux/smp.h>
16#include <linux/errno.h>
17#include <linux/ptrace.h>
18#include <linux/user.h>
19#include <linux/security.h>
20#include <linux/audit.h>
21#include <linux/signal.h>
22#include <linux/elf.h>
23#include <linux/regset.h>
24#include <linux/seccomp.h>
25#include <linux/compat.h>
26#include <trace/syscall.h>
27#include <asm/page.h>
28#include <linux/uaccess.h>
29#include <asm/unistd.h>
30#include <asm/switch_to.h>
31#include <asm/runtime_instr.h>
32#include <asm/facility.h>
33#include <asm/fpu/api.h>
34
35#include "entry.h"
36
37#ifdef CONFIG_COMPAT
38#include "compat_ptrace.h"
39#endif
40
41void update_cr_regs(struct task_struct *task)
42{
43 struct pt_regs *regs = task_pt_regs(task);
44 struct thread_struct *thread = &task->thread;
45 union ctlreg0 cr0_old, cr0_new;
46 union ctlreg2 cr2_old, cr2_new;
47 int cr0_changed, cr2_changed;
48 union {
49 struct ctlreg regs[3];
50 struct {
51 struct ctlreg control;
52 struct ctlreg start;
53 struct ctlreg end;
54 };
55 } old, new;
56
57 local_ctl_store(0, &cr0_old.reg);
58 local_ctl_store(2, &cr2_old.reg);
59 cr0_new = cr0_old;
60 cr2_new = cr2_old;
61 /* Take care of the enable/disable of transactional execution. */
62 if (MACHINE_HAS_TE) {
63 /* Set or clear transaction execution TXC bit 8. */
64 cr0_new.tcx = 1;
65 if (task->thread.per_flags & PER_FLAG_NO_TE)
66 cr0_new.tcx = 0;
67 /* Set or clear transaction execution TDC bits 62 and 63. */
68 cr2_new.tdc = 0;
69 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
70 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
71 cr2_new.tdc = 1;
72 else
73 cr2_new.tdc = 2;
74 }
75 }
76 /* Take care of enable/disable of guarded storage. */
77 if (MACHINE_HAS_GS) {
78 cr2_new.gse = 0;
79 if (task->thread.gs_cb)
80 cr2_new.gse = 1;
81 }
82 /* Load control register 0/2 iff changed */
83 cr0_changed = cr0_new.val != cr0_old.val;
84 cr2_changed = cr2_new.val != cr2_old.val;
85 if (cr0_changed)
86 local_ctl_load(0, &cr0_new.reg);
87 if (cr2_changed)
88 local_ctl_load(2, &cr2_new.reg);
89 /* Copy user specified PER registers */
90 new.control.val = thread->per_user.control;
91 new.start.val = thread->per_user.start;
92 new.end.val = thread->per_user.end;
93
94 /* merge TIF_SINGLE_STEP into user specified PER registers. */
95 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
96 test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
97 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
98 new.control.val |= PER_EVENT_BRANCH;
99 else
100 new.control.val |= PER_EVENT_IFETCH;
101 new.control.val |= PER_CONTROL_SUSPENSION;
102 new.control.val |= PER_EVENT_TRANSACTION_END;
103 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
104 new.control.val |= PER_EVENT_IFETCH;
105 new.start.val = 0;
106 new.end.val = -1UL;
107 }
108
109 /* Take care of the PER enablement bit in the PSW. */
110 if (!(new.control.val & PER_EVENT_MASK)) {
111 regs->psw.mask &= ~PSW_MASK_PER;
112 return;
113 }
114 regs->psw.mask |= PSW_MASK_PER;
115 __local_ctl_store(9, 11, old.regs);
116 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
117 __local_ctl_load(9, 11, new.regs);
118}
119
120void user_enable_single_step(struct task_struct *task)
121{
122 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
123 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
124}
125
126void user_disable_single_step(struct task_struct *task)
127{
128 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
129 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
130}
131
132void user_enable_block_step(struct task_struct *task)
133{
134 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
135 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
136}
137
138/*
139 * Called by kernel/ptrace.c when detaching..
140 *
141 * Clear all debugging related fields.
142 */
143void ptrace_disable(struct task_struct *task)
144{
145 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
146 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
147 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
148 clear_tsk_thread_flag(task, TIF_PER_TRAP);
149 task->thread.per_flags = 0;
150}
151
152#define __ADDR_MASK 7
153
154static inline unsigned long __peek_user_per(struct task_struct *child,
155 addr_t addr)
156{
157 if (addr == offsetof(struct per_struct_kernel, cr9))
158 /* Control bits of the active per set. */
159 return test_thread_flag(TIF_SINGLE_STEP) ?
160 PER_EVENT_IFETCH : child->thread.per_user.control;
161 else if (addr == offsetof(struct per_struct_kernel, cr10))
162 /* Start address of the active per set. */
163 return test_thread_flag(TIF_SINGLE_STEP) ?
164 0 : child->thread.per_user.start;
165 else if (addr == offsetof(struct per_struct_kernel, cr11))
166 /* End address of the active per set. */
167 return test_thread_flag(TIF_SINGLE_STEP) ?
168 -1UL : child->thread.per_user.end;
169 else if (addr == offsetof(struct per_struct_kernel, bits))
170 /* Single-step bit. */
171 return test_thread_flag(TIF_SINGLE_STEP) ?
172 (1UL << (BITS_PER_LONG - 1)) : 0;
173 else if (addr == offsetof(struct per_struct_kernel, starting_addr))
174 /* Start address of the user specified per set. */
175 return child->thread.per_user.start;
176 else if (addr == offsetof(struct per_struct_kernel, ending_addr))
177 /* End address of the user specified per set. */
178 return child->thread.per_user.end;
179 else if (addr == offsetof(struct per_struct_kernel, perc_atmid))
180 /* PER code, ATMID and AI of the last PER trap */
181 return (unsigned long)
182 child->thread.per_event.cause << (BITS_PER_LONG - 16);
183 else if (addr == offsetof(struct per_struct_kernel, address))
184 /* Address of the last PER trap */
185 return child->thread.per_event.address;
186 else if (addr == offsetof(struct per_struct_kernel, access_id))
187 /* Access id of the last PER trap */
188 return (unsigned long)
189 child->thread.per_event.paid << (BITS_PER_LONG - 8);
190 return 0;
191}
192
193/*
194 * Read the word at offset addr from the user area of a process. The
195 * trouble here is that the information is littered over different
196 * locations. The process registers are found on the kernel stack,
197 * the floating point stuff and the trace settings are stored in
198 * the task structure. In addition the different structures in
199 * struct user contain pad bytes that should be read as zeroes.
200 * Lovely...
201 */
202static unsigned long __peek_user(struct task_struct *child, addr_t addr)
203{
204 addr_t offset, tmp;
205
206 if (addr < offsetof(struct user, regs.acrs)) {
207 /*
208 * psw and gprs are stored on the stack
209 */
210 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
211 if (addr == offsetof(struct user, regs.psw.mask)) {
212 /* Return a clean psw mask. */
213 tmp &= PSW_MASK_USER | PSW_MASK_RI;
214 tmp |= PSW_USER_BITS;
215 }
216
217 } else if (addr < offsetof(struct user, regs.orig_gpr2)) {
218 /*
219 * access registers are stored in the thread structure
220 */
221 offset = addr - offsetof(struct user, regs.acrs);
222 /*
223 * Very special case: old & broken 64 bit gdb reading
224 * from acrs[15]. Result is a 64 bit value. Read the
225 * 32 bit acrs[15] value and shift it by 32. Sick...
226 */
227 if (addr == offsetof(struct user, regs.acrs[15]))
228 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
229 else
230 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
231
232 } else if (addr == offsetof(struct user, regs.orig_gpr2)) {
233 /*
234 * orig_gpr2 is stored on the kernel stack
235 */
236 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
237
238 } else if (addr < offsetof(struct user, regs.fp_regs)) {
239 /*
240 * prevent reads of padding hole between
241 * orig_gpr2 and fp_regs on s390.
242 */
243 tmp = 0;
244
245 } else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
246 /*
247 * floating point control reg. is in the thread structure
248 */
249 tmp = child->thread.fpu.fpc;
250 tmp <<= BITS_PER_LONG - 32;
251
252 } else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
253 /*
254 * floating point regs. are either in child->thread.fpu
255 * or the child->thread.fpu.vxrs array
256 */
257 offset = addr - offsetof(struct user, regs.fp_regs.fprs);
258 if (cpu_has_vx())
259 tmp = *(addr_t *)
260 ((addr_t) child->thread.fpu.vxrs + 2*offset);
261 else
262 tmp = *(addr_t *)
263 ((addr_t) child->thread.fpu.fprs + offset);
264
265 } else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
266 /*
267 * Handle access to the per_info structure.
268 */
269 addr -= offsetof(struct user, regs.per_info);
270 tmp = __peek_user_per(child, addr);
271
272 } else
273 tmp = 0;
274
275 return tmp;
276}
277
278static int
279peek_user(struct task_struct *child, addr_t addr, addr_t data)
280{
281 addr_t tmp, mask;
282
283 /*
284 * Stupid gdb peeks/pokes the access registers in 64 bit with
285 * an alignment of 4. Programmers from hell...
286 */
287 mask = __ADDR_MASK;
288 if (addr >= offsetof(struct user, regs.acrs) &&
289 addr < offsetof(struct user, regs.orig_gpr2))
290 mask = 3;
291 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
292 return -EIO;
293
294 tmp = __peek_user(child, addr);
295 return put_user(tmp, (addr_t __user *) data);
296}
297
298static inline void __poke_user_per(struct task_struct *child,
299 addr_t addr, addr_t data)
300{
301 /*
302 * There are only three fields in the per_info struct that the
303 * debugger user can write to.
304 * 1) cr9: the debugger wants to set a new PER event mask
305 * 2) starting_addr: the debugger wants to set a new starting
306 * address to use with the PER event mask.
307 * 3) ending_addr: the debugger wants to set a new ending
308 * address to use with the PER event mask.
309 * The user specified PER event mask and the start and end
310 * addresses are used only if single stepping is not in effect.
311 * Writes to any other field in per_info are ignored.
312 */
313 if (addr == offsetof(struct per_struct_kernel, cr9))
314 /* PER event mask of the user specified per set. */
315 child->thread.per_user.control =
316 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
317 else if (addr == offsetof(struct per_struct_kernel, starting_addr))
318 /* Starting address of the user specified per set. */
319 child->thread.per_user.start = data;
320 else if (addr == offsetof(struct per_struct_kernel, ending_addr))
321 /* Ending address of the user specified per set. */
322 child->thread.per_user.end = data;
323}
324
325/*
326 * Write a word to the user area of a process at location addr. This
327 * operation does have an additional problem compared to peek_user.
328 * Stores to the program status word and on the floating point
329 * control register needs to get checked for validity.
