Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *
4 * Common boot and setup code.
5 *
6 * Copyright (C) 2001 PPC64 Team, IBM Corp
7 */
8
9#include <linux/export.h>
10#include <linux/string.h>
11#include <linux/sched.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
14#include <linux/reboot.h>
15#include <linux/delay.h>
16#include <linux/initrd.h>
17#include <linux/seq_file.h>
18#include <linux/ioport.h>
19#include <linux/console.h>
20#include <linux/utsname.h>
21#include <linux/tty.h>
22#include <linux/root_dev.h>
23#include <linux/notifier.h>
24#include <linux/cpu.h>
25#include <linux/unistd.h>
26#include <linux/serial.h>
27#include <linux/serial_8250.h>
28#include <linux/memblock.h>
29#include <linux/pci.h>
30#include <linux/lockdep.h>
31#include <linux/memory.h>
32#include <linux/nmi.h>
33#include <linux/pgtable.h>
34#include <linux/of.h>
35#include <linux/of_fdt.h>
36
37#include <asm/asm-prototypes.h>
38#include <asm/kvm_guest.h>
39#include <asm/io.h>
40#include <asm/kdump.h>
41#include <asm/processor.h>
42#include <asm/smp.h>
43#include <asm/elf.h>
44#include <asm/machdep.h>
45#include <asm/paca.h>
46#include <asm/time.h>
47#include <asm/cputable.h>
48#include <asm/dt_cpu_ftrs.h>
49#include <asm/sections.h>
50#include <asm/btext.h>
51#include <asm/nvram.h>
52#include <asm/setup.h>
53#include <asm/rtas.h>
54#include <asm/iommu.h>
55#include <asm/serial.h>
56#include <asm/cache.h>
57#include <asm/page.h>
58#include <asm/mmu.h>
59#include <asm/firmware.h>
60#include <asm/xmon.h>
61#include <asm/udbg.h>
62#include <asm/kexec.h>
63#include <asm/code-patching.h>
64#include <asm/ftrace.h>
65#include <asm/opal.h>
66#include <asm/cputhreads.h>
67#include <asm/hw_irq.h>
68#include <asm/feature-fixups.h>
69#include <asm/kup.h>
70#include <asm/early_ioremap.h>
71#include <asm/pgalloc.h>
72
73#include "setup.h"
74
75int spinning_secondaries;
76u64 ppc64_pft_size;
77
78struct ppc64_caches ppc64_caches = {
79 .l1d = {
80 .block_size = 0x40,
81 .log_block_size = 6,
82 },
83 .l1i = {
84 .block_size = 0x40,
85 .log_block_size = 6
86 },
87};
88EXPORT_SYMBOL_GPL(ppc64_caches);
89
90#if defined(CONFIG_PPC_BOOK3E_64) && defined(CONFIG_SMP)
91void __init setup_tlb_core_data(void)
92{
93 int cpu;
94
95 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
96
97 for_each_possible_cpu(cpu) {
98 int first = cpu_first_thread_sibling(cpu);
99
100 /*
101 * If we boot via kdump on a non-primary thread,
102 * make sure we point at the thread that actually
103 * set up this TLB.
104 */
105 if (cpu_first_thread_sibling(boot_cpuid) == first)
106 first = boot_cpuid;
107
108 paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
109
110 /*
111 * If we have threads, we need either tlbsrx.
112 * or e6500 tablewalk mode, or else TLB handlers
113 * will be racy and could produce duplicate entries.
114 * Should we panic instead?
115 */
116 WARN_ONCE(smt_enabled_at_boot >= 2 &&
117 book3e_htw_mode != PPC_HTW_E6500,
118 "%s: unsupported MMU configuration\n", __func__);
119 }
120}
121#endif
122
123#ifdef CONFIG_SMP
124
125static char *smt_enabled_cmdline;
126
127/* Look for ibm,smt-enabled OF option */
128void __init check_smt_enabled(void)
129{
130 struct device_node *dn;
131 const char *smt_option;
132
133 /* Default to enabling all threads */
134 smt_enabled_at_boot = threads_per_core;
135
136 /* Allow the command line to overrule the OF option */
137 if (smt_enabled_cmdline) {
138 if (!strcmp(smt_enabled_cmdline, "on"))
139 smt_enabled_at_boot = threads_per_core;
140 else if (!strcmp(smt_enabled_cmdline, "off"))
141 smt_enabled_at_boot = 0;
142 else {
143 int smt;
144 int rc;
145
146 rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
147 if (!rc)
148 smt_enabled_at_boot =
149 min(threads_per_core, smt);
150 }
151 } else {
152 dn = of_find_node_by_path("/options");
153 if (dn) {
154 smt_option = of_get_property(dn, "ibm,smt-enabled",
155 NULL);
156
157 if (smt_option) {
158 if (!strcmp(smt_option, "on"))
159 smt_enabled_at_boot = threads_per_core;
160 else if (!strcmp(smt_option, "off"))
161 smt_enabled_at_boot = 0;
162 }
163
164 of_node_put(dn);
165 }
166 }
167}
168
169/* Look for smt-enabled= cmdline option */
170static int __init early_smt_enabled(char *p)
171{
172 smt_enabled_cmdline = p;
173 return 0;
174}
175early_param("smt-enabled", early_smt_enabled);
176
177#endif /* CONFIG_SMP */
178
179/** Fix up paca fields required for the boot cpu */
180static void __init fixup_boot_paca(struct paca_struct *boot_paca)
181{
182 /* The boot cpu is started */
183 boot_paca->cpu_start = 1;
184#ifdef CONFIG_PPC_BOOK3S_64
185 /*
186 * Give the early boot machine check stack somewhere to use, use
187 * half of the init stack. This is a bit hacky but there should not be
188 * deep stack usage in early init so shouldn't overflow it or overwrite
189 * things.
190 */
191 boot_paca->mc_emergency_sp = (void *)&init_thread_union +
192 (THREAD_SIZE/2);
193#endif
194 /* Allow percpu accesses to work until we setup percpu data */
195 boot_paca->data_offset = 0;
196 /* Mark interrupts soft and hard disabled in PACA */
197 boot_paca->irq_soft_mask = IRQS_DISABLED;
198 boot_paca->irq_happened = PACA_IRQ_HARD_DIS;
199 WARN_ON(mfmsr() & MSR_EE);
200}
201
202static void __init configure_exceptions(void)
203{
204 /*
205 * Setup the trampolines from the lowmem exception vectors
206 * to the kdump kernel when not using a relocatable kernel.
207 */
208 setup_kdump_trampoline();
209
210 /* Under a PAPR hypervisor, we need hypercalls */
211 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
212 /*
213 * - PR KVM does not support AIL mode interrupts in the host
214 * while a PR guest is running.
215 *
216 * - SCV system call interrupt vectors are only implemented for
217 * AIL mode interrupts.
