Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Security-Enhanced Linux (SELinux) security module
4 *
5 * This file contains the SELinux hook function implementations.
6 *
7 * Authors: Stephen Smalley, <stephen.smalley.work@gmail.com>
8 * Chris Vance, <cvance@nai.com>
9 * Wayne Salamon, <wsalamon@nai.com>
10 * James Morris <jmorris@redhat.com>
11 *
12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14 * Eric Paris <eparis@redhat.com>
15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16 * <dgoeddel@trustedcs.com>
17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18 * Paul Moore <paul@paul-moore.com>
19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20 * Yuichi Nakamura <ynakam@hitachisoft.jp>
21 * Copyright (C) 2016 Mellanox Technologies
22 */
23
24#include <linux/init.h>
25#include <linux/kd.h>
26#include <linux/kernel.h>
27#include <linux/kernel_read_file.h>
28#include <linux/errno.h>
29#include <linux/sched/signal.h>
30#include <linux/sched/task.h>
31#include <linux/lsm_hooks.h>
32#include <linux/xattr.h>
33#include <linux/capability.h>
34#include <linux/unistd.h>
35#include <linux/mm.h>
36#include <linux/mman.h>
37#include <linux/slab.h>
38#include <linux/pagemap.h>
39#include <linux/proc_fs.h>
40#include <linux/swap.h>
41#include <linux/spinlock.h>
42#include <linux/syscalls.h>
43#include <linux/dcache.h>
44#include <linux/file.h>
45#include <linux/fdtable.h>
46#include <linux/namei.h>
47#include <linux/mount.h>
48#include <linux/fs_context.h>
49#include <linux/fs_parser.h>
50#include <linux/netfilter_ipv4.h>
51#include <linux/netfilter_ipv6.h>
52#include <linux/tty.h>
53#include <net/icmp.h>
54#include <net/ip.h> /* for local_port_range[] */
55#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56#include <net/inet_connection_sock.h>
57#include <net/net_namespace.h>
58#include <net/netlabel.h>
59#include <linux/uaccess.h>
60#include <asm/ioctls.h>
61#include <linux/atomic.h>
62#include <linux/bitops.h>
63#include <linux/interrupt.h>
64#include <linux/netdevice.h> /* for network interface checks */
65#include <net/netlink.h>
66#include <linux/tcp.h>
67#include <linux/udp.h>
68#include <linux/dccp.h>
69#include <linux/sctp.h>
70#include <net/sctp/structs.h>
71#include <linux/quota.h>
72#include <linux/un.h> /* for Unix socket types */
73#include <net/af_unix.h> /* for Unix socket types */
74#include <linux/parser.h>
75#include <linux/nfs_mount.h>
76#include <net/ipv6.h>
77#include <linux/hugetlb.h>
78#include <linux/personality.h>
79#include <linux/audit.h>
80#include <linux/string.h>
81#include <linux/mutex.h>
82#include <linux/posix-timers.h>
83#include <linux/syslog.h>
84#include <linux/user_namespace.h>
85#include <linux/export.h>
86#include <linux/msg.h>
87#include <linux/shm.h>
88#include <uapi/linux/shm.h>
89#include <linux/bpf.h>
90#include <linux/kernfs.h>
91#include <linux/stringhash.h> /* for hashlen_string() */
92#include <uapi/linux/mount.h>
93#include <linux/fsnotify.h>
94#include <linux/fanotify.h>
95#include <linux/io_uring/cmd.h>
96#include <uapi/linux/lsm.h>
97
98#include "avc.h"
99#include "objsec.h"
100#include "netif.h"
101#include "netnode.h"
102#include "netport.h"
103#include "ibpkey.h"
104#include "xfrm.h"
105#include "netlabel.h"
106#include "audit.h"
107#include "avc_ss.h"
108
109#define SELINUX_INODE_INIT_XATTRS 1
110
111struct selinux_state selinux_state;
112
113/* SECMARK reference count */
114static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
115
116#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
117static int selinux_enforcing_boot __initdata;
118
119static int __init enforcing_setup(char *str)
120{
121 unsigned long enforcing;
122 if (!kstrtoul(str, 0, &enforcing))
123 selinux_enforcing_boot = enforcing ? 1 : 0;
124 return 1;
125}
126__setup("enforcing=", enforcing_setup);
127#else
128#define selinux_enforcing_boot 1
129#endif
130
131int selinux_enabled_boot __initdata = 1;
132#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
133static int __init selinux_enabled_setup(char *str)
134{
135 unsigned long enabled;
136 if (!kstrtoul(str, 0, &enabled))
137 selinux_enabled_boot = enabled ? 1 : 0;
138 return 1;
139}
140__setup("selinux=", selinux_enabled_setup);
141#endif
142
143static int __init checkreqprot_setup(char *str)
144{
145 unsigned long checkreqprot;
146
147 if (!kstrtoul(str, 0, &checkreqprot)) {
148 if (checkreqprot)
149 pr_err("SELinux: checkreqprot set to 1 via kernel parameter. This is no longer supported.\n");
150 }
151 return 1;
152}
153__setup("checkreqprot=", checkreqprot_setup);
154
155/**
156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157 *
158 * Description:
159 * This function checks the SECMARK reference counter to see if any SECMARK
160 * targets are currently configured, if the reference counter is greater than
161 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
162 * enabled, false (0) if SECMARK is disabled. If the always_check_network
163 * policy capability is enabled, SECMARK is always considered enabled.
164 *
165 */
166static int selinux_secmark_enabled(void)
167{
168 return (selinux_policycap_alwaysnetwork() ||
169 atomic_read(&selinux_secmark_refcount));
170}
171
172/**
173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174 *
175 * Description:
176 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
177 * (1) if any are enabled or false (0) if neither are enabled. If the
178 * always_check_network policy capability is enabled, peer labeling
179 * is always considered enabled.
180 *
181 */
182static int selinux_peerlbl_enabled(void)
183{
184 return (selinux_policycap_alwaysnetwork() ||
185 netlbl_enabled() || selinux_xfrm_enabled());
186}
187
188static int selinux_netcache_avc_callback(u32 event)
189{
190 if (event == AVC_CALLBACK_RESET) {
191 sel_netif_flush();
192 sel_netnode_flush();
193 sel_netport_flush();
194 synchronize_net();
195 }
196 return 0;
197}
198
199static int selinux_lsm_notifier_avc_callback(u32 event)
200{
201 if (event == AVC_CALLBACK_RESET) {
202 sel_ib_pkey_flush();
203 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 }
205
206 return 0;
207}
208
209/*
210 * initialise the security for the init task
211 */
212static void cred_init_security(void)
213{
214 struct task_security_struct *tsec;
215
216 tsec = selinux_cred(unrcu_pointer(current->real_cred));
217 tsec->osid = tsec->sid = SECINITSID_KERNEL;
218}
219
220/*
221 * get the security ID of a set of credentials
222 */
223static inline u32 cred_sid(const struct cred *cred)
224{
225 const struct task_security_struct *tsec;
226
227 tsec = selinux_cred(cred);
228 return tsec->sid;
229}
230
231static void __ad_net_init(struct common_audit_data *ad,
232 struct lsm_network_audit *net,
233 int ifindex, struct sock *sk, u16 family)
234{
235 ad->type = LSM_AUDIT_DATA_NET;
236 ad->u.net = net;
237 net->netif = ifindex;
238 net->sk = sk;
239 net->family = family;
240}
241
242static void ad_net_init_from_sk(struct common_audit_data *ad,
243 struct lsm_network_audit *net,
244 struct sock *sk)
245{
246 __ad_net_init(ad, net, 0, sk, 0);
247}
248
249static void ad_net_init_from_iif(struct common_audit_data *ad,
250 struct lsm_network_audit *net,
251 int ifindex, u16 family)
252{
253 __ad_net_init(ad, net, ifindex, NULL, family);
254}
255
256/*
257 * get the objective security ID of a task
258 */
259static inline u32 task_sid_obj(const struct task_struct *task)
260{
261 u32 sid;
262
263 rcu_read_lock();
264 sid = cred_sid(__task_cred(task));
265 rcu_read_unlock();
266 return sid;
267}
268
269static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
270
271/*
272 * Try reloading inode security labels that have been marked as invalid. The
273 * @may_sleep parameter indicates when sleeping and thus reloading labels is
274 * allowed; when set to false, returns -ECHILD when the label is
275 * invalid. The @dentry parameter should be set to a dentry of the inode.
276 */
277static int __inode_security_revalidate(struct inode *inode,
278 struct dentry *dentry,
279 bool may_sleep)
280{
281 struct inode_security_struct *isec = selinux_inode(inode);
282
283 might_sleep_if(may_sleep);
284
285 if (selinux_initialized() &&
286 isec->initialized != LABEL_INITIALIZED) {
287 if (!may_sleep)
288 return -ECHILD;
289
290 /*
291 * Try reloading the inode security label. This will fail if
292 * @opt_dentry is NULL and no dentry for this inode can be
293 * found; in that case, continue using the old label.
294 */
295 inode_doinit_with_dentry(inode, dentry);
296 }
297 return 0;
298}
299
300static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
301{
302 return selinux_inode(inode);
303}
304
305static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
306{
307 int error;
308
309 error = __inode_security_revalidate(inode, NULL, !rcu);
310 if (error)
311 return ERR_PTR(error);
312 return selinux_inode(inode);
313}
314
315/*
316 * Get the security label of an inode.
317 */
318static struct inode_security_struct *inode_security(struct inode *inode)
319{
320 __inode_security_revalidate(inode, NULL, true);
321 return selinux_inode(inode);
322}
323
324static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
325{
326 struct inode *inode = d_backing_inode(dentry);
327
328 return selinux_inode(inode);
329}
330
331/*
332 * Get the security label of a dentry's backing inode.
333 */
334static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
335{
336 struct inode *inode = d_backing_inode(dentry);
337
338 __inode_security_revalidate(inode, dentry, true);
339 return selinux_inode(inode);
340}
341
342static void inode_free_security(struct inode *inode)
343{
344 struct inode_security_struct *isec = selinux_inode(inode);
345 struct superblock_security_struct *sbsec;
346
347 if (!isec)
348 return;
349 sbsec = selinux_superblock(inode->i_sb);
350 /*
351 * As not all inode security structures are in a list, we check for
352 * empty list outside of the lock to make sure that we won't waste
353 * time taking a lock doing nothing.
354 *
355 * The list_del_init() function can be safely called more than once.
356 * It should not be possible for this function to be called with
357 * concurrent list_add(), but for better safety against future changes
358 * in the code, we use list_empty_careful() here.
359 */
360 if (!list_empty_careful(&isec->list)) {
361 spin_lock(&sbsec->isec_lock);
362 list_del_init(&isec->list);
363 spin_unlock(&sbsec->isec_lock);
364 }
365}
366
367struct selinux_mnt_opts {
368 u32 fscontext_sid;
369 u32 context_sid;
370 u32 rootcontext_sid;
371 u32 defcontext_sid;
372};
373
374static void selinux_free_mnt_opts(void *mnt_opts)
375{
376 kfree(mnt_opts);
377}
378
379enum {
380 Opt_error = -1,
381 Opt_context = 0,
382 Opt_defcontext = 1,
383 Opt_fscontext = 2,
384 Opt_rootcontext = 3,
385 Opt_seclabel = 4,
386};
387
388#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
389static const struct {
390 const char *name;
391 int len;
392 int opt;
393 bool has_arg;
394} tokens[] = {
395 A(context, true),
396 A(fscontext, true),
397 A(defcontext, true),
398 A(rootcontext, true),
399 A(seclabel, false),
400};
401#undef A
402
403static int match_opt_prefix(char *s, int l, char **arg)
404{
405 int i;
406
407 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
408 size_t len = tokens[i].len;
409 if (len > l || memcmp(s, tokens[i].name, len))
410 continue;
411 if (tokens[i].has_arg) {
412 if (len == l || s[len] != '=')
413 continue;
414 *arg = s + len + 1;
415 } else if (len != l)
416 continue;
417 return tokens[i].opt;
418 }
419 return Opt_error;
420}
421
422#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
423
424static int may_context_mount_sb_relabel(u32 sid,
425 struct superblock_security_struct *sbsec,
426 const struct cred *cred)
427{
428 const struct task_security_struct *tsec = selinux_cred(cred);
429 int rc;
430
431 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
432 FILESYSTEM__RELABELFROM, NULL);
433 if (rc)
434 return rc;
435
436 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
437 FILESYSTEM__RELABELTO, NULL);
438 return rc;
439}
440
441static int may_context_mount_inode_relabel(u32 sid,
442 struct superblock_security_struct *sbsec,
443 const struct cred *cred)
444{
445 const struct task_security_struct *tsec = selinux_cred(cred);
446 int rc;
447 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
448 FILESYSTEM__RELABELFROM, NULL);
449 if (rc)
450 return rc;
451
452 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
453 FILESYSTEM__ASSOCIATE, NULL);
454 return rc;
455}
456
457static int selinux_is_genfs_special_handling(struct super_block *sb)
458{
459 /* Special handling. Genfs but also in-core setxattr handler */
460 return !strcmp(sb->s_type->name, "sysfs") ||
461 !strcmp(sb->s_type->name, "pstore") ||
462 !strcmp(sb->s_type->name, "debugfs") ||
463 !strcmp(sb->s_type->name, "tracefs") ||
464 !strcmp(sb->s_type->name, "rootfs") ||
465 (selinux_policycap_cgroupseclabel() &&
466 (!strcmp(sb->s_type->name, "cgroup") ||
467 !strcmp(sb->s_type->name, "cgroup2")));
468}
469
470static int selinux_is_sblabel_mnt(struct super_block *sb)
471{
472 struct superblock_security_struct *sbsec = selinux_superblock(sb);
473
474 /*
475 * IMPORTANT: Double-check logic in this function when adding a new
476 * SECURITY_FS_USE_* definition!
477 */
478 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
479
480 switch (sbsec->behavior) {
481 case SECURITY_FS_USE_XATTR:
482 case SECURITY_FS_USE_TRANS:
483 case SECURITY_FS_USE_TASK:
484 case SECURITY_FS_USE_NATIVE:
485 return 1;
486
487 case SECURITY_FS_USE_GENFS:
488 return selinux_is_genfs_special_handling(sb);
489
490 /* Never allow relabeling on context mounts */
491 case SECURITY_FS_USE_MNTPOINT:
492 case SECURITY_FS_USE_NONE:
493 default:
494 return 0;
495 }
496}
497
498static int sb_check_xattr_support(struct super_block *sb)
499{
500 struct superblock_security_struct *sbsec = selinux_superblock(sb);
501 struct dentry *root = sb->s_root;
502 struct inode *root_inode = d_backing_inode(root);
503 u32 sid;
504 int rc;
505
506 /*
507 * Make sure that the xattr handler exists and that no
508 * error other than -ENODATA is returned by getxattr on
509 * the root directory. -ENODATA is ok, as this may be
510 * the first boot of the SELinux kernel before we have
511 * assigned xattr values to the filesystem.
512 */
513 if (!(root_inode->i_opflags & IOP_XATTR)) {
514 pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
515 sb->s_id, sb->s_type->name);
516 goto fallback;
517 }
518
519 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
520 if (rc < 0 && rc != -ENODATA) {
521 if (rc == -EOPNOTSUPP) {
522 pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
523 sb->s_id, sb->s_type->name);
524 goto fallback;
525 } else {
526 pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
527 sb->s_id, sb->s_type->name, -rc);
528 return rc;
529 }
530 }
531 return 0;
532
533fallback:
534 /* No xattr support - try to fallback to genfs if possible. */
535 rc = security_genfs_sid(sb->s_type->name, "/",
536 SECCLASS_DIR, &sid);
537 if (rc)
538 return -EOPNOTSUPP;
539
540 pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
541 sb->s_id, sb->s_type->name);
542 sbsec->behavior = SECURITY_FS_USE_GENFS;
543 sbsec->sid = sid;
544 return 0;
545}
546
547static int sb_finish_set_opts(struct super_block *sb)
548{
549 struct superblock_security_struct *sbsec = selinux_superblock(sb);
550 struct dentry *root = sb->s_root;
551 struct inode *root_inode = d_backing_inode(root);
552 int rc = 0;
553
554 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
555 rc = sb_check_xattr_support(sb);
556 if (rc)
557 return rc;
558 }
559
560 sbsec->flags |= SE_SBINITIALIZED;
561
562 /*
563 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
564 * leave the flag untouched because sb_clone_mnt_opts might be handing
565 * us a superblock that needs the flag to be cleared.
566 */
567 if (selinux_is_sblabel_mnt(sb))
568 sbsec->flags |= SBLABEL_MNT;
569 else
570 sbsec->flags &= ~SBLABEL_MNT;
571
572 /* Initialize the root inode. */
573 rc = inode_doinit_with_dentry(root_inode, root);
574
575 /* Initialize any other inodes associated with the superblock, e.g.
576 inodes created prior to initial policy load or inodes created
577 during get_sb by a pseudo filesystem that directly
578 populates itself. */
579 spin_lock(&sbsec->isec_lock);
580 while (!list_empty(&sbsec->isec_head)) {
581 struct inode_security_struct *isec =
582 list_first_entry(&sbsec->isec_head,
583 struct inode_security_struct, list);
584 struct inode *inode = isec->inode;
585 list_del_init(&isec->list);
586 spin_unlock(&sbsec->isec_lock);
587 inode = igrab(inode);
588 if (inode) {
589 if (!IS_PRIVATE(inode))
590 inode_doinit_with_dentry(inode, NULL);
591 iput(inode);
592 }
593 spin_lock(&sbsec->isec_lock);
594 }
595 spin_unlock(&sbsec->isec_lock);
596 return rc;
597}
598
599static int bad_option(struct superblock_security_struct *sbsec, char flag,
600 u32 old_sid, u32 new_sid)
601{
602 char mnt_flags = sbsec->flags & SE_MNTMASK;
603
604 /* check if the old mount command had the same options */
605 if (sbsec->flags & SE_SBINITIALIZED)
606 if (!(sbsec->flags & flag) ||
607 (old_sid != new_sid))
608 return 1;
609
610 /* check if we were passed the same options twice,
611 * aka someone passed context=a,context=b
612 */
613 if (!(sbsec->flags & SE_SBINITIALIZED))
614 if (mnt_flags & flag)
615 return 1;
616 return 0;
617}
618
619/*
620 * Allow filesystems with binary mount data to explicitly set mount point
621 * labeling information.
622 */
623static int selinux_set_mnt_opts(struct super_block *sb,
624 void *mnt_opts,
625 unsigned long kern_flags,
626 unsigned long *set_kern_flags)
627{
628 const struct cred *cred = current_cred();
629 struct superblock_security_struct *sbsec = selinux_superblock(sb);
630 struct dentry *root = sb->s_root;
631 struct selinux_mnt_opts *opts = mnt_opts;
632 struct inode_security_struct *root_isec;
633 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
634 u32 defcontext_sid = 0;
635 int rc = 0;
636
637 /*
638 * Specifying internal flags without providing a place to
639 * place the results is not allowed
640 */
641 if (kern_flags && !set_kern_flags)
642 return -EINVAL;
643
644 mutex_lock(&sbsec->lock);
645
646 if (!selinux_initialized()) {
647 if (!opts) {
648 /* Defer initialization until selinux_complete_init,
649 after the initial policy is loaded and the security
650 server is ready to handle calls. */
651 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
652 sbsec->flags |= SE_SBNATIVE;
653 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
654 }
655 goto out;
656 }
657 rc = -EINVAL;
658 pr_warn("SELinux: Unable to set superblock options "
659 "before the security server is initialized\n");
660 goto out;
661 }
662
663 /*
664 * Binary mount data FS will come through this function twice. Once
665 * from an explicit call and once from the generic calls from the vfs.
666 * Since the generic VFS calls will not contain any security mount data
667 * we need to skip the double mount verification.
668 *
669 * This does open a hole in which we will not notice if the first
670 * mount using this sb set explicit options and a second mount using
671 * this sb does not set any security options. (The first options
672 * will be used for both mounts)
673 */
674 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
675 && !opts)
676 goto out;
677
678 root_isec = backing_inode_security_novalidate(root);
679
680 /*
681 * parse the mount options, check if they are valid sids.
682 * also check if someone is trying to mount the same sb more
683 * than once with different security options.
684 */
685 if (opts) {
686 if (opts->fscontext_sid) {
687 fscontext_sid = opts->fscontext_sid;
688 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
689 fscontext_sid))
690 goto out_double_mount;
691 sbsec->flags |= FSCONTEXT_MNT;
692 }
693 if (opts->context_sid) {
694 context_sid = opts->context_sid;
695 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
696 context_sid))
697 goto out_double_mount;
698 sbsec->flags |= CONTEXT_MNT;
699 }
700 if (opts->rootcontext_sid) {
701 rootcontext_sid = opts->rootcontext_sid;
702 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
703 rootcontext_sid))
704 goto out_double_mount;
705 sbsec->flags |= ROOTCONTEXT_MNT;
706 }
707 if (opts->defcontext_sid) {
708 defcontext_sid = opts->defcontext_sid;
709 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
710 defcontext_sid))
711 goto out_double_mount;
712 sbsec->flags |= DEFCONTEXT_MNT;
713 }
714 }
715
716 if (sbsec->flags & SE_SBINITIALIZED) {
717 /* previously mounted with options, but not on this attempt? */
718 if ((sbsec->flags & SE_MNTMASK) && !opts)
719 goto out_double_mount;
720 rc = 0;
721 goto out;
722 }
723
724 if (strcmp(sb->s_type->name, "proc") == 0)
725 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
726
727 if (!strcmp(sb->s_type->name, "debugfs") ||
728 !strcmp(sb->s_type->name, "tracefs") ||
729 !strcmp(sb->s_type->name, "binder") ||
730 !strcmp(sb->s_type->name, "bpf") ||
731 !strcmp(sb->s_type->name, "pstore") ||
732 !strcmp(sb->s_type->name, "securityfs"))
733 sbsec->flags |= SE_SBGENFS;
734
735 if (!strcmp(sb->s_type->name, "sysfs") ||
736 !strcmp(sb->s_type->name, "cgroup") ||
737 !strcmp(sb->s_type->name, "cgroup2"))
738 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
739
740 if (!sbsec->behavior) {
741 /*
742 * Determine the labeling behavior to use for this
743 * filesystem type.
744 */
745 rc = security_fs_use(sb);
746 if (rc) {
747 pr_warn("%s: security_fs_use(%s) returned %d\n",
748 __func__, sb->s_type->name, rc);
749 goto out;
750 }
751 }
752
753 /*
754 * If this is a user namespace mount and the filesystem type is not
755 * explicitly whitelisted, then no contexts are allowed on the command
756 * line and security labels must be ignored.
757 */
758 if (sb->s_user_ns != &init_user_ns &&
759 strcmp(sb->s_type->name, "tmpfs") &&
760 strcmp(sb->s_type->name, "ramfs") &&
761 strcmp(sb->s_type->name, "devpts") &&
762 strcmp(sb->s_type->name, "overlay")) {
763 if (context_sid || fscontext_sid || rootcontext_sid ||
764 defcontext_sid) {
765 rc = -EACCES;
766 goto out;
767 }
768 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
769 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
770 rc = security_transition_sid(current_sid(),
771 current_sid(),
772 SECCLASS_FILE, NULL,
773 &sbsec->mntpoint_sid);
774 if (rc)
775 goto out;
776 }
777 goto out_set_opts;
778 }
779
780 /* sets the context of the superblock for the fs being mounted. */
781 if (fscontext_sid) {
782 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
783 if (rc)
784 goto out;
785
786 sbsec->sid = fscontext_sid;
787 }
788
789 /*
790 * Switch to using mount point labeling behavior.
791 * sets the label used on all file below the mountpoint, and will set
792 * the superblock context if not already set.
793 */
794 if (sbsec->flags & SE_SBNATIVE) {
795 /*
796 * This means we are initializing a superblock that has been
797 * mounted before the SELinux was initialized and the
798 * filesystem requested native labeling. We had already
799 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags
800 * in the original mount attempt, so now we just need to set
801 * the SECURITY_FS_USE_NATIVE behavior.
802 */
803 sbsec->behavior = SECURITY_FS_USE_NATIVE;
804 } else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
805 sbsec->behavior = SECURITY_FS_USE_NATIVE;
806 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
807 }
808
809 if (context_sid) {
810 if (!fscontext_sid) {
811 rc = may_context_mount_sb_relabel(context_sid, sbsec,
812 cred);
813 if (rc)
814 goto out;
815 sbsec->sid = context_sid;
816 } else {
817 rc = may_context_mount_inode_relabel(context_sid, sbsec,
818 cred);
819 if (rc)
820 goto out;
821 }
822 if (!rootcontext_sid)
823 rootcontext_sid = context_sid;
824
825 sbsec->mntpoint_sid = context_sid;
826 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
827 }
828
829 if (rootcontext_sid) {
830 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
831 cred);
832 if (rc)
833 goto out;
834
835 root_isec->sid = rootcontext_sid;
836 root_isec->initialized = LABEL_INITIALIZED;
837 }
838
839 if (defcontext_sid) {
840 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
841 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
842 rc = -EINVAL;
843 pr_warn("SELinux: defcontext option is "
844 "invalid for this filesystem type\n");
845 goto out;
846 }
847
848 if (defcontext_sid != sbsec->def_sid) {
849 rc = may_context_mount_inode_relabel(defcontext_sid,
850 sbsec, cred);
851 if (rc)
852 goto out;
853 }
854
855 sbsec->def_sid = defcontext_sid;
856 }
857
858out_set_opts:
859 rc = sb_finish_set_opts(sb);
860out:
861 mutex_unlock(&sbsec->lock);
862 return rc;
863out_double_mount:
864 rc = -EINVAL;
865 pr_warn("SELinux: mount invalid. Same superblock, different "
866 "security settings for (dev %s, type %s)\n", sb->s_id,
867 sb->s_type->name);
868 goto out;
869}
870
871static int selinux_cmp_sb_context(const struct super_block *oldsb,
872 const struct super_block *newsb)
873{
874 struct superblock_security_struct *old = selinux_superblock(oldsb);
875 struct superblock_security_struct *new = selinux_superblock(newsb);
876 char oldflags = old->flags & SE_MNTMASK;
877 char newflags = new->flags & SE_MNTMASK;
878
879 if (oldflags != newflags)
880 goto mismatch;
881 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
882 goto mismatch;
883 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
884 goto mismatch;
885 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
886 goto mismatch;
887 if (oldflags & ROOTCONTEXT_MNT) {
888 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
889 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
890 if (oldroot->sid != newroot->sid)
891 goto mismatch;
892 }
893 return 0;
894mismatch:
895 pr_warn("SELinux: mount invalid. Same superblock, "
896 "different security settings for (dev %s, "
897 "type %s)\n", newsb->s_id, newsb->s_type->name);
898 return -EBUSY;
899}
900
901static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
902 struct super_block *newsb,
903 unsigned long kern_flags,
904 unsigned long *set_kern_flags)
905{
906 int rc = 0;
907 const struct superblock_security_struct *oldsbsec =
908 selinux_superblock(oldsb);
909 struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
910
911 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
912 int set_context = (oldsbsec->flags & CONTEXT_MNT);
913 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
914
915 /*
916 * Specifying internal flags without providing a place to
917 * place the results is not allowed.
918 */
919 if (kern_flags && !set_kern_flags)
920 return -EINVAL;
921
922 mutex_lock(&newsbsec->lock);
923
924 /*
925 * if the parent was able to be mounted it clearly had no special lsm
926 * mount options. thus we can safely deal with this superblock later
927 */
928 if (!selinux_initialized()) {
929 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
930 newsbsec->flags |= SE_SBNATIVE;
931 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
932 }
933 goto out;
934 }
935
936 /* how can we clone if the old one wasn't set up?? */
937 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
938
939 /* if fs is reusing a sb, make sure that the contexts match */
940 if (newsbsec->flags & SE_SBINITIALIZED) {
941 mutex_unlock(&newsbsec->lock);
942 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
943 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
944 return selinux_cmp_sb_context(oldsb, newsb);
945 }
946
947 newsbsec->flags = oldsbsec->flags;
948
949 newsbsec->sid = oldsbsec->sid;
950 newsbsec->def_sid = oldsbsec->def_sid;
951 newsbsec->behavior = oldsbsec->behavior;
952
953 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
954 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
955 rc = security_fs_use(newsb);
956 if (rc)
957 goto out;
958 }
959
960 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
961 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
962 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
963 }
964
965 if (set_context) {
966 u32 sid = oldsbsec->mntpoint_sid;
967
968 if (!set_fscontext)
969 newsbsec->sid = sid;
970 if (!set_rootcontext) {
971 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
972 newisec->sid = sid;
973 }
974 newsbsec->mntpoint_sid = sid;
975 }
976 if (set_rootcontext) {
977 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
978 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
979
980 newisec->sid = oldisec->sid;
981 }
982
983 sb_finish_set_opts(newsb);
984out:
985 mutex_unlock(&newsbsec->lock);
986 return rc;
987}
988
989/*
990 * NOTE: the caller is responsible for freeing the memory even if on error.
991 */
992static int selinux_add_opt(int token, const char *s, void **mnt_opts)
993{
994 struct selinux_mnt_opts *opts = *mnt_opts;
995 u32 *dst_sid;
996 int rc;
997
998 if (token == Opt_seclabel)
999 /* eaten and completely ignored */
1000 return 0;
1001 if (!s)
1002 return -EINVAL;
1003
1004 if (!selinux_initialized()) {
1005 pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
1006 return -EINVAL;
1007 }
1008
1009 if (!opts) {
1010 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
1011 if (!opts)
1012 return -ENOMEM;
1013 *mnt_opts = opts;
1014 }
1015
1016 switch (token) {
1017 case Opt_context:
1018 if (opts->context_sid || opts->defcontext_sid)
1019 goto err;
1020 dst_sid = &opts->context_sid;
1021 break;
1022 case Opt_fscontext:
1023 if (opts->fscontext_sid)
1024 goto err;
1025 dst_sid = &opts->fscontext_sid;
1026 break;
1027 case Opt_rootcontext:
1028 if (opts->rootcontext_sid)
1029 goto err;
1030 dst_sid = &opts->rootcontext_sid;
1031 break;
1032 case Opt_defcontext:
1033 if (opts->context_sid || opts->defcontext_sid)
1034 goto err;
1035 dst_sid = &opts->defcontext_sid;
1036 break;
1037 default:
1038 WARN_ON(1);
1039 return -EINVAL;
1040 }
1041 rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL);
1042 if (rc)
1043 pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1044 s, rc);
1045 return rc;
1046
1047err:
1048 pr_warn(SEL_MOUNT_FAIL_MSG);
1049 return -EINVAL;
1050}
1051
1052static int show_sid(struct seq_file *m, u32 sid)
1053{
1054 char *context = NULL;
1055 u32 len;
1056 int rc;
1057
1058 rc = security_sid_to_context(sid, &context, &len);
1059 if (!rc) {
1060 bool has_comma = strchr(context, ',');
1061
1062 seq_putc(m, '=');
1063 if (has_comma)
1064 seq_putc(m, '\"');
1065 seq_escape(m, context, "\"\n\\");
1066 if (has_comma)
1067 seq_putc(m, '\"');
1068 }
1069 kfree(context);
1070 return rc;
1071}
1072
1073static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1074{
1075 struct superblock_security_struct *sbsec = selinux_superblock(sb);
1076 int rc;
1077
1078 if (!(sbsec->flags & SE_SBINITIALIZED))
1079 return 0;
1080
1081 if (!selinux_initialized())
1082 return 0;
1083
1084 if (sbsec->flags & FSCONTEXT_MNT) {
1085 seq_putc(m, ',');
1086 seq_puts(m, FSCONTEXT_STR);
1087 rc = show_sid(m, sbsec->sid);
1088 if (rc)
1089 return rc;
1090 }
1091 if (sbsec->flags & CONTEXT_MNT) {
1092 seq_putc(m, ',');
1093 seq_puts(m, CONTEXT_STR);
1094 rc = show_sid(m, sbsec->mntpoint_sid);
1095 if (rc)
1096 return rc;
1097 }
1098 if (sbsec->flags & DEFCONTEXT_MNT) {
1099 seq_putc(m, ',');
1100 seq_puts(m, DEFCONTEXT_STR);
1101 rc = show_sid(m, sbsec->def_sid);
1102 if (rc)
1103 return rc;
1104 }
1105 if (sbsec->flags & ROOTCONTEXT_MNT) {
1106 struct dentry *root = sb->s_root;
1107 struct inode_security_struct *isec = backing_inode_security(root);
1108 seq_putc(m, ',');
1109 seq_puts(m, ROOTCONTEXT_STR);
1110 rc = show_sid(m, isec->sid);
1111 if (rc)
1112 return rc;
1113 }
1114 if (sbsec->flags & SBLABEL_MNT) {
1115 seq_putc(m, ',');
1116 seq_puts(m, SECLABEL_STR);
1117 }
1118 return 0;
1119}
1120
1121static inline u16 inode_mode_to_security_class(umode_t mode)
1122{
1123 switch (mode & S_IFMT) {
1124 case S_IFSOCK:
1125 return SECCLASS_SOCK_FILE;
1126 case S_IFLNK:
1127 return SECCLASS_LNK_FILE;
1128 case S_IFREG:
1129 return SECCLASS_FILE;
1130 case S_IFBLK:
1131 return SECCLASS_BLK_FILE;
1132 case S_IFDIR:
1133 return SECCLASS_DIR;
1134 case S_IFCHR:
1135 return SECCLASS_CHR_FILE;
1136 case S_IFIFO:
1137 return SECCLASS_FIFO_FILE;
1138
1139 }
1140
1141 return SECCLASS_FILE;
1142}
1143
1144static inline int default_protocol_stream(int protocol)
1145{
1146 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1147 protocol == IPPROTO_MPTCP);
1148}
1149
1150static inline int default_protocol_dgram(int protocol)
1151{
1152 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1153}
1154
1155static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1156{
1157 bool extsockclass = selinux_policycap_extsockclass();
1158
1159 switch (family) {
1160 case PF_UNIX:
1161 switch (type) {
1162 case SOCK_STREAM:
1163 case SOCK_SEQPACKET:
1164 return SECCLASS_UNIX_STREAM_SOCKET;
1165 case SOCK_DGRAM:
1166 case SOCK_RAW:
1167 return SECCLASS_UNIX_DGRAM_SOCKET;
1168 }
1169 break;
1170 case PF_INET:
1171 case PF_INET6:
1172 switch (type) {
1173 case SOCK_STREAM:
1174 case SOCK_SEQPACKET:
1175 if (default_protocol_stream(protocol))
1176 return SECCLASS_TCP_SOCKET;
1177 else if (extsockclass && protocol == IPPROTO_SCTP)
1178 return SECCLASS_SCTP_SOCKET;
1179 else
1180 return SECCLASS_RAWIP_SOCKET;
1181 case SOCK_DGRAM:
1182 if (default_protocol_dgram(protocol))
1183 return SECCLASS_UDP_SOCKET;
1184 else if (extsockclass && (protocol == IPPROTO_ICMP ||
1185 protocol == IPPROTO_ICMPV6))
1186 return SECCLASS_ICMP_SOCKET;
1187 else
1188 return SECCLASS_RAWIP_SOCKET;
1189 case SOCK_DCCP:
1190 return SECCLASS_DCCP_SOCKET;
1191 default:
1192 return SECCLASS_RAWIP_SOCKET;
1193 }
1194 break;
1195 case PF_NETLINK:
1196 switch (protocol) {
1197 case NETLINK_ROUTE:
1198 return SECCLASS_NETLINK_ROUTE_SOCKET;
1199 case NETLINK_SOCK_DIAG:
1200 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1201 case NETLINK_NFLOG:
1202 return SECCLASS_NETLINK_NFLOG_SOCKET;
1203 case NETLINK_XFRM:
1204 return SECCLASS_NETLINK_XFRM_SOCKET;
1205 case NETLINK_SELINUX:
1206 return SECCLASS_NETLINK_SELINUX_SOCKET;
1207 case NETLINK_ISCSI:
1208 return SECCLASS_NETLINK_ISCSI_SOCKET;
1209 case NETLINK_AUDIT:
1210 return SECCLASS_NETLINK_AUDIT_SOCKET;
1211 case NETLINK_FIB_LOOKUP:
1212 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1213 case NETLINK_CONNECTOR:
1214 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1215 case NETLINK_NETFILTER:
1216 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1217 case NETLINK_DNRTMSG:
1218 return SECCLASS_NETLINK_DNRT_SOCKET;
1219 case NETLINK_KOBJECT_UEVENT:
1220 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1221 case NETLINK_GENERIC:
1222 return SECCLASS_NETLINK_GENERIC_SOCKET;
1223 case NETLINK_SCSITRANSPORT:
1224 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1225 case NETLINK_RDMA:
1226 return SECCLASS_NETLINK_RDMA_SOCKET;
1227 case NETLINK_CRYPTO:
1228 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1229 default:
1230 return SECCLASS_NETLINK_SOCKET;
1231 }
1232 case PF_PACKET:
1233 return SECCLASS_PACKET_SOCKET;
1234 case PF_KEY:
1235 return SECCLASS_KEY_SOCKET;
1236 case PF_APPLETALK:
1237 return SECCLASS_APPLETALK_SOCKET;
1238 }
1239
1240 if (extsockclass) {
1241 switch (family) {
1242 case PF_AX25:
1243 return SECCLASS_AX25_SOCKET;
1244 case PF_IPX:
1245 return SECCLASS_IPX_SOCKET;
1246 case PF_NETROM:
1247 return SECCLASS_NETROM_SOCKET;
1248 case PF_ATMPVC:
1249 return SECCLASS_ATMPVC_SOCKET;
1250 case PF_X25:
1251 return SECCLASS_X25_SOCKET;
1252 case PF_ROSE:
1253 return SECCLASS_ROSE_SOCKET;
1254 case PF_DECnet:
1255 return SECCLASS_DECNET_SOCKET;
1256 case PF_ATMSVC:
1257 return SECCLASS_ATMSVC_SOCKET;
1258 case PF_RDS:
1259 return SECCLASS_RDS_SOCKET;
1260 case PF_IRDA:
1261 return SECCLASS_IRDA_SOCKET;
1262 case PF_PPPOX:
1263 return SECCLASS_PPPOX_SOCKET;
1264 case PF_LLC:
1265 return SECCLASS_LLC_SOCKET;
1266 case PF_CAN:
1267 return SECCLASS_CAN_SOCKET;
1268 case PF_TIPC:
1269 return SECCLASS_TIPC_SOCKET;
1270 case PF_BLUETOOTH:
1271 return SECCLASS_BLUETOOTH_SOCKET;
1272 case PF_IUCV:
1273 return SECCLASS_IUCV_SOCKET;
1274 case PF_RXRPC:
1275 return SECCLASS_RXRPC_SOCKET;
1276 case PF_ISDN:
1277 return SECCLASS_ISDN_SOCKET;
1278 case PF_PHONET:
1279 return SECCLASS_PHONET_SOCKET;
1280 case PF_IEEE802154:
1281 return SECCLASS_IEEE802154_SOCKET;
1282 case PF_CAIF:
1283 return SECCLASS_CAIF_SOCKET;
1284 case PF_ALG:
1285 return SECCLASS_ALG_SOCKET;
1286 case PF_NFC:
1287 return SECCLASS_NFC_SOCKET;
1288 case PF_VSOCK:
1289 return SECCLASS_VSOCK_SOCKET;
1290 case PF_KCM:
1291 return SECCLASS_KCM_SOCKET;
1292 case PF_QIPCRTR:
1293 return SECCLASS_QIPCRTR_SOCKET;
1294 case PF_SMC:
1295 return SECCLASS_SMC_SOCKET;
1296 case PF_XDP:
1297 return SECCLASS_XDP_SOCKET;
1298 case PF_MCTP:
1299 return SECCLASS_MCTP_SOCKET;
1300#if PF_MAX > 46
1301#error New address family defined, please update this function.
1302#endif
1303 }
1304 }
1305
1306 return SECCLASS_SOCKET;
1307}
1308
1309static int selinux_genfs_get_sid(struct dentry *dentry,
1310 u16 tclass,
1311 u16 flags,
1312 u32 *sid)
1313{
1314 int rc;
1315 struct super_block *sb = dentry->d_sb;
1316 char *buffer, *path;
1317
1318 buffer = (char *)__get_free_page(GFP_KERNEL);
1319 if (!buffer)
1320 return -ENOMEM;
1321
1322 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1323 if (IS_ERR(path))
1324 rc = PTR_ERR(path);
1325 else {
1326 if (flags & SE_SBPROC) {
1327 /* each process gets a /proc/PID/ entry. Strip off the
1328 * PID part to get a valid selinux labeling.
1329 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1330 while (path[1] >= '0' && path[1] <= '9') {
1331 path[1] = '/';
1332 path++;
1333 }
1334 }
1335 rc = security_genfs_sid(sb->s_type->name,
1336 path, tclass, sid);
1337 if (rc == -ENOENT) {
1338 /* No match in policy, mark as unlabeled. */
1339 *sid = SECINITSID_UNLABELED;
1340 rc = 0;
1341 }
1342 }
1343 free_page((unsigned long)buffer);
1344 return rc;
1345}
1346
1347static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1348 u32 def_sid, u32 *sid)
1349{
1350#define INITCONTEXTLEN 255
1351 char *context;
1352 unsigned int len;
1353 int rc;
1354
1355 len = INITCONTEXTLEN;
1356 context = kmalloc(len + 1, GFP_NOFS);
1357 if (!context)
1358 return -ENOMEM;
1359
1360 context[len] = '\0';
1361 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1362 if (rc == -ERANGE) {
1363 kfree(context);
1364
1365 /* Need a larger buffer. Query for the right size. */
1366 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1367 if (rc < 0)
1368 return rc;
1369
1370 len = rc;
1371 context = kmalloc(len + 1, GFP_NOFS);
1372 if (!context)
1373 return -ENOMEM;
1374
1375 context[len] = '\0';
1376 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1377 context, len);
1378 }
1379 if (rc < 0) {
1380 kfree(context);
1381 if (rc != -ENODATA) {
1382 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n",
1383 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1384 return rc;
1385 }
1386 *sid = def_sid;
1387 return 0;
1388 }
1389
1390 rc = security_context_to_sid_default(context, rc, sid,
1391 def_sid, GFP_NOFS);
1392 if (rc) {
1393 char *dev = inode->i_sb->s_id;
1394 unsigned long ino = inode->i_ino;
1395
1396 if (rc == -EINVAL) {
1397 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n",
1398 ino, dev, context);
1399 } else {
1400 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1401 __func__, context, -rc, dev, ino);
1402 }
1403 }
1404 kfree(context);
1405 return 0;
1406}
1407
1408/* The inode's security attributes must be initialized before first use. */
1409static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1410{
1411 struct superblock_security_struct *sbsec = NULL;
1412 struct inode_security_struct *isec = selinux_inode(inode);
1413 u32 task_sid, sid = 0;
1414 u16 sclass;
1415 struct dentry *dentry;
1416 int rc = 0;
1417
1418 if (isec->initialized == LABEL_INITIALIZED)
1419 return 0;
1420
1421 spin_lock(&isec->lock);
1422 if (isec->initialized == LABEL_INITIALIZED)
1423 goto out_unlock;
1424
1425 if (isec->sclass == SECCLASS_FILE)
1426 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1427
1428 sbsec = selinux_superblock(inode->i_sb);
1429 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1430 /* Defer initialization until selinux_complete_init,
1431 after the initial policy is loaded and the security
1432 server is ready to handle calls. */
1433 spin_lock(&sbsec->isec_lock);
1434 if (list_empty(&isec->list))
1435 list_add(&isec->list, &sbsec->isec_head);
1436 spin_unlock(&sbsec->isec_lock);
1437 goto out_unlock;
1438 }
1439
1440 sclass = isec->sclass;
1441 task_sid = isec->task_sid;
1442 sid = isec->sid;
1443 isec->initialized = LABEL_PENDING;
1444 spin_unlock(&isec->lock);
1445
1446 switch (sbsec->behavior) {
1447 /*
1448 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels
1449 * via xattr when called from delayed_superblock_init().
1450 */
1451 case SECURITY_FS_USE_NATIVE:
1452 case SECURITY_FS_USE_XATTR:
1453 if (!(inode->i_opflags & IOP_XATTR)) {
1454 sid = sbsec->def_sid;
1455 break;
1456 }
1457 /* Need a dentry, since the xattr API requires one.
1458 Life would be simpler if we could just pass the inode. */
1459 if (opt_dentry) {
1460 /* Called from d_instantiate or d_splice_alias. */
1461 dentry = dget(opt_dentry);
1462 } else {
1463 /*
1464 * Called from selinux_complete_init, try to find a dentry.
1465 * Some filesystems really want a connected one, so try
1466 * that first. We could split SECURITY_FS_USE_XATTR in
1467 * two, depending upon that...
1468 */
1469 dentry = d_find_alias(inode);
1470 if (!dentry)
1471 dentry = d_find_any_alias(inode);
1472 }
1473 if (!dentry) {
1474 /*
1475 * this is can be hit on boot when a file is accessed
1476 * before the policy is loaded. When we load policy we
1477 * may find inodes that have no dentry on the
1478 * sbsec->isec_head list. No reason to complain as these
1479 * will get fixed up the next time we go through
1480 * inode_doinit with a dentry, before these inodes could
1481 * be used again by userspace.
