Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/fcntl.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8#include <linux/syscalls.h>
9#include <linux/init.h>
10#include <linux/mm.h>
11#include <linux/sched/task.h>
12#include <linux/fs.h>
13#include <linux/filelock.h>
14#include <linux/file.h>
15#include <linux/fdtable.h>
16#include <linux/capability.h>
17#include <linux/dnotify.h>
18#include <linux/slab.h>
19#include <linux/module.h>
20#include <linux/pipe_fs_i.h>
21#include <linux/security.h>
22#include <linux/ptrace.h>
23#include <linux/signal.h>
24#include <linux/rcupdate.h>
25#include <linux/pid_namespace.h>
26#include <linux/user_namespace.h>
27#include <linux/memfd.h>
28#include <linux/compat.h>
29#include <linux/mount.h>
30
31#include <linux/poll.h>
32#include <asm/siginfo.h>
33#include <linux/uaccess.h>
34
35#define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
36
37static int setfl(int fd, struct file * filp, unsigned int arg)
38{
39 struct inode * inode = file_inode(filp);
40 int error = 0;
41
42 /*
43 * O_APPEND cannot be cleared if the file is marked as append-only
44 * and the file is open for write.
45 */
46 if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
47 return -EPERM;
48
49 /* O_NOATIME can only be set by the owner or superuser */
50 if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
51 if (!inode_owner_or_capable(file_mnt_idmap(filp), inode))
52 return -EPERM;
53
54 /* required for strict SunOS emulation */
55 if (O_NONBLOCK != O_NDELAY)
56 if (arg & O_NDELAY)
57 arg |= O_NONBLOCK;
58
59 /* Pipe packetized mode is controlled by O_DIRECT flag */
60 if (!S_ISFIFO(inode->i_mode) &&
61 (arg & O_DIRECT) &&
62 !(filp->f_mode & FMODE_CAN_ODIRECT))
63 return -EINVAL;
64
65 if (filp->f_op->check_flags)
66 error = filp->f_op->check_flags(arg);
67 if (error)
68 return error;
69
70 /*
71 * ->fasync() is responsible for setting the FASYNC bit.
72 */
73 if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
74 error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
75 if (error < 0)
76 goto out;
77 if (error > 0)
78 error = 0;
79 }
80 spin_lock(&filp->f_lock);
81 filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
82 filp->f_iocb_flags = iocb_flags(filp);
83 spin_unlock(&filp->f_lock);
84
85 out:
86 return error;
87}
88
89static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
90 int force)
91{
92 write_lock_irq(&filp->f_owner.lock);
93 if (force || !filp->f_owner.pid) {
94 put_pid(filp->f_owner.pid);
95 filp->f_owner.pid = get_pid(pid);
96 filp->f_owner.pid_type = type;
97
98 if (pid) {
99 const struct cred *cred = current_cred();
100 filp->f_owner.uid = cred->uid;
101 filp->f_owner.euid = cred->euid;
102 }
103 }
104 write_unlock_irq(&filp->f_owner.lock);
105}
106
107void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
108 int force)
109{
110 security_file_set_fowner(filp);
111 f_modown(filp, pid, type, force);
112}
113EXPORT_SYMBOL(__f_setown);
114
115int f_setown(struct file *filp, int who, int force)
116{
117 enum pid_type type;
118 struct pid *pid = NULL;
119 int ret = 0;
120
121 type = PIDTYPE_TGID;
122 if (who < 0) {
123 /* avoid overflow below */
124 if (who == INT_MIN)
125 return -EINVAL;
126
127 type = PIDTYPE_PGID;
128 who = -who;
129 }
130
131 rcu_read_lock();
132 if (who) {
133 pid = find_vpid(who);
134 if (!pid)
135 ret = -ESRCH;
136 }
137
138 if (!ret)
139 __f_setown(filp, pid, type, force);
140 rcu_read_unlock();
141
142 return ret;
143}
144EXPORT_SYMBOL(f_setown);
145
146void f_delown(struct file *filp)
147{
148 f_modown(filp, NULL, PIDTYPE_TGID, 1);
149}
150
151pid_t f_getown(struct file *filp)
152{
153 pid_t pid = 0;
154
155 read_lock_irq(&filp->f_owner.lock);
156 rcu_read_lock();
157 if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type)) {
158 pid = pid_vnr(filp->f_owner.pid);
159 if (filp->f_owner.pid_type == PIDTYPE_PGID)
160 pid = -pid;
161 }
162 rcu_read_unlock();
163 read_unlock_irq(&filp->f_owner.lock);
164 return pid;
165}
166
167static int f_setown_ex(struct file *filp, unsigned long arg)
168{
169 struct f_owner_ex __user *owner_p = (void __user *)arg;
170 struct f_owner_ex owner;
171 struct pid *pid;
172 int type;
173 int ret;
174
175 ret = copy_from_user(&owner, owner_p, sizeof(owner));
176 if (ret)
177 return -EFAULT;
178
179 switch (owner.type) {
180 case F_OWNER_TID:
181 type = PIDTYPE_PID;
182 break;
183
184 case F_OWNER_PID:
185 type = PIDTYPE_TGID;
186 break;
187
188 case F_OWNER_PGRP:
189 type = PIDTYPE_PGID;
190 break;
191
192 default:
193 return -EINVAL;
194 }
195
196 rcu_read_lock();
197 pid = find_vpid(owner.pid);
198 if (owner.pid && !pid)
199 ret = -ESRCH;
200 else
201 __f_setown(filp, pid, type, 1);
202 rcu_read_unlock();
203
204 return ret;
205}
206
207static int f_getown_ex(struct file *filp, unsigned long arg)
208{
209 struct f_owner_ex __user *owner_p = (void __user *)arg;
210 struct f_owner_ex owner = {};
211 int ret = 0;
212
213 read_lock_irq(&filp->f_owner.lock);
214 rcu_read_lock();
215 if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type))
216 owner.pid = pid_vnr(filp->f_owner.pid);
217 rcu_read_unlock();
218 switch (filp->f_owner.pid_type) {
219 case PIDTYPE_PID:
220 owner.type = F_OWNER_TID;
221 break;
222
223 case PIDTYPE_TGID:
224 owner.type = F_OWNER_PID;
225 break;
226
227 case PIDTYPE_PGID:
228 owner.type = F_OWNER_PGRP;
229 break;
230
231 default:
232 WARN_ON(1);
233 ret = -EINVAL;
234 break;
235 }
236 read_unlock_irq(&filp->f_owner.lock);
237
238 if (!ret) {
239 ret = copy_to_user(owner_p, &owner, sizeof(owner));
240 if (ret)
241 ret = -EFAULT;
242 }
243 return ret;
244}
245
246#ifdef CONFIG_CHECKPOINT_RESTORE
247static int f_getowner_uids(struct file *filp, unsigned long arg)
248{
249 struct user_namespace *user_ns = current_user_ns();
