Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation
  4 * Provides Bus interface for MIIM regs
  5 *
  6 * Author: Andy Fleming <afleming@freescale.com>
  7 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  8 *
  9 * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc.
 10 *
 11 * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips)
 
 
 
 
 
 
 12 */
 13
 14#include <linux/kernel.h>
 15#include <linux/platform_device.h>
 16#include <linux/string.h>
 17#include <linux/errno.h>
 18#include <linux/slab.h>
 19#include <linux/delay.h>
 20#include <linux/module.h>
 21#include <linux/mii.h>
 22#include <linux/of.h>
 23#include <linux/of_address.h>
 24#include <linux/of_mdio.h>
 25#include <linux/property.h>
 26
 27#include <asm/io.h>
 28#if IS_ENABLED(CONFIG_UCC_GETH)
 29#include <soc/fsl/qe/ucc.h>
 30#endif
 31
 32#include "gianfar.h"
 33
 34#define MIIMIND_BUSY		0x00000001
 35#define MIIMIND_NOTVALID	0x00000004
 36#define MIIMCFG_INIT_VALUE	0x00000007
 37#define MIIMCFG_RESET		0x80000000
 38
 39#define MII_READ_COMMAND	0x00000001
 40
 41struct fsl_pq_mii {
 42	u32 miimcfg;	/* MII management configuration reg */
 43	u32 miimcom;	/* MII management command reg */
 44	u32 miimadd;	/* MII management address reg */
 45	u32 miimcon;	/* MII management control reg */
 46	u32 miimstat;	/* MII management status reg */
 47	u32 miimind;	/* MII management indication reg */
 48};
 49
 50struct fsl_pq_mdio {
 51	u8 res1[16];
 52	u32 ieventm;	/* MDIO Interrupt event register (for etsec2)*/
 53	u32 imaskm;	/* MDIO Interrupt mask register (for etsec2)*/
 54	u8 res2[4];
 55	u32 emapm;	/* MDIO Event mapping register (for etsec2)*/
 56	u8 res3[1280];
 57	struct fsl_pq_mii mii;
 58	u8 res4[28];
 59	u32 utbipar;	/* TBI phy address reg (only on UCC) */
 60	u8 res5[2728];
 61} __packed;
 62
 63/* Number of microseconds to wait for an MII register to respond */
 64#define MII_TIMEOUT	1000
 65
 66struct fsl_pq_mdio_priv {
 67	void __iomem *map;
 68	struct fsl_pq_mii __iomem *regs;
 