1482 */
1483 goto out_invalid;
1484 }
1485
1486 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1487 &sid);
1488 dput(dentry);
1489 if (rc)
1490 goto out;
1491 break;
1492 case SECURITY_FS_USE_TASK:
1493 sid = task_sid;
1494 break;
1495 case SECURITY_FS_USE_TRANS:
1496 /* Default to the fs SID. */
1497 sid = sbsec->sid;
1498
1499 /* Try to obtain a transition SID. */
1500 rc = security_transition_sid(task_sid, sid,
1501 sclass, NULL, &sid);
1502 if (rc)
1503 goto out;
1504 break;
1505 case SECURITY_FS_USE_MNTPOINT:
1506 sid = sbsec->mntpoint_sid;
1507 break;
1508 default:
1509 /* Default to the fs superblock SID. */
1510 sid = sbsec->sid;
1511
1512 if ((sbsec->flags & SE_SBGENFS) &&
1513 (!S_ISLNK(inode->i_mode) ||
1514 selinux_policycap_genfs_seclabel_symlinks())) {
1515 /* We must have a dentry to determine the label on
1516 * procfs inodes */
1517 if (opt_dentry) {
1518 /* Called from d_instantiate or
1519 * d_splice_alias. */
1520 dentry = dget(opt_dentry);
1521 } else {
1522 /* Called from selinux_complete_init, try to
1523 * find a dentry. Some filesystems really want
1524 * a connected one, so try that first.
1525 */
1526 dentry = d_find_alias(inode);
1527 if (!dentry)
1528 dentry = d_find_any_alias(inode);
1529 }
1530 /*
1531 * This can be hit on boot when a file is accessed
1532 * before the policy is loaded. When we load policy we
1533 * may find inodes that have no dentry on the
1534 * sbsec->isec_head list. No reason to complain as
1535 * these will get fixed up the next time we go through
1536 * inode_doinit() with a dentry, before these inodes
1537 * could be used again by userspace.
1538 */
1539 if (!dentry)
1540 goto out_invalid;
1541 rc = selinux_genfs_get_sid(dentry, sclass,
1542 sbsec->flags, &sid);
1543 if (rc) {
1544 dput(dentry);
1545 goto out;
1546 }
1547
1548 if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1549 (inode->i_opflags & IOP_XATTR)) {
1550 rc = inode_doinit_use_xattr(inode, dentry,
1551 sid, &sid);
1552 if (rc) {
1553 dput(dentry);
1554 goto out;
1555 }
1556 }
1557 dput(dentry);
1558 }
1559 break;
1560 }
1561
1562out:
1563 spin_lock(&isec->lock);
1564 if (isec->initialized == LABEL_PENDING) {
1565 if (rc) {
1566 isec->initialized = LABEL_INVALID;
1567 goto out_unlock;
1568 }
1569 isec->initialized = LABEL_INITIALIZED;
1570 isec->sid = sid;
1571 }
1572
1573out_unlock:
1574 spin_unlock(&isec->lock);
1575 return rc;
1576
1577out_invalid:
1578 spin_lock(&isec->lock);
1579 if (isec->initialized == LABEL_PENDING) {
1580 isec->initialized = LABEL_INVALID;
1581 isec->sid = sid;
1582 }
1583 spin_unlock(&isec->lock);
1584 return 0;
1585}
1586
1587/* Convert a Linux signal to an access vector. */
1588static inline u32 signal_to_av(int sig)
1589{
1590 u32 perm = 0;
1591
1592 switch (sig) {
1593 case SIGCHLD:
1594 /* Commonly granted from child to parent. */
1595 perm = PROCESS__SIGCHLD;
1596 break;
1597 case SIGKILL:
1598 /* Cannot be caught or ignored */
1599 perm = PROCESS__SIGKILL;
1600 break;
1601 case SIGSTOP:
1602 /* Cannot be caught or ignored */
1603 perm = PROCESS__SIGSTOP;
1604 break;
1605 default:
1606 /* All other signals. */
1607 perm = PROCESS__SIGNAL;
1608 break;
1609 }
1610
1611 return perm;
1612}
1613
1614#if CAP_LAST_CAP > 63
1615#error Fix SELinux to handle capabilities > 63.
1616#endif
1617
1618/* Check whether a task is allowed to use a capability. */
1619static int cred_has_capability(const struct cred *cred,
1620 int cap, unsigned int opts, bool initns)
1621{
1622 struct common_audit_data ad;
1623 struct av_decision avd;
1624 u16 sclass;
1625 u32 sid = cred_sid(cred);
1626 u32 av = CAP_TO_MASK(cap);
1627 int rc;
1628
1629 ad.type = LSM_AUDIT_DATA_CAP;
1630 ad.u.cap = cap;
1631
1632 switch (CAP_TO_INDEX(cap)) {
1633 case 0:
1634 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1635 break;
1636 case 1:
1637 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1638 break;
1639 default:
1640 pr_err("SELinux: out of range capability %d\n", cap);
1641 BUG();
1642 return -EINVAL;
1643 }
1644
1645 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1646 if (!(opts & CAP_OPT_NOAUDIT)) {
1647 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1648 if (rc2)
1649 return rc2;
1650 }
1651 return rc;
1652}
1653
1654/* Check whether a task has a particular permission to an inode.
1655 The 'adp' parameter is optional and allows other audit
1656 data to be passed (e.g. the dentry). */
1657static int inode_has_perm(const struct cred *cred,
1658 struct inode *inode,
1659 u32 perms,
1660 struct common_audit_data *adp)
1661{
1662 struct inode_security_struct *isec;
1663 u32 sid;
1664
1665 if (unlikely(IS_PRIVATE(inode)))
1666 return 0;
1667
1668 sid = cred_sid(cred);
1669 isec = selinux_inode(inode);
1670
1671 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1672}
1673
1674/* Same as inode_has_perm, but pass explicit audit data containing
1675 the dentry to help the auditing code to more easily generate the
1676 pathname if needed. */
1677static inline int dentry_has_perm(const struct cred *cred,
1678 struct dentry *dentry,
1679 u32 av)
1680{
1681 struct inode *inode = d_backing_inode(dentry);
1682 struct common_audit_data ad;
1683
1684 ad.type = LSM_AUDIT_DATA_DENTRY;
1685 ad.u.dentry = dentry;
1686 __inode_security_revalidate(inode, dentry, true);
1687 return inode_has_perm(cred, inode, av, &ad);
1688}
1689
1690/* Same as inode_has_perm, but pass explicit audit data containing
1691 the path to help the auditing code to more easily generate the
1692 pathname if needed. */
1693static inline int path_has_perm(const struct cred *cred,
1694 const struct path *path,
1695 u32 av)
1696{
1697 struct inode *inode = d_backing_inode(path->dentry);
1698 struct common_audit_data ad;
1699
1700 ad.type = LSM_AUDIT_DATA_PATH;
1701 ad.u.path = *path;
1702 __inode_security_revalidate(inode, path->dentry, true);
1703 return inode_has_perm(cred, inode, av, &ad);
1704}
1705
1706/* Same as path_has_perm, but uses the inode from the file struct. */
1707static inline int file_path_has_perm(const struct cred *cred,
1708 struct file *file,
1709 u32 av)
1710{
1711 struct common_audit_data ad;
1712
1713 ad.type = LSM_AUDIT_DATA_FILE;
1714 ad.u.file = file;
1715 return inode_has_perm(cred, file_inode(file), av, &ad);
1716}
1717
1718#ifdef CONFIG_BPF_SYSCALL
1719static int bpf_fd_pass(const struct file *file, u32 sid);
1720#endif
1721
1722/* Check whether a task can use an open file descriptor to
1723 access an inode in a given way. Check access to the
1724 descriptor itself, and then use dentry_has_perm to
1725 check a particular permission to the file.
1726 Access to the descriptor is implicitly granted if it
1727 has the same SID as the process. If av is zero, then
1728 access to the file is not checked, e.g. for cases
1729 where only the descriptor is affected like seek. */
1730static int file_has_perm(const struct cred *cred,
1731 struct file *file,
1732 u32 av)
1733{
1734 struct file_security_struct *fsec = selinux_file(file);
1735 struct inode *inode = file_inode(file);
1736 struct common_audit_data ad;
1737 u32 sid = cred_sid(cred);
1738 int rc;
1739
1740 ad.type = LSM_AUDIT_DATA_FILE;
1741 ad.u.file = file;
1742
1743 if (sid != fsec->sid) {
1744 rc = avc_has_perm(sid, fsec->sid,
1745 SECCLASS_FD,
1746 FD__USE,
1747 &ad);
1748 if (rc)
1749 goto out;
1750 }
1751
1752#ifdef CONFIG_BPF_SYSCALL
1753 rc = bpf_fd_pass(file, cred_sid(cred));
1754 if (rc)
1755 return rc;
1756#endif
1757
1758 /* av is zero if only checking access to the descriptor. */
1759 rc = 0;
1760 if (av)
1761 rc = inode_has_perm(cred, inode, av, &ad);
1762
1763out:
1764 return rc;
1765}
1766
1767/*
1768 * Determine the label for an inode that might be unioned.
1769 */
1770static int
1771selinux_determine_inode_label(const struct task_security_struct *tsec,
1772 struct inode *dir,
1773 const struct qstr *name, u16 tclass,
1774 u32 *_new_isid)
1775{
1776 const struct superblock_security_struct *sbsec =
1777 selinux_superblock(dir->i_sb);
1778
1779 if ((sbsec->flags & SE_SBINITIALIZED) &&
1780 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1781 *_new_isid = sbsec->mntpoint_sid;
1782 } else if ((sbsec->flags & SBLABEL_MNT) &&
1783 tsec->create_sid) {
1784 *_new_isid = tsec->create_sid;
1785 } else {
1786 const struct inode_security_struct *dsec = inode_security(dir);
1787 return security_transition_sid(tsec->sid,
1788 dsec->sid, tclass,
1789 name, _new_isid);
1790 }
1791
1792 return 0;
1793}
1794
1795/* Check whether a task can create a file. */
1796static int may_create(struct inode *dir,
1797 struct dentry *dentry,
1798 u16 tclass)
1799{
1800 const struct task_security_struct *tsec = selinux_cred(current_cred());
1801 struct inode_security_struct *dsec;
1802 struct superblock_security_struct *sbsec;
1803 u32 sid, newsid;
1804 struct common_audit_data ad;
1805 int rc;
1806
1807 dsec = inode_security(dir);
1808 sbsec = selinux_superblock(dir->i_sb);
1809
1810 sid = tsec->sid;
1811
1812 ad.type = LSM_AUDIT_DATA_DENTRY;
1813 ad.u.dentry = dentry;
1814
1815 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1816 DIR__ADD_NAME | DIR__SEARCH,
1817 &ad);
1818 if (rc)
1819 return rc;
1820
1821 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1822 &newsid);
1823 if (rc)
1824 return rc;
1825
1826 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1827 if (rc)
1828 return rc;
1829
1830 return avc_has_perm(newsid, sbsec->sid,
1831 SECCLASS_FILESYSTEM,
1832 FILESYSTEM__ASSOCIATE, &ad);
1833}
1834
1835#define MAY_LINK 0
1836#define MAY_UNLINK 1
1837#define MAY_RMDIR 2
1838
1839/* Check whether a task can link, unlink, or rmdir a file/directory. */
1840static int may_link(struct inode *dir,
1841 struct dentry *dentry,
1842 int kind)
1843
1844{
1845 struct inode_security_struct *dsec, *isec;
1846 struct common_audit_data ad;
1847 u32 sid = current_sid();
1848 u32 av;
1849 int rc;
1850
1851 dsec = inode_security(dir);
1852 isec = backing_inode_security(dentry);
1853
1854 ad.type = LSM_AUDIT_DATA_DENTRY;
1855 ad.u.dentry = dentry;
1856
1857 av = DIR__SEARCH;
1858 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1859 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1860 if (rc)
1861 return rc;
1862
1863 switch (kind) {
1864 case MAY_LINK:
1865 av = FILE__LINK;
1866 break;
1867 case MAY_UNLINK:
1868 av = FILE__UNLINK;
1869 break;
1870 case MAY_RMDIR:
1871 av = DIR__RMDIR;
1872 break;
1873 default:
1874 pr_warn("SELinux: %s: unrecognized kind %d\n",
1875 __func__, kind);
1876 return 0;
1877 }
1878
1879 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1880 return rc;
1881}
1882
1883static inline int may_rename(struct inode *old_dir,
1884 struct dentry *old_dentry,
1885 struct inode *new_dir,
1886 struct dentry *new_dentry)
1887{
1888 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1889 struct common_audit_data ad;
1890 u32 sid = current_sid();
1891 u32 av;
1892 int old_is_dir, new_is_dir;
1893 int rc;
1894
1895 old_dsec = inode_security(old_dir);
1896 old_isec = backing_inode_security(old_dentry);
1897 old_is_dir = d_is_dir(old_dentry);
1898 new_dsec = inode_security(new_dir);
1899
1900 ad.type = LSM_AUDIT_DATA_DENTRY;
1901
1902 ad.u.dentry = old_dentry;
1903 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1904 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1905 if (rc)
1906 return rc;
1907 rc = avc_has_perm(sid, old_isec->sid,
1908 old_isec->sclass, FILE__RENAME, &ad);
1909 if (rc)
1910 return rc;
1911 if (old_is_dir && new_dir != old_dir) {
1912 rc = avc_has_perm(sid, old_isec->sid,
1913 old_isec->sclass, DIR__REPARENT, &ad);
1914 if (rc)
1915 return rc;
1916 }
1917
1918 ad.u.dentry = new_dentry;
1919 av = DIR__ADD_NAME | DIR__SEARCH;
1920 if (d_is_positive(new_dentry))
1921 av |= DIR__REMOVE_NAME;
1922 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1923 if (rc)
1924 return rc;
1925 if (d_is_positive(new_dentry)) {
1926 new_isec = backing_inode_security(new_dentry);
1927 new_is_dir = d_is_dir(new_dentry);
1928 rc = avc_has_perm(sid, new_isec->sid,
1929 new_isec->sclass,
1930 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1931 if (rc)
1932 return rc;
1933 }
1934
1935 return 0;
1936}
1937
1938/* Check whether a task can perform a filesystem operation. */
1939static int superblock_has_perm(const struct cred *cred,
1940 const struct super_block *sb,
1941 u32 perms,
1942 struct common_audit_data *ad)
1943{
1944 struct superblock_security_struct *sbsec;
1945 u32 sid = cred_sid(cred);
1946
1947 sbsec = selinux_superblock(sb);
1948 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1949}
1950
1951/* Convert a Linux mode and permission mask to an access vector. */
1952static inline u32 file_mask_to_av(int mode, int mask)
1953{
1954 u32 av = 0;
1955
1956 if (!S_ISDIR(mode)) {
1957 if (mask & MAY_EXEC)
1958 av |= FILE__EXECUTE;
1959 if (mask & MAY_READ)
1960 av |= FILE__READ;
1961
1962 if (mask & MAY_APPEND)
1963 av |= FILE__APPEND;
1964 else if (mask & MAY_WRITE)
1965 av |= FILE__WRITE;
1966
1967 } else {
1968 if (mask & MAY_EXEC)
1969 av |= DIR__SEARCH;
1970 if (mask & MAY_WRITE)
1971 av |= DIR__WRITE;
1972 if (mask & MAY_READ)
1973 av |= DIR__READ;
1974 }
1975
1976 return av;
1977}
1978
1979/* Convert a Linux file to an access vector. */
1980static inline u32 file_to_av(const struct file *file)
1981{
1982 u32 av = 0;
1983
1984 if (file->f_mode & FMODE_READ)
1985 av |= FILE__READ;
1986 if (file->f_mode & FMODE_WRITE) {
1987 if (file->f_flags & O_APPEND)
1988 av |= FILE__APPEND;
1989 else
1990 av |= FILE__WRITE;
1991 }
1992 if (!av) {
1993 /*
1994 * Special file opened with flags 3 for ioctl-only use.
1995 */
1996 av = FILE__IOCTL;
1997 }
1998
1999 return av;
2000}
2001
2002/*
2003 * Convert a file to an access vector and include the correct
2004 * open permission.
2005 */
2006static inline u32 open_file_to_av(struct file *file)
2007{
2008 u32 av = file_to_av(file);
2009 struct inode *inode = file_inode(file);
2010
2011 if (selinux_policycap_openperm() &&
2012 inode->i_sb->s_magic != SOCKFS_MAGIC)
2013 av |= FILE__OPEN;
2014
2015 return av;
2016}
2017
2018/* Hook functions begin here. */
2019
2020static int selinux_binder_set_context_mgr(const struct cred *mgr)
2021{
2022 return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER,
2023 BINDER__SET_CONTEXT_MGR, NULL);
2024}
2025
2026static int selinux_binder_transaction(const struct cred *from,
2027 const struct cred *to)
2028{
2029 u32 mysid = current_sid();
2030 u32 fromsid = cred_sid(from);
2031 u32 tosid = cred_sid(to);
2032 int rc;
2033
2034 if (mysid != fromsid) {
2035 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2036 BINDER__IMPERSONATE, NULL);
2037 if (rc)
2038 return rc;
2039 }
2040
2041 return avc_has_perm(fromsid, tosid,
2042 SECCLASS_BINDER, BINDER__CALL, NULL);
2043}
2044
2045static int selinux_binder_transfer_binder(const struct cred *from,
2046 const struct cred *to)
2047{
2048 return avc_has_perm(cred_sid(from), cred_sid(to),
2049 SECCLASS_BINDER, BINDER__TRANSFER,
2050 NULL);
2051}
2052
2053static int selinux_binder_transfer_file(const struct cred *from,
2054 const struct cred *to,
2055 const struct file *file)
2056{
2057 u32 sid = cred_sid(to);
2058 struct file_security_struct *fsec = selinux_file(file);
2059 struct dentry *dentry = file->f_path.dentry;
2060 struct inode_security_struct *isec;
2061 struct common_audit_data ad;
2062 int rc;
2063
2064 ad.type = LSM_AUDIT_DATA_PATH;
2065 ad.u.path = file->f_path;
2066
2067 if (sid != fsec->sid) {
2068 rc = avc_has_perm(sid, fsec->sid,
2069 SECCLASS_FD,
2070 FD__USE,
2071 &ad);
2072 if (rc)
2073 return rc;
2074 }
2075
2076#ifdef CONFIG_BPF_SYSCALL
2077 rc = bpf_fd_pass(file, sid);
2078 if (rc)
2079 return rc;
2080#endif
2081
2082 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2083 return 0;
2084
2085 isec = backing_inode_security(dentry);
2086 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2087 &ad);
2088}
2089
2090static int selinux_ptrace_access_check(struct task_struct *child,
2091 unsigned int mode)
2092{
2093 u32 sid = current_sid();
2094 u32 csid = task_sid_obj(child);
2095
2096 if (mode & PTRACE_MODE_READ)
2097 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ,
2098 NULL);
2099
2100 return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE,
2101 NULL);
2102}
2103
2104static int selinux_ptrace_traceme(struct task_struct *parent)
2105{
2106 return avc_has_perm(task_sid_obj(parent), task_sid_obj(current),
2107 SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2108}
2109
2110static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective,
2111 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2112{
2113 return avc_has_perm(current_sid(), task_sid_obj(target),
2114 SECCLASS_PROCESS, PROCESS__GETCAP, NULL);
2115}
2116
2117static int selinux_capset(struct cred *new, const struct cred *old,
2118 const kernel_cap_t *effective,
2119 const kernel_cap_t *inheritable,
2120 const kernel_cap_t *permitted)
2121{
2122 return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2123 PROCESS__SETCAP, NULL);
2124}
2125
2126/*
2127 * (This comment used to live with the selinux_task_setuid hook,
2128 * which was removed).
2129 *
2130 * Since setuid only affects the current process, and since the SELinux
2131 * controls are not based on the Linux identity attributes, SELinux does not
2132 * need to control this operation. However, SELinux does control the use of
2133 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2134 */
2135
2136static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2137 int cap, unsigned int opts)
2138{
2139 return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2140}
2141
2142static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb)
2143{
2144 const struct cred *cred = current_cred();
2145 int rc = 0;
2146
2147 if (!sb)
2148 return 0;
2149
2150 switch (cmds) {
2151 case Q_SYNC:
2152 case Q_QUOTAON:
2153 case Q_QUOTAOFF:
2154 case Q_SETINFO:
2155 case Q_SETQUOTA:
2156 case Q_XQUOTAOFF:
2157 case Q_XQUOTAON:
2158 case Q_XSETQLIM:
2159 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2160 break;
2161 case Q_GETFMT:
2162 case Q_GETINFO:
2163 case Q_GETQUOTA:
2164 case Q_XGETQUOTA:
2165 case Q_XGETQSTAT:
2166 case Q_XGETQSTATV:
2167 case Q_XGETNEXTQUOTA:
2168 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2169 break;
2170 default:
2171 rc = 0; /* let the kernel handle invalid cmds */
2172 break;
2173 }
2174 return rc;
2175}
2176
2177static int selinux_quota_on(struct dentry *dentry)
2178{
2179 const struct cred *cred = current_cred();
2180
2181 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2182}
2183
2184static int selinux_syslog(int type)
2185{
2186 switch (type) {
2187 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2188 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2189 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2190 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2191 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2192 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2193 /* Set level of messages printed to console */
2194 case SYSLOG_ACTION_CONSOLE_LEVEL:
2195 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2196 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2197 NULL);
2198 }
2199 /* All other syslog types */
2200 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2201 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2202}
2203
2204/*
2205 * Check that a process has enough memory to allocate a new virtual
2206 * mapping. 0 means there is enough memory for the allocation to
2207 * succeed and -ENOMEM implies there is not.
2208 *
2209 * Do not audit the selinux permission check, as this is applied to all
2210 * processes that allocate mappings.
2211 */
2212static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2213{
2214 int rc, cap_sys_admin = 0;
2215
2216 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2217 CAP_OPT_NOAUDIT, true);
2218 if (rc == 0)
2219 cap_sys_admin = 1;
2220
2221 return cap_sys_admin;
2222}
2223
2224/* binprm security operations */
2225
2226static u32 ptrace_parent_sid(void)
2227{
2228 u32 sid = 0;
2229 struct task_struct *tracer;
2230
2231 rcu_read_lock();
2232 tracer = ptrace_parent(current);
2233 if (tracer)
2234 sid = task_sid_obj(tracer);
2235 rcu_read_unlock();
2236
2237 return sid;
2238}
2239
2240static int check_nnp_nosuid(const struct linux_binprm *bprm,
2241 const struct task_security_struct *old_tsec,
2242 const struct task_security_struct *new_tsec)
2243{
2244 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2245 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2246 int rc;
2247 u32 av;
2248
2249 if (!nnp && !nosuid)
2250 return 0; /* neither NNP nor nosuid */
2251
2252 if (new_tsec->sid == old_tsec->sid)
2253 return 0; /* No change in credentials */
2254
2255 /*
2256 * If the policy enables the nnp_nosuid_transition policy capability,
2257 * then we permit transitions under NNP or nosuid if the
2258 * policy allows the corresponding permission between
2259 * the old and new contexts.
2260 */
2261 if (selinux_policycap_nnp_nosuid_transition()) {
2262 av = 0;
2263 if (nnp)
2264 av |= PROCESS2__NNP_TRANSITION;
2265 if (nosuid)
2266 av |= PROCESS2__NOSUID_TRANSITION;
2267 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2268 SECCLASS_PROCESS2, av, NULL);
2269 if (!rc)
2270 return 0;
2271 }
2272
2273 /*
2274 * We also permit NNP or nosuid transitions to bounded SIDs,
2275 * i.e. SIDs that are guaranteed to only be allowed a subset
2276 * of the permissions of the current SID.
2277 */
2278 rc = security_bounded_transition(old_tsec->sid,
2279 new_tsec->sid);
2280 if (!rc)
2281 return 0;
2282
2283 /*
2284 * On failure, preserve the errno values for NNP vs nosuid.
2285 * NNP: Operation not permitted for caller.
2286 * nosuid: Permission denied to file.
2287 */
2288 if (nnp)
2289 return -EPERM;
2290 return -EACCES;
2291}
2292
2293static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2294{
2295 const struct task_security_struct *old_tsec;
2296 struct task_security_struct *new_tsec;
2297 struct inode_security_struct *isec;
2298 struct common_audit_data ad;
2299 struct inode *inode = file_inode(bprm->file);
2300 int rc;
2301
2302 /* SELinux context only depends on initial program or script and not
2303 * the script interpreter */
2304
2305 old_tsec = selinux_cred(current_cred());
2306 new_tsec = selinux_cred(bprm->cred);
2307 isec = inode_security(inode);
2308
2309 /* Default to the current task SID. */
2310 new_tsec->sid = old_tsec->sid;
2311 new_tsec->osid = old_tsec->sid;
2312
2313 /* Reset fs, key, and sock SIDs on execve. */
2314 new_tsec->create_sid = 0;
2315 new_tsec->keycreate_sid = 0;
2316 new_tsec->sockcreate_sid = 0;
2317
2318 /*
2319 * Before policy is loaded, label any task outside kernel space
2320 * as SECINITSID_INIT, so that any userspace tasks surviving from
2321 * early boot end up with a label different from SECINITSID_KERNEL
2322 * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL).
2323 */
2324 if (!selinux_initialized()) {
2325 new_tsec->sid = SECINITSID_INIT;
2326 /* also clear the exec_sid just in case */
2327 new_tsec->exec_sid = 0;
2328 return 0;
2329 }
2330
2331 if (old_tsec->exec_sid) {
2332 new_tsec->sid = old_tsec->exec_sid;
2333 /* Reset exec SID on execve. */
2334 new_tsec->exec_sid = 0;
2335
2336 /* Fail on NNP or nosuid if not an allowed transition. */
2337 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2338 if (rc)
2339 return rc;
2340 } else {
2341 /* Check for a default transition on this program. */
2342 rc = security_transition_sid(old_tsec->sid,
2343 isec->sid, SECCLASS_PROCESS, NULL,
2344 &new_tsec->sid);
2345 if (rc)
2346 return rc;
2347
2348 /*
2349 * Fallback to old SID on NNP or nosuid if not an allowed
2350 * transition.
2351 */
2352 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2353 if (rc)
2354 new_tsec->sid = old_tsec->sid;
2355 }
2356
2357 ad.type = LSM_AUDIT_DATA_FILE;
2358 ad.u.file = bprm->file;
2359
2360 if (new_tsec->sid == old_tsec->sid) {
2361 rc = avc_has_perm(old_tsec->sid, isec->sid,
2362 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2363 if (rc)
2364 return rc;
2365 } else {
2366 /* Check permissions for the transition. */
2367 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2368 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2369 if (rc)
2370 return rc;
2371
2372 rc = avc_has_perm(new_tsec->sid, isec->sid,
2373 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2374 if (rc)
2375 return rc;
2376
2377 /* Check for shared state */
2378 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2379 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2380 SECCLASS_PROCESS, PROCESS__SHARE,
2381 NULL);
2382 if (rc)
2383 return -EPERM;
2384 }
2385
2386 /* Make sure that anyone attempting to ptrace over a task that
2387 * changes its SID has the appropriate permit */
2388 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2389 u32 ptsid = ptrace_parent_sid();
2390 if (ptsid != 0) {
2391 rc = avc_has_perm(ptsid, new_tsec->sid,
2392 SECCLASS_PROCESS,
2393 PROCESS__PTRACE, NULL);
2394 if (rc)
2395 return -EPERM;
2396 }
2397 }
2398
2399 /* Clear any possibly unsafe personality bits on exec: */
2400 bprm->per_clear |= PER_CLEAR_ON_SETID;
2401
2402 /* Enable secure mode for SIDs transitions unless
2403 the noatsecure permission is granted between
2404 the two SIDs, i.e. ahp returns 0. */
2405 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2406 SECCLASS_PROCESS, PROCESS__NOATSECURE,
2407 NULL);
2408 bprm->secureexec |= !!rc;
2409 }
2410
2411 return 0;
2412}
2413
2414static int match_file(const void *p, struct file *file, unsigned fd)
2415{
2416 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2417}
2418
2419/* Derived from fs/exec.c:flush_old_files. */
2420static inline void flush_unauthorized_files(const struct cred *cred,
2421 struct files_struct *files)
2422{
2423 struct file *file, *devnull = NULL;
2424 struct tty_struct *tty;
2425 int drop_tty = 0;
2426 unsigned n;
2427
2428 tty = get_current_tty();
2429 if (tty) {
2430 spin_lock(&tty->files_lock);
2431 if (!list_empty(&tty->tty_files)) {
2432 struct tty_file_private *file_priv;
2433
2434 /* Revalidate access to controlling tty.
2435 Use file_path_has_perm on the tty path directly
2436 rather than using file_has_perm, as this particular
2437 open file may belong to another process and we are
2438 only interested in the inode-based check here. */
2439 file_priv = list_first_entry(&tty->tty_files,
2440 struct tty_file_private, list);
2441 file = file_priv->file;
2442 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2443 drop_tty = 1;
2444 }
2445 spin_unlock(&tty->files_lock);
2446 tty_kref_put(tty);
2447 }
2448 /* Reset controlling tty. */
2449 if (drop_tty)
2450 no_tty();
2451
2452 /* Revalidate access to inherited open files. */
2453 n = iterate_fd(files, 0, match_file, cred);
2454 if (!n) /* none found? */
2455 return;
2456
2457 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2458 if (IS_ERR(devnull))
2459 devnull = NULL;
2460 /* replace all the matching ones with this */
2461 do {
2462 replace_fd(n - 1, devnull, 0);
2463 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2464 if (devnull)
2465 fput(devnull);
2466}
2467
2468/*
2469 * Prepare a process for imminent new credential changes due to exec
2470 */
2471static void selinux_bprm_committing_creds(const struct linux_binprm *bprm)
2472{
2473 struct task_security_struct *new_tsec;
2474 struct rlimit *rlim, *initrlim;
2475 int rc, i;
2476
2477 new_tsec = selinux_cred(bprm->cred);
2478 if (new_tsec->sid == new_tsec->osid)
2479 return;
2480
2481 /* Close files for which the new task SID is not authorized. */
2482 flush_unauthorized_files(bprm->cred, current->files);
2483
2484 /* Always clear parent death signal on SID transitions. */
2485 current->pdeath_signal = 0;
2486
2487 /* Check whether the new SID can inherit resource limits from the old
2488 * SID. If not, reset all soft limits to the lower of the current
2489 * task's hard limit and the init task's soft limit.
2490 *
2491 * Note that the setting of hard limits (even to lower them) can be
2492 * controlled by the setrlimit check. The inclusion of the init task's
2493 * soft limit into the computation is to avoid resetting soft limits
2494 * higher than the default soft limit for cases where the default is
2495 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2496 */
2497 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2498 PROCESS__RLIMITINH, NULL);
2499 if (rc) {
2500 /* protect against do_prlimit() */
2501 task_lock(current);
2502 for (i = 0; i < RLIM_NLIMITS; i++) {
2503 rlim = current->signal->rlim + i;
2504 initrlim = init_task.signal->rlim + i;
2505 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2506 }
2507 task_unlock(current);
2508 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2509 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2510 }
2511}
2512
2513/*
2514 * Clean up the process immediately after the installation of new credentials
2515 * due to exec
2516 */
2517static void selinux_bprm_committed_creds(const struct linux_binprm *bprm)
2518{
2519 const struct task_security_struct *tsec = selinux_cred(current_cred());
2520 u32 osid, sid;
2521 int rc;
2522
2523 osid = tsec->osid;
2524 sid = tsec->sid;
2525
2526 if (sid == osid)
2527 return;
2528
2529 /* Check whether the new SID can inherit signal state from the old SID.
2530 * If not, clear itimers to avoid subsequent signal generation and
2531 * flush and unblock signals.
2532 *
2533 * This must occur _after_ the task SID has been updated so that any
2534 * kill done after the flush will be checked against the new SID.
2535 */
2536 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2537 if (rc) {
2538 clear_itimer();
2539
2540 spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2541 if (!fatal_signal_pending(current)) {
2542 flush_sigqueue(¤t->pending);
2543 flush_sigqueue(¤t->signal->shared_pending);
2544 flush_signal_handlers(current, 1);
2545 sigemptyset(¤t->blocked);
2546 recalc_sigpending();
2547 }
2548 spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2549 }
2550
2551 /* Wake up the parent if it is waiting so that it can recheck
2552 * wait permission to the new task SID. */
2553 read_lock(&tasklist_lock);
2554 __wake_up_parent(current, unrcu_pointer(current->real_parent));
2555 read_unlock(&tasklist_lock);
2556}
2557
2558/* superblock security operations */
2559
2560static int selinux_sb_alloc_security(struct super_block *sb)
2561{
2562 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2563
2564 mutex_init(&sbsec->lock);
2565 INIT_LIST_HEAD(&sbsec->isec_head);
2566 spin_lock_init(&sbsec->isec_lock);
2567 sbsec->sid = SECINITSID_UNLABELED;
2568 sbsec->def_sid = SECINITSID_FILE;
2569 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2570
2571 return 0;
2572}
2573
2574static inline int opt_len(const char *s)
2575{
2576 bool open_quote = false;
2577 int len;
2578 char c;
2579
2580 for (len = 0; (c = s[len]) != '\0'; len++) {
2581 if (c == '"')
2582 open_quote = !open_quote;
2583 if (c == ',' && !open_quote)
2584 break;
2585 }
2586 return len;
2587}
2588
2589static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2590{
2591 char *from = options;
2592 char *to = options;
2593 bool first = true;
2594 int rc;
2595
2596 while (1) {
2597 int len = opt_len(from);
2598 int token;
2599 char *arg = NULL;
2600
2601 token = match_opt_prefix(from, len, &arg);
2602
2603 if (token != Opt_error) {
2604 char *p, *q;
2605
2606 /* strip quotes */
2607 if (arg) {
2608 for (p = q = arg; p < from + len; p++) {
2609 char c = *p;
2610 if (c != '"')
2611 *q++ = c;
2612 }
2613 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2614 if (!arg) {
2615 rc = -ENOMEM;
2616 goto free_opt;
2617 }
2618 }
2619 rc = selinux_add_opt(token, arg, mnt_opts);
2620 kfree(arg);
2621 arg = NULL;
2622 if (unlikely(rc)) {
2623 goto free_opt;
2624 }
2625 } else {
2626 if (!first) { // copy with preceding comma
2627 from--;
2628 len++;
2629 }
2630 if (to != from)
2631 memmove(to, from, len);
2632 to += len;
2633 first = false;
2634 }
2635 if (!from[len])
2636 break;
2637 from += len + 1;
2638 }
2639 *to = '\0';
2640 return 0;
2641
2642free_opt:
2643 if (*mnt_opts) {
2644 selinux_free_mnt_opts(*mnt_opts);
2645 *mnt_opts = NULL;
2646 }
2647 return rc;
2648}
2649
2650static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2651{
2652 struct selinux_mnt_opts *opts = mnt_opts;
2653 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2654
2655 /*
2656 * Superblock not initialized (i.e. no options) - reject if any
2657 * options specified, otherwise accept.
2658 */
2659 if (!(sbsec->flags & SE_SBINITIALIZED))
2660 return opts ? 1 : 0;
2661
2662 /*
2663 * Superblock initialized and no options specified - reject if
2664 * superblock has any options set, otherwise accept.
2665 */
2666 if (!opts)
2667 return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2668
2669 if (opts->fscontext_sid) {
2670 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2671 opts->fscontext_sid))
2672 return 1;
2673 }
2674 if (opts->context_sid) {
2675 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2676 opts->context_sid))
2677 return 1;
2678 }
2679 if (opts->rootcontext_sid) {
2680 struct inode_security_struct *root_isec;
2681
2682 root_isec = backing_inode_security(sb->s_root);
2683 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2684 opts->rootcontext_sid))
2685 return 1;
2686 }
2687 if (opts->defcontext_sid) {
2688 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2689 opts->defcontext_sid))
2690 return 1;
2691 }
2692 return 0;
2693}
2694
2695static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2696{
2697 struct selinux_mnt_opts *opts = mnt_opts;
2698 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2699
2700 if (!(sbsec->flags & SE_SBINITIALIZED))
2701 return 0;
2702
2703 if (!opts)
2704 return 0;
2705
2706 if (opts->fscontext_sid) {
2707 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2708 opts->fscontext_sid))
2709 goto out_bad_option;
2710 }
2711 if (opts->context_sid) {
2712 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2713 opts->context_sid))
2714 goto out_bad_option;
2715 }
2716 if (opts->rootcontext_sid) {
2717 struct inode_security_struct *root_isec;
2718 root_isec = backing_inode_security(sb->s_root);
2719 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2720 opts->rootcontext_sid))
2721 goto out_bad_option;
2722 }
2723 if (opts->defcontext_sid) {
2724 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2725 opts->defcontext_sid))
2726 goto out_bad_option;
2727 }
2728 return 0;
2729
2730out_bad_option:
2731 pr_warn("SELinux: unable to change security options "
2732 "during remount (dev %s, type=%s)\n", sb->s_id,
2733 sb->s_type->name);
2734 return -EINVAL;
2735}
2736
2737static int selinux_sb_kern_mount(const struct super_block *sb)
2738{
2739 const struct cred *cred = current_cred();
2740 struct common_audit_data ad;
2741
2742 ad.type = LSM_AUDIT_DATA_DENTRY;
2743 ad.u.dentry = sb->s_root;
2744 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2745}
2746
2747static int selinux_sb_statfs(struct dentry *dentry)
2748{
2749 const struct cred *cred = current_cred();
2750 struct common_audit_data ad;
2751
2752 ad.type = LSM_AUDIT_DATA_DENTRY;
2753 ad.u.dentry = dentry->d_sb->s_root;
2754 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2755}
2756
2757static int selinux_mount(const char *dev_name,
2758 const struct path *path,
2759 const char *type,
2760 unsigned long flags,
2761 void *data)
2762{
2763 const struct cred *cred = current_cred();
2764
2765 if (flags & MS_REMOUNT)
2766 return superblock_has_perm(cred, path->dentry->d_sb,
2767 FILESYSTEM__REMOUNT, NULL);
2768 else
2769 return path_has_perm(cred, path, FILE__MOUNTON);
2770}
2771
2772static int selinux_move_mount(const struct path *from_path,
2773 const struct path *to_path)
2774{
2775 const struct cred *cred = current_cred();
2776
2777 return path_has_perm(cred, to_path, FILE__MOUNTON);
2778}
2779
2780static int selinux_umount(struct vfsmount *mnt, int flags)
2781{
2782 const struct cred *cred = current_cred();
2783
2784 return superblock_has_perm(cred, mnt->mnt_sb,
2785 FILESYSTEM__UNMOUNT, NULL);
2786}
2787
2788static int selinux_fs_context_submount(struct fs_context *fc,
2789 struct super_block *reference)
2790{
2791 const struct superblock_security_struct *sbsec = selinux_superblock(reference);
2792 struct selinux_mnt_opts *opts;
2793
2794 /*
2795 * Ensure that fc->security remains NULL when no options are set
2796 * as expected by selinux_set_mnt_opts().
2797 */
2798 if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT)))
2799 return 0;
2800
2801 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
2802 if (!opts)
2803 return -ENOMEM;
2804
2805 if (sbsec->flags & FSCONTEXT_MNT)
2806 opts->fscontext_sid = sbsec->sid;
2807 if (sbsec->flags & CONTEXT_MNT)
2808 opts->context_sid = sbsec->mntpoint_sid;
2809 if (sbsec->flags & DEFCONTEXT_MNT)
2810 opts->defcontext_sid = sbsec->def_sid;
2811 fc->security = opts;
2812 return 0;
2813}
2814
2815static int selinux_fs_context_dup(struct fs_context *fc,
2816 struct fs_context *src_fc)
2817{
2818 const struct selinux_mnt_opts *src = src_fc->security;
2819
2820 if (!src)
2821 return 0;
2822
2823 fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2824 return fc->security ? 0 : -ENOMEM;
2825}
2826
2827static const struct fs_parameter_spec selinux_fs_parameters[] = {
2828 fsparam_string(CONTEXT_STR, Opt_context),
2829 fsparam_string(DEFCONTEXT_STR, Opt_defcontext),
2830 fsparam_string(FSCONTEXT_STR, Opt_fscontext),
2831 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2832 fsparam_flag (SECLABEL_STR, Opt_seclabel),
2833 {}
2834};
2835
2836static int selinux_fs_context_parse_param(struct fs_context *fc,
2837 struct fs_parameter *param)
2838{
2839 struct fs_parse_result result;
2840 int opt;
2841
2842 opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2843 if (opt < 0)
2844 return opt;
2845
2846 return selinux_add_opt(opt, param->string, &fc->security);
2847}
2848
2849/* inode security operations */
2850
2851static int selinux_inode_alloc_security(struct inode *inode)
2852{
2853 struct inode_security_struct *isec = selinux_inode(inode);
2854 u32 sid = current_sid();
2855
2856 spin_lock_init(&isec->lock);
2857 INIT_LIST_HEAD(&isec->list);
2858 isec->inode = inode;
2859 isec->sid = SECINITSID_UNLABELED;
2860 isec->sclass = SECCLASS_FILE;
2861 isec->task_sid = sid;
2862 isec->initialized = LABEL_INVALID;
2863
2864 return 0;
2865}
2866
2867static void selinux_inode_free_security(struct inode *inode)
2868{
2869 inode_free_security(inode);
2870}
2871
2872static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2873 const struct qstr *name,
2874 const char **xattr_name, void **ctx,
2875 u32 *ctxlen)
2876{
2877 u32 newsid;
2878 int rc;
2879
2880 rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2881 d_inode(dentry->d_parent), name,
2882 inode_mode_to_security_class(mode),
2883 &newsid);
2884 if (rc)
2885 return rc;
2886
2887 if (xattr_name)
2888 *xattr_name = XATTR_NAME_SELINUX;
2889
2890 return security_sid_to_context(newsid, (char **)ctx,
2891 ctxlen);
2892}
2893
2894static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2895 struct qstr *name,
2896 const struct cred *old,
2897 struct cred *new)
2898{
2899 u32 newsid;
2900 int rc;
2901 struct task_security_struct *tsec;
2902
2903 rc = selinux_determine_inode_label(selinux_cred(old),
2904 d_inode(dentry->d_parent), name,
2905 inode_mode_to_security_class(mode),
2906 &newsid);
2907 if (rc)
2908 return rc;
2909
2910 tsec = selinux_cred(new);
2911 tsec->create_sid = newsid;
2912 return 0;
2913}
2914
2915static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2916 const struct qstr *qstr,
2917 struct xattr *xattrs, int *xattr_count)
2918{
2919 const struct task_security_struct *tsec = selinux_cred(current_cred());
2920 struct superblock_security_struct *sbsec;
2921 struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count);
2922 u32 newsid, clen;
2923 int rc;
2924 char *context;
2925
2926 sbsec = selinux_superblock(dir->i_sb);
2927
2928 newsid = tsec->create_sid;
2929
2930 rc = selinux_determine_inode_label(tsec, dir, qstr,
2931 inode_mode_to_security_class(inode->i_mode),
2932 &newsid);
2933 if (rc)
2934 return rc;
2935
2936 /* Possibly defer initialization to selinux_complete_init. */
2937 if (sbsec->flags & SE_SBINITIALIZED) {
2938 struct inode_security_struct *isec = selinux_inode(inode);
2939 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2940 isec->sid = newsid;
2941 isec->initialized = LABEL_INITIALIZED;
2942 }
2943
2944 if (!selinux_initialized() ||
2945 !(sbsec->flags & SBLABEL_MNT))
2946 return -EOPNOTSUPP;
2947
2948 if (xattr) {
2949 rc = security_sid_to_context_force(newsid,
2950 &context, &clen);
2951 if (rc)
2952 return rc;
2953 xattr->value = context;
2954 xattr->value_len = clen;
2955 xattr->name = XATTR_SELINUX_SUFFIX;
2956 }
2957
2958 return 0;
2959}
2960
2961static int selinux_inode_init_security_anon(struct inode *inode,
2962 const struct qstr *name,
2963 const struct inode *context_inode)
2964{
2965 const struct task_security_struct *tsec = selinux_cred(current_cred());
2966 struct common_audit_data ad;
2967 struct inode_security_struct *isec;
2968 int rc;
2969
2970 if (unlikely(!selinux_initialized()))
2971 return 0;
2972
2973 isec = selinux_inode(inode);
2974
2975 /*
2976 * We only get here once per ephemeral inode. The inode has
2977 * been initialized via inode_alloc_security but is otherwise
2978 * untouched.
2979 */
2980
2981 if (context_inode) {
2982 struct inode_security_struct *context_isec =
2983 selinux_inode(context_inode);
2984 if (context_isec->initialized != LABEL_INITIALIZED) {
2985 pr_err("SELinux: context_inode is not initialized\n");
2986 return -EACCES;
2987 }
2988
2989 isec->sclass = context_isec->sclass;
2990 isec->sid = context_isec->sid;
2991 } else {
2992 isec->sclass = SECCLASS_ANON_INODE;
2993 rc = security_transition_sid(
2994 tsec->sid, tsec->sid,
2995 isec->sclass, name, &isec->sid);
2996 if (rc)
2997 return rc;
2998 }
2999
3000 isec->initialized = LABEL_INITIALIZED;
3001 /*
3002 * Now that we've initialized security, check whether we're
3003 * allowed to actually create this type of anonymous inode.
