Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Ptrace user space interface.
   4 *
   5 *    Copyright IBM Corp. 1999, 2010
   6 *    Author(s): Denis Joseph Barrow
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 */
   9
  10#include "asm/ptrace.h"
  11#include <linux/kernel.h>
  12#include <linux/sched.h>
  13#include <linux/sched/task_stack.h>
  14#include <linux/mm.h>
  15#include <linux/smp.h>
  16#include <linux/errno.h>
  17#include <linux/ptrace.h>
  18#include <linux/user.h>
  19#include <linux/security.h>
  20#include <linux/audit.h>
  21#include <linux/signal.h>
  22#include <linux/elf.h>
  23#include <linux/regset.h>
 
  24#include <linux/seccomp.h>
  25#include <linux/compat.h>
  26#include <trace/syscall.h>
 
  27#include <asm/page.h>
  28#include <linux/uaccess.h>
 
 
  29#include <asm/unistd.h>
  30#include <asm/switch_to.h>
  31#include <asm/runtime_instr.h>
  32#include <asm/facility.h>
  33#include <asm/fpu/api.h>
  34
  35#include "entry.h"
  36
  37#ifdef CONFIG_COMPAT
  38#include "compat_ptrace.h"
  39#endif
  40
 
 
 
 
 
 
 
 
 
 
 
 
  41void update_cr_regs(struct task_struct *task)
  42{
  43	struct pt_regs *regs = task_pt_regs(task);
  44	struct thread_struct *thread = &task->thread;
  45	union ctlreg0 cr0_old, cr0_new;
  46	union ctlreg2 cr2_old, cr2_new;
  47	int cr0_changed, cr2_changed;
  48	union {
  49		struct ctlreg regs[3];
  50		struct {
  51			struct ctlreg control;
  52			struct ctlreg start;
  53			struct ctlreg end;
  54		};
  55	} old, new;
  56
  57	local_ctl_store(0, &cr0_old.reg);
  58	local_ctl_store(2, &cr2_old.reg);
  59	cr0_new = cr0_old;
  60	cr2_new = cr2_old;
  61	/* Take care of the enable/disable of transactional execution. */
  62	if (MACHINE_HAS_TE) {
 
 
 
  63		/* Set or clear transaction execution TXC bit 8. */
  64		cr0_new.tcx = 1;
  65		if (task->thread.per_flags & PER_FLAG_NO_TE)
  66			cr0_new.tcx = 0;
 
 
  67		/* Set or clear transaction execution TDC bits 62 and 63. */
  68		cr2_new.tdc = 0;
 
  69		if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
  70			if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
  71				cr2_new.tdc = 1;
  72			else
  73				cr2_new.tdc = 2;
  74		}
 
 
  75	}
  76	/* Take care of enable/disable of guarded storage. */
  77	if (MACHINE_HAS_GS) {
  78		cr2_new.gse = 0;
  79		if (task->thread.gs_cb)
  80			cr2_new.gse = 1;
  81	}
  82	/* Load control register 0/2 iff changed */
  83	cr0_changed = cr0_new.val != cr0_old.val;
  84	cr2_changed = cr2_new.val != cr2_old.val;
  85	if (cr0_changed)
  86		local_ctl_load(0, &cr0_new.reg);
  87	if (cr2_changed)
  88		local_ctl_load(2, &cr2_new.reg);
  89	/* Copy user specified PER registers */
  90	new.control.val = thread->per_user.control;
  91	new.start.val = thread->per_user.start;
  92	new.end.val = thread->per_user.end;
  93
  94	/* merge TIF_SINGLE_STEP into user specified PER registers. */
  95	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
  96	    test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
  97		if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
  98			new.control.val |= PER_EVENT_BRANCH;
  99		else
 100			new.control.val |= PER_EVENT_IFETCH;
 101		new.control.val |= PER_CONTROL_SUSPENSION;
 102		new.control.val |= PER_EVENT_TRANSACTION_END;
 103		if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
 104			new.control.val |= PER_EVENT_IFETCH;
 105		new.start.val = 0;
 106		new.end.val = -1UL;
 107	}
 108
 109	/* Take care of the PER enablement bit in the PSW. */
 110	if (!(new.control.val & PER_EVENT_MASK)) {
 111		regs->psw.mask &= ~PSW_MASK_PER;
 112		return;
 113	}
 114	regs->psw.mask |= PSW_MASK_PER;
 115	__local_ctl_store(9, 11, old.regs);
 116	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
 117		__local_ctl_load(9, 11, new.regs);
 118}
 119
 120void user_enable_single_step(struct task_struct *task)
 121{
 122	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 123	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 124}
 125
 126void user_disable_single_step(struct task_struct *task)
 127{
 128	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 129	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 130}
 131
 132void user_enable_block_step(struct task_struct *task)
 133{
 134	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 135	set_tsk_thread_flag(task, TIF_BLOCK_STEP);
 136}
 137
 138/*
 139 * Called by kernel/ptrace.c when detaching..
 140 *
 141 * Clear all debugging related fields.
 142 */
 143void ptrace_disable(struct task_struct *task)
 144{
 145	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
 146	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
 147	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 148	clear_tsk_thread_flag(task, TIF_PER_TRAP);
 149	task->thread.per_flags = 0;
 150}
 151
 152#define __ADDR_MASK 7
 
 
 
 
 153
 154static inline unsigned long __peek_user_per(struct task_struct *child,
 155					    addr_t addr)
 156{
 157	if (addr == offsetof(struct per_struct_kernel, cr9))
 
 
 158		/* Control bits of the active per set. */
 159		return test_thread_flag(TIF_SINGLE_STEP) ?
 160			PER_EVENT_IFETCH : child->thread.per_user.control;
 161	else if (addr == offsetof(struct per_struct_kernel, cr10))
 162		/* Start address of the active per set. */
 163		return test_thread_flag(TIF_SINGLE_STEP) ?
 164			0 : child->thread.per_user.start;
 165	else if (addr == offsetof(struct per_struct_kernel, cr11))
 166		/* End address of the active per set. */
 167		return test_thread_flag(TIF_SINGLE_STEP) ?
 168			-1UL : child->thread.per_user.end;
 169	else if (addr == offsetof(struct per_struct_kernel, bits))
 170		/* Single-step bit. */
 171		return test_thread_flag(TIF_SINGLE_STEP) ?
 172			(1UL << (BITS_PER_LONG - 1)) : 0;
 173	else if (addr == offsetof(struct per_struct_kernel, starting_addr))
 174		/* Start address of the user specified per set. */
 175		return child->thread.per_user.start;
 176	else if (addr == offsetof(struct per_struct_kernel, ending_addr))
 177		/* End address of the user specified per set. */
 178		return child->thread.per_user.end;
 179	else if (addr == offsetof(struct per_struct_kernel, perc_atmid))
 180		/* PER code, ATMID and AI of the last PER trap */
 181		return (unsigned long)
 182			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 183	else if (addr == offsetof(struct per_struct_kernel, address))
 184		/* Address of the last PER trap */
 185		return child->thread.per_event.address;
 186	else if (addr == offsetof(struct per_struct_kernel, access_id))
 187		/* Access id of the last PER trap */
 188		return (unsigned long)
 189			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 190	return 0;
 191}
 192
 193/*
 194 * Read the word at offset addr from the user area of a process. The
 195 * trouble here is that the information is littered over different
 196 * locations. The process registers are found on the kernel stack,
 197 * the floating point stuff and the trace settings are stored in
 198 * the task structure. In addition the different structures in
 199 * struct user contain pad bytes that should be read as zeroes.
 200 * Lovely...
 201 */
 202static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 203{
 
 204	addr_t offset, tmp;
 205
 206	if (addr < offsetof(struct user, regs.acrs)) {
 207		/*
 208		 * psw and gprs are stored on the stack
 209		 */
 210		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 211		if (addr == offsetof(struct user, regs.psw.mask)) {
 212			/* Return a clean psw mask. */
 213			tmp &= PSW_MASK_USER | PSW_MASK_RI;
 214			tmp |= PSW_USER_BITS;
 215		}
 216
 217	} else if (addr < offsetof(struct user, regs.orig_gpr2)) {
 218		/*
 219		 * access registers are stored in the thread structure
 220		 */
 221		offset = addr - offsetof(struct user, regs.acrs);
 
 222		/*
 223		 * Very special case: old & broken 64 bit gdb reading
 224		 * from acrs[15]. Result is a 64 bit value. Read the
 225		 * 32 bit acrs[15] value and shift it by 32. Sick...
 226		 */
 227		if (addr == offsetof(struct user, regs.acrs[15]))
 228			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 229		else
 230			tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 
 231
 232	} else if (addr == offsetof(struct user, regs.orig_gpr2)) {
 233		/*
 234		 * orig_gpr2 is stored on the kernel stack
 235		 */
 236		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 237
 238	} else if (addr < offsetof(struct user, regs.fp_regs)) {
 239		/*
 240		 * prevent reads of padding hole between
 241		 * orig_gpr2 and fp_regs on s390.
 242		 */
 243		tmp = 0;
 244
 245	} else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
 246		/*
 247		 * floating point control reg. is in the thread structure
 248		 */
 249		tmp = child->thread.fpu.fpc;
 250		tmp <<= BITS_PER_LONG - 32;
 
 
 251
 252	} else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 253		/*
 254		 * floating point regs. are either in child->thread.fpu
 255		 * or the child->thread.fpu.vxrs array
 256		 */
 257		offset = addr - offsetof(struct user, regs.fp_regs.fprs);
 258		if (cpu_has_vx())
 259			tmp = *(addr_t *)
 260			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 261		else
 262			tmp = *(addr_t *)
 263			       ((addr_t) child->thread.fpu.fprs + offset);
 264
 265	} else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
 266		/*
 267		 * Handle access to the per_info structure.
 268		 */
 269		addr -= offsetof(struct user, regs.per_info);
 270		tmp = __peek_user_per(child, addr);
 271
 272	} else
 273		tmp = 0;
 274
 275	return tmp;
 276}
 277
 278static int
 279peek_user(struct task_struct *child, addr_t addr, addr_t data)
 280{
 281	addr_t tmp, mask;
 282
 283	/*
 284	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 285	 * an alignment of 4. Programmers from hell...
 286	 */
 287	mask = __ADDR_MASK;
 288	if (addr >= offsetof(struct user, regs.acrs) &&
 289	    addr < offsetof(struct user, regs.orig_gpr2))
 
 290		mask = 3;
 
 291	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 292		return -EIO;
 293
 294	tmp = __peek_user(child, addr);
 295	return put_user(tmp, (addr_t __user *) data);
 296}
 297
 298static inline void __poke_user_per(struct task_struct *child,
 299				   addr_t addr, addr_t data)
 300{
 
 
 301	/*
 302	 * There are only three fields in the per_info struct that the
 303	 * debugger user can write to.
 304	 * 1) cr9: the debugger wants to set a new PER event mask
 305	 * 2) starting_addr: the debugger wants to set a new starting
 306	 *    address to use with the PER event mask.
 307	 * 3) ending_addr: the debugger wants to set a new ending
 308	 *    address to use with the PER event mask.
 309	 * The user specified PER event mask and the start and end
 310	 * addresses are used only if single stepping is not in effect.
 311	 * Writes to any other field in per_info are ignored.
 312	 */
 313	if (addr == offsetof(struct per_struct_kernel, cr9))
 314		/* PER event mask of the user specified per set. */
 315		child->thread.per_user.control =
 316			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 317	else if (addr == offsetof(struct per_struct_kernel, starting_addr))
 318		/* Starting address of the user specified per set. */
 319		child->thread.per_user.start = data;
 320	else if (addr == offsetof(struct per_struct_kernel, ending_addr))
 321		/* Ending address of the user specified per set. */
 322		child->thread.per_user.end = data;
 323}
 324
 325/*
 326 * Write a word to the user area of a process at location addr. This
 327 * operation does have an additional problem compared to peek_user.
 328 * Stores to the program status word and on the floating point
 329 * control register needs to get checked for validity.
 330 */
 331static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 332{
 