330 */
331static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
332{
333 addr_t offset;
334
335
336 if (addr < offsetof(struct user, regs.acrs)) {
337 struct pt_regs *regs = task_pt_regs(child);
338 /*
339 * psw and gprs are stored on the stack
340 */
341 if (addr == offsetof(struct user, regs.psw.mask)) {
342 unsigned long mask = PSW_MASK_USER;
343
344 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
345 if ((data ^ PSW_USER_BITS) & ~mask)
346 /* Invalid psw mask. */
347 return -EINVAL;
348 if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
349 /* Invalid address-space-control bits */
350 return -EINVAL;
351 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
352 /* Invalid addressing mode bits */
353 return -EINVAL;
354 }
355
356 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
357 addr == offsetof(struct user, regs.gprs[2])) {
358 struct pt_regs *regs = task_pt_regs(child);
359
360 regs->int_code = 0x20000 | (data & 0xffff);
361 }
362 *(addr_t *)((addr_t) ®s->psw + addr) = data;
363 } else if (addr < offsetof(struct user, regs.orig_gpr2)) {
364 /*
365 * access registers are stored in the thread structure
366 */
367 offset = addr - offsetof(struct user, regs.acrs);
368 /*
369 * Very special case: old & broken 64 bit gdb writing
370 * to acrs[15] with a 64 bit value. Ignore the lower
371 * half of the value and write the upper 32 bit to
372 * acrs[15]. Sick...
373 */
374 if (addr == offsetof(struct user, regs.acrs[15]))
375 child->thread.acrs[15] = (unsigned int) (data >> 32);
376 else
377 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
378
379 } else if (addr == offsetof(struct user, regs.orig_gpr2)) {
380 /*
381 * orig_gpr2 is stored on the kernel stack
382 */
383 task_pt_regs(child)->orig_gpr2 = data;
384
385 } else if (addr < offsetof(struct user, regs.fp_regs)) {
386 /*
387 * prevent writes of padding hole between
388 * orig_gpr2 and fp_regs on s390.
389 */
390 return 0;
391
392 } else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
393 /*
394 * floating point control reg. is in the thread structure
395 */
396 if ((unsigned int)data != 0)
397 return -EINVAL;
398 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
399
400 } else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
401 /*
402 * floating point regs. are either in child->thread.fpu
403 * or the child->thread.fpu.vxrs array
404 */
405 offset = addr - offsetof(struct user, regs.fp_regs.fprs);
406 if (cpu_has_vx())
407 *(addr_t *)((addr_t)
408 child->thread.fpu.vxrs + 2*offset) = data;
409 else
410 *(addr_t *)((addr_t)
411 child->thread.fpu.fprs + offset) = data;
412
413 } else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
414 /*
415 * Handle access to the per_info structure.
416 */
417 addr -= offsetof(struct user, regs.per_info);
418 __poke_user_per(child, addr, data);
419
420 }
421
422 return 0;
423}
424
425static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
426{
427 addr_t mask;
428
429 /*
430 * Stupid gdb peeks/pokes the access registers in 64 bit with
431 * an alignment of 4. Programmers from hell indeed...
432 */
433 mask = __ADDR_MASK;
434 if (addr >= offsetof(struct user, regs.acrs) &&
435 addr < offsetof(struct user, regs.orig_gpr2))
436 mask = 3;
437 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
438 return -EIO;
439
440 return __poke_user(child, addr, data);
441}
442
443long arch_ptrace(struct task_struct *child, long request,
444 unsigned long addr, unsigned long data)
445{
446 ptrace_area parea;
447 int copied, ret;
448
449 switch (request) {
450 case PTRACE_PEEKUSR:
451 /* read the word at location addr in the USER area. */
452 return peek_user(child, addr, data);
453
454 case PTRACE_POKEUSR:
455 /* write the word at location addr in the USER area */
456 return poke_user(child, addr, data);
457
458 case PTRACE_PEEKUSR_AREA:
459 case PTRACE_POKEUSR_AREA:
460 if (copy_from_user(&parea, (void __force __user *) addr,
461 sizeof(parea)))
462 return -EFAULT;
463 addr = parea.kernel_addr;
464 data = parea.process_addr;
465 copied = 0;
466 while (copied < parea.len) {
467 if (request == PTRACE_PEEKUSR_AREA)
468 ret = peek_user(child, addr, data);
469 else {
470 addr_t utmp;
471 if (get_user(utmp,
472 (addr_t __force __user *) data))
473 return -EFAULT;
474 ret = poke_user(child, addr, utmp);
475 }
476 if (ret)
477 return ret;
478 addr += sizeof(unsigned long);
479 data += sizeof(unsigned long);
480 copied += sizeof(unsigned long);
481 }
482 return 0;
483 case PTRACE_GET_LAST_BREAK:
484 return put_user(child->thread.last_break, (unsigned long __user *)data);
485 case PTRACE_ENABLE_TE:
486 if (!MACHINE_HAS_TE)
487 return -EIO;
488 child->thread.per_flags &= ~PER_FLAG_NO_TE;
489 return 0;
490 case PTRACE_DISABLE_TE:
491 if (!MACHINE_HAS_TE)
492 return -EIO;
493 child->thread.per_flags |= PER_FLAG_NO_TE;
494 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
495 return 0;
496 case PTRACE_TE_ABORT_RAND:
497 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
498 return -EIO;
499 switch (data) {
500 case 0UL:
501 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
502 break;
503 case 1UL:
504 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
505 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
506 break;
507 case 2UL:
508 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
509 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
510 break;
511 default:
512 return -EINVAL;
513 }
514 return 0;
515 default:
516 return ptrace_request(child, request, addr, data);
517 }
518}
519
520#ifdef CONFIG_COMPAT
521/*
522 * Now the fun part starts... a 31 bit program running in the
523 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
524 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
525 * to handle, the difference to the 64 bit versions of the requests
526 * is that the access is done in multiples of 4 byte instead of
527 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
528 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
529 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
530 * is a 31 bit program too, the content of struct user can be
531 * emulated. A 31 bit program peeking into the struct user of
532 * a 64 bit program is a no-no.
533 */
534
535/*
536 * Same as peek_user_per but for a 31 bit program.
537 */
538static inline __u32 __peek_user_per_compat(struct task_struct *child,
539 addr_t addr)
540{
541 if (addr == offsetof(struct compat_per_struct_kernel, cr9))
542 /* Control bits of the active per set. */
543 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
544 PER_EVENT_IFETCH : child->thread.per_user.control;
545 else if (addr == offsetof(struct compat_per_struct_kernel, cr10))
546 /* Start address of the active per set. */
547 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
548 0 : child->thread.per_user.start;
549 else if (addr == offsetof(struct compat_per_struct_kernel, cr11))
550 /* End address of the active per set. */
551 return test_thread_flag(TIF_SINGLE_STEP) ?
552 PSW32_ADDR_INSN : child->thread.per_user.end;
553 else if (addr == offsetof(struct compat_per_struct_kernel, bits))
554 /* Single-step bit. */
555 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
556 0x80000000 : 0;
557 else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
558 /* Start address of the user specified per set. */
559 return (__u32) child->thread.per_user.start;
560 else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
561 /* End address of the user specified per set. */
562 return (__u32) child->thread.per_user.end;
563 else if (addr == offsetof(struct compat_per_struct_kernel, perc_atmid))
564 /* PER code, ATMID and AI of the last PER trap */
565 return (__u32) child->thread.per_event.cause << 16;
566 else if (addr == offsetof(struct compat_per_struct_kernel, address))
567 /* Address of the last PER trap */
568 return (__u32) child->thread.per_event.address;
569 else if (addr == offsetof(struct compat_per_struct_kernel, access_id))
570 /* Access id of the last PER trap */
571 return (__u32) child->thread.per_event.paid << 24;
572 return 0;
573}
574
575/*
576 * Same as peek_user but for a 31 bit program.
577 */
578static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
579{
580 addr_t offset;
581 __u32 tmp;
582
583 if (addr < offsetof(struct compat_user, regs.acrs)) {
584 struct pt_regs *regs = task_pt_regs(child);
585 /*
586 * psw and gprs are stored on the stack
587 */
588 if (addr == offsetof(struct compat_user, regs.psw.mask)) {
589 /* Fake a 31 bit psw mask. */
590 tmp = (__u32)(regs->psw.mask >> 32);
591 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
592 tmp |= PSW32_USER_BITS;
593 } else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
594 /* Fake a 31 bit psw address. */
595 tmp = (__u32) regs->psw.addr |
596 (__u32)(regs->psw.mask & PSW_MASK_BA);
597 } else {
598 /* gpr 0-15 */
599 tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4);
600 }
601 } else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
602 /*
603 * access registers are stored in the thread structure
604 */
605 offset = addr - offsetof(struct compat_user, regs.acrs);
606 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
607
608 } else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
609 /*
610 * orig_gpr2 is stored on the kernel stack
611 */
612 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
613
614 } else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
615 /*
616 * prevent reads of padding hole between
617 * orig_gpr2 and fp_regs on s390.
618 */
619 tmp = 0;
620
621 } else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
622 /*
623 * floating point control reg. is in the thread structure
624 */
625 tmp = child->thread.fpu.fpc;
626
627 } else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
628 /*
629 * floating point regs. are either in child->thread.fpu
630 * or the child->thread.fpu.vxrs array
631 */
632 offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
633 if (cpu_has_vx())
634 tmp = *(__u32 *)
635 ((addr_t) child->thread.fpu.vxrs + 2*offset);
636 else
637 tmp = *(__u32 *)
638 ((addr_t) child->thread.fpu.fprs + offset);
639
640 } else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
641 /*
642 * Handle access to the per_info structure.
643 */
644 addr -= offsetof(struct compat_user, regs.per_info);
645 tmp = __peek_user_per_compat(child, addr);
646
647 } else
648 tmp = 0;
649
650 return tmp;
651}
652
653static int peek_user_compat(struct task_struct *child,
654 addr_t addr, addr_t data)
655{
656 __u32 tmp;
657
658 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
659 return -EIO;
660
661 tmp = __peek_user_compat(child, addr);
662 return put_user(tmp, (__u32 __user *) data);
663}
664
665/*
666 * Same as poke_user_per but for a 31 bit program.
667 */
668static inline void __poke_user_per_compat(struct task_struct *child,
669 addr_t addr, __u32 data)
670{
671 if (addr == offsetof(struct compat_per_struct_kernel, cr9))
672 /* PER event mask of the user specified per set. */
673 child->thread.per_user.control =
674 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
675 else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
676 /* Starting address of the user specified per set. */
677 child->thread.per_user.start = data;
678 else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
679 /* Ending address of the user specified per set. */
680 child->thread.per_user.end = data;
681}
682
683/*
684 * Same as poke_user but for a 31 bit program.
685 */
686static int __poke_user_compat(struct task_struct *child,
687 addr_t addr, addr_t data)
688{
689 __u32 tmp = (__u32) data;
690 addr_t offset;
691
692 if (addr < offsetof(struct compat_user, regs.acrs)) {
693 struct pt_regs *regs = task_pt_regs(child);
694 /*
695 * psw, gprs, acrs and orig_gpr2 are stored on the stack
696 */
697 if (addr == offsetof(struct compat_user, regs.psw.mask)) {
698 __u32 mask = PSW32_MASK_USER;
699
700 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
701 /* Build a 64 bit psw mask from 31 bit mask. */
702 if ((tmp ^ PSW32_USER_BITS) & ~mask)
703 /* Invalid psw mask. */
704 return -EINVAL;
705 if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
706 /* Invalid address-space-control bits */
707 return -EINVAL;
708 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
709 (regs->psw.mask & PSW_MASK_BA) |
710 (__u64)(tmp & mask) << 32;
711 } else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
712 /* Build a 64 bit psw address from 31 bit address. */
713 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
714 /* Transfer 31 bit amode bit to psw mask. */
715 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
716 (__u64)(tmp & PSW32_ADDR_AMODE);
717 } else {
718 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
719 addr == offsetof(struct compat_user, regs.gprs[2])) {
720 struct pt_regs *regs = task_pt_regs(child);
721
722 regs->int_code = 0x20000 | (data & 0xffff);
723 }
724 /* gpr 0-15 */
725 *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp;
726 }
727 } else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
728 /*
729 * access registers are stored in the thread structure
730 */
731 offset = addr - offsetof(struct compat_user, regs.acrs);
732 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
733
734 } else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
735 /*
736 * orig_gpr2 is stored on the kernel stack
737 */
738 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
739
740 } else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
741 /*
742 * prevent writess of padding hole between
743 * orig_gpr2 and fp_regs on s390.