218 *
219 * - On pseries, AIL mode can only be enabled and disabled
220 * system-wide so when a PR VM is created on a pseries host,
221 * all CPUs of the host are set to AIL=0 mode.
222 *
223 * - Therefore host CPUs must not execute scv while a PR VM
224 * exists.
225 *
226 * - SCV support can not be disabled dynamically because the
227 * feature is advertised to host userspace. Disabling the
228 * facility and emulating it would be possible but is not
229 * implemented.
230 *
231 * - So SCV support is blanket disabled if PR KVM could possibly
232 * run. That is, PR support compiled in, booting on pseries
233 * with hash MMU.
234 */
235 if (IS_ENABLED(CONFIG_KVM_BOOK3S_PR_POSSIBLE) && !radix_enabled()) {
236 init_task.thread.fscr &= ~FSCR_SCV;
237 cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV;
238 }
239
240 /* Enable AIL if possible */
241 if (!pseries_enable_reloc_on_exc()) {
242 init_task.thread.fscr &= ~FSCR_SCV;
243 cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV;
244 }
245
246 /*
247 * Tell the hypervisor that we want our exceptions to
248 * be taken in little endian mode.
249 *
250 * We don't call this for big endian as our calling convention
251 * makes us always enter in BE, and the call may fail under
252 * some circumstances with kdump.
253 */
254#ifdef __LITTLE_ENDIAN__
255 pseries_little_endian_exceptions();
256#endif
257 } else {
258 /* Set endian mode using OPAL */
259 if (firmware_has_feature(FW_FEATURE_OPAL))
260 opal_configure_cores();
261
262 /* AIL on native is done in cpu_ready_for_interrupts() */
263 }
264}
265
266static void cpu_ready_for_interrupts(void)
267{
268 /*
269 * Enable AIL if supported, and we are in hypervisor mode. This
270 * is called once for every processor.
271 *
272 * If we are not in hypervisor mode the job is done once for
273 * the whole partition in configure_exceptions().
274 */
275 if (cpu_has_feature(CPU_FTR_HVMODE)) {
276 unsigned long lpcr = mfspr(SPRN_LPCR);
277 unsigned long new_lpcr = lpcr;
278
279 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
280 /* P10 DD1 does not have HAIL */
281 if (pvr_version_is(PVR_POWER10) &&
282 (mfspr(SPRN_PVR) & 0xf00) == 0x100)
283 new_lpcr |= LPCR_AIL_3;
284 else
285 new_lpcr |= LPCR_HAIL;
286 } else if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
287 new_lpcr |= LPCR_AIL_3;
288 }
289
290 if (new_lpcr != lpcr)
291 mtspr(SPRN_LPCR, new_lpcr);
292 }
293
294 /*
295 * Set HFSCR:TM based on CPU features:
296 * In the special case of TM no suspend (P9N DD2.1), Linux is
297 * told TM is off via the dt-ftrs but told to (partially) use
298 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
299 * will be off from dt-ftrs but we need to turn it on for the
300 * no suspend case.
301 */
302 if (cpu_has_feature(CPU_FTR_HVMODE)) {
303 if (cpu_has_feature(CPU_FTR_TM_COMP))
304 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
305 else
306 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
307 }
308
309 /* Set IR and DR in PACA MSR */
310 get_paca()->kernel_msr = MSR_KERNEL;
311}
312
313unsigned long spr_default_dscr = 0;
314
315static void __init record_spr_defaults(void)
316{
317 if (early_cpu_has_feature(CPU_FTR_DSCR))
318 spr_default_dscr = mfspr(SPRN_DSCR);
319}
320
321/*
322 * Early initialization entry point. This is called by head.S
323 * with MMU translation disabled. We rely on the "feature" of
324 * the CPU that ignores the top 2 bits of the address in real
325 * mode so we can access kernel globals normally provided we
326 * only toy with things in the RMO region. From here, we do
327 * some early parsing of the device-tree to setup out MEMBLOCK
328 * data structures, and allocate & initialize the hash table
329 * and segment tables so we can start running with translation
330 * enabled.
331 *
332 * It is this function which will call the probe() callback of
333 * the various platform types and copy the matching one to the
334 * global ppc_md structure. Your platform can eventually do
335 * some very early initializations from the probe() routine, but
336 * this is not recommended, be very careful as, for example, the
337 * device-tree is not accessible via normal means at this point.
338 */
339
340void __init early_setup(unsigned long dt_ptr)
341{
342 static __initdata struct paca_struct boot_paca;
343
344 /* -------- printk is _NOT_ safe to use here ! ------- */
345
346 /*
347 * Assume we're on cpu 0 for now.
348 *
349 * We need to load a PACA very early for a few reasons.
350 *
351 * The stack protector canary is stored in the paca, so as soon as we
352 * call any stack protected code we need r13 pointing somewhere valid.
353 *
354 * If we are using kcov it will call in_task() in its instrumentation,
355 * which relies on the current task from the PACA.
356 *
357 * dt_cpu_ftrs_init() calls into generic OF/fdt code, as well as
358 * printk(), which can trigger both stack protector and kcov.
359 *
360 * percpu variables and spin locks also use the paca.
361 *
362 * So set up a temporary paca. It will be replaced below once we know
363 * what CPU we are on.
364 */
365 initialise_paca(&boot_paca, 0);
366 fixup_boot_paca(&boot_paca);
367 WARN_ON(local_paca);
368 setup_paca(&boot_paca); /* install the paca into registers */
369
370 /* -------- printk is now safe to use ------- */
371
372 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && (mfmsr() & MSR_HV))
373 enable_machine_check();
374
375 /* Try new device tree based feature discovery ... */
376 if (!dt_cpu_ftrs_init(__va(dt_ptr)))
377 /* Otherwise use the old style CPU table */
378 identify_cpu(0, mfspr(SPRN_PVR));
379
380 /* Enable early debugging if any specified (see udbg.h) */
381 udbg_early_init();
382
383 udbg_printf(" -> %s(), dt_ptr: 0x%lx\n", __func__, dt_ptr);
384
385 /*
386 * Do early initialization using the flattened device
387 * tree, such as retrieving the physical memory map or
388 * calculating/retrieving the hash table size, discover
389 * boot_cpuid and boot_cpu_hwid.
390 */
391 early_init_devtree(__va(dt_ptr));
392
393 allocate_paca_ptrs();
394 allocate_paca(boot_cpuid);
395 set_hard_smp_processor_id(boot_cpuid, boot_cpu_hwid);
396 fixup_boot_paca(paca_ptrs[boot_cpuid]);
397 setup_paca(paca_ptrs[boot_cpuid]); /* install the paca into registers */
398 // smp_processor_id() now reports boot_cpuid
399
400#ifdef CONFIG_SMP
401 task_thread_info(current)->cpu = boot_cpuid; // fix task_cpu(current)
402#endif
403
404 /*
405 * Configure exception handlers. This include setting up trampolines
406 * if needed, setting exception endian mode, etc...