3004 */
3005
3006 ad.type = LSM_AUDIT_DATA_ANONINODE;
3007 ad.u.anonclass = name ? (const char *)name->name : "?";
3008
3009 return avc_has_perm(tsec->sid,
3010 isec->sid,
3011 isec->sclass,
3012 FILE__CREATE,
3013 &ad);
3014}
3015
3016static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3017{
3018 return may_create(dir, dentry, SECCLASS_FILE);
3019}
3020
3021static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3022{
3023 return may_link(dir, old_dentry, MAY_LINK);
3024}
3025
3026static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3027{
3028 return may_link(dir, dentry, MAY_UNLINK);
3029}
3030
3031static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3032{
3033 return may_create(dir, dentry, SECCLASS_LNK_FILE);
3034}
3035
3036static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3037{
3038 return may_create(dir, dentry, SECCLASS_DIR);
3039}
3040
3041static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3042{
3043 return may_link(dir, dentry, MAY_RMDIR);
3044}
3045
3046static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3047{
3048 return may_create(dir, dentry, inode_mode_to_security_class(mode));
3049}
3050
3051static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3052 struct inode *new_inode, struct dentry *new_dentry)
3053{
3054 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3055}
3056
3057static int selinux_inode_readlink(struct dentry *dentry)
3058{
3059 const struct cred *cred = current_cred();
3060
3061 return dentry_has_perm(cred, dentry, FILE__READ);
3062}
3063
3064static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3065 bool rcu)
3066{
3067 const struct cred *cred = current_cred();
3068 struct common_audit_data ad;
3069 struct inode_security_struct *isec;
3070 u32 sid;
3071
3072 ad.type = LSM_AUDIT_DATA_DENTRY;
3073 ad.u.dentry = dentry;
3074 sid = cred_sid(cred);
3075 isec = inode_security_rcu(inode, rcu);
3076 if (IS_ERR(isec))
3077 return PTR_ERR(isec);
3078
3079 return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad);
3080}
3081
3082static noinline int audit_inode_permission(struct inode *inode,
3083 u32 perms, u32 audited, u32 denied,
3084 int result)
3085{
3086 struct common_audit_data ad;
3087 struct inode_security_struct *isec = selinux_inode(inode);
3088
3089 ad.type = LSM_AUDIT_DATA_INODE;
3090 ad.u.inode = inode;
3091
3092 return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3093 audited, denied, result, &ad);
3094}
3095
3096static int selinux_inode_permission(struct inode *inode, int mask)
3097{
3098 const struct cred *cred = current_cred();
3099 u32 perms;
3100 bool from_access;
3101 bool no_block = mask & MAY_NOT_BLOCK;
3102 struct inode_security_struct *isec;
3103 u32 sid;
3104 struct av_decision avd;
3105 int rc, rc2;
3106 u32 audited, denied;
3107
3108 from_access = mask & MAY_ACCESS;
3109 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3110
3111 /* No permission to check. Existence test. */
3112 if (!mask)
3113 return 0;
3114
3115 if (unlikely(IS_PRIVATE(inode)))
3116 return 0;
3117
3118 perms = file_mask_to_av(inode->i_mode, mask);
3119
3120 sid = cred_sid(cred);
3121 isec = inode_security_rcu(inode, no_block);
3122 if (IS_ERR(isec))
3123 return PTR_ERR(isec);
3124
3125 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0,
3126 &avd);
3127 audited = avc_audit_required(perms, &avd, rc,
3128 from_access ? FILE__AUDIT_ACCESS : 0,
3129 &denied);
3130 if (likely(!audited))
3131 return rc;
3132
3133 rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3134 if (rc2)
3135 return rc2;
3136 return rc;
3137}
3138
3139static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3140{
3141 const struct cred *cred = current_cred();
3142 struct inode *inode = d_backing_inode(dentry);
3143 unsigned int ia_valid = iattr->ia_valid;
3144 __u32 av = FILE__WRITE;
3145
3146 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3147 if (ia_valid & ATTR_FORCE) {
3148 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3149 ATTR_FORCE);
3150 if (!ia_valid)
3151 return 0;
3152 }
3153
3154 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3155 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3156 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3157
3158 if (selinux_policycap_openperm() &&
3159 inode->i_sb->s_magic != SOCKFS_MAGIC &&
3160 (ia_valid & ATTR_SIZE) &&
3161 !(ia_valid & ATTR_FILE))
3162 av |= FILE__OPEN;
3163
3164 return dentry_has_perm(cred, dentry, av);
3165}
3166
3167static int selinux_inode_getattr(const struct path *path)
3168{
3169 return path_has_perm(current_cred(), path, FILE__GETATTR);
3170}
3171
3172static bool has_cap_mac_admin(bool audit)
3173{
3174 const struct cred *cred = current_cred();
3175 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3176
3177 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3178 return false;
3179 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3180 return false;
3181 return true;
3182}
3183
3184static int selinux_inode_setxattr(struct mnt_idmap *idmap,
3185 struct dentry *dentry, const char *name,
3186 const void *value, size_t size, int flags)
3187{
3188 struct inode *inode = d_backing_inode(dentry);
3189 struct inode_security_struct *isec;
3190 struct superblock_security_struct *sbsec;
3191 struct common_audit_data ad;
3192 u32 newsid, sid = current_sid();
3193 int rc = 0;
3194
3195 if (strcmp(name, XATTR_NAME_SELINUX)) {
3196 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3197 if (rc)
3198 return rc;
3199
3200 /* Not an attribute we recognize, so just check the
3201 ordinary setattr permission. */
3202 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3203 }
3204
3205 if (!selinux_initialized())
3206 return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM);
3207
3208 sbsec = selinux_superblock(inode->i_sb);
3209 if (!(sbsec->flags & SBLABEL_MNT))
3210 return -EOPNOTSUPP;
3211
3212 if (!inode_owner_or_capable(idmap, inode))
3213 return -EPERM;
3214
3215 ad.type = LSM_AUDIT_DATA_DENTRY;
3216 ad.u.dentry = dentry;
3217
3218 isec = backing_inode_security(dentry);
3219 rc = avc_has_perm(sid, isec->sid, isec->sclass,
3220 FILE__RELABELFROM, &ad);
3221 if (rc)
3222 return rc;
3223
3224 rc = security_context_to_sid(value, size, &newsid,
3225 GFP_KERNEL);
3226 if (rc == -EINVAL) {
3227 if (!has_cap_mac_admin(true)) {
3228 struct audit_buffer *ab;
3229 size_t audit_size;
3230
3231 /* We strip a nul only if it is at the end, otherwise the
3232 * context contains a nul and we should audit that */
3233 if (value) {
3234 const char *str = value;
3235
3236 if (str[size - 1] == '\0')
3237 audit_size = size - 1;
3238 else
3239 audit_size = size;
3240 } else {
3241 audit_size = 0;
3242 }
3243 ab = audit_log_start(audit_context(),
3244 GFP_ATOMIC, AUDIT_SELINUX_ERR);
3245 if (!ab)
3246 return rc;
3247 audit_log_format(ab, "op=setxattr invalid_context=");
3248 audit_log_n_untrustedstring(ab, value, audit_size);
3249 audit_log_end(ab);
3250
3251 return rc;
3252 }
3253 rc = security_context_to_sid_force(value,
3254 size, &newsid);
3255 }
3256 if (rc)
3257 return rc;
3258
3259 rc = avc_has_perm(sid, newsid, isec->sclass,
3260 FILE__RELABELTO, &ad);
3261 if (rc)
3262 return rc;
3263
3264 rc = security_validate_transition(isec->sid, newsid,
3265 sid, isec->sclass);
3266 if (rc)
3267 return rc;
3268
3269 return avc_has_perm(newsid,
3270 sbsec->sid,
3271 SECCLASS_FILESYSTEM,
3272 FILESYSTEM__ASSOCIATE,
3273 &ad);
3274}
3275
3276static int selinux_inode_set_acl(struct mnt_idmap *idmap,
3277 struct dentry *dentry, const char *acl_name,
3278 struct posix_acl *kacl)
3279{
3280 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3281}
3282
3283static int selinux_inode_get_acl(struct mnt_idmap *idmap,
3284 struct dentry *dentry, const char *acl_name)
3285{
3286 return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3287}
3288
3289static int selinux_inode_remove_acl(struct mnt_idmap *idmap,
3290 struct dentry *dentry, const char *acl_name)
3291{
3292 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3293}
3294
3295static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3296 const void *value, size_t size,
3297 int flags)
3298{
3299 struct inode *inode = d_backing_inode(dentry);
3300 struct inode_security_struct *isec;
3301 u32 newsid;
3302 int rc;
3303
3304 if (strcmp(name, XATTR_NAME_SELINUX)) {
3305 /* Not an attribute we recognize, so nothing to do. */
3306 return;
3307 }
3308
3309 if (!selinux_initialized()) {
3310 /* If we haven't even been initialized, then we can't validate
3311 * against a policy, so leave the label as invalid. It may
3312 * resolve to a valid label on the next revalidation try if
3313 * we've since initialized.
3314 */
3315 return;
3316 }
3317
3318 rc = security_context_to_sid_force(value, size,
3319 &newsid);
3320 if (rc) {
3321 pr_err("SELinux: unable to map context to SID"
3322 "for (%s, %lu), rc=%d\n",
3323 inode->i_sb->s_id, inode->i_ino, -rc);
3324 return;
3325 }
3326
3327 isec = backing_inode_security(dentry);
3328 spin_lock(&isec->lock);
3329 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3330 isec->sid = newsid;
3331 isec->initialized = LABEL_INITIALIZED;
3332 spin_unlock(&isec->lock);
3333}
3334
3335static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3336{
3337 const struct cred *cred = current_cred();
3338
3339 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3340}
3341
3342static int selinux_inode_listxattr(struct dentry *dentry)
3343{
3344 const struct cred *cred = current_cred();
3345
3346 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3347}
3348
3349static int selinux_inode_removexattr(struct mnt_idmap *idmap,
3350 struct dentry *dentry, const char *name)
3351{
3352 if (strcmp(name, XATTR_NAME_SELINUX)) {
3353 int rc = cap_inode_removexattr(idmap, dentry, name);
3354 if (rc)
3355 return rc;
3356
3357 /* Not an attribute we recognize, so just check the
3358 ordinary setattr permission. */
3359 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3360 }
3361
3362 if (!selinux_initialized())
3363 return 0;
3364
3365 /* No one is allowed to remove a SELinux security label.
3366 You can change the label, but all data must be labeled. */
3367 return -EACCES;
3368}
3369
3370static int selinux_path_notify(const struct path *path, u64 mask,
3371 unsigned int obj_type)
3372{
3373 int ret;
3374 u32 perm;
3375
3376 struct common_audit_data ad;
3377
3378 ad.type = LSM_AUDIT_DATA_PATH;
3379 ad.u.path = *path;
3380
3381 /*
3382 * Set permission needed based on the type of mark being set.
3383 * Performs an additional check for sb watches.
3384 */
3385 switch (obj_type) {
3386 case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3387 perm = FILE__WATCH_MOUNT;
3388 break;
3389 case FSNOTIFY_OBJ_TYPE_SB:
3390 perm = FILE__WATCH_SB;
3391 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3392 FILESYSTEM__WATCH, &ad);
3393 if (ret)
3394 return ret;
3395 break;
3396 case FSNOTIFY_OBJ_TYPE_INODE:
3397 perm = FILE__WATCH;
3398 break;
3399 default:
3400 return -EINVAL;
3401 }
3402
3403 /* blocking watches require the file:watch_with_perm permission */
3404 if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3405 perm |= FILE__WATCH_WITH_PERM;
3406
3407 /* watches on read-like events need the file:watch_reads permission */
3408 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3409 perm |= FILE__WATCH_READS;
3410
3411 return path_has_perm(current_cred(), path, perm);
3412}
3413
3414/*
3415 * Copy the inode security context value to the user.
3416 *
3417 * Permission check is handled by selinux_inode_getxattr hook.
3418 */
3419static int selinux_inode_getsecurity(struct mnt_idmap *idmap,
3420 struct inode *inode, const char *name,
3421 void **buffer, bool alloc)
3422{
3423 u32 size;
3424 int error;
3425 char *context = NULL;
3426 struct inode_security_struct *isec;
3427
3428 /*
3429 * If we're not initialized yet, then we can't validate contexts, so
3430 * just let vfs_getxattr fall back to using the on-disk xattr.
3431 */
3432 if (!selinux_initialized() ||
3433 strcmp(name, XATTR_SELINUX_SUFFIX))
3434 return -EOPNOTSUPP;
3435
3436 /*
3437 * If the caller has CAP_MAC_ADMIN, then get the raw context
3438 * value even if it is not defined by current policy; otherwise,
3439 * use the in-core value under current policy.
3440 * Use the non-auditing forms of the permission checks since
3441 * getxattr may be called by unprivileged processes commonly
3442 * and lack of permission just means that we fall back to the
3443 * in-core context value, not a denial.
3444 */
3445 isec = inode_security(inode);
3446 if (has_cap_mac_admin(false))
3447 error = security_sid_to_context_force(isec->sid, &context,
3448 &size);
3449 else
3450 error = security_sid_to_context(isec->sid,
3451 &context, &size);
3452 if (error)
3453 return error;
3454 error = size;
3455 if (alloc) {
3456 *buffer = context;
3457 goto out_nofree;
3458 }
3459 kfree(context);
3460out_nofree:
3461 return error;
3462}
3463
3464static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3465 const void *value, size_t size, int flags)
3466{
3467 struct inode_security_struct *isec = inode_security_novalidate(inode);
3468 struct superblock_security_struct *sbsec;
3469 u32 newsid;
3470 int rc;
3471
3472 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3473 return -EOPNOTSUPP;
3474
3475 sbsec = selinux_superblock(inode->i_sb);
3476 if (!(sbsec->flags & SBLABEL_MNT))
3477 return -EOPNOTSUPP;
3478
3479 if (!value || !size)
3480 return -EACCES;
3481
3482 rc = security_context_to_sid(value, size, &newsid,
3483 GFP_KERNEL);
3484 if (rc)
3485 return rc;
3486
3487 spin_lock(&isec->lock);
3488 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3489 isec->sid = newsid;
3490 isec->initialized = LABEL_INITIALIZED;
3491 spin_unlock(&isec->lock);
3492 return 0;
3493}
3494
3495static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3496{
3497 const int len = sizeof(XATTR_NAME_SELINUX);
3498
3499 if (!selinux_initialized())
3500 return 0;
3501
3502 if (buffer && len <= buffer_size)
3503 memcpy(buffer, XATTR_NAME_SELINUX, len);
3504 return len;
3505}
3506
3507static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3508{
3509 struct inode_security_struct *isec = inode_security_novalidate(inode);
3510 *secid = isec->sid;
3511}
3512
3513static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3514{
3515 u32 sid;
3516 struct task_security_struct *tsec;
3517 struct cred *new_creds = *new;
3518
3519 if (new_creds == NULL) {
3520 new_creds = prepare_creds();
3521 if (!new_creds)
3522 return -ENOMEM;
3523 }
3524
3525 tsec = selinux_cred(new_creds);
3526 /* Get label from overlay inode and set it in create_sid */
3527 selinux_inode_getsecid(d_inode(src), &sid);
3528 tsec->create_sid = sid;
3529 *new = new_creds;
3530 return 0;
3531}
3532
3533static int selinux_inode_copy_up_xattr(const char *name)
3534{
3535 /* The copy_up hook above sets the initial context on an inode, but we
3536 * don't then want to overwrite it by blindly copying all the lower
3537 * xattrs up. Instead, we have to filter out SELinux-related xattrs.
3538 */
3539 if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3540 return 1; /* Discard */
3541 /*
3542 * Any other attribute apart from SELINUX is not claimed, supported
3543 * by selinux.
3544 */
3545 return -EOPNOTSUPP;
3546}
3547
3548/* kernfs node operations */
3549
3550static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3551 struct kernfs_node *kn)
3552{
3553 const struct task_security_struct *tsec = selinux_cred(current_cred());
3554 u32 parent_sid, newsid, clen;
3555 int rc;
3556 char *context;
3557
3558 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3559 if (rc == -ENODATA)
3560 return 0;
3561 else if (rc < 0)
3562 return rc;
3563
3564 clen = (u32)rc;
3565 context = kmalloc(clen, GFP_KERNEL);
3566 if (!context)
3567 return -ENOMEM;
3568
3569 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3570 if (rc < 0) {
3571 kfree(context);
3572 return rc;
3573 }
3574
3575 rc = security_context_to_sid(context, clen, &parent_sid,
3576 GFP_KERNEL);
3577 kfree(context);
3578 if (rc)
3579 return rc;
3580
3581 if (tsec->create_sid) {
3582 newsid = tsec->create_sid;
3583 } else {
3584 u16 secclass = inode_mode_to_security_class(kn->mode);
3585 struct qstr q;
3586
3587 q.name = kn->name;
3588 q.hash_len = hashlen_string(kn_dir, kn->name);
3589
3590 rc = security_transition_sid(tsec->sid,
3591 parent_sid, secclass, &q,
3592 &newsid);
3593 if (rc)
3594 return rc;
3595 }
3596
3597 rc = security_sid_to_context_force(newsid,
3598 &context, &clen);
3599 if (rc)
3600 return rc;
3601
3602 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3603 XATTR_CREATE);
3604 kfree(context);
3605 return rc;
3606}
3607
3608
3609/* file security operations */
3610
3611static int selinux_revalidate_file_permission(struct file *file, int mask)
3612{
3613 const struct cred *cred = current_cred();
3614 struct inode *inode = file_inode(file);
3615
3616 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3617 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3618 mask |= MAY_APPEND;
3619
3620 return file_has_perm(cred, file,
3621 file_mask_to_av(inode->i_mode, mask));
3622}
3623
3624static int selinux_file_permission(struct file *file, int mask)
3625{
3626 struct inode *inode = file_inode(file);
3627 struct file_security_struct *fsec = selinux_file(file);
3628 struct inode_security_struct *isec;
3629 u32 sid = current_sid();
3630
3631 if (!mask)
3632 /* No permission to check. Existence test. */
3633 return 0;
3634
3635 isec = inode_security(inode);
3636 if (sid == fsec->sid && fsec->isid == isec->sid &&
3637 fsec->pseqno == avc_policy_seqno())
3638 /* No change since file_open check. */
3639 return 0;
3640
3641 return selinux_revalidate_file_permission(file, mask);
3642}
3643
3644static int selinux_file_alloc_security(struct file *file)
3645{
3646 struct file_security_struct *fsec = selinux_file(file);
3647 u32 sid = current_sid();
3648
3649 fsec->sid = sid;
3650 fsec->fown_sid = sid;
3651
3652 return 0;
3653}
3654
3655/*
3656 * Check whether a task has the ioctl permission and cmd
3657 * operation to an inode.
3658 */
3659static int ioctl_has_perm(const struct cred *cred, struct file *file,
3660 u32 requested, u16 cmd)
3661{
3662 struct common_audit_data ad;
3663 struct file_security_struct *fsec = selinux_file(file);
3664 struct inode *inode = file_inode(file);
3665 struct inode_security_struct *isec;
3666 struct lsm_ioctlop_audit ioctl;
3667 u32 ssid = cred_sid(cred);
3668 int rc;
3669 u8 driver = cmd >> 8;
3670 u8 xperm = cmd & 0xff;
3671
3672 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3673 ad.u.op = &ioctl;
3674 ad.u.op->cmd = cmd;
3675 ad.u.op->path = file->f_path;
3676
3677 if (ssid != fsec->sid) {
3678 rc = avc_has_perm(ssid, fsec->sid,
3679 SECCLASS_FD,
3680 FD__USE,
3681 &ad);
3682 if (rc)
3683 goto out;
3684 }
3685
3686 if (unlikely(IS_PRIVATE(inode)))
3687 return 0;
3688
3689 isec = inode_security(inode);
3690 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3691 requested, driver, xperm, &ad);
3692out:
3693 return rc;
3694}
3695
3696static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3697 unsigned long arg)
3698{
3699 const struct cred *cred = current_cred();
3700 int error = 0;
3701
3702 switch (cmd) {
3703 case FIONREAD:
3704 case FIBMAP:
3705 case FIGETBSZ:
3706 case FS_IOC_GETFLAGS:
3707 case FS_IOC_GETVERSION:
3708 error = file_has_perm(cred, file, FILE__GETATTR);
3709 break;
3710
3711 case FS_IOC_SETFLAGS:
3712 case FS_IOC_SETVERSION:
3713 error = file_has_perm(cred, file, FILE__SETATTR);
3714 break;
3715
3716 /* sys_ioctl() checks */
3717 case FIONBIO:
3718 case FIOASYNC:
3719 error = file_has_perm(cred, file, 0);
3720 break;
3721
3722 case KDSKBENT:
3723 case KDSKBSENT:
3724 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3725 CAP_OPT_NONE, true);
3726 break;
3727
3728 case FIOCLEX:
3729 case FIONCLEX:
3730 if (!selinux_policycap_ioctl_skip_cloexec())
3731 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3732 break;
3733
3734 /* default case assumes that the command will go
3735 * to the file's ioctl() function.
3736 */
3737 default:
3738 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3739 }
3740 return error;
3741}
3742
3743static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd,
3744 unsigned long arg)
3745{
3746 /*
3747 * If we are in a 64-bit kernel running 32-bit userspace, we need to
3748 * make sure we don't compare 32-bit flags to 64-bit flags.
3749 */
3750 switch (cmd) {
3751 case FS_IOC32_GETFLAGS:
3752 cmd = FS_IOC_GETFLAGS;
3753 break;
3754 case FS_IOC32_SETFLAGS:
3755 cmd = FS_IOC_SETFLAGS;
3756 break;
3757 case FS_IOC32_GETVERSION:
3758 cmd = FS_IOC_GETVERSION;
3759 break;
3760 case FS_IOC32_SETVERSION:
3761 cmd = FS_IOC_SETVERSION;
3762 break;
3763 default:
3764 break;
3765 }
3766
3767 return selinux_file_ioctl(file, cmd, arg);
3768}
3769
3770static int default_noexec __ro_after_init;
3771
3772static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3773{
3774 const struct cred *cred = current_cred();
3775 u32 sid = cred_sid(cred);
3776 int rc = 0;
3777
3778 if (default_noexec &&
3779 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3780 (!shared && (prot & PROT_WRITE)))) {
3781 /*
3782 * We are making executable an anonymous mapping or a
3783 * private file mapping that will also be writable.
3784 * This has an additional check.
3785 */
3786 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3787 PROCESS__EXECMEM, NULL);
3788 if (rc)
3789 goto error;
3790 }
3791
3792 if (file) {
3793 /* read access is always possible with a mapping */
3794 u32 av = FILE__READ;
3795
3796 /* write access only matters if the mapping is shared */
3797 if (shared && (prot & PROT_WRITE))
3798 av |= FILE__WRITE;
3799
3800 if (prot & PROT_EXEC)
3801 av |= FILE__EXECUTE;
3802
3803 return file_has_perm(cred, file, av);
3804 }
3805
3806error:
3807 return rc;
3808}
3809
3810static int selinux_mmap_addr(unsigned long addr)
3811{
3812 int rc = 0;
3813
3814 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3815 u32 sid = current_sid();
3816 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3817 MEMPROTECT__MMAP_ZERO, NULL);
3818 }
3819
3820 return rc;
3821}
3822
3823static int selinux_mmap_file(struct file *file,
3824 unsigned long reqprot __always_unused,
3825 unsigned long prot, unsigned long flags)
3826{
3827 struct common_audit_data ad;
3828 int rc;
3829
3830 if (file) {
3831 ad.type = LSM_AUDIT_DATA_FILE;
3832 ad.u.file = file;
3833 rc = inode_has_perm(current_cred(), file_inode(file),
3834 FILE__MAP, &ad);
3835 if (rc)
3836 return rc;
3837 }
3838
3839 return file_map_prot_check(file, prot,
3840 (flags & MAP_TYPE) == MAP_SHARED);
3841}
3842
3843static int selinux_file_mprotect(struct vm_area_struct *vma,
3844 unsigned long reqprot __always_unused,
3845 unsigned long prot)
3846{
3847 const struct cred *cred = current_cred();
3848 u32 sid = cred_sid(cred);
3849
3850 if (default_noexec &&
3851 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3852 int rc = 0;
3853 if (vma_is_initial_heap(vma)) {
3854 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3855 PROCESS__EXECHEAP, NULL);
3856 } else if (!vma->vm_file && (vma_is_initial_stack(vma) ||
3857 vma_is_stack_for_current(vma))) {
3858 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3859 PROCESS__EXECSTACK, NULL);
3860 } else if (vma->vm_file && vma->anon_vma) {
3861 /*
3862 * We are making executable a file mapping that has
3863 * had some COW done. Since pages might have been
3864 * written, check ability to execute the possibly
3865 * modified content. This typically should only
3866 * occur for text relocations.
3867 */
3868 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3869 }
3870 if (rc)
3871 return rc;
3872 }
3873
3874 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3875}
3876
3877static int selinux_file_lock(struct file *file, unsigned int cmd)
3878{
3879 const struct cred *cred = current_cred();
3880
3881 return file_has_perm(cred, file, FILE__LOCK);
3882}
3883
3884static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3885 unsigned long arg)
3886{
3887 const struct cred *cred = current_cred();
3888 int err = 0;
3889
3890 switch (cmd) {
3891 case F_SETFL:
3892 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3893 err = file_has_perm(cred, file, FILE__WRITE);
3894 break;
3895 }
3896 fallthrough;
3897 case F_SETOWN:
3898 case F_SETSIG:
3899 case F_GETFL:
3900 case F_GETOWN:
3901 case F_GETSIG:
3902 case F_GETOWNER_UIDS:
3903 /* Just check FD__USE permission */
3904 err = file_has_perm(cred, file, 0);
3905 break;
3906 case F_GETLK:
3907 case F_SETLK:
3908 case F_SETLKW:
3909 case F_OFD_GETLK:
3910 case F_OFD_SETLK:
3911 case F_OFD_SETLKW:
3912#if BITS_PER_LONG == 32
3913 case F_GETLK64:
3914 case F_SETLK64:
3915 case F_SETLKW64:
3916#endif
3917 err = file_has_perm(cred, file, FILE__LOCK);
3918 break;
3919 }
3920
3921 return err;
3922}
3923
3924static void selinux_file_set_fowner(struct file *file)
3925{
3926 struct file_security_struct *fsec;
3927
3928 fsec = selinux_file(file);
3929 fsec->fown_sid = current_sid();
3930}
3931
3932static int selinux_file_send_sigiotask(struct task_struct *tsk,
3933 struct fown_struct *fown, int signum)
3934{
3935 struct file *file;
3936 u32 sid = task_sid_obj(tsk);
3937 u32 perm;
3938 struct file_security_struct *fsec;
3939
3940 /* struct fown_struct is never outside the context of a struct file */
3941 file = container_of(fown, struct file, f_owner);
3942
3943 fsec = selinux_file(file);
3944
3945 if (!signum)
3946 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3947 else
3948 perm = signal_to_av(signum);
3949
3950 return avc_has_perm(fsec->fown_sid, sid,
3951 SECCLASS_PROCESS, perm, NULL);
3952}
3953
3954static int selinux_file_receive(struct file *file)
3955{
3956 const struct cred *cred = current_cred();
3957
3958 return file_has_perm(cred, file, file_to_av(file));
3959}
3960
3961static int selinux_file_open(struct file *file)
3962{
3963 struct file_security_struct *fsec;
3964 struct inode_security_struct *isec;
3965
3966 fsec = selinux_file(file);
3967 isec = inode_security(file_inode(file));
3968 /*
3969 * Save inode label and policy sequence number
3970 * at open-time so that selinux_file_permission
3971 * can determine whether revalidation is necessary.
3972 * Task label is already saved in the file security
3973 * struct as its SID.
3974 */
3975 fsec->isid = isec->sid;
3976 fsec->pseqno = avc_policy_seqno();
3977 /*
3978 * Since the inode label or policy seqno may have changed
3979 * between the selinux_inode_permission check and the saving
3980 * of state above, recheck that access is still permitted.
3981 * Otherwise, access might never be revalidated against the
3982 * new inode label or new policy.
3983 * This check is not redundant - do not remove.
3984 */
3985 return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3986}
3987
3988/* task security operations */
3989
3990static int selinux_task_alloc(struct task_struct *task,
3991 unsigned long clone_flags)
3992{
3993 u32 sid = current_sid();
3994
3995 return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3996}
3997
3998/*
3999 * prepare a new set of credentials for modification
4000 */
4001static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4002 gfp_t gfp)
4003{
4004 const struct task_security_struct *old_tsec = selinux_cred(old);
4005 struct task_security_struct *tsec = selinux_cred(new);
4006
4007 *tsec = *old_tsec;
4008 return 0;
4009}
4010
4011/*
4012 * transfer the SELinux data to a blank set of creds
4013 */
4014static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4015{
4016 const struct task_security_struct *old_tsec = selinux_cred(old);
4017 struct task_security_struct *tsec = selinux_cred(new);
4018
4019 *tsec = *old_tsec;
4020}
4021
4022static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4023{
4024 *secid = cred_sid(c);
4025}
4026
4027/*
4028 * set the security data for a kernel service
4029 * - all the creation contexts are set to unlabelled
4030 */
4031static int selinux_kernel_act_as(struct cred *new, u32 secid)
4032{
4033 struct task_security_struct *tsec = selinux_cred(new);
4034 u32 sid = current_sid();
4035 int ret;
4036
4037 ret = avc_has_perm(sid, secid,
4038 SECCLASS_KERNEL_SERVICE,
4039 KERNEL_SERVICE__USE_AS_OVERRIDE,
4040 NULL);
4041 if (ret == 0) {
4042 tsec->sid = secid;
4043 tsec->create_sid = 0;
4044 tsec->keycreate_sid = 0;
4045 tsec->sockcreate_sid = 0;
4046 }
4047 return ret;
4048}
4049
4050/*
4051 * set the file creation context in a security record to the same as the
4052 * objective context of the specified inode
4053 */
4054static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4055{
4056 struct inode_security_struct *isec = inode_security(inode);
4057 struct task_security_struct *tsec = selinux_cred(new);
4058 u32 sid = current_sid();
4059 int ret;
4060
4061 ret = avc_has_perm(sid, isec->sid,
4062 SECCLASS_KERNEL_SERVICE,
4063 KERNEL_SERVICE__CREATE_FILES_AS,
4064 NULL);
4065
4066 if (ret == 0)
4067 tsec->create_sid = isec->sid;
4068 return ret;
4069}
4070
4071static int selinux_kernel_module_request(char *kmod_name)
4072{
4073 struct common_audit_data ad;
4074
4075 ad.type = LSM_AUDIT_DATA_KMOD;
4076 ad.u.kmod_name = kmod_name;
4077
4078 return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4079 SYSTEM__MODULE_REQUEST, &ad);
4080}
4081
4082static int selinux_kernel_module_from_file(struct file *file)
4083{
4084 struct common_audit_data ad;
4085 struct inode_security_struct *isec;
4086 struct file_security_struct *fsec;
4087 u32 sid = current_sid();
4088 int rc;
4089
4090 /* init_module */
4091 if (file == NULL)
4092 return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
4093 SYSTEM__MODULE_LOAD, NULL);
4094
4095 /* finit_module */
4096
4097 ad.type = LSM_AUDIT_DATA_FILE;
4098 ad.u.file = file;
4099
4100 fsec = selinux_file(file);
4101 if (sid != fsec->sid) {
4102 rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4103 if (rc)
4104 return rc;
4105 }
4106
4107 isec = inode_security(file_inode(file));
4108 return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
4109 SYSTEM__MODULE_LOAD, &ad);
4110}
4111
4112static int selinux_kernel_read_file(struct file *file,
4113 enum kernel_read_file_id id,
4114 bool contents)
4115{
4116 int rc = 0;
4117
4118 switch (id) {
4119 case READING_MODULE:
4120 rc = selinux_kernel_module_from_file(contents ? file : NULL);
4121 break;
4122 default:
4123 break;
4124 }
4125
4126 return rc;
4127}
4128
4129static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4130{
4131 int rc = 0;
4132
4133 switch (id) {
4134 case LOADING_MODULE:
4135 rc = selinux_kernel_module_from_file(NULL);
4136 break;
4137 default:
4138 break;
4139 }
4140
4141 return rc;
4142}
4143
4144static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4145{
4146 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4147 PROCESS__SETPGID, NULL);
4148}
4149
4150static int selinux_task_getpgid(struct task_struct *p)
4151{
4152 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4153 PROCESS__GETPGID, NULL);
4154}
4155
4156static int selinux_task_getsid(struct task_struct *p)
4157{
4158 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4159 PROCESS__GETSESSION, NULL);
4160}
4161
4162static void selinux_current_getsecid_subj(u32 *secid)
4163{
4164 *secid = current_sid();
4165}
4166
4167static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4168{
4169 *secid = task_sid_obj(p);
4170}
4171
4172static int selinux_task_setnice(struct task_struct *p, int nice)
4173{
4174 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4175 PROCESS__SETSCHED, NULL);
4176}
4177
4178static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4179{
4180 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4181 PROCESS__SETSCHED, NULL);
4182}
4183
4184static int selinux_task_getioprio(struct task_struct *p)
4185{
4186 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4187 PROCESS__GETSCHED, NULL);
4188}
4189
4190static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4191 unsigned int flags)
4192{
4193 u32 av = 0;
4194
4195 if (!flags)
4196 return 0;
4197 if (flags & LSM_PRLIMIT_WRITE)
4198 av |= PROCESS__SETRLIMIT;
4199 if (flags & LSM_PRLIMIT_READ)
4200 av |= PROCESS__GETRLIMIT;
4201 return avc_has_perm(cred_sid(cred), cred_sid(tcred),
4202 SECCLASS_PROCESS, av, NULL);
4203}
4204
4205static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4206 struct rlimit *new_rlim)
4207{
4208 struct rlimit *old_rlim = p->signal->rlim + resource;
4209
4210 /* Control the ability to change the hard limit (whether
4211 lowering or raising it), so that the hard limit can
4212 later be used as a safe reset point for the soft limit
4213 upon context transitions. See selinux_bprm_committing_creds. */
4214 if (old_rlim->rlim_max != new_rlim->rlim_max)
4215 return avc_has_perm(current_sid(), task_sid_obj(p),
4216 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4217
4218 return 0;
4219}
4220
4221static int selinux_task_setscheduler(struct task_struct *p)
4222{
4223 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4224 PROCESS__SETSCHED, NULL);
4225}
4226
4227static int selinux_task_getscheduler(struct task_struct *p)
4228{
4229 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4230 PROCESS__GETSCHED, NULL);
4231}
4232
4233static int selinux_task_movememory(struct task_struct *p)
4234{
4235 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4236 PROCESS__SETSCHED, NULL);
4237}
4238
4239static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4240 int sig, const struct cred *cred)
4241{
4242 u32 secid;
4243 u32 perm;
4244
4245 if (!sig)
4246 perm = PROCESS__SIGNULL; /* null signal; existence test */
4247 else
4248 perm = signal_to_av(sig);
4249 if (!cred)
4250 secid = current_sid();
4251 else
4252 secid = cred_sid(cred);
4253 return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4254}
4255
4256static void selinux_task_to_inode(struct task_struct *p,
4257 struct inode *inode)
4258{
4259 struct inode_security_struct *isec = selinux_inode(inode);
4260 u32 sid = task_sid_obj(p);
4261
4262 spin_lock(&isec->lock);
4263 isec->sclass = inode_mode_to_security_class(inode->i_mode);
4264 isec->sid = sid;
4265 isec->initialized = LABEL_INITIALIZED;
4266 spin_unlock(&isec->lock);
4267}
4268
4269static int selinux_userns_create(const struct cred *cred)
4270{
4271 u32 sid = current_sid();
4272
4273 return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE,
4274 USER_NAMESPACE__CREATE, NULL);
4275}
4276
4277/* Returns error only if unable to parse addresses */
4278static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4279 struct common_audit_data *ad, u8 *proto)
4280{
4281 int offset, ihlen, ret = -EINVAL;
4282 struct iphdr _iph, *ih;
4283
4284 offset = skb_network_offset(skb);
4285 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4286 if (ih == NULL)
4287 goto out;
4288
4289 ihlen = ih->ihl * 4;
4290 if (ihlen < sizeof(_iph))
4291 goto out;
4292
4293 ad->u.net->v4info.saddr = ih->saddr;
4294 ad->u.net->v4info.daddr = ih->daddr;
4295 ret = 0;
4296
4297 if (proto)
4298 *proto = ih->protocol;
4299
4300 switch (ih->protocol) {
4301 case IPPROTO_TCP: {
4302 struct tcphdr _tcph, *th;
4303
4304 if (ntohs(ih->frag_off) & IP_OFFSET)
4305 break;
4306
4307 offset += ihlen;
4308 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4309 if (th == NULL)
4310 break;
4311
4312 ad->u.net->sport = th->source;
4313 ad->u.net->dport = th->dest;
4314 break;
4315 }
4316
4317 case IPPROTO_UDP: {
4318 struct udphdr _udph, *uh;
4319
4320 if (ntohs(ih->frag_off) & IP_OFFSET)
4321 break;
4322
4323 offset += ihlen;
4324 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4325 if (uh == NULL)
4326 break;
4327
4328 ad->u.net->sport = uh->source;
4329 ad->u.net->dport = uh->dest;
4330 break;
4331 }
4332
4333 case IPPROTO_DCCP: {
4334 struct dccp_hdr _dccph, *dh;
4335
4336 if (ntohs(ih->frag_off) & IP_OFFSET)
4337 break;
4338
4339 offset += ihlen;
4340 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4341 if (dh == NULL)
4342 break;
4343
4344 ad->u.net->sport = dh->dccph_sport;
4345 ad->u.net->dport = dh->dccph_dport;
4346 break;
4347 }
4348
4349#if IS_ENABLED(CONFIG_IP_SCTP)
4350 case IPPROTO_SCTP: {
4351 struct sctphdr _sctph, *sh;
4352
4353 if (ntohs(ih->frag_off) & IP_OFFSET)
4354 break;
4355
4356 offset += ihlen;
4357 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4358 if (sh == NULL)
4359 break;
4360
4361 ad->u.net->sport = sh->source;
4362 ad->u.net->dport = sh->dest;
4363 break;
4364 }
4365#endif
4366 default:
4367 break;
4368 }
4369out:
4370 return ret;
4371}
4372
4373#if IS_ENABLED(CONFIG_IPV6)
4374
4375/* Returns error only if unable to parse addresses */
4376static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4377 struct common_audit_data *ad, u8 *proto)
4378{
4379 u8 nexthdr;
4380 int ret = -EINVAL, offset;
4381 struct ipv6hdr _ipv6h, *ip6;
4382 __be16 frag_off;
4383
4384 offset = skb_network_offset(skb);
4385 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4386 if (ip6 == NULL)
4387 goto out;
4388
4389 ad->u.net->v6info.saddr = ip6->saddr;
4390 ad->u.net->v6info.daddr = ip6->daddr;
4391 ret = 0;
4392
4393 nexthdr = ip6->nexthdr;
4394 offset += sizeof(_ipv6h);
4395 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4396 if (offset < 0)
4397 goto out;
4398
4399 if (proto)
4400 *proto = nexthdr;
4401
4402 switch (nexthdr) {
4403 case IPPROTO_TCP: {
4404 struct tcphdr _tcph, *th;
4405
4406 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4407 if (th == NULL)
4408 break;
4409
4410 ad->u.net->sport = th->source;
4411 ad->u.net->dport = th->dest;
4412 break;
4413 }
4414
4415 case IPPROTO_UDP: {
4416 struct udphdr _udph, *uh;
4417
4418 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4419 if (uh == NULL)
4420 break;
4421
4422 ad->u.net->sport = uh->source;
4423 ad->u.net->dport = uh->dest;
4424 break;
4425 }
4426
4427 case IPPROTO_DCCP: {
4428 struct dccp_hdr _dccph, *dh;
4429
4430 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4431 if (dh == NULL)
4432 break;
4433
4434 ad->u.net->sport = dh->dccph_sport;
4435 ad->u.net->dport = dh->dccph_dport;
4436 break;
4437 }
4438
4439#if IS_ENABLED(CONFIG_IP_SCTP)
4440 case IPPROTO_SCTP: {
4441 struct sctphdr _sctph, *sh;
4442
4443 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4444 if (sh == NULL)
4445 break;
4446
4447 ad->u.net->sport = sh->source;
4448 ad->u.net->dport = sh->dest;
4449 break;
4450 }
4451#endif
4452 /* includes fragments */
4453 default:
4454 break;
4455 }
4456out:
4457 return ret;
4458}
4459
4460#endif /* IPV6 */
4461
4462static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4463 char **_addrp, int src, u8 *proto)
4464{
4465 char *addrp;
4466 int ret;
4467
4468 switch (ad->u.net->family) {
4469 case PF_INET:
4470 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4471 if (ret)
4472 goto parse_error;
4473 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4474 &ad->u.net->v4info.daddr);
4475 goto okay;
4476
4477#if IS_ENABLED(CONFIG_IPV6)
4478 case PF_INET6:
4479 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4480 if (ret)
4481 goto parse_error;
4482 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4483 &ad->u.net->v6info.daddr);
4484 goto okay;
4485#endif /* IPV6 */
4486 default:
4487 addrp = NULL;
4488 goto okay;
4489 }
4490
4491parse_error:
4492 pr_warn(
4493 "SELinux: failure in selinux_parse_skb(),"
4494 " unable to parse packet\n");
4495 return ret;
4496
4497okay:
4498 if (_addrp)
4499 *_addrp = addrp;
4500 return 0;
4501}
4502
4503/**
4504 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4505 * @skb: the packet
4506 * @family: protocol family
4507 * @sid: the packet's peer label SID
4508 *
4509 * Description:
4510 * Check the various different forms of network peer labeling and determine
4511 * the peer label/SID for the packet; most of the magic actually occurs in
4512 * the security server function security_net_peersid_cmp(). The function
4513 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4514 * or -EACCES if @sid is invalid due to inconsistencies with the different
4515 * peer labels.
4516 *
4517 */
4518static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4519{
4520 int err;
4521 u32 xfrm_sid;
4522 u32 nlbl_sid;
4523 u32 nlbl_type;
4524
4525 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4526 if (unlikely(err))
4527 return -EACCES;
4528 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4529 if (unlikely(err))
4530 return -EACCES;
4531
4532 err = security_net_peersid_resolve(nlbl_sid,
4533 nlbl_type, xfrm_sid, sid);
4534 if (unlikely(err)) {
4535 pr_warn(
4536 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4537 " unable to determine packet's peer label\n");
4538 return -EACCES;
4539 }
4540
4541 return 0;
4542}
4543
4544/**
4545 * selinux_conn_sid - Determine the child socket label for a connection
4546 * @sk_sid: the parent socket's SID
4547 * @skb_sid: the packet's SID
4548 * @conn_sid: the resulting connection SID
4549 *
4550 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4551 * combined with the MLS information from @skb_sid in order to create
4552 * @conn_sid. If @skb_sid is not valid then @conn_sid is simply a copy
4553 * of @sk_sid. Returns zero on success, negative values on failure.
4554 *
4555 */
4556static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4557{
4558 int err = 0;
4559
4560 if (skb_sid != SECSID_NULL)
4561 err = security_sid_mls_copy(sk_sid, skb_sid,
4562 conn_sid);
4563 else
4564 *conn_sid = sk_sid;
4565
4566 return err;
4567}
4568
4569/* socket security operations */
4570
4571static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4572 u16 secclass, u32 *socksid)
4573{
4574 if (tsec->sockcreate_sid > SECSID_NULL) {
4575 *socksid = tsec->sockcreate_sid;
4576 return 0;
4577 }
4578
4579 return security_transition_sid(tsec->sid, tsec->sid,
4580 secclass, NULL, socksid);
4581}
4582
4583static int sock_has_perm(struct sock *sk, u32 perms)
4584{
4585 struct sk_security_struct *sksec = sk->sk_security;
4586 struct common_audit_data ad;
4587 struct lsm_network_audit net;
4588
4589 if (sksec->sid == SECINITSID_KERNEL)
4590 return 0;
4591
4592 /*
4593 * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that
4594 * inherited the kernel context from early boot used to be skipped
4595 * here, so preserve that behavior unless the capability is set.
4596 *
4597 * By setting the capability the policy signals that it is ready
4598 * for this quirk to be fixed. Note that sockets created by a kernel
4599 * thread or a usermode helper executed without a transition will
4600 * still be skipped in this check regardless of the policycap
4601 * setting.
4602 */
4603 if (!selinux_policycap_userspace_initial_context() &&
4604 sksec->sid == SECINITSID_INIT)
4605 return 0;
4606
4607 ad_net_init_from_sk(&ad, &net, sk);
4608
4609 return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
4610 &ad);
4611}
4612
4613static int selinux_socket_create(int family, int type,
4614 int protocol, int kern)
4615{
4616 const struct task_security_struct *tsec = selinux_cred(current_cred());
4617 u32 newsid;
4618 u16 secclass;
4619 int rc;
4620
4621 if (kern)
4622 return 0;
4623
4624 secclass = socket_type_to_security_class(family, type, protocol);
4625 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4626 if (rc)
4627 return rc;
4628
4629 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4630}
4631
4632static int selinux_socket_post_create(struct socket *sock, int family,
4633 int type, int protocol, int kern)
4634{
4635 const struct task_security_struct *tsec = selinux_cred(current_cred());
4636 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4637 struct sk_security_struct *sksec;
4638 u16 sclass = socket_type_to_security_class(family, type, protocol);
4639 u32 sid = SECINITSID_KERNEL;
4640 int err = 0;
4641
4642 if (!kern) {
4643 err = socket_sockcreate_sid(tsec, sclass, &sid);
4644 if (err)
4645 return err;
4646 }
4647
4648 isec->sclass = sclass;
4649 isec->sid = sid;
4650 isec->initialized = LABEL_INITIALIZED;
4651
4652 if (sock->sk) {
4653 sksec = sock->sk->sk_security;
4654 sksec->sclass = sclass;
4655 sksec->sid = sid;
4656 /* Allows detection of the first association on this socket */
4657 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4658 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4659
4660 err = selinux_netlbl_socket_post_create(sock->sk, family);
4661 }
4662
4663 return err;
4664}
4665
4666static int selinux_socket_socketpair(struct socket *socka,
4667 struct socket *sockb)
4668{
4669 struct sk_security_struct *sksec_a = socka->sk->sk_security;
4670 struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4671
4672 sksec_a->peer_sid = sksec_b->sid;
4673 sksec_b->peer_sid = sksec_a->sid;
4674
4675 return 0;
4676}
4677
4678/* Range of port numbers used to automatically bind.