744 */
745 return 0;
746
747 } else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
748 /*
749 * floating point control reg. is in the thread structure
750 */
751 child->thread.fpu.fpc = data;
752
753 } else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
754 /*
755 * floating point regs. are either in child->thread.fpu
756 * or the child->thread.fpu.vxrs array
757 */
758 offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
759 if (cpu_has_vx())
760 *(__u32 *)((addr_t)
761 child->thread.fpu.vxrs + 2*offset) = tmp;
762 else
763 *(__u32 *)((addr_t)
764 child->thread.fpu.fprs + offset) = tmp;
765
766 } else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
767 /*
768 * Handle access to the per_info structure.
769 */
770 addr -= offsetof(struct compat_user, regs.per_info);
771 __poke_user_per_compat(child, addr, data);
772 }
773
774 return 0;
775}
776
777static int poke_user_compat(struct task_struct *child,
778 addr_t addr, addr_t data)
779{
780 if (!is_compat_task() || (addr & 3) ||
781 addr > sizeof(struct compat_user) - 3)
782 return -EIO;
783
784 return __poke_user_compat(child, addr, data);
785}
786
787long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
788 compat_ulong_t caddr, compat_ulong_t cdata)
789{
790 unsigned long addr = caddr;
791 unsigned long data = cdata;
792 compat_ptrace_area parea;
793 int copied, ret;
794
795 switch (request) {
796 case PTRACE_PEEKUSR:
797 /* read the word at location addr in the USER area. */
798 return peek_user_compat(child, addr, data);
799
800 case PTRACE_POKEUSR:
801 /* write the word at location addr in the USER area */
802 return poke_user_compat(child, addr, data);
803
804 case PTRACE_PEEKUSR_AREA:
805 case PTRACE_POKEUSR_AREA:
806 if (copy_from_user(&parea, (void __force __user *) addr,
807 sizeof(parea)))
808 return -EFAULT;
809 addr = parea.kernel_addr;
810 data = parea.process_addr;
811 copied = 0;
812 while (copied < parea.len) {
813 if (request == PTRACE_PEEKUSR_AREA)
814 ret = peek_user_compat(child, addr, data);
815 else {
816 __u32 utmp;
817 if (get_user(utmp,
818 (__u32 __force __user *) data))
819 return -EFAULT;
820 ret = poke_user_compat(child, addr, utmp);
821 }
822 if (ret)
823 return ret;
824 addr += sizeof(unsigned int);
825 data += sizeof(unsigned int);
826 copied += sizeof(unsigned int);
827 }
828 return 0;
829 case PTRACE_GET_LAST_BREAK:
830 return put_user(child->thread.last_break, (unsigned int __user *)data);
831 }
832 return compat_ptrace_request(child, request, addr, data);
833}
834#endif
835
836/*
837 * user_regset definitions.
838 */
839
840static int s390_regs_get(struct task_struct *target,
841 const struct user_regset *regset,
842 struct membuf to)
843{
844 unsigned pos;
845 if (target == current)
846 save_access_regs(target->thread.acrs);
847
848 for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long))
849 membuf_store(&to, __peek_user(target, pos));
850 return 0;
851}
852
853static int s390_regs_set(struct task_struct *target,
854 const struct user_regset *regset,
855 unsigned int pos, unsigned int count,
856 const void *kbuf, const void __user *ubuf)
857{
858 int rc = 0;
859
860 if (target == current)
861 save_access_regs(target->thread.acrs);
862
863 if (kbuf) {
864 const unsigned long *k = kbuf;
865 while (count > 0 && !rc) {
866 rc = __poke_user(target, pos, *k++);
867 count -= sizeof(*k);
868 pos += sizeof(*k);
869 }
870 } else {
871 const unsigned long __user *u = ubuf;
872 while (count > 0 && !rc) {
873 unsigned long word;
874 rc = __get_user(word, u++);
875 if (rc)
876 break;
877 rc = __poke_user(target, pos, word);
878 count -= sizeof(*u);
879 pos += sizeof(*u);
880 }
881 }
882
883 if (rc == 0 && target == current)
884 restore_access_regs(target->thread.acrs);
885
886 return rc;
887}
888
889static int s390_fpregs_get(struct task_struct *target,
890 const struct user_regset *regset,
891 struct membuf to)
892{
893 _s390_fp_regs fp_regs;
894
895 if (target == current)
896 save_fpu_regs();
897
898 fp_regs.fpc = target->thread.fpu.fpc;
899 fpregs_store(&fp_regs, &target->thread.fpu);
900
901 return membuf_write(&to, &fp_regs, sizeof(fp_regs));
902}
903
904static int s390_fpregs_set(struct task_struct *target,
905 const struct user_regset *regset, unsigned int pos,
906 unsigned int count, const void *kbuf,
907 const void __user *ubuf)
908{
909 int rc = 0;
910 freg_t fprs[__NUM_FPRS];
911
912 if (target == current)
913 save_fpu_regs();
914
915 if (cpu_has_vx())
916 convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
917 else
918 memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
919
920 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
921 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
922 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
923 0, offsetof(s390_fp_regs, fprs));
924 if (rc)
925 return rc;
926 if (ufpc[1] != 0)
927 return -EINVAL;
928 target->thread.fpu.fpc = ufpc[0];
929 }
930
931 if (rc == 0 && count > 0)
932 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
933 fprs, offsetof(s390_fp_regs, fprs), -1);
934 if (rc)
935 return rc;
936
937 if (cpu_has_vx())
938 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
939 else
940 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
941
942 return rc;
943}
944
945static int s390_last_break_get(struct task_struct *target,
946 const struct user_regset *regset,
947 struct membuf to)
948{
949 return membuf_store(&to, target->thread.last_break);
950}
951
952static int s390_last_break_set(struct task_struct *target,
953 const struct user_regset *regset,
954 unsigned int pos, unsigned int count,
955 const void *kbuf, const void __user *ubuf)
956{
957 return 0;
958}
959
960static int s390_tdb_get(struct task_struct *target,
961 const struct user_regset *regset,
962 struct membuf to)
963{
964 struct pt_regs *regs = task_pt_regs(target);
965 size_t size;
966
967 if (!(regs->int_code & 0x200))
968 return -ENODATA;
969 size = sizeof(target->thread.trap_tdb.data);
970 return membuf_write(&to, target->thread.trap_tdb.data, size);
971}
972
973static int s390_tdb_set(struct task_struct *target,
974 const struct user_regset *regset,
975 unsigned int pos, unsigned int count,
976 const void *kbuf, const void __user *ubuf)
977{
978 return 0;
979}
980
981static int s390_vxrs_low_get(struct task_struct *target,
982 const struct user_regset *regset,
983 struct membuf to)
984{
985 __u64 vxrs[__NUM_VXRS_LOW];
986 int i;
987
988 if (!cpu_has_vx())
989 return -ENODEV;
990 if (target == current)
991 save_fpu_regs();
992 for (i = 0; i < __NUM_VXRS_LOW; i++)
993 vxrs[i] = target->thread.fpu.vxrs[i].low;
994 return membuf_write(&to, vxrs, sizeof(vxrs));
995}
996
997static int s390_vxrs_low_set(struct task_struct *target,
998 const struct user_regset *regset,
999 unsigned int pos, unsigned int count,
1000 const void *kbuf, const void __user *ubuf)
1001{
1002 __u64 vxrs[__NUM_VXRS_LOW];
1003 int i, rc;
1004
1005 if (!cpu_has_vx())
1006 return -ENODEV;
1007 if (target == current)
1008 save_fpu_regs();
1009
1010 for (i = 0; i < __NUM_VXRS_LOW; i++)
1011 vxrs[i] = target->thread.fpu.vxrs[i].low;
1012
1013 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1014 if (rc == 0)
1015 for (i = 0; i < __NUM_VXRS_LOW; i++)
1016 target->thread.fpu.vxrs[i].low = vxrs[i];
1017
1018 return rc;
1019}
1020
1021static int s390_vxrs_high_get(struct task_struct *target,
1022 const struct user_regset *regset,
1023 struct membuf to)
1024{
1025 if (!cpu_has_vx())
1026 return -ENODEV;
1027 if (target == current)
1028 save_fpu_regs();
1029 return membuf_write(&to, target->thread.fpu.vxrs + __NUM_VXRS_LOW,
1030 __NUM_VXRS_HIGH * sizeof(__vector128));
1031}
1032
1033static int s390_vxrs_high_set(struct task_struct *target,
1034 const struct user_regset *regset,
1035 unsigned int pos, unsigned int count,
1036 const void *kbuf, const void __user *ubuf)
1037{
1038 int rc;
1039
1040 if (!cpu_has_vx())
1041 return -ENODEV;
1042 if (target == current)
1043 save_fpu_regs();
1044
1045 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1046 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1047 return rc;
1048}
1049
1050static int s390_system_call_get(struct task_struct *target,
1051 const struct user_regset *regset,
1052 struct membuf to)
1053{
1054 return membuf_store(&to, target->thread.system_call);
1055}
1056
1057static int s390_system_call_set(struct task_struct *target,
1058 const struct user_regset *regset,
1059 unsigned int pos, unsigned int count,
1060 const void *kbuf, const void __user *ubuf)
1061{
1062 unsigned int *data = &target->thread.system_call;
1063 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1064 data, 0, sizeof(unsigned int));
1065}
1066
1067static int s390_gs_cb_get(struct task_struct *target,
1068 const struct user_regset *regset,
1069 struct membuf to)
1070{
1071 struct gs_cb *data = target->thread.gs_cb;
1072
1073 if (!MACHINE_HAS_GS)
1074 return -ENODEV;
1075 if (!data)
1076 return -ENODATA;
1077 if (target == current)
1078 save_gs_cb(data);
1079 return membuf_write(&to, data, sizeof(struct gs_cb));
1080}
1081
1082static int s390_gs_cb_set(struct task_struct *target,
1083 const struct user_regset *regset,
1084 unsigned int pos, unsigned int count,
1085 const void *kbuf, const void __user *ubuf)
1086{
1087 struct gs_cb gs_cb = { }, *data = NULL;
1088 int rc;
1089
1090 if (!MACHINE_HAS_GS)
1091 return -ENODEV;
1092 if (!target->thread.gs_cb) {
1093 data = kzalloc(sizeof(*data), GFP_KERNEL);
1094 if (!data)
1095 return -ENOMEM;
1096 }
1097 if (!target->thread.gs_cb)
1098 gs_cb.gsd = 25;
1099 else if (target == current)
1100 save_gs_cb(&gs_cb);
1101 else
1102 gs_cb = *target->thread.gs_cb;
1103 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1104 &gs_cb, 0, sizeof(gs_cb));
1105 if (rc) {
1106 kfree(data);