250 uid_t __user *dst = (void __user *)arg;
251 uid_t src[2];
252 int err;
253
254 read_lock_irq(&filp->f_owner.lock);
255 src[0] = from_kuid(user_ns, filp->f_owner.uid);
256 src[1] = from_kuid(user_ns, filp->f_owner.euid);
257 read_unlock_irq(&filp->f_owner.lock);
258
259 err = put_user(src[0], &dst[0]);
260 err |= put_user(src[1], &dst[1]);
261
262 return err;
263}
264#else
265static int f_getowner_uids(struct file *filp, unsigned long arg)
266{
267 return -EINVAL;
268}
269#endif
270
271static bool rw_hint_valid(enum rw_hint hint)
272{
273 switch (hint) {
274 case RWH_WRITE_LIFE_NOT_SET:
275 case RWH_WRITE_LIFE_NONE:
276 case RWH_WRITE_LIFE_SHORT:
277 case RWH_WRITE_LIFE_MEDIUM:
278 case RWH_WRITE_LIFE_LONG:
279 case RWH_WRITE_LIFE_EXTREME:
280 return true;
281 default:
282 return false;
283 }
284}
285
286static long fcntl_rw_hint(struct file *file, unsigned int cmd,
287 unsigned long arg)
288{
289 struct inode *inode = file_inode(file);
290 u64 __user *argp = (u64 __user *)arg;
291 enum rw_hint hint;
292 u64 h;
293
294 switch (cmd) {
295 case F_GET_RW_HINT:
296 h = inode->i_write_hint;
297 if (copy_to_user(argp, &h, sizeof(*argp)))
298 return -EFAULT;
299 return 0;
300 case F_SET_RW_HINT:
301 if (copy_from_user(&h, argp, sizeof(h)))
302 return -EFAULT;
303 hint = (enum rw_hint) h;
304 if (!rw_hint_valid(hint))
305 return -EINVAL;
306
307 inode_lock(inode);
308 inode->i_write_hint = hint;
309 inode_unlock(inode);
310 return 0;
311 default:
312 return -EINVAL;
313 }
314}
315
316static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
317 struct file *filp)
318{
319 void __user *argp = (void __user *)arg;
320 int argi = (int)arg;
321 struct flock flock;
322 long err = -EINVAL;
323
324 switch (cmd) {
325 case F_DUPFD:
326 err = f_dupfd(argi, filp, 0);
327 break;
328 case F_DUPFD_CLOEXEC:
329 err = f_dupfd(argi, filp, O_CLOEXEC);
330 break;
331 case F_GETFD:
332 err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
333 break;
334 case F_SETFD:
335 err = 0;
336 set_close_on_exec(fd, argi & FD_CLOEXEC);
337 break;
338 case F_GETFL:
339 err = filp->f_flags;
340 break;
341 case F_SETFL:
342 err = setfl(fd, filp, argi);
343 break;
344#if BITS_PER_LONG != 32
345 /* 32-bit arches must use fcntl64() */
346 case F_OFD_GETLK:
347#endif
348 case F_GETLK:
349 if (copy_from_user(&flock, argp, sizeof(flock)))
350 return -EFAULT;
351 err = fcntl_getlk(filp, cmd, &flock);
352 if (!err && copy_to_user(argp, &flock, sizeof(flock)))
353 return -EFAULT;
354 break;
355#if BITS_PER_LONG != 32
356 /* 32-bit arches must use fcntl64() */
357 case F_OFD_SETLK:
358 case F_OFD_SETLKW:
359 fallthrough;
360#endif
361 case F_SETLK:
362 case F_SETLKW:
363 if (copy_from_user(&flock, argp, sizeof(flock)))
364 return -EFAULT;
365 err = fcntl_setlk(fd, filp, cmd, &flock);
366 break;
367 case F_GETOWN:
368 /*
369 * XXX If f_owner is a process group, the
370 * negative return value will get converted
371 * into an error. Oops. If we keep the
372 * current syscall conventions, the only way
373 * to fix this will be in libc.
374 */
375 err = f_getown(filp);
376 force_successful_syscall_return();
377 break;
378 case F_SETOWN:
379 err = f_setown(filp, argi, 1);
380 break;
381 case F_GETOWN_EX:
382 err = f_getown_ex(filp, arg);
383 break;
384 case F_SETOWN_EX:
385 err = f_setown_ex(filp, arg);
386 break;
387 case F_GETOWNER_UIDS:
388 err = f_getowner_uids(filp, arg);
389 break;
390 case F_GETSIG:
391 err = filp->f_owner.signum;
392 break;
393 case F_SETSIG:
394 /* arg == 0 restores default behaviour. */
395 if (!valid_signal(argi)) {
396 break;
397 }
398 err = 0;
399 filp->f_owner.signum = argi;
400 break;
401 case F_GETLEASE:
402 err = fcntl_getlease(filp);
403 break;
404 case F_SETLEASE:
405 err = fcntl_setlease(fd, filp, argi);
406 break;
407 case F_NOTIFY:
408 err = fcntl_dirnotify(fd, filp, argi);
409 break;
410 case F_SETPIPE_SZ:
411 case F_GETPIPE_SZ:
412 err = pipe_fcntl(filp, cmd, argi);
413 break;
414 case F_ADD_SEALS:
415 case F_GET_SEALS:
416 err = memfd_fcntl(filp, cmd, argi);
417 break;
418 case F_GET_RW_HINT:
419 case F_SET_RW_HINT:
420 err = fcntl_rw_hint(filp, cmd, arg);
421 break;
422 default:
423 break;
424 }
425 return err;
426}
427
428static int check_fcntl_cmd(unsigned cmd)
429{
430 switch (cmd) {
431 case F_DUPFD:
432 case F_DUPFD_CLOEXEC:
433 case F_GETFD:
434 case F_SETFD:
435 case F_GETFL:
436 return 1;
437 }
438 return 0;
439}
440
441SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
442{
443 struct fd f = fdget_raw(fd);
444 long err = -EBADF;
445
446 if (!f.file)
447 goto out;
448
449 if (unlikely(f.file->f_mode & FMODE_PATH)) {
450 if (!check_fcntl_cmd(cmd))
451 goto out1;
452 }
453
454 err = security_file_fcntl(f.file, cmd, arg);
455 if (!err)
456 err = do_fcntl(fd, cmd, arg, f.file);
457
458out1:
459 fdput(f);
460out:
461 return err;
462}
463
464#if BITS_PER_LONG == 32
465SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
466 unsigned long, arg)
467{
468 void __user *argp = (void __user *)arg;
469 struct fd f = fdget_raw(fd);
470 struct flock64 flock;
471 long err = -EBADF;
472
473 if (!f.file)
474 goto out;
475
476 if (unlikely(f.file->f_mode & FMODE_PATH)) {
477 if (!check_fcntl_cmd(cmd))
478 goto out1;
479 }
480
481 err = security_file_fcntl(f.file, cmd, arg);
482 if (err)
483 goto out1;
484
485 switch (cmd) {
486 case F_GETLK64:
487 case F_OFD_GETLK:
488 err = -EFAULT;
489 if (copy_from_user(&flock, argp, sizeof(flock)))
490 break;
491 err = fcntl_getlk64(f.file, cmd, &flock);
492 if (!err && copy_to_user(argp, &flock, sizeof(flock)))
493 err = -EFAULT;
494 break;
495 case F_SETLK64:
496 case F_SETLKW64:
497 case F_OFD_SETLK:
498 case F_OFD_SETLKW:
499 err = -EFAULT;
500 if (copy_from_user(&flock, argp, sizeof(flock)))
501 break;
502 err = fcntl_setlk64(fd, f.file, cmd, &flock);