 69};
 70
 71/*
 72 * Per-device-type data.  Each type of device tree node that we support gets
 73 * one of these.
 74 *
 75 * @mii_offset: the offset of the MII registers within the memory map of the
 76 * node.  Some nodes define only the MII registers, and some define the whole
 77 * MAC (which includes the MII registers).
 78 *
 79 * @get_tbipa: determines the address of the TBIPA register
 80 *
 81 * @ucc_configure: a special function for extra QE configuration
 82 */
 83struct fsl_pq_mdio_data {
 84	unsigned int mii_offset;	/* offset of the MII registers */
 85	uint32_t __iomem * (*get_tbipa)(void __iomem *p);
 86	void (*ucc_configure)(phys_addr_t start, phys_addr_t end);
 87};
 88
 89/*
 90 * Write value to the PHY at mii_id at register regnum, on the bus attached
 91 * to the local interface, which may be different from the generic mdio bus
 92 * (tied to a single interface), waiting until the write is done before
 93 * returning. This is helpful in programming interfaces like the TBI which
 94 * control interfaces like onchip SERDES and are always tied to the local
 95 * mdio pins, which may not be the same as system mdio bus, used for
 96 * controlling the external PHYs, for example.
 97 */
 98static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
 99		u16 value)
100{
101	struct fsl_pq_mdio_priv *priv = bus->priv;
102	struct fsl_pq_mii __iomem *regs = priv->regs;
103	unsigned int timeout;
104
105	/* Set the PHY address and the register address we want to write */
106	iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
107
108	/* Write out the value we want */
109	iowrite32be(value, &regs->miimcon);
110
111	/* Wait for the transaction to finish */
112	timeout = MII_TIMEOUT;
113	while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
114		cpu_relax();
115		timeout--;
116	}
117
118	return timeout ? 0 : -ETIMEDOUT;
119}
120
121/*
122 * Read the bus for PHY at addr mii_id, register regnum, and return the value.
123 * Clears miimcom first.
124 *
125 * All PHY operation done on the bus attached to the local interface, which
126 * may be different from the generic mdio bus.  This is helpful in programming
127 * interfaces like the TBI which, in turn, control interfaces like on-chip
128 * SERDES and are always tied to the local mdio pins, which may not be the
129 * same as system mdio bus, used for controlling the external PHYs, for eg.
130 */
131static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
132{
133	struct fsl_pq_mdio_priv *priv = bus->priv;
134	struct fsl_pq_mii __iomem *regs = priv->regs;
135	unsigned int timeout;
136	u16 value;
137
138	/* Set the PHY address and the register address we want to read */
139	iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
140
141	/* Clear miimcom, and then initiate a read */
142	iowrite32be(0, &regs->miimcom);
143	iowrite32be(MII_READ_COMMAND, &regs->miimcom);
144
145	/* Wait for the transaction to finish, normally less than 100us */
146	timeout = MII_TIMEOUT;
147	while ((ioread32be(&regs->miimind) &
148	       (MIIMIND_NOTVALID | MIIMIND_BUSY)) && timeout) {
149		cpu_relax();
150		timeout--;
151	}
152
153	if (!timeout)
154		return -ETIMEDOUT;
155
156	/* Grab the value of the register from miimstat */
157	value = ioread32be(&regs->miimstat);
158
159	dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum);
160	return value;
161}
162
163/* Reset the MIIM registers, and wait for the bus to free */
164static int fsl_pq_mdio_reset(struct mii_bus *bus)
165{
166	struct fsl_pq_mdio_priv *priv = bus->priv;
167	struct fsl_pq_mii __iomem *regs = priv->regs;
168	unsigned int timeout;
169
170	mutex_lock(&bus->mdio_lock);
171
172	/* Reset the management interface */
173	iowrite32be(MIIMCFG_RESET, &regs->miimcfg);
174
175	/* Setup the MII Mgmt clock speed */
176	iowrite32be(MIIMCFG_INIT_VALUE, &regs->miimcfg);
177
178	/* Wait until the bus is free */
179	timeout = MII_TIMEOUT;
180	while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
181		cpu_relax();
182		timeout--;
183	}
184
185	mutex_unlock(&bus->mdio_lock);
186
187	if (!timeout) {
188		dev_err(&bus->dev, "timeout waiting for MII bus\n");
189		return -EBUSY;
190	}
191
192	return 0;
193}
194
195#if IS_ENABLED(CONFIG_GIANFAR)
196/*
197 * Return the TBIPA address, starting from the address
198 * of the mapped GFAR MDIO registers (struct gfar)
199 * This is mildly evil, but so is our hardware for doing this.
200 * Also, we have to cast back to struct gfar because of
201 * definition weirdness done in gianfar.h.
202 */
203static uint32_t __iomem *get_gfar_tbipa_from_mdio(void __iomem *p)
204{
205	struct gfar __iomem *enet_regs = p;
206
207	return &enet_regs->tbipa;
208}
209
210/*
211 * Return the TBIPA address, starting from the address
212 * of the mapped GFAR MII registers (gfar_mii_regs[] within struct gfar)
213 */
214static uint32_t __iomem *get_gfar_tbipa_from_mii(void __iomem *p)
215{
216	return get_gfar_tbipa_from_mdio(container_of(p, struct gfar, gfar_mii_regs));
217}
218
219/*
220 * Return the TBIPAR address for an eTSEC2 node
221 */
222static uint32_t __iomem *get_etsec_tbipa(void __iomem *p)
223{
224	return p;
225}
226#endif
227
228#if IS_ENABLED(CONFIG_UCC_GETH)