1107 return -EFAULT;
1108 }
1109 preempt_disable();
1110 if (!target->thread.gs_cb)
1111 target->thread.gs_cb = data;
1112 *target->thread.gs_cb = gs_cb;
1113 if (target == current) {
1114 local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT);
1115 restore_gs_cb(target->thread.gs_cb);
1116 }
1117 preempt_enable();
1118 return rc;
1119}
1120
1121static int s390_gs_bc_get(struct task_struct *target,
1122 const struct user_regset *regset,
1123 struct membuf to)
1124{
1125 struct gs_cb *data = target->thread.gs_bc_cb;
1126
1127 if (!MACHINE_HAS_GS)
1128 return -ENODEV;
1129 if (!data)
1130 return -ENODATA;
1131 return membuf_write(&to, data, sizeof(struct gs_cb));
1132}
1133
1134static int s390_gs_bc_set(struct task_struct *target,
1135 const struct user_regset *regset,
1136 unsigned int pos, unsigned int count,
1137 const void *kbuf, const void __user *ubuf)
1138{
1139 struct gs_cb *data = target->thread.gs_bc_cb;
1140
1141 if (!MACHINE_HAS_GS)
1142 return -ENODEV;
1143 if (!data) {
1144 data = kzalloc(sizeof(*data), GFP_KERNEL);
1145 if (!data)
1146 return -ENOMEM;
1147 target->thread.gs_bc_cb = data;
1148 }
1149 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1150 data, 0, sizeof(struct gs_cb));
1151}
1152
1153static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1154{
1155 return (cb->rca & 0x1f) == 0 &&
1156 (cb->roa & 0xfff) == 0 &&
1157 (cb->rla & 0xfff) == 0xfff &&
1158 cb->s == 1 &&
1159 cb->k == 1 &&
1160 cb->h == 0 &&
1161 cb->reserved1 == 0 &&
1162 cb->ps == 1 &&
1163 cb->qs == 0 &&
1164 cb->pc == 1 &&
1165 cb->qc == 0 &&
1166 cb->reserved2 == 0 &&
1167 cb->reserved3 == 0 &&
1168 cb->reserved4 == 0 &&
1169 cb->reserved5 == 0 &&
1170 cb->reserved6 == 0 &&
1171 cb->reserved7 == 0 &&
1172 cb->reserved8 == 0 &&
1173 cb->rla >= cb->roa &&
1174 cb->rca >= cb->roa &&
1175 cb->rca <= cb->rla+1 &&
1176 cb->m < 3;
1177}
1178
1179static int s390_runtime_instr_get(struct task_struct *target,
1180 const struct user_regset *regset,
1181 struct membuf to)
1182{
1183 struct runtime_instr_cb *data = target->thread.ri_cb;
1184
1185 if (!test_facility(64))
1186 return -ENODEV;
1187 if (!data)
1188 return -ENODATA;
1189
1190 return membuf_write(&to, data, sizeof(struct runtime_instr_cb));
1191}
1192
1193static int s390_runtime_instr_set(struct task_struct *target,
1194 const struct user_regset *regset,
1195 unsigned int pos, unsigned int count,
1196 const void *kbuf, const void __user *ubuf)
1197{
1198 struct runtime_instr_cb ri_cb = { }, *data = NULL;
1199 int rc;
1200
1201 if (!test_facility(64))
1202 return -ENODEV;
1203
1204 if (!target->thread.ri_cb) {
1205 data = kzalloc(sizeof(*data), GFP_KERNEL);
1206 if (!data)
1207 return -ENOMEM;
1208 }
1209
1210 if (target->thread.ri_cb) {
1211 if (target == current)
1212 store_runtime_instr_cb(&ri_cb);
1213 else
1214 ri_cb = *target->thread.ri_cb;
1215 }
1216
1217 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1218 &ri_cb, 0, sizeof(struct runtime_instr_cb));
1219 if (rc) {
1220 kfree(data);
1221 return -EFAULT;
1222 }
1223
1224 if (!is_ri_cb_valid(&ri_cb)) {
1225 kfree(data);
1226 return -EINVAL;
1227 }
1228 /*
1229 * Override access key in any case, since user space should
1230 * not be able to set it, nor should it care about it.
1231 */
1232 ri_cb.key = PAGE_DEFAULT_KEY >> 4;
1233 preempt_disable();
1234 if (!target->thread.ri_cb)
1235 target->thread.ri_cb = data;
1236 *target->thread.ri_cb = ri_cb;
1237 if (target == current)
1238 load_runtime_instr_cb(target->thread.ri_cb);
1239 preempt_enable();
1240
1241 return 0;
1242}
1243
1244static const struct user_regset s390_regsets[] = {
1245 {
1246 .core_note_type = NT_PRSTATUS,
1247 .n = sizeof(s390_regs) / sizeof(long),
1248 .size = sizeof(long),
1249 .align = sizeof(long),
1250 .regset_get = s390_regs_get,
1251 .set = s390_regs_set,
1252 },
1253 {
1254 .core_note_type = NT_PRFPREG,
1255 .n = sizeof(s390_fp_regs) / sizeof(long),
1256 .size = sizeof(long),
1257 .align = sizeof(long),
1258 .regset_get = s390_fpregs_get,
1259 .set = s390_fpregs_set,
1260 },
1261 {
1262 .core_note_type = NT_S390_SYSTEM_CALL,
1263 .n = 1,
1264 .size = sizeof(unsigned int),
1265 .align = sizeof(unsigned int),
1266 .regset_get = s390_system_call_get,
1267 .set = s390_system_call_set,
1268 },
1269 {
1270 .core_note_type = NT_S390_LAST_BREAK,
1271 .n = 1,
1272 .size = sizeof(long),
1273 .align = sizeof(long),
1274 .regset_get = s390_last_break_get,
1275 .set = s390_last_break_set,
1276 },
1277 {
1278 .core_note_type = NT_S390_TDB,
1279 .n = 1,
1280 .size = 256,
1281 .align = 1,
1282 .regset_get = s390_tdb_get,
1283 .set = s390_tdb_set,
1284 },
1285 {
1286 .core_note_type = NT_S390_VXRS_LOW,
1287 .n = __NUM_VXRS_LOW,
1288 .size = sizeof(__u64),
1289 .align = sizeof(__u64),
1290 .regset_get = s390_vxrs_low_get,
1291 .set = s390_vxrs_low_set,
1292 },
1293 {
1294 .core_note_type = NT_S390_VXRS_HIGH,
1295 .n = __NUM_VXRS_HIGH,
1296 .size = sizeof(__vector128),
1297 .align = sizeof(__vector128),
1298 .regset_get = s390_vxrs_high_get,
1299 .set = s390_vxrs_high_set,
1300 },
1301 {
1302 .core_note_type = NT_S390_GS_CB,
1303 .n = sizeof(struct gs_cb) / sizeof(__u64),
1304 .size = sizeof(__u64),
1305 .align = sizeof(__u64),
1306 .regset_get = s390_gs_cb_get,
1307 .set = s390_gs_cb_set,
1308 },
1309 {
1310 .core_note_type = NT_S390_GS_BC,
1311 .n = sizeof(struct gs_cb) / sizeof(__u64),
1312 .size = sizeof(__u64),
1313 .align = sizeof(__u64),
1314 .regset_get = s390_gs_bc_get,
1315 .set = s390_gs_bc_set,
1316 },
1317 {
1318 .core_note_type = NT_S390_RI_CB,
1319 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1320 .size = sizeof(__u64),
1321 .align = sizeof(__u64),
1322 .regset_get = s390_runtime_instr_get,
1323 .set = s390_runtime_instr_set,
1324 },
1325};
1326
1327static const struct user_regset_view user_s390_view = {
1328 .name = "s390x",
1329 .e_machine = EM_S390,
1330 .regsets = s390_regsets,
1331 .n = ARRAY_SIZE(s390_regsets)
1332};
1333
1334#ifdef CONFIG_COMPAT
1335static int s390_compat_regs_get(struct task_struct *target,
1336 const struct user_regset *regset,
1337 struct membuf to)
1338{
1339 unsigned n;
1340
1341 if (target == current)
1342 save_access_regs(target->thread.acrs);
1343
1344 for (n = 0; n < sizeof(s390_compat_regs); n += sizeof(compat_ulong_t))
1345 membuf_store(&to, __peek_user_compat(target, n));
1346 return 0;
1347}
1348
1349static int s390_compat_regs_set(struct task_struct *target,
1350 const struct user_regset *regset,
1351 unsigned int pos, unsigned int count,
1352 const void *kbuf, const void __user *ubuf)
1353{
1354 int rc = 0;
1355
1356 if (target == current)
1357 save_access_regs(target->thread.acrs);
1358
1359 if (kbuf) {
1360 const compat_ulong_t *k = kbuf;
1361 while (count > 0 && !rc) {
1362 rc = __poke_user_compat(target, pos, *k++);
1363 count -= sizeof(*k);
1364 pos += sizeof(*k);
1365 }
1366 } else {
1367 const compat_ulong_t __user *u = ubuf;
1368 while (count > 0 && !rc) {
1369 compat_ulong_t word;
1370 rc = __get_user(word, u++);
1371 if (rc)
1372 break;
1373 rc = __poke_user_compat(target, pos, word);
1374 count -= sizeof(*u);
1375 pos += sizeof(*u);
1376 }
1377 }
1378
1379 if (rc == 0 && target == current)
1380 restore_access_regs(target->thread.acrs);
1381
1382 return rc;
1383}
1384
1385static int s390_compat_regs_high_get(struct task_struct *target,
1386 const struct user_regset *regset,
1387 struct membuf to)
1388{
1389 compat_ulong_t *gprs_high;
1390 int i;
1391
1392 gprs_high = (compat_ulong_t *)task_pt_regs(target)->gprs;
1393 for (i = 0; i < NUM_GPRS; i++, gprs_high += 2)
1394 membuf_store(&to, *gprs_high);
1395 return 0;
1396}
1397
1398static int s390_compat_regs_high_set(struct task_struct *target,
1399 const struct user_regset *regset,
1400 unsigned int pos, unsigned int count,
1401 const void *kbuf, const void __user *ubuf)
1402{
1403 compat_ulong_t *gprs_high;
1404 int rc = 0;
1405
1406 gprs_high = (compat_ulong_t *)
1407 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1408 if (kbuf) {
1409 const compat_ulong_t *k = kbuf;
1410 while (count > 0) {
1411 *gprs_high = *k++;
1412 *gprs_high += 2;
1413 count -= sizeof(*k);
1414 }
1415 } else {
1416 const compat_ulong_t __user *u = ubuf;
1417 while (count > 0 && !rc) {
1418 unsigned long word;
1419 rc = __get_user(word, u++);
1420 if (rc)
1421 break;
1422 *gprs_high = word;
1423 *gprs_high += 2;
1424 count -= sizeof(*u);
1425 }
1426 }
1427
1428 return rc;
1429}
1430
1431static int s390_compat_last_break_get(struct task_struct *target,
1432 const struct user_regset *regset,
1433 struct membuf to)
1434{
1435 compat_ulong_t last_break = target->thread.last_break;
1436
1437 return membuf_store(&to, (unsigned long)last_break);
1438}
1439
1440static int s390_compat_last_break_set(struct task_struct *target,
1441 const struct user_regset *regset,
1442 unsigned int pos, unsigned int count,
1443 const void *kbuf, const void __user *ubuf)
1444{
1445 return 0;
1446}
1447
1448static const struct user_regset s390_compat_regsets[] = {
1449 {
1450 .core_note_type = NT_PRSTATUS,
1451 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1452 .size = sizeof(compat_long_t),
1453 .align = sizeof(compat_long_t),
1454 .regset_get = s390_compat_regs_get,
1455 .set = s390_compat_regs_set,
1456 },
1457 {
1458 .core_note_type = NT_PRFPREG,
1459 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1460 .size = sizeof(compat_long_t),
1461 .align = sizeof(compat_long_t),
1462 .regset_get = s390_fpregs_get,
1463 .set = s390_fpregs_set,
1464 },
1465 {
1466 .core_note_type = NT_S390_SYSTEM_CALL,
1467 .n = 1,
1468 .size = sizeof(compat_uint_t),
1469 .align = sizeof(compat_uint_t),
1470 .regset_get = s390_system_call_get,
1471 .set = s390_system_call_set,
1472 },
1473 {
1474 .core_note_type = NT_S390_LAST_BREAK,
1475 .n = 1,
1476 .size = sizeof(long),