503 break;
504 default:
505 err = do_fcntl(fd, cmd, arg, f.file);
506 break;
507 }
508out1:
509 fdput(f);
510out:
511 return err;
512}
513#endif
514
515#ifdef CONFIG_COMPAT
516/* careful - don't use anywhere else */
517#define copy_flock_fields(dst, src) \
518 (dst)->l_type = (src)->l_type; \
519 (dst)->l_whence = (src)->l_whence; \
520 (dst)->l_start = (src)->l_start; \
521 (dst)->l_len = (src)->l_len; \
522 (dst)->l_pid = (src)->l_pid;
523
524static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl)
525{
526 struct compat_flock fl;
527
528 if (copy_from_user(&fl, ufl, sizeof(struct compat_flock)))
529 return -EFAULT;
530 copy_flock_fields(kfl, &fl);
531 return 0;
532}
533
534static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl)
535{
536 struct compat_flock64 fl;
537
538 if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64)))
539 return -EFAULT;
540 copy_flock_fields(kfl, &fl);
541 return 0;
542}
543
544static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl)
545{
546 struct compat_flock fl;
547
548 memset(&fl, 0, sizeof(struct compat_flock));
549 copy_flock_fields(&fl, kfl);
550 if (copy_to_user(ufl, &fl, sizeof(struct compat_flock)))
551 return -EFAULT;
552 return 0;
553}
554
555static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl)
556{
557 struct compat_flock64 fl;
558
559 BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start));
560 BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len));
561
562 memset(&fl, 0, sizeof(struct compat_flock64));
563 copy_flock_fields(&fl, kfl);
564 if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64)))
565 return -EFAULT;
566 return 0;
567}
568#undef copy_flock_fields
569
570static unsigned int
571convert_fcntl_cmd(unsigned int cmd)
572{
573 switch (cmd) {
574 case F_GETLK64:
575 return F_GETLK;
576 case F_SETLK64:
577 return F_SETLK;
578 case F_SETLKW64:
579 return F_SETLKW;
580 }
581
582 return cmd;
583}
584
585/*
586 * GETLK was successful and we need to return the data, but it needs to fit in
587 * the compat structure.
588 * l_start shouldn't be too big, unless the original start + end is greater than
589 * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return
590 * -EOVERFLOW in that case. l_len could be too big, in which case we just
591 * truncate it, and only allow the app to see that part of the conflicting lock
592 * that might make sense to it anyway
593 */
594static int fixup_compat_flock(struct flock *flock)
595{
596 if (flock->l_start > COMPAT_OFF_T_MAX)
597 return -EOVERFLOW;
598 if (flock->l_len > COMPAT_OFF_T_MAX)
599 flock->l_len = COMPAT_OFF_T_MAX;
600 return 0;
601}
602
603static long do_compat_fcntl64(unsigned int fd, unsigned int cmd,
604 compat_ulong_t arg)
605{
606 struct fd f = fdget_raw(fd);
607 struct flock flock;
608 long err = -EBADF;
609
610 if (!f.file)
611 return err;
612
613 if (unlikely(f.file->f_mode & FMODE_PATH)) {
614 if (!check_fcntl_cmd(cmd))
615 goto out_put;
616 }
617
618 err = security_file_fcntl(f.file, cmd, arg);
619 if (err)
620 goto out_put;
621
622 switch (cmd) {
623 case F_GETLK:
624 err = get_compat_flock(&flock, compat_ptr(arg));
625 if (err)
626 break;
627 err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
628 if (err)
629 break;
630 err = fixup_compat_flock(&flock);
631 if (!err)
632 err = put_compat_flock(&flock, compat_ptr(arg));
633 break;
634 case F_GETLK64:
635 case F_OFD_GETLK:
636 err = get_compat_flock64(&flock, compat_ptr(arg));
637 if (err)
638 break;
639 err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
640 if (!err)
641 err = put_compat_flock64(&flock, compat_ptr(arg));
642 break;
643 case F_SETLK:
644 case F_SETLKW:
645 err = get_compat_flock(&flock, compat_ptr(arg));
646 if (err)
647 break;
648 err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
649 break;
650 case F_SETLK64:
651 case F_SETLKW64:
652 case F_OFD_SETLK:
653 case F_OFD_SETLKW:
654 err = get_compat_flock64(&flock, compat_ptr(arg));
655 if (err)
656 break;
657 err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
658 break;
659 default:
660 err = do_fcntl(fd, cmd, arg, f.file);
661 break;
662 }
663out_put:
664 fdput(f);
665 return err;
666}
667
668COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
669 compat_ulong_t, arg)
670{
671 return do_compat_fcntl64(fd, cmd, arg);
672}
673
674COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd,
675 compat_ulong_t, arg)
676{
677 switch (cmd) {
678 case F_GETLK64:
679 case F_SETLK64:
680 case F_SETLKW64:
681 case F_OFD_GETLK:
682 case F_OFD_SETLK:
683 case F_OFD_SETLKW:
684 return -EINVAL;
685 }
686 return do_compat_fcntl64(fd, cmd, arg);
687}
688#endif
689
690/* Table to convert sigio signal codes into poll band bitmaps */
691
692static const __poll_t band_table[NSIGPOLL] = {
693 EPOLLIN | EPOLLRDNORM, /* POLL_IN */
694 EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND, /* POLL_OUT */
695 EPOLLIN | EPOLLRDNORM | EPOLLMSG, /* POLL_MSG */
696 EPOLLERR, /* POLL_ERR */
697 EPOLLPRI | EPOLLRDBAND, /* POLL_PRI */
698 EPOLLHUP | EPOLLERR /* POLL_HUP */
699};
700
701static inline int sigio_perm(struct task_struct *p,
702 struct fown_struct *fown, int sig)
703{
704 const struct cred *cred;
705 int ret;
706
707 rcu_read_lock();
708 cred = __task_cred(p);
709 ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
710 uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
711 uid_eq(fown->uid, cred->suid) || uid_eq(fown->uid, cred->uid)) &&
712 !security_file_send_sigiotask(p, fown, sig));
713 rcu_read_unlock();
714 return ret;
715}
716
717static void send_sigio_to_task(struct task_struct *p,
718 struct fown_struct *fown,
719 int fd, int reason, enum pid_type type)
720{
721 /*
722 * F_SETSIG can change ->signum lockless in parallel, make
723 * sure we read it once and use the same value throughout.