 333	addr_t offset;
 334
 335
 336	if (addr < offsetof(struct user, regs.acrs)) {
 337		struct pt_regs *regs = task_pt_regs(child);
 338		/*
 339		 * psw and gprs are stored on the stack
 340		 */
 341		if (addr == offsetof(struct user, regs.psw.mask)) {
 342			unsigned long mask = PSW_MASK_USER;
 343
 344			mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
 345			if ((data ^ PSW_USER_BITS) & ~mask)
 346				/* Invalid psw mask. */
 347				return -EINVAL;
 348			if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
 349				/* Invalid address-space-control bits */
 350				return -EINVAL;
 351			if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
 352				/* Invalid addressing mode bits */
 353				return -EINVAL;
 354		}
 
 355
 356		if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
 357			addr == offsetof(struct user, regs.gprs[2])) {
 358			struct pt_regs *regs = task_pt_regs(child);
 359
 360			regs->int_code = 0x20000 | (data & 0xffff);
 361		}
 362		*(addr_t *)((addr_t) &regs->psw + addr) = data;
 363	} else if (addr < offsetof(struct user, regs.orig_gpr2)) {
 364		/*
 365		 * access registers are stored in the thread structure
 366		 */
 367		offset = addr - offsetof(struct user, regs.acrs);
 
 368		/*
 369		 * Very special case: old & broken 64 bit gdb writing
 370		 * to acrs[15] with a 64 bit value. Ignore the lower
 371		 * half of the value and write the upper 32 bit to
 372		 * acrs[15]. Sick...
 373		 */
 374		if (addr == offsetof(struct user, regs.acrs[15]))
 375			child->thread.acrs[15] = (unsigned int) (data >> 32);
 376		else
 377			*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 
 378
 379	} else if (addr == offsetof(struct user, regs.orig_gpr2)) {
 380		/*
 381		 * orig_gpr2 is stored on the kernel stack
 382		 */
 383		task_pt_regs(child)->orig_gpr2 = data;
 384
 385	} else if (addr < offsetof(struct user, regs.fp_regs)) {
 386		/*
 387		 * prevent writes of padding hole between
 388		 * orig_gpr2 and fp_regs on s390.
 389		 */
 390		return 0;
 391
 392	} else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
 393		/*
 394		 * floating point control reg. is in the thread structure
 395		 */
 396		if ((unsigned int)data != 0)
 397			return -EINVAL;
 398		child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
 399
 400	} else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 401		/*
 402		 * floating point regs. are either in child->thread.fpu
 403		 * or the child->thread.fpu.vxrs array
 404		 */
 405		offset = addr - offsetof(struct user, regs.fp_regs.fprs);
 406		if (cpu_has_vx())
 407			*(addr_t *)((addr_t)
 408				child->thread.fpu.vxrs + 2*offset) = data;
 409		else
 410			*(addr_t *)((addr_t)
 411				child->thread.fpu.fprs + offset) = data;
 412
 413	} else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
 414		/*
 415		 * Handle access to the per_info structure.
 416		 */
 417		addr -= offsetof(struct user, regs.per_info);
 418		__poke_user_per(child, addr, data);
 419
 420	}
 421
 422	return 0;
 423}
 424
 425static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 426{
 427	addr_t mask;
 428
 429	/*
 430	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 431	 * an alignment of 4. Programmers from hell indeed...
 432	 */
 433	mask = __ADDR_MASK;
 434	if (addr >= offsetof(struct user, regs.acrs) &&
 435	    addr < offsetof(struct user, regs.orig_gpr2))
 
 436		mask = 3;
 
 437	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 438		return -EIO;
 439
 440	return __poke_user(child, addr, data);
 441}
 442
 443long arch_ptrace(struct task_struct *child, long request,
 444		 unsigned long addr, unsigned long data)
 445{
 446	ptrace_area parea; 
 447	int copied, ret;
 448
 449	switch (request) {
 450	case PTRACE_PEEKUSR:
 451		/* read the word at location addr in the USER area. */
 452		return peek_user(child, addr, data);
 453
 454	case PTRACE_POKEUSR:
 455		/* write the word at location addr in the USER area */
 456		return poke_user(child, addr, data);
 457
 458	case PTRACE_PEEKUSR_AREA:
 459	case PTRACE_POKEUSR_AREA:
 460		if (copy_from_user(&parea, (void __force __user *) addr,
 461							sizeof(parea)))
 462			return -EFAULT;
 463		addr = parea.kernel_addr;
 464		data = parea.process_addr;
 465		copied = 0;
 466		while (copied < parea.len) {
 467			if (request == PTRACE_PEEKUSR_AREA)
 468				ret = peek_user(child, addr, data);
 469			else {
 470				addr_t utmp;
 471				if (get_user(utmp,
 472					     (addr_t __force __user *) data))
 473					return -EFAULT;
 474				ret = poke_user(child, addr, utmp);
 475			}
 476			if (ret)
 477				return ret;
 478			addr += sizeof(unsigned long);
 479			data += sizeof(unsigned long);
 480			copied += sizeof(unsigned long);
 481		}
 482		return 0;
 483	case PTRACE_GET_LAST_BREAK:
 484		return put_user(child->thread.last_break, (unsigned long __user *)data);
 
 
 485	case PTRACE_ENABLE_TE:
 486		if (!MACHINE_HAS_TE)
 487			return -EIO;
 488		child->thread.per_flags &= ~PER_FLAG_NO_TE;
 489		return 0;
 490	case PTRACE_DISABLE_TE:
 491		if (!MACHINE_HAS_TE)
 492			return -EIO;
 493		child->thread.per_flags |= PER_FLAG_NO_TE;
 494		child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 495		return 0;
 496	case PTRACE_TE_ABORT_RAND:
 497		if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
 498			return -EIO;
 499		switch (data) {
 500		case 0UL:
 501			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 502			break;
 503		case 1UL:
 504			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 505			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
 506			break;
 507		case 2UL:
 508			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 509			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
 510			break;
 511		default:
 512			return -EINVAL;
 513		}
 514		return 0;
 515	default:
 
 
 516		return ptrace_request(child, request, addr, data);
 517	}
 518}
 519
 520#ifdef CONFIG_COMPAT
 521/*
 522 * Now the fun part starts... a 31 bit program running in the
 523 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 524 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 525 * to handle, the difference to the 64 bit versions of the requests
 526 * is that the access is done in multiples of 4 byte instead of
 527 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 528 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 529 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 530 * is a 31 bit program too, the content of struct user can be
 531 * emulated. A 31 bit program peeking into the struct user of
 532 * a 64 bit program is a no-no.
 533 */
 534
 535/*
 536 * Same as peek_user_per but for a 31 bit program.
 537 */
 538static inline __u32 __peek_user_per_compat(struct task_struct *child,
 539					   addr_t addr)
 540{
 541	if (addr == offsetof(struct compat_per_struct_kernel, cr9))
 
 
 542		/* Control bits of the active per set. */
 543		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 544			PER_EVENT_IFETCH : child->thread.per_user.control;
 545	else if (addr == offsetof(struct compat_per_struct_kernel, cr10))
 546		/* Start address of the active per set. */
 547		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 548			0 : child->thread.per_user.start;
 549	else if (addr == offsetof(struct compat_per_struct_kernel, cr11))
 550		/* End address of the active per set. */
 551		return test_thread_flag(TIF_SINGLE_STEP) ?
 552			PSW32_ADDR_INSN : child->thread.per_user.end;
 553	else if (addr == offsetof(struct compat_per_struct_kernel, bits))
 554		/* Single-step bit. */
 555		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 556			0x80000000 : 0;
 557	else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
 558		/* Start address of the user specified per set. */
 559		return (__u32) child->thread.per_user.start;
 560	else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
 561		/* End address of the user specified per set. */
 562		return (__u32) child->thread.per_user.end;
 563	else if (addr == offsetof(struct compat_per_struct_kernel, perc_atmid))
 564		/* PER code, ATMID and AI of the last PER trap */
 565		return (__u32) child->thread.per_event.cause << 16;
 566	else if (addr == offsetof(struct compat_per_struct_kernel, address))
 567		/* Address of the last PER trap */
 568		return (__u32) child->thread.per_event.address;
 569	else if (addr == offsetof(struct compat_per_struct_kernel, access_id))
 570		/* Access id of the last PER trap */
 571		return (__u32) child->thread.per_event.paid << 24;
 572	return 0;
 573}
 574
 575/*
 576 * Same as peek_user but for a 31 bit program.
 577 */
 578static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 579{
 
 580	addr_t offset;
 581	__u32 tmp;
 582
 583	if (addr < offsetof(struct compat_user, regs.acrs)) {
 584		struct pt_regs *regs = task_pt_regs(child);
 585		/*
 586		 * psw and gprs are stored on the stack
 587		 */
 588		if (addr == offsetof(struct compat_user, regs.psw.mask)) {
 589			/* Fake a 31 bit psw mask. */
 590			tmp = (__u32)(regs->psw.mask >> 32);
 591			tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
 592			tmp |= PSW32_USER_BITS;
 593		} else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
 594			/* Fake a 31 bit psw address. */
 595			tmp = (__u32) regs->psw.addr |
 596				(__u32)(regs->psw.mask & PSW_MASK_BA);
 597		} else {
 598			/* gpr 0-15 */
 599			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
 600		}
 601	} else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
 602		/*
 603		 * access registers are stored in the thread structure
 604		 */
 605		offset = addr - offsetof(struct compat_user, regs.acrs);
 606		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 607
 608	} else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
 609		/*
 610		 * orig_gpr2 is stored on the kernel stack
 611		 */
 612		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 613
 614	} else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
 615		/*
 616		 * prevent reads of padding hole between
 617		 * orig_gpr2 and fp_regs on s390.
 618		 */
 619		tmp = 0;
 620
 621	} else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
 622		/*
 623		 * floating point control reg. is in the thread structure
 624		 */
 625		tmp = child->thread.fpu.fpc;
 626
 627	} else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 628		/*
 629		 * floating point regs. are either in child->thread.fpu
 630		 * or the child->thread.fpu.vxrs array
 631		 */
 632		offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
 633		if (cpu_has_vx())
 634			tmp = *(__u32 *)
 635			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 636		else
 637			tmp = *(__u32 *)
 638			       ((addr_t) child->thread.fpu.fprs + offset);
 639
 640	} else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
 641		/*
 642		 * Handle access to the per_info structure.
 643		 */
 644		addr -= offsetof(struct compat_user, regs.per_info);
 645		tmp = __peek_user_per_compat(child, addr);
 646
 647	} else
 648		tmp = 0;
 649
 650	return tmp;
 651}
 652
 653static int peek_user_compat(struct task_struct *child,
 654			    addr_t addr, addr_t data)
 655{
 656	__u32 tmp;
 657
 658	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 659		return -EIO;
 660
 661	tmp = __peek_user_compat(child, addr);
 662	return put_user(tmp, (__u32 __user *) data);
 663}
 664
 665/*
 666 * Same as poke_user_per but for a 31 bit program.
 667 */
 668static inline void __poke_user_per_compat(struct task_struct *child,
 669					  addr_t addr, __u32 data)
 670{
 671	if (addr == offsetof(struct compat_per_struct_kernel, cr9))
 
 
 672		/* PER event mask of the user specified per set. */
 673		child->thread.per_user.control =
 674			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 675	else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
 676		/* Starting address of the user specified per set. */
 677		child->thread.per_user.start = data;
 678	else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
 679		/* Ending address of the user specified per set. */
 680		child->thread.per_user.end = data;
 681}
 682
 683/*
 684 * Same as poke_user but for a 31 bit program.
 685 */
 686static int __poke_user_compat(struct task_struct *child,
 687			      addr_t addr, addr_t data)
 688{
 