229/*
230 * Return the TBIPAR address for a QE MDIO node, starting from the address
231 * of the mapped MII registers (struct fsl_pq_mii)
232 */
233static uint32_t __iomem *get_ucc_tbipa(void __iomem *p)
234{
235	struct fsl_pq_mdio __iomem *mdio = container_of(p, struct fsl_pq_mdio, mii);
236
237	return &mdio->utbipar;
238}
239
240/*
241 * Find the UCC node that controls the given MDIO node
242 *
243 * For some reason, the QE MDIO nodes are not children of the UCC devices
244 * that control them.  Therefore, we need to scan all UCC nodes looking for
245 * the one that encompases the given MDIO node.  We do this by comparing
246 * physical addresses.  The 'start' and 'end' addresses of the MDIO node are
247 * passed, and the correct UCC node will cover the entire address range.
248 *
249 * This assumes that there is only one QE MDIO node in the entire device tree.
250 */
251static void ucc_configure(phys_addr_t start, phys_addr_t end)
252{
253	static bool found_mii_master;
254	struct device_node *np = NULL;
255
256	if (found_mii_master)
257		return;
258
259	for_each_compatible_node(np, NULL, "ucc_geth") {
260		struct resource res;
261		const uint32_t *iprop;
262		uint32_t id;
263		int ret;
264
265		ret = of_address_to_resource(np, 0, &res);
266		if (ret < 0) {
267			pr_debug("fsl-pq-mdio: no address range in node %pOF\n",
268				 np);
269			continue;
270		}
271
272		/* if our mdio regs fall within this UCC regs range */
273		if ((start < res.start) || (end > res.end))
274			continue;
275
276		iprop = of_get_property(np, "cell-index", NULL);
277		if (!iprop) {
278			iprop = of_get_property(np, "device-id", NULL);
279			if (!iprop) {
280				pr_debug("fsl-pq-mdio: no UCC ID in node %pOF\n",
281					 np);
282				continue;
283			}
284		}
285
286		id = be32_to_cpup(iprop);
287
288		/*
289		 * cell-index and device-id for QE nodes are
290		 * numbered from 1, not 0.
291		 */
292		if (ucc_set_qe_mux_mii_mng(id - 1) < 0) {
293			pr_debug("fsl-pq-mdio: invalid UCC ID in node %pOF\n",
294				 np);
295			continue;
296		}
297
298		pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id);
299		found_mii_master = true;
300	}
301}
302
303#endif
304
305static const struct of_device_id fsl_pq_mdio_match[] = {
306#if IS_ENABLED(CONFIG_GIANFAR)
307	{
308		.compatible = "fsl,gianfar-tbi",
309		.data = &(struct fsl_pq_mdio_data) {
310			.mii_offset = 0,
311			.get_tbipa = get_gfar_tbipa_from_mii,
312		},
313	},
314	{
315		.compatible = "fsl,gianfar-mdio",
316		.data = &(struct fsl_pq_mdio_data) {
317			.mii_offset = 0,
318			.get_tbipa = get_gfar_tbipa_from_mii,
319		},
320	},
321	{
322		.type = "mdio",
323		.compatible = "gianfar",
324		.data = &(struct fsl_pq_mdio_data) {
325			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
326			.get_tbipa = get_gfar_tbipa_from_mdio,
327		},
328	},
329	{
330		.compatible = "fsl,etsec2-tbi",
331		.data = &(struct fsl_pq_mdio_data) {
332			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
333			.get_tbipa = get_etsec_tbipa,
334		},
335	},
336	{
337		.compatible = "fsl,etsec2-mdio",
338		.data = &(struct fsl_pq_mdio_data) {
339			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
340			.get_tbipa = get_etsec_tbipa,
341		},
342	},
343#endif
344#if IS_ENABLED(CONFIG_UCC_GETH)
345	{
346		.compatible = "fsl,ucc-mdio",
347		.data = &(struct fsl_pq_mdio_data) {
348			.mii_offset = 0,
349			.get_tbipa = get_ucc_tbipa,
350			.ucc_configure = ucc_configure,
351		},
352	},
353	{
354		/* Legacy UCC MDIO node */
355		.type = "mdio",
356		.compatible = "ucc_geth_phy",
357		.data = &(struct fsl_pq_mdio_data) {
358			.mii_offset = 0,
359			.get_tbipa = get_ucc_tbipa,
360			.ucc_configure = ucc_configure,
361		},
362	},
363#endif
364	/* No Kconfig option for Fman support yet */
365	{
366		.compatible = "fsl,fman-mdio",
367		.data = &(struct fsl_pq_mdio_data) {
368			.mii_offset = 0,
369			/* Fman TBI operations are handled elsewhere */
370		},
371	},
372
373	{},
374};
375MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match);
376
377static void set_tbipa(const u32 tbipa_val, struct platform_device *pdev,
378		      uint32_t __iomem * (*get_tbipa)(void __iomem *),
379		      void __iomem *reg_map, struct resource *reg_res)
380{
381	struct device_node *np = pdev->dev.of_node;
382	uint32_t __iomem *tbipa;
383	bool tbipa_mapped;
384
385	tbipa = of_iomap(np, 1);
386	if (tbipa) {
387		tbipa_mapped = true;
388	} else {
389		tbipa_mapped = false;
390		tbipa = (*get_tbipa)(reg_map);
391
392		/*
393		 * Add consistency check to make sure TBI is contained within
394		 * the mapped range (not because we would get a segfault,
395		 * rather to catch bugs in computing TBI address). Print error
396		 * message but continue anyway.
397		 */
398		if ((void *)tbipa > reg_map + resource_size(reg_res) - 4)
399			dev_err(&pdev->dev, "invalid register map (should be at least 0x%04zx to contain TBI address)\n",
400				((void *)tbipa - reg_map) + 4);
401	}
402
403	iowrite32be(be32_to_cpu(tbipa_val), tbipa);
404
405	if (tbipa_mapped)
406		iounmap(tbipa);
407}
408
409static int fsl_pq_mdio_probe(struct platform_device *pdev)
410{
411	const struct fsl_pq_mdio_data *data;
 