407 */
408 configure_exceptions();
409
410 /*
411 * Configure Kernel Userspace Protection. This needs to happen before
412 * feature fixups for platforms that implement this using features.
413 */
414 setup_kup();
415
416 /* Apply all the dynamic patching */
417 apply_feature_fixups();
418 setup_feature_keys();
419
420 /* Initialize the hash table or TLB handling */
421 early_init_mmu();
422
423 early_ioremap_setup();
424
425 /*
426 * After firmware and early platform setup code has set things up,
427 * we note the SPR values for configurable control/performance
428 * registers, and use those as initial defaults.
429 */
430 record_spr_defaults();
431
432 /*
433 * At this point, we can let interrupts switch to virtual mode
434 * (the MMU has been setup), so adjust the MSR in the PACA to
435 * have IR and DR set and enable AIL if it exists
436 */
437 cpu_ready_for_interrupts();
438
439 /*
440 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
441 * will only actually get enabled on the boot cpu much later once
442 * ftrace itself has been initialized.
443 */
444 this_cpu_enable_ftrace();
445
446 udbg_printf(" <- %s()\n", __func__);
447
448#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
449 /*
450 * This needs to be done *last* (after the above udbg_printf() even)
451 *
452 * Right after we return from this function, we turn on the MMU
453 * which means the real-mode access trick that btext does will
454 * no longer work, it needs to switch to using a real MMU
455 * mapping. This call will ensure that it does
456 */
457 btext_map();
458#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
459}
460
461#ifdef CONFIG_SMP
462void early_setup_secondary(void)
463{
464 /* Mark interrupts disabled in PACA */
465 irq_soft_mask_set(IRQS_DISABLED);
466
467 /* Initialize the hash table or TLB handling */
468 early_init_mmu_secondary();
469
470 /* Perform any KUP setup that is per-cpu */
471 setup_kup();
472
473 /*
474 * At this point, we can let interrupts switch to virtual mode
475 * (the MMU has been setup), so adjust the MSR in the PACA to
476 * have IR and DR set.
477 */
478 cpu_ready_for_interrupts();
479}
480
481#endif /* CONFIG_SMP */
482
483void __noreturn panic_smp_self_stop(void)
484{
485 hard_irq_disable();
486 spin_begin();
487 while (1)
488 spin_cpu_relax();
489}
490
491#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
492static bool use_spinloop(void)
493{
494 if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
495 /*
496 * See comments in head_64.S -- not all platforms insert
497 * secondaries at __secondary_hold and wait at the spin
498 * loop.
499 */
500 if (firmware_has_feature(FW_FEATURE_OPAL))
501 return false;
502 return true;
503 }
504
505 /*
506 * When book3e boots from kexec, the ePAPR spin table does
507 * not get used.
508 */
509 return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
510}
511
512void smp_release_cpus(void)
513{
514 unsigned long *ptr;
515 int i;
516
517 if (!use_spinloop())
518 return;
519
520 /* All secondary cpus are spinning on a common spinloop, release them
521 * all now so they can start to spin on their individual paca
522 * spinloops. For non SMP kernels, the secondary cpus never get out
523 * of the common spinloop.
524 */
525
526 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
527 - PHYSICAL_START);
528 *ptr = ppc_function_entry(generic_secondary_smp_init);
529
530 /* And wait a bit for them to catch up */
531 for (i = 0; i < 100000; i++) {
532 mb();
533 HMT_low();
534 if (spinning_secondaries == 0)
535 break;
536 udelay(1);
537 }
538 pr_debug("spinning_secondaries = %d\n", spinning_secondaries);
539}
540#endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
541
542/*
543 * Initialize some remaining members of the ppc64_caches and systemcfg
544 * structures
545 * (at least until we get rid of them completely). This is mostly some
546 * cache informations about the CPU that will be used by cache flush
547 * routines and/or provided to userland
548 */
549
550static void __init init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
551 u32 bsize, u32 sets)
552{
553 info->size = size;
554 info->sets = sets;
555 info->line_size = lsize;
556 info->block_size = bsize;
557 info->log_block_size = __ilog2(bsize);
558 if (bsize)
559 info->blocks_per_page = PAGE_SIZE / bsize;
560 else
561 info->blocks_per_page = 0;
562
563 if (sets == 0)
564 info->assoc = 0xffff;
565 else
566 info->assoc = size / (sets * lsize);
567}
568
569static bool __init parse_cache_info(struct device_node *np,
570 bool icache,
571 struct ppc_cache_info *info)
572{
573 static const char *ipropnames[] __initdata = {
574 "i-cache-size",
575 "i-cache-sets",
576 "i-cache-block-size",
577 "i-cache-line-size",
578 };
579 static const char *dpropnames[] __initdata = {
580 "d-cache-size",
581 "d-cache-sets",
582 "d-cache-block-size",
583 "d-cache-line-size",
584 };
585 const char **propnames = icache ? ipropnames : dpropnames;
586 const __be32 *sizep, *lsizep, *bsizep, *setsp;
587 u32 size, lsize, bsize, sets;
588 bool success = true;
589
590 size = 0;
591 sets = -1u;
592 lsize = bsize = cur_cpu_spec->dcache_bsize;
593 sizep = of_get_property(np, propnames[0], NULL);
594 if (sizep != NULL)
595 size = be32_to_cpu(*sizep);
596 setsp = of_get_property(np, propnames[1], NULL);
597 if (setsp != NULL)
598 sets = be32_to_cpu(*setsp);
599 bsizep = of_get_property(np, propnames[2], NULL);
600 lsizep = of_get_property(np, propnames[3], NULL);
601 if (bsizep == NULL)
602 bsizep = lsizep;
603 if (lsizep == NULL)
604 lsizep = bsizep;
605 if (lsizep != NULL)
606 lsize = be32_to_cpu(*lsizep);
607 if (bsizep != NULL)
608 bsize = be32_to_cpu(*bsizep);
609 if (sizep == NULL || bsizep == NULL || lsizep == NULL)
610 success = false;
611
612 /*
613 * OF is weird .. it represents fully associative caches
614 * as "1 way" which doesn't make much sense and doesn't
615 * leave room for direct mapped. We'll assume that 0
616 * in OF means direct mapped for that reason.