 689	__u32 tmp = (__u32) data;
 690	addr_t offset;
 691
 692	if (addr < offsetof(struct compat_user, regs.acrs)) {
 693		struct pt_regs *regs = task_pt_regs(child);
 694		/*
 695		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 696		 */
 697		if (addr == offsetof(struct compat_user, regs.psw.mask)) {
 698			__u32 mask = PSW32_MASK_USER;
 699
 700			mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
 701			/* Build a 64 bit psw mask from 31 bit mask. */
 702			if ((tmp ^ PSW32_USER_BITS) & ~mask)
 703				/* Invalid psw mask. */
 704				return -EINVAL;
 705			if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
 706				/* Invalid address-space-control bits */
 707				return -EINVAL;
 708			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
 709				(regs->psw.mask & PSW_MASK_BA) |
 710				(__u64)(tmp & mask) << 32;
 711		} else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
 712			/* Build a 64 bit psw address from 31 bit address. */
 713			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
 714			/* Transfer 31 bit amode bit to psw mask. */
 715			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
 716				(__u64)(tmp & PSW32_ADDR_AMODE);
 717		} else {
 718			if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
 719				addr == offsetof(struct compat_user, regs.gprs[2])) {
 720				struct pt_regs *regs = task_pt_regs(child);
 721
 722				regs->int_code = 0x20000 | (data & 0xffff);
 723			}
 724			/* gpr 0-15 */
 725			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
 726		}
 727	} else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
 728		/*
 729		 * access registers are stored in the thread structure
 730		 */
 731		offset = addr - offsetof(struct compat_user, regs.acrs);
 732		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 733
 734	} else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
 735		/*
 736		 * orig_gpr2 is stored on the kernel stack
 737		 */
 738		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 739
 740	} else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
 741		/*
 742		 * prevent writess of padding hole between
 743		 * orig_gpr2 and fp_regs on s390.
 744		 */
 745		return 0;
 746
 747	} else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
 748		/*
 749		 * floating point control reg. is in the thread structure
 750		 */
 751		child->thread.fpu.fpc = data;
 752
 753	} else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 754		/*
 755		 * floating point regs. are either in child->thread.fpu
 756		 * or the child->thread.fpu.vxrs array
 757		 */
 758		offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
 759		if (cpu_has_vx())
 760			*(__u32 *)((addr_t)
 761				child->thread.fpu.vxrs + 2*offset) = tmp;
 762		else
 763			*(__u32 *)((addr_t)
 764				child->thread.fpu.fprs + offset) = tmp;
 765
 766	} else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
 767		/*
 768		 * Handle access to the per_info structure.
 769		 */
 770		addr -= offsetof(struct compat_user, regs.per_info);
 771		__poke_user_per_compat(child, addr, data);
 772	}
 773
 774	return 0;
 775}
 776
 777static int poke_user_compat(struct task_struct *child,
 778			    addr_t addr, addr_t data)
 779{
 780	if (!is_compat_task() || (addr & 3) ||
 781	    addr > sizeof(struct compat_user) - 3)
 782		return -EIO;
 783
 784	return __poke_user_compat(child, addr, data);
 785}
 786
 787long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 788			compat_ulong_t caddr, compat_ulong_t cdata)
 789{
 790	unsigned long addr = caddr;
 791	unsigned long data = cdata;
 792	compat_ptrace_area parea;
 793	int copied, ret;
 794
 795	switch (request) {
 796	case PTRACE_PEEKUSR:
 797		/* read the word at location addr in the USER area. */
 798		return peek_user_compat(child, addr, data);
 799
 800	case PTRACE_POKEUSR:
 801		/* write the word at location addr in the USER area */
 802		return poke_user_compat(child, addr, data);
 803
 804	case PTRACE_PEEKUSR_AREA:
 805	case PTRACE_POKEUSR_AREA:
 806		if (copy_from_user(&parea, (void __force __user *) addr,
 807							sizeof(parea)))
 808			return -EFAULT;
 809		addr = parea.kernel_addr;
 810		data = parea.process_addr;
 811		copied = 0;
 812		while (copied < parea.len) {
 813			if (request == PTRACE_PEEKUSR_AREA)
 814				ret = peek_user_compat(child, addr, data);
 815			else {
 816				__u32 utmp;
 817				if (get_user(utmp,
 818					     (__u32 __force __user *) data))
 819					return -EFAULT;
 820				ret = poke_user_compat(child, addr, utmp);
 821			}
 822			if (ret)
 823				return ret;
 824			addr += sizeof(unsigned int);
 825			data += sizeof(unsigned int);
 826			copied += sizeof(unsigned int);
 827		}
 828		return 0;
 829	case PTRACE_GET_LAST_BREAK:
 830		return put_user(child->thread.last_break, (unsigned int __user *)data);
 
 
 831	}
 832	return compat_ptrace_request(child, request, addr, data);
 833}
 834#endif
 835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 836/*
 837 * user_regset definitions.
 838 */
 839
 840static int s390_regs_get(struct task_struct *target,
 841			 const struct user_regset *regset,
 842			 struct membuf to)
 
 843{
 844	unsigned pos;
 845	if (target == current)
 846		save_access_regs(target->thread.acrs);
 847
 848	for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long))
 849		membuf_store(&to, __peek_user(target, pos));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850	return 0;
 851}
 852
 853static int s390_regs_set(struct task_struct *target,
 854			 const struct user_regset *regset,
 855			 unsigned int pos, unsigned int count,
 856			 const void *kbuf, const void __user *ubuf)
 857{
 858	int rc = 0;
 859
 860	if (target == current)
 861		save_access_regs(target->thread.acrs);
 862
 863	if (kbuf) {
 864		const unsigned long *k = kbuf;
 865		while (count > 0 && !rc) {
 866			rc = __poke_user(target, pos, *k++);
 867			count -= sizeof(*k);
 868			pos += sizeof(*k);
 869		}
 870	} else {
 871		const unsigned long  __user *u = ubuf;
 872		while (count > 0 && !rc) {
 873			unsigned long word;
 874			rc = __get_user(word, u++);
 875			if (rc)
 876				break;
 877			rc = __poke_user(target, pos, word);
 878			count -= sizeof(*u);
 879			pos += sizeof(*u);
 880		}
 881	}
 882
 883	if (rc == 0 && target == current)
 884		restore_access_regs(target->thread.acrs);
 885
 886	return rc;
 887}
 888
 889static int s390_fpregs_get(struct task_struct *target,
 890			   const struct user_regset *regset,
 891			   struct membuf to)
 892{
 893	_s390_fp_regs fp_regs;
 894
 895	if (target == current)
 896		save_fpu_regs();
 897
 898	fp_regs.fpc = target->thread.fpu.fpc;
 899	fpregs_store(&fp_regs, &target->thread.fpu);
 900
 901	return membuf_write(&to, &fp_regs, sizeof(fp_regs));
 
 902}
 903
 904static int s390_fpregs_set(struct task_struct *target,
 905			   const struct user_regset *regset, unsigned int pos,
 906			   unsigned int count, const void *kbuf,
 907			   const void __user *ubuf)
 908{
 909	int rc = 0;
 910	freg_t fprs[__NUM_FPRS];
 911
 912	if (target == current)
 913		save_fpu_regs();
 914
 915	if (cpu_has_vx())
 916		convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
 917	else
 918		memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
 919
 
 920	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 921		u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
 922		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
 923					0, offsetof(s390_fp_regs, fprs));
 924		if (rc)
 925			return rc;
 926		if (ufpc[1] != 0)
 927			return -EINVAL;
 928		target->thread.fpu.fpc = ufpc[0];
 929	}
 930
 931	if (rc == 0 && count > 0)
 932		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 933					fprs, offsetof(s390_fp_regs, fprs), -1);
 934	if (rc)
 935		return rc;
 936
 937	if (cpu_has_vx())
 938		convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
 939	else
 940		memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
 941
 942	return rc;
 943}
 944
 
 
 945static int s390_last_break_get(struct task_struct *target,
 946			       const struct user_regset *regset,
 947			       struct membuf to)
 
 948{
 949	return membuf_store(&to, target->thread.last_break);
 
 
 
 
 
 
 
 
 
 
 950}
 951
 952static int s390_last_break_set(struct task_struct *target,
 953			       const struct user_regset *regset,
 954			       unsigned int pos, unsigned int count,
 955			       const void *kbuf, const void __user *ubuf)
 956{
 957	return 0;
 958}
 959
 960static int s390_tdb_get(struct task_struct *target,
 961			const struct user_regset *regset,
 962			struct membuf to)
 
 963{
 964	struct pt_regs *regs = task_pt_regs(target);
 965	size_t size;
 966
 967	if (!(regs->int_code & 0x200))
 968		return -ENODATA;
 969	size = sizeof(target->thread.trap_tdb.data);
 970	return membuf_write(&to, target->thread.trap_tdb.data, size);
 971}
 972
 973static int s390_tdb_set(struct task_struct *target,
 974			const struct user_regset *regset,
 975			unsigned int pos, unsigned int count,
 976			const void *kbuf, const void __user *ubuf)
 977{
 978	return 0;
 979}
 980
 981static int s390_vxrs_low_get(struct task_struct *target,
 982			     const struct user_regset *regset,
 983			     struct membuf to)
 984{
 985	__u64 vxrs[__NUM_VXRS_LOW];
 986	int i;
 987
 988	if (!cpu_has_vx())
 989		return -ENODEV;
 990	if (target == current)
 991		save_fpu_regs();
 992	for (i = 0; i < __NUM_VXRS_LOW; i++)
 993		vxrs[i] = target->thread.fpu.vxrs[i].low;
 994	return membuf_write(&to, vxrs, sizeof(vxrs));
 995}
 996
 997static int s390_vxrs_low_set(struct task_struct *target,
 998			     const struct user_regset *regset,
 999			     unsigned int pos, unsigned int count,
1000			     const void *kbuf, const void __user *ubuf)
1001{
1002	__u64 vxrs[__NUM_VXRS_LOW];
1003	int i, rc;
1004
1005	if (!cpu_has_vx())
1006		return -ENODEV;
1007	if (target == current)
1008		save_fpu_regs();
1009
1010	for (i = 0; i < __NUM_VXRS_LOW; i++)
1011		vxrs[i] = target->thread.fpu.vxrs[i].low;
1012
1013	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1014	if (rc == 0)
1015		for (i = 0; i < __NUM_VXRS_LOW; i++)
1016			target->thread.fpu.vxrs[i].low = vxrs[i];
1017
1018	return rc;
1019}
1020
1021static int s390_vxrs_high_get(struct task_struct *target,
1022			      const struct user_regset *regset,
1023			      struct membuf to)
1024{
1025	if (!cpu_has_vx())
1026		return -ENODEV;
1027	if (target == current)
1028		save_fpu_regs();
1029	return membuf_write(&to, target->thread.fpu.vxrs + __NUM_VXRS_LOW,
1030			    __NUM_VXRS_HIGH * sizeof(__vector128));
1031}
1032
1033static int s390_vxrs_high_set(struct task_struct *target,
1034			      const struct user_regset *regset,
1035			      unsigned int pos, unsigned int count,
1036			      const void *kbuf, const void __user *ubuf)
1037{
1038	int rc;
1039
1040	if (!cpu_has_vx())
1041		return -ENODEV;
1042	if (target == current)
1043		save_fpu_regs();
1044
1045	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1046				target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1047	return rc;
1048}
1049
1050static int s390_system_call_get(struct task_struct *target,
1051				const struct user_regset *regset,
1052				struct membuf to)
 
1053{
1054	return membuf_store(&to, target->thread.system_call);
 