1477 .align = sizeof(long),
1478 .regset_get = s390_compat_last_break_get,
1479 .set = s390_compat_last_break_set,
1480 },
1481 {
1482 .core_note_type = NT_S390_TDB,
1483 .n = 1,
1484 .size = 256,
1485 .align = 1,
1486 .regset_get = s390_tdb_get,
1487 .set = s390_tdb_set,
1488 },
1489 {
1490 .core_note_type = NT_S390_VXRS_LOW,
1491 .n = __NUM_VXRS_LOW,
1492 .size = sizeof(__u64),
1493 .align = sizeof(__u64),
1494 .regset_get = s390_vxrs_low_get,
1495 .set = s390_vxrs_low_set,
1496 },
1497 {
1498 .core_note_type = NT_S390_VXRS_HIGH,
1499 .n = __NUM_VXRS_HIGH,
1500 .size = sizeof(__vector128),
1501 .align = sizeof(__vector128),
1502 .regset_get = s390_vxrs_high_get,
1503 .set = s390_vxrs_high_set,
1504 },
1505 {
1506 .core_note_type = NT_S390_HIGH_GPRS,
1507 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1508 .size = sizeof(compat_long_t),
1509 .align = sizeof(compat_long_t),
1510 .regset_get = s390_compat_regs_high_get,
1511 .set = s390_compat_regs_high_set,
1512 },
1513 {
1514 .core_note_type = NT_S390_GS_CB,
1515 .n = sizeof(struct gs_cb) / sizeof(__u64),
1516 .size = sizeof(__u64),
1517 .align = sizeof(__u64),
1518 .regset_get = s390_gs_cb_get,
1519 .set = s390_gs_cb_set,
1520 },
1521 {
1522 .core_note_type = NT_S390_GS_BC,
1523 .n = sizeof(struct gs_cb) / sizeof(__u64),
1524 .size = sizeof(__u64),
1525 .align = sizeof(__u64),
1526 .regset_get = s390_gs_bc_get,
1527 .set = s390_gs_bc_set,
1528 },
1529 {
1530 .core_note_type = NT_S390_RI_CB,
1531 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1532 .size = sizeof(__u64),
1533 .align = sizeof(__u64),
1534 .regset_get = s390_runtime_instr_get,
1535 .set = s390_runtime_instr_set,
1536 },
1537};
1538
1539static const struct user_regset_view user_s390_compat_view = {
1540 .name = "s390",
1541 .e_machine = EM_S390,
1542 .regsets = s390_compat_regsets,
1543 .n = ARRAY_SIZE(s390_compat_regsets)
1544};
1545#endif
1546
1547const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1548{
1549#ifdef CONFIG_COMPAT
1550 if (test_tsk_thread_flag(task, TIF_31BIT))
1551 return &user_s390_compat_view;
1552#endif
1553 return &user_s390_view;
1554}
1555
1556static const char *gpr_names[NUM_GPRS] = {
1557 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1558 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1559};
1560
1561unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1562{
1563 if (offset >= NUM_GPRS)
1564 return 0;
1565 return regs->gprs[offset];
1566}
1567
1568int regs_query_register_offset(const char *name)
1569{
1570 unsigned long offset;
1571
1572 if (!name || *name != 'r')
1573 return -EINVAL;
1574 if (kstrtoul(name + 1, 10, &offset))
1575 return -EINVAL;
1576 if (offset >= NUM_GPRS)
1577 return -EINVAL;
1578 return offset;
1579}
1580
1581const char *regs_query_register_name(unsigned int offset)
1582{
1583 if (offset >= NUM_GPRS)
1584 return NULL;
1585 return gpr_names[offset];
1586}
1587
1588static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1589{
1590 unsigned long ksp = kernel_stack_pointer(regs);
1591
1592 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1593}
1594
1595/**
1596 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1597 * @regs:pt_regs which contains kernel stack pointer.
1598 * @n:stack entry number.
1599 *
1600 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1601 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1602 * this returns 0.
1603 */
1604unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1605{
1606 unsigned long addr;
1607
1608 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1609 if (!regs_within_kernel_stack(regs, addr))
1610 return 0;
1611 return *(unsigned long *)addr;
1612}
1/*
2 * Ptrace user space interface.
3 *
4 * Copyright IBM Corp. 1999, 2010
5 * Author(s): Denis Joseph Barrow
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 */
8
9#include <linux/kernel.h>
10#include <linux/sched.h>
11#include <linux/mm.h>
12#include <linux/smp.h>
13#include <linux/errno.h>
14#include <linux/ptrace.h>
15#include <linux/user.h>
16#include <linux/security.h>
17#include <linux/audit.h>
18#include <linux/signal.h>
19#include <linux/elf.h>
20#include <linux/regset.h>
21#include <linux/tracehook.h>
22#include <linux/seccomp.h>
23#include <linux/compat.h>
24#include <trace/syscall.h>
25#include <asm/segment.h>
26#include <asm/page.h>
27#include <asm/pgtable.h>
28#include <asm/pgalloc.h>
29#include <asm/uaccess.h>
30#include <asm/unistd.h>
31#include <asm/switch_to.h>
32#include "entry.h"
33
34#ifdef CONFIG_COMPAT
35#include "compat_ptrace.h"
36#endif
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/syscalls.h>
40
41enum s390_regset {
42 REGSET_GENERAL,
43 REGSET_FP,
44 REGSET_LAST_BREAK,
45 REGSET_TDB,
46 REGSET_SYSTEM_CALL,
47 REGSET_GENERAL_EXTENDED,
48};
49
50void update_cr_regs(struct task_struct *task)
51{
52 struct pt_regs *regs = task_pt_regs(task);
53 struct thread_struct *thread = &task->thread;
54 struct per_regs old, new;
55
56#ifdef CONFIG_64BIT
57 /* Take care of the enable/disable of transactional execution. */
58 if (MACHINE_HAS_TE) {
59 unsigned long cr, cr_new;
60
61 __ctl_store(cr, 0, 0);
62 /* Set or clear transaction execution TXC bit 8. */
63 cr_new = cr | (1UL << 55);
64 if (task->thread.per_flags & PER_FLAG_NO_TE)
65 cr_new &= ~(1UL << 55);
66 if (cr_new != cr)
67 __ctl_load(cr_new, 0, 0);
68 /* Set or clear transaction execution TDC bits 62 and 63. */
69 __ctl_store(cr, 2, 2);
70 cr_new = cr & ~3UL;
71 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
72 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
73 cr_new |= 1UL;
74 else
75 cr_new |= 2UL;
76 }
77 if (cr_new != cr)
78 __ctl_load(cr_new, 2, 2);
79 }
80#endif
81 /* Copy user specified PER registers */
82 new.control = thread->per_user.control;
83 new.start = thread->per_user.start;
84 new.end = thread->per_user.end;
85
86 /* merge TIF_SINGLE_STEP into user specified PER registers. */
87 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP)) {
88 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
89 new.control |= PER_EVENT_BRANCH;
90 else
91 new.control |= PER_EVENT_IFETCH;
92#ifdef CONFIG_64BIT
93 new.control |= PER_CONTROL_SUSPENSION;
94 new.control |= PER_EVENT_TRANSACTION_END;
95#endif
96 new.start = 0;
97 new.end = PSW_ADDR_INSN;
98 }
99
100 /* Take care of the PER enablement bit in the PSW. */
101 if (!(new.control & PER_EVENT_MASK)) {
102 regs->psw.mask &= ~PSW_MASK_PER;
103 return;
104 }
105 regs->psw.mask |= PSW_MASK_PER;
106 __ctl_store(old, 9, 11);
107 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
108 __ctl_load(new, 9, 11);
109}
110
111void user_enable_single_step(struct task_struct *task)
112{
113 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
114 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
115}
116
117void user_disable_single_step(struct task_struct *task)
118{
119 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
120 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
121}
122
123void user_enable_block_step(struct task_struct *task)
124{
125 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
126 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
127}
128
129/*
130 * Called by kernel/ptrace.c when detaching..
131 *
132 * Clear all debugging related fields.
133 */
134void ptrace_disable(struct task_struct *task)
135{
136 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
137 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
138 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
139 clear_tsk_thread_flag(task, TIF_PER_TRAP);
140 task->thread.per_flags = 0;
141}
142
143#ifndef CONFIG_64BIT
144# define __ADDR_MASK 3
145#else
146# define __ADDR_MASK 7
147#endif
148
149static inline unsigned long __peek_user_per(struct task_struct *child,
150 addr_t addr)
151{
152 struct per_struct_kernel *dummy = NULL;
153
154 if (addr == (addr_t) &dummy->cr9)
155 /* Control bits of the active per set. */
156 return test_thread_flag(TIF_SINGLE_STEP) ?
157 PER_EVENT_IFETCH : child->thread.per_user.control;
158 else if (addr == (addr_t) &dummy->cr10)
159 /* Start address of the active per set. */
160 return test_thread_flag(TIF_SINGLE_STEP) ?
161 0 : child->thread.per_user.start;
162 else if (addr == (addr_t) &dummy->cr11)
163 /* End address of the active per set. */
164 return test_thread_flag(TIF_SINGLE_STEP) ?
165 PSW_ADDR_INSN : child->thread.per_user.end;
166 else if (addr == (addr_t) &dummy->bits)
167 /* Single-step bit. */
168 return test_thread_flag(TIF_SINGLE_STEP) ?
169 (1UL << (BITS_PER_LONG - 1)) : 0;
170 else if (addr == (addr_t) &dummy->starting_addr)
171 /* Start address of the user specified per set. */
172 return child->thread.per_user.start;
173 else if (addr == (addr_t) &dummy->ending_addr)
174 /* End address of the user specified per set. */
175 return child->thread.per_user.end;
176 else if (addr == (addr_t) &dummy->perc_atmid)
177 /* PER code, ATMID and AI of the last PER trap */
178 return (unsigned long)
179 child->thread.per_event.cause << (BITS_PER_LONG - 16);
180 else if (addr == (addr_t) &dummy->address)
181 /* Address of the last PER trap */
182 return child->thread.per_event.address;
183 else if (addr == (addr_t) &dummy->access_id)
184 /* Access id of the last PER trap */
185 return (unsigned long)
186 child->thread.per_event.paid << (BITS_PER_LONG - 8);
187 return 0;
188}
189
190/*
191 * Read the word at offset addr from the user area of a process. The
192 * trouble here is that the information is littered over different
193 * locations. The process registers are found on the kernel stack,
194 * the floating point stuff and the trace settings are stored in
195 * the task structure. In addition the different structures in
196 * struct user contain pad bytes that should be read as zeroes.
197 * Lovely...