617 */
618 if (sets == 1)
619 sets = 0;
620 else if (sets == 0)
621 sets = 1;
622
623 init_cache_info(info, size, lsize, bsize, sets);
624
625 return success;
626}
627
628void __init initialize_cache_info(void)
629{
630 struct device_node *cpu = NULL, *l2, *l3 = NULL;
631 u32 pvr;
632
633 /*
634 * All shipping POWER8 machines have a firmware bug that
635 * puts incorrect information in the device-tree. This will
636 * be (hopefully) fixed for future chips but for now hard
637 * code the values if we are running on one of these
638 */
639 pvr = PVR_VER(mfspr(SPRN_PVR));
640 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
641 pvr == PVR_POWER8NVL) {
642 /* size lsize blk sets */
643 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32);
644 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64);
645 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512);
646 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192);
647 } else
648 cpu = of_find_node_by_type(NULL, "cpu");
649
650 /*
651 * We're assuming *all* of the CPUs have the same
652 * d-cache and i-cache sizes... -Peter
653 */
654 if (cpu) {
655 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
656 pr_warn("Argh, can't find dcache properties !\n");
657
658 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
659 pr_warn("Argh, can't find icache properties !\n");
660
661 /*
662 * Try to find the L2 and L3 if any. Assume they are
663 * unified and use the D-side properties.
664 */
665 l2 = of_find_next_cache_node(cpu);
666 of_node_put(cpu);
667 if (l2) {
668 parse_cache_info(l2, false, &ppc64_caches.l2);
669 l3 = of_find_next_cache_node(l2);
670 of_node_put(l2);
671 }
672 if (l3) {
673 parse_cache_info(l3, false, &ppc64_caches.l3);
674 of_node_put(l3);
675 }
676 }
677
678 /* For use by binfmt_elf */
679 dcache_bsize = ppc64_caches.l1d.block_size;
680 icache_bsize = ppc64_caches.l1i.block_size;
681
682 cur_cpu_spec->dcache_bsize = dcache_bsize;
683 cur_cpu_spec->icache_bsize = icache_bsize;
684}
685
686/*
687 * This returns the limit below which memory accesses to the linear
688 * mapping are guarnateed not to cause an architectural exception (e.g.,
689 * TLB or SLB miss fault).
690 *
691 * This is used to allocate PACAs and various interrupt stacks that
692 * that are accessed early in interrupt handlers that must not cause
693 * re-entrant interrupts.
694 */
695__init u64 ppc64_bolted_size(void)
696{
697#ifdef CONFIG_PPC_BOOK3E_64
698 /* Freescale BookE bolts the entire linear mapping */
699 /* XXX: BookE ppc64_rma_limit setup seems to disagree? */
700 if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
701 return linear_map_top;
702 /* Other BookE, we assume the first GB is bolted */
703 return 1ul << 30;
704#else
705 /* BookS radix, does not take faults on linear mapping */
706 if (early_radix_enabled())
707 return ULONG_MAX;
708
709 /* BookS hash, the first segment is bolted */
710 if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
711 return 1UL << SID_SHIFT_1T;
712 return 1UL << SID_SHIFT;
713#endif
714}
715
716static void *__init alloc_stack(unsigned long limit, int cpu)
717{
718 void *ptr;
719
720 BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
721
722 ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_ALIGN,
723 MEMBLOCK_LOW_LIMIT, limit,
724 early_cpu_to_node(cpu));
725 if (!ptr)
726 panic("cannot allocate stacks");
727
728 return ptr;
729}
730
731void __init irqstack_early_init(void)
732{
733 u64 limit = ppc64_bolted_size();
734 unsigned int i;
735
736 /*
737 * Interrupt stacks must be in the first segment since we
738 * cannot afford to take SLB misses on them. They are not
739 * accessed in realmode.
740 */
741 for_each_possible_cpu(i) {
742 softirq_ctx[i] = alloc_stack(limit, i);
743 hardirq_ctx[i] = alloc_stack(limit, i);
744 }
745}
746
747#ifdef CONFIG_PPC_BOOK3E_64
748void __init exc_lvl_early_init(void)
749{
750 unsigned int i;
751
752 for_each_possible_cpu(i) {
753 void *sp;
754
755 sp = alloc_stack(ULONG_MAX, i);
756 critirq_ctx[i] = sp;
757 paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
758
759 sp = alloc_stack(ULONG_MAX, i);
760 dbgirq_ctx[i] = sp;
761 paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
762
763 sp = alloc_stack(ULONG_MAX, i);
764 mcheckirq_ctx[i] = sp;
765 paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
766 }
767
768 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
769 patch_exception(0x040, exc_debug_debug_book3e);
770}
771#endif
772
773/*
774 * Stack space used when we detect a bad kernel stack pointer, and
775 * early in SMP boots before relocation is enabled. Exclusive emergency
776 * stack for machine checks.
777 */
778void __init emergency_stack_init(void)
779{
780 u64 limit, mce_limit;
781 unsigned int i;
782
783 /*
784 * Emergency stacks must be under 256MB, we cannot afford to take
785 * SLB misses on them. The ABI also requires them to be 128-byte
786 * aligned.
787 *
788 * Since we use these as temporary stacks during secondary CPU
789 * bringup, machine check, system reset, and HMI, we need to get
790 * at them in real mode. This means they must also be within the RMO
791 * region.
792 *
793 * The IRQ stacks allocated elsewhere in this file are zeroed and
794 * initialized in kernel/irq.c. These are initialized here in order
795 * to have emergency stacks available as early as possible.
796 */
797 limit = mce_limit = min(ppc64_bolted_size(), ppc64_rma_size);
798
799 /*
800 * Machine check on pseries calls rtas, but can't use the static
801 * rtas_args due to a machine check hitting while the lock is held.
802 * rtas args have to be under 4GB, so the machine check stack is
803 * limited to 4GB so args can be put on stack.
804 */
805 if (firmware_has_feature(FW_FEATURE_LPAR) && mce_limit > SZ_4G)
806 mce_limit = SZ_4G;
807
808 for_each_possible_cpu(i) {
809 paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
810
811#ifdef CONFIG_PPC_BOOK3S_64
812 /* emergency stack for NMI exception handling. */
813 paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
814
815 /* emergency stack for machine check exception handling. */
816 paca_ptrs[i]->mc_emergency_sp = alloc_stack(mce_limit, i) + THREAD_SIZE;
817#endif
818 }
819}
820
821#ifdef CONFIG_SMP
822static int pcpu_cpu_distance(unsigned int from, unsigned int to)
823{
824 if (early_cpu_to_node(from) == early_cpu_to_node(to))
825 return LOCAL_DISTANCE;
826 else
827 return REMOTE_DISTANCE;
828}
829
830static __init int pcpu_cpu_to_node(int cpu)
831{
832 return early_cpu_to_node(cpu);
833}
834
835unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
836EXPORT_SYMBOL(__per_cpu_offset);
837
838void __init setup_per_cpu_areas(void)
839{
840 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
841 size_t atom_size;
842 unsigned long delta;
843 unsigned int cpu;
844 int rc = -EINVAL;
845
846 /*
847 * BookE and BookS radix are historical values and should be revisited.