 
1055}
1056
1057static int s390_system_call_set(struct task_struct *target,
1058				const struct user_regset *regset,
1059				unsigned int pos, unsigned int count,
1060				const void *kbuf, const void __user *ubuf)
1061{
1062	unsigned int *data = &target->thread.system_call;
1063	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1064				  data, 0, sizeof(unsigned int));
1065}
1066
1067static int s390_gs_cb_get(struct task_struct *target,
1068			  const struct user_regset *regset,
1069			  struct membuf to)
1070{
1071	struct gs_cb *data = target->thread.gs_cb;
1072
1073	if (!MACHINE_HAS_GS)
1074		return -ENODEV;
1075	if (!data)
1076		return -ENODATA;
1077	if (target == current)
1078		save_gs_cb(data);
1079	return membuf_write(&to, data, sizeof(struct gs_cb));
1080}
1081
1082static int s390_gs_cb_set(struct task_struct *target,
1083			  const struct user_regset *regset,
1084			  unsigned int pos, unsigned int count,
1085			  const void *kbuf, const void __user *ubuf)
1086{
1087	struct gs_cb gs_cb = { }, *data = NULL;
1088	int rc;
1089
1090	if (!MACHINE_HAS_GS)
1091		return -ENODEV;
1092	if (!target->thread.gs_cb) {
1093		data = kzalloc(sizeof(*data), GFP_KERNEL);
1094		if (!data)
1095			return -ENOMEM;
1096	}
1097	if (!target->thread.gs_cb)
1098		gs_cb.gsd = 25;
1099	else if (target == current)
1100		save_gs_cb(&gs_cb);
1101	else
1102		gs_cb = *target->thread.gs_cb;
1103	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1104				&gs_cb, 0, sizeof(gs_cb));
1105	if (rc) {
1106		kfree(data);
1107		return -EFAULT;
1108	}
1109	preempt_disable();
1110	if (!target->thread.gs_cb)
1111		target->thread.gs_cb = data;
1112	*target->thread.gs_cb = gs_cb;
1113	if (target == current) {
1114		local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT);
1115		restore_gs_cb(target->thread.gs_cb);
1116	}
1117	preempt_enable();
1118	return rc;
1119}
1120
1121static int s390_gs_bc_get(struct task_struct *target,
1122			  const struct user_regset *regset,
1123			  struct membuf to)
1124{
1125	struct gs_cb *data = target->thread.gs_bc_cb;
1126
1127	if (!MACHINE_HAS_GS)
1128		return -ENODEV;
1129	if (!data)
1130		return -ENODATA;
1131	return membuf_write(&to, data, sizeof(struct gs_cb));
1132}
1133
1134static int s390_gs_bc_set(struct task_struct *target,
1135			  const struct user_regset *regset,
1136			  unsigned int pos, unsigned int count,
1137			  const void *kbuf, const void __user *ubuf)
1138{
1139	struct gs_cb *data = target->thread.gs_bc_cb;
1140
1141	if (!MACHINE_HAS_GS)
1142		return -ENODEV;
1143	if (!data) {
1144		data = kzalloc(sizeof(*data), GFP_KERNEL);
1145		if (!data)
1146			return -ENOMEM;
1147		target->thread.gs_bc_cb = data;
1148	}
1149	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1150				  data, 0, sizeof(struct gs_cb));
1151}
1152
1153static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1154{
1155	return (cb->rca & 0x1f) == 0 &&
1156		(cb->roa & 0xfff) == 0 &&
1157		(cb->rla & 0xfff) == 0xfff &&
1158		cb->s == 1 &&
1159		cb->k == 1 &&
1160		cb->h == 0 &&
1161		cb->reserved1 == 0 &&
1162		cb->ps == 1 &&
1163		cb->qs == 0 &&
1164		cb->pc == 1 &&
1165		cb->qc == 0 &&
1166		cb->reserved2 == 0 &&
1167		cb->reserved3 == 0 &&
1168		cb->reserved4 == 0 &&
1169		cb->reserved5 == 0 &&
1170		cb->reserved6 == 0 &&
1171		cb->reserved7 == 0 &&
1172		cb->reserved8 == 0 &&
1173		cb->rla >= cb->roa &&
1174		cb->rca >= cb->roa &&
1175		cb->rca <= cb->rla+1 &&
1176		cb->m < 3;
1177}
1178
1179static int s390_runtime_instr_get(struct task_struct *target,
1180				const struct user_regset *regset,
1181				struct membuf to)
1182{
1183	struct runtime_instr_cb *data = target->thread.ri_cb;
1184
1185	if (!test_facility(64))
1186		return -ENODEV;
1187	if (!data)
1188		return -ENODATA;
1189
1190	return membuf_write(&to, data, sizeof(struct runtime_instr_cb));
1191}
1192
1193static int s390_runtime_instr_set(struct task_struct *target,
1194				  const struct user_regset *regset,
1195				  unsigned int pos, unsigned int count,
1196				  const void *kbuf, const void __user *ubuf)
1197{
1198	struct runtime_instr_cb ri_cb = { }, *data = NULL;
1199	int rc;
1200
1201	if (!test_facility(64))
1202		return -ENODEV;
1203
1204	if (!target->thread.ri_cb) {
1205		data = kzalloc(sizeof(*data), GFP_KERNEL);
1206		if (!data)
1207			return -ENOMEM;
1208	}
1209
1210	if (target->thread.ri_cb) {
1211		if (target == current)
1212			store_runtime_instr_cb(&ri_cb);
1213		else
1214			ri_cb = *target->thread.ri_cb;
1215	}
1216
1217	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1218				&ri_cb, 0, sizeof(struct runtime_instr_cb));
1219	if (rc) {
1220		kfree(data);
1221		return -EFAULT;
1222	}
1223
1224	if (!is_ri_cb_valid(&ri_cb)) {
1225		kfree(data);
1226		return -EINVAL;
1227	}
1228	/*
1229	 * Override access key in any case, since user space should
1230	 * not be able to set it, nor should it care about it.
1231	 */
1232	ri_cb.key = PAGE_DEFAULT_KEY >> 4;
1233	preempt_disable();
1234	if (!target->thread.ri_cb)
1235		target->thread.ri_cb = data;
1236	*target->thread.ri_cb = ri_cb;
1237	if (target == current)
1238		load_runtime_instr_cb(target->thread.ri_cb);
1239	preempt_enable();
1240
1241	return 0;
1242}
1243
1244static const struct user_regset s390_regsets[] = {
1245	{
1246		.core_note_type = NT_PRSTATUS,
1247		.n = sizeof(s390_regs) / sizeof(long),
1248		.size = sizeof(long),
1249		.align = sizeof(long),
1250		.regset_get = s390_regs_get,
1251		.set = s390_regs_set,
1252	},
1253	{
1254		.core_note_type = NT_PRFPREG,
1255		.n = sizeof(s390_fp_regs) / sizeof(long),
1256		.size = sizeof(long),
1257		.align = sizeof(long),
1258		.regset_get = s390_fpregs_get,
1259		.set = s390_fpregs_set,
1260	},
1261	{
1262		.core_note_type = NT_S390_SYSTEM_CALL,
1263		.n = 1,
1264		.size = sizeof(unsigned int),
1265		.align = sizeof(unsigned int),
1266		.regset_get = s390_system_call_get,
1267		.set = s390_system_call_set,
1268	},
1269	{
1270		.core_note_type = NT_S390_LAST_BREAK,
1271		.n = 1,
1272		.size = sizeof(long),
1273		.align = sizeof(long),
1274		.regset_get = s390_last_break_get,
1275		.set = s390_last_break_set,
1276	},
1277	{
1278		.core_note_type = NT_S390_TDB,
1279		.n = 1,
1280		.size = 256,
1281		.align = 1,
1282		.regset_get = s390_tdb_get,
1283		.set = s390_tdb_set,
1284	},
1285	{
1286		.core_note_type = NT_S390_VXRS_LOW,
1287		.n = __NUM_VXRS_LOW,
1288		.size = sizeof(__u64),
1289		.align = sizeof(__u64),
1290		.regset_get = s390_vxrs_low_get,
1291		.set = s390_vxrs_low_set,
1292	},
1293	{
1294		.core_note_type = NT_S390_VXRS_HIGH,
1295		.n = __NUM_VXRS_HIGH,
1296		.size = sizeof(__vector128),
1297		.align = sizeof(__vector128),
1298		.regset_get = s390_vxrs_high_get,
1299		.set = s390_vxrs_high_set,
1300	},
1301	{
1302		.core_note_type = NT_S390_GS_CB,
1303		.n = sizeof(struct gs_cb) / sizeof(__u64),
1304		.size = sizeof(__u64),
1305		.align = sizeof(__u64),
1306		.regset_get = s390_gs_cb_get,
1307		.set = s390_gs_cb_set,
1308	},
1309	{
1310		.core_note_type = NT_S390_GS_BC,
1311		.n = sizeof(struct gs_cb) / sizeof(__u64),
1312		.size = sizeof(__u64),
1313		.align = sizeof(__u64),
1314		.regset_get = s390_gs_bc_get,
1315		.set = s390_gs_bc_set,
1316	},
1317	{
1318		.core_note_type = NT_S390_RI_CB,
1319		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1320		.size = sizeof(__u64),
1321		.align = sizeof(__u64),
1322		.regset_get = s390_runtime_instr_get,
1323		.set = s390_runtime_instr_set,
1324	},
1325};
1326
1327static const struct user_regset_view user_s390_view = {
1328	.name = "s390x",
1329	.e_machine = EM_S390,
1330	.regsets = s390_regsets,
1331	.n = ARRAY_SIZE(s390_regsets)
1332};
1333
1334#ifdef CONFIG_COMPAT
1335static int s390_compat_regs_get(struct task_struct *target,
1336				const struct user_regset *regset,
1337				struct membuf to)
 
1338{
1339	unsigned n;
1340
1341	if (target == current)
1342		save_access_regs(target->thread.acrs);
1343
1344	for (n = 0; n < sizeof(s390_compat_regs); n += sizeof(compat_ulong_t))
1345		membuf_store(&to, __peek_user_compat(target, n));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1346	return 0;
1347}
1348
1349static int s390_compat_regs_set(struct task_struct *target,
1350				const struct user_regset *regset,
1351				unsigned int pos, unsigned int count,
1352				const void *kbuf, const void __user *ubuf)
1353{
1354	int rc = 0;
1355
1356	if (target == current)
1357		save_access_regs(target->thread.acrs);
1358
1359	if (kbuf) {
1360		const compat_ulong_t *k = kbuf;
1361		while (count > 0 && !rc) {
1362			rc = __poke_user_compat(target, pos, *k++);
1363			count -= sizeof(*k);
1364			pos += sizeof(*k);
1365		}
1366	} else {
1367		const compat_ulong_t  __user *u = ubuf;
1368		while (count > 0 && !rc) {
1369			compat_ulong_t word;
1370			rc = __get_user(word, u++);
1371			if (rc)
1372				break;
1373			rc = __poke_user_compat(target, pos, word);
1374			count -= sizeof(*u);
1375			pos += sizeof(*u);
1376		}
1377	}
1378
1379	if (rc == 0 && target == current)
1380		restore_access_regs(target->thread.acrs);
1381
1382	return rc;
1383}
1384
1385static int s390_compat_regs_high_get(struct task_struct *target,
1386				     const struct user_regset *regset,
1387				     struct membuf to)
 
1388{
1389	compat_ulong_t *gprs_high;
1390	int i;
1391
1392	gprs_high = (compat_ulong_t *)task_pt_regs(target)->gprs;
1393	for (i = 0; i < NUM_GPRS; i++, gprs_high += 2)
1394		membuf_store(&to, *gprs_high);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1395	return 0;
1396}
1397
1398static int s390_compat_regs_high_set(struct task_struct *target,
1399				     const struct user_regset *regset,
1400				     unsigned int pos, unsigned int count,
1401				     const void *kbuf, const void __user *ubuf)
1402{
1403	compat_ulong_t *gprs_high;
1404	int rc = 0;
1405
1406	gprs_high = (compat_ulong_t *)
1407		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1408	if (kbuf) {
1409		const compat_ulong_t *k = kbuf;
1410		while (count > 0) {
1411			*gprs_high = *k++;
1412			*gprs_high += 2;
1413			count -= sizeof(*k);
1414		}
1415	} else {
1416		const compat_ulong_t  __user *u = ubuf;
1417		while (count > 0 && !rc) {
1418			unsigned long word;
1419			rc = __get_user(word, u++);
1420			if (rc)
1421				break;
1422			*gprs_high = word;
1423			*gprs_high += 2;
1424			count -= sizeof(*u);
1425		}
1426	}
1427
1428	return rc;
1429}
1430
1431static int s390_compat_last_break_get(struct task_struct *target,
1432				      const struct user_regset *regset,
1433				      struct membuf to)
 
1434{
1435	compat_ulong_t last_break = target->thread.last_break;
1436
1437	return membuf_store(&to, (unsigned long)last_break);
 
 
 
 
 
 
 
 
 
 
 