 
412	struct device_node *np = pdev->dev.of_node;
413	struct resource res;
414	struct device_node *tbi;
415	struct fsl_pq_mdio_priv *priv;
416	struct mii_bus *new_bus;
417	int err;
418
419	data = device_get_match_data(&pdev->dev);
420	if (!data) {
421		dev_err(&pdev->dev, "Failed to match device\n");
422		return -ENODEV;
423	}
424
425	new_bus = mdiobus_alloc_size(sizeof(*priv));
426	if (!new_bus)
427		return -ENOMEM;
428
429	priv = new_bus->priv;
430	new_bus->name = "Freescale PowerQUICC MII Bus";
431	new_bus->read = &fsl_pq_mdio_read;
432	new_bus->write = &fsl_pq_mdio_write;
433	new_bus->reset = &fsl_pq_mdio_reset;
 
434
435	err = of_address_to_resource(np, 0, &res);
436	if (err < 0) {
437		dev_err(&pdev->dev, "could not obtain address information\n");
438		goto error;
439	}
440
441	snprintf(new_bus->id, MII_BUS_ID_SIZE, "%pOFn@%llx", np,
442		 (unsigned long long)res.start);
443
444	priv->map = of_iomap(np, 0);
445	if (!priv->map) {
446		err = -ENOMEM;
447		goto error;
448	}
449
450	/*
451	 * Some device tree nodes represent only the MII registers, and
452	 * others represent the MAC and MII registers.  The 'mii_offset' field
453	 * contains the offset of the MII registers inside the mapped register
454	 * space.
455	 */
456	if (data->mii_offset > resource_size(&res)) {
457		dev_err(&pdev->dev, "invalid register map\n");
458		err = -EINVAL;
459		goto error;
460	}
461	priv->regs = priv->map + data->mii_offset;
462
463	new_bus->parent = &pdev->dev;
464	platform_set_drvdata(pdev, new_bus);
465
466	if (data->get_tbipa) {
467		for_each_child_of_node(np, tbi) {
468			if (of_node_is_type(tbi, "tbi-phy")) {
469				dev_dbg(&pdev->dev, "found TBI PHY node %pOFP\n",
470					tbi);
471				break;
472			}
473		}
474
475		if (tbi) {
476			const u32 *prop = of_get_property(tbi, "reg", NULL);
 
 
477			if (!prop) {
478				dev_err(&pdev->dev,
479					"missing 'reg' property in node %pOF\n",
480					tbi);
481				err = -EBUSY;
482				goto error;
483			}
484			set_tbipa(*prop, pdev,
485				  data->get_tbipa, priv->map, &res);
 
 
486		}
487	}
488
489	if (data->ucc_configure)
490		data->ucc_configure(res.start, res.end);
491
492	err = of_mdiobus_register(new_bus, np);
493	if (err) {
494		dev_err(&pdev->dev, "cannot register %s as MDIO bus\n",
495			new_bus->name);
496		goto error;
497	}
498
499	return 0;
500
501error:
502	if (priv->map)
503		iounmap(priv->map);
504
505	kfree(new_bus);
506
507	return err;
508}
509
510
511static void fsl_pq_mdio_remove(struct platform_device *pdev)
512{
513	struct device *device = &pdev->dev;
514	struct mii_bus *bus = dev_get_drvdata(device);
515	struct fsl_pq_mdio_priv *priv = bus->priv;
516
517	mdiobus_unregister(bus);
518
519	iounmap(priv->map);
520	mdiobus_free(bus);
 