848 */
849 if (IS_ENABLED(CONFIG_PPC_BOOK3E_64)) {
850 atom_size = SZ_1M;
851 } else if (radix_enabled()) {
852 atom_size = PAGE_SIZE;
853 } else if (IS_ENABLED(CONFIG_PPC_64S_HASH_MMU)) {
854 /*
855 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need
856 * to group units. For larger mappings, use 1M atom which
857 * should be large enough to contain a number of units.
858 */
859 if (mmu_linear_psize == MMU_PAGE_4K)
860 atom_size = PAGE_SIZE;
861 else
862 atom_size = SZ_1M;
863 }
864
865 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
866 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
867 pcpu_cpu_to_node);
868 if (rc)
869 pr_warn("PERCPU: %s allocator failed (%d), "
870 "falling back to page size\n",
871 pcpu_fc_names[pcpu_chosen_fc], rc);
872 }
873
874 if (rc < 0)
875 rc = pcpu_page_first_chunk(0, pcpu_cpu_to_node);
876 if (rc < 0)
877 panic("cannot initialize percpu area (err=%d)", rc);
878
879 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
880 for_each_possible_cpu(cpu) {
881 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
882 paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
883 }
884}
885#endif
886
887#ifdef CONFIG_MEMORY_HOTPLUG
888unsigned long memory_block_size_bytes(void)
889{
890 if (ppc_md.memory_block_size)
891 return ppc_md.memory_block_size();
892
893 return MIN_MEMORY_BLOCK_SIZE;
894}
895#endif
896
897#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
898struct ppc_pci_io ppc_pci_io;
899EXPORT_SYMBOL(ppc_pci_io);
900#endif
901
902#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
903u64 hw_nmi_get_sample_period(int watchdog_thresh)
904{
905 return ppc_proc_freq * watchdog_thresh;
906}
907#endif
908
909/*
910 * The perf based hardlockup detector breaks PMU event based branches, so
911 * disable it by default. Book3S has a soft-nmi hardlockup detector based
912 * on the decrementer interrupt, so it does not suffer from this problem.
913 *
914 * It is likely to get false positives in KVM guests, so disable it there
915 * by default too. PowerVM will not stop or arbitrarily oversubscribe
916 * CPUs, but give a minimum regular allotment even with SPLPAR, so enable
917 * the detector for non-KVM guests, assume PowerVM.
918 */
919static int __init disable_hardlockup_detector(void)
920{
921#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
922 hardlockup_detector_disable();
923#else
924 if (firmware_has_feature(FW_FEATURE_LPAR)) {
925 if (is_kvm_guest())
926 hardlockup_detector_disable();
927 }
928#endif
929
930 return 0;
931}
932early_initcall(disable_hardlockup_detector);
1/*
2 *
3 * Common boot and setup code.
4 *
5 * Copyright (C) 2001 PPC64 Team, IBM Corp
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#define DEBUG
14
15#include <linux/export.h>
16#include <linux/string.h>
17#include <linux/sched.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
20#include <linux/reboot.h>
21#include <linux/delay.h>
22#include <linux/initrd.h>
23#include <linux/seq_file.h>
24#include <linux/ioport.h>
25#include <linux/console.h>
26#include <linux/utsname.h>
27#include <linux/tty.h>
28#include <linux/root_dev.h>
29#include <linux/notifier.h>
30#include <linux/cpu.h>
31#include <linux/unistd.h>
32#include <linux/serial.h>
33#include <linux/serial_8250.h>
34#include <linux/bootmem.h>
35#include <linux/pci.h>
36#include <linux/lockdep.h>
37#include <linux/memblock.h>
38#include <linux/hugetlb.h>
39
40#include <asm/io.h>
41#include <asm/kdump.h>
42#include <asm/prom.h>
43#include <asm/processor.h>
44#include <asm/pgtable.h>
45#include <asm/smp.h>
46#include <asm/elf.h>
47#include <asm/machdep.h>
48#include <asm/paca.h>
49#include <asm/time.h>
50#include <asm/cputable.h>
51#include <asm/sections.h>
52#include <asm/btext.h>
53#include <asm/nvram.h>
54#include <asm/setup.h>
55#include <asm/rtas.h>
56#include <asm/iommu.h>
57#include <asm/serial.h>
58#include <asm/cache.h>
59#include <asm/page.h>
60#include <asm/mmu.h>
61#include <asm/firmware.h>
62#include <asm/xmon.h>
63#include <asm/udbg.h>
64#include <asm/kexec.h>
65#include <asm/mmu_context.h>
66#include <asm/code-patching.h>
67#include <asm/kvm_ppc.h>
68#include <asm/hugetlb.h>
69#include <asm/epapr_hcalls.h>
70
71#ifdef DEBUG
72#define DBG(fmt...) udbg_printf(fmt)
73#else
74#define DBG(fmt...)
75#endif
76
77int spinning_secondaries;
78u64 ppc64_pft_size;
79
80/* Pick defaults since we might want to patch instructions
81 * before we've read this from the device tree.
82 */
83struct ppc64_caches ppc64_caches = {
84 .dline_size = 0x40,
85 .log_dline_size = 6,
86 .iline_size = 0x40,
87 .log_iline_size = 6
88};
89EXPORT_SYMBOL_GPL(ppc64_caches);
90
91/*
92 * These are used in binfmt_elf.c to put aux entries on the stack
93 * for each elf executable being started.
94 */
95int dcache_bsize;
96int icache_bsize;
97int ucache_bsize;
98
99#if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
100static void setup_tlb_core_data(void)
101{
102 int cpu;
103
104 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
105
106 for_each_possible_cpu(cpu) {
107 int first = cpu_first_thread_sibling(cpu);
108
109 paca[cpu].tcd_ptr = &paca[first].tcd;
110
111 /*
112 * If we have threads, we need either tlbsrx.
113 * or e6500 tablewalk mode, or else TLB handlers
114 * will be racy and could produce duplicate entries.