4679 Need to determine whether we should perform a name_bind
4680 permission check between the socket and the port number. */
4681
4682static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4683{
4684 struct sock *sk = sock->sk;
4685 struct sk_security_struct *sksec = sk->sk_security;
4686 u16 family;
4687 int err;
4688
4689 err = sock_has_perm(sk, SOCKET__BIND);
4690 if (err)
4691 goto out;
4692
4693 /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4694 family = sk->sk_family;
4695 if (family == PF_INET || family == PF_INET6) {
4696 char *addrp;
4697 struct common_audit_data ad;
4698 struct lsm_network_audit net = {0,};
4699 struct sockaddr_in *addr4 = NULL;
4700 struct sockaddr_in6 *addr6 = NULL;
4701 u16 family_sa;
4702 unsigned short snum;
4703 u32 sid, node_perm;
4704
4705 /*
4706 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4707 * that validates multiple binding addresses. Because of this
4708 * need to check address->sa_family as it is possible to have
4709 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4710 */
4711 if (addrlen < offsetofend(struct sockaddr, sa_family))
4712 return -EINVAL;
4713 family_sa = address->sa_family;
4714 switch (family_sa) {
4715 case AF_UNSPEC:
4716 case AF_INET:
4717 if (addrlen < sizeof(struct sockaddr_in))
4718 return -EINVAL;
4719 addr4 = (struct sockaddr_in *)address;
4720 if (family_sa == AF_UNSPEC) {
4721 if (family == PF_INET6) {
4722 /* Length check from inet6_bind_sk() */
4723 if (addrlen < SIN6_LEN_RFC2133)
4724 return -EINVAL;
4725 /* Family check from __inet6_bind() */
4726 goto err_af;
4727 }
4728 /* see __inet_bind(), we only want to allow
4729 * AF_UNSPEC if the address is INADDR_ANY
4730 */
4731 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4732 goto err_af;
4733 family_sa = AF_INET;
4734 }
4735 snum = ntohs(addr4->sin_port);
4736 addrp = (char *)&addr4->sin_addr.s_addr;
4737 break;
4738 case AF_INET6:
4739 if (addrlen < SIN6_LEN_RFC2133)
4740 return -EINVAL;
4741 addr6 = (struct sockaddr_in6 *)address;
4742 snum = ntohs(addr6->sin6_port);
4743 addrp = (char *)&addr6->sin6_addr.s6_addr;
4744 break;
4745 default:
4746 goto err_af;
4747 }
4748
4749 ad.type = LSM_AUDIT_DATA_NET;
4750 ad.u.net = &net;
4751 ad.u.net->sport = htons(snum);
4752 ad.u.net->family = family_sa;
4753
4754 if (snum) {
4755 int low, high;
4756
4757 inet_get_local_port_range(sock_net(sk), &low, &high);
4758
4759 if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4760 snum < low || snum > high) {
4761 err = sel_netport_sid(sk->sk_protocol,
4762 snum, &sid);
4763 if (err)
4764 goto out;
4765 err = avc_has_perm(sksec->sid, sid,
4766 sksec->sclass,
4767 SOCKET__NAME_BIND, &ad);
4768 if (err)
4769 goto out;
4770 }
4771 }
4772
4773 switch (sksec->sclass) {
4774 case SECCLASS_TCP_SOCKET:
4775 node_perm = TCP_SOCKET__NODE_BIND;
4776 break;
4777
4778 case SECCLASS_UDP_SOCKET:
4779 node_perm = UDP_SOCKET__NODE_BIND;
4780 break;
4781
4782 case SECCLASS_DCCP_SOCKET:
4783 node_perm = DCCP_SOCKET__NODE_BIND;
4784 break;
4785
4786 case SECCLASS_SCTP_SOCKET:
4787 node_perm = SCTP_SOCKET__NODE_BIND;
4788 break;
4789
4790 default:
4791 node_perm = RAWIP_SOCKET__NODE_BIND;
4792 break;
4793 }
4794
4795 err = sel_netnode_sid(addrp, family_sa, &sid);
4796 if (err)
4797 goto out;
4798
4799 if (family_sa == AF_INET)
4800 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4801 else
4802 ad.u.net->v6info.saddr = addr6->sin6_addr;
4803
4804 err = avc_has_perm(sksec->sid, sid,
4805 sksec->sclass, node_perm, &ad);
4806 if (err)
4807 goto out;
4808 }
4809out:
4810 return err;
4811err_af:
4812 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4813 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4814 return -EINVAL;
4815 return -EAFNOSUPPORT;
4816}
4817
4818/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4819 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4820 */
4821static int selinux_socket_connect_helper(struct socket *sock,
4822 struct sockaddr *address, int addrlen)
4823{
4824 struct sock *sk = sock->sk;
4825 struct sk_security_struct *sksec = sk->sk_security;
4826 int err;
4827
4828 err = sock_has_perm(sk, SOCKET__CONNECT);
4829 if (err)
4830 return err;
4831 if (addrlen < offsetofend(struct sockaddr, sa_family))
4832 return -EINVAL;
4833
4834 /* connect(AF_UNSPEC) has special handling, as it is a documented
4835 * way to disconnect the socket
4836 */
4837 if (address->sa_family == AF_UNSPEC)
4838 return 0;
4839
4840 /*
4841 * If a TCP, DCCP or SCTP socket, check name_connect permission
4842 * for the port.
4843 */
4844 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4845 sksec->sclass == SECCLASS_DCCP_SOCKET ||
4846 sksec->sclass == SECCLASS_SCTP_SOCKET) {
4847 struct common_audit_data ad;
4848 struct lsm_network_audit net = {0,};
4849 struct sockaddr_in *addr4 = NULL;
4850 struct sockaddr_in6 *addr6 = NULL;
4851 unsigned short snum;
4852 u32 sid, perm;
4853
4854 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4855 * that validates multiple connect addresses. Because of this
4856 * need to check address->sa_family as it is possible to have
4857 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4858 */
4859 switch (address->sa_family) {
4860 case AF_INET:
4861 addr4 = (struct sockaddr_in *)address;
4862 if (addrlen < sizeof(struct sockaddr_in))
4863 return -EINVAL;
4864 snum = ntohs(addr4->sin_port);
4865 break;
4866 case AF_INET6:
4867 addr6 = (struct sockaddr_in6 *)address;
4868 if (addrlen < SIN6_LEN_RFC2133)
4869 return -EINVAL;
4870 snum = ntohs(addr6->sin6_port);
4871 break;
4872 default:
4873 /* Note that SCTP services expect -EINVAL, whereas
4874 * others expect -EAFNOSUPPORT.
4875 */
4876 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4877 return -EINVAL;
4878 else
4879 return -EAFNOSUPPORT;
4880 }
4881
4882 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4883 if (err)
4884 return err;
4885
4886 switch (sksec->sclass) {
4887 case SECCLASS_TCP_SOCKET:
4888 perm = TCP_SOCKET__NAME_CONNECT;
4889 break;
4890 case SECCLASS_DCCP_SOCKET:
4891 perm = DCCP_SOCKET__NAME_CONNECT;
4892 break;
4893 case SECCLASS_SCTP_SOCKET:
4894 perm = SCTP_SOCKET__NAME_CONNECT;
4895 break;
4896 }
4897
4898 ad.type = LSM_AUDIT_DATA_NET;
4899 ad.u.net = &net;
4900 ad.u.net->dport = htons(snum);
4901 ad.u.net->family = address->sa_family;
4902 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4903 if (err)
4904 return err;
4905 }
4906
4907 return 0;
4908}
4909
4910/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4911static int selinux_socket_connect(struct socket *sock,
4912 struct sockaddr *address, int addrlen)
4913{
4914 int err;
4915 struct sock *sk = sock->sk;
4916
4917 err = selinux_socket_connect_helper(sock, address, addrlen);
4918 if (err)
4919 return err;
4920
4921 return selinux_netlbl_socket_connect(sk, address);
4922}
4923
4924static int selinux_socket_listen(struct socket *sock, int backlog)
4925{
4926 return sock_has_perm(sock->sk, SOCKET__LISTEN);
4927}
4928
4929static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4930{
4931 int err;
4932 struct inode_security_struct *isec;
4933 struct inode_security_struct *newisec;
4934 u16 sclass;
4935 u32 sid;
4936
4937 err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4938 if (err)
4939 return err;
4940
4941 isec = inode_security_novalidate(SOCK_INODE(sock));
4942 spin_lock(&isec->lock);
4943 sclass = isec->sclass;
4944 sid = isec->sid;
4945 spin_unlock(&isec->lock);
4946
4947 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4948 newisec->sclass = sclass;
4949 newisec->sid = sid;
4950 newisec->initialized = LABEL_INITIALIZED;
4951
4952 return 0;
4953}
4954
4955static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4956 int size)
4957{
4958 return sock_has_perm(sock->sk, SOCKET__WRITE);
4959}
4960
4961static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4962 int size, int flags)
4963{
4964 return sock_has_perm(sock->sk, SOCKET__READ);
4965}
4966
4967static int selinux_socket_getsockname(struct socket *sock)
4968{
4969 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4970}
4971
4972static int selinux_socket_getpeername(struct socket *sock)
4973{
4974 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4975}
4976
4977static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4978{
4979 int err;
4980
4981 err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4982 if (err)
4983 return err;
4984
4985 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4986}
4987
4988static int selinux_socket_getsockopt(struct socket *sock, int level,
4989 int optname)
4990{
4991 return sock_has_perm(sock->sk, SOCKET__GETOPT);
4992}
4993
4994static int selinux_socket_shutdown(struct socket *sock, int how)
4995{
4996 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4997}
4998
4999static int selinux_socket_unix_stream_connect(struct sock *sock,
5000 struct sock *other,
5001 struct sock *newsk)
5002{
5003 struct sk_security_struct *sksec_sock = sock->sk_security;
5004 struct sk_security_struct *sksec_other = other->sk_security;
5005 struct sk_security_struct *sksec_new = newsk->sk_security;
5006 struct common_audit_data ad;
5007 struct lsm_network_audit net;
5008 int err;
5009
5010 ad_net_init_from_sk(&ad, &net, other);
5011
5012 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
5013 sksec_other->sclass,
5014 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5015 if (err)
5016 return err;
5017
5018 /* server child socket */
5019 sksec_new->peer_sid = sksec_sock->sid;
5020 err = security_sid_mls_copy(sksec_other->sid,
5021 sksec_sock->sid, &sksec_new->sid);
5022 if (err)
5023 return err;
5024
5025 /* connecting socket */
5026 sksec_sock->peer_sid = sksec_new->sid;
5027
5028 return 0;
5029}
5030
5031static int selinux_socket_unix_may_send(struct socket *sock,
5032 struct socket *other)
5033{
5034 struct sk_security_struct *ssec = sock->sk->sk_security;
5035 struct sk_security_struct *osec = other->sk->sk_security;
5036 struct common_audit_data ad;
5037 struct lsm_network_audit net;
5038
5039 ad_net_init_from_sk(&ad, &net, other->sk);
5040
5041 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5042 &ad);
5043}
5044
5045static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5046 char *addrp, u16 family, u32 peer_sid,
5047 struct common_audit_data *ad)
5048{
5049 int err;
5050 u32 if_sid;
5051 u32 node_sid;
5052
5053 err = sel_netif_sid(ns, ifindex, &if_sid);
5054 if (err)
5055 return err;
5056 err = avc_has_perm(peer_sid, if_sid,
5057 SECCLASS_NETIF, NETIF__INGRESS, ad);
5058 if (err)
5059 return err;
5060
5061 err = sel_netnode_sid(addrp, family, &node_sid);
5062 if (err)
5063 return err;
5064 return avc_has_perm(peer_sid, node_sid,
5065 SECCLASS_NODE, NODE__RECVFROM, ad);
5066}
5067
5068static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5069 u16 family)
5070{
5071 int err = 0;
5072 struct sk_security_struct *sksec = sk->sk_security;
5073 u32 sk_sid = sksec->sid;
5074 struct common_audit_data ad;
5075 struct lsm_network_audit net;
5076 char *addrp;
5077
5078 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5079 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5080 if (err)
5081 return err;
5082
5083 if (selinux_secmark_enabled()) {
5084 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5085 PACKET__RECV, &ad);
5086 if (err)
5087 return err;
5088 }
5089
5090 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5091 if (err)
5092 return err;
5093 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5094
5095 return err;
5096}
5097
5098static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5099{
5100 int err, peerlbl_active, secmark_active;
5101 struct sk_security_struct *sksec = sk->sk_security;
5102 u16 family = sk->sk_family;
5103 u32 sk_sid = sksec->sid;
5104 struct common_audit_data ad;
5105 struct lsm_network_audit net;
5106 char *addrp;
5107
5108 if (family != PF_INET && family != PF_INET6)
5109 return 0;
5110
5111 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5112 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5113 family = PF_INET;
5114
5115 /* If any sort of compatibility mode is enabled then handoff processing
5116 * to the selinux_sock_rcv_skb_compat() function to deal with the
5117 * special handling. We do this in an attempt to keep this function
5118 * as fast and as clean as possible. */
5119 if (!selinux_policycap_netpeer())
5120 return selinux_sock_rcv_skb_compat(sk, skb, family);
5121
5122 secmark_active = selinux_secmark_enabled();
5123 peerlbl_active = selinux_peerlbl_enabled();
5124 if (!secmark_active && !peerlbl_active)
5125 return 0;
5126
5127 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5128 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5129 if (err)
5130 return err;
5131
5132 if (peerlbl_active) {
5133 u32 peer_sid;
5134
5135 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5136 if (err)
5137 return err;
5138 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5139 addrp, family, peer_sid, &ad);
5140 if (err) {
5141 selinux_netlbl_err(skb, family, err, 0);
5142 return err;
5143 }
5144 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
5145 PEER__RECV, &ad);
5146 if (err) {
5147 selinux_netlbl_err(skb, family, err, 0);
5148 return err;
5149 }
5150 }
5151
5152 if (secmark_active) {
5153 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5154 PACKET__RECV, &ad);
5155 if (err)
5156 return err;
5157 }
5158
5159 return err;
5160}
5161
5162static int selinux_socket_getpeersec_stream(struct socket *sock,
5163 sockptr_t optval, sockptr_t optlen,
5164 unsigned int len)
5165{
5166 int err = 0;
5167 char *scontext = NULL;
5168 u32 scontext_len;
5169 struct sk_security_struct *sksec = sock->sk->sk_security;
5170 u32 peer_sid = SECSID_NULL;
5171
5172 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5173 sksec->sclass == SECCLASS_TCP_SOCKET ||
5174 sksec->sclass == SECCLASS_SCTP_SOCKET)
5175 peer_sid = sksec->peer_sid;
5176 if (peer_sid == SECSID_NULL)
5177 return -ENOPROTOOPT;
5178
5179 err = security_sid_to_context(peer_sid, &scontext,
5180 &scontext_len);
5181 if (err)
5182 return err;
5183 if (scontext_len > len) {
5184 err = -ERANGE;
5185 goto out_len;
5186 }
5187
5188 if (copy_to_sockptr(optval, scontext, scontext_len))
5189 err = -EFAULT;
5190out_len:
5191 if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5192 err = -EFAULT;
5193 kfree(scontext);
5194 return err;
5195}
5196
5197static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5198{
5199 u32 peer_secid = SECSID_NULL;
5200 u16 family;
5201 struct inode_security_struct *isec;
5202
5203 if (skb && skb->protocol == htons(ETH_P_IP))
5204 family = PF_INET;
5205 else if (skb && skb->protocol == htons(ETH_P_IPV6))
5206 family = PF_INET6;
5207 else if (sock)
5208 family = sock->sk->sk_family;
5209 else
5210 goto out;
5211
5212 if (sock && family == PF_UNIX) {
5213 isec = inode_security_novalidate(SOCK_INODE(sock));
5214 peer_secid = isec->sid;
5215 } else if (skb)
5216 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5217
5218out:
5219 *secid = peer_secid;
5220 if (peer_secid == SECSID_NULL)
5221 return -EINVAL;
5222 return 0;
5223}
5224
5225static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5226{
5227 struct sk_security_struct *sksec;
5228
5229 sksec = kzalloc(sizeof(*sksec), priority);
5230 if (!sksec)
5231 return -ENOMEM;
5232
5233 sksec->peer_sid = SECINITSID_UNLABELED;
5234 sksec->sid = SECINITSID_UNLABELED;
5235 sksec->sclass = SECCLASS_SOCKET;
5236 selinux_netlbl_sk_security_reset(sksec);
5237 sk->sk_security = sksec;
5238
5239 return 0;
5240}
5241
5242static void selinux_sk_free_security(struct sock *sk)
5243{
5244 struct sk_security_struct *sksec = sk->sk_security;
5245
5246 sk->sk_security = NULL;
5247 selinux_netlbl_sk_security_free(sksec);
5248 kfree(sksec);
5249}
5250
5251static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5252{
5253 struct sk_security_struct *sksec = sk->sk_security;
5254 struct sk_security_struct *newsksec = newsk->sk_security;
5255
5256 newsksec->sid = sksec->sid;
5257 newsksec->peer_sid = sksec->peer_sid;
5258 newsksec->sclass = sksec->sclass;
5259
5260 selinux_netlbl_sk_security_reset(newsksec);
5261}
5262
5263static void selinux_sk_getsecid(const struct sock *sk, u32 *secid)
5264{
5265 if (!sk)
5266 *secid = SECINITSID_ANY_SOCKET;
5267 else {
5268 const struct sk_security_struct *sksec = sk->sk_security;
5269
5270 *secid = sksec->sid;
5271 }
5272}
5273
5274static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5275{
5276 struct inode_security_struct *isec =
5277 inode_security_novalidate(SOCK_INODE(parent));
5278 struct sk_security_struct *sksec = sk->sk_security;
5279
5280 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5281 sk->sk_family == PF_UNIX)
5282 isec->sid = sksec->sid;
5283 sksec->sclass = isec->sclass;
5284}
5285
5286/*
5287 * Determines peer_secid for the asoc and updates socket's peer label
5288 * if it's the first association on the socket.
5289 */
5290static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5291 struct sk_buff *skb)
5292{
5293 struct sock *sk = asoc->base.sk;
5294 u16 family = sk->sk_family;
5295 struct sk_security_struct *sksec = sk->sk_security;
5296 struct common_audit_data ad;
5297 struct lsm_network_audit net;
5298 int err;
5299
5300 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5301 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5302 family = PF_INET;
5303
5304 if (selinux_peerlbl_enabled()) {
5305 asoc->peer_secid = SECSID_NULL;
5306
5307 /* This will return peer_sid = SECSID_NULL if there are
5308 * no peer labels, see security_net_peersid_resolve().
5309 */
5310 err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5311 if (err)
5312 return err;
5313
5314 if (asoc->peer_secid == SECSID_NULL)
5315 asoc->peer_secid = SECINITSID_UNLABELED;
5316 } else {
5317 asoc->peer_secid = SECINITSID_UNLABELED;
5318 }
5319
5320 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5321 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5322
5323 /* Here as first association on socket. As the peer SID
5324 * was allowed by peer recv (and the netif/node checks),
5325 * then it is approved by policy and used as the primary
5326 * peer SID for getpeercon(3).
5327 */
5328 sksec->peer_sid = asoc->peer_secid;
5329 } else if (sksec->peer_sid != asoc->peer_secid) {
5330 /* Other association peer SIDs are checked to enforce
5331 * consistency among the peer SIDs.
5332 */
5333 ad_net_init_from_sk(&ad, &net, asoc->base.sk);
5334 err = avc_has_perm(sksec->peer_sid, asoc->peer_secid,
5335 sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5336 &ad);
5337 if (err)
5338 return err;
5339 }
5340 return 0;
5341}
5342
5343/* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5344 * happens on an incoming connect(2), sctp_connectx(3) or
5345 * sctp_sendmsg(3) (with no association already present).
5346 */
5347static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5348 struct sk_buff *skb)
5349{
5350 struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5351 u32 conn_sid;
5352 int err;
5353
5354 if (!selinux_policycap_extsockclass())
5355 return 0;
5356
5357 err = selinux_sctp_process_new_assoc(asoc, skb);
5358 if (err)
5359 return err;
5360
5361 /* Compute the MLS component for the connection and store
5362 * the information in asoc. This will be used by SCTP TCP type
5363 * sockets and peeled off connections as they cause a new
5364 * socket to be generated. selinux_sctp_sk_clone() will then
5365 * plug this into the new socket.
5366 */
5367 err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5368 if (err)
5369 return err;
5370
5371 asoc->secid = conn_sid;
5372
5373 /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5374 return selinux_netlbl_sctp_assoc_request(asoc, skb);
5375}
5376
5377/* Called when SCTP receives a COOKIE ACK chunk as the final
5378 * response to an association request (initited by us).
5379 */
5380static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5381 struct sk_buff *skb)
5382{
5383 struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5384
5385 if (!selinux_policycap_extsockclass())
5386 return 0;
5387
5388 /* Inherit secid from the parent socket - this will be picked up
5389 * by selinux_sctp_sk_clone() if the association gets peeled off
5390 * into a new socket.
5391 */
5392 asoc->secid = sksec->sid;
5393
5394 return selinux_sctp_process_new_assoc(asoc, skb);
5395}
5396
5397/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5398 * based on their @optname.
5399 */
5400static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5401 struct sockaddr *address,
5402 int addrlen)
5403{
5404 int len, err = 0, walk_size = 0;
5405 void *addr_buf;
5406 struct sockaddr *addr;
5407 struct socket *sock;
5408
5409 if (!selinux_policycap_extsockclass())
5410 return 0;
5411
5412 /* Process one or more addresses that may be IPv4 or IPv6 */
5413 sock = sk->sk_socket;
5414 addr_buf = address;
5415
5416 while (walk_size < addrlen) {
5417 if (walk_size + sizeof(sa_family_t) > addrlen)
5418 return -EINVAL;
5419
5420 addr = addr_buf;
5421 switch (addr->sa_family) {
5422 case AF_UNSPEC:
5423 case AF_INET:
5424 len = sizeof(struct sockaddr_in);
5425 break;
5426 case AF_INET6:
5427 len = sizeof(struct sockaddr_in6);
5428 break;
5429 default:
5430 return -EINVAL;
5431 }
5432
5433 if (walk_size + len > addrlen)
5434 return -EINVAL;
5435
5436 err = -EINVAL;
5437 switch (optname) {
5438 /* Bind checks */
5439 case SCTP_PRIMARY_ADDR:
5440 case SCTP_SET_PEER_PRIMARY_ADDR:
5441 case SCTP_SOCKOPT_BINDX_ADD:
5442 err = selinux_socket_bind(sock, addr, len);
5443 break;
5444 /* Connect checks */
5445 case SCTP_SOCKOPT_CONNECTX:
5446 case SCTP_PARAM_SET_PRIMARY:
5447 case SCTP_PARAM_ADD_IP:
5448 case SCTP_SENDMSG_CONNECT:
5449 err = selinux_socket_connect_helper(sock, addr, len);
5450 if (err)
5451 return err;
5452
5453 /* As selinux_sctp_bind_connect() is called by the
5454 * SCTP protocol layer, the socket is already locked,
5455 * therefore selinux_netlbl_socket_connect_locked()
5456 * is called here. The situations handled are:
5457 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5458 * whenever a new IP address is added or when a new
5459 * primary address is selected.
5460 * Note that an SCTP connect(2) call happens before
5461 * the SCTP protocol layer and is handled via
5462 * selinux_socket_connect().
5463 */
5464 err = selinux_netlbl_socket_connect_locked(sk, addr);
5465 break;
5466 }
5467
5468 if (err)
5469 return err;
5470
5471 addr_buf += len;
5472 walk_size += len;
5473 }
5474
5475 return 0;
5476}
5477
5478/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5479static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5480 struct sock *newsk)
5481{
5482 struct sk_security_struct *sksec = sk->sk_security;
5483 struct sk_security_struct *newsksec = newsk->sk_security;
5484
5485 /* If policy does not support SECCLASS_SCTP_SOCKET then call
5486 * the non-sctp clone version.
5487 */
5488 if (!selinux_policycap_extsockclass())
5489 return selinux_sk_clone_security(sk, newsk);
5490
5491 newsksec->sid = asoc->secid;
5492 newsksec->peer_sid = asoc->peer_secid;
5493 newsksec->sclass = sksec->sclass;
5494 selinux_netlbl_sctp_sk_clone(sk, newsk);
5495}
5496
5497static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5498{
5499 struct sk_security_struct *ssksec = ssk->sk_security;
5500 struct sk_security_struct *sksec = sk->sk_security;
5501
5502 ssksec->sclass = sksec->sclass;
5503 ssksec->sid = sksec->sid;
5504
5505 /* replace the existing subflow label deleting the existing one
5506 * and re-recreating a new label using the updated context
5507 */
5508 selinux_netlbl_sk_security_free(ssksec);
5509 return selinux_netlbl_socket_post_create(ssk, ssk->sk_family);
5510}
5511
5512static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5513 struct request_sock *req)
5514{
5515 struct sk_security_struct *sksec = sk->sk_security;
5516 int err;
5517 u16 family = req->rsk_ops->family;
5518 u32 connsid;
5519 u32 peersid;
5520
5521 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5522 if (err)
5523 return err;
5524 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5525 if (err)
5526 return err;
5527 req->secid = connsid;
5528 req->peer_secid = peersid;
5529
5530 return selinux_netlbl_inet_conn_request(req, family);
5531}
5532
5533static void selinux_inet_csk_clone(struct sock *newsk,
5534 const struct request_sock *req)
5535{
5536 struct sk_security_struct *newsksec = newsk->sk_security;
5537
5538 newsksec->sid = req->secid;
5539 newsksec->peer_sid = req->peer_secid;
5540 /* NOTE: Ideally, we should also get the isec->sid for the
5541 new socket in sync, but we don't have the isec available yet.
5542 So we will wait until sock_graft to do it, by which
5543 time it will have been created and available. */
5544
5545 /* We don't need to take any sort of lock here as we are the only
5546 * thread with access to newsksec */
5547 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5548}
5549
5550static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5551{
5552 u16 family = sk->sk_family;
5553 struct sk_security_struct *sksec = sk->sk_security;
5554
5555 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5556 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5557 family = PF_INET;
5558
5559 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5560}
5561
5562static int selinux_secmark_relabel_packet(u32 sid)
5563{
5564 const struct task_security_struct *tsec;
5565 u32 tsid;
5566
5567 tsec = selinux_cred(current_cred());
5568 tsid = tsec->sid;
5569
5570 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5571 NULL);
5572}
5573
5574static void selinux_secmark_refcount_inc(void)
5575{
5576 atomic_inc(&selinux_secmark_refcount);
5577}
5578
5579static void selinux_secmark_refcount_dec(void)
5580{
5581 atomic_dec(&selinux_secmark_refcount);
5582}
5583
5584static void selinux_req_classify_flow(const struct request_sock *req,
5585 struct flowi_common *flic)
5586{
5587 flic->flowic_secid = req->secid;
5588}
5589
5590static int selinux_tun_dev_alloc_security(void **security)
5591{
5592 struct tun_security_struct *tunsec;
5593
5594 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5595 if (!tunsec)
5596 return -ENOMEM;
5597 tunsec->sid = current_sid();
5598
5599 *security = tunsec;
5600 return 0;
5601}
5602
5603static void selinux_tun_dev_free_security(void *security)
5604{
5605 kfree(security);
5606}
5607
5608static int selinux_tun_dev_create(void)
5609{
5610 u32 sid = current_sid();
5611
5612 /* we aren't taking into account the "sockcreate" SID since the socket
5613 * that is being created here is not a socket in the traditional sense,
5614 * instead it is a private sock, accessible only to the kernel, and
5615 * representing a wide range of network traffic spanning multiple
5616 * connections unlike traditional sockets - check the TUN driver to
5617 * get a better understanding of why this socket is special */
5618
5619 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5620 NULL);
5621}
5622
5623static int selinux_tun_dev_attach_queue(void *security)
5624{
5625 struct tun_security_struct *tunsec = security;
5626
5627 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5628 TUN_SOCKET__ATTACH_QUEUE, NULL);
5629}
5630
5631static int selinux_tun_dev_attach(struct sock *sk, void *security)
5632{
5633 struct tun_security_struct *tunsec = security;
5634 struct sk_security_struct *sksec = sk->sk_security;
5635
5636 /* we don't currently perform any NetLabel based labeling here and it
5637 * isn't clear that we would want to do so anyway; while we could apply
5638 * labeling without the support of the TUN user the resulting labeled
5639 * traffic from the other end of the connection would almost certainly
5640 * cause confusion to the TUN user that had no idea network labeling
5641 * protocols were being used */
5642
5643 sksec->sid = tunsec->sid;
5644 sksec->sclass = SECCLASS_TUN_SOCKET;
5645
5646 return 0;
5647}
5648
5649static int selinux_tun_dev_open(void *security)
5650{
5651 struct tun_security_struct *tunsec = security;
5652 u32 sid = current_sid();
5653 int err;
5654
5655 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5656 TUN_SOCKET__RELABELFROM, NULL);
5657 if (err)
5658 return err;
5659 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5660 TUN_SOCKET__RELABELTO, NULL);
5661 if (err)
5662 return err;
5663 tunsec->sid = sid;
5664
5665 return 0;
5666}
5667
5668#ifdef CONFIG_NETFILTER
5669
5670static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5671 const struct nf_hook_state *state)
5672{
5673 int ifindex;
5674 u16 family;
5675 char *addrp;
5676 u32 peer_sid;
5677 struct common_audit_data ad;
5678 struct lsm_network_audit net;
5679 int secmark_active, peerlbl_active;
5680
5681 if (!selinux_policycap_netpeer())
5682 return NF_ACCEPT;
5683
5684 secmark_active = selinux_secmark_enabled();
5685 peerlbl_active = selinux_peerlbl_enabled();
5686 if (!secmark_active && !peerlbl_active)
5687 return NF_ACCEPT;
5688
5689 family = state->pf;
5690 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5691 return NF_DROP;
5692
5693 ifindex = state->in->ifindex;
5694 ad_net_init_from_iif(&ad, &net, ifindex, family);
5695 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5696 return NF_DROP;
5697
5698 if (peerlbl_active) {
5699 int err;
5700
5701 err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5702 addrp, family, peer_sid, &ad);
5703 if (err) {
5704 selinux_netlbl_err(skb, family, err, 1);
5705 return NF_DROP;
5706 }
5707 }
5708
5709 if (secmark_active)
5710 if (avc_has_perm(peer_sid, skb->secmark,
5711 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5712 return NF_DROP;
5713
5714 if (netlbl_enabled())
5715 /* we do this in the FORWARD path and not the POST_ROUTING
5716 * path because we want to make sure we apply the necessary
5717 * labeling before IPsec is applied so we can leverage AH
5718 * protection */
5719 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5720 return NF_DROP;
5721
5722 return NF_ACCEPT;
5723}
5724
5725static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5726 const struct nf_hook_state *state)
5727{
5728 struct sock *sk;
5729 u32 sid;
5730
5731 if (!netlbl_enabled())
5732 return NF_ACCEPT;
5733
5734 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5735 * because we want to make sure we apply the necessary labeling
5736 * before IPsec is applied so we can leverage AH protection */
5737 sk = skb->sk;
5738 if (sk) {
5739 struct sk_security_struct *sksec;
5740
5741 if (sk_listener(sk))
5742 /* if the socket is the listening state then this
5743 * packet is a SYN-ACK packet which means it needs to
5744 * be labeled based on the connection/request_sock and
5745 * not the parent socket. unfortunately, we can't
5746 * lookup the request_sock yet as it isn't queued on
5747 * the parent socket until after the SYN-ACK is sent.
5748 * the "solution" is to simply pass the packet as-is
5749 * as any IP option based labeling should be copied
5750 * from the initial connection request (in the IP
5751 * layer). it is far from ideal, but until we get a
5752 * security label in the packet itself this is the
5753 * best we can do. */
5754 return NF_ACCEPT;
5755
5756 /* standard practice, label using the parent socket */
5757 sksec = sk->sk_security;
5758 sid = sksec->sid;
5759 } else
5760 sid = SECINITSID_KERNEL;
5761 if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5762 return NF_DROP;
5763
5764 return NF_ACCEPT;
5765}
5766
5767
5768static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5769 const struct nf_hook_state *state)
5770{
5771 struct sock *sk;
5772 struct sk_security_struct *sksec;
5773 struct common_audit_data ad;
5774 struct lsm_network_audit net;
5775 u8 proto = 0;
5776
5777 sk = skb_to_full_sk(skb);
5778 if (sk == NULL)
5779 return NF_ACCEPT;
5780 sksec = sk->sk_security;
5781
5782 ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf);
5783 if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5784 return NF_DROP;
5785
5786 if (selinux_secmark_enabled())
5787 if (avc_has_perm(sksec->sid, skb->secmark,
5788 SECCLASS_PACKET, PACKET__SEND, &ad))
5789 return NF_DROP_ERR(-ECONNREFUSED);
5790
5791 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5792 return NF_DROP_ERR(-ECONNREFUSED);
5793
5794 return NF_ACCEPT;
5795}
5796
5797static unsigned int selinux_ip_postroute(void *priv,
5798 struct sk_buff *skb,
5799 const struct nf_hook_state *state)
5800{
5801 u16 family;
5802 u32 secmark_perm;
5803 u32 peer_sid;
5804 int ifindex;
5805 struct sock *sk;
5806 struct common_audit_data ad;
5807 struct lsm_network_audit net;
5808 char *addrp;
5809 int secmark_active, peerlbl_active;
5810
5811 /* If any sort of compatibility mode is enabled then handoff processing
5812 * to the selinux_ip_postroute_compat() function to deal with the
5813 * special handling. We do this in an attempt to keep this function
5814 * as fast and as clean as possible. */
5815 if (!selinux_policycap_netpeer())
5816 return selinux_ip_postroute_compat(skb, state);
5817
5818 secmark_active = selinux_secmark_enabled();
5819 peerlbl_active = selinux_peerlbl_enabled();
5820 if (!secmark_active && !peerlbl_active)
5821 return NF_ACCEPT;
5822
5823 sk = skb_to_full_sk(skb);
5824
5825#ifdef CONFIG_XFRM
5826 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5827 * packet transformation so allow the packet to pass without any checks
5828 * since we'll have another chance to perform access control checks
5829 * when the packet is on it's final way out.
5830 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5831 * is NULL, in this case go ahead and apply access control.
5832 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5833 * TCP listening state we cannot wait until the XFRM processing
5834 * is done as we will miss out on the SA label if we do;
5835 * unfortunately, this means more work, but it is only once per
5836 * connection. */
5837 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5838 !(sk && sk_listener(sk)))
5839 return NF_ACCEPT;
5840#endif
5841
5842 family = state->pf;
5843 if (sk == NULL) {
5844 /* Without an associated socket the packet is either coming
5845 * from the kernel or it is being forwarded; check the packet
5846 * to determine which and if the packet is being forwarded
5847 * query the packet directly to determine the security label. */
5848 if (skb->skb_iif) {
5849 secmark_perm = PACKET__FORWARD_OUT;
5850 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5851 return NF_DROP;
5852 } else {
5853 secmark_perm = PACKET__SEND;
5854 peer_sid = SECINITSID_KERNEL;
5855 }
5856 } else if (sk_listener(sk)) {
5857 /* Locally generated packet but the associated socket is in the
5858 * listening state which means this is a SYN-ACK packet. In
5859 * this particular case the correct security label is assigned
5860 * to the connection/request_sock but unfortunately we can't
5861 * query the request_sock as it isn't queued on the parent
5862 * socket until after the SYN-ACK packet is sent; the only
5863 * viable choice is to regenerate the label like we do in
5864 * selinux_inet_conn_request(). See also selinux_ip_output()
5865 * for similar problems. */
5866 u32 skb_sid;
5867 struct sk_security_struct *sksec;
5868
5869 sksec = sk->sk_security;
5870 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5871 return NF_DROP;
5872 /* At this point, if the returned skb peerlbl is SECSID_NULL
5873 * and the packet has been through at least one XFRM
5874 * transformation then we must be dealing with the "final"
5875 * form of labeled IPsec packet; since we've already applied
5876 * all of our access controls on this packet we can safely
5877 * pass the packet. */
5878 if (skb_sid == SECSID_NULL) {
5879 switch (family) {
5880 case PF_INET:
5881 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5882 return NF_ACCEPT;
5883 break;
5884 case PF_INET6:
5885 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5886 return NF_ACCEPT;
5887 break;
5888 default:
5889 return NF_DROP_ERR(-ECONNREFUSED);
5890 }
5891 }
5892 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5893 return NF_DROP;
5894 secmark_perm = PACKET__SEND;
5895 } else {
5896 /* Locally generated packet, fetch the security label from the
5897 * associated socket. */
5898 struct sk_security_struct *sksec = sk->sk_security;
5899 peer_sid = sksec->sid;
5900 secmark_perm = PACKET__SEND;
5901 }
5902
5903 ifindex = state->out->ifindex;
5904 ad_net_init_from_iif(&ad, &net, ifindex, family);
5905 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5906 return NF_DROP;
5907
5908 if (secmark_active)
5909 if (avc_has_perm(peer_sid, skb->secmark,
5910 SECCLASS_PACKET, secmark_perm, &ad))
5911 return NF_DROP_ERR(-ECONNREFUSED);
5912
5913 if (peerlbl_active) {
5914 u32 if_sid;
5915 u32 node_sid;
5916
5917 if (sel_netif_sid(state->net, ifindex, &if_sid))
5918 return NF_DROP;
5919 if (avc_has_perm(peer_sid, if_sid,
5920 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5921 return NF_DROP_ERR(-ECONNREFUSED);
5922
5923 if (sel_netnode_sid(addrp, family, &node_sid))
5924 return NF_DROP;
5925 if (avc_has_perm(peer_sid, node_sid,
5926 SECCLASS_NODE, NODE__SENDTO, &ad))
5927 return NF_DROP_ERR(-ECONNREFUSED);
5928 }
5929
5930 return NF_ACCEPT;
5931}
5932#endif /* CONFIG_NETFILTER */
5933
5934static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5935{
5936 int rc = 0;
5937 unsigned int msg_len;
5938 unsigned int data_len = skb->len;
5939 unsigned char *data = skb->data;
5940 struct nlmsghdr *nlh;
5941 struct sk_security_struct *sksec = sk->sk_security;
5942 u16 sclass = sksec->sclass;
5943 u32 perm;
5944
5945 while (data_len >= nlmsg_total_size(0)) {
5946 nlh = (struct nlmsghdr *)data;
5947
5948 /* NOTE: the nlmsg_len field isn't reliably set by some netlink
5949 * users which means we can't reject skb's with bogus
5950 * length fields; our solution is to follow what
5951 * netlink_rcv_skb() does and simply skip processing at
5952 * messages with length fields that are clearly junk
5953 */
5954 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5955 return 0;
5956
5957 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5958 if (rc == 0) {
5959 rc = sock_has_perm(sk, perm);
5960 if (rc)
5961 return rc;
5962 } else if (rc == -EINVAL) {
5963 /* -EINVAL is a missing msg/perm mapping */
5964 pr_warn_ratelimited("SELinux: unrecognized netlink"
5965 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5966 " pid=%d comm=%s\n",
5967 sk->sk_protocol, nlh->nlmsg_type,
5968 secclass_map[sclass - 1].name,
5969 task_pid_nr(current), current->comm);
5970 if (enforcing_enabled() &&
5971 !security_get_allow_unknown())
5972 return rc;
5973 rc = 0;
5974 } else if (rc == -ENOENT) {
5975 /* -ENOENT is a missing socket/class mapping, ignore */
5976 rc = 0;
5977 } else {
5978 return rc;
5979 }
5980
5981 /* move to the next message after applying netlink padding */
5982 msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5983 if (msg_len >= data_len)
5984 return 0;
5985 data_len -= msg_len;
5986 data += msg_len;
5987 }
5988
5989 return rc;
5990}
5991
5992static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5993{
5994 isec->sclass = sclass;
5995 isec->sid = current_sid();
5996}
5997
5998static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5999 u32 perms)
6000{
6001 struct ipc_security_struct *isec;
6002 struct common_audit_data ad;
6003 u32 sid = current_sid();
6004
6005 isec = selinux_ipc(ipc_perms);
6006
6007 ad.type = LSM_AUDIT_DATA_IPC;
6008 ad.u.ipc_id = ipc_perms->key;
6009
6010 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
6011}
6012
6013static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6014{
6015 struct msg_security_struct *msec;
6016
6017 msec = selinux_msg_msg(msg);
6018 msec->sid = SECINITSID_UNLABELED;
6019
6020 return 0;
6021}
6022
6023/* message queue security operations */
6024static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6025{
6026 struct ipc_security_struct *isec;
6027 struct common_audit_data ad;
6028 u32 sid = current_sid();
6029
6030 isec = selinux_ipc(msq);
6031 ipc_init_security(isec, SECCLASS_MSGQ);
6032
6033 ad.type = LSM_AUDIT_DATA_IPC;
6034 ad.u.ipc_id = msq->key;
6035
6036 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6037 MSGQ__CREATE, &ad);
6038}
6039
6040static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6041{
6042 struct ipc_security_struct *isec;
6043 struct common_audit_data ad;
6044 u32 sid = current_sid();
6045
6046 isec = selinux_ipc(msq);
6047
6048 ad.type = LSM_AUDIT_DATA_IPC;
6049 ad.u.ipc_id = msq->key;
6050
6051 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6052 MSGQ__ASSOCIATE, &ad);
6053}
6054
6055static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6056{
6057 u32 perms;
6058
6059 switch (cmd) {
6060 case IPC_INFO:
6061 case MSG_INFO:
6062 /* No specific object, just general system-wide information. */
6063 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6064 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6065 case IPC_STAT:
6066 case MSG_STAT:
6067 case MSG_STAT_ANY:
6068 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6069 break;
6070 case IPC_SET:
6071 perms = MSGQ__SETATTR;
6072 break;
6073 case IPC_RMID:
6074 perms = MSGQ__DESTROY;
6075 break;
6076 default:
6077 return 0;
6078 }
6079
6080 return ipc_has_perm(msq, perms);
6081}
6082
6083static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6084{
6085 struct ipc_security_struct *isec;
6086 struct msg_security_struct *msec;
6087 struct common_audit_data ad;
6088 u32 sid = current_sid();
6089 int rc;
6090
6091 isec = selinux_ipc(msq);
6092 msec = selinux_msg_msg(msg);
6093
6094 /*
6095 * First time through, need to assign label to the message
6096 */
6097 if (msec->sid == SECINITSID_UNLABELED) {
6098 /*
6099 * Compute new sid based on current process and
6100 * message queue this message will be stored in
6101 */
6102 rc = security_transition_sid(sid, isec->sid,
6103 SECCLASS_MSG, NULL, &msec->sid);
6104 if (rc)
6105 return rc;
6106 }
6107
6108 ad.type = LSM_AUDIT_DATA_IPC;
6109 ad.u.ipc_id = msq->key;
6110
6111 /* Can this process write to the queue? */
6112 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6113 MSGQ__WRITE, &ad);
6114 if (!rc)
6115 /* Can this process send the message */
6116 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
6117 MSG__SEND, &ad);
6118 if (!rc)
6119 /* Can the message be put in the queue? */
6120 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
6121 MSGQ__ENQUEUE, &ad);
6122
6123 return rc;
6124}
6125
6126static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6127 struct task_struct *target,
6128 long type, int mode)
6129{
6130 struct ipc_security_struct *isec;
6131 struct msg_security_struct *msec;
6132 struct common_audit_data ad;
6133 u32 sid = task_sid_obj(target);
6134 int rc;
6135
6136 isec = selinux_ipc(msq);
6137 msec = selinux_msg_msg(msg);
6138
6139 ad.type = LSM_AUDIT_DATA_IPC;
6140 ad.u.ipc_id = msq->key;
6141
6142 rc = avc_has_perm(sid, isec->sid,
6143 SECCLASS_MSGQ, MSGQ__READ, &ad);
6144 if (!rc)
6145 rc = avc_has_perm(sid, msec->sid,
6146 SECCLASS_MSG, MSG__RECEIVE, &ad);
6147 return rc;
6148}
6149
6150/* Shared Memory security operations */
6151static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6152{
6153 struct ipc_security_struct *isec;
6154 struct common_audit_data ad;
6155 u32 sid = current_sid();
6156
6157 isec = selinux_ipc(shp);
6158 ipc_init_security(isec, SECCLASS_SHM);
6159
6160 ad.type = LSM_AUDIT_DATA_IPC;
6161 ad.u.ipc_id = shp->key;
6162
6163 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6164 SHM__CREATE, &ad);
6165}
6166
6167static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6168{
6169 struct ipc_security_struct *isec;
6170 struct common_audit_data ad;
6171 u32 sid = current_sid();
6172
6173 isec = selinux_ipc(shp);
6174
6175 ad.type = LSM_AUDIT_DATA_IPC;
6176 ad.u.ipc_id = shp->key;
6177
6178 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6179 SHM__ASSOCIATE, &ad);
6180}
6181
6182/* Note, at this point, shp is locked down */
6183static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6184{
6185 u32 perms;
6186
6187 switch (cmd) {
6188 case IPC_INFO:
6189 case SHM_INFO:
6190 /* No specific object, just general system-wide information. */
6191 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6192 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6193 case IPC_STAT:
6194 case SHM_STAT:
6195 case SHM_STAT_ANY:
6196 perms = SHM__GETATTR | SHM__ASSOCIATE;
6197 break;
6198 case IPC_SET:
6199 perms = SHM__SETATTR;
6200 break;
6201 case SHM_LOCK:
6202 case SHM_UNLOCK:
6203 perms = SHM__LOCK;
6204 break;
6205 case IPC_RMID:
6206 perms = SHM__DESTROY;
6207 break;
6208 default:
6209 return 0;
6210 }
6211
6212 return ipc_has_perm(shp, perms);
6213}
6214
6215static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6216 char __user *shmaddr, int shmflg)
6217{
6218 u32 perms;
6219
6220 if (shmflg & SHM_RDONLY)
6221 perms = SHM__READ;
6222 else
6223 perms = SHM__READ | SHM__WRITE;
6224
6225 return ipc_has_perm(shp, perms);
6226}
6227
6228/* Semaphore security operations */
6229static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6230{
6231 struct ipc_security_struct *isec;
6232 struct common_audit_data ad;
6233 u32 sid = current_sid();
6234
6235 isec = selinux_ipc(sma);
6236 ipc_init_security(isec, SECCLASS_SEM);
6237
6238 ad.type = LSM_AUDIT_DATA_IPC;
6239 ad.u.ipc_id = sma->key;
6240
6241 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6242 SEM__CREATE, &ad);
6243}
6244
6245static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6246{
6247 struct ipc_security_struct *isec;
6248 struct common_audit_data ad;
6249 u32 sid = current_sid();
6250
6251 isec = selinux_ipc(sma);
6252
6253 ad.type = LSM_AUDIT_DATA_IPC;
6254 ad.u.ipc_id = sma->key;
6255
6256 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6257 SEM__ASSOCIATE, &ad);
6258}
6259
6260/* Note, at this point, sma is locked down */
6261static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6262{
6263 int err;
6264 u32 perms;
6265
6266 switch (cmd) {
6267 case IPC_INFO:
6268 case SEM_INFO:
6269 /* No specific object, just general system-wide information. */
6270 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6271 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6272 case GETPID:
6273 case GETNCNT:
6274 case GETZCNT:
6275 perms = SEM__GETATTR;
6276 break;
6277 case GETVAL:
6278 case GETALL:
6279 perms = SEM__READ;
6280 break;
6281 case SETVAL:
6282 case SETALL:
6283 perms = SEM__WRITE;
6284 break;
6285 case IPC_RMID:
6286 perms = SEM__DESTROY;
6287 break;
6288 case IPC_SET:
6289 perms = SEM__SETATTR;
6290 break;
6291 case IPC_STAT:
6292 case SEM_STAT:
6293 case SEM_STAT_ANY:
6294 perms = SEM__GETATTR | SEM__ASSOCIATE;
6295 break;
6296 default:
6297 return 0;
6298 }
6299
6300 err = ipc_has_perm(sma, perms);
6301 return err;
6302}
6303
6304static int selinux_sem_semop(struct kern_ipc_perm *sma,
6305 struct sembuf *sops, unsigned nsops, int alter)
6306{
6307 u32 perms;
6308
6309 if (alter)
6310 perms = SEM__READ | SEM__WRITE;
6311 else
6312 perms = SEM__READ;
6313
6314 return ipc_has_perm(sma, perms);
6315}
6316
6317static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6318{
6319 u32 av = 0;
6320
6321 av = 0;
6322 if (flag & S_IRUGO)
6323 av |= IPC__UNIX_READ;
6324 if (flag & S_IWUGO)
6325 av |= IPC__UNIX_WRITE;
6326
6327 if (av == 0)
6328 return 0;
6329
6330 return ipc_has_perm(ipcp, av);
6331}
6332
6333static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6334{
6335 struct ipc_security_struct *isec = selinux_ipc(ipcp);
6336 *secid = isec->sid;
6337}
6338
6339static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6340{
6341 if (inode)
6342 inode_doinit_with_dentry(inode, dentry);
6343}
6344
6345static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p,
6346 char **value)
6347{
6348 const struct task_security_struct *__tsec;
6349 u32 sid;
6350 int error;
6351 unsigned len;
6352
6353 rcu_read_lock();
6354 __tsec = selinux_cred(__task_cred(p));
6355
6356 if (current != p) {
6357 error = avc_has_perm(current_sid(), __tsec->sid,
6358 SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6359 if (error)
6360 goto bad;
6361 }
6362
6363 switch (attr) {
6364 case LSM_ATTR_CURRENT:
6365 sid = __tsec->sid;
6366 break;
6367 case LSM_ATTR_PREV:
6368 sid = __tsec->osid;
6369 break;
6370 case LSM_ATTR_EXEC:
6371 sid = __tsec->exec_sid;
6372 break;
6373 case LSM_ATTR_FSCREATE:
6374 sid = __tsec->create_sid;
6375 break;
6376 case LSM_ATTR_KEYCREATE:
6377 sid = __tsec->keycreate_sid;
6378 break;
6379 case LSM_ATTR_SOCKCREATE:
6380 sid = __tsec->sockcreate_sid;
6381 break;
6382 default:
6383 error = -EOPNOTSUPP;
6384 goto bad;
6385 }
6386 rcu_read_unlock();
6387
6388 if (!sid)
6389 return 0;
6390
6391 error = security_sid_to_context(sid, value, &len);
6392 if (error)
6393 return error;
6394 return len;
6395
6396bad:
6397 rcu_read_unlock();
6398 return error;
6399}
6400
6401static int selinux_lsm_setattr(u64 attr, void *value, size_t size)
6402{
6403 struct task_security_struct *tsec;
6404 struct cred *new;
6405 u32 mysid = current_sid(), sid = 0, ptsid;
6406 int error;
6407 char *str = value;
6408
6409 /*
6410 * Basic control over ability to set these attributes at all.