724 */
725 int signum = READ_ONCE(fown->signum);
726
727 if (!sigio_perm(p, fown, signum))
728 return;
729
730 switch (signum) {
731 default: {
732 kernel_siginfo_t si;
733
734 /* Queue a rt signal with the appropriate fd as its
735 value. We use SI_SIGIO as the source, not
736 SI_KERNEL, since kernel signals always get
737 delivered even if we can't queue. Failure to
738 queue in this case _should_ be reported; we fall
739 back to SIGIO in that case. --sct */
740 clear_siginfo(&si);
741 si.si_signo = signum;
742 si.si_errno = 0;
743 si.si_code = reason;
744 /*
745 * Posix definies POLL_IN and friends to be signal
746 * specific si_codes for SIG_POLL. Linux extended
747 * these si_codes to other signals in a way that is
748 * ambiguous if other signals also have signal
749 * specific si_codes. In that case use SI_SIGIO instead
750 * to remove the ambiguity.
751 */
752 if ((signum != SIGPOLL) && sig_specific_sicodes(signum))
753 si.si_code = SI_SIGIO;
754
755 /* Make sure we are called with one of the POLL_*
756 reasons, otherwise we could leak kernel stack into
757 userspace. */
758 BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL));
759 if (reason - POLL_IN >= NSIGPOLL)
760 si.si_band = ~0L;
761 else
762 si.si_band = mangle_poll(band_table[reason - POLL_IN]);
763 si.si_fd = fd;
764 if (!do_send_sig_info(signum, &si, p, type))
765 break;
766 }
767 fallthrough; /* fall back on the old plain SIGIO signal */
768 case 0:
769 do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type);
770 }
771}
772
773void send_sigio(struct fown_struct *fown, int fd, int band)
774{
775 struct task_struct *p;
776 enum pid_type type;
777 unsigned long flags;
778 struct pid *pid;
779
780 read_lock_irqsave(&fown->lock, flags);
781
782 type = fown->pid_type;
783 pid = fown->pid;
784 if (!pid)
785 goto out_unlock_fown;
786
787 if (type <= PIDTYPE_TGID) {
788 rcu_read_lock();
789 p = pid_task(pid, PIDTYPE_PID);
790 if (p)
791 send_sigio_to_task(p, fown, fd, band, type);
792 rcu_read_unlock();
793 } else {
794 read_lock(&tasklist_lock);
795 do_each_pid_task(pid, type, p) {
796 send_sigio_to_task(p, fown, fd, band, type);
797 } while_each_pid_task(pid, type, p);
798 read_unlock(&tasklist_lock);
799 }
800 out_unlock_fown:
801 read_unlock_irqrestore(&fown->lock, flags);
802}
803
804static void send_sigurg_to_task(struct task_struct *p,
805 struct fown_struct *fown, enum pid_type type)
806{
807 if (sigio_perm(p, fown, SIGURG))
808 do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type);
809}
810
811int send_sigurg(struct fown_struct *fown)
812{
813 struct task_struct *p;
814 enum pid_type type;
815 struct pid *pid;
816 unsigned long flags;
817 int ret = 0;
818
819 read_lock_irqsave(&fown->lock, flags);
820
821 type = fown->pid_type;
822 pid = fown->pid;
823 if (!pid)
824 goto out_unlock_fown;
825
826 ret = 1;
827
828 if (type <= PIDTYPE_TGID) {
829 rcu_read_lock();
830 p = pid_task(pid, PIDTYPE_PID);
831 if (p)
832 send_sigurg_to_task(p, fown, type);
833 rcu_read_unlock();
834 } else {
835 read_lock(&tasklist_lock);
836 do_each_pid_task(pid, type, p) {
837 send_sigurg_to_task(p, fown, type);
838 } while_each_pid_task(pid, type, p);
839 read_unlock(&tasklist_lock);
840 }
841 out_unlock_fown:
842 read_unlock_irqrestore(&fown->lock, flags);
843 return ret;
844}
845
846static DEFINE_SPINLOCK(fasync_lock);
847static struct kmem_cache *fasync_cache __ro_after_init;
848
849static void fasync_free_rcu(struct rcu_head *head)
850{
851 kmem_cache_free(fasync_cache,
852 container_of(head, struct fasync_struct, fa_rcu));
853}
854
855/*
856 * Remove a fasync entry. If successfully removed, return
857 * positive and clear the FASYNC flag. If no entry exists,
858 * do nothing and return 0.
859 *
860 * NOTE! It is very important that the FASYNC flag always
861 * match the state "is the filp on a fasync list".
862 *
863 */
864int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
865{
866 struct fasync_struct *fa, **fp;
867 int result = 0;
868
869 spin_lock(&filp->f_lock);
870 spin_lock(&fasync_lock);
871 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
872 if (fa->fa_file != filp)
873 continue;
874
875 write_lock_irq(&fa->fa_lock);
876 fa->fa_file = NULL;
877 write_unlock_irq(&fa->fa_lock);
878
879 *fp = fa->fa_next;
880 call_rcu(&fa->fa_rcu, fasync_free_rcu);
881 filp->f_flags &= ~FASYNC;
882 result = 1;
883 break;
884 }
885 spin_unlock(&fasync_lock);
886 spin_unlock(&filp->f_lock);
887 return result;
888}
889
890struct fasync_struct *fasync_alloc(void)
891{
892 return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
893}
894
895/*
896 * NOTE! This can be used only for unused fasync entries:
897 * entries that actually got inserted on the fasync list
898 * need to be released by rcu - see fasync_remove_entry.