1438}
1439
1440static int s390_compat_last_break_set(struct task_struct *target,
1441				      const struct user_regset *regset,
1442				      unsigned int pos, unsigned int count,
1443				      const void *kbuf, const void __user *ubuf)
1444{
1445	return 0;
1446}
1447
1448static const struct user_regset s390_compat_regsets[] = {
1449	{
1450		.core_note_type = NT_PRSTATUS,
1451		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1452		.size = sizeof(compat_long_t),
1453		.align = sizeof(compat_long_t),
1454		.regset_get = s390_compat_regs_get,
1455		.set = s390_compat_regs_set,
1456	},
1457	{
1458		.core_note_type = NT_PRFPREG,
1459		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1460		.size = sizeof(compat_long_t),
1461		.align = sizeof(compat_long_t),
1462		.regset_get = s390_fpregs_get,
1463		.set = s390_fpregs_set,
1464	},
1465	{
1466		.core_note_type = NT_S390_SYSTEM_CALL,
1467		.n = 1,
1468		.size = sizeof(compat_uint_t),
1469		.align = sizeof(compat_uint_t),
1470		.regset_get = s390_system_call_get,
1471		.set = s390_system_call_set,
1472	},
1473	{
1474		.core_note_type = NT_S390_LAST_BREAK,
1475		.n = 1,
1476		.size = sizeof(long),
1477		.align = sizeof(long),
1478		.regset_get = s390_compat_last_break_get,
1479		.set = s390_compat_last_break_set,
1480	},
1481	{
1482		.core_note_type = NT_S390_TDB,
1483		.n = 1,
1484		.size = 256,
1485		.align = 1,
1486		.regset_get = s390_tdb_get,
1487		.set = s390_tdb_set,
1488	},
1489	{
1490		.core_note_type = NT_S390_VXRS_LOW,
1491		.n = __NUM_VXRS_LOW,
1492		.size = sizeof(__u64),
1493		.align = sizeof(__u64),
1494		.regset_get = s390_vxrs_low_get,
1495		.set = s390_vxrs_low_set,
1496	},
1497	{
1498		.core_note_type = NT_S390_VXRS_HIGH,
1499		.n = __NUM_VXRS_HIGH,
1500		.size = sizeof(__vector128),
1501		.align = sizeof(__vector128),
1502		.regset_get = s390_vxrs_high_get,
1503		.set = s390_vxrs_high_set,
1504	},
1505	{
1506		.core_note_type = NT_S390_HIGH_GPRS,
1507		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1508		.size = sizeof(compat_long_t),
1509		.align = sizeof(compat_long_t),
1510		.regset_get = s390_compat_regs_high_get,
1511		.set = s390_compat_regs_high_set,
1512	},
1513	{
1514		.core_note_type = NT_S390_GS_CB,
1515		.n = sizeof(struct gs_cb) / sizeof(__u64),
1516		.size = sizeof(__u64),
1517		.align = sizeof(__u64),
1518		.regset_get = s390_gs_cb_get,
1519		.set = s390_gs_cb_set,
1520	},
1521	{
1522		.core_note_type = NT_S390_GS_BC,
1523		.n = sizeof(struct gs_cb) / sizeof(__u64),
1524		.size = sizeof(__u64),
1525		.align = sizeof(__u64),
1526		.regset_get = s390_gs_bc_get,
1527		.set = s390_gs_bc_set,
1528	},
1529	{
1530		.core_note_type = NT_S390_RI_CB,
1531		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1532		.size = sizeof(__u64),
1533		.align = sizeof(__u64),
1534		.regset_get = s390_runtime_instr_get,
1535		.set = s390_runtime_instr_set,
1536	},
1537};
1538
1539static const struct user_regset_view user_s390_compat_view = {
1540	.name = "s390",
1541	.e_machine = EM_S390,
1542	.regsets = s390_compat_regsets,
1543	.n = ARRAY_SIZE(s390_compat_regsets)
1544};
1545#endif
1546
1547const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1548{
1549#ifdef CONFIG_COMPAT
1550	if (test_tsk_thread_flag(task, TIF_31BIT))
1551		return &user_s390_compat_view;
1552#endif
1553	return &user_s390_view;
1554}
1555
1556static const char *gpr_names[NUM_GPRS] = {
1557	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1558	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1559};
1560
1561unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1562{
1563	if (offset >= NUM_GPRS)
1564		return 0;
1565	return regs->gprs[offset];
1566}
1567
1568int regs_query_register_offset(const char *name)
1569{
1570	unsigned long offset;
1571
1572	if (!name || *name != 'r')
1573		return -EINVAL;
1574	if (kstrtoul(name + 1, 10, &offset))
1575		return -EINVAL;
1576	if (offset >= NUM_GPRS)
1577		return -EINVAL;
1578	return offset;
1579}
1580
1581const char *regs_query_register_name(unsigned int offset)
1582{
1583	if (offset >= NUM_GPRS)
1584		return NULL;
1585	return gpr_names[offset];
1586}
1587
1588static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1589{
1590	unsigned long ksp = kernel_stack_pointer(regs);
1591
1592	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1593}
1594
1595/**
1596 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1597 * @regs:pt_regs which contains kernel stack pointer.
1598 * @n:stack entry number.
1599 *
1600 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1601 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1602 * this returns 0.
1603 */
1604unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1605{
1606	unsigned long addr;
1607
1608	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1609	if (!regs_within_kernel_stack(regs, addr))
1610		return 0;
1611	return *(unsigned long *)addr;
1612}
v3.15
 
   1/*
   2 *  Ptrace user space interface.
   3 *
   4 *    Copyright IBM Corp. 1999, 2010
   5 *    Author(s): Denis Joseph Barrow
   6 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   7 */
   8
 
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
 
  11#include <linux/mm.h>
  12#include <linux/smp.h>
  13#include <linux/errno.h>
  14#include <linux/ptrace.h>
  15#include <linux/user.h>
  16#include <linux/security.h>
  17#include <linux/audit.h>
  18#include <linux/signal.h>
  19#include <linux/elf.h>
  20#include <linux/regset.h>
  21#include <linux/tracehook.h>
  22#include <linux/seccomp.h>
  23#include <linux/compat.h>
  24#include <trace/syscall.h>
  25#include <asm/segment.h>
  26#include <asm/page.h>
  27#include <asm/pgtable.h>
  28#include <asm/pgalloc.h>
  29#include <asm/uaccess.h>
  30#include <asm/unistd.h>
  31#include <asm/switch_to.h>
 
 
 
 
  32#include "entry.h"
  33
  34#ifdef CONFIG_COMPAT
  35#include "compat_ptrace.h"
  36#endif
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/syscalls.h>
  40
  41enum s390_regset {
  42	REGSET_GENERAL,
  43	REGSET_FP,
  44	REGSET_LAST_BREAK,
  45	REGSET_TDB,
  46	REGSET_SYSTEM_CALL,
  47	REGSET_GENERAL_EXTENDED,
  48};
  49
  50void update_cr_regs(struct task_struct *task)
  51{
  52	struct pt_regs *regs = task_pt_regs(task);
  53	struct thread_struct *thread = &task->thread;
  54	struct per_regs old, new;
  55
  56#ifdef CONFIG_64BIT
 
 
 
 
 
 
 
 
 
 
 
 
 
  57	/* Take care of the enable/disable of transactional execution. */
  58	if (MACHINE_HAS_TE) {
  59		unsigned long cr, cr_new;
  60
  61		__ctl_store(cr, 0, 0);
  62		/* Set or clear transaction execution TXC bit 8. */
  63		cr_new = cr | (1UL << 55);
  64		if (task->thread.per_flags & PER_FLAG_NO_TE)
  65			cr_new &= ~(1UL << 55);
  66		if (cr_new != cr)
  67			__ctl_load(cr_new, 0, 0);
  68		/* Set or clear transaction execution TDC bits 62 and 63. */
  69		__ctl_store(cr, 2, 2);
  70		cr_new = cr & ~3UL;
  71		if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
  72			if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
  73				cr_new |= 1UL;
  74			else
  75				cr_new |= 2UL;
  76		}
  77		if (cr_new != cr)
  78			__ctl_load(cr_new, 2, 2);
  79	}
  80#endif
 
 
 
 
 
 
 
 
 
 
 
 
  81	/* Copy user specified PER registers */
  82	new.control = thread->per_user.control;
  83	new.start = thread->per_user.start;
  84	new.end = thread->per_user.end;
  85
  86	/* merge TIF_SINGLE_STEP into user specified PER registers. */
  87	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP)) {
 
  88		if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
  89			new.control |= PER_EVENT_BRANCH;
  90		else
  91			new.control |= PER_EVENT_IFETCH;
  92#ifdef CONFIG_64BIT
  93		new.control |= PER_CONTROL_SUSPENSION;
  94		new.control |= PER_EVENT_TRANSACTION_END;
  95#endif
  96		new.start = 0;
  97		new.end = PSW_ADDR_INSN;
  98	}
  99
 100	/* Take care of the PER enablement bit in the PSW. */
 101	if (!(new.control & PER_EVENT_MASK)) {
 102		regs->psw.mask &= ~PSW_MASK_PER;
 103		return;
 104	}
 105	regs->psw.mask |= PSW_MASK_PER;
 106	__ctl_store(old, 9, 11);
 107	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
 108		__ctl_load(new, 9, 11);
 109}
 110
 111void user_enable_single_step(struct task_struct *task)
 112{
 113	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 114	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 115}
 116
 117void user_disable_single_step(struct task_struct *task)
 118{
 119	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 120	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 121}
 122
 123void user_enable_block_step(struct task_struct *task)
 124{
 125	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 126	set_tsk_thread_flag(task, TIF_BLOCK_STEP);
 127}
 128
 129/*
 130 * Called by kernel/ptrace.c when detaching..
 131 *
 132 * Clear all debugging related fields.
 133 */
 134void ptrace_disable(struct task_struct *task)
 135{
 136	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
 137	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
 138	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 139	clear_tsk_thread_flag(task, TIF_PER_TRAP);
 140	task->thread.per_flags = 0;
 141}
 142
 143#ifndef CONFIG_64BIT
 144# define __ADDR_MASK 3
 145#else
 146# define __ADDR_MASK 7
 147#endif
 148
 149static inline unsigned long __peek_user_per(struct task_struct *child,
 150					    addr_t addr)
 151{
 152	struct per_struct_kernel *dummy = NULL;
 153
 154	if (addr == (addr_t) &dummy->cr9)
 155		/* Control bits of the active per set. */
 156		return test_thread_flag(TIF_SINGLE_STEP) ?
 157			PER_EVENT_IFETCH : child->thread.per_user.control;
 158	else if (addr == (addr_t) &dummy->cr10)
 159		/* Start address of the active per set. */
 160		return test_thread_flag(TIF_SINGLE_STEP) ?
 161			0 : child->thread.per_user.start;
 162	else if (addr == (addr_t) &dummy->cr11)
 163		/* End address of the active per set. */
 164		return test_thread_flag(TIF_SINGLE_STEP) ?
 165			PSW_ADDR_INSN : child->thread.per_user.end;
 166	else if (addr == (addr_t) &dummy->bits)
 167		/* Single-step bit. */
 168		return test_thread_flag(TIF_SINGLE_STEP) ?
 169			(1UL << (BITS_PER_LONG - 1)) : 0;
 170	else if (addr == (addr_t) &dummy->starting_addr)
 171		/* Start address of the user specified per set. */
 172		return child->thread.per_user.start;
 173	else if (addr == (addr_t) &dummy->ending_addr)
 174		/* End address of the user specified per set. */
 175		return child->thread.per_user.end;
 176	else if (addr == (addr_t) &dummy->perc_atmid)
 177		/* PER code, ATMID and AI of the last PER trap */
 178		return (unsigned long)
 179			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 180	else if (addr == (addr_t) &dummy->address)
 181		/* Address of the last PER trap */
 182		return child->thread.per_event.address;
 183	else if (addr == (addr_t) &dummy->access_id)
 184		/* Access id of the last PER trap */
 185		return (unsigned long)
 186			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 187	return 0;
 188}
 189
 190/*
 191 * Read the word at offset addr from the user area of a process. The
 192 * trouble here is that the information is littered over different
 193 * locations. The process registers are found on the kernel stack,
 194 * the floating point stuff and the trace settings are stored in
 195 * the task structure. In addition the different structures in
 196 * struct user contain pad bytes that should be read as zeroes.
 197 * Lovely...
 198 */
 199static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 200{
 201	struct user *dummy = NULL;
 202	addr_t offset, tmp;
 203
 204	if (addr < (addr_t) &dummy->regs.acrs) {
 205		/*
 206		 * psw and gprs are stored on the stack
 207		 */
 208		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 209		if (addr == (addr_t) &dummy->regs.psw.mask) {
 210			/* Return a clean psw mask. */
 211			tmp &= PSW_MASK_USER | PSW_MASK_RI;
 212			tmp |= PSW_USER_BITS;
 213		}
 214
 215	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
 216		/*
 217		 * access registers are stored in the thread structure
 218		 */
 219		offset = addr - (addr_t) &dummy->regs.acrs;
 220#ifdef CONFIG_64BIT
 221		/*
 222		 * Very special case: old & broken 64 bit gdb reading
 223		 * from acrs[15]. Result is a 64 bit value. Read the
 224		 * 32 bit acrs[15] value and shift it by 32. Sick...
 225		 */
 226		if (addr == (addr_t) &dummy->regs.acrs[15])
 227			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 228		else
 229#endif
 230		tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 231
 232	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 233		/*
 234		 * orig_gpr2 is stored on the kernel stack
 235		 */
 236		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 237
 238	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 239		/*
 240		 * prevent reads of padding hole between
 241		 * orig_gpr2 and fp_regs on s390.
 242		 */
 243		tmp = 0;
 244
 245	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 246		/* 
 247		 * floating point regs. are stored in the thread structure
 248		 */
 249		offset = addr - (addr_t) &dummy->regs.fp_regs;
 250		tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
 251		if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
 252			tmp <<= BITS_PER_LONG - 32;
 253
 254	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 255		/*
 256		 * Handle access to the per_info structure.
 257		 */
 258		addr -= (addr_t) &dummy->regs.per_info;
 259		tmp = __peek_user_per(child, addr);
 260
 261	} else
 262		tmp = 0;
 263
 264	return tmp;
 265}
 266
 267static int
 268peek_user(struct task_struct *child, addr_t addr, addr_t data)
 269{
 270	addr_t tmp, mask;
 271
 272	/*
 273	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 274	 * an alignment of 4. Programmers from hell...
 275	 */
 276	mask = __ADDR_MASK;
 277#ifdef CONFIG_64BIT
 278	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 279	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 280		mask = 3;
 281#endif
 282	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 283		return -EIO;
 284
 285	tmp = __peek_user(child, addr);
 286	return put_user(tmp, (addr_t __user *) data);
 287}
 288
 289static inline void __poke_user_per(struct task_struct *child,
 290				   addr_t addr, addr_t data)
 291{
 292	struct per_struct_kernel *dummy = NULL;
 293
 294	/*
 295	 * There are only three fields in the per_info struct that the
 296	 * debugger user can write to.
 297	 * 1) cr9: the debugger wants to set a new PER event mask
 298	 * 2) starting_addr: the debugger wants to set a new starting
 299	 *    address to use with the PER event mask.
 300	 * 3) ending_addr: the debugger wants to set a new ending
 301	 *    address to use with the PER event mask.
 302	 * The user specified PER event mask and the start and end
 303	 * addresses are used only if single stepping is not in effect.
 304	 * Writes to any other field in per_info are ignored.
 305	 */
 306	if (addr == (addr_t) &dummy->cr9)
 307		/* PER event mask of the user specified per set. */
 308		child->thread.per_user.control =
 309			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 310	else if (addr == (addr_t) &dummy->starting_addr)
 311		/* Starting address of the user specified per set. */
 312		child->thread.per_user.start = data;
 313	else if (addr == (addr_t) &dummy->ending_addr)
 314		/* Ending address of the user specified per set. */
 315		child->thread.per_user.end = data;
 316}
 317
 318/*
 319 * Write a word to the user area of a process at location addr. This
 320 * operation does have an additional problem compared to peek_user.
 321 * Stores to the program status word and on the floating point
 322 * control register needs to get checked for validity.
 323 */
 324static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 325{
 326	struct user *dummy = NULL;
 327	addr_t offset;
 328
 329	if (addr < (addr_t) &dummy->regs.acrs) {
 