198 */
199static unsigned long __peek_user(struct task_struct *child, addr_t addr)
200{
201 struct user *dummy = NULL;
202 addr_t offset, tmp;
203
204 if (addr < (addr_t) &dummy->regs.acrs) {
205 /*
206 * psw and gprs are stored on the stack
207 */
208 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
209 if (addr == (addr_t) &dummy->regs.psw.mask) {
210 /* Return a clean psw mask. */
211 tmp &= PSW_MASK_USER | PSW_MASK_RI;
212 tmp |= PSW_USER_BITS;
213 }
214
215 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
216 /*
217 * access registers are stored in the thread structure
218 */
219 offset = addr - (addr_t) &dummy->regs.acrs;
220#ifdef CONFIG_64BIT
221 /*
222 * Very special case: old & broken 64 bit gdb reading
223 * from acrs[15]. Result is a 64 bit value. Read the
224 * 32 bit acrs[15] value and shift it by 32. Sick...
225 */
226 if (addr == (addr_t) &dummy->regs.acrs[15])
227 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
228 else
229#endif
230 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
231
232 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
233 /*
234 * orig_gpr2 is stored on the kernel stack
235 */
236 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
237
238 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
239 /*
240 * prevent reads of padding hole between
241 * orig_gpr2 and fp_regs on s390.
242 */
243 tmp = 0;
244
245 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
246 /*
247 * floating point regs. are stored in the thread structure
248 */
249 offset = addr - (addr_t) &dummy->regs.fp_regs;
250 tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
251 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
252 tmp <<= BITS_PER_LONG - 32;
253
254 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
255 /*
256 * Handle access to the per_info structure.
257 */
258 addr -= (addr_t) &dummy->regs.per_info;
259 tmp = __peek_user_per(child, addr);
260
261 } else
262 tmp = 0;
263
264 return tmp;
265}
266
267static int
268peek_user(struct task_struct *child, addr_t addr, addr_t data)
269{
270 addr_t tmp, mask;
271
272 /*
273 * Stupid gdb peeks/pokes the access registers in 64 bit with
274 * an alignment of 4. Programmers from hell...
275 */
276 mask = __ADDR_MASK;
277#ifdef CONFIG_64BIT
278 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
279 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
280 mask = 3;
281#endif
282 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
283 return -EIO;
284
285 tmp = __peek_user(child, addr);
286 return put_user(tmp, (addr_t __user *) data);
287}
288
289static inline void __poke_user_per(struct task_struct *child,
290 addr_t addr, addr_t data)
291{
292 struct per_struct_kernel *dummy = NULL;
293
294 /*
295 * There are only three fields in the per_info struct that the
296 * debugger user can write to.
297 * 1) cr9: the debugger wants to set a new PER event mask
298 * 2) starting_addr: the debugger wants to set a new starting
299 * address to use with the PER event mask.
300 * 3) ending_addr: the debugger wants to set a new ending
301 * address to use with the PER event mask.
302 * The user specified PER event mask and the start and end
303 * addresses are used only if single stepping is not in effect.
304 * Writes to any other field in per_info are ignored.
305 */
306 if (addr == (addr_t) &dummy->cr9)
307 /* PER event mask of the user specified per set. */
308 child->thread.per_user.control =
309 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
310 else if (addr == (addr_t) &dummy->starting_addr)
311 /* Starting address of the user specified per set. */
312 child->thread.per_user.start = data;
313 else if (addr == (addr_t) &dummy->ending_addr)
314 /* Ending address of the user specified per set. */
315 child->thread.per_user.end = data;
316}
317
318/*
319 * Write a word to the user area of a process at location addr. This
320 * operation does have an additional problem compared to peek_user.
321 * Stores to the program status word and on the floating point
322 * control register needs to get checked for validity.
323 */
324static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
325{
326 struct user *dummy = NULL;
327 addr_t offset;
328
329 if (addr < (addr_t) &dummy->regs.acrs) {
330 /*
331 * psw and gprs are stored on the stack
332 */
333 if (addr == (addr_t) &dummy->regs.psw.mask) {
334 unsigned long mask = PSW_MASK_USER;
335
336 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
337 if ((data & ~mask) != PSW_USER_BITS)
338 return -EINVAL;
339 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
340 return -EINVAL;
341 }
342 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
343
344 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
345 /*
346 * access registers are stored in the thread structure
347 */
348 offset = addr - (addr_t) &dummy->regs.acrs;
349#ifdef CONFIG_64BIT
350 /*
351 * Very special case: old & broken 64 bit gdb writing
352 * to acrs[15] with a 64 bit value. Ignore the lower
353 * half of the value and write the upper 32 bit to
354 * acrs[15]. Sick...
355 */
356 if (addr == (addr_t) &dummy->regs.acrs[15])
357 child->thread.acrs[15] = (unsigned int) (data >> 32);
358 else
359#endif
360 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
361
362 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
363 /*
364 * orig_gpr2 is stored on the kernel stack
365 */
366 task_pt_regs(child)->orig_gpr2 = data;
367
368 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
369 /*
370 * prevent writes of padding hole between
371 * orig_gpr2 and fp_regs on s390.
372 */
373 return 0;
374
375 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
376 /*
377 * floating point regs. are stored in the thread structure
378 */
379 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
380 if ((unsigned int) data != 0 ||
381 test_fp_ctl(data >> (BITS_PER_LONG - 32)))
382 return -EINVAL;
383 offset = addr - (addr_t) &dummy->regs.fp_regs;
384 *(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
385
386 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
387 /*
388 * Handle access to the per_info structure.
389 */
390 addr -= (addr_t) &dummy->regs.per_info;
391 __poke_user_per(child, addr, data);
392
393 }
394
395 return 0;
396}
397
398static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
399{
400 addr_t mask;
401
402 /*
403 * Stupid gdb peeks/pokes the access registers in 64 bit with
404 * an alignment of 4. Programmers from hell indeed...
405 */
406 mask = __ADDR_MASK;
407#ifdef CONFIG_64BIT
408 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
409 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
410 mask = 3;
411#endif
412 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
413 return -EIO;
414
415 return __poke_user(child, addr, data);
416}
417
418long arch_ptrace(struct task_struct *child, long request,
419 unsigned long addr, unsigned long data)
420{
421 ptrace_area parea;
422 int copied, ret;
423
424 switch (request) {
425 case PTRACE_PEEKUSR:
426 /* read the word at location addr in the USER area. */
427 return peek_user(child, addr, data);
428
429 case PTRACE_POKEUSR:
430 /* write the word at location addr in the USER area */
431 return poke_user(child, addr, data);
432
433 case PTRACE_PEEKUSR_AREA:
434 case PTRACE_POKEUSR_AREA:
435 if (copy_from_user(&parea, (void __force __user *) addr,
436 sizeof(parea)))
437 return -EFAULT;
438 addr = parea.kernel_addr;
439 data = parea.process_addr;
440 copied = 0;
441 while (copied < parea.len) {
442 if (request == PTRACE_PEEKUSR_AREA)
443 ret = peek_user(child, addr, data);
444 else {
445 addr_t utmp;
446 if (get_user(utmp,
447 (addr_t __force __user *) data))
448 return -EFAULT;
449 ret = poke_user(child, addr, utmp);
450 }
451 if (ret)
452 return ret;
453 addr += sizeof(unsigned long);
454 data += sizeof(unsigned long);
455 copied += sizeof(unsigned long);
456 }
457 return 0;
458 case PTRACE_GET_LAST_BREAK:
459 put_user(task_thread_info(child)->last_break,
460 (unsigned long __user *) data);
461 return 0;
462 case PTRACE_ENABLE_TE:
463 if (!MACHINE_HAS_TE)
464 return -EIO;
465 child->thread.per_flags &= ~PER_FLAG_NO_TE;
466 return 0;
467 case PTRACE_DISABLE_TE:
468 if (!MACHINE_HAS_TE)
469 return -EIO;
470 child->thread.per_flags |= PER_FLAG_NO_TE;
471 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
472 return 0;
473 case PTRACE_TE_ABORT_RAND:
474 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
475 return -EIO;
476 switch (data) {
477 case 0UL:
478 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
479 break;
480 case 1UL:
481 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
482 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
483 break;
484 case 2UL:
485 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
486 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
487 break;
488 default:
489 return -EINVAL;
490 }
491 return 0;
492 default:
493 /* Removing high order bit from addr (only for 31 bit). */
494 addr &= PSW_ADDR_INSN;
495 return ptrace_request(child, request, addr, data);
496 }
497}
498
499#ifdef CONFIG_COMPAT
500/*
501 * Now the fun part starts... a 31 bit program running in the
502 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
503 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
504 * to handle, the difference to the 64 bit versions of the requests
505 * is that the access is done in multiples of 4 byte instead of
506 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
507 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
508 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
509 * is a 31 bit program too, the content of struct user can be
510 * emulated. A 31 bit program peeking into the struct user of
511 * a 64 bit program is a no-no.
512 */
513
514/*
515 * Same as peek_user_per but for a 31 bit program.
516 */
517static inline __u32 __peek_user_per_compat(struct task_struct *child,
518 addr_t addr)
519{
520 struct compat_per_struct_kernel *dummy32 = NULL;
521
522 if (addr == (addr_t) &dummy32->cr9)
523 /* Control bits of the active per set. */
524 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
525 PER_EVENT_IFETCH : child->thread.per_user.control;
526 else if (addr == (addr_t) &dummy32->cr10)
527 /* Start address of the active per set. */
528 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
529 0 : child->thread.per_user.start;
530 else if (addr == (addr_t) &dummy32->cr11)
531 /* End address of the active per set. */
532 return test_thread_flag(TIF_SINGLE_STEP) ?
533 PSW32_ADDR_INSN : child->thread.per_user.end;
534 else if (addr == (addr_t) &dummy32->bits)
535 /* Single-step bit. */
536 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
537 0x80000000 : 0;
538 else if (addr == (addr_t) &dummy32->starting_addr)
539 /* Start address of the user specified per set. */
540 return (__u32) child->thread.per_user.start;
541 else if (addr == (addr_t) &dummy32->ending_addr)
542 /* End address of the user specified per set. */
543 return (__u32) child->thread.per_user.end;
544 else if (addr == (addr_t) &dummy32->perc_atmid)
545 /* PER code, ATMID and AI of the last PER trap */
546 return (__u32) child->thread.per_event.cause << 16;
547 else if (addr == (addr_t) &dummy32->address)
548 /* Address of the last PER trap */
549 return (__u32) child->thread.per_event.address;
550 else if (addr == (addr_t) &dummy32->access_id)
551 /* Access id of the last PER trap */
552 return (__u32) child->thread.per_event.paid << 24;
553 return 0;
554}
555
556/*
557 * Same as peek_user but for a 31 bit program.
558 */
559static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
560{
561 struct compat_user *dummy32 = NULL;
562 addr_t offset;
563 __u32 tmp;
564
565 if (addr < (addr_t) &dummy32->regs.acrs) {
566 struct pt_regs *regs = task_pt_regs(child);
567 /*
568 * psw and gprs are stored on the stack
569 */
570 if (addr == (addr_t) &dummy32->regs.psw.mask) {
571 /* Fake a 31 bit psw mask. */
572 tmp = (__u32)(regs->psw.mask >> 32);
573 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
574 tmp |= PSW32_USER_BITS;
575 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
576 /* Fake a 31 bit psw address. */
577 tmp = (__u32) regs->psw.addr |
578 (__u32)(regs->psw.mask & PSW_MASK_BA);
579 } else {
580 /* gpr 0-15 */
581 tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4);
582 }
583 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
584 /*
585 * access registers are stored in the thread structure
586 */
587 offset = addr - (addr_t) &dummy32->regs.acrs;
588 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
589
590 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
591 /*
592 * orig_gpr2 is stored on the kernel stack
593 */
594 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
595
596 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
597 /*
598 * prevent reads of padding hole between
599 * orig_gpr2 and fp_regs on s390.