6411 */
6412 switch (attr) {
6413 case LSM_ATTR_EXEC:
6414 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6415 PROCESS__SETEXEC, NULL);
6416 break;
6417 case LSM_ATTR_FSCREATE:
6418 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6419 PROCESS__SETFSCREATE, NULL);
6420 break;
6421 case LSM_ATTR_KEYCREATE:
6422 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6423 PROCESS__SETKEYCREATE, NULL);
6424 break;
6425 case LSM_ATTR_SOCKCREATE:
6426 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6427 PROCESS__SETSOCKCREATE, NULL);
6428 break;
6429 case LSM_ATTR_CURRENT:
6430 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6431 PROCESS__SETCURRENT, NULL);
6432 break;
6433 default:
6434 error = -EOPNOTSUPP;
6435 break;
6436 }
6437 if (error)
6438 return error;
6439
6440 /* Obtain a SID for the context, if one was specified. */
6441 if (size && str[0] && str[0] != '\n') {
6442 if (str[size-1] == '\n') {
6443 str[size-1] = 0;
6444 size--;
6445 }
6446 error = security_context_to_sid(value, size,
6447 &sid, GFP_KERNEL);
6448 if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) {
6449 if (!has_cap_mac_admin(true)) {
6450 struct audit_buffer *ab;
6451 size_t audit_size;
6452
6453 /* We strip a nul only if it is at the end,
6454 * otherwise the context contains a nul and
6455 * we should audit that */
6456 if (str[size - 1] == '\0')
6457 audit_size = size - 1;
6458 else
6459 audit_size = size;
6460 ab = audit_log_start(audit_context(),
6461 GFP_ATOMIC,
6462 AUDIT_SELINUX_ERR);
6463 if (!ab)
6464 return error;
6465 audit_log_format(ab, "op=fscreate invalid_context=");
6466 audit_log_n_untrustedstring(ab, value,
6467 audit_size);
6468 audit_log_end(ab);
6469
6470 return error;
6471 }
6472 error = security_context_to_sid_force(value, size,
6473 &sid);
6474 }
6475 if (error)
6476 return error;
6477 }
6478
6479 new = prepare_creds();
6480 if (!new)
6481 return -ENOMEM;
6482
6483 /* Permission checking based on the specified context is
6484 performed during the actual operation (execve,
6485 open/mkdir/...), when we know the full context of the
6486 operation. See selinux_bprm_creds_for_exec for the execve
6487 checks and may_create for the file creation checks. The
6488 operation will then fail if the context is not permitted. */
6489 tsec = selinux_cred(new);
6490 if (attr == LSM_ATTR_EXEC) {
6491 tsec->exec_sid = sid;
6492 } else if (attr == LSM_ATTR_FSCREATE) {
6493 tsec->create_sid = sid;
6494 } else if (attr == LSM_ATTR_KEYCREATE) {
6495 if (sid) {
6496 error = avc_has_perm(mysid, sid,
6497 SECCLASS_KEY, KEY__CREATE, NULL);
6498 if (error)
6499 goto abort_change;
6500 }
6501 tsec->keycreate_sid = sid;
6502 } else if (attr == LSM_ATTR_SOCKCREATE) {
6503 tsec->sockcreate_sid = sid;
6504 } else if (attr == LSM_ATTR_CURRENT) {
6505 error = -EINVAL;
6506 if (sid == 0)
6507 goto abort_change;
6508
6509 if (!current_is_single_threaded()) {
6510 error = security_bounded_transition(tsec->sid, sid);
6511 if (error)
6512 goto abort_change;
6513 }
6514
6515 /* Check permissions for the transition. */
6516 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
6517 PROCESS__DYNTRANSITION, NULL);
6518 if (error)
6519 goto abort_change;
6520
6521 /* Check for ptracing, and update the task SID if ok.
6522 Otherwise, leave SID unchanged and fail. */
6523 ptsid = ptrace_parent_sid();
6524 if (ptsid != 0) {
6525 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
6526 PROCESS__PTRACE, NULL);
6527 if (error)
6528 goto abort_change;
6529 }
6530
6531 tsec->sid = sid;
6532 } else {
6533 error = -EINVAL;
6534 goto abort_change;
6535 }
6536
6537 commit_creds(new);
6538 return size;
6539
6540abort_change:
6541 abort_creds(new);
6542 return error;
6543}
6544
6545/**
6546 * selinux_getselfattr - Get SELinux current task attributes
6547 * @attr: the requested attribute
6548 * @ctx: buffer to receive the result
6549 * @size: buffer size (input), buffer size used (output)
6550 * @flags: unused
6551 *
6552 * Fill the passed user space @ctx with the details of the requested
6553 * attribute.
6554 *
6555 * Returns the number of attributes on success, an error code otherwise.
6556 * There will only ever be one attribute.
6557 */
6558static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx,
6559 size_t *size, u32 flags)
6560{
6561 int rc;
6562 char *val = NULL;
6563 int val_len;
6564
6565 val_len = selinux_lsm_getattr(attr, current, &val);
6566 if (val_len < 0)
6567 return val_len;
6568 rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0);
6569 kfree(val);
6570 return (!rc ? 1 : rc);
6571}
6572
6573static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx,
6574 size_t size, u32 flags)
6575{
6576 int rc;
6577
6578 rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len);
6579 if (rc > 0)
6580 return 0;
6581 return rc;
6582}
6583
6584static int selinux_getprocattr(struct task_struct *p,
6585 const char *name, char **value)
6586{
6587 unsigned int attr = lsm_name_to_attr(name);
6588 int rc;
6589
6590 if (attr) {
6591 rc = selinux_lsm_getattr(attr, p, value);
6592 if (rc != -EOPNOTSUPP)
6593 return rc;
6594 }
6595
6596 return -EINVAL;
6597}
6598
6599static int selinux_setprocattr(const char *name, void *value, size_t size)
6600{
6601 int attr = lsm_name_to_attr(name);
6602
6603 if (attr)
6604 return selinux_lsm_setattr(attr, value, size);
6605 return -EINVAL;
6606}
6607
6608static int selinux_ismaclabel(const char *name)
6609{
6610 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6611}
6612
6613static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6614{
6615 return security_sid_to_context(secid,
6616 secdata, seclen);
6617}
6618
6619static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6620{
6621 return security_context_to_sid(secdata, seclen,
6622 secid, GFP_KERNEL);
6623}
6624
6625static void selinux_release_secctx(char *secdata, u32 seclen)
6626{
6627 kfree(secdata);
6628}
6629
6630static void selinux_inode_invalidate_secctx(struct inode *inode)
6631{
6632 struct inode_security_struct *isec = selinux_inode(inode);
6633
6634 spin_lock(&isec->lock);
6635 isec->initialized = LABEL_INVALID;
6636 spin_unlock(&isec->lock);
6637}
6638
6639/*
6640 * called with inode->i_mutex locked
6641 */
6642static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6643{
6644 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6645 ctx, ctxlen, 0);
6646 /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6647 return rc == -EOPNOTSUPP ? 0 : rc;
6648}
6649
6650/*
6651 * called with inode->i_mutex locked
6652 */
6653static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6654{
6655 return __vfs_setxattr_noperm(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX,
6656 ctx, ctxlen, 0);
6657}
6658
6659static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6660{
6661 int len = 0;
6662 len = selinux_inode_getsecurity(&nop_mnt_idmap, inode,
6663 XATTR_SELINUX_SUFFIX, ctx, true);
6664 if (len < 0)
6665 return len;
6666 *ctxlen = len;
6667 return 0;
6668}
6669#ifdef CONFIG_KEYS
6670
6671static int selinux_key_alloc(struct key *k, const struct cred *cred,
6672 unsigned long flags)
6673{
6674 const struct task_security_struct *tsec;
6675 struct key_security_struct *ksec;
6676
6677 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6678 if (!ksec)
6679 return -ENOMEM;
6680
6681 tsec = selinux_cred(cred);
6682 if (tsec->keycreate_sid)
6683 ksec->sid = tsec->keycreate_sid;
6684 else
6685 ksec->sid = tsec->sid;
6686
6687 k->security = ksec;
6688 return 0;
6689}
6690
6691static void selinux_key_free(struct key *k)
6692{
6693 struct key_security_struct *ksec = k->security;
6694
6695 k->security = NULL;
6696 kfree(ksec);
6697}
6698
6699static int selinux_key_permission(key_ref_t key_ref,
6700 const struct cred *cred,
6701 enum key_need_perm need_perm)
6702{
6703 struct key *key;
6704 struct key_security_struct *ksec;
6705 u32 perm, sid;
6706
6707 switch (need_perm) {
6708 case KEY_NEED_VIEW:
6709 perm = KEY__VIEW;
6710 break;
6711 case KEY_NEED_READ:
6712 perm = KEY__READ;
6713 break;
6714 case KEY_NEED_WRITE:
6715 perm = KEY__WRITE;
6716 break;
6717 case KEY_NEED_SEARCH:
6718 perm = KEY__SEARCH;
6719 break;
6720 case KEY_NEED_LINK:
6721 perm = KEY__LINK;
6722 break;
6723 case KEY_NEED_SETATTR:
6724 perm = KEY__SETATTR;
6725 break;
6726 case KEY_NEED_UNLINK:
6727 case KEY_SYSADMIN_OVERRIDE:
6728 case KEY_AUTHTOKEN_OVERRIDE:
6729 case KEY_DEFER_PERM_CHECK:
6730 return 0;
6731 default:
6732 WARN_ON(1);
6733 return -EPERM;
6734
6735 }
6736
6737 sid = cred_sid(cred);
6738 key = key_ref_to_ptr(key_ref);
6739 ksec = key->security;
6740
6741 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6742}
6743
6744static int selinux_key_getsecurity(struct key *key, char **_buffer)
6745{
6746 struct key_security_struct *ksec = key->security;
6747 char *context = NULL;
6748 unsigned len;
6749 int rc;
6750
6751 rc = security_sid_to_context(ksec->sid,
6752 &context, &len);
6753 if (!rc)
6754 rc = len;
6755 *_buffer = context;
6756 return rc;
6757}
6758
6759#ifdef CONFIG_KEY_NOTIFICATIONS
6760static int selinux_watch_key(struct key *key)
6761{
6762 struct key_security_struct *ksec = key->security;
6763 u32 sid = current_sid();
6764
6765 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6766}
6767#endif
6768#endif
6769
6770#ifdef CONFIG_SECURITY_INFINIBAND
6771static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6772{
6773 struct common_audit_data ad;
6774 int err;
6775 u32 sid = 0;
6776 struct ib_security_struct *sec = ib_sec;
6777 struct lsm_ibpkey_audit ibpkey;
6778
6779 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6780 if (err)
6781 return err;
6782
6783 ad.type = LSM_AUDIT_DATA_IBPKEY;
6784 ibpkey.subnet_prefix = subnet_prefix;
6785 ibpkey.pkey = pkey_val;
6786 ad.u.ibpkey = &ibpkey;
6787 return avc_has_perm(sec->sid, sid,
6788 SECCLASS_INFINIBAND_PKEY,
6789 INFINIBAND_PKEY__ACCESS, &ad);
6790}
6791
6792static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6793 u8 port_num)
6794{
6795 struct common_audit_data ad;
6796 int err;
6797 u32 sid = 0;
6798 struct ib_security_struct *sec = ib_sec;
6799 struct lsm_ibendport_audit ibendport;
6800
6801 err = security_ib_endport_sid(dev_name, port_num,
6802 &sid);
6803
6804 if (err)
6805 return err;
6806
6807 ad.type = LSM_AUDIT_DATA_IBENDPORT;
6808 ibendport.dev_name = dev_name;
6809 ibendport.port = port_num;
6810 ad.u.ibendport = &ibendport;
6811 return avc_has_perm(sec->sid, sid,
6812 SECCLASS_INFINIBAND_ENDPORT,
6813 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6814}
6815
6816static int selinux_ib_alloc_security(void **ib_sec)
6817{
6818 struct ib_security_struct *sec;
6819
6820 sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6821 if (!sec)
6822 return -ENOMEM;
6823 sec->sid = current_sid();
6824
6825 *ib_sec = sec;
6826 return 0;
6827}
6828
6829static void selinux_ib_free_security(void *ib_sec)
6830{
6831 kfree(ib_sec);
6832}
6833#endif
6834
6835#ifdef CONFIG_BPF_SYSCALL
6836static int selinux_bpf(int cmd, union bpf_attr *attr,
6837 unsigned int size)
6838{
6839 u32 sid = current_sid();
6840 int ret;
6841
6842 switch (cmd) {
6843 case BPF_MAP_CREATE:
6844 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6845 NULL);
6846 break;
6847 case BPF_PROG_LOAD:
6848 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6849 NULL);
6850 break;
6851 default:
6852 ret = 0;
6853 break;
6854 }
6855
6856 return ret;
6857}
6858
6859static u32 bpf_map_fmode_to_av(fmode_t fmode)
6860{
6861 u32 av = 0;
6862
6863 if (fmode & FMODE_READ)
6864 av |= BPF__MAP_READ;
6865 if (fmode & FMODE_WRITE)
6866 av |= BPF__MAP_WRITE;
6867 return av;
6868}
6869
6870/* This function will check the file pass through unix socket or binder to see
6871 * if it is a bpf related object. And apply corresponding checks on the bpf
6872 * object based on the type. The bpf maps and programs, not like other files and
6873 * socket, are using a shared anonymous inode inside the kernel as their inode.
6874 * So checking that inode cannot identify if the process have privilege to
6875 * access the bpf object and that's why we have to add this additional check in
6876 * selinux_file_receive and selinux_binder_transfer_files.
6877 */
6878static int bpf_fd_pass(const struct file *file, u32 sid)
6879{
6880 struct bpf_security_struct *bpfsec;
6881 struct bpf_prog *prog;
6882 struct bpf_map *map;
6883 int ret;
6884
6885 if (file->f_op == &bpf_map_fops) {
6886 map = file->private_data;
6887 bpfsec = map->security;
6888 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6889 bpf_map_fmode_to_av(file->f_mode), NULL);
6890 if (ret)
6891 return ret;
6892 } else if (file->f_op == &bpf_prog_fops) {
6893 prog = file->private_data;
6894 bpfsec = prog->aux->security;
6895 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6896 BPF__PROG_RUN, NULL);
6897 if (ret)
6898 return ret;
6899 }
6900 return 0;
6901}
6902
6903static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6904{
6905 u32 sid = current_sid();
6906 struct bpf_security_struct *bpfsec;
6907
6908 bpfsec = map->security;
6909 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6910 bpf_map_fmode_to_av(fmode), NULL);
6911}
6912
6913static int selinux_bpf_prog(struct bpf_prog *prog)
6914{
6915 u32 sid = current_sid();
6916 struct bpf_security_struct *bpfsec;
6917
6918 bpfsec = prog->aux->security;
6919 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6920 BPF__PROG_RUN, NULL);
6921}
6922
6923static int selinux_bpf_map_alloc(struct bpf_map *map)
6924{
6925 struct bpf_security_struct *bpfsec;
6926
6927 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6928 if (!bpfsec)
6929 return -ENOMEM;
6930
6931 bpfsec->sid = current_sid();
6932 map->security = bpfsec;
6933
6934 return 0;
6935}
6936
6937static void selinux_bpf_map_free(struct bpf_map *map)
6938{
6939 struct bpf_security_struct *bpfsec = map->security;
6940
6941 map->security = NULL;
6942 kfree(bpfsec);
6943}
6944
6945static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6946{
6947 struct bpf_security_struct *bpfsec;
6948
6949 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6950 if (!bpfsec)
6951 return -ENOMEM;
6952
6953 bpfsec->sid = current_sid();
6954 aux->security = bpfsec;
6955
6956 return 0;
6957}
6958
6959static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6960{
6961 struct bpf_security_struct *bpfsec = aux->security;
6962
6963 aux->security = NULL;
6964 kfree(bpfsec);
6965}
6966#endif
6967
6968struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = {
6969 .lbs_cred = sizeof(struct task_security_struct),
6970 .lbs_file = sizeof(struct file_security_struct),
6971 .lbs_inode = sizeof(struct inode_security_struct),
6972 .lbs_ipc = sizeof(struct ipc_security_struct),
6973 .lbs_msg_msg = sizeof(struct msg_security_struct),
6974 .lbs_superblock = sizeof(struct superblock_security_struct),
6975 .lbs_xattr_count = SELINUX_INODE_INIT_XATTRS,
6976};
6977
6978#ifdef CONFIG_PERF_EVENTS
6979static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6980{
6981 u32 requested, sid = current_sid();
6982
6983 if (type == PERF_SECURITY_OPEN)
6984 requested = PERF_EVENT__OPEN;
6985 else if (type == PERF_SECURITY_CPU)
6986 requested = PERF_EVENT__CPU;
6987 else if (type == PERF_SECURITY_KERNEL)
6988 requested = PERF_EVENT__KERNEL;
6989 else if (type == PERF_SECURITY_TRACEPOINT)
6990 requested = PERF_EVENT__TRACEPOINT;
6991 else
6992 return -EINVAL;
6993
6994 return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT,
6995 requested, NULL);
6996}
6997
6998static int selinux_perf_event_alloc(struct perf_event *event)
6999{
7000 struct perf_event_security_struct *perfsec;
7001
7002 perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
7003 if (!perfsec)
7004 return -ENOMEM;
7005
7006 perfsec->sid = current_sid();
7007 event->security = perfsec;
7008
7009 return 0;
7010}
7011
7012static void selinux_perf_event_free(struct perf_event *event)
7013{
7014 struct perf_event_security_struct *perfsec = event->security;
7015
7016 event->security = NULL;
7017 kfree(perfsec);
7018}
7019
7020static int selinux_perf_event_read(struct perf_event *event)
7021{
7022 struct perf_event_security_struct *perfsec = event->security;
7023 u32 sid = current_sid();
7024
7025 return avc_has_perm(sid, perfsec->sid,
7026 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7027}
7028
7029static int selinux_perf_event_write(struct perf_event *event)
7030{
7031 struct perf_event_security_struct *perfsec = event->security;
7032 u32 sid = current_sid();
7033
7034 return avc_has_perm(sid, perfsec->sid,
7035 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7036}
7037#endif
7038
7039#ifdef CONFIG_IO_URING
7040/**
7041 * selinux_uring_override_creds - check the requested cred override
7042 * @new: the target creds
7043 *
7044 * Check to see if the current task is allowed to override it's credentials
7045 * to service an io_uring operation.
7046 */
7047static int selinux_uring_override_creds(const struct cred *new)
7048{
7049 return avc_has_perm(current_sid(), cred_sid(new),
7050 SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
7051}
7052
7053/**
7054 * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7055 *
7056 * Check to see if the current task is allowed to create a new io_uring
7057 * kernel polling thread.
7058 */
7059static int selinux_uring_sqpoll(void)
7060{
7061 u32 sid = current_sid();
7062
7063 return avc_has_perm(sid, sid,
7064 SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7065}
7066
7067/**
7068 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7069 * @ioucmd: the io_uring command structure
7070 *
7071 * Check to see if the current domain is allowed to execute an
7072 * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7073 *
7074 */
7075static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7076{
7077 struct file *file = ioucmd->file;
7078 struct inode *inode = file_inode(file);
7079 struct inode_security_struct *isec = selinux_inode(inode);
7080 struct common_audit_data ad;
7081
7082 ad.type = LSM_AUDIT_DATA_FILE;
7083 ad.u.file = file;
7084
7085 return avc_has_perm(current_sid(), isec->sid,
7086 SECCLASS_IO_URING, IO_URING__CMD, &ad);
7087}
7088#endif /* CONFIG_IO_URING */
7089
7090static const struct lsm_id selinux_lsmid = {
7091 .name = "selinux",
7092 .id = LSM_ID_SELINUX,
7093};
7094
7095/*
7096 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7097 * 1. any hooks that don't belong to (2.) or (3.) below,
7098 * 2. hooks that both access structures allocated by other hooks, and allocate
7099 * structures that can be later accessed by other hooks (mostly "cloning"
7100 * hooks),
7101 * 3. hooks that only allocate structures that can be later accessed by other
7102 * hooks ("allocating" hooks).
7103 *
7104 * Please follow block comment delimiters in the list to keep this order.
7105 */
7106static struct security_hook_list selinux_hooks[] __ro_after_init = {
7107 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7108 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7109 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7110 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7111
7112 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7113 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7114 LSM_HOOK_INIT(capget, selinux_capget),
7115 LSM_HOOK_INIT(capset, selinux_capset),
7116 LSM_HOOK_INIT(capable, selinux_capable),
7117 LSM_HOOK_INIT(quotactl, selinux_quotactl),
7118 LSM_HOOK_INIT(quota_on, selinux_quota_on),
7119 LSM_HOOK_INIT(syslog, selinux_syslog),
7120 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7121
7122 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7123
7124 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7125 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7126 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7127
7128 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7129 LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7130 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7131 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7132 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7133 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7134 LSM_HOOK_INIT(sb_mount, selinux_mount),
7135 LSM_HOOK_INIT(sb_umount, selinux_umount),
7136 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7137 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7138
7139 LSM_HOOK_INIT(move_mount, selinux_move_mount),
7140
7141 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7142 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7143
7144 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7145 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7146 LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7147 LSM_HOOK_INIT(inode_create, selinux_inode_create),
7148 LSM_HOOK_INIT(inode_link, selinux_inode_link),
7149 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7150 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7151 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7152 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7153 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7154 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7155 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7156 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7157 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7158 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7159 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7160 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7161 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7162 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7163 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7164 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7165 LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7166 LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7167 LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7168 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7169 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7170 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7171 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7172 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7173 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7174 LSM_HOOK_INIT(path_notify, selinux_path_notify),
7175
7176 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7177
7178 LSM_HOOK_INIT(file_permission, selinux_file_permission),
7179 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7180 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7181 LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat),
7182 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7183 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7184 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7185 LSM_HOOK_INIT(file_lock, selinux_file_lock),
7186 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7187 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7188 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7189 LSM_HOOK_INIT(file_receive, selinux_file_receive),
7190
7191 LSM_HOOK_INIT(file_open, selinux_file_open),
7192
7193 LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7194 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7195 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7196 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7197 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7198 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7199 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7200 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7201 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7202 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7203 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7204 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7205 LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj),
7206 LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7207 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7208 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7209 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7210 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7211 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7212 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7213 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7214 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7215 LSM_HOOK_INIT(task_kill, selinux_task_kill),
7216 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7217 LSM_HOOK_INIT(userns_create, selinux_userns_create),
7218
7219 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7220 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7221
7222 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7223 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7224 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7225 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7226
7227 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7228 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7229 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7230
7231 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7232 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7233 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7234
7235 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7236
7237 LSM_HOOK_INIT(getselfattr, selinux_getselfattr),
7238 LSM_HOOK_INIT(setselfattr, selinux_setselfattr),
7239 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7240 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7241
7242 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7243 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7244 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7245 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7246 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7247 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7248
7249 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7250 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7251
7252 LSM_HOOK_INIT(socket_create, selinux_socket_create),
7253 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7254 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7255 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7256 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7257 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7258 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7259 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7260 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7261 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7262 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7263 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7264 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7265 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7266 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7267 LSM_HOOK_INIT(socket_getpeersec_stream,
7268 selinux_socket_getpeersec_stream),
7269 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7270 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7271 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7272 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7273 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7274 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7275 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7276 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7277 LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7278 LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow),
7279 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7280 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7281 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7282 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7283 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7284 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7285 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7286 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7287 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7288 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7289 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7290 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7291#ifdef CONFIG_SECURITY_INFINIBAND
7292 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7293 LSM_HOOK_INIT(ib_endport_manage_subnet,
7294 selinux_ib_endport_manage_subnet),
7295 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7296#endif
7297#ifdef CONFIG_SECURITY_NETWORK_XFRM
7298 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7299 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7300 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7301 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7302 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7303 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7304 selinux_xfrm_state_pol_flow_match),
7305 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7306#endif
7307
7308#ifdef CONFIG_KEYS
7309 LSM_HOOK_INIT(key_free, selinux_key_free),
7310 LSM_HOOK_INIT(key_permission, selinux_key_permission),
7311 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7312#ifdef CONFIG_KEY_NOTIFICATIONS
7313 LSM_HOOK_INIT(watch_key, selinux_watch_key),
7314#endif
7315#endif
7316
7317#ifdef CONFIG_AUDIT
7318 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7319 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7320 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7321#endif
7322
7323#ifdef CONFIG_BPF_SYSCALL
7324 LSM_HOOK_INIT(bpf, selinux_bpf),
7325 LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7326 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7327 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7328 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7329#endif
7330
7331#ifdef CONFIG_PERF_EVENTS
7332 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7333 LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7334 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7335 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7336#endif
7337
7338#ifdef CONFIG_IO_URING
7339 LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7340 LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7341 LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7342#endif
7343
7344 /*
7345 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7346 */
7347 LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount),
7348 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7349 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7350 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7351#ifdef CONFIG_SECURITY_NETWORK_XFRM
7352 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7353#endif
7354
7355 /*
7356 * PUT "ALLOCATING" HOOKS HERE
7357 */
7358 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7359 LSM_HOOK_INIT(msg_queue_alloc_security,
7360 selinux_msg_queue_alloc_security),
7361 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7362 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7363 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7364 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7365 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7366 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7367 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7368 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7369#ifdef CONFIG_SECURITY_INFINIBAND
7370 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7371#endif
7372#ifdef CONFIG_SECURITY_NETWORK_XFRM
7373 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7374 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7375 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7376 selinux_xfrm_state_alloc_acquire),
7377#endif
7378#ifdef CONFIG_KEYS
7379 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7380#endif
7381#ifdef CONFIG_AUDIT
7382 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7383#endif
7384#ifdef CONFIG_BPF_SYSCALL
7385 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7386 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7387#endif
7388#ifdef CONFIG_PERF_EVENTS
7389 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7390#endif
7391};
7392
7393static __init int selinux_init(void)
7394{
7395 pr_info("SELinux: Initializing.\n");
7396
7397 memset(&selinux_state, 0, sizeof(selinux_state));
7398 enforcing_set(selinux_enforcing_boot);
7399 selinux_avc_init();
7400 mutex_init(&selinux_state.status_lock);
7401 mutex_init(&selinux_state.policy_mutex);
7402
7403 /* Set the security state for the initial task. */
7404 cred_init_security();
7405
7406 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7407 if (!default_noexec)
7408 pr_notice("SELinux: virtual memory is executable by default\n");
7409
7410 avc_init();
7411
7412 avtab_cache_init();
7413
7414 ebitmap_cache_init();
7415
7416 hashtab_cache_init();
7417
7418 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks),
7419 &selinux_lsmid);
7420
7421 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7422 panic("SELinux: Unable to register AVC netcache callback\n");
7423
7424 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7425 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7426
7427 if (selinux_enforcing_boot)
7428 pr_debug("SELinux: Starting in enforcing mode\n");
7429 else
7430 pr_debug("SELinux: Starting in permissive mode\n");
7431
7432 fs_validate_description("selinux", selinux_fs_parameters);
7433
7434 return 0;
7435}
7436
7437static void delayed_superblock_init(struct super_block *sb, void *unused)
7438{
7439 selinux_set_mnt_opts(sb, NULL, 0, NULL);
7440}
7441
7442void selinux_complete_init(void)
7443{
7444 pr_debug("SELinux: Completing initialization.\n");
7445
7446 /* Set up any superblocks initialized prior to the policy load. */
7447 pr_debug("SELinux: Setting up existing superblocks.\n");
7448 iterate_supers(delayed_superblock_init, NULL);
7449}
7450
7451/* SELinux requires early initialization in order to label
7452 all processes and objects when they are created. */
7453DEFINE_LSM(selinux) = {
7454 .name = "selinux",
7455 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7456 .enabled = &selinux_enabled_boot,
7457 .blobs = &selinux_blob_sizes,
7458 .init = selinux_init,
7459};
7460
7461#if defined(CONFIG_NETFILTER)
7462static const struct nf_hook_ops selinux_nf_ops[] = {
7463 {
7464 .hook = selinux_ip_postroute,
7465 .pf = NFPROTO_IPV4,
7466 .hooknum = NF_INET_POST_ROUTING,
7467 .priority = NF_IP_PRI_SELINUX_LAST,
7468 },
7469 {
7470 .hook = selinux_ip_forward,
7471 .pf = NFPROTO_IPV4,
7472 .hooknum = NF_INET_FORWARD,
7473 .priority = NF_IP_PRI_SELINUX_FIRST,
7474 },
7475 {
7476 .hook = selinux_ip_output,
7477 .pf = NFPROTO_IPV4,
7478 .hooknum = NF_INET_LOCAL_OUT,
7479 .priority = NF_IP_PRI_SELINUX_FIRST,
7480 },
7481#if IS_ENABLED(CONFIG_IPV6)
7482 {
7483 .hook = selinux_ip_postroute,
7484 .pf = NFPROTO_IPV6,
7485 .hooknum = NF_INET_POST_ROUTING,
7486 .priority = NF_IP6_PRI_SELINUX_LAST,
7487 },
7488 {
7489 .hook = selinux_ip_forward,
7490 .pf = NFPROTO_IPV6,
7491 .hooknum = NF_INET_FORWARD,
7492 .priority = NF_IP6_PRI_SELINUX_FIRST,
7493 },
7494 {
7495 .hook = selinux_ip_output,
7496 .pf = NFPROTO_IPV6,
7497 .hooknum = NF_INET_LOCAL_OUT,
7498 .priority = NF_IP6_PRI_SELINUX_FIRST,
7499 },
7500#endif /* IPV6 */
7501};
7502
7503static int __net_init selinux_nf_register(struct net *net)
7504{
7505 return nf_register_net_hooks(net, selinux_nf_ops,
7506 ARRAY_SIZE(selinux_nf_ops));
7507}
7508
7509static void __net_exit selinux_nf_unregister(struct net *net)
7510{
7511 nf_unregister_net_hooks(net, selinux_nf_ops,
7512 ARRAY_SIZE(selinux_nf_ops));
7513}
7514
7515static struct pernet_operations selinux_net_ops = {
7516 .init = selinux_nf_register,
7517 .exit = selinux_nf_unregister,
7518};
7519
7520static int __init selinux_nf_ip_init(void)
7521{
7522 int err;
7523
7524 if (!selinux_enabled_boot)
7525 return 0;
7526
7527 pr_debug("SELinux: Registering netfilter hooks\n");
7528
7529 err = register_pernet_subsys(&selinux_net_ops);
7530 if (err)
7531 panic("SELinux: register_pernet_subsys: error %d\n", err);
7532
7533 return 0;
7534}
7535__initcall(selinux_nf_ip_init);
7536#endif /* CONFIG_NETFILTER */
1/*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26#include <linux/init.h>
27#include <linux/kd.h>
28#include <linux/kernel.h>
29#include <linux/tracehook.h>
30#include <linux/errno.h>
31#include <linux/ext2_fs.h>
32#include <linux/sched.h>
33#include <linux/security.h>
34#include <linux/xattr.h>
35#include <linux/capability.h>
36#include <linux/unistd.h>
37#include <linux/mm.h>
38#include <linux/mman.h>
39#include <linux/slab.h>
40#include <linux/pagemap.h>
41#include <linux/proc_fs.h>
42#include <linux/swap.h>
43#include <linux/spinlock.h>
44#include <linux/syscalls.h>
45#include <linux/dcache.h>
46#include <linux/file.h>
47#include <linux/fdtable.h>
48#include <linux/namei.h>
49#include <linux/mount.h>
50#include <linux/netfilter_ipv4.h>
51#include <linux/netfilter_ipv6.h>
52#include <linux/tty.h>
53#include <net/icmp.h>
54#include <net/ip.h> /* for local_port_range[] */
55#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56#include <net/net_namespace.h>
57#include <net/netlabel.h>
58#include <linux/uaccess.h>
59#include <asm/ioctls.h>
60#include <linux/atomic.h>
61#include <linux/bitops.h>
62#include <linux/interrupt.h>
63#include <linux/netdevice.h> /* for network interface checks */
64#include <linux/netlink.h>
65#include <linux/tcp.h>
66#include <linux/udp.h>
67#include <linux/dccp.h>
68#include <linux/quota.h>
69#include <linux/un.h> /* for Unix socket types */
70#include <net/af_unix.h> /* for Unix socket types */
71#include <linux/parser.h>
72#include <linux/nfs_mount.h>
73#include <net/ipv6.h>
74#include <linux/hugetlb.h>
75#include <linux/personality.h>
76#include <linux/audit.h>
77#include <linux/string.h>
78#include <linux/selinux.h>
79#include <linux/mutex.h>
80#include <linux/posix-timers.h>
81#include <linux/syslog.h>
82#include <linux/user_namespace.h>
83
84#include "avc.h"
85#include "objsec.h"
86#include "netif.h"
87#include "netnode.h"
88#include "netport.h"
89#include "xfrm.h"
90#include "netlabel.h"
91#include "audit.h"
92
93#define NUM_SEL_MNT_OPTS 5
94
95extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96extern struct security_operations *security_ops;
97
98/* SECMARK reference count */
99atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102int selinux_enforcing;
103
104static int __init enforcing_setup(char *str)
105{
106 unsigned long enforcing;
107 if (!strict_strtoul(str, 0, &enforcing))
108 selinux_enforcing = enforcing ? 1 : 0;
109 return 1;
110}
111__setup("enforcing=", enforcing_setup);
112#endif
113
114#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116
117static int __init selinux_enabled_setup(char *str)
118{
119 unsigned long enabled;
120 if (!strict_strtoul(str, 0, &enabled))
121 selinux_enabled = enabled ? 1 : 0;
122 return 1;
123}
124__setup("selinux=", selinux_enabled_setup);
125#else
126int selinux_enabled = 1;
127#endif
128
129static struct kmem_cache *sel_inode_cache;
130
131/**
132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
133 *
134 * Description:
135 * This function checks the SECMARK reference counter to see if any SECMARK
136 * targets are currently configured, if the reference counter is greater than
137 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
138 * enabled, false (0) if SECMARK is disabled.
139 *
140 */
141static int selinux_secmark_enabled(void)
142{
143 return (atomic_read(&selinux_secmark_refcount) > 0);
144}
145
146/*
147 * initialise the security for the init task
148 */
149static void cred_init_security(void)
150{
151 struct cred *cred = (struct cred *) current->real_cred;
152 struct task_security_struct *tsec;
153
154 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
155 if (!tsec)
156 panic("SELinux: Failed to initialize initial task.\n");
157
158 tsec->osid = tsec->sid = SECINITSID_KERNEL;
159 cred->security = tsec;
160}
161
162/*
163 * get the security ID of a set of credentials
164 */
165static inline u32 cred_sid(const struct cred *cred)
166{
167 const struct task_security_struct *tsec;
168
169 tsec = cred->security;
170 return tsec->sid;
171}
172
173/*
174 * get the objective security ID of a task
175 */
176static inline u32 task_sid(const struct task_struct *task)
177{
178 u32 sid;
179
180 rcu_read_lock();
181 sid = cred_sid(__task_cred(task));
182 rcu_read_unlock();
183 return sid;
184}
185
186/*
187 * get the subjective security ID of the current task
188 */
189static inline u32 current_sid(void)
190{
191 const struct task_security_struct *tsec = current_security();
192
193 return tsec->sid;
194}
195
196/* Allocate and free functions for each kind of security blob. */
197
198static int inode_alloc_security(struct inode *inode)
199{
200 struct inode_security_struct *isec;
201 u32 sid = current_sid();
202
203 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
204 if (!isec)
205 return -ENOMEM;
206
207 mutex_init(&isec->lock);
208 INIT_LIST_HEAD(&isec->list);
209 isec->inode = inode;
210 isec->sid = SECINITSID_UNLABELED;
211 isec->sclass = SECCLASS_FILE;
212 isec->task_sid = sid;
213 inode->i_security = isec;
214
215 return 0;
216}
217
218static void inode_free_security(struct inode *inode)
219{
220 struct inode_security_struct *isec = inode->i_security;
221 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
222
223 spin_lock(&sbsec->isec_lock);
224 if (!list_empty(&isec->list))
225 list_del_init(&isec->list);
226 spin_unlock(&sbsec->isec_lock);
227
228 inode->i_security = NULL;
229 kmem_cache_free(sel_inode_cache, isec);
230}
231
232static int file_alloc_security(struct file *file)
233{
234 struct file_security_struct *fsec;
235 u32 sid = current_sid();
236
237 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
238 if (!fsec)
239 return -ENOMEM;
240
241 fsec->sid = sid;
242 fsec->fown_sid = sid;
243 file->f_security = fsec;
244
245 return 0;
246}
247
248static void file_free_security(struct file *file)
249{
250 struct file_security_struct *fsec = file->f_security;
251 file->f_security = NULL;
252 kfree(fsec);
253}
254
255static int superblock_alloc_security(struct super_block *sb)
256{
257 struct superblock_security_struct *sbsec;
258
259 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
260 if (!sbsec)
261 return -ENOMEM;
262
263 mutex_init(&sbsec->lock);
264 INIT_LIST_HEAD(&sbsec->isec_head);
265 spin_lock_init(&sbsec->isec_lock);
266 sbsec->sb = sb;
267 sbsec->sid = SECINITSID_UNLABELED;
268 sbsec->def_sid = SECINITSID_FILE;
269 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
270 sb->s_security = sbsec;
271
272 return 0;
273}
274
275static void superblock_free_security(struct super_block *sb)
276{
277 struct superblock_security_struct *sbsec = sb->s_security;
278 sb->s_security = NULL;
279 kfree(sbsec);
280}
281
282/* The security server must be initialized before
283 any labeling or access decisions can be provided. */
284extern int ss_initialized;
285
286/* The file system's label must be initialized prior to use. */
287
288static const char *labeling_behaviors[6] = {
289 "uses xattr",
290 "uses transition SIDs",
291 "uses task SIDs",
292 "uses genfs_contexts",
293 "not configured for labeling",
294 "uses mountpoint labeling",
295};
296
297static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
298
299static inline int inode_doinit(struct inode *inode)
300{
301 return inode_doinit_with_dentry(inode, NULL);
302}
303
304enum {
305 Opt_error = -1,
306 Opt_context = 1,
307 Opt_fscontext = 2,
308 Opt_defcontext = 3,
309 Opt_rootcontext = 4,
310 Opt_labelsupport = 5,
311};
312
313static const match_table_t tokens = {
314 {Opt_context, CONTEXT_STR "%s"},
315 {Opt_fscontext, FSCONTEXT_STR "%s"},
316 {Opt_defcontext, DEFCONTEXT_STR "%s"},
317 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
318 {Opt_labelsupport, LABELSUPP_STR},
319 {Opt_error, NULL},
320};
321
322#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
323
324static int may_context_mount_sb_relabel(u32 sid,
325 struct superblock_security_struct *sbsec,
326 const struct cred *cred)
327{
328 const struct task_security_struct *tsec = cred->security;
329 int rc;
330
331 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
332 FILESYSTEM__RELABELFROM, NULL);
333 if (rc)
334 return rc;
335
336 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
337 FILESYSTEM__RELABELTO, NULL);
338 return rc;
339}
340
341static int may_context_mount_inode_relabel(u32 sid,
342 struct superblock_security_struct *sbsec,
343 const struct cred *cred)
344{
345 const struct task_security_struct *tsec = cred->security;
346 int rc;
347 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
348 FILESYSTEM__RELABELFROM, NULL);
349 if (rc)
350 return rc;
351
352 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
353 FILESYSTEM__ASSOCIATE, NULL);
354 return rc;
355}
356
357static int sb_finish_set_opts(struct super_block *sb)
358{
359 struct superblock_security_struct *sbsec = sb->s_security;
360 struct dentry *root = sb->s_root;
361 struct inode *root_inode = root->d_inode;
362 int rc = 0;
363
364 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
365 /* Make sure that the xattr handler exists and that no
366 error other than -ENODATA is returned by getxattr on
367 the root directory. -ENODATA is ok, as this may be
368 the first boot of the SELinux kernel before we have
369 assigned xattr values to the filesystem. */
370 if (!root_inode->i_op->getxattr) {
371 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
372 "xattr support\n", sb->s_id, sb->s_type->name);
373 rc = -EOPNOTSUPP;
374 goto out;
375 }
376 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
377 if (rc < 0 && rc != -ENODATA) {
378 if (rc == -EOPNOTSUPP)
379 printk(KERN_WARNING "SELinux: (dev %s, type "
380 "%s) has no security xattr handler\n",
381 sb->s_id, sb->s_type->name);
382 else
383 printk(KERN_WARNING "SELinux: (dev %s, type "
384 "%s) getxattr errno %d\n", sb->s_id,
385 sb->s_type->name, -rc);
386 goto out;
387 }
388 }
389
390 sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
391
392 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
393 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
394 sb->s_id, sb->s_type->name);
395 else
396 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
397 sb->s_id, sb->s_type->name,
398 labeling_behaviors[sbsec->behavior-1]);
399
400 if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
401 sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
402 sbsec->behavior == SECURITY_FS_USE_NONE ||
403 sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
404 sbsec->flags &= ~SE_SBLABELSUPP;
405
406 /* Special handling for sysfs. Is genfs but also has setxattr handler*/
407 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
408 sbsec->flags |= SE_SBLABELSUPP;
409
410 /* Initialize the root inode. */
411 rc = inode_doinit_with_dentry(root_inode, root);
412
413 /* Initialize any other inodes associated with the superblock, e.g.