 
521}
522
523static struct platform_driver fsl_pq_mdio_driver = {
524	.driver = {
525		.name = "fsl-pq_mdio",
 
526		.of_match_table = fsl_pq_mdio_match,
527	},
528	.probe = fsl_pq_mdio_probe,
529	.remove_new = fsl_pq_mdio_remove,
530};
531
532module_platform_driver(fsl_pq_mdio_driver);
533
534MODULE_DESCRIPTION("Freescale PQ MDIO helpers");
535MODULE_LICENSE("GPL");
v3.15
 
  1/*
  2 * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation
  3 * Provides Bus interface for MIIM regs
  4 *
  5 * Author: Andy Fleming <afleming@freescale.com>
  6 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  7 *
  8 * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc.
  9 *
 10 * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips)
 11 *
 12 * This program is free software; you can redistribute  it and/or modify it
 13 * under  the terms of  the GNU General  Public License as published by the
 14 * Free Software Foundation;  either version 2 of the  License, or (at your
 15 * option) any later version.
 16 *
 17 */
 18
 19#include <linux/kernel.h>
 
 20#include <linux/string.h>
 21#include <linux/errno.h>
 22#include <linux/slab.h>
 23#include <linux/delay.h>
 24#include <linux/module.h>
 25#include <linux/mii.h>
 
 26#include <linux/of_address.h>
 27#include <linux/of_mdio.h>
 28#include <linux/of_device.h>
 29
 30#include <asm/io.h>
 31#include <asm/ucc.h>	/* for ucc_set_qe_mux_mii_mng() */
 
 
 32
 33#include "gianfar.h"
 34
 35#define MIIMIND_BUSY		0x00000001
 36#define MIIMIND_NOTVALID	0x00000004
 37#define MIIMCFG_INIT_VALUE	0x00000007
 38#define MIIMCFG_RESET		0x80000000
 39
 40#define MII_READ_COMMAND	0x00000001
 41
 42struct fsl_pq_mii {
 43	u32 miimcfg;	/* MII management configuration reg */
 44	u32 miimcom;	/* MII management command reg */
 45	u32 miimadd;	/* MII management address reg */
 46	u32 miimcon;	/* MII management control reg */
 47	u32 miimstat;	/* MII management status reg */
 48	u32 miimind;	/* MII management indication reg */
 49};
 50
 51struct fsl_pq_mdio {
 52	u8 res1[16];
 53	u32 ieventm;	/* MDIO Interrupt event register (for etsec2)*/
 54	u32 imaskm;	/* MDIO Interrupt mask register (for etsec2)*/
 55	u8 res2[4];
 56	u32 emapm;	/* MDIO Event mapping register (for etsec2)*/
 57	u8 res3[1280];
 58	struct fsl_pq_mii mii;
 59	u8 res4[28];
 60	u32 utbipar;	/* TBI phy address reg (only on UCC) */
 61	u8 res5[2728];
 62} __packed;
 63
 64/* Number of microseconds to wait for an MII register to respond */
 65#define MII_TIMEOUT	1000
 66
 67struct fsl_pq_mdio_priv {
 68	void __iomem *map;
 69	struct fsl_pq_mii __iomem *regs;
 70	int irqs[PHY_MAX_ADDR];
 71};
 72
 73/*
 74 * Per-device-type data.  Each type of device tree node that we support gets
 75 * one of these.
 76 *
 77 * @mii_offset: the offset of the MII registers within the memory map of the
 78 * node.  Some nodes define only the MII registers, and some define the whole
 79 * MAC (which includes the MII registers).
 80 *
 81 * @get_tbipa: determines the address of the TBIPA register
 82 *
 83 * @ucc_configure: a special function for extra QE configuration
 84 */
 85struct fsl_pq_mdio_data {
 86	unsigned int mii_offset;	/* offset of the MII registers */
 87	uint32_t __iomem * (*get_tbipa)(void __iomem *p);
 88	void (*ucc_configure)(phys_addr_t start, phys_addr_t end);
 89};
 90
 91/*
 92 * Write value to the PHY at mii_id at register regnum, on the bus attached
 93 * to the local interface, which may be different from the generic mdio bus
 94 * (tied to a single interface), waiting until the write is done before
 95 * returning. This is helpful in programming interfaces like the TBI which
 96 * control interfaces like onchip SERDES and are always tied to the local
 97 * mdio pins, which may not be the same as system mdio bus, used for
 98 * controlling the external PHYs, for example.
 99 */
100static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
101		u16 value)
102{
103	struct fsl_pq_mdio_priv *priv = bus->priv;
104	struct fsl_pq_mii __iomem *regs = priv->regs;
105	u32 status;
106
107	/* Set the PHY address and the register address we want to write */
108	out_be32(&regs->miimadd, (mii_id << 8) | regnum);
109
110	/* Write out the value we want */
111	out_be32(&regs->miimcon, value);
112
113	/* Wait for the transaction to finish */
114	status = spin_event_timeout(!(in_be32(&regs->miimind) &	MIIMIND_BUSY),
115				    MII_TIMEOUT, 0);
 