115 */
116 if (smt_enabled_at_boot >= 2 &&
117 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
118 book3e_htw_mode != PPC_HTW_E6500) {
119 /* Should we panic instead? */
120 WARN_ONCE("%s: unsupported MMU configuration -- expect problems\n",
121 __func__);
122 }
123 }
124}
125#else
126static void setup_tlb_core_data(void)
127{
128}
129#endif
130
131#ifdef CONFIG_SMP
132
133static char *smt_enabled_cmdline;
134
135/* Look for ibm,smt-enabled OF option */
136static void check_smt_enabled(void)
137{
138 struct device_node *dn;
139 const char *smt_option;
140
141 /* Default to enabling all threads */
142 smt_enabled_at_boot = threads_per_core;
143
144 /* Allow the command line to overrule the OF option */
145 if (smt_enabled_cmdline) {
146 if (!strcmp(smt_enabled_cmdline, "on"))
147 smt_enabled_at_boot = threads_per_core;
148 else if (!strcmp(smt_enabled_cmdline, "off"))
149 smt_enabled_at_boot = 0;
150 else {
151 long smt;
152 int rc;
153
154 rc = strict_strtol(smt_enabled_cmdline, 10, &smt);
155 if (!rc)
156 smt_enabled_at_boot =
157 min(threads_per_core, (int)smt);
158 }
159 } else {
160 dn = of_find_node_by_path("/options");
161 if (dn) {
162 smt_option = of_get_property(dn, "ibm,smt-enabled",
163 NULL);
164
165 if (smt_option) {
166 if (!strcmp(smt_option, "on"))
167 smt_enabled_at_boot = threads_per_core;
168 else if (!strcmp(smt_option, "off"))
169 smt_enabled_at_boot = 0;
170 }
171
172 of_node_put(dn);
173 }
174 }
175}
176
177/* Look for smt-enabled= cmdline option */
178static int __init early_smt_enabled(char *p)
179{
180 smt_enabled_cmdline = p;
181 return 0;
182}
183early_param("smt-enabled", early_smt_enabled);
184
185#else
186#define check_smt_enabled()
187#endif /* CONFIG_SMP */
188
189/** Fix up paca fields required for the boot cpu */
190static void fixup_boot_paca(void)
191{
192 /* The boot cpu is started */
193 get_paca()->cpu_start = 1;
194 /* Allow percpu accesses to work until we setup percpu data */
195 get_paca()->data_offset = 0;
196}
197
198static void cpu_ready_for_interrupts(void)
199{
200 /* Set IR and DR in PACA MSR */
201 get_paca()->kernel_msr = MSR_KERNEL;
202
203 /* Enable AIL if supported */
204 if (cpu_has_feature(CPU_FTR_HVMODE) &&
205 cpu_has_feature(CPU_FTR_ARCH_207S)) {
206 unsigned long lpcr = mfspr(SPRN_LPCR);
207 mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
208 }
209}
210
211/*
212 * Early initialization entry point. This is called by head.S
213 * with MMU translation disabled. We rely on the "feature" of
214 * the CPU that ignores the top 2 bits of the address in real
215 * mode so we can access kernel globals normally provided we
216 * only toy with things in the RMO region. From here, we do
217 * some early parsing of the device-tree to setup out MEMBLOCK
218 * data structures, and allocate & initialize the hash table
219 * and segment tables so we can start running with translation
220 * enabled.
221 *
222 * It is this function which will call the probe() callback of
223 * the various platform types and copy the matching one to the
224 * global ppc_md structure. Your platform can eventually do
225 * some very early initializations from the probe() routine, but
226 * this is not recommended, be very careful as, for example, the
227 * device-tree is not accessible via normal means at this point.
228 */
229
230void __init early_setup(unsigned long dt_ptr)
231{
232 static __initdata struct paca_struct boot_paca;
233
234 /* -------- printk is _NOT_ safe to use here ! ------- */
235
236 /* Identify CPU type */
237 identify_cpu(0, mfspr(SPRN_PVR));
238
239 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */
240 initialise_paca(&boot_paca, 0);
241 setup_paca(&boot_paca);
242 fixup_boot_paca();
243
244 /* Initialize lockdep early or else spinlocks will blow */
245 lockdep_init();
246
247 /* -------- printk is now safe to use ------- */
248
249 /* Enable early debugging if any specified (see udbg.h) */
250 udbg_early_init();
251
252 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
253
254 /*
255 * Do early initialization using the flattened device
256 * tree, such as retrieving the physical memory map or
257 * calculating/retrieving the hash table size.
258 */
259 early_init_devtree(__va(dt_ptr));
260
261 epapr_paravirt_early_init();
262
263 /* Now we know the logical id of our boot cpu, setup the paca. */
264 setup_paca(&paca[boot_cpuid]);
265 fixup_boot_paca();
266
267 /* Probe the machine type */
268 probe_machine();
269
270 setup_kdump_trampoline();
271
272 DBG("Found, Initializing memory management...\n");
273
274 /* Initialize the hash table or TLB handling */
275 early_init_mmu();
276
277 /*
278 * At this point, we can let interrupts switch to virtual mode
279 * (the MMU has been setup), so adjust the MSR in the PACA to
280 * have IR and DR set and enable AIL if it exists
281 */
282 cpu_ready_for_interrupts();
283
284 /* Reserve large chunks of memory for use by CMA for KVM */
285 kvm_cma_reserve();
286
287 /*
288 * Reserve any gigantic pages requested on the command line.
289 * memblock needs to have been initialized by the time this is
290 * called since this will reserve memory.
291 */
292 reserve_hugetlb_gpages();
293
294 DBG(" <- early_setup()\n");
295
296#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
297 /*
298 * This needs to be done *last* (after the above DBG() even)
299 *
300 * Right after we return from this function, we turn on the MMU
301 * which means the real-mode access trick that btext does will
302 * no longer work, it needs to switch to using a real MMU
303 * mapping. This call will ensure that it does
304 */
305 btext_map();
306#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
307}
308
309#ifdef CONFIG_SMP
310void early_setup_secondary(void)
311{
312 /* Mark interrupts enabled in PACA */
313 get_paca()->soft_enabled = 0;
314
315 /* Initialize the hash table or TLB handling */
316 early_init_mmu_secondary();
317
318 /*
319 * At this point, we can let interrupts switch to virtual mode
320 * (the MMU has been setup), so adjust the MSR in the PACA to
321 * have IR and DR set.
322 */
323 cpu_ready_for_interrupts();
324}
325
326#endif /* CONFIG_SMP */
327
328#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
329void smp_release_cpus(void)
330{
331 unsigned long *ptr;
332 int i;
333
334 DBG(" -> smp_release_cpus()\n");
335
336 /* All secondary cpus are spinning on a common spinloop, release them
337 * all now so they can start to spin on their individual paca
338 * spinloops. For non SMP kernels, the secondary cpus never get out
339 * of the common spinloop.