899 */
900void fasync_free(struct fasync_struct *new)
901{
902 kmem_cache_free(fasync_cache, new);
903}
904
905/*
906 * Insert a new entry into the fasync list. Return the pointer to the
907 * old one if we didn't use the new one.
908 *
909 * NOTE! It is very important that the FASYNC flag always
910 * match the state "is the filp on a fasync list".
911 */
912struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
913{
914 struct fasync_struct *fa, **fp;
915
916 spin_lock(&filp->f_lock);
917 spin_lock(&fasync_lock);
918 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
919 if (fa->fa_file != filp)
920 continue;
921
922 write_lock_irq(&fa->fa_lock);
923 fa->fa_fd = fd;
924 write_unlock_irq(&fa->fa_lock);
925 goto out;
926 }
927
928 rwlock_init(&new->fa_lock);
929 new->magic = FASYNC_MAGIC;
930 new->fa_file = filp;
931 new->fa_fd = fd;
932 new->fa_next = *fapp;
933 rcu_assign_pointer(*fapp, new);
934 filp->f_flags |= FASYNC;
935
936out:
937 spin_unlock(&fasync_lock);
938 spin_unlock(&filp->f_lock);
939 return fa;
940}
941
942/*
943 * Add a fasync entry. Return negative on error, positive if
944 * added, and zero if did nothing but change an existing one.
945 */
946static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
947{
948 struct fasync_struct *new;
949
950 new = fasync_alloc();
951 if (!new)
952 return -ENOMEM;
953
954 /*
955 * fasync_insert_entry() returns the old (update) entry if
956 * it existed.
957 *
958 * So free the (unused) new entry and return 0 to let the
959 * caller know that we didn't add any new fasync entries.
960 */
961 if (fasync_insert_entry(fd, filp, fapp, new)) {
962 fasync_free(new);
963 return 0;
964 }
965
966 return 1;
967}
968
969/*
970 * fasync_helper() is used by almost all character device drivers
971 * to set up the fasync queue, and for regular files by the file
972 * lease code. It returns negative on error, 0 if it did no changes
973 * and positive if it added/deleted the entry.
974 */
975int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
976{
977 if (!on)
978 return fasync_remove_entry(filp, fapp);
979 return fasync_add_entry(fd, filp, fapp);
980}
981
982EXPORT_SYMBOL(fasync_helper);
983
984/*
985 * rcu_read_lock() is held
986 */
987static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
988{
989 while (fa) {
990 struct fown_struct *fown;
991 unsigned long flags;
992
993 if (fa->magic != FASYNC_MAGIC) {
994 printk(KERN_ERR "kill_fasync: bad magic number in "
995 "fasync_struct!\n");
996 return;
997 }
998 read_lock_irqsave(&fa->fa_lock, flags);
999 if (fa->fa_file) {
1000 fown = &fa->fa_file->f_owner;
1001 /* Don't send SIGURG to processes which have not set a
1002 queued signum: SIGURG has its own default signalling
1003 mechanism. */
1004 if (!(sig == SIGURG && fown->signum == 0))
1005 send_sigio(fown, fa->fa_fd, band);
1006 }
1007 read_unlock_irqrestore(&fa->fa_lock, flags);
1008 fa = rcu_dereference(fa->fa_next);
1009 }
1010}
1011
1012void kill_fasync(struct fasync_struct **fp, int sig, int band)
1013{
1014 /* First a quick test without locking: usually
1015 * the list is empty.
1016 */
1017 if (*fp) {
1018 rcu_read_lock();
1019 kill_fasync_rcu(rcu_dereference(*fp), sig, band);
1020 rcu_read_unlock();
1021 }
1022}
1023EXPORT_SYMBOL(kill_fasync);
1024
1025static int __init fcntl_init(void)
1026{
1027 /*
1028 * Please add new bits here to ensure allocation uniqueness.
1029 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
1030 * is defined as O_NONBLOCK on some platforms and not on others.
1031 */
1032 BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ !=
1033 HWEIGHT32(
1034 (VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) |
1035 __FMODE_EXEC | __FMODE_NONOTIFY));
1036
1037 fasync_cache = kmem_cache_create("fasync_cache",
1038 sizeof(struct fasync_struct), 0,
1039 SLAB_PANIC | SLAB_ACCOUNT, NULL);
1040 return 0;
1041}
1042
1043module_init(fcntl_init)
1/*
2 * linux/fs/fcntl.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7#include <linux/syscalls.h>
8#include <linux/init.h>
9#include <linux/mm.h>
10#include <linux/fs.h>
11#include <linux/file.h>
12#include <linux/fdtable.h>
13#include <linux/capability.h>
14#include <linux/dnotify.h>
15#include <linux/slab.h>
16#include <linux/module.h>
17#include <linux/pipe_fs_i.h>
18#include <linux/security.h>
19#include <linux/ptrace.h>
20#include <linux/signal.h>
21#include <linux/rcupdate.h>
22#include <linux/pid_namespace.h>
23#include <linux/user_namespace.h>
24
25#include <asm/poll.h>
26#include <asm/siginfo.h>
27#include <asm/uaccess.h>
28
29#define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
30
31static int setfl(int fd, struct file * filp, unsigned long arg)
32{
33 struct inode * inode = file_inode(filp);
34 int error = 0;
35
36 /*
37 * O_APPEND cannot be cleared if the file is marked as append-only
38 * and the file is open for write.
39 */
40 if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
41 return -EPERM;
42
43 /* O_NOATIME can only be set by the owner or superuser */
44 if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
45 if (!inode_owner_or_capable(inode))
46 return -EPERM;
47
48 /* required for strict SunOS emulation */
49 if (O_NONBLOCK != O_NDELAY)
50 if (arg & O_NDELAY)
51 arg |= O_NONBLOCK;
52
53 if (arg & O_DIRECT) {
54 if (!filp->f_mapping || !filp->f_mapping->a_ops ||
55 !filp->f_mapping->a_ops->direct_IO)
56 return -EINVAL;
57 }
58
59 if (filp->f_op->check_flags)
60 error = filp->f_op->check_flags(arg);
61 if (error)
62 return error;
63
64 /*
65 * ->fasync() is responsible for setting the FASYNC bit.