 
 
116
117	return status ? 0 : -ETIMEDOUT;
118}
119
120/*
121 * Read the bus for PHY at addr mii_id, register regnum, and return the value.
122 * Clears miimcom first.
123 *
124 * All PHY operation done on the bus attached to the local interface, which
125 * may be different from the generic mdio bus.  This is helpful in programming
126 * interfaces like the TBI which, in turn, control interfaces like on-chip
127 * SERDES and are always tied to the local mdio pins, which may not be the
128 * same as system mdio bus, used for controlling the external PHYs, for eg.
129 */
130static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
131{
132	struct fsl_pq_mdio_priv *priv = bus->priv;
133	struct fsl_pq_mii __iomem *regs = priv->regs;
134	u32 status;
135	u16 value;
136
137	/* Set the PHY address and the register address we want to read */
138	out_be32(&regs->miimadd, (mii_id << 8) | regnum);
139
140	/* Clear miimcom, and then initiate a read */
141	out_be32(&regs->miimcom, 0);
142	out_be32(&regs->miimcom, MII_READ_COMMAND);
143
144	/* Wait for the transaction to finish, normally less than 100us */
145	status = spin_event_timeout(!(in_be32(&regs->miimind) &
146				    (MIIMIND_NOTVALID | MIIMIND_BUSY)),
147				    MII_TIMEOUT, 0);
148	if (!status)
 
 
 
 
149		return -ETIMEDOUT;
150
151	/* Grab the value of the register from miimstat */
152	value = in_be32(&regs->miimstat);
153
154	dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum);
155	return value;
156}
157
158/* Reset the MIIM registers, and wait for the bus to free */
159static int fsl_pq_mdio_reset(struct mii_bus *bus)
160{
161	struct fsl_pq_mdio_priv *priv = bus->priv;
162	struct fsl_pq_mii __iomem *regs = priv->regs;
163	u32 status;
164
165	mutex_lock(&bus->mdio_lock);
166
167	/* Reset the management interface */
168	out_be32(&regs->miimcfg, MIIMCFG_RESET);
169
170	/* Setup the MII Mgmt clock speed */
171	out_be32(&regs->miimcfg, MIIMCFG_INIT_VALUE);
172
173	/* Wait until the bus is free */
174	status = spin_event_timeout(!(in_be32(&regs->miimind) &	MIIMIND_BUSY),
175				    MII_TIMEOUT, 0);
 
 
 
176
177	mutex_unlock(&bus->mdio_lock);
178
179	if (!status) {
180		dev_err(&bus->dev, "timeout waiting for MII bus\n");
181		return -EBUSY;
182	}
183
184	return 0;
185}
186
187#if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE)
188/*
 
 
189 * This is mildly evil, but so is our hardware for doing this.
190 * Also, we have to cast back to struct gfar because of
191 * definition weirdness done in gianfar.h.
192 */
193static uint32_t __iomem *get_gfar_tbipa(void __iomem *p)
194{
195	struct gfar __iomem *enet_regs = p;
196
197	return &enet_regs->tbipa;
198}
199
200/*
 
 
 
 
 
 
 
 
 
201 * Return the TBIPAR address for an eTSEC2 node
202 */
203static uint32_t __iomem *get_etsec_tbipa(void __iomem *p)
204{
205	return p;
206}
207#endif
208
209#if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE)
210/*
211 * Return the TBIPAR address for a QE MDIO node
 