340 */
341
342 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
343 - PHYSICAL_START);
344 *ptr = __pa(generic_secondary_smp_init);
345
346 /* And wait a bit for them to catch up */
347 for (i = 0; i < 100000; i++) {
348 mb();
349 HMT_low();
350 if (spinning_secondaries == 0)
351 break;
352 udelay(1);
353 }
354 DBG("spinning_secondaries = %d\n", spinning_secondaries);
355
356 DBG(" <- smp_release_cpus()\n");
357}
358#endif /* CONFIG_SMP || CONFIG_KEXEC */
359
360/*
361 * Initialize some remaining members of the ppc64_caches and systemcfg
362 * structures
363 * (at least until we get rid of them completely). This is mostly some
364 * cache informations about the CPU that will be used by cache flush
365 * routines and/or provided to userland
366 */
367static void __init initialize_cache_info(void)
368{
369 struct device_node *np;
370 unsigned long num_cpus = 0;
371
372 DBG(" -> initialize_cache_info()\n");
373
374 for_each_node_by_type(np, "cpu") {
375 num_cpus += 1;
376
377 /*
378 * We're assuming *all* of the CPUs have the same
379 * d-cache and i-cache sizes... -Peter
380 */
381 if (num_cpus == 1) {
382 const __be32 *sizep, *lsizep;
383 u32 size, lsize;
384
385 size = 0;
386 lsize = cur_cpu_spec->dcache_bsize;
387 sizep = of_get_property(np, "d-cache-size", NULL);
388 if (sizep != NULL)
389 size = be32_to_cpu(*sizep);
390 lsizep = of_get_property(np, "d-cache-block-size",
391 NULL);
392 /* fallback if block size missing */
393 if (lsizep == NULL)
394 lsizep = of_get_property(np,
395 "d-cache-line-size",
396 NULL);
397 if (lsizep != NULL)
398 lsize = be32_to_cpu(*lsizep);
399 if (sizep == NULL || lsizep == NULL)
400 DBG("Argh, can't find dcache properties ! "
401 "sizep: %p, lsizep: %p\n", sizep, lsizep);
402
403 ppc64_caches.dsize = size;
404 ppc64_caches.dline_size = lsize;
405 ppc64_caches.log_dline_size = __ilog2(lsize);
406 ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
407
408 size = 0;
409 lsize = cur_cpu_spec->icache_bsize;
410 sizep = of_get_property(np, "i-cache-size", NULL);
411 if (sizep != NULL)
412 size = be32_to_cpu(*sizep);
413 lsizep = of_get_property(np, "i-cache-block-size",
414 NULL);
415 if (lsizep == NULL)
416 lsizep = of_get_property(np,
417 "i-cache-line-size",
418 NULL);
419 if (lsizep != NULL)
420 lsize = be32_to_cpu(*lsizep);
421 if (sizep == NULL || lsizep == NULL)
422 DBG("Argh, can't find icache properties ! "
423 "sizep: %p, lsizep: %p\n", sizep, lsizep);
424
425 ppc64_caches.isize = size;
426 ppc64_caches.iline_size = lsize;
427 ppc64_caches.log_iline_size = __ilog2(lsize);
428 ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
429 }
430 }
431
432 DBG(" <- initialize_cache_info()\n");
433}
434
435
436/*
437 * Do some initial setup of the system. The parameters are those which
438 * were passed in from the bootloader.
439 */
440void __init setup_system(void)
441{
442 DBG(" -> setup_system()\n");
443
444 /* Apply the CPUs-specific and firmware specific fixups to kernel
445 * text (nop out sections not relevant to this CPU or this firmware)
446 */
447 do_feature_fixups(cur_cpu_spec->cpu_features,
448 &__start___ftr_fixup, &__stop___ftr_fixup);
449 do_feature_fixups(cur_cpu_spec->mmu_features,
450 &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup);
451 do_feature_fixups(powerpc_firmware_features,
452 &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
453 do_lwsync_fixups(cur_cpu_spec->cpu_features,
454 &__start___lwsync_fixup, &__stop___lwsync_fixup);
455 do_final_fixups();
456
457 /*
458 * Unflatten the device-tree passed by prom_init or kexec
459 */
460 unflatten_device_tree();
461
462 /*
463 * Fill the ppc64_caches & systemcfg structures with informations
464 * retrieved from the device-tree.
465 */
466 initialize_cache_info();
467
468#ifdef CONFIG_PPC_RTAS
469 /*
470 * Initialize RTAS if available
471 */
472 rtas_initialize();
473#endif /* CONFIG_PPC_RTAS */
474
475 /*
476 * Check if we have an initrd provided via the device-tree
477 */
478 check_for_initrd();
479
480 /*
481 * Do some platform specific early initializations, that includes
482 * setting up the hash table pointers. It also sets up some interrupt-mapping
483 * related options that will be used by finish_device_tree()
484 */
485 if (ppc_md.init_early)
486 ppc_md.init_early();
487
488 /*
489 * We can discover serial ports now since the above did setup the
490 * hash table management for us, thus ioremap works. We do that early
491 * so that further code can be debugged
492 */
493 find_legacy_serial_ports();
494
495 /*
496 * Register early console
497 */
498 register_early_udbg_console();
499
500 /*
501 * Initialize xmon
502 */
503 xmon_setup();
504
505 smp_setup_cpu_maps();
506 check_smt_enabled();
507 setup_tlb_core_data();
508
509#ifdef CONFIG_SMP
510 /* Release secondary cpus out of their spinloops at 0x60 now that
511 * we can map physical -> logical CPU ids
512 */
513 smp_release_cpus();
514#endif
515
516 printk("Starting Linux PPC64 %s\n", init_utsname()->version);
517
518 printk("-----------------------------------------------------\n");
519 printk("ppc64_pft_size = 0x%llx\n", ppc64_pft_size);
520 printk("physicalMemorySize = 0x%llx\n", memblock_phys_mem_size());
521 if (ppc64_caches.dline_size != 0x80)
522 printk("ppc64_caches.dcache_line_size = 0x%x\n",
523 ppc64_caches.dline_size);
524 if (ppc64_caches.iline_size != 0x80)
525 printk("ppc64_caches.icache_line_size = 0x%x\n",
526 ppc64_caches.iline_size);
527#ifdef CONFIG_PPC_STD_MMU_64
528 if (htab_address)
529 printk("htab_address = 0x%p\n", htab_address);
530 printk("htab_hash_mask = 0x%lx\n", htab_hash_mask);
531#endif /* CONFIG_PPC_STD_MMU_64 */
532 if (PHYSICAL_START > 0)
533 printk("physical_start = 0x%llx\n",
534 (unsigned long long)PHYSICAL_START);
535 printk("-----------------------------------------------------\n");
536
537 DBG(" <- setup_system()\n");
538}
539
540/* This returns the limit below which memory accesses to the linear
541 * mapping are guarnateed not to cause a TLB or SLB miss. This is
542 * used to allocate interrupt or emergency stacks for which our
543 * exception entry path doesn't deal with being interrupted.
544 */
545static u64 safe_stack_limit(void)
546{
547#ifdef CONFIG_PPC_BOOK3E
548 /* Freescale BookE bolts the entire linear mapping */
549 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
550 return linear_map_top;
551 /* Other BookE, we assume the first GB is bolted */
552 return 1ul << 30;
553#else
554 /* BookS, the first segment is bolted */
555 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
556 return 1UL << SID_SHIFT_1T;
557 return 1UL << SID_SHIFT;
558#endif
559}
560
561static void __init irqstack_early_init(void)
562{
563 u64 limit = safe_stack_limit();
564 unsigned int i;
565
566 /*
567 * Interrupt stacks must be in the first segment since we
568 * cannot afford to take SLB misses on them.