600 */
601 tmp = 0;
602
603 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
604 /*
605 * floating point regs. are stored in the thread structure
606 */
607 offset = addr - (addr_t) &dummy32->regs.fp_regs;
608 tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
609
610 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
611 /*
612 * Handle access to the per_info structure.
613 */
614 addr -= (addr_t) &dummy32->regs.per_info;
615 tmp = __peek_user_per_compat(child, addr);
616
617 } else
618 tmp = 0;
619
620 return tmp;
621}
622
623static int peek_user_compat(struct task_struct *child,
624 addr_t addr, addr_t data)
625{
626 __u32 tmp;
627
628 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
629 return -EIO;
630
631 tmp = __peek_user_compat(child, addr);
632 return put_user(tmp, (__u32 __user *) data);
633}
634
635/*
636 * Same as poke_user_per but for a 31 bit program.
637 */
638static inline void __poke_user_per_compat(struct task_struct *child,
639 addr_t addr, __u32 data)
640{
641 struct compat_per_struct_kernel *dummy32 = NULL;
642
643 if (addr == (addr_t) &dummy32->cr9)
644 /* PER event mask of the user specified per set. */
645 child->thread.per_user.control =
646 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
647 else if (addr == (addr_t) &dummy32->starting_addr)
648 /* Starting address of the user specified per set. */
649 child->thread.per_user.start = data;
650 else if (addr == (addr_t) &dummy32->ending_addr)
651 /* Ending address of the user specified per set. */
652 child->thread.per_user.end = data;
653}
654
655/*
656 * Same as poke_user but for a 31 bit program.
657 */
658static int __poke_user_compat(struct task_struct *child,
659 addr_t addr, addr_t data)
660{
661 struct compat_user *dummy32 = NULL;
662 __u32 tmp = (__u32) data;
663 addr_t offset;
664
665 if (addr < (addr_t) &dummy32->regs.acrs) {
666 struct pt_regs *regs = task_pt_regs(child);
667 /*
668 * psw, gprs, acrs and orig_gpr2 are stored on the stack
669 */
670 if (addr == (addr_t) &dummy32->regs.psw.mask) {
671 __u32 mask = PSW32_MASK_USER;
672
673 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
674 /* Build a 64 bit psw mask from 31 bit mask. */
675 if ((tmp & ~mask) != PSW32_USER_BITS)
676 /* Invalid psw mask. */
677 return -EINVAL;
678 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
679 (regs->psw.mask & PSW_MASK_BA) |
680 (__u64)(tmp & mask) << 32;
681 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
682 /* Build a 64 bit psw address from 31 bit address. */
683 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
684 /* Transfer 31 bit amode bit to psw mask. */
685 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
686 (__u64)(tmp & PSW32_ADDR_AMODE);
687 } else {
688 /* gpr 0-15 */
689 *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp;
690 }
691 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
692 /*
693 * access registers are stored in the thread structure
694 */
695 offset = addr - (addr_t) &dummy32->regs.acrs;
696 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
697
698 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
699 /*
700 * orig_gpr2 is stored on the kernel stack
701 */
702 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
703
704 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
705 /*
706 * prevent writess of padding hole between
707 * orig_gpr2 and fp_regs on s390.
708 */
709 return 0;
710
711 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
712 /*
713 * floating point regs. are stored in the thread structure
714 */
715 if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
716 test_fp_ctl(tmp))
717 return -EINVAL;
718 offset = addr - (addr_t) &dummy32->regs.fp_regs;
719 *(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
720
721 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
722 /*
723 * Handle access to the per_info structure.
724 */
725 addr -= (addr_t) &dummy32->regs.per_info;
726 __poke_user_per_compat(child, addr, data);
727 }
728
729 return 0;
730}
731
732static int poke_user_compat(struct task_struct *child,
733 addr_t addr, addr_t data)
734{
735 if (!is_compat_task() || (addr & 3) ||
736 addr > sizeof(struct compat_user) - 3)
737 return -EIO;
738
739 return __poke_user_compat(child, addr, data);
740}
741
742long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
743 compat_ulong_t caddr, compat_ulong_t cdata)
744{
745 unsigned long addr = caddr;
746 unsigned long data = cdata;
747 compat_ptrace_area parea;
748 int copied, ret;
749
750 switch (request) {
751 case PTRACE_PEEKUSR:
752 /* read the word at location addr in the USER area. */
753 return peek_user_compat(child, addr, data);
754
755 case PTRACE_POKEUSR:
756 /* write the word at location addr in the USER area */
757 return poke_user_compat(child, addr, data);
758
759 case PTRACE_PEEKUSR_AREA:
760 case PTRACE_POKEUSR_AREA:
761 if (copy_from_user(&parea, (void __force __user *) addr,
762 sizeof(parea)))
763 return -EFAULT;
764 addr = parea.kernel_addr;
765 data = parea.process_addr;
766 copied = 0;
767 while (copied < parea.len) {
768 if (request == PTRACE_PEEKUSR_AREA)
769 ret = peek_user_compat(child, addr, data);
770 else {
771 __u32 utmp;
772 if (get_user(utmp,
773 (__u32 __force __user *) data))
774 return -EFAULT;
775 ret = poke_user_compat(child, addr, utmp);
776 }
777 if (ret)
778 return ret;
779 addr += sizeof(unsigned int);
780 data += sizeof(unsigned int);
781 copied += sizeof(unsigned int);
782 }
783 return 0;
784 case PTRACE_GET_LAST_BREAK:
785 put_user(task_thread_info(child)->last_break,
786 (unsigned int __user *) data);
787 return 0;
788 }
789 return compat_ptrace_request(child, request, addr, data);
790}
791#endif
792
793asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
794{
795 long ret = 0;
796
797 /* Do the secure computing check first. */
798 if (secure_computing(regs->gprs[2])) {
799 /* seccomp failures shouldn't expose any additional code. */
800 ret = -1;
801 goto out;
802 }
803
804 /*
805 * The sysc_tracesys code in entry.S stored the system
806 * call number to gprs[2].
807 */
808 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
809 (tracehook_report_syscall_entry(regs) ||
810 regs->gprs[2] >= NR_syscalls)) {
811 /*
812 * Tracing decided this syscall should not happen or the
813 * debugger stored an invalid system call number. Skip
814 * the system call and the system call restart handling.
815 */
816 clear_thread_flag(TIF_SYSCALL);
817 ret = -1;
818 }
819
820 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
821 trace_sys_enter(regs, regs->gprs[2]);
822
823 audit_syscall_entry(is_compat_task() ?
824 AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
825 regs->gprs[2], regs->orig_gpr2,
826 regs->gprs[3], regs->gprs[4],
827 regs->gprs[5]);
828out:
829 return ret ?: regs->gprs[2];
830}
831
832asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
833{
834 audit_syscall_exit(regs);
835
836 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
837 trace_sys_exit(regs, regs->gprs[2]);
838
839 if (test_thread_flag(TIF_SYSCALL_TRACE))
840 tracehook_report_syscall_exit(regs, 0);
841}
842
843/*
844 * user_regset definitions.
845 */
846
847static int s390_regs_get(struct task_struct *target,
848 const struct user_regset *regset,
849 unsigned int pos, unsigned int count,
850 void *kbuf, void __user *ubuf)
851{
852 if (target == current)
853 save_access_regs(target->thread.acrs);
854
855 if (kbuf) {
856 unsigned long *k = kbuf;
857 while (count > 0) {
858 *k++ = __peek_user(target, pos);
859 count -= sizeof(*k);
860 pos += sizeof(*k);
861 }
862 } else {
863 unsigned long __user *u = ubuf;
864 while (count > 0) {
865 if (__put_user(__peek_user(target, pos), u++))
866 return -EFAULT;
867 count -= sizeof(*u);
868 pos += sizeof(*u);
869 }
870 }
871 return 0;
872}
873
874static int s390_regs_set(struct task_struct *target,
875 const struct user_regset *regset,
876 unsigned int pos, unsigned int count,
877 const void *kbuf, const void __user *ubuf)
878{
879 int rc = 0;
880
881 if (target == current)
882 save_access_regs(target->thread.acrs);
883
884 if (kbuf) {
885 const unsigned long *k = kbuf;
886 while (count > 0 && !rc) {
887 rc = __poke_user(target, pos, *k++);
888 count -= sizeof(*k);
889 pos += sizeof(*k);
890 }
891 } else {
892 const unsigned long __user *u = ubuf;
893 while (count > 0 && !rc) {
894 unsigned long word;
895 rc = __get_user(word, u++);
896 if (rc)
897 break;
898 rc = __poke_user(target, pos, word);
899 count -= sizeof(*u);
900 pos += sizeof(*u);
901 }
902 }
903
904 if (rc == 0 && target == current)
905 restore_access_regs(target->thread.acrs);
906
907 return rc;
908}
909
910static int s390_fpregs_get(struct task_struct *target,
911 const struct user_regset *regset, unsigned int pos,
912 unsigned int count, void *kbuf, void __user *ubuf)
913{
914 if (target == current) {
915 save_fp_ctl(&target->thread.fp_regs.fpc);
916 save_fp_regs(target->thread.fp_regs.fprs);
917 }
918
919 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
920 &target->thread.fp_regs, 0, -1);
921}
922
923static int s390_fpregs_set(struct task_struct *target,
924 const struct user_regset *regset, unsigned int pos,
925 unsigned int count, const void *kbuf,
926 const void __user *ubuf)
927{
928 int rc = 0;
929
930 if (target == current) {
931 save_fp_ctl(&target->thread.fp_regs.fpc);
932 save_fp_regs(target->thread.fp_regs.fprs);
933 }
934
935 /* If setting FPC, must validate it first. */
936 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
937 u32 ufpc[2] = { target->thread.fp_regs.fpc, 0 };
938 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
939 0, offsetof(s390_fp_regs, fprs));
940 if (rc)
941 return rc;
942 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
943 return -EINVAL;
944 target->thread.fp_regs.fpc = ufpc[0];
945 }
946
947 if (rc == 0 && count > 0)
948 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
949 target->thread.fp_regs.fprs,
950 offsetof(s390_fp_regs, fprs), -1);
951
952 if (rc == 0 && target == current) {
953 restore_fp_ctl(&target->thread.fp_regs.fpc);
954 restore_fp_regs(target->thread.fp_regs.fprs);
955 }
956
957 return rc;
958}
959
960#ifdef CONFIG_64BIT
961
962static int s390_last_break_get(struct task_struct *target,
963 const struct user_regset *regset,
964 unsigned int pos, unsigned int count,
965 void *kbuf, void __user *ubuf)
966{
967 if (count > 0) {
968 if (kbuf) {
969 unsigned long *k = kbuf;
970 *k = task_thread_info(target)->last_break;
971 } else {