212 */
213static uint32_t __iomem *get_ucc_tbipa(void __iomem *p)
214{
215	struct fsl_pq_mdio __iomem *mdio = p;
216
217	return &mdio->utbipar;
218}
219
220/*
221 * Find the UCC node that controls the given MDIO node
222 *
223 * For some reason, the QE MDIO nodes are not children of the UCC devices
224 * that control them.  Therefore, we need to scan all UCC nodes looking for
225 * the one that encompases the given MDIO node.  We do this by comparing
226 * physical addresses.  The 'start' and 'end' addresses of the MDIO node are
227 * passed, and the correct UCC node will cover the entire address range.
228 *
229 * This assumes that there is only one QE MDIO node in the entire device tree.
230 */
231static void ucc_configure(phys_addr_t start, phys_addr_t end)
232{
233	static bool found_mii_master;
234	struct device_node *np = NULL;
235
236	if (found_mii_master)
237		return;
238
239	for_each_compatible_node(np, NULL, "ucc_geth") {
240		struct resource res;
241		const uint32_t *iprop;
242		uint32_t id;
243		int ret;
244
245		ret = of_address_to_resource(np, 0, &res);
246		if (ret < 0) {
247			pr_debug("fsl-pq-mdio: no address range in node %s\n",
248				 np->full_name);
249			continue;
250		}
251
252		/* if our mdio regs fall within this UCC regs range */
253		if ((start < res.start) || (end > res.end))
254			continue;
255
256		iprop = of_get_property(np, "cell-index", NULL);
257		if (!iprop) {
258			iprop = of_get_property(np, "device-id", NULL);
259			if (!iprop) {
260				pr_debug("fsl-pq-mdio: no UCC ID in node %s\n",
261					 np->full_name);
262				continue;
263			}
264		}
265
266		id = be32_to_cpup(iprop);
267
268		/*
269		 * cell-index and device-id for QE nodes are
270		 * numbered from 1, not 0.
271		 */
272		if (ucc_set_qe_mux_mii_mng(id - 1) < 0) {
273			pr_debug("fsl-pq-mdio: invalid UCC ID in node %s\n",
274				 np->full_name);
275			continue;
276		}
277
278		pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id);
279		found_mii_master = true;
280	}
281}
282
283#endif
284
285static struct of_device_id fsl_pq_mdio_match[] = {
286#if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE)
287	{
288		.compatible = "fsl,gianfar-tbi",
289		.data = &(struct fsl_pq_mdio_data) {
290			.mii_offset = 0,
291			.get_tbipa = get_gfar_tbipa,
292		},
293	},
294	{
295		.compatible = "fsl,gianfar-mdio",
296		.data = &(struct fsl_pq_mdio_data) {
297			.mii_offset = 0,
298			.get_tbipa = get_gfar_tbipa,
299		},
300	},
301	{
302		.type = "mdio",
303		.compatible = "gianfar",
304		.data = &(struct fsl_pq_mdio_data) {
305			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
306			.get_tbipa = get_gfar_tbipa,
307		},
308	},
309	{
310		.compatible = "fsl,etsec2-tbi",
311		.data = &(struct fsl_pq_mdio_data) {
312			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
313			.get_tbipa = get_etsec_tbipa,
314		},
315	},
316	{
317		.compatible = "fsl,etsec2-mdio",
318		.data = &(struct fsl_pq_mdio_data) {
319			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
320			.get_tbipa = get_etsec_tbipa,
321		},
322	},
323#endif
324#if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE)
325	{
326		.compatible = "fsl,ucc-mdio",
327		.data = &(struct fsl_pq_mdio_data) {
328			.mii_offset = 0,
329			.get_tbipa = get_ucc_tbipa,
330			.ucc_configure = ucc_configure,
331		},
332	},
333	{
334		/* Legacy UCC MDIO node */
335		.type = "mdio",
336		.compatible = "ucc_geth_phy",
337		.data = &(struct fsl_pq_mdio_data) {
338			.mii_offset = 0,
339			.get_tbipa = get_ucc_tbipa,
340			.ucc_configure = ucc_configure,
341		},
342	},
343#endif
344	/* No Kconfig option for Fman support yet */
345	{
346		.compatible = "fsl,fman-mdio",
347		.data = &(struct fsl_pq_mdio_data) {
348			.mii_offset = 0,
349			/* Fman TBI operations are handled elsewhere */
350		},
351	},
352
353	{},
354};
355MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match);
356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
357static int fsl_pq_mdio_probe(struct platform_device *pdev)
358{
359	const struct of_device_id *id =
360		of_match_device(fsl_pq_mdio_match, &pdev->dev);
361	const struct fsl_pq_mdio_data *data = id->data;
362	struct device_node *np = pdev->dev.of_node;
363	struct resource res;
364	struct device_node *tbi;
365	struct fsl_pq_mdio_priv *priv;
366	struct mii_bus *new_bus;
367	int err;
368
369	dev_dbg(&pdev->dev, "found %s compatible node\n", id->compatible);
 