 
 330		/*
 331		 * psw and gprs are stored on the stack
 332		 */
 333		if (addr == (addr_t) &dummy->regs.psw.mask) {
 334			unsigned long mask = PSW_MASK_USER;
 335
 336			mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
 337			if ((data & ~mask) != PSW_USER_BITS)
 
 
 
 
 338				return -EINVAL;
 339			if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
 
 340				return -EINVAL;
 341		}
 342		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
 343
 344	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
 
 
 
 
 
 
 
 345		/*
 346		 * access registers are stored in the thread structure
 347		 */
 348		offset = addr - (addr_t) &dummy->regs.acrs;
 349#ifdef CONFIG_64BIT
 350		/*
 351		 * Very special case: old & broken 64 bit gdb writing
 352		 * to acrs[15] with a 64 bit value. Ignore the lower
 353		 * half of the value and write the upper 32 bit to
 354		 * acrs[15]. Sick...
 355		 */
 356		if (addr == (addr_t) &dummy->regs.acrs[15])
 357			child->thread.acrs[15] = (unsigned int) (data >> 32);
 358		else
 359#endif
 360		*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 361
 362	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 363		/*
 364		 * orig_gpr2 is stored on the kernel stack
 365		 */
 366		task_pt_regs(child)->orig_gpr2 = data;
 367
 368	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 369		/*
 370		 * prevent writes of padding hole between
 371		 * orig_gpr2 and fp_regs on s390.
 372		 */
 373		return 0;
 374
 375	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 376		/*
 377		 * floating point regs. are stored in the thread structure
 378		 */
 379		if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
 380			if ((unsigned int) data != 0 ||
 381			    test_fp_ctl(data >> (BITS_PER_LONG - 32)))
 382				return -EINVAL;
 383		offset = addr - (addr_t) &dummy->regs.fp_regs;
 384		*(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
 
 
 
 
 
 
 
 
 
 
 385
 386	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 387		/*
 388		 * Handle access to the per_info structure.
 389		 */
 390		addr -= (addr_t) &dummy->regs.per_info;
 391		__poke_user_per(child, addr, data);
 392
 393	}
 394
 395	return 0;
 396}
 397
 398static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 399{
 400	addr_t mask;
 401
 402	/*
 403	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 404	 * an alignment of 4. Programmers from hell indeed...
 405	 */
 406	mask = __ADDR_MASK;
 407#ifdef CONFIG_64BIT
 408	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 409	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 410		mask = 3;
 411#endif
 412	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 413		return -EIO;
 414
 415	return __poke_user(child, addr, data);
 416}
 417
 418long arch_ptrace(struct task_struct *child, long request,
 419		 unsigned long addr, unsigned long data)
 420{
 421	ptrace_area parea; 
 422	int copied, ret;
 423
 424	switch (request) {
 425	case PTRACE_PEEKUSR:
 426		/* read the word at location addr in the USER area. */
 427		return peek_user(child, addr, data);
 428
 429	case PTRACE_POKEUSR:
 430		/* write the word at location addr in the USER area */
 431		return poke_user(child, addr, data);
 432
 433	case PTRACE_PEEKUSR_AREA:
 434	case PTRACE_POKEUSR_AREA:
 435		if (copy_from_user(&parea, (void __force __user *) addr,
 436							sizeof(parea)))
 437			return -EFAULT;
 438		addr = parea.kernel_addr;
 439		data = parea.process_addr;
 440		copied = 0;
 441		while (copied < parea.len) {
 442			if (request == PTRACE_PEEKUSR_AREA)
 443				ret = peek_user(child, addr, data);
 444			else {
 445				addr_t utmp;
 446				if (get_user(utmp,
 447					     (addr_t __force __user *) data))
 448					return -EFAULT;
 449				ret = poke_user(child, addr, utmp);
 450			}
 451			if (ret)
 452				return ret;
 453			addr += sizeof(unsigned long);
 454			data += sizeof(unsigned long);
 455			copied += sizeof(unsigned long);
 456		}
 457		return 0;
 458	case PTRACE_GET_LAST_BREAK:
 459		put_user(task_thread_info(child)->last_break,
 460			 (unsigned long __user *) data);
 461		return 0;
 462	case PTRACE_ENABLE_TE:
 463		if (!MACHINE_HAS_TE)
 464			return -EIO;
 465		child->thread.per_flags &= ~PER_FLAG_NO_TE;
 466		return 0;
 467	case PTRACE_DISABLE_TE:
 468		if (!MACHINE_HAS_TE)
 469			return -EIO;
 470		child->thread.per_flags |= PER_FLAG_NO_TE;
 471		child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 472		return 0;
 473	case PTRACE_TE_ABORT_RAND:
 474		if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
 475			return -EIO;
 476		switch (data) {
 477		case 0UL:
 478			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 479			break;
 480		case 1UL:
 481			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 482			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
 483			break;
 484		case 2UL:
 485			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 486			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
 487			break;
 488		default:
 489			return -EINVAL;
 490		}
 491		return 0;
 492	default:
 493		/* Removing high order bit from addr (only for 31 bit). */
 494		addr &= PSW_ADDR_INSN;
 495		return ptrace_request(child, request, addr, data);
 496	}
 497}
 498
 499#ifdef CONFIG_COMPAT
 500/*
 501 * Now the fun part starts... a 31 bit program running in the
 502 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 503 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 504 * to handle, the difference to the 64 bit versions of the requests
 505 * is that the access is done in multiples of 4 byte instead of
 506 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 507 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 508 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 509 * is a 31 bit program too, the content of struct user can be
 510 * emulated. A 31 bit program peeking into the struct user of
 511 * a 64 bit program is a no-no.
 512 */
 513
 514/*
 515 * Same as peek_user_per but for a 31 bit program.
 516 */
 517static inline __u32 __peek_user_per_compat(struct task_struct *child,
 518					   addr_t addr)
 519{
 520	struct compat_per_struct_kernel *dummy32 = NULL;
 521
 522	if (addr == (addr_t) &dummy32->cr9)
 523		/* Control bits of the active per set. */
 524		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 525			PER_EVENT_IFETCH : child->thread.per_user.control;
 526	else if (addr == (addr_t) &dummy32->cr10)
 527		/* Start address of the active per set. */
 528		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 529			0 : child->thread.per_user.start;
 530	else if (addr == (addr_t) &dummy32->cr11)
 531		/* End address of the active per set. */
 532		return test_thread_flag(TIF_SINGLE_STEP) ?
 533			PSW32_ADDR_INSN : child->thread.per_user.end;
 534	else if (addr == (addr_t) &dummy32->bits)
 535		/* Single-step bit. */
 536		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 537			0x80000000 : 0;
 538	else if (addr == (addr_t) &dummy32->starting_addr)
 539		/* Start address of the user specified per set. */
 540		return (__u32) child->thread.per_user.start;
 541	else if (addr == (addr_t) &dummy32->ending_addr)
 542		/* End address of the user specified per set. */
 543		return (__u32) child->thread.per_user.end;
 544	else if (addr == (addr_t) &dummy32->perc_atmid)
 545		/* PER code, ATMID and AI of the last PER trap */
 546		return (__u32) child->thread.per_event.cause << 16;
 547	else if (addr == (addr_t) &dummy32->address)
 548		/* Address of the last PER trap */
 549		return (__u32) child->thread.per_event.address;
 550	else if (addr == (addr_t) &dummy32->access_id)
 551		/* Access id of the last PER trap */
 552		return (__u32) child->thread.per_event.paid << 24;
 553	return 0;
 554}
 555
 556/*
 557 * Same as peek_user but for a 31 bit program.
 558 */
 559static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 560{
 561	struct compat_user *dummy32 = NULL;
 562	addr_t offset;
 563	__u32 tmp;
 564
 565	if (addr < (addr_t) &dummy32->regs.acrs) {
 566		struct pt_regs *regs = task_pt_regs(child);
 567		/*
 568		 * psw and gprs are stored on the stack
 569		 */
 570		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 571			/* Fake a 31 bit psw mask. */
 572			tmp = (__u32)(regs->psw.mask >> 32);
 573			tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
 574			tmp |= PSW32_USER_BITS;
 575		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 576			/* Fake a 31 bit psw address. */
 577			tmp = (__u32) regs->psw.addr |
 578				(__u32)(regs->psw.mask & PSW_MASK_BA);
 579		} else {
 580			/* gpr 0-15 */
 581			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
 582		}
 583	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 584		/*
 585		 * access registers are stored in the thread structure
 586		 */
 587		offset = addr - (addr_t) &dummy32->regs.acrs;
 588		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 589
 590	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 591		/*
 592		 * orig_gpr2 is stored on the kernel stack
 593		 */
 594		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 595
 596	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 597		/*
 598		 * prevent reads of padding hole between
 599		 * orig_gpr2 and fp_regs on s390.
 600		 */
 601		tmp = 0;
 602
 603	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 
 