414 inodes created prior to initial policy load or inodes created
415 during get_sb by a pseudo filesystem that directly
416 populates itself. */
417 spin_lock(&sbsec->isec_lock);
418next_inode:
419 if (!list_empty(&sbsec->isec_head)) {
420 struct inode_security_struct *isec =
421 list_entry(sbsec->isec_head.next,
422 struct inode_security_struct, list);
423 struct inode *inode = isec->inode;
424 spin_unlock(&sbsec->isec_lock);
425 inode = igrab(inode);
426 if (inode) {
427 if (!IS_PRIVATE(inode))
428 inode_doinit(inode);
429 iput(inode);
430 }
431 spin_lock(&sbsec->isec_lock);
432 list_del_init(&isec->list);
433 goto next_inode;
434 }
435 spin_unlock(&sbsec->isec_lock);
436out:
437 return rc;
438}
439
440/*
441 * This function should allow an FS to ask what it's mount security
442 * options were so it can use those later for submounts, displaying
443 * mount options, or whatever.
444 */
445static int selinux_get_mnt_opts(const struct super_block *sb,
446 struct security_mnt_opts *opts)
447{
448 int rc = 0, i;
449 struct superblock_security_struct *sbsec = sb->s_security;
450 char *context = NULL;
451 u32 len;
452 char tmp;
453
454 security_init_mnt_opts(opts);
455
456 if (!(sbsec->flags & SE_SBINITIALIZED))
457 return -EINVAL;
458
459 if (!ss_initialized)
460 return -EINVAL;
461
462 tmp = sbsec->flags & SE_MNTMASK;
463 /* count the number of mount options for this sb */
464 for (i = 0; i < 8; i++) {
465 if (tmp & 0x01)
466 opts->num_mnt_opts++;
467 tmp >>= 1;
468 }
469 /* Check if the Label support flag is set */
470 if (sbsec->flags & SE_SBLABELSUPP)
471 opts->num_mnt_opts++;
472
473 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
474 if (!opts->mnt_opts) {
475 rc = -ENOMEM;
476 goto out_free;
477 }
478
479 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
480 if (!opts->mnt_opts_flags) {
481 rc = -ENOMEM;
482 goto out_free;
483 }
484
485 i = 0;
486 if (sbsec->flags & FSCONTEXT_MNT) {
487 rc = security_sid_to_context(sbsec->sid, &context, &len);
488 if (rc)
489 goto out_free;
490 opts->mnt_opts[i] = context;
491 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
492 }
493 if (sbsec->flags & CONTEXT_MNT) {
494 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
495 if (rc)
496 goto out_free;
497 opts->mnt_opts[i] = context;
498 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
499 }
500 if (sbsec->flags & DEFCONTEXT_MNT) {
501 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
502 if (rc)
503 goto out_free;
504 opts->mnt_opts[i] = context;
505 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
506 }
507 if (sbsec->flags & ROOTCONTEXT_MNT) {
508 struct inode *root = sbsec->sb->s_root->d_inode;
509 struct inode_security_struct *isec = root->i_security;
510
511 rc = security_sid_to_context(isec->sid, &context, &len);
512 if (rc)
513 goto out_free;
514 opts->mnt_opts[i] = context;
515 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
516 }
517 if (sbsec->flags & SE_SBLABELSUPP) {
518 opts->mnt_opts[i] = NULL;
519 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
520 }
521
522 BUG_ON(i != opts->num_mnt_opts);
523
524 return 0;
525
526out_free:
527 security_free_mnt_opts(opts);
528 return rc;
529}
530
531static int bad_option(struct superblock_security_struct *sbsec, char flag,
532 u32 old_sid, u32 new_sid)
533{
534 char mnt_flags = sbsec->flags & SE_MNTMASK;
535
536 /* check if the old mount command had the same options */
537 if (sbsec->flags & SE_SBINITIALIZED)
538 if (!(sbsec->flags & flag) ||
539 (old_sid != new_sid))
540 return 1;
541
542 /* check if we were passed the same options twice,
543 * aka someone passed context=a,context=b
544 */
545 if (!(sbsec->flags & SE_SBINITIALIZED))
546 if (mnt_flags & flag)
547 return 1;
548 return 0;
549}
550
551/*
552 * Allow filesystems with binary mount data to explicitly set mount point
553 * labeling information.
554 */
555static int selinux_set_mnt_opts(struct super_block *sb,
556 struct security_mnt_opts *opts)
557{
558 const struct cred *cred = current_cred();
559 int rc = 0, i;
560 struct superblock_security_struct *sbsec = sb->s_security;
561 const char *name = sb->s_type->name;
562 struct inode *inode = sbsec->sb->s_root->d_inode;
563 struct inode_security_struct *root_isec = inode->i_security;
564 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
565 u32 defcontext_sid = 0;
566 char **mount_options = opts->mnt_opts;
567 int *flags = opts->mnt_opts_flags;
568 int num_opts = opts->num_mnt_opts;
569
570 mutex_lock(&sbsec->lock);
571
572 if (!ss_initialized) {
573 if (!num_opts) {
574 /* Defer initialization until selinux_complete_init,
575 after the initial policy is loaded and the security
576 server is ready to handle calls. */
577 goto out;
578 }
579 rc = -EINVAL;
580 printk(KERN_WARNING "SELinux: Unable to set superblock options "
581 "before the security server is initialized\n");
582 goto out;
583 }
584
585 /*
586 * Binary mount data FS will come through this function twice. Once
587 * from an explicit call and once from the generic calls from the vfs.
588 * Since the generic VFS calls will not contain any security mount data
589 * we need to skip the double mount verification.
590 *
591 * This does open a hole in which we will not notice if the first
592 * mount using this sb set explict options and a second mount using
593 * this sb does not set any security options. (The first options
594 * will be used for both mounts)
595 */
596 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
597 && (num_opts == 0))
598 goto out;
599
600 /*
601 * parse the mount options, check if they are valid sids.
602 * also check if someone is trying to mount the same sb more
603 * than once with different security options.
604 */
605 for (i = 0; i < num_opts; i++) {
606 u32 sid;
607
608 if (flags[i] == SE_SBLABELSUPP)
609 continue;
610 rc = security_context_to_sid(mount_options[i],
611 strlen(mount_options[i]), &sid);
612 if (rc) {
613 printk(KERN_WARNING "SELinux: security_context_to_sid"
614 "(%s) failed for (dev %s, type %s) errno=%d\n",
615 mount_options[i], sb->s_id, name, rc);
616 goto out;
617 }
618 switch (flags[i]) {
619 case FSCONTEXT_MNT:
620 fscontext_sid = sid;
621
622 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
623 fscontext_sid))
624 goto out_double_mount;
625
626 sbsec->flags |= FSCONTEXT_MNT;
627 break;
628 case CONTEXT_MNT:
629 context_sid = sid;
630
631 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
632 context_sid))
633 goto out_double_mount;
634
635 sbsec->flags |= CONTEXT_MNT;
636 break;
637 case ROOTCONTEXT_MNT:
638 rootcontext_sid = sid;
639
640 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
641 rootcontext_sid))
642 goto out_double_mount;
643
644 sbsec->flags |= ROOTCONTEXT_MNT;
645
646 break;
647 case DEFCONTEXT_MNT:
648 defcontext_sid = sid;
649
650 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
651 defcontext_sid))
652 goto out_double_mount;
653
654 sbsec->flags |= DEFCONTEXT_MNT;
655
656 break;
657 default:
658 rc = -EINVAL;
659 goto out;
660 }
661 }
662
663 if (sbsec->flags & SE_SBINITIALIZED) {
664 /* previously mounted with options, but not on this attempt? */
665 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
666 goto out_double_mount;
667 rc = 0;
668 goto out;
669 }
670
671 if (strcmp(sb->s_type->name, "proc") == 0)
672 sbsec->flags |= SE_SBPROC;
673
674 /* Determine the labeling behavior to use for this filesystem type. */
675 rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
676 if (rc) {
677 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
678 __func__, sb->s_type->name, rc);
679 goto out;
680 }
681
682 /* sets the context of the superblock for the fs being mounted. */
683 if (fscontext_sid) {
684 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
685 if (rc)
686 goto out;
687
688 sbsec->sid = fscontext_sid;
689 }
690
691 /*
692 * Switch to using mount point labeling behavior.
693 * sets the label used on all file below the mountpoint, and will set
694 * the superblock context if not already set.
695 */
696 if (context_sid) {
697 if (!fscontext_sid) {
698 rc = may_context_mount_sb_relabel(context_sid, sbsec,
699 cred);
700 if (rc)
701 goto out;
702 sbsec->sid = context_sid;
703 } else {
704 rc = may_context_mount_inode_relabel(context_sid, sbsec,
705 cred);
706 if (rc)
707 goto out;
708 }
709 if (!rootcontext_sid)
710 rootcontext_sid = context_sid;
711
712 sbsec->mntpoint_sid = context_sid;
713 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
714 }
715
716 if (rootcontext_sid) {
717 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
718 cred);
719 if (rc)
720 goto out;
721
722 root_isec->sid = rootcontext_sid;
723 root_isec->initialized = 1;
724 }
725
726 if (defcontext_sid) {
727 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
728 rc = -EINVAL;
729 printk(KERN_WARNING "SELinux: defcontext option is "
730 "invalid for this filesystem type\n");
731 goto out;
732 }
733
734 if (defcontext_sid != sbsec->def_sid) {
735 rc = may_context_mount_inode_relabel(defcontext_sid,
736 sbsec, cred);
737 if (rc)
738 goto out;
739 }
740
741 sbsec->def_sid = defcontext_sid;
742 }
743
744 rc = sb_finish_set_opts(sb);
745out:
746 mutex_unlock(&sbsec->lock);
747 return rc;
748out_double_mount:
749 rc = -EINVAL;
750 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
751 "security settings for (dev %s, type %s)\n", sb->s_id, name);
752 goto out;
753}
754
755static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
756 struct super_block *newsb)
757{
758 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
759 struct superblock_security_struct *newsbsec = newsb->s_security;
760
761 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
762 int set_context = (oldsbsec->flags & CONTEXT_MNT);
763 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
764
765 /*
766 * if the parent was able to be mounted it clearly had no special lsm
767 * mount options. thus we can safely deal with this superblock later
768 */
769 if (!ss_initialized)
770 return;
771
772 /* how can we clone if the old one wasn't set up?? */
773 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
774
775 /* if fs is reusing a sb, just let its options stand... */
776 if (newsbsec->flags & SE_SBINITIALIZED)
777 return;
778
779 mutex_lock(&newsbsec->lock);
780
781 newsbsec->flags = oldsbsec->flags;
782
783 newsbsec->sid = oldsbsec->sid;
784 newsbsec->def_sid = oldsbsec->def_sid;
785 newsbsec->behavior = oldsbsec->behavior;
786
787 if (set_context) {
788 u32 sid = oldsbsec->mntpoint_sid;
789
790 if (!set_fscontext)
791 newsbsec->sid = sid;
792 if (!set_rootcontext) {
793 struct inode *newinode = newsb->s_root->d_inode;
794 struct inode_security_struct *newisec = newinode->i_security;
795 newisec->sid = sid;
796 }
797 newsbsec->mntpoint_sid = sid;
798 }
799 if (set_rootcontext) {
800 const struct inode *oldinode = oldsb->s_root->d_inode;
801 const struct inode_security_struct *oldisec = oldinode->i_security;
802 struct inode *newinode = newsb->s_root->d_inode;
803 struct inode_security_struct *newisec = newinode->i_security;
804
805 newisec->sid = oldisec->sid;
806 }
807
808 sb_finish_set_opts(newsb);
809 mutex_unlock(&newsbsec->lock);
810}
811
812static int selinux_parse_opts_str(char *options,
813 struct security_mnt_opts *opts)
814{
815 char *p;
816 char *context = NULL, *defcontext = NULL;
817 char *fscontext = NULL, *rootcontext = NULL;
818 int rc, num_mnt_opts = 0;
819
820 opts->num_mnt_opts = 0;
821
822 /* Standard string-based options. */
823 while ((p = strsep(&options, "|")) != NULL) {
824 int token;
825 substring_t args[MAX_OPT_ARGS];
826
827 if (!*p)
828 continue;
829
830 token = match_token(p, tokens, args);
831
832 switch (token) {
833 case Opt_context:
834 if (context || defcontext) {
835 rc = -EINVAL;
836 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
837 goto out_err;
838 }
839 context = match_strdup(&args[0]);
840 if (!context) {
841 rc = -ENOMEM;
842 goto out_err;
843 }
844 break;
845
846 case Opt_fscontext:
847 if (fscontext) {
848 rc = -EINVAL;
849 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
850 goto out_err;
851 }
852 fscontext = match_strdup(&args[0]);
853 if (!fscontext) {
854 rc = -ENOMEM;
855 goto out_err;
856 }
857 break;
858
859 case Opt_rootcontext:
860 if (rootcontext) {
861 rc = -EINVAL;
862 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
863 goto out_err;
864 }
865 rootcontext = match_strdup(&args[0]);
866 if (!rootcontext) {
867 rc = -ENOMEM;
868 goto out_err;
869 }
870 break;
871
872 case Opt_defcontext:
873 if (context || defcontext) {
874 rc = -EINVAL;
875 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
876 goto out_err;
877 }
878 defcontext = match_strdup(&args[0]);
879 if (!defcontext) {
880 rc = -ENOMEM;
881 goto out_err;
882 }
883 break;
884 case Opt_labelsupport:
885 break;
886 default:
887 rc = -EINVAL;
888 printk(KERN_WARNING "SELinux: unknown mount option\n");
889 goto out_err;
890
891 }
892 }
893
894 rc = -ENOMEM;
895 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
896 if (!opts->mnt_opts)
897 goto out_err;
898
899 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
900 if (!opts->mnt_opts_flags) {
901 kfree(opts->mnt_opts);
902 goto out_err;
903 }
904
905 if (fscontext) {
906 opts->mnt_opts[num_mnt_opts] = fscontext;
907 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
908 }
909 if (context) {
910 opts->mnt_opts[num_mnt_opts] = context;
911 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
912 }
913 if (rootcontext) {
914 opts->mnt_opts[num_mnt_opts] = rootcontext;
915 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
916 }
917 if (defcontext) {
918 opts->mnt_opts[num_mnt_opts] = defcontext;
919 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
920 }
921
922 opts->num_mnt_opts = num_mnt_opts;
923 return 0;
924
925out_err:
926 kfree(context);
927 kfree(defcontext);
928 kfree(fscontext);
929 kfree(rootcontext);
930 return rc;
931}
932/*
933 * string mount options parsing and call set the sbsec
934 */
935static int superblock_doinit(struct super_block *sb, void *data)
936{
937 int rc = 0;
938 char *options = data;
939 struct security_mnt_opts opts;
940
941 security_init_mnt_opts(&opts);
942
943 if (!data)
944 goto out;
945
946 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
947
948 rc = selinux_parse_opts_str(options, &opts);
949 if (rc)
950 goto out_err;
951
952out:
953 rc = selinux_set_mnt_opts(sb, &opts);
954
955out_err:
956 security_free_mnt_opts(&opts);
957 return rc;
958}
959
960static void selinux_write_opts(struct seq_file *m,
961 struct security_mnt_opts *opts)
962{
963 int i;
964 char *prefix;
965
966 for (i = 0; i < opts->num_mnt_opts; i++) {
967 char *has_comma;
968
969 if (opts->mnt_opts[i])
970 has_comma = strchr(opts->mnt_opts[i], ',');
971 else
972 has_comma = NULL;
973
974 switch (opts->mnt_opts_flags[i]) {
975 case CONTEXT_MNT:
976 prefix = CONTEXT_STR;
977 break;
978 case FSCONTEXT_MNT:
979 prefix = FSCONTEXT_STR;
980 break;
981 case ROOTCONTEXT_MNT:
982 prefix = ROOTCONTEXT_STR;
983 break;
984 case DEFCONTEXT_MNT:
985 prefix = DEFCONTEXT_STR;
986 break;
987 case SE_SBLABELSUPP:
988 seq_putc(m, ',');
989 seq_puts(m, LABELSUPP_STR);
990 continue;
991 default:
992 BUG();
993 return;
994 };
995 /* we need a comma before each option */
996 seq_putc(m, ',');
997 seq_puts(m, prefix);
998 if (has_comma)
999 seq_putc(m, '\"');
1000 seq_puts(m, opts->mnt_opts[i]);
1001 if (has_comma)
1002 seq_putc(m, '\"');
1003 }
1004}
1005
1006static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1007{
1008 struct security_mnt_opts opts;
1009 int rc;
1010
1011 rc = selinux_get_mnt_opts(sb, &opts);
1012 if (rc) {
1013 /* before policy load we may get EINVAL, don't show anything */
1014 if (rc == -EINVAL)
1015 rc = 0;
1016 return rc;
1017 }
1018
1019 selinux_write_opts(m, &opts);
1020
1021 security_free_mnt_opts(&opts);
1022
1023 return rc;
1024}
1025
1026static inline u16 inode_mode_to_security_class(umode_t mode)
1027{
1028 switch (mode & S_IFMT) {
1029 case S_IFSOCK:
1030 return SECCLASS_SOCK_FILE;
1031 case S_IFLNK:
1032 return SECCLASS_LNK_FILE;
1033 case S_IFREG:
1034 return SECCLASS_FILE;
1035 case S_IFBLK:
1036 return SECCLASS_BLK_FILE;
1037 case S_IFDIR:
1038 return SECCLASS_DIR;
1039 case S_IFCHR:
1040 return SECCLASS_CHR_FILE;
1041 case S_IFIFO:
1042 return SECCLASS_FIFO_FILE;
1043
1044 }
1045
1046 return SECCLASS_FILE;
1047}
1048
1049static inline int default_protocol_stream(int protocol)
1050{
1051 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1052}
1053
1054static inline int default_protocol_dgram(int protocol)
1055{
1056 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1057}
1058
1059static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1060{
1061 switch (family) {
1062 case PF_UNIX:
1063 switch (type) {
1064 case SOCK_STREAM:
1065 case SOCK_SEQPACKET:
1066 return SECCLASS_UNIX_STREAM_SOCKET;
1067 case SOCK_DGRAM:
1068 return SECCLASS_UNIX_DGRAM_SOCKET;
1069 }
1070 break;
1071 case PF_INET:
1072 case PF_INET6:
1073 switch (type) {
1074 case SOCK_STREAM:
1075 if (default_protocol_stream(protocol))
1076 return SECCLASS_TCP_SOCKET;
1077 else
1078 return SECCLASS_RAWIP_SOCKET;
1079 case SOCK_DGRAM:
1080 if (default_protocol_dgram(protocol))
1081 return SECCLASS_UDP_SOCKET;
1082 else
1083 return SECCLASS_RAWIP_SOCKET;
1084 case SOCK_DCCP:
1085 return SECCLASS_DCCP_SOCKET;
1086 default:
1087 return SECCLASS_RAWIP_SOCKET;
1088 }
1089 break;
1090 case PF_NETLINK:
1091 switch (protocol) {
1092 case NETLINK_ROUTE:
1093 return SECCLASS_NETLINK_ROUTE_SOCKET;
1094 case NETLINK_FIREWALL:
1095 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1096 case NETLINK_INET_DIAG:
1097 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1098 case NETLINK_NFLOG:
1099 return SECCLASS_NETLINK_NFLOG_SOCKET;
1100 case NETLINK_XFRM:
1101 return SECCLASS_NETLINK_XFRM_SOCKET;
1102 case NETLINK_SELINUX:
1103 return SECCLASS_NETLINK_SELINUX_SOCKET;
1104 case NETLINK_AUDIT:
1105 return SECCLASS_NETLINK_AUDIT_SOCKET;
1106 case NETLINK_IP6_FW:
1107 return SECCLASS_NETLINK_IP6FW_SOCKET;
1108 case NETLINK_DNRTMSG:
1109 return SECCLASS_NETLINK_DNRT_SOCKET;
1110 case NETLINK_KOBJECT_UEVENT:
1111 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1112 default:
1113 return SECCLASS_NETLINK_SOCKET;
1114 }
1115 case PF_PACKET:
1116 return SECCLASS_PACKET_SOCKET;
1117 case PF_KEY:
1118 return SECCLASS_KEY_SOCKET;
1119 case PF_APPLETALK:
1120 return SECCLASS_APPLETALK_SOCKET;
1121 }
1122
1123 return SECCLASS_SOCKET;
1124}
1125
1126#ifdef CONFIG_PROC_FS
1127static int selinux_proc_get_sid(struct dentry *dentry,
1128 u16 tclass,
1129 u32 *sid)
1130{
1131 int rc;
1132 char *buffer, *path;
1133
1134 buffer = (char *)__get_free_page(GFP_KERNEL);
1135 if (!buffer)
1136 return -ENOMEM;
1137
1138 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1139 if (IS_ERR(path))
1140 rc = PTR_ERR(path);
1141 else {
1142 /* each process gets a /proc/PID/ entry. Strip off the
1143 * PID part to get a valid selinux labeling.
1144 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1145 while (path[1] >= '0' && path[1] <= '9') {
1146 path[1] = '/';
1147 path++;
1148 }
1149 rc = security_genfs_sid("proc", path, tclass, sid);
1150 }
1151 free_page((unsigned long)buffer);
1152 return rc;
1153}
1154#else
1155static int selinux_proc_get_sid(struct dentry *dentry,
1156 u16 tclass,
1157 u32 *sid)
1158{
1159 return -EINVAL;
1160}
1161#endif
1162
1163/* The inode's security attributes must be initialized before first use. */
1164static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1165{
1166 struct superblock_security_struct *sbsec = NULL;
1167 struct inode_security_struct *isec = inode->i_security;
1168 u32 sid;
1169 struct dentry *dentry;
1170#define INITCONTEXTLEN 255
1171 char *context = NULL;
1172 unsigned len = 0;
1173 int rc = 0;
1174
1175 if (isec->initialized)
1176 goto out;
1177
1178 mutex_lock(&isec->lock);
1179 if (isec->initialized)
1180 goto out_unlock;
1181
1182 sbsec = inode->i_sb->s_security;
1183 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1184 /* Defer initialization until selinux_complete_init,
1185 after the initial policy is loaded and the security
1186 server is ready to handle calls. */
1187 spin_lock(&sbsec->isec_lock);
1188 if (list_empty(&isec->list))
1189 list_add(&isec->list, &sbsec->isec_head);
1190 spin_unlock(&sbsec->isec_lock);
1191 goto out_unlock;
1192 }
1193
1194 switch (sbsec->behavior) {
1195 case SECURITY_FS_USE_XATTR:
1196 if (!inode->i_op->getxattr) {
1197 isec->sid = sbsec->def_sid;
1198 break;
1199 }
1200
1201 /* Need a dentry, since the xattr API requires one.
1202 Life would be simpler if we could just pass the inode. */
1203 if (opt_dentry) {
1204 /* Called from d_instantiate or d_splice_alias. */
1205 dentry = dget(opt_dentry);
1206 } else {
1207 /* Called from selinux_complete_init, try to find a dentry. */
1208 dentry = d_find_alias(inode);
1209 }
1210 if (!dentry) {
1211 /*
1212 * this is can be hit on boot when a file is accessed
1213 * before the policy is loaded. When we load policy we
1214 * may find inodes that have no dentry on the
1215 * sbsec->isec_head list. No reason to complain as these
1216 * will get fixed up the next time we go through
1217 * inode_doinit with a dentry, before these inodes could
1218 * be used again by userspace.
1219 */
1220 goto out_unlock;
1221 }
1222
1223 len = INITCONTEXTLEN;
1224 context = kmalloc(len+1, GFP_NOFS);
1225 if (!context) {
1226 rc = -ENOMEM;
1227 dput(dentry);
1228 goto out_unlock;
1229 }
1230 context[len] = '\0';
1231 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1232 context, len);
1233 if (rc == -ERANGE) {
1234 kfree(context);
1235
1236 /* Need a larger buffer. Query for the right size. */
1237 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1238 NULL, 0);
1239 if (rc < 0) {
1240 dput(dentry);
1241 goto out_unlock;
1242 }
1243 len = rc;
1244 context = kmalloc(len+1, GFP_NOFS);
1245 if (!context) {
1246 rc = -ENOMEM;
1247 dput(dentry);
1248 goto out_unlock;
1249 }
1250 context[len] = '\0';
1251 rc = inode->i_op->getxattr(dentry,
1252 XATTR_NAME_SELINUX,
1253 context, len);
1254 }
1255 dput(dentry);
1256 if (rc < 0) {
1257 if (rc != -ENODATA) {
1258 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1259 "%d for dev=%s ino=%ld\n", __func__,
1260 -rc, inode->i_sb->s_id, inode->i_ino);
1261 kfree(context);
1262 goto out_unlock;
1263 }
1264 /* Map ENODATA to the default file SID */
1265 sid = sbsec->def_sid;
1266 rc = 0;
1267 } else {
1268 rc = security_context_to_sid_default(context, rc, &sid,
1269 sbsec->def_sid,
1270 GFP_NOFS);
1271 if (rc) {
1272 char *dev = inode->i_sb->s_id;
1273 unsigned long ino = inode->i_ino;
1274
1275 if (rc == -EINVAL) {
1276 if (printk_ratelimit())
1277 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1278 "context=%s. This indicates you may need to relabel the inode or the "
1279 "filesystem in question.\n", ino, dev, context);
1280 } else {
1281 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1282 "returned %d for dev=%s ino=%ld\n",
1283 __func__, context, -rc, dev, ino);
1284 }
1285 kfree(context);
1286 /* Leave with the unlabeled SID */
1287 rc = 0;
1288 break;
1289 }
1290 }
1291 kfree(context);
1292 isec->sid = sid;
1293 break;
1294 case SECURITY_FS_USE_TASK:
1295 isec->sid = isec->task_sid;
1296 break;
1297 case SECURITY_FS_USE_TRANS:
1298 /* Default to the fs SID. */
1299 isec->sid = sbsec->sid;
1300
1301 /* Try to obtain a transition SID. */
1302 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1303 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1304 isec->sclass, NULL, &sid);
1305 if (rc)
1306 goto out_unlock;
1307 isec->sid = sid;
1308 break;
1309 case SECURITY_FS_USE_MNTPOINT:
1310 isec->sid = sbsec->mntpoint_sid;
1311 break;
1312 default:
1313 /* Default to the fs superblock SID. */
1314 isec->sid = sbsec->sid;
1315
1316 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1317 if (opt_dentry) {
1318 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1319 rc = selinux_proc_get_sid(opt_dentry,
1320 isec->sclass,
1321 &sid);
1322 if (rc)
1323 goto out_unlock;
1324 isec->sid = sid;
1325 }
1326 }
1327 break;
1328 }
1329
1330 isec->initialized = 1;
1331
1332out_unlock:
1333 mutex_unlock(&isec->lock);
1334out:
1335 if (isec->sclass == SECCLASS_FILE)
1336 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1337 return rc;
1338}
1339
1340/* Convert a Linux signal to an access vector. */
1341static inline u32 signal_to_av(int sig)
1342{
1343 u32 perm = 0;
1344
1345 switch (sig) {
1346 case SIGCHLD:
1347 /* Commonly granted from child to parent. */
1348 perm = PROCESS__SIGCHLD;
1349 break;
1350 case SIGKILL:
1351 /* Cannot be caught or ignored */
1352 perm = PROCESS__SIGKILL;
1353 break;
1354 case SIGSTOP:
1355 /* Cannot be caught or ignored */
1356 perm = PROCESS__SIGSTOP;
1357 break;
1358 default:
1359 /* All other signals. */
1360 perm = PROCESS__SIGNAL;
1361 break;
1362 }
1363
1364 return perm;
1365}
1366
1367/*
1368 * Check permission between a pair of credentials
1369 * fork check, ptrace check, etc.
1370 */
1371static int cred_has_perm(const struct cred *actor,
1372 const struct cred *target,
1373 u32 perms)
1374{
1375 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1376
1377 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1378}
1379
1380/*
1381 * Check permission between a pair of tasks, e.g. signal checks,
1382 * fork check, ptrace check, etc.
1383 * tsk1 is the actor and tsk2 is the target
1384 * - this uses the default subjective creds of tsk1
1385 */
1386static int task_has_perm(const struct task_struct *tsk1,
1387 const struct task_struct *tsk2,
1388 u32 perms)
1389{
1390 const struct task_security_struct *__tsec1, *__tsec2;
1391 u32 sid1, sid2;
1392
1393 rcu_read_lock();
1394 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1395 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1396 rcu_read_unlock();
1397 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1398}
1399
1400/*
1401 * Check permission between current and another task, e.g. signal checks,
1402 * fork check, ptrace check, etc.
1403 * current is the actor and tsk2 is the target
1404 * - this uses current's subjective creds
1405 */
1406static int current_has_perm(const struct task_struct *tsk,
1407 u32 perms)
1408{
1409 u32 sid, tsid;
1410
1411 sid = current_sid();
1412 tsid = task_sid(tsk);
1413 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1414}
1415
1416#if CAP_LAST_CAP > 63
1417#error Fix SELinux to handle capabilities > 63.
1418#endif
1419
1420/* Check whether a task is allowed to use a capability. */
1421static int task_has_capability(struct task_struct *tsk,
1422 const struct cred *cred,
1423 int cap, int audit)
1424{
1425 struct common_audit_data ad;
1426 struct av_decision avd;
1427 u16 sclass;
1428 u32 sid = cred_sid(cred);
1429 u32 av = CAP_TO_MASK(cap);
1430 int rc;
1431
1432 COMMON_AUDIT_DATA_INIT(&ad, CAP);
1433 ad.tsk = tsk;
1434 ad.u.cap = cap;
1435
1436 switch (CAP_TO_INDEX(cap)) {
1437 case 0:
1438 sclass = SECCLASS_CAPABILITY;
1439 break;
1440 case 1:
1441 sclass = SECCLASS_CAPABILITY2;
1442 break;
1443 default:
1444 printk(KERN_ERR
1445 "SELinux: out of range capability %d\n", cap);
1446 BUG();
1447 return -EINVAL;
1448 }
1449
1450 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1451 if (audit == SECURITY_CAP_AUDIT) {
1452 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1453 if (rc2)
1454 return rc2;
1455 }
1456 return rc;
1457}
1458
1459/* Check whether a task is allowed to use a system operation. */
1460static int task_has_system(struct task_struct *tsk,
1461 u32 perms)
1462{
1463 u32 sid = task_sid(tsk);
1464
1465 return avc_has_perm(sid, SECINITSID_KERNEL,
1466 SECCLASS_SYSTEM, perms, NULL);
1467}
1468
1469/* Check whether a task has a particular permission to an inode.
1470 The 'adp' parameter is optional and allows other audit
1471 data to be passed (e.g. the dentry). */
1472static int inode_has_perm(const struct cred *cred,
1473 struct inode *inode,
1474 u32 perms,
1475 struct common_audit_data *adp,
1476 unsigned flags)
1477{
1478 struct inode_security_struct *isec;
1479 u32 sid;
1480
1481 validate_creds(cred);
1482
1483 if (unlikely(IS_PRIVATE(inode)))
1484 return 0;
1485
1486 sid = cred_sid(cred);
1487 isec = inode->i_security;
1488
1489 return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1490}
1491
1492static int inode_has_perm_noadp(const struct cred *cred,
1493 struct inode *inode,
1494 u32 perms,
1495 unsigned flags)
1496{
1497 struct common_audit_data ad;
1498
1499 COMMON_AUDIT_DATA_INIT(&ad, INODE);
1500 ad.u.inode = inode;
1501 return inode_has_perm(cred, inode, perms, &ad, flags);
1502}
1503
1504/* Same as inode_has_perm, but pass explicit audit data containing
1505 the dentry to help the auditing code to more easily generate the
1506 pathname if needed. */
1507static inline int dentry_has_perm(const struct cred *cred,
1508 struct dentry *dentry,
1509 u32 av)
1510{
1511 struct inode *inode = dentry->d_inode;
1512 struct common_audit_data ad;
1513
1514 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1515 ad.u.dentry = dentry;
1516 return inode_has_perm(cred, inode, av, &ad, 0);
1517}
1518
1519/* Same as inode_has_perm, but pass explicit audit data containing
1520 the path to help the auditing code to more easily generate the
1521 pathname if needed. */
1522static inline int path_has_perm(const struct cred *cred,
1523 struct path *path,
1524 u32 av)
1525{
1526 struct inode *inode = path->dentry->d_inode;
1527 struct common_audit_data ad;
1528
1529 COMMON_AUDIT_DATA_INIT(&ad, PATH);
1530 ad.u.path = *path;
1531 return inode_has_perm(cred, inode, av, &ad, 0);
1532}
1533
1534/* Check whether a task can use an open file descriptor to
1535 access an inode in a given way. Check access to the
1536 descriptor itself, and then use dentry_has_perm to
1537 check a particular permission to the file.
1538 Access to the descriptor is implicitly granted if it
1539 has the same SID as the process. If av is zero, then
1540 access to the file is not checked, e.g. for cases
1541 where only the descriptor is affected like seek. */
1542static int file_has_perm(const struct cred *cred,
1543 struct file *file,
1544 u32 av)
1545{
1546 struct file_security_struct *fsec = file->f_security;
1547 struct inode *inode = file->f_path.dentry->d_inode;
1548 struct common_audit_data ad;
1549 u32 sid = cred_sid(cred);
1550 int rc;
1551
1552 COMMON_AUDIT_DATA_INIT(&ad, PATH);
1553 ad.u.path = file->f_path;
1554
1555 if (sid != fsec->sid) {
1556 rc = avc_has_perm(sid, fsec->sid,
1557 SECCLASS_FD,
1558 FD__USE,
1559 &ad);
1560 if (rc)
1561 goto out;
1562 }
1563
1564 /* av is zero if only checking access to the descriptor. */
1565 rc = 0;
1566 if (av)
1567 rc = inode_has_perm(cred, inode, av, &ad, 0);
1568
1569out:
1570 return rc;
1571}
1572
1573/* Check whether a task can create a file. */
1574static int may_create(struct inode *dir,
1575 struct dentry *dentry,
1576 u16 tclass)
1577{
1578 const struct task_security_struct *tsec = current_security();
1579 struct inode_security_struct *dsec;
1580 struct superblock_security_struct *sbsec;
1581 u32 sid, newsid;
1582 struct common_audit_data ad;
1583 int rc;
1584
1585 dsec = dir->i_security;
1586 sbsec = dir->i_sb->s_security;
1587
1588 sid = tsec->sid;
1589 newsid = tsec->create_sid;
1590
1591 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1592 ad.u.dentry = dentry;
1593
1594 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1595 DIR__ADD_NAME | DIR__SEARCH,
1596 &ad);
1597 if (rc)
1598 return rc;
1599
1600 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1601 rc = security_transition_sid(sid, dsec->sid, tclass,
1602 &dentry->d_name, &newsid);
1603 if (rc)
1604 return rc;
1605 }
1606
1607 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1608 if (rc)
1609 return rc;
1610
1611 return avc_has_perm(newsid, sbsec->sid,
1612 SECCLASS_FILESYSTEM,
1613 FILESYSTEM__ASSOCIATE, &ad);
1614}
1615
1616/* Check whether a task can create a key. */
1617static int may_create_key(u32 ksid,
1618 struct task_struct *ctx)
1619{
1620 u32 sid = task_sid(ctx);
1621
1622 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1623}
1624
1625#define MAY_LINK 0
1626#define MAY_UNLINK 1
1627#define MAY_RMDIR 2
1628
1629/* Check whether a task can link, unlink, or rmdir a file/directory. */
1630static int may_link(struct inode *dir,
1631 struct dentry *dentry,
1632 int kind)
1633
1634{
1635 struct inode_security_struct *dsec, *isec;
1636 struct common_audit_data ad;
1637 u32 sid = current_sid();
1638 u32 av;
1639 int rc;
1640
1641 dsec = dir->i_security;
1642 isec = dentry->d_inode->i_security;
1643
1644 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1645 ad.u.dentry = dentry;
1646
1647 av = DIR__SEARCH;
1648 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1649 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1650 if (rc)
1651 return rc;
1652
1653 switch (kind) {
1654 case MAY_LINK:
1655 av = FILE__LINK;
1656 break;
1657 case MAY_UNLINK:
1658 av = FILE__UNLINK;
1659 break;
1660 case MAY_RMDIR:
1661 av = DIR__RMDIR;
1662 break;
1663 default:
1664 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1665 __func__, kind);
1666 return 0;
1667 }
1668
1669 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1670 return rc;
1671}
1672
1673static inline int may_rename(struct inode *old_dir,
1674 struct dentry *old_dentry,
1675 struct inode *new_dir,
1676 struct dentry *new_dentry)
1677{
1678 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1679 struct common_audit_data ad;
1680 u32 sid = current_sid();
1681 u32 av;
1682 int old_is_dir, new_is_dir;
1683 int rc;
1684
1685 old_dsec = old_dir->i_security;
1686 old_isec = old_dentry->d_inode->i_security;
1687 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1688 new_dsec = new_dir->i_security;
1689
1690 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1691
1692 ad.u.dentry = old_dentry;
1693 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1694 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1695 if (rc)
1696 return rc;
1697 rc = avc_has_perm(sid, old_isec->sid,
1698 old_isec->sclass, FILE__RENAME, &ad);
1699 if (rc)
1700 return rc;
1701 if (old_is_dir && new_dir != old_dir) {
1702 rc = avc_has_perm(sid, old_isec->sid,
1703 old_isec->sclass, DIR__REPARENT, &ad);
1704 if (rc)
1705 return rc;
1706 }
1707
1708 ad.u.dentry = new_dentry;
1709 av = DIR__ADD_NAME | DIR__SEARCH;
1710 if (new_dentry->d_inode)
1711 av |= DIR__REMOVE_NAME;
1712 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1713 if (rc)
1714 return rc;
1715 if (new_dentry->d_inode) {
1716 new_isec = new_dentry->d_inode->i_security;
1717 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1718 rc = avc_has_perm(sid, new_isec->sid,
1719 new_isec->sclass,
1720 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1721 if (rc)
1722 return rc;
1723 }
1724
1725 return 0;
1726}
1727
1728/* Check whether a task can perform a filesystem operation. */
1729static int superblock_has_perm(const struct cred *cred,
1730 struct super_block *sb,
1731 u32 perms,
1732 struct common_audit_data *ad)
1733{
1734 struct superblock_security_struct *sbsec;
1735 u32 sid = cred_sid(cred);
1736
1737 sbsec = sb->s_security;
1738 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1739}
1740
1741/* Convert a Linux mode and permission mask to an access vector. */
1742static inline u32 file_mask_to_av(int mode, int mask)
1743{
1744 u32 av = 0;
1745
1746 if ((mode & S_IFMT) != S_IFDIR) {
1747 if (mask & MAY_EXEC)
1748 av |= FILE__EXECUTE;
1749 if (mask & MAY_READ)
1750 av |= FILE__READ;
1751
1752 if (mask & MAY_APPEND)
1753 av |= FILE__APPEND;
1754 else if (mask & MAY_WRITE)
1755 av |= FILE__WRITE;
1756
1757 } else {
1758 if (mask & MAY_EXEC)
1759 av |= DIR__SEARCH;
1760 if (mask & MAY_WRITE)
1761 av |= DIR__WRITE;
1762 if (mask & MAY_READ)
1763 av |= DIR__READ;
1764 }
1765
1766 return av;
1767}
1768
1769/* Convert a Linux file to an access vector. */
1770static inline u32 file_to_av(struct file *file)
1771{
1772 u32 av = 0;
1773
1774 if (file->f_mode & FMODE_READ)
1775 av |= FILE__READ;
1776 if (file->f_mode & FMODE_WRITE) {
1777 if (file->f_flags & O_APPEND)
1778 av |= FILE__APPEND;
1779 else
1780 av |= FILE__WRITE;
1781 }
1782 if (!av) {
1783 /*
1784 * Special file opened with flags 3 for ioctl-only use.
1785 */
1786 av = FILE__IOCTL;
1787 }
1788
1789 return av;
1790}
1791
1792/*
1793 * Convert a file to an access vector and include the correct open
1794 * open permission.
1795 */
1796static inline u32 open_file_to_av(struct file *file)
1797{
1798 u32 av = file_to_av(file);
1799
1800 if (selinux_policycap_openperm)
1801 av |= FILE__OPEN;
1802
1803 return av;
1804}
1805
1806/* Hook functions begin here. */
1807
1808static int selinux_ptrace_access_check(struct task_struct *child,
1809 unsigned int mode)
1810{
1811 int rc;
1812
1813 rc = cap_ptrace_access_check(child, mode);
1814 if (rc)
1815 return rc;
1816
1817 if (mode == PTRACE_MODE_READ) {
1818 u32 sid = current_sid();
1819 u32 csid = task_sid(child);
1820 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1821 }
1822
1823 return current_has_perm(child, PROCESS__PTRACE);
1824}
1825
1826static int selinux_ptrace_traceme(struct task_struct *parent)
1827{
1828 int rc;
1829
1830 rc = cap_ptrace_traceme(parent);
1831 if (rc)
1832 return rc;
1833
1834 return task_has_perm(parent, current, PROCESS__PTRACE);
1835}
1836
1837static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1838 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1839{
1840 int error;
1841
1842 error = current_has_perm(target, PROCESS__GETCAP);
1843 if (error)
1844 return error;
1845
1846 return cap_capget(target, effective, inheritable, permitted);
1847}
1848
1849static int selinux_capset(struct cred *new, const struct cred *old,
1850 const kernel_cap_t *effective,
1851 const kernel_cap_t *inheritable,
1852 const kernel_cap_t *permitted)
1853{
1854 int error;
1855
1856 error = cap_capset(new, old,
1857 effective, inheritable, permitted);
1858 if (error)
1859 return error;
1860
1861 return cred_has_perm(old, new, PROCESS__SETCAP);
1862}
1863
1864/*
1865 * (This comment used to live with the selinux_task_setuid hook,
1866 * which was removed).
1867 *
1868 * Since setuid only affects the current process, and since the SELinux
1869 * controls are not based on the Linux identity attributes, SELinux does not
1870 * need to control this operation. However, SELinux does control the use of
1871 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1872 */
1873
1874static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1875 struct user_namespace *ns, int cap, int audit)
1876{
1877 int rc;
1878
1879 rc = cap_capable(tsk, cred, ns, cap, audit);
1880 if (rc)
1881 return rc;
1882
1883 return task_has_capability(tsk, cred, cap, audit);
1884}
1885
1886static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1887{
1888 const struct cred *cred = current_cred();
1889 int rc = 0;
1890
1891 if (!sb)
1892 return 0;
1893
1894 switch (cmds) {
1895 case Q_SYNC:
1896 case Q_QUOTAON:
1897 case Q_QUOTAOFF:
1898 case Q_SETINFO:
1899 case Q_SETQUOTA:
1900 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1901 break;
1902 case Q_GETFMT:
1903 case Q_GETINFO:
1904 case Q_GETQUOTA:
1905 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1906 break;
1907 default:
1908 rc = 0; /* let the kernel handle invalid cmds */
1909 break;
1910 }
1911 return rc;
1912}
1913
1914static int selinux_quota_on(struct dentry *dentry)
1915{
1916 const struct cred *cred = current_cred();
1917
1918 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1919}
1920
1921static int selinux_syslog(int type)
1922{
1923 int rc;
1924
1925 switch (type) {
1926 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
1927 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1928 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1929 break;
1930 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1931 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
1932 /* Set level of messages printed to console */
1933 case SYSLOG_ACTION_CONSOLE_LEVEL:
1934 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1935 break;
1936 case SYSLOG_ACTION_CLOSE: /* Close log */
1937 case SYSLOG_ACTION_OPEN: /* Open log */
1938 case SYSLOG_ACTION_READ: /* Read from log */
1939 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
1940 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
1941 default:
1942 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1943 break;
1944 }
1945 return rc;
1946}
1947
1948/*
1949 * Check that a process has enough memory to allocate a new virtual
1950 * mapping. 0 means there is enough memory for the allocation to
1951 * succeed and -ENOMEM implies there is not.
1952 *
1953 * Do not audit the selinux permission check, as this is applied to all
1954 * processes that allocate mappings.