569 */
570 for_each_possible_cpu(i) {
571 softirq_ctx[i] = (struct thread_info *)
572 __va(memblock_alloc_base(THREAD_SIZE,
573 THREAD_SIZE, limit));
574 hardirq_ctx[i] = (struct thread_info *)
575 __va(memblock_alloc_base(THREAD_SIZE,
576 THREAD_SIZE, limit));
577 }
578}
579
580#ifdef CONFIG_PPC_BOOK3E
581static void __init exc_lvl_early_init(void)
582{
583 unsigned int i;
584 unsigned long sp;
585
586 for_each_possible_cpu(i) {
587 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
588 critirq_ctx[i] = (struct thread_info *)__va(sp);
589 paca[i].crit_kstack = __va(sp + THREAD_SIZE);
590
591 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
592 dbgirq_ctx[i] = (struct thread_info *)__va(sp);
593 paca[i].dbg_kstack = __va(sp + THREAD_SIZE);
594
595 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
596 mcheckirq_ctx[i] = (struct thread_info *)__va(sp);
597 paca[i].mc_kstack = __va(sp + THREAD_SIZE);
598 }
599
600 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
601 patch_exception(0x040, exc_debug_debug_book3e);
602}
603#else
604#define exc_lvl_early_init()
605#endif
606
607/*
608 * Stack space used when we detect a bad kernel stack pointer, and
609 * early in SMP boots before relocation is enabled. Exclusive emergency
610 * stack for machine checks.
611 */
612static void __init emergency_stack_init(void)
613{
614 u64 limit;
615 unsigned int i;
616
617 /*
618 * Emergency stacks must be under 256MB, we cannot afford to take
619 * SLB misses on them. The ABI also requires them to be 128-byte
620 * aligned.
621 *
622 * Since we use these as temporary stacks during secondary CPU
623 * bringup, we need to get at them in real mode. This means they
624 * must also be within the RMO region.
625 */
626 limit = min(safe_stack_limit(), ppc64_rma_size);
627
628 for_each_possible_cpu(i) {
629 unsigned long sp;
630 sp = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
631 sp += THREAD_SIZE;
632 paca[i].emergency_sp = __va(sp);
633
634#ifdef CONFIG_PPC_BOOK3S_64
635 /* emergency stack for machine check exception handling. */
636 sp = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
637 sp += THREAD_SIZE;
638 paca[i].mc_emergency_sp = __va(sp);
639#endif
640 }
641}
642
643/*
644 * Called into from start_kernel this initializes bootmem, which is used
645 * to manage page allocation until mem_init is called.
646 */
647void __init setup_arch(char **cmdline_p)
648{
649 ppc64_boot_msg(0x12, "Setup Arch");
650
651 *cmdline_p = cmd_line;
652
653 /*
654 * Set cache line size based on type of cpu as a default.
655 * Systems with OF can look in the properties on the cpu node(s)
656 * for a possibly more accurate value.
657 */
658 dcache_bsize = ppc64_caches.dline_size;
659 icache_bsize = ppc64_caches.iline_size;
660
661 if (ppc_md.panic)
662 setup_panic();
663
664 init_mm.start_code = (unsigned long)_stext;
665 init_mm.end_code = (unsigned long) _etext;
666 init_mm.end_data = (unsigned long) _edata;
667 init_mm.brk = klimit;
668#ifdef CONFIG_PPC_64K_PAGES
669 init_mm.context.pte_frag = NULL;
670#endif
671 irqstack_early_init();
672 exc_lvl_early_init();
673 emergency_stack_init();
674
675#ifdef CONFIG_PPC_STD_MMU_64
676 stabs_alloc();
677#endif
678 /* set up the bootmem stuff with available memory */
679 do_init_bootmem();
680 sparse_init();
681
682#ifdef CONFIG_DUMMY_CONSOLE
683 conswitchp = &dummy_con;
684#endif
685
686 if (ppc_md.setup_arch)
687 ppc_md.setup_arch();
688
689 paging_init();
690
691 /* Initialize the MMU context management stuff */
692 mmu_context_init();
693
694 /* Interrupt code needs to be 64K-aligned */
695 if ((unsigned long)_stext & 0xffff)
696 panic("Kernelbase not 64K-aligned (0x%lx)!\n",
697 (unsigned long)_stext);
698
699 ppc64_boot_msg(0x15, "Setup Done");
700}
701
702
703/* ToDo: do something useful if ppc_md is not yet setup. */
704#define PPC64_LINUX_FUNCTION 0x0f000000
705#define PPC64_IPL_MESSAGE 0xc0000000
706#define PPC64_TERM_MESSAGE 0xb0000000
707
708static void ppc64_do_msg(unsigned int src, const char *msg)
709{
710 if (ppc_md.progress) {
711 char buf[128];
712
713 sprintf(buf, "%08X\n", src);
714 ppc_md.progress(buf, 0);
715 snprintf(buf, 128, "%s", msg);
716 ppc_md.progress(buf, 0);
717 }
718}
719
720/* Print a boot progress message. */
721void ppc64_boot_msg(unsigned int src, const char *msg)
722{
723 ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
724 printk("[boot]%04x %s\n", src, msg);
725}
726
727#ifdef CONFIG_SMP
728#define PCPU_DYN_SIZE ()
729
730static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
731{
732 return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
733 __pa(MAX_DMA_ADDRESS));
734}
735
736static void __init pcpu_fc_free(void *ptr, size_t size)
737{
738 free_bootmem(__pa(ptr), size);
739}
740
741static int pcpu_cpu_distance(unsigned int from, unsigned int to)
742{
743 if (cpu_to_node(from) == cpu_to_node(to))
744 return LOCAL_DISTANCE;
745 else
746 return REMOTE_DISTANCE;
747}
748
749unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
750EXPORT_SYMBOL(__per_cpu_offset);
751
752void __init setup_per_cpu_areas(void)
753{
754 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
755 size_t atom_size;
756 unsigned long delta;
757 unsigned int cpu;
758 int rc;
759
760 /*
761 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need
762 * to group units. For larger mappings, use 1M atom which
763 * should be large enough to contain a number of units.
764 */
765 if (mmu_linear_psize == MMU_PAGE_4K)
766 atom_size = PAGE_SIZE;
767 else
768 atom_size = 1 << 20;
769
770 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
771 pcpu_fc_alloc, pcpu_fc_free);
772 if (rc < 0)
773 panic("cannot initialize percpu area (err=%d)", rc);
774
775 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
776 for_each_possible_cpu(cpu) {
777 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
778 paca[cpu].data_offset = __per_cpu_offset[cpu];
779 }
780}
781#endif
782
783
784#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
785struct ppc_pci_io ppc_pci_io;
786EXPORT_SYMBOL(ppc_pci_io);
787#endif