66 */
67 if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
68 error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
69 if (error < 0)
70 goto out;
71 if (error > 0)
72 error = 0;
73 }
74 spin_lock(&filp->f_lock);
75 filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
76 spin_unlock(&filp->f_lock);
77
78 out:
79 return error;
80}
81
82static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
83 int force)
84{
85 write_lock_irq(&filp->f_owner.lock);
86 if (force || !filp->f_owner.pid) {
87 put_pid(filp->f_owner.pid);
88 filp->f_owner.pid = get_pid(pid);
89 filp->f_owner.pid_type = type;
90
91 if (pid) {
92 const struct cred *cred = current_cred();
93 filp->f_owner.uid = cred->uid;
94 filp->f_owner.euid = cred->euid;
95 }
96 }
97 write_unlock_irq(&filp->f_owner.lock);
98}
99
100int __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
101 int force)
102{
103 int err;
104
105 err = security_file_set_fowner(filp);
106 if (err)
107 return err;
108
109 f_modown(filp, pid, type, force);
110 return 0;
111}
112EXPORT_SYMBOL(__f_setown);
113
114int f_setown(struct file *filp, unsigned long arg, int force)
115{
116 enum pid_type type;
117 struct pid *pid;
118 int who = arg;
119 int result;
120 type = PIDTYPE_PID;
121 if (who < 0) {
122 type = PIDTYPE_PGID;
123 who = -who;
124 }
125 rcu_read_lock();
126 pid = find_vpid(who);
127 result = __f_setown(filp, pid, type, force);
128 rcu_read_unlock();
129 return result;
130}
131EXPORT_SYMBOL(f_setown);
132
133void f_delown(struct file *filp)
134{
135 f_modown(filp, NULL, PIDTYPE_PID, 1);
136}
137
138pid_t f_getown(struct file *filp)
139{
140 pid_t pid;
141 read_lock(&filp->f_owner.lock);
142 pid = pid_vnr(filp->f_owner.pid);
143 if (filp->f_owner.pid_type == PIDTYPE_PGID)
144 pid = -pid;
145 read_unlock(&filp->f_owner.lock);
146 return pid;
147}
148
149static int f_setown_ex(struct file *filp, unsigned long arg)
150{
151 struct f_owner_ex __user *owner_p = (void __user *)arg;
152 struct f_owner_ex owner;
153 struct pid *pid;
154 int type;
155 int ret;
156
157 ret = copy_from_user(&owner, owner_p, sizeof(owner));
158 if (ret)
159 return -EFAULT;
160
161 switch (owner.type) {
162 case F_OWNER_TID:
163 type = PIDTYPE_MAX;
164 break;
165
166 case F_OWNER_PID:
167 type = PIDTYPE_PID;
168 break;
169
170 case F_OWNER_PGRP:
171 type = PIDTYPE_PGID;
172 break;
173
174 default:
175 return -EINVAL;
176 }
177
178 rcu_read_lock();
179 pid = find_vpid(owner.pid);
180 if (owner.pid && !pid)
181 ret = -ESRCH;
182 else
183 ret = __f_setown(filp, pid, type, 1);
184 rcu_read_unlock();
185
186 return ret;
187}
188
189static int f_getown_ex(struct file *filp, unsigned long arg)
190{
191 struct f_owner_ex __user *owner_p = (void __user *)arg;
192 struct f_owner_ex owner;
193 int ret = 0;
194
195 read_lock(&filp->f_owner.lock);
196 owner.pid = pid_vnr(filp->f_owner.pid);
197 switch (filp->f_owner.pid_type) {
198 case PIDTYPE_MAX:
199 owner.type = F_OWNER_TID;
200 break;
201
202 case PIDTYPE_PID:
203 owner.type = F_OWNER_PID;
204 break;
205
206 case PIDTYPE_PGID:
207 owner.type = F_OWNER_PGRP;
208 break;
209
210 default:
211 WARN_ON(1);
212 ret = -EINVAL;
213 break;
214 }
215 read_unlock(&filp->f_owner.lock);
216
217 if (!ret) {
218 ret = copy_to_user(owner_p, &owner, sizeof(owner));
219 if (ret)
220 ret = -EFAULT;
221 }
222 return ret;
223}
224
225#ifdef CONFIG_CHECKPOINT_RESTORE
226static int f_getowner_uids(struct file *filp, unsigned long arg)
227{
228 struct user_namespace *user_ns = current_user_ns();
229 uid_t __user *dst = (void __user *)arg;
230 uid_t src[2];
231 int err;
232
233 read_lock(&filp->f_owner.lock);
234 src[0] = from_kuid(user_ns, filp->f_owner.uid);
235 src[1] = from_kuid(user_ns, filp->f_owner.euid);
236 read_unlock(&filp->f_owner.lock);
237
238 err = put_user(src[0], &dst[0]);
239 err |= put_user(src[1], &dst[1]);
240
241 return err;
242}
243#else
244static int f_getowner_uids(struct file *filp, unsigned long arg)
245{
246 return -EINVAL;
247}
248#endif
249
250static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
251 struct file *filp)
252{
253 long err = -EINVAL;
254
255 switch (cmd) {
256 case F_DUPFD:
257 err = f_dupfd(arg, filp, 0);
258 break;
259 case F_DUPFD_CLOEXEC:
260 err = f_dupfd(arg, filp, O_CLOEXEC);
261 break;
262 case F_GETFD:
263 err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
264 break;
265 case F_SETFD:
266 err = 0;
267 set_close_on_exec(fd, arg & FD_CLOEXEC);
268 break;
269 case F_GETFL:
270 err = filp->f_flags;
271 break;
272 case F_SETFL:
273 err = setfl(fd, filp, arg);
274 break;
275#if BITS_PER_LONG != 32
276 /* 32-bit arches must use fcntl64() */
277 case F_OFD_GETLK:
278#endif
279 case F_GETLK:
280 err = fcntl_getlk(filp, cmd, (struct flock __user *) arg);
281 break;
282#if BITS_PER_LONG != 32
283 /* 32-bit arches must use fcntl64() */
284 case F_OFD_SETLK:
285 case F_OFD_SETLKW:
286#endif
287 /* Fallthrough */
288 case F_SETLK:
289 case F_SETLKW:
290 err = fcntl_setlk(fd, filp, cmd, (struct flock __user *) arg);
291 break;
292 case F_GETOWN:
293 /*
294 * XXX If f_owner is a process group, the
295 * negative return value will get converted
296 * into an error. Oops. If we keep the
297 * current syscall conventions, the only way
298 * to fix this will be in libc.