1955 */
1956static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1957{
1958 int rc, cap_sys_admin = 0;
1959
1960 rc = selinux_capable(current, current_cred(),
1961 &init_user_ns, CAP_SYS_ADMIN,
1962 SECURITY_CAP_NOAUDIT);
1963 if (rc == 0)
1964 cap_sys_admin = 1;
1965
1966 return __vm_enough_memory(mm, pages, cap_sys_admin);
1967}
1968
1969/* binprm security operations */
1970
1971static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1972{
1973 const struct task_security_struct *old_tsec;
1974 struct task_security_struct *new_tsec;
1975 struct inode_security_struct *isec;
1976 struct common_audit_data ad;
1977 struct inode *inode = bprm->file->f_path.dentry->d_inode;
1978 int rc;
1979
1980 rc = cap_bprm_set_creds(bprm);
1981 if (rc)
1982 return rc;
1983
1984 /* SELinux context only depends on initial program or script and not
1985 * the script interpreter */
1986 if (bprm->cred_prepared)
1987 return 0;
1988
1989 old_tsec = current_security();
1990 new_tsec = bprm->cred->security;
1991 isec = inode->i_security;
1992
1993 /* Default to the current task SID. */
1994 new_tsec->sid = old_tsec->sid;
1995 new_tsec->osid = old_tsec->sid;
1996
1997 /* Reset fs, key, and sock SIDs on execve. */
1998 new_tsec->create_sid = 0;
1999 new_tsec->keycreate_sid = 0;
2000 new_tsec->sockcreate_sid = 0;
2001
2002 if (old_tsec->exec_sid) {
2003 new_tsec->sid = old_tsec->exec_sid;
2004 /* Reset exec SID on execve. */
2005 new_tsec->exec_sid = 0;
2006 } else {
2007 /* Check for a default transition on this program. */
2008 rc = security_transition_sid(old_tsec->sid, isec->sid,
2009 SECCLASS_PROCESS, NULL,
2010 &new_tsec->sid);
2011 if (rc)
2012 return rc;
2013 }
2014
2015 COMMON_AUDIT_DATA_INIT(&ad, PATH);
2016 ad.u.path = bprm->file->f_path;
2017
2018 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2019 new_tsec->sid = old_tsec->sid;
2020
2021 if (new_tsec->sid == old_tsec->sid) {
2022 rc = avc_has_perm(old_tsec->sid, isec->sid,
2023 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2024 if (rc)
2025 return rc;
2026 } else {
2027 /* Check permissions for the transition. */
2028 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2029 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2030 if (rc)
2031 return rc;
2032
2033 rc = avc_has_perm(new_tsec->sid, isec->sid,
2034 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2035 if (rc)
2036 return rc;
2037
2038 /* Check for shared state */
2039 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2040 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2041 SECCLASS_PROCESS, PROCESS__SHARE,
2042 NULL);
2043 if (rc)
2044 return -EPERM;
2045 }
2046
2047 /* Make sure that anyone attempting to ptrace over a task that
2048 * changes its SID has the appropriate permit */
2049 if (bprm->unsafe &
2050 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2051 struct task_struct *tracer;
2052 struct task_security_struct *sec;
2053 u32 ptsid = 0;
2054
2055 rcu_read_lock();
2056 tracer = ptrace_parent(current);
2057 if (likely(tracer != NULL)) {
2058 sec = __task_cred(tracer)->security;
2059 ptsid = sec->sid;
2060 }
2061 rcu_read_unlock();
2062
2063 if (ptsid != 0) {
2064 rc = avc_has_perm(ptsid, new_tsec->sid,
2065 SECCLASS_PROCESS,
2066 PROCESS__PTRACE, NULL);
2067 if (rc)
2068 return -EPERM;
2069 }
2070 }
2071
2072 /* Clear any possibly unsafe personality bits on exec: */
2073 bprm->per_clear |= PER_CLEAR_ON_SETID;
2074 }
2075
2076 return 0;
2077}
2078
2079static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2080{
2081 const struct task_security_struct *tsec = current_security();
2082 u32 sid, osid;
2083 int atsecure = 0;
2084
2085 sid = tsec->sid;
2086 osid = tsec->osid;
2087
2088 if (osid != sid) {
2089 /* Enable secure mode for SIDs transitions unless
2090 the noatsecure permission is granted between
2091 the two SIDs, i.e. ahp returns 0. */
2092 atsecure = avc_has_perm(osid, sid,
2093 SECCLASS_PROCESS,
2094 PROCESS__NOATSECURE, NULL);
2095 }
2096
2097 return (atsecure || cap_bprm_secureexec(bprm));
2098}
2099
2100extern struct vfsmount *selinuxfs_mount;
2101extern struct dentry *selinux_null;
2102
2103/* Derived from fs/exec.c:flush_old_files. */
2104static inline void flush_unauthorized_files(const struct cred *cred,
2105 struct files_struct *files)
2106{
2107 struct common_audit_data ad;
2108 struct file *file, *devnull = NULL;
2109 struct tty_struct *tty;
2110 struct fdtable *fdt;
2111 long j = -1;
2112 int drop_tty = 0;
2113
2114 tty = get_current_tty();
2115 if (tty) {
2116 spin_lock(&tty_files_lock);
2117 if (!list_empty(&tty->tty_files)) {
2118 struct tty_file_private *file_priv;
2119 struct inode *inode;
2120
2121 /* Revalidate access to controlling tty.
2122 Use inode_has_perm on the tty inode directly rather
2123 than using file_has_perm, as this particular open
2124 file may belong to another process and we are only
2125 interested in the inode-based check here. */
2126 file_priv = list_first_entry(&tty->tty_files,
2127 struct tty_file_private, list);
2128 file = file_priv->file;
2129 inode = file->f_path.dentry->d_inode;
2130 if (inode_has_perm_noadp(cred, inode,
2131 FILE__READ | FILE__WRITE, 0)) {
2132 drop_tty = 1;
2133 }
2134 }
2135 spin_unlock(&tty_files_lock);
2136 tty_kref_put(tty);
2137 }
2138 /* Reset controlling tty. */
2139 if (drop_tty)
2140 no_tty();
2141
2142 /* Revalidate access to inherited open files. */
2143
2144 COMMON_AUDIT_DATA_INIT(&ad, INODE);
2145
2146 spin_lock(&files->file_lock);
2147 for (;;) {
2148 unsigned long set, i;
2149 int fd;
2150
2151 j++;
2152 i = j * __NFDBITS;
2153 fdt = files_fdtable(files);
2154 if (i >= fdt->max_fds)
2155 break;
2156 set = fdt->open_fds->fds_bits[j];
2157 if (!set)
2158 continue;
2159 spin_unlock(&files->file_lock);
2160 for ( ; set ; i++, set >>= 1) {
2161 if (set & 1) {
2162 file = fget(i);
2163 if (!file)
2164 continue;
2165 if (file_has_perm(cred,
2166 file,
2167 file_to_av(file))) {
2168 sys_close(i);
2169 fd = get_unused_fd();
2170 if (fd != i) {
2171 if (fd >= 0)
2172 put_unused_fd(fd);
2173 fput(file);
2174 continue;
2175 }
2176 if (devnull) {
2177 get_file(devnull);
2178 } else {
2179 devnull = dentry_open(
2180 dget(selinux_null),
2181 mntget(selinuxfs_mount),
2182 O_RDWR, cred);
2183 if (IS_ERR(devnull)) {
2184 devnull = NULL;
2185 put_unused_fd(fd);
2186 fput(file);
2187 continue;
2188 }
2189 }
2190 fd_install(fd, devnull);
2191 }
2192 fput(file);
2193 }
2194 }
2195 spin_lock(&files->file_lock);
2196
2197 }
2198 spin_unlock(&files->file_lock);
2199}
2200
2201/*
2202 * Prepare a process for imminent new credential changes due to exec
2203 */
2204static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2205{
2206 struct task_security_struct *new_tsec;
2207 struct rlimit *rlim, *initrlim;
2208 int rc, i;
2209
2210 new_tsec = bprm->cred->security;
2211 if (new_tsec->sid == new_tsec->osid)
2212 return;
2213
2214 /* Close files for which the new task SID is not authorized. */
2215 flush_unauthorized_files(bprm->cred, current->files);
2216
2217 /* Always clear parent death signal on SID transitions. */
2218 current->pdeath_signal = 0;
2219
2220 /* Check whether the new SID can inherit resource limits from the old
2221 * SID. If not, reset all soft limits to the lower of the current
2222 * task's hard limit and the init task's soft limit.
2223 *
2224 * Note that the setting of hard limits (even to lower them) can be
2225 * controlled by the setrlimit check. The inclusion of the init task's
2226 * soft limit into the computation is to avoid resetting soft limits
2227 * higher than the default soft limit for cases where the default is
2228 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2229 */
2230 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2231 PROCESS__RLIMITINH, NULL);
2232 if (rc) {
2233 /* protect against do_prlimit() */
2234 task_lock(current);
2235 for (i = 0; i < RLIM_NLIMITS; i++) {
2236 rlim = current->signal->rlim + i;
2237 initrlim = init_task.signal->rlim + i;
2238 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2239 }
2240 task_unlock(current);
2241 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2242 }
2243}
2244
2245/*
2246 * Clean up the process immediately after the installation of new credentials
2247 * due to exec
2248 */
2249static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2250{
2251 const struct task_security_struct *tsec = current_security();
2252 struct itimerval itimer;
2253 u32 osid, sid;
2254 int rc, i;
2255
2256 osid = tsec->osid;
2257 sid = tsec->sid;
2258
2259 if (sid == osid)
2260 return;
2261
2262 /* Check whether the new SID can inherit signal state from the old SID.
2263 * If not, clear itimers to avoid subsequent signal generation and
2264 * flush and unblock signals.
2265 *
2266 * This must occur _after_ the task SID has been updated so that any
2267 * kill done after the flush will be checked against the new SID.
2268 */
2269 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2270 if (rc) {
2271 memset(&itimer, 0, sizeof itimer);
2272 for (i = 0; i < 3; i++)
2273 do_setitimer(i, &itimer, NULL);
2274 spin_lock_irq(¤t->sighand->siglock);
2275 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2276 __flush_signals(current);
2277 flush_signal_handlers(current, 1);
2278 sigemptyset(¤t->blocked);
2279 }
2280 spin_unlock_irq(¤t->sighand->siglock);
2281 }
2282
2283 /* Wake up the parent if it is waiting so that it can recheck
2284 * wait permission to the new task SID. */
2285 read_lock(&tasklist_lock);
2286 __wake_up_parent(current, current->real_parent);
2287 read_unlock(&tasklist_lock);
2288}
2289
2290/* superblock security operations */
2291
2292static int selinux_sb_alloc_security(struct super_block *sb)
2293{
2294 return superblock_alloc_security(sb);
2295}
2296
2297static void selinux_sb_free_security(struct super_block *sb)
2298{
2299 superblock_free_security(sb);
2300}
2301
2302static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2303{
2304 if (plen > olen)
2305 return 0;
2306
2307 return !memcmp(prefix, option, plen);
2308}
2309
2310static inline int selinux_option(char *option, int len)
2311{
2312 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2313 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2314 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2315 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2316 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2317}
2318
2319static inline void take_option(char **to, char *from, int *first, int len)
2320{
2321 if (!*first) {
2322 **to = ',';
2323 *to += 1;
2324 } else
2325 *first = 0;
2326 memcpy(*to, from, len);
2327 *to += len;
2328}
2329
2330static inline void take_selinux_option(char **to, char *from, int *first,
2331 int len)
2332{
2333 int current_size = 0;
2334
2335 if (!*first) {
2336 **to = '|';
2337 *to += 1;
2338 } else
2339 *first = 0;
2340
2341 while (current_size < len) {
2342 if (*from != '"') {
2343 **to = *from;
2344 *to += 1;
2345 }
2346 from += 1;
2347 current_size += 1;
2348 }
2349}
2350
2351static int selinux_sb_copy_data(char *orig, char *copy)
2352{
2353 int fnosec, fsec, rc = 0;
2354 char *in_save, *in_curr, *in_end;
2355 char *sec_curr, *nosec_save, *nosec;
2356 int open_quote = 0;
2357
2358 in_curr = orig;
2359 sec_curr = copy;
2360
2361 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2362 if (!nosec) {
2363 rc = -ENOMEM;
2364 goto out;
2365 }
2366
2367 nosec_save = nosec;
2368 fnosec = fsec = 1;
2369 in_save = in_end = orig;
2370
2371 do {
2372 if (*in_end == '"')
2373 open_quote = !open_quote;
2374 if ((*in_end == ',' && open_quote == 0) ||
2375 *in_end == '\0') {
2376 int len = in_end - in_curr;
2377
2378 if (selinux_option(in_curr, len))
2379 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2380 else
2381 take_option(&nosec, in_curr, &fnosec, len);
2382
2383 in_curr = in_end + 1;
2384 }
2385 } while (*in_end++);
2386
2387 strcpy(in_save, nosec_save);
2388 free_page((unsigned long)nosec_save);
2389out:
2390 return rc;
2391}
2392
2393static int selinux_sb_remount(struct super_block *sb, void *data)
2394{
2395 int rc, i, *flags;
2396 struct security_mnt_opts opts;
2397 char *secdata, **mount_options;
2398 struct superblock_security_struct *sbsec = sb->s_security;
2399
2400 if (!(sbsec->flags & SE_SBINITIALIZED))
2401 return 0;
2402
2403 if (!data)
2404 return 0;
2405
2406 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2407 return 0;
2408
2409 security_init_mnt_opts(&opts);
2410 secdata = alloc_secdata();
2411 if (!secdata)
2412 return -ENOMEM;
2413 rc = selinux_sb_copy_data(data, secdata);
2414 if (rc)
2415 goto out_free_secdata;
2416
2417 rc = selinux_parse_opts_str(secdata, &opts);
2418 if (rc)
2419 goto out_free_secdata;
2420
2421 mount_options = opts.mnt_opts;
2422 flags = opts.mnt_opts_flags;
2423
2424 for (i = 0; i < opts.num_mnt_opts; i++) {
2425 u32 sid;
2426 size_t len;
2427
2428 if (flags[i] == SE_SBLABELSUPP)
2429 continue;
2430 len = strlen(mount_options[i]);
2431 rc = security_context_to_sid(mount_options[i], len, &sid);
2432 if (rc) {
2433 printk(KERN_WARNING "SELinux: security_context_to_sid"
2434 "(%s) failed for (dev %s, type %s) errno=%d\n",
2435 mount_options[i], sb->s_id, sb->s_type->name, rc);
2436 goto out_free_opts;
2437 }
2438 rc = -EINVAL;
2439 switch (flags[i]) {
2440 case FSCONTEXT_MNT:
2441 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2442 goto out_bad_option;
2443 break;
2444 case CONTEXT_MNT:
2445 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2446 goto out_bad_option;
2447 break;
2448 case ROOTCONTEXT_MNT: {
2449 struct inode_security_struct *root_isec;
2450 root_isec = sb->s_root->d_inode->i_security;
2451
2452 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2453 goto out_bad_option;
2454 break;
2455 }
2456 case DEFCONTEXT_MNT:
2457 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2458 goto out_bad_option;
2459 break;
2460 default:
2461 goto out_free_opts;
2462 }
2463 }
2464
2465 rc = 0;
2466out_free_opts:
2467 security_free_mnt_opts(&opts);
2468out_free_secdata:
2469 free_secdata(secdata);
2470 return rc;
2471out_bad_option:
2472 printk(KERN_WARNING "SELinux: unable to change security options "
2473 "during remount (dev %s, type=%s)\n", sb->s_id,
2474 sb->s_type->name);
2475 goto out_free_opts;
2476}
2477
2478static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2479{
2480 const struct cred *cred = current_cred();
2481 struct common_audit_data ad;
2482 int rc;
2483
2484 rc = superblock_doinit(sb, data);
2485 if (rc)
2486 return rc;
2487
2488 /* Allow all mounts performed by the kernel */
2489 if (flags & MS_KERNMOUNT)
2490 return 0;
2491
2492 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2493 ad.u.dentry = sb->s_root;
2494 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2495}
2496
2497static int selinux_sb_statfs(struct dentry *dentry)
2498{
2499 const struct cred *cred = current_cred();
2500 struct common_audit_data ad;
2501
2502 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2503 ad.u.dentry = dentry->d_sb->s_root;
2504 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2505}
2506
2507static int selinux_mount(char *dev_name,
2508 struct path *path,
2509 char *type,
2510 unsigned long flags,
2511 void *data)
2512{
2513 const struct cred *cred = current_cred();
2514
2515 if (flags & MS_REMOUNT)
2516 return superblock_has_perm(cred, path->mnt->mnt_sb,
2517 FILESYSTEM__REMOUNT, NULL);
2518 else
2519 return path_has_perm(cred, path, FILE__MOUNTON);
2520}
2521
2522static int selinux_umount(struct vfsmount *mnt, int flags)
2523{
2524 const struct cred *cred = current_cred();
2525
2526 return superblock_has_perm(cred, mnt->mnt_sb,
2527 FILESYSTEM__UNMOUNT, NULL);
2528}
2529
2530/* inode security operations */
2531
2532static int selinux_inode_alloc_security(struct inode *inode)
2533{
2534 return inode_alloc_security(inode);
2535}
2536
2537static void selinux_inode_free_security(struct inode *inode)
2538{
2539 inode_free_security(inode);
2540}
2541
2542static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2543 const struct qstr *qstr, char **name,
2544 void **value, size_t *len)
2545{
2546 const struct task_security_struct *tsec = current_security();
2547 struct inode_security_struct *dsec;
2548 struct superblock_security_struct *sbsec;
2549 u32 sid, newsid, clen;
2550 int rc;
2551 char *namep = NULL, *context;
2552
2553 dsec = dir->i_security;
2554 sbsec = dir->i_sb->s_security;
2555
2556 sid = tsec->sid;
2557 newsid = tsec->create_sid;
2558
2559 if ((sbsec->flags & SE_SBINITIALIZED) &&
2560 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2561 newsid = sbsec->mntpoint_sid;
2562 else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2563 rc = security_transition_sid(sid, dsec->sid,
2564 inode_mode_to_security_class(inode->i_mode),
2565 qstr, &newsid);
2566 if (rc) {
2567 printk(KERN_WARNING "%s: "
2568 "security_transition_sid failed, rc=%d (dev=%s "
2569 "ino=%ld)\n",
2570 __func__,
2571 -rc, inode->i_sb->s_id, inode->i_ino);
2572 return rc;
2573 }
2574 }
2575
2576 /* Possibly defer initialization to selinux_complete_init. */
2577 if (sbsec->flags & SE_SBINITIALIZED) {
2578 struct inode_security_struct *isec = inode->i_security;
2579 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2580 isec->sid = newsid;
2581 isec->initialized = 1;
2582 }
2583
2584 if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2585 return -EOPNOTSUPP;
2586
2587 if (name) {
2588 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2589 if (!namep)
2590 return -ENOMEM;
2591 *name = namep;
2592 }
2593
2594 if (value && len) {
2595 rc = security_sid_to_context_force(newsid, &context, &clen);
2596 if (rc) {
2597 kfree(namep);
2598 return rc;
2599 }
2600 *value = context;
2601 *len = clen;
2602 }
2603
2604 return 0;
2605}
2606
2607static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2608{
2609 return may_create(dir, dentry, SECCLASS_FILE);
2610}
2611
2612static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2613{
2614 return may_link(dir, old_dentry, MAY_LINK);
2615}
2616
2617static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2618{
2619 return may_link(dir, dentry, MAY_UNLINK);
2620}
2621
2622static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2623{
2624 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2625}
2626
2627static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2628{
2629 return may_create(dir, dentry, SECCLASS_DIR);
2630}
2631
2632static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2633{
2634 return may_link(dir, dentry, MAY_RMDIR);
2635}
2636
2637static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2638{
2639 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2640}
2641
2642static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2643 struct inode *new_inode, struct dentry *new_dentry)
2644{
2645 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2646}
2647
2648static int selinux_inode_readlink(struct dentry *dentry)
2649{
2650 const struct cred *cred = current_cred();
2651
2652 return dentry_has_perm(cred, dentry, FILE__READ);
2653}
2654
2655static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2656{
2657 const struct cred *cred = current_cred();
2658
2659 return dentry_has_perm(cred, dentry, FILE__READ);
2660}
2661
2662static int selinux_inode_permission(struct inode *inode, int mask)
2663{
2664 const struct cred *cred = current_cred();
2665 struct common_audit_data ad;
2666 u32 perms;
2667 bool from_access;
2668 unsigned flags = mask & MAY_NOT_BLOCK;
2669
2670 from_access = mask & MAY_ACCESS;
2671 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2672
2673 /* No permission to check. Existence test. */
2674 if (!mask)
2675 return 0;
2676
2677 COMMON_AUDIT_DATA_INIT(&ad, INODE);
2678 ad.u.inode = inode;
2679
2680 if (from_access)
2681 ad.selinux_audit_data.auditdeny |= FILE__AUDIT_ACCESS;
2682
2683 perms = file_mask_to_av(inode->i_mode, mask);
2684
2685 return inode_has_perm(cred, inode, perms, &ad, flags);
2686}
2687
2688static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2689{
2690 const struct cred *cred = current_cred();
2691 unsigned int ia_valid = iattr->ia_valid;
2692
2693 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2694 if (ia_valid & ATTR_FORCE) {
2695 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2696 ATTR_FORCE);
2697 if (!ia_valid)
2698 return 0;
2699 }
2700
2701 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2702 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2703 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2704
2705 return dentry_has_perm(cred, dentry, FILE__WRITE);
2706}
2707
2708static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2709{
2710 const struct cred *cred = current_cred();
2711 struct path path;
2712
2713 path.dentry = dentry;
2714 path.mnt = mnt;
2715
2716 return path_has_perm(cred, &path, FILE__GETATTR);
2717}
2718
2719static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2720{
2721 const struct cred *cred = current_cred();
2722
2723 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2724 sizeof XATTR_SECURITY_PREFIX - 1)) {
2725 if (!strcmp(name, XATTR_NAME_CAPS)) {
2726 if (!capable(CAP_SETFCAP))
2727 return -EPERM;
2728 } else if (!capable(CAP_SYS_ADMIN)) {
2729 /* A different attribute in the security namespace.
2730 Restrict to administrator. */
2731 return -EPERM;
2732 }
2733 }
2734
2735 /* Not an attribute we recognize, so just check the
2736 ordinary setattr permission. */
2737 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2738}
2739
2740static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2741 const void *value, size_t size, int flags)
2742{
2743 struct inode *inode = dentry->d_inode;
2744 struct inode_security_struct *isec = inode->i_security;
2745 struct superblock_security_struct *sbsec;
2746 struct common_audit_data ad;
2747 u32 newsid, sid = current_sid();
2748 int rc = 0;
2749
2750 if (strcmp(name, XATTR_NAME_SELINUX))
2751 return selinux_inode_setotherxattr(dentry, name);
2752
2753 sbsec = inode->i_sb->s_security;
2754 if (!(sbsec->flags & SE_SBLABELSUPP))
2755 return -EOPNOTSUPP;
2756
2757 if (!inode_owner_or_capable(inode))
2758 return -EPERM;
2759
2760 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2761 ad.u.dentry = dentry;
2762
2763 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2764 FILE__RELABELFROM, &ad);
2765 if (rc)
2766 return rc;
2767
2768 rc = security_context_to_sid(value, size, &newsid);
2769 if (rc == -EINVAL) {
2770 if (!capable(CAP_MAC_ADMIN))
2771 return rc;
2772 rc = security_context_to_sid_force(value, size, &newsid);
2773 }
2774 if (rc)
2775 return rc;
2776
2777 rc = avc_has_perm(sid, newsid, isec->sclass,
2778 FILE__RELABELTO, &ad);
2779 if (rc)
2780 return rc;
2781
2782 rc = security_validate_transition(isec->sid, newsid, sid,
2783 isec->sclass);
2784 if (rc)
2785 return rc;
2786
2787 return avc_has_perm(newsid,
2788 sbsec->sid,
2789 SECCLASS_FILESYSTEM,
2790 FILESYSTEM__ASSOCIATE,
2791 &ad);
2792}
2793
2794static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2795 const void *value, size_t size,
2796 int flags)
2797{
2798 struct inode *inode = dentry->d_inode;
2799 struct inode_security_struct *isec = inode->i_security;
2800 u32 newsid;
2801 int rc;
2802
2803 if (strcmp(name, XATTR_NAME_SELINUX)) {
2804 /* Not an attribute we recognize, so nothing to do. */
2805 return;
2806 }
2807
2808 rc = security_context_to_sid_force(value, size, &newsid);
2809 if (rc) {
2810 printk(KERN_ERR "SELinux: unable to map context to SID"
2811 "for (%s, %lu), rc=%d\n",
2812 inode->i_sb->s_id, inode->i_ino, -rc);
2813 return;
2814 }
2815
2816 isec->sid = newsid;
2817 return;
2818}
2819
2820static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2821{
2822 const struct cred *cred = current_cred();
2823
2824 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2825}
2826
2827static int selinux_inode_listxattr(struct dentry *dentry)
2828{
2829 const struct cred *cred = current_cred();
2830
2831 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2832}
2833
2834static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2835{
2836 if (strcmp(name, XATTR_NAME_SELINUX))
2837 return selinux_inode_setotherxattr(dentry, name);
2838
2839 /* No one is allowed to remove a SELinux security label.
2840 You can change the label, but all data must be labeled. */
2841 return -EACCES;
2842}
2843
2844/*
2845 * Copy the inode security context value to the user.
2846 *
2847 * Permission check is handled by selinux_inode_getxattr hook.
2848 */
2849static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2850{
2851 u32 size;
2852 int error;
2853 char *context = NULL;
2854 struct inode_security_struct *isec = inode->i_security;
2855
2856 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2857 return -EOPNOTSUPP;
2858
2859 /*
2860 * If the caller has CAP_MAC_ADMIN, then get the raw context
2861 * value even if it is not defined by current policy; otherwise,
2862 * use the in-core value under current policy.
2863 * Use the non-auditing forms of the permission checks since
2864 * getxattr may be called by unprivileged processes commonly
2865 * and lack of permission just means that we fall back to the
2866 * in-core context value, not a denial.
2867 */
2868 error = selinux_capable(current, current_cred(),
2869 &init_user_ns, CAP_MAC_ADMIN,
2870 SECURITY_CAP_NOAUDIT);
2871 if (!error)
2872 error = security_sid_to_context_force(isec->sid, &context,
2873 &size);
2874 else
2875 error = security_sid_to_context(isec->sid, &context, &size);
2876 if (error)
2877 return error;
2878 error = size;
2879 if (alloc) {
2880 *buffer = context;
2881 goto out_nofree;
2882 }
2883 kfree(context);
2884out_nofree:
2885 return error;
2886}
2887
2888static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2889 const void *value, size_t size, int flags)
2890{
2891 struct inode_security_struct *isec = inode->i_security;
2892 u32 newsid;
2893 int rc;
2894
2895 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2896 return -EOPNOTSUPP;
2897
2898 if (!value || !size)
2899 return -EACCES;
2900
2901 rc = security_context_to_sid((void *)value, size, &newsid);
2902 if (rc)
2903 return rc;
2904
2905 isec->sid = newsid;
2906 isec->initialized = 1;
2907 return 0;
2908}
2909
2910static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2911{
2912 const int len = sizeof(XATTR_NAME_SELINUX);
2913 if (buffer && len <= buffer_size)
2914 memcpy(buffer, XATTR_NAME_SELINUX, len);
2915 return len;
2916}
2917
2918static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2919{
2920 struct inode_security_struct *isec = inode->i_security;
2921 *secid = isec->sid;
2922}
2923
2924/* file security operations */
2925
2926static int selinux_revalidate_file_permission(struct file *file, int mask)
2927{
2928 const struct cred *cred = current_cred();
2929 struct inode *inode = file->f_path.dentry->d_inode;
2930
2931 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2932 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2933 mask |= MAY_APPEND;
2934
2935 return file_has_perm(cred, file,
2936 file_mask_to_av(inode->i_mode, mask));
2937}
2938
2939static int selinux_file_permission(struct file *file, int mask)
2940{
2941 struct inode *inode = file->f_path.dentry->d_inode;
2942 struct file_security_struct *fsec = file->f_security;
2943 struct inode_security_struct *isec = inode->i_security;
2944 u32 sid = current_sid();
2945
2946 if (!mask)
2947 /* No permission to check. Existence test. */
2948 return 0;
2949
2950 if (sid == fsec->sid && fsec->isid == isec->sid &&
2951 fsec->pseqno == avc_policy_seqno())
2952 /* No change since dentry_open check. */
2953 return 0;
2954
2955 return selinux_revalidate_file_permission(file, mask);
2956}
2957
2958static int selinux_file_alloc_security(struct file *file)
2959{
2960 return file_alloc_security(file);
2961}
2962
2963static void selinux_file_free_security(struct file *file)
2964{
2965 file_free_security(file);
2966}
2967
2968static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2969 unsigned long arg)
2970{
2971 const struct cred *cred = current_cred();
2972 int error = 0;
2973
2974 switch (cmd) {
2975 case FIONREAD:
2976 /* fall through */
2977 case FIBMAP:
2978 /* fall through */
2979 case FIGETBSZ:
2980 /* fall through */
2981 case EXT2_IOC_GETFLAGS:
2982 /* fall through */
2983 case EXT2_IOC_GETVERSION:
2984 error = file_has_perm(cred, file, FILE__GETATTR);
2985 break;
2986
2987 case EXT2_IOC_SETFLAGS:
2988 /* fall through */
2989 case EXT2_IOC_SETVERSION:
2990 error = file_has_perm(cred, file, FILE__SETATTR);
2991 break;
2992
2993 /* sys_ioctl() checks */
2994 case FIONBIO:
2995 /* fall through */
2996 case FIOASYNC:
2997 error = file_has_perm(cred, file, 0);
2998 break;
2999
3000 case KDSKBENT:
3001 case KDSKBSENT:
3002 error = task_has_capability(current, cred, CAP_SYS_TTY_CONFIG,
3003 SECURITY_CAP_AUDIT);
3004 break;
3005
3006 /* default case assumes that the command will go
3007 * to the file's ioctl() function.
3008 */
3009 default:
3010 error = file_has_perm(cred, file, FILE__IOCTL);
3011 }
3012 return error;
3013}
3014
3015static int default_noexec;
3016
3017static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3018{
3019 const struct cred *cred = current_cred();
3020 int rc = 0;
3021
3022 if (default_noexec &&
3023 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3024 /*
3025 * We are making executable an anonymous mapping or a
3026 * private file mapping that will also be writable.
3027 * This has an additional check.
3028 */
3029 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3030 if (rc)
3031 goto error;
3032 }
3033
3034 if (file) {
3035 /* read access is always possible with a mapping */
3036 u32 av = FILE__READ;
3037
3038 /* write access only matters if the mapping is shared */
3039 if (shared && (prot & PROT_WRITE))
3040 av |= FILE__WRITE;
3041
3042 if (prot & PROT_EXEC)
3043 av |= FILE__EXECUTE;
3044
3045 return file_has_perm(cred, file, av);
3046 }
3047
3048error:
3049 return rc;
3050}
3051
3052static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3053 unsigned long prot, unsigned long flags,
3054 unsigned long addr, unsigned long addr_only)
3055{
3056 int rc = 0;
3057 u32 sid = current_sid();
3058
3059 /*
3060 * notice that we are intentionally putting the SELinux check before
3061 * the secondary cap_file_mmap check. This is such a likely attempt
3062 * at bad behaviour/exploit that we always want to get the AVC, even
3063 * if DAC would have also denied the operation.
3064 */
3065 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3066 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3067 MEMPROTECT__MMAP_ZERO, NULL);
3068 if (rc)
3069 return rc;
3070 }
3071
3072 /* do DAC check on address space usage */
3073 rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3074 if (rc || addr_only)
3075 return rc;
3076
3077 if (selinux_checkreqprot)
3078 prot = reqprot;
3079
3080 return file_map_prot_check(file, prot,
3081 (flags & MAP_TYPE) == MAP_SHARED);
3082}
3083
3084static int selinux_file_mprotect(struct vm_area_struct *vma,
3085 unsigned long reqprot,
3086 unsigned long prot)
3087{
3088 const struct cred *cred = current_cred();
3089
3090 if (selinux_checkreqprot)
3091 prot = reqprot;
3092
3093 if (default_noexec &&
3094 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3095 int rc = 0;
3096 if (vma->vm_start >= vma->vm_mm->start_brk &&
3097 vma->vm_end <= vma->vm_mm->brk) {
3098 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3099 } else if (!vma->vm_file &&
3100 vma->vm_start <= vma->vm_mm->start_stack &&
3101 vma->vm_end >= vma->vm_mm->start_stack) {
3102 rc = current_has_perm(current, PROCESS__EXECSTACK);
3103 } else if (vma->vm_file && vma->anon_vma) {
3104 /*
3105 * We are making executable a file mapping that has
3106 * had some COW done. Since pages might have been
3107 * written, check ability to execute the possibly
3108 * modified content. This typically should only
3109 * occur for text relocations.
3110 */
3111 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3112 }
3113 if (rc)
3114 return rc;
3115 }
3116
3117 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3118}
3119
3120static int selinux_file_lock(struct file *file, unsigned int cmd)
3121{
3122 const struct cred *cred = current_cred();
3123
3124 return file_has_perm(cred, file, FILE__LOCK);
3125}
3126
3127static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3128 unsigned long arg)
3129{
3130 const struct cred *cred = current_cred();
3131 int err = 0;
3132
3133 switch (cmd) {
3134 case F_SETFL:
3135 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3136 err = -EINVAL;
3137 break;
3138 }
3139
3140 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3141 err = file_has_perm(cred, file, FILE__WRITE);
3142 break;
3143 }
3144 /* fall through */
3145 case F_SETOWN:
3146 case F_SETSIG:
3147 case F_GETFL:
3148 case F_GETOWN:
3149 case F_GETSIG:
3150 /* Just check FD__USE permission */
3151 err = file_has_perm(cred, file, 0);
3152 break;
3153 case F_GETLK:
3154 case F_SETLK:
3155 case F_SETLKW:
3156#if BITS_PER_LONG == 32
3157 case F_GETLK64:
3158 case F_SETLK64:
3159 case F_SETLKW64:
3160#endif
3161 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3162 err = -EINVAL;
3163 break;
3164 }
3165 err = file_has_perm(cred, file, FILE__LOCK);
3166 break;
3167 }
3168
3169 return err;
3170}
3171
3172static int selinux_file_set_fowner(struct file *file)
3173{
3174 struct file_security_struct *fsec;
3175
3176 fsec = file->f_security;
3177 fsec->fown_sid = current_sid();
3178
3179 return 0;
3180}
3181
3182static int selinux_file_send_sigiotask(struct task_struct *tsk,
3183 struct fown_struct *fown, int signum)
3184{
3185 struct file *file;
3186 u32 sid = task_sid(tsk);
3187 u32 perm;
3188 struct file_security_struct *fsec;
3189
3190 /* struct fown_struct is never outside the context of a struct file */
3191 file = container_of(fown, struct file, f_owner);
3192
3193 fsec = file->f_security;
3194
3195 if (!signum)
3196 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3197 else
3198 perm = signal_to_av(signum);
3199
3200 return avc_has_perm(fsec->fown_sid, sid,
3201 SECCLASS_PROCESS, perm, NULL);
3202}
3203
3204static int selinux_file_receive(struct file *file)
3205{
3206 const struct cred *cred = current_cred();
3207
3208 return file_has_perm(cred, file, file_to_av(file));
3209}
3210
3211static int selinux_dentry_open(struct file *file, const struct cred *cred)
3212{
3213 struct file_security_struct *fsec;
3214 struct inode *inode;
3215 struct inode_security_struct *isec;
3216
3217 inode = file->f_path.dentry->d_inode;
3218 fsec = file->f_security;
3219 isec = inode->i_security;
3220 /*
3221 * Save inode label and policy sequence number
3222 * at open-time so that selinux_file_permission
3223 * can determine whether revalidation is necessary.
3224 * Task label is already saved in the file security
3225 * struct as its SID.
3226 */
3227 fsec->isid = isec->sid;
3228 fsec->pseqno = avc_policy_seqno();
3229 /*
3230 * Since the inode label or policy seqno may have changed
3231 * between the selinux_inode_permission check and the saving
3232 * of state above, recheck that access is still permitted.
3233 * Otherwise, access might never be revalidated against the
3234 * new inode label or new policy.
3235 * This check is not redundant - do not remove.
3236 */
3237 return inode_has_perm_noadp(cred, inode, open_file_to_av(file), 0);
3238}
3239
3240/* task security operations */
3241
3242static int selinux_task_create(unsigned long clone_flags)
3243{
3244 return current_has_perm(current, PROCESS__FORK);
3245}
3246
3247/*
3248 * allocate the SELinux part of blank credentials
3249 */
3250static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3251{
3252 struct task_security_struct *tsec;
3253
3254 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3255 if (!tsec)
3256 return -ENOMEM;
3257
3258 cred->security = tsec;
3259 return 0;
3260}
3261
3262/*
3263 * detach and free the LSM part of a set of credentials
3264 */
3265static void selinux_cred_free(struct cred *cred)
3266{
3267 struct task_security_struct *tsec = cred->security;
3268
3269 /*
3270 * cred->security == NULL if security_cred_alloc_blank() or
3271 * security_prepare_creds() returned an error.
3272 */
3273 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3274 cred->security = (void *) 0x7UL;
3275 kfree(tsec);
3276}
3277
3278/*
3279 * prepare a new set of credentials for modification
3280 */
3281static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3282 gfp_t gfp)
3283{
3284 const struct task_security_struct *old_tsec;
3285 struct task_security_struct *tsec;
3286
3287 old_tsec = old->security;
3288
3289 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3290 if (!tsec)
3291 return -ENOMEM;
3292
3293 new->security = tsec;
3294 return 0;
3295}
3296
3297/*
3298 * transfer the SELinux data to a blank set of creds
3299 */
3300static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3301{
3302 const struct task_security_struct *old_tsec = old->security;
3303 struct task_security_struct *tsec = new->security;
3304
3305 *tsec = *old_tsec;
3306}
3307
3308/*
3309 * set the security data for a kernel service
3310 * - all the creation contexts are set to unlabelled
3311 */
3312static int selinux_kernel_act_as(struct cred *new, u32 secid)
3313{
3314 struct task_security_struct *tsec = new->security;
3315 u32 sid = current_sid();
3316 int ret;
3317
3318 ret = avc_has_perm(sid, secid,
3319 SECCLASS_KERNEL_SERVICE,
3320 KERNEL_SERVICE__USE_AS_OVERRIDE,
3321 NULL);
3322 if (ret == 0) {
3323 tsec->sid = secid;
3324 tsec->create_sid = 0;
3325 tsec->keycreate_sid = 0;
3326 tsec->sockcreate_sid = 0;
3327 }
3328 return ret;
3329}
3330
3331/*
3332 * set the file creation context in a security record to the same as the
3333 * objective context of the specified inode
3334 */
3335static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3336{
3337 struct inode_security_struct *isec = inode->i_security;
3338 struct task_security_struct *tsec = new->security;
3339 u32 sid = current_sid();
3340 int ret;
3341
3342 ret = avc_has_perm(sid, isec->sid,
3343 SECCLASS_KERNEL_SERVICE,
3344 KERNEL_SERVICE__CREATE_FILES_AS,
3345 NULL);
3346
3347 if (ret == 0)
3348 tsec->create_sid = isec->sid;
3349 return ret;
3350}
3351
3352static int selinux_kernel_module_request(char *kmod_name)
3353{
3354 u32 sid;
3355 struct common_audit_data ad;
3356
3357 sid = task_sid(current);
3358
3359 COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3360 ad.u.kmod_name = kmod_name;
3361
3362 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3363 SYSTEM__MODULE_REQUEST, &ad);
3364}
3365
3366static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3367{
3368 return current_has_perm(p, PROCESS__SETPGID);
3369}
3370
3371static int selinux_task_getpgid(struct task_struct *p)
3372{
3373 return current_has_perm(p, PROCESS__GETPGID);
3374}
3375
3376static int selinux_task_getsid(struct task_struct *p)
3377{
3378 return current_has_perm(p, PROCESS__GETSESSION);
3379}
3380
3381static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3382{
3383 *secid = task_sid(p);
3384}
3385
3386static int selinux_task_setnice(struct task_struct *p, int nice)
3387{
3388 int rc;
3389
3390 rc = cap_task_setnice(p, nice);
3391 if (rc)
3392 return rc;
3393
3394 return current_has_perm(p, PROCESS__SETSCHED);
3395}
3396
3397static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3398{
3399 int rc;
3400
3401 rc = cap_task_setioprio(p, ioprio);
3402 if (rc)
3403 return rc;
3404
3405 return current_has_perm(p, PROCESS__SETSCHED);
3406}
3407
3408static int selinux_task_getioprio(struct task_struct *p)
3409{
3410 return current_has_perm(p, PROCESS__GETSCHED);
3411}
3412
3413static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3414 struct rlimit *new_rlim)
3415{
3416 struct rlimit *old_rlim = p->signal->rlim + resource;
3417
3418 /* Control the ability to change the hard limit (whether
3419 lowering or raising it), so that the hard limit can
3420 later be used as a safe reset point for the soft limit
3421 upon context transitions. See selinux_bprm_committing_creds. */
3422 if (old_rlim->rlim_max != new_rlim->rlim_max)
3423 return current_has_perm(p, PROCESS__SETRLIMIT);
3424
3425 return 0;
3426}
3427
3428static int selinux_task_setscheduler(struct task_struct *p)
3429{
3430 int rc;
3431
3432 rc = cap_task_setscheduler(p);
3433 if (rc)
3434 return rc;
3435
3436 return current_has_perm(p, PROCESS__SETSCHED);
3437}
3438
3439static int selinux_task_getscheduler(struct task_struct *p)
3440{
3441 return current_has_perm(p, PROCESS__GETSCHED);
3442}
3443
3444static int selinux_task_movememory(struct task_struct *p)
3445{
3446 return current_has_perm(p, PROCESS__SETSCHED);
3447}
3448
3449static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3450 int sig, u32 secid)
3451{
3452 u32 perm;
3453 int rc;
3454
3455 if (!sig)
3456 perm = PROCESS__SIGNULL; /* null signal; existence test */
3457 else
3458 perm = signal_to_av(sig);
3459 if (secid)
3460 rc = avc_has_perm(secid, task_sid(p),
3461 SECCLASS_PROCESS, perm, NULL);
3462 else
3463 rc = current_has_perm(p, perm);
3464 return rc;
3465}
3466
3467static int selinux_task_wait(struct task_struct *p)
3468{
3469 return task_has_perm(p, current, PROCESS__SIGCHLD);
3470}
3471
3472static void selinux_task_to_inode(struct task_struct *p,
3473 struct inode *inode)
3474{
3475 struct inode_security_struct *isec = inode->i_security;
3476 u32 sid = task_sid(p);
3477
3478 isec->sid = sid;
3479 isec->initialized = 1;
3480}
3481
3482/* Returns error only if unable to parse addresses */
3483static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3484 struct common_audit_data *ad, u8 *proto)
3485{
3486 int offset, ihlen, ret = -EINVAL;
3487 struct iphdr _iph, *ih;
3488
3489 offset = skb_network_offset(skb);
3490 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3491 if (ih == NULL)
3492 goto out;
3493
3494 ihlen = ih->ihl * 4;
3495 if (ihlen < sizeof(_iph))
3496 goto out;
3497
3498 ad->u.net.v4info.saddr = ih->saddr;
3499 ad->u.net.v4info.daddr = ih->daddr;
3500 ret = 0;
3501
3502 if (proto)
3503 *proto = ih->protocol;
3504
3505 switch (ih->protocol) {
3506 case IPPROTO_TCP: {
3507 struct tcphdr _tcph, *th;
3508
3509 if (ntohs(ih->frag_off) & IP_OFFSET)
3510 break;
3511
3512 offset += ihlen;
3513 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3514 if (th == NULL)
3515 break;
3516
3517 ad->u.net.sport = th->source;
3518 ad->u.net.dport = th->dest;
3519 break;
3520 }
3521
3522 case IPPROTO_UDP: {
3523 struct udphdr _udph, *uh;
3524
3525 if (ntohs(ih->frag_off) & IP_OFFSET)
3526 break;
3527
3528 offset += ihlen;
3529 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3530 if (uh == NULL)
3531 break;
3532
3533 ad->u.net.sport = uh->source;
3534 ad->u.net.dport = uh->dest;
3535 break;
3536 }
3537
3538 case IPPROTO_DCCP: {
3539 struct dccp_hdr _dccph, *dh;
3540
3541 if (ntohs(ih->frag_off) & IP_OFFSET)
3542 break;
3543
3544 offset += ihlen;
3545 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3546 if (dh == NULL)
3547 break;
3548
3549 ad->u.net.sport = dh->dccph_sport;
3550 ad->u.net.dport = dh->dccph_dport;
3551 break;
3552 }
3553
3554 default:
3555 break;
3556 }
3557out:
3558 return ret;
3559}
3560
3561#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3562
3563/* Returns error only if unable to parse addresses */
3564static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3565 struct common_audit_data *ad, u8 *proto)
3566{
3567 u8 nexthdr;
3568 int ret = -EINVAL, offset;
3569 struct ipv6hdr _ipv6h, *ip6;
3570
3571 offset = skb_network_offset(skb);
3572 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3573 if (ip6 == NULL)
3574 goto out;
3575
3576 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3577 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3578 ret = 0;
3579
3580 nexthdr = ip6->nexthdr;
3581 offset += sizeof(_ipv6h);
3582 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3583 if (offset < 0)
3584 goto out;
3585
3586 if (proto)
3587 *proto = nexthdr;
3588
3589 switch (nexthdr) {
3590 case IPPROTO_TCP: {
3591 struct tcphdr _tcph, *th;
3592
3593 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3594 if (th == NULL)
3595 break;
3596
3597 ad->u.net.sport = th->source;
3598 ad->u.net.dport = th->dest;
3599 break;
3600 }
3601
3602 case IPPROTO_UDP: {
3603 struct udphdr _udph, *uh;
3604
3605 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3606 if (uh == NULL)
3607 break;
3608
3609 ad->u.net.sport = uh->source;
3610 ad->u.net.dport = uh->dest;
3611 break;
3612 }
3613
3614 case IPPROTO_DCCP: {
3615 struct dccp_hdr _dccph, *dh;
3616
3617 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3618 if (dh == NULL)
3619 break;
3620
3621 ad->u.net.sport = dh->dccph_sport;
3622 ad->u.net.dport = dh->dccph_dport;
3623 break;
3624 }
3625
3626 /* includes fragments */
3627 default:
3628 break;
3629 }
3630out:
3631 return ret;
3632}
3633
3634#endif /* IPV6 */
3635
3636static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3637 char **_addrp, int src, u8 *proto)
3638{
3639 char *addrp;
3640 int ret;
3641
3642 switch (ad->u.net.family) {
3643 case PF_INET:
3644 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3645 if (ret)
3646 goto parse_error;
3647 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3648 &ad->u.net.v4info.daddr);
3649 goto okay;
3650
3651#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3652 case PF_INET6:
3653 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3654 if (ret)
3655 goto parse_error;
3656 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3657 &ad->u.net.v6info.daddr);
3658 goto okay;
3659#endif /* IPV6 */
3660 default:
3661 addrp = NULL;
3662 goto okay;
3663 }
3664
3665parse_error:
3666 printk(KERN_WARNING
3667 "SELinux: failure in selinux_parse_skb(),"
3668 " unable to parse packet\n");
3669 return ret;
3670
3671okay:
3672 if (_addrp)
3673 *_addrp = addrp;
3674 return 0;
3675}
3676
3677/**
3678 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3679 * @skb: the packet
3680 * @family: protocol family
3681 * @sid: the packet's peer label SID
3682 *
3683 * Description:
3684 * Check the various different forms of network peer labeling and determine
3685 * the peer label/SID for the packet; most of the magic actually occurs in
3686 * the security server function security_net_peersid_cmp(). The function
3687 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3688 * or -EACCES if @sid is invalid due to inconsistencies with the different
3689 * peer labels.