 
 
 
 
 604		/*
 605		 * floating point regs. are stored in the thread structure 
 
 606		 */
 607	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
 608		tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
 
 
 
 
 
 609
 610	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 611		/*
 612		 * Handle access to the per_info structure.
 613		 */
 614		addr -= (addr_t) &dummy32->regs.per_info;
 615		tmp = __peek_user_per_compat(child, addr);
 616
 617	} else
 618		tmp = 0;
 619
 620	return tmp;
 621}
 622
 623static int peek_user_compat(struct task_struct *child,
 624			    addr_t addr, addr_t data)
 625{
 626	__u32 tmp;
 627
 628	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 629		return -EIO;
 630
 631	tmp = __peek_user_compat(child, addr);
 632	return put_user(tmp, (__u32 __user *) data);
 633}
 634
 635/*
 636 * Same as poke_user_per but for a 31 bit program.
 637 */
 638static inline void __poke_user_per_compat(struct task_struct *child,
 639					  addr_t addr, __u32 data)
 640{
 641	struct compat_per_struct_kernel *dummy32 = NULL;
 642
 643	if (addr == (addr_t) &dummy32->cr9)
 644		/* PER event mask of the user specified per set. */
 645		child->thread.per_user.control =
 646			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 647	else if (addr == (addr_t) &dummy32->starting_addr)
 648		/* Starting address of the user specified per set. */
 649		child->thread.per_user.start = data;
 650	else if (addr == (addr_t) &dummy32->ending_addr)
 651		/* Ending address of the user specified per set. */
 652		child->thread.per_user.end = data;
 653}
 654
 655/*
 656 * Same as poke_user but for a 31 bit program.
 657 */
 658static int __poke_user_compat(struct task_struct *child,
 659			      addr_t addr, addr_t data)
 660{
 661	struct compat_user *dummy32 = NULL;
 662	__u32 tmp = (__u32) data;
 663	addr_t offset;
 664
 665	if (addr < (addr_t) &dummy32->regs.acrs) {
 666		struct pt_regs *regs = task_pt_regs(child);
 667		/*
 668		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 669		 */
 670		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 671			__u32 mask = PSW32_MASK_USER;
 672
 673			mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
 674			/* Build a 64 bit psw mask from 31 bit mask. */
 675			if ((tmp & ~mask) != PSW32_USER_BITS)
 676				/* Invalid psw mask. */
 677				return -EINVAL;
 
 
 
 678			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
 679				(regs->psw.mask & PSW_MASK_BA) |
 680				(__u64)(tmp & mask) << 32;
 681		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 682			/* Build a 64 bit psw address from 31 bit address. */
 683			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
 684			/* Transfer 31 bit amode bit to psw mask. */
 685			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
 686				(__u64)(tmp & PSW32_ADDR_AMODE);
 687		} else {
 
 
 
 
 
 
 688			/* gpr 0-15 */
 689			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
 690		}
 691	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 692		/*
 693		 * access registers are stored in the thread structure
 694		 */
 695		offset = addr - (addr_t) &dummy32->regs.acrs;
 696		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 697
 698	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 699		/*
 700		 * orig_gpr2 is stored on the kernel stack
 701		 */
 702		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 703
 704	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 705		/*
 706		 * prevent writess of padding hole between
 707		 * orig_gpr2 and fp_regs on s390.
 708		 */
 709		return 0;
 710
 711	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 712		/*
 713		 * floating point regs. are stored in the thread structure 
 714		 */
 715		if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
 716		    test_fp_ctl(tmp))
 717			return -EINVAL;
 718	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
 719		*(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
 
 
 
 
 
 
 
 
 
 720
 721	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 722		/*
 723		 * Handle access to the per_info structure.
 724		 */
 725		addr -= (addr_t) &dummy32->regs.per_info;
 726		__poke_user_per_compat(child, addr, data);
 727	}
 728
 729	return 0;
 730}
 731
 732static int poke_user_compat(struct task_struct *child,
 733			    addr_t addr, addr_t data)
 734{
 735	if (!is_compat_task() || (addr & 3) ||
 736	    addr > sizeof(struct compat_user) - 3)
 737		return -EIO;
 738
 739	return __poke_user_compat(child, addr, data);
 740}
 741
 742long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 743			compat_ulong_t caddr, compat_ulong_t cdata)
 744{
 745	unsigned long addr = caddr;
 746	unsigned long data = cdata;
 747	compat_ptrace_area parea;
 748	int copied, ret;
 749
 750	switch (request) {
 751	case PTRACE_PEEKUSR:
 752		/* read the word at location addr in the USER area. */
 753		return peek_user_compat(child, addr, data);
 754
 755	case PTRACE_POKEUSR:
 756		/* write the word at location addr in the USER area */
 757		return poke_user_compat(child, addr, data);
 758
 759	case PTRACE_PEEKUSR_AREA:
 760	case PTRACE_POKEUSR_AREA:
 761		if (copy_from_user(&parea, (void __force __user *) addr,
 762							sizeof(parea)))
 763			return -EFAULT;
 764		addr = parea.kernel_addr;
 765		data = parea.process_addr;
 766		copied = 0;
 767		while (copied < parea.len) {
 768			if (request == PTRACE_PEEKUSR_AREA)
 769				ret = peek_user_compat(child, addr, data);
 770			else {
 771				__u32 utmp;
 772				if (get_user(utmp,
 773					     (__u32 __force __user *) data))
 774					return -EFAULT;
 775				ret = poke_user_compat(child, addr, utmp);
 776			}
 777			if (ret)
 778				return ret;
 779			addr += sizeof(unsigned int);
 780			data += sizeof(unsigned int);
 781			copied += sizeof(unsigned int);
 782		}
 783		return 0;
 784	case PTRACE_GET_LAST_BREAK:
 785		put_user(task_thread_info(child)->last_break,
 786			 (unsigned int __user *) data);
 787		return 0;
 788	}
 789	return compat_ptrace_request(child, request, addr, data);
 790}
 791#endif
 792
 793asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
 794{
 795	long ret = 0;
 796
 797	/* Do the secure computing check first. */
 798	if (secure_computing(regs->gprs[2])) {
 799		/* seccomp failures shouldn't expose any additional code. */
 800		ret = -1;
 801		goto out;
 802	}
 803
 804	/*
 805	 * The sysc_tracesys code in entry.S stored the system
 806	 * call number to gprs[2].
 807	 */
 808	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
 809	    (tracehook_report_syscall_entry(regs) ||
 810	     regs->gprs[2] >= NR_syscalls)) {
 811		/*
 812		 * Tracing decided this syscall should not happen or the
 813		 * debugger stored an invalid system call number. Skip
 814		 * the system call and the system call restart handling.
 815		 */
 816		clear_thread_flag(TIF_SYSCALL);
 817		ret = -1;
 818	}
 819
 820	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 821		trace_sys_enter(regs, regs->gprs[2]);
 822
 823	audit_syscall_entry(is_compat_task() ?
 824				AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
 825			    regs->gprs[2], regs->orig_gpr2,
 826			    regs->gprs[3], regs->gprs[4],
 827			    regs->gprs[5]);
 828out:
 829	return ret ?: regs->gprs[2];
 830}
 831
 832asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
 833{
 834	audit_syscall_exit(regs);
 835
 836	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 837		trace_sys_exit(regs, regs->gprs[2]);
 838
 839	if (test_thread_flag(TIF_SYSCALL_TRACE))
 840		tracehook_report_syscall_exit(regs, 0);
 841}
 842
 843/*
 844 * user_regset definitions.
 845 */
 846
 847static int s390_regs_get(struct task_struct *target,
 848			 const struct user_regset *regset,
 849			 unsigned int pos, unsigned int count,
 850			 void *kbuf, void __user *ubuf)
 851{
 
 852	if (target == current)
 853		save_access_regs(target->thread.acrs);
 854
 855	if (kbuf) {
 856		unsigned long *k = kbuf;
 857		while (count > 0) {
 858			*k++ = __peek_user(target, pos);
 859			count -= sizeof(*k);
 860			pos += sizeof(*k);
 861		}
 862	} else {
 863		unsigned long __user *u = ubuf;
 864		while (count > 0) {
 865			if (__put_user(__peek_user(target, pos), u++))
 866				return -EFAULT;
 867			count -= sizeof(*u);
 868			pos += sizeof(*u);
 869		}
 870	}
 871	return 0;
 872}
 873
 874static int s390_regs_set(struct task_struct *target,
 875			 const struct user_regset *regset,
 876			 unsigned int pos, unsigned int count,
 877			 const void *kbuf, const void __user *ubuf)
 878{
 879	int rc = 0;
 880
 881	if (target == current)
 882		save_access_regs(target->thread.acrs);
 883
 884	if (kbuf) {
 885		const unsigned long *k = kbuf;
 886		while (count > 0 && !rc) {
 887			rc = __poke_user(target, pos, *k++);
 888			count -= sizeof(*k);
 889			pos += sizeof(*k);
 890		}
 891	} else {
 892		const unsigned long  __user *u = ubuf;
 893		while (count > 0 && !rc) {
 894			unsigned long word;
 895			rc = __get_user(word, u++);
 896			if (rc)
 897				break;
 898			rc = __poke_user(target, pos, word);
 899			count -= sizeof(*u);
 900			pos += sizeof(*u);
 901		}
 902	}
 903
 904	if (rc == 0 && target == current)
 905		restore_access_regs(target->thread.acrs);
 906
 907	return rc;
 908}
 909
 910static int s390_fpregs_get(struct task_struct *target,
 911			   const struct user_regset *regset, unsigned int pos,
 912			   unsigned int count, void *kbuf, void __user *ubuf)
 913{
 914	if (target == current) {
 915		save_fp_ctl(&target->thread.fp_regs.fpc);
 916		save_fp_regs(target->thread.fp_regs.fprs);
 917	}
 
 
 
 918
 919	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 920				   &target->thread.fp_regs, 0, -1);
 921}
 922
 923static int s390_fpregs_set(struct task_struct *target,
 924			   const struct user_regset *regset, unsigned int pos,
 925			   unsigned int count, const void *kbuf,
 926			   const void __user *ubuf)
 927{
 928	int rc = 0;
 
 
 
 
 929
 930	if (target == current) {
 931		save_fp_ctl(&target->thread.fp_regs.fpc);
 932		save_fp_regs(target->thread.fp_regs.fprs);
 933	}
 934
 935	/* If setting FPC, must validate it first. */
 936	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 937		u32 ufpc[2] = { target->thread.fp_regs.fpc, 0 };
 938		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
 939					0, offsetof(s390_fp_regs, fprs));
 940		if (rc)
 941			return rc;
 942		if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
 943			return -EINVAL;
 944		target->thread.fp_regs.fpc = ufpc[0];
 945	}
 946
 947	if (rc == 0 && count > 0)
 948		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 949					target->thread.fp_regs.fprs,
 950					offsetof(s390_fp_regs, fprs), -1);
 951
 952	if (rc == 0 && target == current) {
 953		restore_fp_ctl(&target->thread.fp_regs.fpc);
 954		restore_fp_regs(target->thread.fp_regs.fprs);
 955	}
 