299 */
300 err = f_getown(filp);
301 force_successful_syscall_return();
302 break;
303 case F_SETOWN:
304 err = f_setown(filp, arg, 1);
305 break;
306 case F_GETOWN_EX:
307 err = f_getown_ex(filp, arg);
308 break;
309 case F_SETOWN_EX:
310 err = f_setown_ex(filp, arg);
311 break;
312 case F_GETOWNER_UIDS:
313 err = f_getowner_uids(filp, arg);
314 break;
315 case F_GETSIG:
316 err = filp->f_owner.signum;
317 break;
318 case F_SETSIG:
319 /* arg == 0 restores default behaviour. */
320 if (!valid_signal(arg)) {
321 break;
322 }
323 err = 0;
324 filp->f_owner.signum = arg;
325 break;
326 case F_GETLEASE:
327 err = fcntl_getlease(filp);
328 break;
329 case F_SETLEASE:
330 err = fcntl_setlease(fd, filp, arg);
331 break;
332 case F_NOTIFY:
333 err = fcntl_dirnotify(fd, filp, arg);
334 break;
335 case F_SETPIPE_SZ:
336 case F_GETPIPE_SZ:
337 err = pipe_fcntl(filp, cmd, arg);
338 break;
339 default:
340 break;
341 }
342 return err;
343}
344
345static int check_fcntl_cmd(unsigned cmd)
346{
347 switch (cmd) {
348 case F_DUPFD:
349 case F_DUPFD_CLOEXEC:
350 case F_GETFD:
351 case F_SETFD:
352 case F_GETFL:
353 return 1;
354 }
355 return 0;
356}
357
358SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
359{
360 struct fd f = fdget_raw(fd);
361 long err = -EBADF;
362
363 if (!f.file)
364 goto out;
365
366 if (unlikely(f.file->f_mode & FMODE_PATH)) {
367 if (!check_fcntl_cmd(cmd))
368 goto out1;
369 }
370
371 err = security_file_fcntl(f.file, cmd, arg);
372 if (!err)
373 err = do_fcntl(fd, cmd, arg, f.file);
374
375out1:
376 fdput(f);
377out:
378 return err;
379}
380
381#if BITS_PER_LONG == 32
382SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
383 unsigned long, arg)
384{
385 struct fd f = fdget_raw(fd);
386 long err = -EBADF;
387
388 if (!f.file)
389 goto out;
390
391 if (unlikely(f.file->f_mode & FMODE_PATH)) {
392 if (!check_fcntl_cmd(cmd))
393 goto out1;
394 }
395
396 err = security_file_fcntl(f.file, cmd, arg);
397 if (err)
398 goto out1;
399
400 switch (cmd) {
401 case F_GETLK64:
402 case F_OFD_GETLK:
403 err = fcntl_getlk64(f.file, cmd, (struct flock64 __user *) arg);
404 break;
405 case F_SETLK64:
406 case F_SETLKW64:
407 case F_OFD_SETLK:
408 case F_OFD_SETLKW:
409 err = fcntl_setlk64(fd, f.file, cmd,
410 (struct flock64 __user *) arg);
411 break;
412 default:
413 err = do_fcntl(fd, cmd, arg, f.file);
414 break;
415 }
416out1:
417 fdput(f);
418out:
419 return err;
420}
421#endif
422
423/* Table to convert sigio signal codes into poll band bitmaps */
424
425static const long band_table[NSIGPOLL] = {
426 POLLIN | POLLRDNORM, /* POLL_IN */
427 POLLOUT | POLLWRNORM | POLLWRBAND, /* POLL_OUT */
428 POLLIN | POLLRDNORM | POLLMSG, /* POLL_MSG */
429 POLLERR, /* POLL_ERR */
430 POLLPRI | POLLRDBAND, /* POLL_PRI */
431 POLLHUP | POLLERR /* POLL_HUP */
432};
433
434static inline int sigio_perm(struct task_struct *p,
435 struct fown_struct *fown, int sig)
436{
437 const struct cred *cred;
438 int ret;
439
440 rcu_read_lock();
441 cred = __task_cred(p);
442 ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
443 uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
444 uid_eq(fown->uid, cred->suid) || uid_eq(fown->uid, cred->uid)) &&
445 !security_file_send_sigiotask(p, fown, sig));
446 rcu_read_unlock();
447 return ret;
448}
449
450static void send_sigio_to_task(struct task_struct *p,
451 struct fown_struct *fown,
452 int fd, int reason, int group)
453{
454 /*
455 * F_SETSIG can change ->signum lockless in parallel, make
456 * sure we read it once and use the same value throughout.
457 */
458 int signum = ACCESS_ONCE(fown->signum);
459
460 if (!sigio_perm(p, fown, signum))
461 return;
462
463 switch (signum) {
464 siginfo_t si;
465 default:
466 /* Queue a rt signal with the appropriate fd as its
467 value. We use SI_SIGIO as the source, not
468 SI_KERNEL, since kernel signals always get
469 delivered even if we can't queue. Failure to
470 queue in this case _should_ be reported; we fall
471 back to SIGIO in that case. --sct */
472 si.si_signo = signum;
473 si.si_errno = 0;
474 si.si_code = reason;
475 /* Make sure we are called with one of the POLL_*
476 reasons, otherwise we could leak kernel stack into
477 userspace. */
478 BUG_ON((reason & __SI_MASK) != __SI_POLL);
479 if (reason - POLL_IN >= NSIGPOLL)
480 si.si_band = ~0L;
481 else
482 si.si_band = band_table[reason - POLL_IN];
483 si.si_fd = fd;
484 if (!do_send_sig_info(signum, &si, p, group))
485 break;
486 /* fall-through: fall back on the old plain SIGIO signal */
487 case 0:
488 do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group);
489 }
490}
491
492void send_sigio(struct fown_struct *fown, int fd, int band)
493{
494 struct task_struct *p;
495 enum pid_type type;
496 struct pid *pid;
497 int group = 1;
498
499 read_lock(&fown->lock);
500
501 type = fown->pid_type;
502 if (type == PIDTYPE_MAX) {
503 group = 0;
504 type = PIDTYPE_PID;
505 }
506
507 pid = fown->pid;
508 if (!pid)
509 goto out_unlock_fown;
510
511 read_lock(&tasklist_lock);
512 do_each_pid_task(pid, type, p) {
513 send_sigio_to_task(p, fown, fd, band, group);
514 } while_each_pid_task(pid, type, p);
515 read_unlock(&tasklist_lock);
516 out_unlock_fown:
517 read_unlock(&fown->lock);
518}
519
520static void send_sigurg_to_task(struct task_struct *p,
521 struct fown_struct *fown, int group)
522{
523 if (sigio_perm(p, fown, SIGURG))
524 do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group);
525}
526
527int send_sigurg(struct fown_struct *fown)
528{
529 struct task_struct *p;
530 enum pid_type type;
531 struct pid *pid;
532 int group = 1;
533 int ret = 0;
534
535 read_lock(&fown->lock);
536
537 type = fown->pid_type;
538 if (type == PIDTYPE_MAX) {
539 group = 0;
540 type = PIDTYPE_PID;
541 }
542
543 pid = fown->pid;
544 if (!pid)
545 goto out_unlock_fown;
546
547 ret = 1;
548
549 read_lock(&tasklist_lock);
550 do_each_pid_task(pid, type, p) {
551 send_sigurg_to_task(p, fown, group);
552 } while_each_pid_task(pid, type, p);
553 read_unlock(&tasklist_lock);
554 out_unlock_fown:
555 read_unlock(&fown->lock);
556 return ret;
557}
558
559static DEFINE_SPINLOCK(fasync_lock);
560static struct kmem_cache *fasync_cache __read_mostly;
561
562static void fasync_free_rcu(struct rcu_head *head)
563{
564 kmem_cache_free(fasync_cache,
565 container_of(head, struct fasync_struct, fa_rcu));
566}
567
568/*
569 * Remove a fasync entry. If successfully removed, return
570 * positive and clear the FASYNC flag. If no entry exists,
571 * do nothing and return 0.