972 unsigned long __user *u = ubuf;
973 if (__put_user(task_thread_info(target)->last_break, u))
974 return -EFAULT;
975 }
976 }
977 return 0;
978}
979
980static int s390_last_break_set(struct task_struct *target,
981 const struct user_regset *regset,
982 unsigned int pos, unsigned int count,
983 const void *kbuf, const void __user *ubuf)
984{
985 return 0;
986}
987
988static int s390_tdb_get(struct task_struct *target,
989 const struct user_regset *regset,
990 unsigned int pos, unsigned int count,
991 void *kbuf, void __user *ubuf)
992{
993 struct pt_regs *regs = task_pt_regs(target);
994 unsigned char *data;
995
996 if (!(regs->int_code & 0x200))
997 return -ENODATA;
998 data = target->thread.trap_tdb;
999 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1000}
1001
1002static int s390_tdb_set(struct task_struct *target,
1003 const struct user_regset *regset,
1004 unsigned int pos, unsigned int count,
1005 const void *kbuf, const void __user *ubuf)
1006{
1007 return 0;
1008}
1009
1010#endif
1011
1012static int s390_system_call_get(struct task_struct *target,
1013 const struct user_regset *regset,
1014 unsigned int pos, unsigned int count,
1015 void *kbuf, void __user *ubuf)
1016{
1017 unsigned int *data = &task_thread_info(target)->system_call;
1018 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1019 data, 0, sizeof(unsigned int));
1020}
1021
1022static int s390_system_call_set(struct task_struct *target,
1023 const struct user_regset *regset,
1024 unsigned int pos, unsigned int count,
1025 const void *kbuf, const void __user *ubuf)
1026{
1027 unsigned int *data = &task_thread_info(target)->system_call;
1028 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1029 data, 0, sizeof(unsigned int));
1030}
1031
1032static const struct user_regset s390_regsets[] = {
1033 [REGSET_GENERAL] = {
1034 .core_note_type = NT_PRSTATUS,
1035 .n = sizeof(s390_regs) / sizeof(long),
1036 .size = sizeof(long),
1037 .align = sizeof(long),
1038 .get = s390_regs_get,
1039 .set = s390_regs_set,
1040 },
1041 [REGSET_FP] = {
1042 .core_note_type = NT_PRFPREG,
1043 .n = sizeof(s390_fp_regs) / sizeof(long),
1044 .size = sizeof(long),
1045 .align = sizeof(long),
1046 .get = s390_fpregs_get,
1047 .set = s390_fpregs_set,
1048 },
1049#ifdef CONFIG_64BIT
1050 [REGSET_LAST_BREAK] = {
1051 .core_note_type = NT_S390_LAST_BREAK,
1052 .n = 1,
1053 .size = sizeof(long),
1054 .align = sizeof(long),
1055 .get = s390_last_break_get,
1056 .set = s390_last_break_set,
1057 },
1058 [REGSET_TDB] = {
1059 .core_note_type = NT_S390_TDB,
1060 .n = 1,
1061 .size = 256,
1062 .align = 1,
1063 .get = s390_tdb_get,
1064 .set = s390_tdb_set,
1065 },
1066#endif
1067 [REGSET_SYSTEM_CALL] = {
1068 .core_note_type = NT_S390_SYSTEM_CALL,
1069 .n = 1,
1070 .size = sizeof(unsigned int),
1071 .align = sizeof(unsigned int),
1072 .get = s390_system_call_get,
1073 .set = s390_system_call_set,
1074 },
1075};
1076
1077static const struct user_regset_view user_s390_view = {
1078 .name = UTS_MACHINE,
1079 .e_machine = EM_S390,
1080 .regsets = s390_regsets,
1081 .n = ARRAY_SIZE(s390_regsets)
1082};
1083
1084#ifdef CONFIG_COMPAT
1085static int s390_compat_regs_get(struct task_struct *target,
1086 const struct user_regset *regset,
1087 unsigned int pos, unsigned int count,
1088 void *kbuf, void __user *ubuf)
1089{
1090 if (target == current)
1091 save_access_regs(target->thread.acrs);
1092
1093 if (kbuf) {
1094 compat_ulong_t *k = kbuf;
1095 while (count > 0) {
1096 *k++ = __peek_user_compat(target, pos);
1097 count -= sizeof(*k);
1098 pos += sizeof(*k);
1099 }
1100 } else {
1101 compat_ulong_t __user *u = ubuf;
1102 while (count > 0) {
1103 if (__put_user(__peek_user_compat(target, pos), u++))
1104 return -EFAULT;
1105 count -= sizeof(*u);
1106 pos += sizeof(*u);
1107 }
1108 }
1109 return 0;
1110}
1111
1112static int s390_compat_regs_set(struct task_struct *target,
1113 const struct user_regset *regset,
1114 unsigned int pos, unsigned int count,
1115 const void *kbuf, const void __user *ubuf)
1116{
1117 int rc = 0;
1118
1119 if (target == current)
1120 save_access_regs(target->thread.acrs);
1121
1122 if (kbuf) {
1123 const compat_ulong_t *k = kbuf;
1124 while (count > 0 && !rc) {
1125 rc = __poke_user_compat(target, pos, *k++);
1126 count -= sizeof(*k);
1127 pos += sizeof(*k);
1128 }
1129 } else {
1130 const compat_ulong_t __user *u = ubuf;
1131 while (count > 0 && !rc) {
1132 compat_ulong_t word;
1133 rc = __get_user(word, u++);
1134 if (rc)
1135 break;
1136 rc = __poke_user_compat(target, pos, word);
1137 count -= sizeof(*u);
1138 pos += sizeof(*u);
1139 }
1140 }
1141
1142 if (rc == 0 && target == current)
1143 restore_access_regs(target->thread.acrs);
1144
1145 return rc;
1146}
1147
1148static int s390_compat_regs_high_get(struct task_struct *target,
1149 const struct user_regset *regset,
1150 unsigned int pos, unsigned int count,
1151 void *kbuf, void __user *ubuf)
1152{
1153 compat_ulong_t *gprs_high;
1154
1155 gprs_high = (compat_ulong_t *)
1156 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1157 if (kbuf) {
1158 compat_ulong_t *k = kbuf;
1159 while (count > 0) {
1160 *k++ = *gprs_high;
1161 gprs_high += 2;
1162 count -= sizeof(*k);
1163 }
1164 } else {
1165 compat_ulong_t __user *u = ubuf;
1166 while (count > 0) {
1167 if (__put_user(*gprs_high, u++))
1168 return -EFAULT;
1169 gprs_high += 2;
1170 count -= sizeof(*u);
1171 }
1172 }
1173 return 0;
1174}
1175
1176static int s390_compat_regs_high_set(struct task_struct *target,
1177 const struct user_regset *regset,
1178 unsigned int pos, unsigned int count,
1179 const void *kbuf, const void __user *ubuf)
1180{
1181 compat_ulong_t *gprs_high;
1182 int rc = 0;
1183
1184 gprs_high = (compat_ulong_t *)
1185 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1186 if (kbuf) {
1187 const compat_ulong_t *k = kbuf;
1188 while (count > 0) {
1189 *gprs_high = *k++;
1190 *gprs_high += 2;
1191 count -= sizeof(*k);
1192 }
1193 } else {
1194 const compat_ulong_t __user *u = ubuf;
1195 while (count > 0 && !rc) {
1196 unsigned long word;
1197 rc = __get_user(word, u++);
1198 if (rc)
1199 break;
1200 *gprs_high = word;
1201 *gprs_high += 2;
1202 count -= sizeof(*u);
1203 }
1204 }
1205
1206 return rc;
1207}
1208
1209static int s390_compat_last_break_get(struct task_struct *target,
1210 const struct user_regset *regset,
1211 unsigned int pos, unsigned int count,
1212 void *kbuf, void __user *ubuf)
1213{
1214 compat_ulong_t last_break;
1215
1216 if (count > 0) {
1217 last_break = task_thread_info(target)->last_break;
1218 if (kbuf) {
1219 unsigned long *k = kbuf;
1220 *k = last_break;
1221 } else {
1222 unsigned long __user *u = ubuf;
1223 if (__put_user(last_break, u))
1224 return -EFAULT;
1225 }
1226 }
1227 return 0;
1228}
1229
1230static int s390_compat_last_break_set(struct task_struct *target,
1231 const struct user_regset *regset,
1232 unsigned int pos, unsigned int count,
1233 const void *kbuf, const void __user *ubuf)
1234{
1235 return 0;
1236}
1237
1238static const struct user_regset s390_compat_regsets[] = {
1239 [REGSET_GENERAL] = {
1240 .core_note_type = NT_PRSTATUS,
1241 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1242 .size = sizeof(compat_long_t),
1243 .align = sizeof(compat_long_t),
1244 .get = s390_compat_regs_get,
1245 .set = s390_compat_regs_set,
1246 },
1247 [REGSET_FP] = {
1248 .core_note_type = NT_PRFPREG,
1249 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1250 .size = sizeof(compat_long_t),
1251 .align = sizeof(compat_long_t),
1252 .get = s390_fpregs_get,
1253 .set = s390_fpregs_set,
1254 },
1255 [REGSET_LAST_BREAK] = {
1256 .core_note_type = NT_S390_LAST_BREAK,
1257 .n = 1,
1258 .size = sizeof(long),
1259 .align = sizeof(long),
1260 .get = s390_compat_last_break_get,
1261 .set = s390_compat_last_break_set,
1262 },
1263 [REGSET_TDB] = {
1264 .core_note_type = NT_S390_TDB,
1265 .n = 1,
1266 .size = 256,
1267 .align = 1,
1268 .get = s390_tdb_get,
1269 .set = s390_tdb_set,
1270 },
1271 [REGSET_SYSTEM_CALL] = {
1272 .core_note_type = NT_S390_SYSTEM_CALL,
1273 .n = 1,
1274 .size = sizeof(compat_uint_t),
1275 .align = sizeof(compat_uint_t),
1276 .get = s390_system_call_get,
1277 .set = s390_system_call_set,
1278 },
1279 [REGSET_GENERAL_EXTENDED] = {
1280 .core_note_type = NT_S390_HIGH_GPRS,
1281 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1282 .size = sizeof(compat_long_t),
1283 .align = sizeof(compat_long_t),
1284 .get = s390_compat_regs_high_get,
1285 .set = s390_compat_regs_high_set,
1286 },
1287};
1288
1289static const struct user_regset_view user_s390_compat_view = {
1290 .name = "s390",
1291 .e_machine = EM_S390,
1292 .regsets = s390_compat_regsets,
1293 .n = ARRAY_SIZE(s390_compat_regsets)
1294};
1295#endif
1296
1297const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1298{
1299#ifdef CONFIG_COMPAT
1300 if (test_tsk_thread_flag(task, TIF_31BIT))
1301 return &user_s390_compat_view;
1302#endif
1303 return &user_s390_view;
1304}
1305
1306static const char *gpr_names[NUM_GPRS] = {
1307 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1308 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1309};
1310
1311unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1312{
1313 if (offset >= NUM_GPRS)
1314 return 0;
1315 return regs->gprs[offset];
1316}
1317
1318int regs_query_register_offset(const char *name)
1319{
1320 unsigned long offset;
1321
1322 if (!name || *name != 'r')
1323 return -EINVAL;
1324 if (kstrtoul(name + 1, 10, &offset))
1325 return -EINVAL;
1326 if (offset >= NUM_GPRS)
1327 return -EINVAL;
1328 return offset;
1329}
1330
1331const char *regs_query_register_name(unsigned int offset)
1332{
1333 if (offset >= NUM_GPRS)
1334 return NULL;
1335 return gpr_names[offset];
1336}
1337
1338static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1339{
1340 unsigned long ksp = kernel_stack_pointer(regs);
1341
1342 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1343}
1344
1345/**
1346 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1347 * @regs:pt_regs which contains kernel stack pointer.
1348 * @n:stack entry number.
1349 *
1350 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1351 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1352 * this returns 0.
1353 */
1354unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1355{
1356 unsigned long addr;
1357
1358 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1359 if (!regs_within_kernel_stack(regs, addr))
1360 return 0;
1361 return *(unsigned long *)addr;
1362}