 956
 957	return rc;
 958}
 959
 960#ifdef CONFIG_64BIT
 961
 962static int s390_last_break_get(struct task_struct *target,
 963			       const struct user_regset *regset,
 964			       unsigned int pos, unsigned int count,
 965			       void *kbuf, void __user *ubuf)
 966{
 967	if (count > 0) {
 968		if (kbuf) {
 969			unsigned long *k = kbuf;
 970			*k = task_thread_info(target)->last_break;
 971		} else {
 972			unsigned long  __user *u = ubuf;
 973			if (__put_user(task_thread_info(target)->last_break, u))
 974				return -EFAULT;
 975		}
 976	}
 977	return 0;
 978}
 979
 980static int s390_last_break_set(struct task_struct *target,
 981			       const struct user_regset *regset,
 982			       unsigned int pos, unsigned int count,
 983			       const void *kbuf, const void __user *ubuf)
 984{
 985	return 0;
 986}
 987
 988static int s390_tdb_get(struct task_struct *target,
 989			const struct user_regset *regset,
 990			unsigned int pos, unsigned int count,
 991			void *kbuf, void __user *ubuf)
 992{
 993	struct pt_regs *regs = task_pt_regs(target);
 994	unsigned char *data;
 995
 996	if (!(regs->int_code & 0x200))
 997		return -ENODATA;
 998	data = target->thread.trap_tdb;
 999	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1000}
1001
1002static int s390_tdb_set(struct task_struct *target,
1003			const struct user_regset *regset,
1004			unsigned int pos, unsigned int count,
1005			const void *kbuf, const void __user *ubuf)
1006{
1007	return 0;
1008}
1009
1010#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011
1012static int s390_system_call_get(struct task_struct *target,
1013				const struct user_regset *regset,
1014				unsigned int pos, unsigned int count,
1015				void *kbuf, void __user *ubuf)
1016{
1017	unsigned int *data = &task_thread_info(target)->system_call;
1018	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1019				   data, 0, sizeof(unsigned int));
1020}
1021
1022static int s390_system_call_set(struct task_struct *target,
1023				const struct user_regset *regset,
1024				unsigned int pos, unsigned int count,
1025				const void *kbuf, const void __user *ubuf)
1026{
1027	unsigned int *data = &task_thread_info(target)->system_call;
1028	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1029				  data, 0, sizeof(unsigned int));
1030}
1031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032static const struct user_regset s390_regsets[] = {
1033	[REGSET_GENERAL] = {
1034		.core_note_type = NT_PRSTATUS,
1035		.n = sizeof(s390_regs) / sizeof(long),
1036		.size = sizeof(long),
1037		.align = sizeof(long),
1038		.get = s390_regs_get,
1039		.set = s390_regs_set,
1040	},
1041	[REGSET_FP] = {
1042		.core_note_type = NT_PRFPREG,
1043		.n = sizeof(s390_fp_regs) / sizeof(long),
1044		.size = sizeof(long),
1045		.align = sizeof(long),
1046		.get = s390_fpregs_get,
1047		.set = s390_fpregs_set,
1048	},
1049#ifdef CONFIG_64BIT
1050	[REGSET_LAST_BREAK] = {
 
 
 
 
 
 
 
1051		.core_note_type = NT_S390_LAST_BREAK,
1052		.n = 1,
1053		.size = sizeof(long),
1054		.align = sizeof(long),
1055		.get = s390_last_break_get,
1056		.set = s390_last_break_set,
1057	},
1058	[REGSET_TDB] = {
1059		.core_note_type = NT_S390_TDB,
1060		.n = 1,
1061		.size = 256,
1062		.align = 1,
1063		.get = s390_tdb_get,
1064		.set = s390_tdb_set,
1065	},
1066#endif
1067	[REGSET_SYSTEM_CALL] = {
1068		.core_note_type = NT_S390_SYSTEM_CALL,
1069		.n = 1,
1070		.size = sizeof(unsigned int),
1071		.align = sizeof(unsigned int),
1072		.get = s390_system_call_get,
1073		.set = s390_system_call_set,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1074	},
1075};
1076
1077static const struct user_regset_view user_s390_view = {
1078	.name = UTS_MACHINE,
1079	.e_machine = EM_S390,
1080	.regsets = s390_regsets,
1081	.n = ARRAY_SIZE(s390_regsets)
1082};
1083
1084#ifdef CONFIG_COMPAT
1085static int s390_compat_regs_get(struct task_struct *target,
1086				const struct user_regset *regset,
1087				unsigned int pos, unsigned int count,
1088				void *kbuf, void __user *ubuf)
1089{
 
 
1090	if (target == current)
1091		save_access_regs(target->thread.acrs);
1092
1093	if (kbuf) {
1094		compat_ulong_t *k = kbuf;
1095		while (count > 0) {
1096			*k++ = __peek_user_compat(target, pos);
1097			count -= sizeof(*k);
1098			pos += sizeof(*k);
1099		}
1100	} else {
1101		compat_ulong_t __user *u = ubuf;
1102		while (count > 0) {
1103			if (__put_user(__peek_user_compat(target, pos), u++))
1104				return -EFAULT;
1105			count -= sizeof(*u);
1106			pos += sizeof(*u);
1107		}
1108	}
1109	return 0;
1110}
1111
1112static int s390_compat_regs_set(struct task_struct *target,
1113				const struct user_regset *regset,
1114				unsigned int pos, unsigned int count,
1115				const void *kbuf, const void __user *ubuf)
1116{
1117	int rc = 0;
1118
1119	if (target == current)
1120		save_access_regs(target->thread.acrs);
1121
1122	if (kbuf) {
1123		const compat_ulong_t *k = kbuf;
1124		while (count > 0 && !rc) {
1125			rc = __poke_user_compat(target, pos, *k++);
1126			count -= sizeof(*k);
1127			pos += sizeof(*k);
1128		}
1129	} else {
1130		const compat_ulong_t  __user *u = ubuf;
1131		while (count > 0 && !rc) {
1132			compat_ulong_t word;
1133			rc = __get_user(word, u++);
1134			if (rc)
1135				break;
1136			rc = __poke_user_compat(target, pos, word);
1137			count -= sizeof(*u);
1138			pos += sizeof(*u);
1139		}
1140	}
1141
1142	if (rc == 0 && target == current)
1143		restore_access_regs(target->thread.acrs);
1144
1145	return rc;
1146}
1147
1148static int s390_compat_regs_high_get(struct task_struct *target,
1149				     const struct user_regset *regset,
1150				     unsigned int pos, unsigned int count,
1151				     void *kbuf, void __user *ubuf)
1152{
1153	compat_ulong_t *gprs_high;
 
1154
1155	gprs_high = (compat_ulong_t *)
1156		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1157	if (kbuf) {
1158		compat_ulong_t *k = kbuf;
1159		while (count > 0) {
1160			*k++ = *gprs_high;
1161			gprs_high += 2;
1162			count -= sizeof(*k);
1163		}
1164	} else {
1165		compat_ulong_t __user *u = ubuf;
1166		while (count > 0) {
1167			if (__put_user(*gprs_high, u++))
1168				return -EFAULT;
1169			gprs_high += 2;
1170			count -= sizeof(*u);
1171		}
1172	}
1173	return 0;
1174}
1175
1176static int s390_compat_regs_high_set(struct task_struct *target,
1177				     const struct user_regset *regset,
1178				     unsigned int pos, unsigned int count,
1179				     const void *kbuf, const void __user *ubuf)
1180{
1181	compat_ulong_t *gprs_high;
1182	int rc = 0;
1183
1184	gprs_high = (compat_ulong_t *)
1185		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1186	if (kbuf) {
1187		const compat_ulong_t *k = kbuf;
1188		while (count > 0) {
1189			*gprs_high = *k++;
1190			*gprs_high += 2;
1191			count -= sizeof(*k);
1192		}
1193	} else {
1194		const compat_ulong_t  __user *u = ubuf;
1195		while (count > 0 && !rc) {
1196			unsigned long word;
1197			rc = __get_user(word, u++);
1198			if (rc)
1199				break;
1200			*gprs_high = word;
1201			*gprs_high += 2;
1202			count -= sizeof(*u);
1203		}
1204	}
1205
1206	return rc;
1207}
1208
1209static int s390_compat_last_break_get(struct task_struct *target,
1210				      const struct user_regset *regset,
1211				      unsigned int pos, unsigned int count,
1212				      void *kbuf, void __user *ubuf)
1213{
1214	compat_ulong_t last_break;
1215
1216	if (count > 0) {
1217		last_break = task_thread_info(target)->last_break;
1218		if (kbuf) {
1219			unsigned long *k = kbuf;
1220			*k = last_break;
1221		} else {
1222			unsigned long  __user *u = ubuf;
1223			if (__put_user(last_break, u))
1224				return -EFAULT;
1225		}
1226	}
1227	return 0;
1228}
1229
1230static int s390_compat_last_break_set(struct task_struct *target,
1231				      const struct user_regset *regset,
1232				      unsigned int pos, unsigned int count,
1233				      const void *kbuf, const void __user *ubuf)
1234{
1235	return 0;
1236}
1237
1238static const struct user_regset s390_compat_regsets[] = {
1239	[REGSET_GENERAL] = {
1240		.core_note_type = NT_PRSTATUS,
1241		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1242		.size = sizeof(compat_long_t),
1243		.align = sizeof(compat_long_t),
1244		.get = s390_compat_regs_get,
1245		.set = s390_compat_regs_set,
1246	},
1247	[REGSET_FP] = {
1248		.core_note_type = NT_PRFPREG,
1249		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1250		.size = sizeof(compat_long_t),
1251		.align = sizeof(compat_long_t),
1252		.get = s390_fpregs_get,
1253		.set = s390_fpregs_set,
1254	},
1255	[REGSET_LAST_BREAK] = {
 
 
 
 
 
 
 
 
1256		.core_note_type = NT_S390_LAST_BREAK,
1257		.n = 1,
1258		.size = sizeof(long),
1259		.align = sizeof(long),
1260		.get = s390_compat_last_break_get,
1261		.set = s390_compat_last_break_set,
1262	},
1263	[REGSET_TDB] = {
1264		.core_note_type = NT_S390_TDB,
1265		.n = 1,
1266		.size = 256,
1267		.align = 1,
1268		.get = s390_tdb_get,
1269		.set = s390_tdb_set,
1270	},
1271	[REGSET_SYSTEM_CALL] = {
1272		.core_note_type = NT_S390_SYSTEM_CALL,
1273		.n = 1,
1274		.size = sizeof(compat_uint_t),
1275		.align = sizeof(compat_uint_t),
1276		.get = s390_system_call_get,
1277		.set = s390_system_call_set,
 
 
 
 
 
 
 
 
1278	},
1279	[REGSET_GENERAL_EXTENDED] = {
1280		.core_note_type = NT_S390_HIGH_GPRS,
1281		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1282		.size = sizeof(compat_long_t),
1283		.align = sizeof(compat_long_t),
1284		.get = s390_compat_regs_high_get,
1285		.set = s390_compat_regs_high_set,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1286	},
1287};
1288
1289static const struct user_regset_view user_s390_compat_view = {
1290	.name = "s390",
1291	.e_machine = EM_S390,
1292	.regsets = s390_compat_regsets,
1293	.n = ARRAY_SIZE(s390_compat_regsets)
1294};
1295#endif
1296
1297const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1298{
1299#ifdef CONFIG_COMPAT
1300	if (test_tsk_thread_flag(task, TIF_31BIT))
1301		return &user_s390_compat_view;
1302#endif
1303	return &user_s390_view;
1304}
1305
1306static const char *gpr_names[NUM_GPRS] = {
1307	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1308	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1309};
1310
1311unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1312{
1313	if (offset >= NUM_GPRS)
1314		return 0;
1315	return regs->gprs[offset];
1316}
1317
1318int regs_query_register_offset(const char *name)
1319{
1320	unsigned long offset;
1321
1322	if (!name || *name != 'r')
1323		return -EINVAL;
1324	if (kstrtoul(name + 1, 10, &offset))
1325		return -EINVAL;
1326	if (offset >= NUM_GPRS)
1327		return -EINVAL;
1328	return offset;
1329}
1330
1331const char *regs_query_register_name(unsigned int offset)
1332{
1333	if (offset >= NUM_GPRS)
1334		return NULL;
1335	return gpr_names[offset];
1336}
1337
1338static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1339{
1340	unsigned long ksp = kernel_stack_pointer(regs);
1341
1342	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1343}
1344
1345/**
1346 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1347 * @regs:pt_regs which contains kernel stack pointer.
1348 * @n:stack entry number.
1349 *
1350 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1351 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1352 * this returns 0.
1353 */
1354unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1355{
1356	unsigned long addr;
1357
1358	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1359	if (!regs_within_kernel_stack(regs, addr))
1360		return 0;
1361	return *(unsigned long *)addr;
1362}