572 *
573 * NOTE! It is very important that the FASYNC flag always
574 * match the state "is the filp on a fasync list".
575 *
576 */
577int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
578{
579 struct fasync_struct *fa, **fp;
580 int result = 0;
581
582 spin_lock(&filp->f_lock);
583 spin_lock(&fasync_lock);
584 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
585 if (fa->fa_file != filp)
586 continue;
587
588 spin_lock_irq(&fa->fa_lock);
589 fa->fa_file = NULL;
590 spin_unlock_irq(&fa->fa_lock);
591
592 *fp = fa->fa_next;
593 call_rcu(&fa->fa_rcu, fasync_free_rcu);
594 filp->f_flags &= ~FASYNC;
595 result = 1;
596 break;
597 }
598 spin_unlock(&fasync_lock);
599 spin_unlock(&filp->f_lock);
600 return result;
601}
602
603struct fasync_struct *fasync_alloc(void)
604{
605 return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
606}
607
608/*
609 * NOTE! This can be used only for unused fasync entries:
610 * entries that actually got inserted on the fasync list
611 * need to be released by rcu - see fasync_remove_entry.
612 */
613void fasync_free(struct fasync_struct *new)
614{
615 kmem_cache_free(fasync_cache, new);
616}
617
618/*
619 * Insert a new entry into the fasync list. Return the pointer to the
620 * old one if we didn't use the new one.
621 *
622 * NOTE! It is very important that the FASYNC flag always
623 * match the state "is the filp on a fasync list".
624 */
625struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
626{
627 struct fasync_struct *fa, **fp;
628
629 spin_lock(&filp->f_lock);
630 spin_lock(&fasync_lock);
631 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
632 if (fa->fa_file != filp)
633 continue;
634
635 spin_lock_irq(&fa->fa_lock);
636 fa->fa_fd = fd;
637 spin_unlock_irq(&fa->fa_lock);
638 goto out;
639 }
640
641 spin_lock_init(&new->fa_lock);
642 new->magic = FASYNC_MAGIC;
643 new->fa_file = filp;
644 new->fa_fd = fd;
645 new->fa_next = *fapp;
646 rcu_assign_pointer(*fapp, new);
647 filp->f_flags |= FASYNC;
648
649out:
650 spin_unlock(&fasync_lock);
651 spin_unlock(&filp->f_lock);
652 return fa;
653}
654
655/*
656 * Add a fasync entry. Return negative on error, positive if
657 * added, and zero if did nothing but change an existing one.
658 */
659static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
660{
661 struct fasync_struct *new;
662
663 new = fasync_alloc();
664 if (!new)
665 return -ENOMEM;
666
667 /*
668 * fasync_insert_entry() returns the old (update) entry if
669 * it existed.
670 *
671 * So free the (unused) new entry and return 0 to let the
672 * caller know that we didn't add any new fasync entries.
673 */
674 if (fasync_insert_entry(fd, filp, fapp, new)) {
675 fasync_free(new);
676 return 0;
677 }
678
679 return 1;
680}
681
682/*
683 * fasync_helper() is used by almost all character device drivers
684 * to set up the fasync queue, and for regular files by the file
685 * lease code. It returns negative on error, 0 if it did no changes
686 * and positive if it added/deleted the entry.
687 */
688int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
689{
690 if (!on)
691 return fasync_remove_entry(filp, fapp);
692 return fasync_add_entry(fd, filp, fapp);
693}
694
695EXPORT_SYMBOL(fasync_helper);
696
697/*
698 * rcu_read_lock() is held
699 */
700static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
701{
702 while (fa) {
703 struct fown_struct *fown;
704 unsigned long flags;
705
706 if (fa->magic != FASYNC_MAGIC) {
707 printk(KERN_ERR "kill_fasync: bad magic number in "
708 "fasync_struct!\n");
709 return;
710 }
711 spin_lock_irqsave(&fa->fa_lock, flags);
712 if (fa->fa_file) {
713 fown = &fa->fa_file->f_owner;
714 /* Don't send SIGURG to processes which have not set a
715 queued signum: SIGURG has its own default signalling
716 mechanism. */
717 if (!(sig == SIGURG && fown->signum == 0))
718 send_sigio(fown, fa->fa_fd, band);
719 }
720 spin_unlock_irqrestore(&fa->fa_lock, flags);
721 fa = rcu_dereference(fa->fa_next);
722 }
723}
724
725void kill_fasync(struct fasync_struct **fp, int sig, int band)
726{
727 /* First a quick test without locking: usually
728 * the list is empty.
729 */
730 if (*fp) {
731 rcu_read_lock();
732 kill_fasync_rcu(rcu_dereference(*fp), sig, band);
733 rcu_read_unlock();
734 }
735}
736EXPORT_SYMBOL(kill_fasync);
737
738static int __init fcntl_init(void)
739{
740 /*
741 * Please add new bits here to ensure allocation uniqueness.
742 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
743 * is defined as O_NONBLOCK on some platforms and not on others.
744 */
745 BUILD_BUG_ON(20 - 1 /* for O_RDONLY being 0 */ != HWEIGHT32(
746 O_RDONLY | O_WRONLY | O_RDWR |
747 O_CREAT | O_EXCL | O_NOCTTY |
748 O_TRUNC | O_APPEND | /* O_NONBLOCK | */
749 __O_SYNC | O_DSYNC | FASYNC |
750 O_DIRECT | O_LARGEFILE | O_DIRECTORY |
751 O_NOFOLLOW | O_NOATIME | O_CLOEXEC |
752 __FMODE_EXEC | O_PATH | __O_TMPFILE
753 ));
754
755 fasync_cache = kmem_cache_create("fasync_cache",
756 sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
757 return 0;
758}
759
760module_init(fcntl_init)