 
 
 
370
371	new_bus = mdiobus_alloc_size(sizeof(*priv));
372	if (!new_bus)
373		return -ENOMEM;
374
375	priv = new_bus->priv;
376	new_bus->name = "Freescale PowerQUICC MII Bus",
377	new_bus->read = &fsl_pq_mdio_read;
378	new_bus->write = &fsl_pq_mdio_write;
379	new_bus->reset = &fsl_pq_mdio_reset;
380	new_bus->irq = priv->irqs;
381
382	err = of_address_to_resource(np, 0, &res);
383	if (err < 0) {
384		dev_err(&pdev->dev, "could not obtain address information\n");
385		goto error;
386	}
387
388	snprintf(new_bus->id, MII_BUS_ID_SIZE, "%s@%llx", np->name,
389		(unsigned long long)res.start);
390
391	priv->map = of_iomap(np, 0);
392	if (!priv->map) {
393		err = -ENOMEM;
394		goto error;
395	}
396
397	/*
398	 * Some device tree nodes represent only the MII registers, and
399	 * others represent the MAC and MII registers.  The 'mii_offset' field
400	 * contains the offset of the MII registers inside the mapped register
401	 * space.
402	 */
403	if (data->mii_offset > resource_size(&res)) {
404		dev_err(&pdev->dev, "invalid register map\n");
405		err = -EINVAL;
406		goto error;
407	}
408	priv->regs = priv->map + data->mii_offset;
409
410	new_bus->parent = &pdev->dev;
411	platform_set_drvdata(pdev, new_bus);
412
413	if (data->get_tbipa) {
414		for_each_child_of_node(np, tbi) {
415			if (strcmp(tbi->type, "tbi-phy") == 0) {
416				dev_dbg(&pdev->dev, "found TBI PHY node %s\n",
417					strrchr(tbi->full_name, '/') + 1);
418				break;
419			}
420		}
421
422		if (tbi) {
423			const u32 *prop = of_get_property(tbi, "reg", NULL);
424			uint32_t __iomem *tbipa;
425
426			if (!prop) {
427				dev_err(&pdev->dev,
428					"missing 'reg' property in node %s\n",
429					tbi->full_name);
430				err = -EBUSY;
431				goto error;
432			}
433
434			tbipa = data->get_tbipa(priv->map);
435
436			out_be32(tbipa, be32_to_cpup(prop));
437		}
438	}
439
440	if (data->ucc_configure)
441		data->ucc_configure(res.start, res.end);
442
443	err = of_mdiobus_register(new_bus, np);
444	if (err) {
445		dev_err(&pdev->dev, "cannot register %s as MDIO bus\n",
446			new_bus->name);
447		goto error;
448	}
449
450	return 0;
451
452error:
453	if (priv->map)
454		iounmap(priv->map);
455
456	kfree(new_bus);
457
458	return err;
459}
460
461
462static int fsl_pq_mdio_remove(struct platform_device *pdev)
463{
464	struct device *device = &pdev->dev;
465	struct mii_bus *bus = dev_get_drvdata(device);
466	struct fsl_pq_mdio_priv *priv = bus->priv;
467
468	mdiobus_unregister(bus);
469
470	iounmap(priv->map);
471	mdiobus_free(bus);
472
473	return 0;
474}
475
476static struct platform_driver fsl_pq_mdio_driver = {
477	.driver = {
478		.name = "fsl-pq_mdio",
479		.owner = THIS_MODULE,
480		.of_match_table = fsl_pq_mdio_match,
481	},
482	.probe = fsl_pq_mdio_probe,
483	.remove = fsl_pq_mdio_remove,
484};
485
486module_platform_driver(fsl_pq_mdio_driver);
487
 
488MODULE_LICENSE("GPL");