3690 *
3691 */
3692static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3693{
3694 int err;
3695 u32 xfrm_sid;
3696 u32 nlbl_sid;
3697 u32 nlbl_type;
3698
3699 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3700 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3701
3702 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3703 if (unlikely(err)) {
3704 printk(KERN_WARNING
3705 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3706 " unable to determine packet's peer label\n");
3707 return -EACCES;
3708 }
3709
3710 return 0;
3711}
3712
3713/* socket security operations */
3714
3715static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3716 u16 secclass, u32 *socksid)
3717{
3718 if (tsec->sockcreate_sid > SECSID_NULL) {
3719 *socksid = tsec->sockcreate_sid;
3720 return 0;
3721 }
3722
3723 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3724 socksid);
3725}
3726
3727static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3728{
3729 struct sk_security_struct *sksec = sk->sk_security;
3730 struct common_audit_data ad;
3731 u32 tsid = task_sid(task);
3732
3733 if (sksec->sid == SECINITSID_KERNEL)
3734 return 0;
3735
3736 COMMON_AUDIT_DATA_INIT(&ad, NET);
3737 ad.u.net.sk = sk;
3738
3739 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3740}
3741
3742static int selinux_socket_create(int family, int type,
3743 int protocol, int kern)
3744{
3745 const struct task_security_struct *tsec = current_security();
3746 u32 newsid;
3747 u16 secclass;
3748 int rc;
3749
3750 if (kern)
3751 return 0;
3752
3753 secclass = socket_type_to_security_class(family, type, protocol);
3754 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3755 if (rc)
3756 return rc;
3757
3758 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3759}
3760
3761static int selinux_socket_post_create(struct socket *sock, int family,
3762 int type, int protocol, int kern)
3763{
3764 const struct task_security_struct *tsec = current_security();
3765 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3766 struct sk_security_struct *sksec;
3767 int err = 0;
3768
3769 isec->sclass = socket_type_to_security_class(family, type, protocol);
3770
3771 if (kern)
3772 isec->sid = SECINITSID_KERNEL;
3773 else {
3774 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3775 if (err)
3776 return err;
3777 }
3778
3779 isec->initialized = 1;
3780
3781 if (sock->sk) {
3782 sksec = sock->sk->sk_security;
3783 sksec->sid = isec->sid;
3784 sksec->sclass = isec->sclass;
3785 err = selinux_netlbl_socket_post_create(sock->sk, family);
3786 }
3787
3788 return err;
3789}
3790
3791/* Range of port numbers used to automatically bind.
3792 Need to determine whether we should perform a name_bind
3793 permission check between the socket and the port number. */
3794
3795static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3796{
3797 struct sock *sk = sock->sk;
3798 u16 family;
3799 int err;
3800
3801 err = sock_has_perm(current, sk, SOCKET__BIND);
3802 if (err)
3803 goto out;
3804
3805 /*
3806 * If PF_INET or PF_INET6, check name_bind permission for the port.
3807 * Multiple address binding for SCTP is not supported yet: we just
3808 * check the first address now.
3809 */
3810 family = sk->sk_family;
3811 if (family == PF_INET || family == PF_INET6) {
3812 char *addrp;
3813 struct sk_security_struct *sksec = sk->sk_security;
3814 struct common_audit_data ad;
3815 struct sockaddr_in *addr4 = NULL;
3816 struct sockaddr_in6 *addr6 = NULL;
3817 unsigned short snum;
3818 u32 sid, node_perm;
3819
3820 if (family == PF_INET) {
3821 addr4 = (struct sockaddr_in *)address;
3822 snum = ntohs(addr4->sin_port);
3823 addrp = (char *)&addr4->sin_addr.s_addr;
3824 } else {
3825 addr6 = (struct sockaddr_in6 *)address;
3826 snum = ntohs(addr6->sin6_port);
3827 addrp = (char *)&addr6->sin6_addr.s6_addr;
3828 }
3829
3830 if (snum) {
3831 int low, high;
3832
3833 inet_get_local_port_range(&low, &high);
3834
3835 if (snum < max(PROT_SOCK, low) || snum > high) {
3836 err = sel_netport_sid(sk->sk_protocol,
3837 snum, &sid);
3838 if (err)
3839 goto out;
3840 COMMON_AUDIT_DATA_INIT(&ad, NET);
3841 ad.u.net.sport = htons(snum);
3842 ad.u.net.family = family;
3843 err = avc_has_perm(sksec->sid, sid,
3844 sksec->sclass,
3845 SOCKET__NAME_BIND, &ad);
3846 if (err)
3847 goto out;
3848 }
3849 }
3850
3851 switch (sksec->sclass) {
3852 case SECCLASS_TCP_SOCKET:
3853 node_perm = TCP_SOCKET__NODE_BIND;
3854 break;
3855
3856 case SECCLASS_UDP_SOCKET:
3857 node_perm = UDP_SOCKET__NODE_BIND;
3858 break;
3859
3860 case SECCLASS_DCCP_SOCKET:
3861 node_perm = DCCP_SOCKET__NODE_BIND;
3862 break;
3863
3864 default:
3865 node_perm = RAWIP_SOCKET__NODE_BIND;
3866 break;
3867 }
3868
3869 err = sel_netnode_sid(addrp, family, &sid);
3870 if (err)
3871 goto out;
3872
3873 COMMON_AUDIT_DATA_INIT(&ad, NET);
3874 ad.u.net.sport = htons(snum);
3875 ad.u.net.family = family;
3876
3877 if (family == PF_INET)
3878 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3879 else
3880 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3881
3882 err = avc_has_perm(sksec->sid, sid,
3883 sksec->sclass, node_perm, &ad);
3884 if (err)
3885 goto out;
3886 }
3887out:
3888 return err;
3889}
3890
3891static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3892{
3893 struct sock *sk = sock->sk;
3894 struct sk_security_struct *sksec = sk->sk_security;
3895 int err;
3896
3897 err = sock_has_perm(current, sk, SOCKET__CONNECT);
3898 if (err)
3899 return err;
3900
3901 /*
3902 * If a TCP or DCCP socket, check name_connect permission for the port.
3903 */
3904 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3905 sksec->sclass == SECCLASS_DCCP_SOCKET) {
3906 struct common_audit_data ad;
3907 struct sockaddr_in *addr4 = NULL;
3908 struct sockaddr_in6 *addr6 = NULL;
3909 unsigned short snum;
3910 u32 sid, perm;
3911
3912 if (sk->sk_family == PF_INET) {
3913 addr4 = (struct sockaddr_in *)address;
3914 if (addrlen < sizeof(struct sockaddr_in))
3915 return -EINVAL;
3916 snum = ntohs(addr4->sin_port);
3917 } else {
3918 addr6 = (struct sockaddr_in6 *)address;
3919 if (addrlen < SIN6_LEN_RFC2133)
3920 return -EINVAL;
3921 snum = ntohs(addr6->sin6_port);
3922 }
3923
3924 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3925 if (err)
3926 goto out;
3927
3928 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3929 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3930
3931 COMMON_AUDIT_DATA_INIT(&ad, NET);
3932 ad.u.net.dport = htons(snum);
3933 ad.u.net.family = sk->sk_family;
3934 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3935 if (err)
3936 goto out;
3937 }
3938
3939 err = selinux_netlbl_socket_connect(sk, address);
3940
3941out:
3942 return err;
3943}
3944
3945static int selinux_socket_listen(struct socket *sock, int backlog)
3946{
3947 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3948}
3949
3950static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3951{
3952 int err;
3953 struct inode_security_struct *isec;
3954 struct inode_security_struct *newisec;
3955
3956 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3957 if (err)
3958 return err;
3959
3960 newisec = SOCK_INODE(newsock)->i_security;
3961
3962 isec = SOCK_INODE(sock)->i_security;
3963 newisec->sclass = isec->sclass;
3964 newisec->sid = isec->sid;
3965 newisec->initialized = 1;
3966
3967 return 0;
3968}
3969
3970static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3971 int size)
3972{
3973 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3974}
3975
3976static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3977 int size, int flags)
3978{
3979 return sock_has_perm(current, sock->sk, SOCKET__READ);
3980}
3981
3982static int selinux_socket_getsockname(struct socket *sock)
3983{
3984 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3985}
3986
3987static int selinux_socket_getpeername(struct socket *sock)
3988{
3989 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3990}
3991
3992static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3993{
3994 int err;
3995
3996 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
3997 if (err)
3998 return err;
3999
4000 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4001}
4002
4003static int selinux_socket_getsockopt(struct socket *sock, int level,
4004 int optname)
4005{
4006 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4007}
4008
4009static int selinux_socket_shutdown(struct socket *sock, int how)
4010{
4011 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4012}
4013
4014static int selinux_socket_unix_stream_connect(struct sock *sock,
4015 struct sock *other,
4016 struct sock *newsk)
4017{
4018 struct sk_security_struct *sksec_sock = sock->sk_security;
4019 struct sk_security_struct *sksec_other = other->sk_security;
4020 struct sk_security_struct *sksec_new = newsk->sk_security;
4021 struct common_audit_data ad;
4022 int err;
4023
4024 COMMON_AUDIT_DATA_INIT(&ad, NET);
4025 ad.u.net.sk = other;
4026
4027 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4028 sksec_other->sclass,
4029 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4030 if (err)
4031 return err;
4032
4033 /* server child socket */
4034 sksec_new->peer_sid = sksec_sock->sid;
4035 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4036 &sksec_new->sid);
4037 if (err)
4038 return err;
4039
4040 /* connecting socket */
4041 sksec_sock->peer_sid = sksec_new->sid;
4042
4043 return 0;
4044}
4045
4046static int selinux_socket_unix_may_send(struct socket *sock,
4047 struct socket *other)
4048{
4049 struct sk_security_struct *ssec = sock->sk->sk_security;
4050 struct sk_security_struct *osec = other->sk->sk_security;
4051 struct common_audit_data ad;
4052
4053 COMMON_AUDIT_DATA_INIT(&ad, NET);
4054 ad.u.net.sk = other->sk;
4055
4056 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4057 &ad);
4058}
4059
4060static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4061 u32 peer_sid,
4062 struct common_audit_data *ad)
4063{
4064 int err;
4065 u32 if_sid;
4066 u32 node_sid;
4067
4068 err = sel_netif_sid(ifindex, &if_sid);
4069 if (err)
4070 return err;
4071 err = avc_has_perm(peer_sid, if_sid,
4072 SECCLASS_NETIF, NETIF__INGRESS, ad);
4073 if (err)
4074 return err;
4075
4076 err = sel_netnode_sid(addrp, family, &node_sid);
4077 if (err)
4078 return err;
4079 return avc_has_perm(peer_sid, node_sid,
4080 SECCLASS_NODE, NODE__RECVFROM, ad);
4081}
4082
4083static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4084 u16 family)
4085{
4086 int err = 0;
4087 struct sk_security_struct *sksec = sk->sk_security;
4088 u32 sk_sid = sksec->sid;
4089 struct common_audit_data ad;
4090 char *addrp;
4091
4092 COMMON_AUDIT_DATA_INIT(&ad, NET);
4093 ad.u.net.netif = skb->skb_iif;
4094 ad.u.net.family = family;
4095 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4096 if (err)
4097 return err;
4098
4099 if (selinux_secmark_enabled()) {
4100 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4101 PACKET__RECV, &ad);
4102 if (err)
4103 return err;
4104 }
4105
4106 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4107 if (err)
4108 return err;
4109 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4110
4111 return err;
4112}
4113
4114static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4115{
4116 int err;
4117 struct sk_security_struct *sksec = sk->sk_security;
4118 u16 family = sk->sk_family;
4119 u32 sk_sid = sksec->sid;
4120 struct common_audit_data ad;
4121 char *addrp;
4122 u8 secmark_active;
4123 u8 peerlbl_active;
4124
4125 if (family != PF_INET && family != PF_INET6)
4126 return 0;
4127
4128 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4129 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4130 family = PF_INET;
4131
4132 /* If any sort of compatibility mode is enabled then handoff processing
4133 * to the selinux_sock_rcv_skb_compat() function to deal with the
4134 * special handling. We do this in an attempt to keep this function
4135 * as fast and as clean as possible. */
4136 if (!selinux_policycap_netpeer)
4137 return selinux_sock_rcv_skb_compat(sk, skb, family);
4138
4139 secmark_active = selinux_secmark_enabled();
4140 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4141 if (!secmark_active && !peerlbl_active)
4142 return 0;
4143
4144 COMMON_AUDIT_DATA_INIT(&ad, NET);
4145 ad.u.net.netif = skb->skb_iif;
4146 ad.u.net.family = family;
4147 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4148 if (err)
4149 return err;
4150
4151 if (peerlbl_active) {
4152 u32 peer_sid;
4153
4154 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4155 if (err)
4156 return err;
4157 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4158 peer_sid, &ad);
4159 if (err) {
4160 selinux_netlbl_err(skb, err, 0);
4161 return err;
4162 }
4163 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4164 PEER__RECV, &ad);
4165 if (err)
4166 selinux_netlbl_err(skb, err, 0);
4167 }
4168
4169 if (secmark_active) {
4170 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4171 PACKET__RECV, &ad);
4172 if (err)
4173 return err;
4174 }
4175
4176 return err;
4177}
4178
4179static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4180 int __user *optlen, unsigned len)
4181{
4182 int err = 0;
4183 char *scontext;
4184 u32 scontext_len;
4185 struct sk_security_struct *sksec = sock->sk->sk_security;
4186 u32 peer_sid = SECSID_NULL;
4187
4188 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4189 sksec->sclass == SECCLASS_TCP_SOCKET)
4190 peer_sid = sksec->peer_sid;
4191 if (peer_sid == SECSID_NULL)
4192 return -ENOPROTOOPT;
4193
4194 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4195 if (err)
4196 return err;
4197
4198 if (scontext_len > len) {
4199 err = -ERANGE;
4200 goto out_len;
4201 }
4202
4203 if (copy_to_user(optval, scontext, scontext_len))
4204 err = -EFAULT;
4205
4206out_len:
4207 if (put_user(scontext_len, optlen))
4208 err = -EFAULT;
4209 kfree(scontext);
4210 return err;
4211}
4212
4213static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4214{
4215 u32 peer_secid = SECSID_NULL;
4216 u16 family;
4217
4218 if (skb && skb->protocol == htons(ETH_P_IP))
4219 family = PF_INET;
4220 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4221 family = PF_INET6;
4222 else if (sock)
4223 family = sock->sk->sk_family;
4224 else
4225 goto out;
4226
4227 if (sock && family == PF_UNIX)
4228 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4229 else if (skb)
4230 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4231
4232out:
4233 *secid = peer_secid;
4234 if (peer_secid == SECSID_NULL)
4235 return -EINVAL;
4236 return 0;
4237}
4238
4239static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4240{
4241 struct sk_security_struct *sksec;
4242
4243 sksec = kzalloc(sizeof(*sksec), priority);
4244 if (!sksec)
4245 return -ENOMEM;
4246
4247 sksec->peer_sid = SECINITSID_UNLABELED;
4248 sksec->sid = SECINITSID_UNLABELED;
4249 selinux_netlbl_sk_security_reset(sksec);
4250 sk->sk_security = sksec;
4251
4252 return 0;
4253}
4254
4255static void selinux_sk_free_security(struct sock *sk)
4256{
4257 struct sk_security_struct *sksec = sk->sk_security;
4258
4259 sk->sk_security = NULL;
4260 selinux_netlbl_sk_security_free(sksec);
4261 kfree(sksec);
4262}
4263
4264static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4265{
4266 struct sk_security_struct *sksec = sk->sk_security;
4267 struct sk_security_struct *newsksec = newsk->sk_security;
4268
4269 newsksec->sid = sksec->sid;
4270 newsksec->peer_sid = sksec->peer_sid;
4271 newsksec->sclass = sksec->sclass;
4272
4273 selinux_netlbl_sk_security_reset(newsksec);
4274}
4275
4276static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4277{
4278 if (!sk)
4279 *secid = SECINITSID_ANY_SOCKET;
4280 else {
4281 struct sk_security_struct *sksec = sk->sk_security;
4282
4283 *secid = sksec->sid;
4284 }
4285}
4286
4287static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4288{
4289 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4290 struct sk_security_struct *sksec = sk->sk_security;
4291
4292 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4293 sk->sk_family == PF_UNIX)
4294 isec->sid = sksec->sid;
4295 sksec->sclass = isec->sclass;
4296}
4297
4298static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4299 struct request_sock *req)
4300{
4301 struct sk_security_struct *sksec = sk->sk_security;
4302 int err;
4303 u16 family = sk->sk_family;
4304 u32 newsid;
4305 u32 peersid;
4306
4307 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4308 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4309 family = PF_INET;
4310
4311 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4312 if (err)
4313 return err;
4314 if (peersid == SECSID_NULL) {
4315 req->secid = sksec->sid;
4316 req->peer_secid = SECSID_NULL;
4317 } else {
4318 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4319 if (err)
4320 return err;
4321 req->secid = newsid;
4322 req->peer_secid = peersid;
4323 }
4324
4325 return selinux_netlbl_inet_conn_request(req, family);
4326}
4327
4328static void selinux_inet_csk_clone(struct sock *newsk,
4329 const struct request_sock *req)
4330{
4331 struct sk_security_struct *newsksec = newsk->sk_security;
4332
4333 newsksec->sid = req->secid;
4334 newsksec->peer_sid = req->peer_secid;
4335 /* NOTE: Ideally, we should also get the isec->sid for the
4336 new socket in sync, but we don't have the isec available yet.
4337 So we will wait until sock_graft to do it, by which
4338 time it will have been created and available. */
4339
4340 /* We don't need to take any sort of lock here as we are the only
4341 * thread with access to newsksec */
4342 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4343}
4344
4345static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4346{
4347 u16 family = sk->sk_family;
4348 struct sk_security_struct *sksec = sk->sk_security;
4349
4350 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4351 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4352 family = PF_INET;
4353
4354 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4355}
4356
4357static int selinux_secmark_relabel_packet(u32 sid)
4358{
4359 const struct task_security_struct *__tsec;
4360 u32 tsid;
4361
4362 __tsec = current_security();
4363 tsid = __tsec->sid;
4364
4365 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4366}
4367
4368static void selinux_secmark_refcount_inc(void)
4369{
4370 atomic_inc(&selinux_secmark_refcount);
4371}
4372
4373static void selinux_secmark_refcount_dec(void)
4374{
4375 atomic_dec(&selinux_secmark_refcount);
4376}
4377
4378static void selinux_req_classify_flow(const struct request_sock *req,
4379 struct flowi *fl)
4380{
4381 fl->flowi_secid = req->secid;
4382}
4383
4384static int selinux_tun_dev_create(void)
4385{
4386 u32 sid = current_sid();
4387
4388 /* we aren't taking into account the "sockcreate" SID since the socket
4389 * that is being created here is not a socket in the traditional sense,
4390 * instead it is a private sock, accessible only to the kernel, and
4391 * representing a wide range of network traffic spanning multiple
4392 * connections unlike traditional sockets - check the TUN driver to
4393 * get a better understanding of why this socket is special */
4394
4395 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4396 NULL);
4397}
4398
4399static void selinux_tun_dev_post_create(struct sock *sk)
4400{
4401 struct sk_security_struct *sksec = sk->sk_security;
4402
4403 /* we don't currently perform any NetLabel based labeling here and it
4404 * isn't clear that we would want to do so anyway; while we could apply
4405 * labeling without the support of the TUN user the resulting labeled
4406 * traffic from the other end of the connection would almost certainly
4407 * cause confusion to the TUN user that had no idea network labeling
4408 * protocols were being used */
4409
4410 /* see the comments in selinux_tun_dev_create() about why we don't use
4411 * the sockcreate SID here */
4412
4413 sksec->sid = current_sid();
4414 sksec->sclass = SECCLASS_TUN_SOCKET;
4415}
4416
4417static int selinux_tun_dev_attach(struct sock *sk)
4418{
4419 struct sk_security_struct *sksec = sk->sk_security;
4420 u32 sid = current_sid();
4421 int err;
4422
4423 err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4424 TUN_SOCKET__RELABELFROM, NULL);
4425 if (err)
4426 return err;
4427 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4428 TUN_SOCKET__RELABELTO, NULL);
4429 if (err)
4430 return err;
4431
4432 sksec->sid = sid;
4433
4434 return 0;
4435}
4436
4437static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4438{
4439 int err = 0;
4440 u32 perm;
4441 struct nlmsghdr *nlh;
4442 struct sk_security_struct *sksec = sk->sk_security;
4443
4444 if (skb->len < NLMSG_SPACE(0)) {
4445 err = -EINVAL;
4446 goto out;
4447 }
4448 nlh = nlmsg_hdr(skb);
4449
4450 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4451 if (err) {
4452 if (err == -EINVAL) {
4453 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4454 "SELinux: unrecognized netlink message"
4455 " type=%hu for sclass=%hu\n",
4456 nlh->nlmsg_type, sksec->sclass);
4457 if (!selinux_enforcing || security_get_allow_unknown())
4458 err = 0;
4459 }
4460
4461 /* Ignore */
4462 if (err == -ENOENT)
4463 err = 0;
4464 goto out;
4465 }
4466
4467 err = sock_has_perm(current, sk, perm);
4468out:
4469 return err;
4470}
4471
4472#ifdef CONFIG_NETFILTER
4473
4474static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4475 u16 family)
4476{
4477 int err;
4478 char *addrp;
4479 u32 peer_sid;
4480 struct common_audit_data ad;
4481 u8 secmark_active;
4482 u8 netlbl_active;
4483 u8 peerlbl_active;
4484
4485 if (!selinux_policycap_netpeer)
4486 return NF_ACCEPT;
4487
4488 secmark_active = selinux_secmark_enabled();
4489 netlbl_active = netlbl_enabled();
4490 peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4491 if (!secmark_active && !peerlbl_active)
4492 return NF_ACCEPT;
4493
4494 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4495 return NF_DROP;
4496
4497 COMMON_AUDIT_DATA_INIT(&ad, NET);
4498 ad.u.net.netif = ifindex;
4499 ad.u.net.family = family;
4500 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4501 return NF_DROP;
4502
4503 if (peerlbl_active) {
4504 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4505 peer_sid, &ad);
4506 if (err) {
4507 selinux_netlbl_err(skb, err, 1);
4508 return NF_DROP;
4509 }
4510 }
4511
4512 if (secmark_active)
4513 if (avc_has_perm(peer_sid, skb->secmark,
4514 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4515 return NF_DROP;
4516
4517 if (netlbl_active)
4518 /* we do this in the FORWARD path and not the POST_ROUTING
4519 * path because we want to make sure we apply the necessary
4520 * labeling before IPsec is applied so we can leverage AH
4521 * protection */
4522 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4523 return NF_DROP;
4524
4525 return NF_ACCEPT;
4526}
4527
4528static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4529 struct sk_buff *skb,
4530 const struct net_device *in,
4531 const struct net_device *out,
4532 int (*okfn)(struct sk_buff *))
4533{
4534 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4535}
4536
4537#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4538static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4539 struct sk_buff *skb,
4540 const struct net_device *in,
4541 const struct net_device *out,
4542 int (*okfn)(struct sk_buff *))
4543{
4544 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4545}
4546#endif /* IPV6 */
4547
4548static unsigned int selinux_ip_output(struct sk_buff *skb,
4549 u16 family)
4550{
4551 u32 sid;
4552
4553 if (!netlbl_enabled())
4554 return NF_ACCEPT;
4555
4556 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4557 * because we want to make sure we apply the necessary labeling
4558 * before IPsec is applied so we can leverage AH protection */
4559 if (skb->sk) {
4560 struct sk_security_struct *sksec = skb->sk->sk_security;
4561 sid = sksec->sid;
4562 } else
4563 sid = SECINITSID_KERNEL;
4564 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4565 return NF_DROP;
4566
4567 return NF_ACCEPT;
4568}
4569
4570static unsigned int selinux_ipv4_output(unsigned int hooknum,
4571 struct sk_buff *skb,
4572 const struct net_device *in,
4573 const struct net_device *out,
4574 int (*okfn)(struct sk_buff *))
4575{
4576 return selinux_ip_output(skb, PF_INET);
4577}
4578
4579static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4580 int ifindex,
4581 u16 family)
4582{
4583 struct sock *sk = skb->sk;
4584 struct sk_security_struct *sksec;
4585 struct common_audit_data ad;
4586 char *addrp;
4587 u8 proto;
4588
4589 if (sk == NULL)
4590 return NF_ACCEPT;
4591 sksec = sk->sk_security;
4592
4593 COMMON_AUDIT_DATA_INIT(&ad, NET);
4594 ad.u.net.netif = ifindex;
4595 ad.u.net.family = family;
4596 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4597 return NF_DROP;
4598
4599 if (selinux_secmark_enabled())
4600 if (avc_has_perm(sksec->sid, skb->secmark,
4601 SECCLASS_PACKET, PACKET__SEND, &ad))
4602 return NF_DROP_ERR(-ECONNREFUSED);
4603
4604 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4605 return NF_DROP_ERR(-ECONNREFUSED);
4606
4607 return NF_ACCEPT;
4608}
4609
4610static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4611 u16 family)
4612{
4613 u32 secmark_perm;
4614 u32 peer_sid;
4615 struct sock *sk;
4616 struct common_audit_data ad;
4617 char *addrp;
4618 u8 secmark_active;
4619 u8 peerlbl_active;
4620
4621 /* If any sort of compatibility mode is enabled then handoff processing
4622 * to the selinux_ip_postroute_compat() function to deal with the
4623 * special handling. We do this in an attempt to keep this function
4624 * as fast and as clean as possible. */
4625 if (!selinux_policycap_netpeer)
4626 return selinux_ip_postroute_compat(skb, ifindex, family);
4627#ifdef CONFIG_XFRM
4628 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4629 * packet transformation so allow the packet to pass without any checks
4630 * since we'll have another chance to perform access control checks
4631 * when the packet is on it's final way out.
4632 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4633 * is NULL, in this case go ahead and apply access control. */
4634 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4635 return NF_ACCEPT;
4636#endif
4637 secmark_active = selinux_secmark_enabled();
4638 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4639 if (!secmark_active && !peerlbl_active)
4640 return NF_ACCEPT;
4641
4642 /* if the packet is being forwarded then get the peer label from the
4643 * packet itself; otherwise check to see if it is from a local
4644 * application or the kernel, if from an application get the peer label
4645 * from the sending socket, otherwise use the kernel's sid */
4646 sk = skb->sk;
4647 if (sk == NULL) {
4648 if (skb->skb_iif) {
4649 secmark_perm = PACKET__FORWARD_OUT;
4650 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4651 return NF_DROP;
4652 } else {
4653 secmark_perm = PACKET__SEND;
4654 peer_sid = SECINITSID_KERNEL;
4655 }
4656 } else {
4657 struct sk_security_struct *sksec = sk->sk_security;
4658 peer_sid = sksec->sid;
4659 secmark_perm = PACKET__SEND;
4660 }
4661
4662 COMMON_AUDIT_DATA_INIT(&ad, NET);
4663 ad.u.net.netif = ifindex;
4664 ad.u.net.family = family;
4665 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4666 return NF_DROP;
4667
4668 if (secmark_active)
4669 if (avc_has_perm(peer_sid, skb->secmark,
4670 SECCLASS_PACKET, secmark_perm, &ad))
4671 return NF_DROP_ERR(-ECONNREFUSED);
4672
4673 if (peerlbl_active) {
4674 u32 if_sid;
4675 u32 node_sid;
4676
4677 if (sel_netif_sid(ifindex, &if_sid))
4678 return NF_DROP;
4679 if (avc_has_perm(peer_sid, if_sid,
4680 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4681 return NF_DROP_ERR(-ECONNREFUSED);
4682
4683 if (sel_netnode_sid(addrp, family, &node_sid))
4684 return NF_DROP;
4685 if (avc_has_perm(peer_sid, node_sid,
4686 SECCLASS_NODE, NODE__SENDTO, &ad))
4687 return NF_DROP_ERR(-ECONNREFUSED);
4688 }
4689
4690 return NF_ACCEPT;
4691}
4692
4693static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4694 struct sk_buff *skb,
4695 const struct net_device *in,
4696 const struct net_device *out,
4697 int (*okfn)(struct sk_buff *))
4698{
4699 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4700}
4701
4702#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4703static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4704 struct sk_buff *skb,
4705 const struct net_device *in,
4706 const struct net_device *out,
4707 int (*okfn)(struct sk_buff *))
4708{
4709 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4710}
4711#endif /* IPV6 */
4712
4713#endif /* CONFIG_NETFILTER */
4714
4715static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4716{
4717 int err;
4718
4719 err = cap_netlink_send(sk, skb);
4720 if (err)
4721 return err;
4722
4723 return selinux_nlmsg_perm(sk, skb);
4724}
4725
4726static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4727{
4728 int err;
4729 struct common_audit_data ad;
4730 u32 sid;
4731
4732 err = cap_netlink_recv(skb, capability);
4733 if (err)
4734 return err;
4735
4736 COMMON_AUDIT_DATA_INIT(&ad, CAP);
4737 ad.u.cap = capability;
4738
4739 security_task_getsecid(current, &sid);
4740 return avc_has_perm(sid, sid, SECCLASS_CAPABILITY,
4741 CAP_TO_MASK(capability), &ad);
4742}
4743
4744static int ipc_alloc_security(struct task_struct *task,
4745 struct kern_ipc_perm *perm,
4746 u16 sclass)
4747{
4748 struct ipc_security_struct *isec;
4749 u32 sid;
4750
4751 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4752 if (!isec)
4753 return -ENOMEM;
4754
4755 sid = task_sid(task);
4756 isec->sclass = sclass;
4757 isec->sid = sid;
4758 perm->security = isec;
4759
4760 return 0;
4761}
4762
4763static void ipc_free_security(struct kern_ipc_perm *perm)
4764{
4765 struct ipc_security_struct *isec = perm->security;
4766 perm->security = NULL;
4767 kfree(isec);
4768}
4769
4770static int msg_msg_alloc_security(struct msg_msg *msg)
4771{
4772 struct msg_security_struct *msec;
4773
4774 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4775 if (!msec)
4776 return -ENOMEM;
4777
4778 msec->sid = SECINITSID_UNLABELED;
4779 msg->security = msec;
4780
4781 return 0;
4782}
4783
4784static void msg_msg_free_security(struct msg_msg *msg)
4785{
4786 struct msg_security_struct *msec = msg->security;
4787
4788 msg->security = NULL;
4789 kfree(msec);
4790}
4791
4792static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4793 u32 perms)
4794{
4795 struct ipc_security_struct *isec;
4796 struct common_audit_data ad;
4797 u32 sid = current_sid();
4798
4799 isec = ipc_perms->security;
4800
4801 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4802 ad.u.ipc_id = ipc_perms->key;
4803
4804 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4805}
4806
4807static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4808{
4809 return msg_msg_alloc_security(msg);
4810}
4811
4812static void selinux_msg_msg_free_security(struct msg_msg *msg)
4813{
4814 msg_msg_free_security(msg);
4815}
4816
4817/* message queue security operations */
4818static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4819{
4820 struct ipc_security_struct *isec;
4821 struct common_audit_data ad;
4822 u32 sid = current_sid();
4823 int rc;
4824
4825 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4826 if (rc)
4827 return rc;
4828
4829 isec = msq->q_perm.security;
4830
4831 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4832 ad.u.ipc_id = msq->q_perm.key;
4833
4834 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4835 MSGQ__CREATE, &ad);
4836 if (rc) {
4837 ipc_free_security(&msq->q_perm);
4838 return rc;
4839 }
4840 return 0;
4841}
4842
4843static void selinux_msg_queue_free_security(struct msg_queue *msq)
4844{
4845 ipc_free_security(&msq->q_perm);
4846}
4847
4848static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4849{
4850 struct ipc_security_struct *isec;
4851 struct common_audit_data ad;
4852 u32 sid = current_sid();
4853
4854 isec = msq->q_perm.security;
4855
4856 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4857 ad.u.ipc_id = msq->q_perm.key;
4858
4859 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4860 MSGQ__ASSOCIATE, &ad);
4861}
4862
4863static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4864{
4865 int err;
4866 int perms;
4867
4868 switch (cmd) {
4869 case IPC_INFO:
4870 case MSG_INFO:
4871 /* No specific object, just general system-wide information. */
4872 return task_has_system(current, SYSTEM__IPC_INFO);
4873 case IPC_STAT:
4874 case MSG_STAT:
4875 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4876 break;
4877 case IPC_SET:
4878 perms = MSGQ__SETATTR;
4879 break;
4880 case IPC_RMID:
4881 perms = MSGQ__DESTROY;
4882 break;
4883 default:
4884 return 0;
4885 }
4886
4887 err = ipc_has_perm(&msq->q_perm, perms);
4888 return err;
4889}
4890
4891static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4892{
4893 struct ipc_security_struct *isec;
4894 struct msg_security_struct *msec;
4895 struct common_audit_data ad;
4896 u32 sid = current_sid();
4897 int rc;
4898
4899 isec = msq->q_perm.security;
4900 msec = msg->security;
4901
4902 /*
4903 * First time through, need to assign label to the message
4904 */
4905 if (msec->sid == SECINITSID_UNLABELED) {
4906 /*
4907 * Compute new sid based on current process and
4908 * message queue this message will be stored in
4909 */
4910 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4911 NULL, &msec->sid);
4912 if (rc)
4913 return rc;
4914 }
4915
4916 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4917 ad.u.ipc_id = msq->q_perm.key;
4918
4919 /* Can this process write to the queue? */
4920 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4921 MSGQ__WRITE, &ad);
4922 if (!rc)
4923 /* Can this process send the message */
4924 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4925 MSG__SEND, &ad);
4926 if (!rc)
4927 /* Can the message be put in the queue? */
4928 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4929 MSGQ__ENQUEUE, &ad);
4930
4931 return rc;
4932}
4933
4934static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4935 struct task_struct *target,
4936 long type, int mode)
4937{
4938 struct ipc_security_struct *isec;
4939 struct msg_security_struct *msec;
4940 struct common_audit_data ad;
4941 u32 sid = task_sid(target);
4942 int rc;
4943
4944 isec = msq->q_perm.security;
4945 msec = msg->security;
4946
4947 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4948 ad.u.ipc_id = msq->q_perm.key;
4949
4950 rc = avc_has_perm(sid, isec->sid,
4951 SECCLASS_MSGQ, MSGQ__READ, &ad);
4952 if (!rc)
4953 rc = avc_has_perm(sid, msec->sid,
4954 SECCLASS_MSG, MSG__RECEIVE, &ad);
4955 return rc;
4956}
4957
4958/* Shared Memory security operations */
4959static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4960{
4961 struct ipc_security_struct *isec;
4962 struct common_audit_data ad;
4963 u32 sid = current_sid();
4964 int rc;
4965
4966 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4967 if (rc)
4968 return rc;
4969
4970 isec = shp->shm_perm.security;
4971
4972 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4973 ad.u.ipc_id = shp->shm_perm.key;
4974
4975 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4976 SHM__CREATE, &ad);
4977 if (rc) {
4978 ipc_free_security(&shp->shm_perm);
4979 return rc;
4980 }
4981 return 0;
4982}
4983
4984static void selinux_shm_free_security(struct shmid_kernel *shp)
4985{
4986 ipc_free_security(&shp->shm_perm);
4987}
4988
4989static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4990{
4991 struct ipc_security_struct *isec;
4992 struct common_audit_data ad;
4993 u32 sid = current_sid();
4994
4995 isec = shp->shm_perm.security;
4996
4997 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4998 ad.u.ipc_id = shp->shm_perm.key;
4999
5000 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5001 SHM__ASSOCIATE, &ad);
5002}
5003
5004/* Note, at this point, shp is locked down */
5005static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5006{
5007 int perms;
5008 int err;
5009
5010 switch (cmd) {
5011 case IPC_INFO:
5012 case SHM_INFO:
5013 /* No specific object, just general system-wide information. */
5014 return task_has_system(current, SYSTEM__IPC_INFO);
5015 case IPC_STAT:
5016 case SHM_STAT:
5017 perms = SHM__GETATTR | SHM__ASSOCIATE;
5018 break;
5019 case IPC_SET:
5020 perms = SHM__SETATTR;
5021 break;
5022 case SHM_LOCK:
5023 case SHM_UNLOCK:
5024 perms = SHM__LOCK;
5025 break;
5026 case IPC_RMID:
5027 perms = SHM__DESTROY;
5028 break;
5029 default:
5030 return 0;
5031 }
5032
5033 err = ipc_has_perm(&shp->shm_perm, perms);
5034 return err;
5035}
5036
5037static int selinux_shm_shmat(struct shmid_kernel *shp,
5038 char __user *shmaddr, int shmflg)
5039{
5040 u32 perms;
5041
5042 if (shmflg & SHM_RDONLY)
5043 perms = SHM__READ;
5044 else
5045 perms = SHM__READ | SHM__WRITE;
5046
5047 return ipc_has_perm(&shp->shm_perm, perms);
5048}
5049
5050/* Semaphore security operations */
5051static int selinux_sem_alloc_security(struct sem_array *sma)
5052{
5053 struct ipc_security_struct *isec;
5054 struct common_audit_data ad;
5055 u32 sid = current_sid();
5056 int rc;
5057
5058 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5059 if (rc)
5060 return rc;
5061
5062 isec = sma->sem_perm.security;
5063
5064 COMMON_AUDIT_DATA_INIT(&ad, IPC);
5065 ad.u.ipc_id = sma->sem_perm.key;
5066
5067 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5068 SEM__CREATE, &ad);
5069 if (rc) {
5070 ipc_free_security(&sma->sem_perm);
5071 return rc;
5072 }
5073 return 0;
5074}
5075
5076static void selinux_sem_free_security(struct sem_array *sma)
5077{
5078 ipc_free_security(&sma->sem_perm);
5079}
5080
5081static int selinux_sem_associate(struct sem_array *sma, int semflg)
5082{
5083 struct ipc_security_struct *isec;
5084 struct common_audit_data ad;
5085 u32 sid = current_sid();
5086
5087 isec = sma->sem_perm.security;
5088
5089 COMMON_AUDIT_DATA_INIT(&ad, IPC);
5090 ad.u.ipc_id = sma->sem_perm.key;
5091
5092 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5093 SEM__ASSOCIATE, &ad);
5094}
5095
5096/* Note, at this point, sma is locked down */
5097static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5098{
5099 int err;
5100 u32 perms;
5101
5102 switch (cmd) {
5103 case IPC_INFO:
5104 case SEM_INFO:
5105 /* No specific object, just general system-wide information. */
5106 return task_has_system(current, SYSTEM__IPC_INFO);
5107 case GETPID:
5108 case GETNCNT:
5109 case GETZCNT:
5110 perms = SEM__GETATTR;
5111 break;
5112 case GETVAL:
5113 case GETALL:
5114 perms = SEM__READ;
5115 break;
5116 case SETVAL:
5117 case SETALL:
5118 perms = SEM__WRITE;
5119 break;
5120 case IPC_RMID:
5121 perms = SEM__DESTROY;
5122 break;
5123 case IPC_SET:
5124 perms = SEM__SETATTR;
5125 break;
5126 case IPC_STAT:
5127 case SEM_STAT:
5128 perms = SEM__GETATTR | SEM__ASSOCIATE;
5129 break;
5130 default:
5131 return 0;
5132 }
5133
5134 err = ipc_has_perm(&sma->sem_perm, perms);
5135 return err;
5136}
5137
5138static int selinux_sem_semop(struct sem_array *sma,
5139 struct sembuf *sops, unsigned nsops, int alter)
5140{
5141 u32 perms;
5142
5143 if (alter)
5144 perms = SEM__READ | SEM__WRITE;
5145 else
5146 perms = SEM__READ;
5147
5148 return ipc_has_perm(&sma->sem_perm, perms);
5149}
5150
5151static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5152{
5153 u32 av = 0;
5154
5155 av = 0;
5156 if (flag & S_IRUGO)
5157 av |= IPC__UNIX_READ;
5158 if (flag & S_IWUGO)
5159 av |= IPC__UNIX_WRITE;
5160
5161 if (av == 0)
5162 return 0;
5163
5164 return ipc_has_perm(ipcp, av);
5165}
5166
5167static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5168{
5169 struct ipc_security_struct *isec = ipcp->security;
5170 *secid = isec->sid;
5171}
5172
5173static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5174{
5175 if (inode)
5176 inode_doinit_with_dentry(inode, dentry);
5177}
5178
5179static int selinux_getprocattr(struct task_struct *p,
5180 char *name, char **value)
5181{
5182 const struct task_security_struct *__tsec;
5183 u32 sid;
5184 int error;
5185 unsigned len;
5186
5187 if (current != p) {
5188 error = current_has_perm(p, PROCESS__GETATTR);
5189 if (error)
5190 return error;
5191 }
5192
5193 rcu_read_lock();
5194 __tsec = __task_cred(p)->security;
5195
5196 if (!strcmp(name, "current"))
5197 sid = __tsec->sid;
5198 else if (!strcmp(name, "prev"))
5199 sid = __tsec->osid;
5200 else if (!strcmp(name, "exec"))
5201 sid = __tsec->exec_sid;
5202 else if (!strcmp(name, "fscreate"))
5203 sid = __tsec->create_sid;
5204 else if (!strcmp(name, "keycreate"))
5205 sid = __tsec->keycreate_sid;
5206 else if (!strcmp(name, "sockcreate"))
5207 sid = __tsec->sockcreate_sid;
5208 else
5209 goto invalid;
5210 rcu_read_unlock();
5211
5212 if (!sid)
5213 return 0;
5214
5215 error = security_sid_to_context(sid, value, &len);
5216 if (error)
5217 return error;
5218 return len;
5219
5220invalid:
5221 rcu_read_unlock();
5222 return -EINVAL;
5223}
5224
5225static int selinux_setprocattr(struct task_struct *p,
5226 char *name, void *value, size_t size)
5227{
5228 struct task_security_struct *tsec;
5229 struct task_struct *tracer;
5230 struct cred *new;
5231 u32 sid = 0, ptsid;
5232 int error;
5233 char *str = value;
5234
5235 if (current != p) {
5236 /* SELinux only allows a process to change its own
5237 security attributes. */
5238 return -EACCES;
5239 }
5240
5241 /*
5242 * Basic control over ability to set these attributes at all.
5243 * current == p, but we'll pass them separately in case the
5244 * above restriction is ever removed.
5245 */
5246 if (!strcmp(name, "exec"))
5247 error = current_has_perm(p, PROCESS__SETEXEC);
5248 else if (!strcmp(name, "fscreate"))
5249 error = current_has_perm(p, PROCESS__SETFSCREATE);
5250 else if (!strcmp(name, "keycreate"))
5251 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5252 else if (!strcmp(name, "sockcreate"))
5253 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5254 else if (!strcmp(name, "current"))
5255 error = current_has_perm(p, PROCESS__SETCURRENT);
5256 else
5257 error = -EINVAL;
5258 if (error)
5259 return error;
5260
5261 /* Obtain a SID for the context, if one was specified. */
5262 if (size && str[1] && str[1] != '\n') {
5263 if (str[size-1] == '\n') {
5264 str[size-1] = 0;
5265 size--;
5266 }
5267 error = security_context_to_sid(value, size, &sid);
5268 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5269 if (!capable(CAP_MAC_ADMIN))
5270 return error;
5271 error = security_context_to_sid_force(value, size,
5272 &sid);
5273 }
5274 if (error)
5275 return error;
5276 }
5277
5278 new = prepare_creds();
5279 if (!new)
5280 return -ENOMEM;
5281
5282 /* Permission checking based on the specified context is
5283 performed during the actual operation (execve,
5284 open/mkdir/...), when we know the full context of the
5285 operation. See selinux_bprm_set_creds for the execve
5286 checks and may_create for the file creation checks. The
5287 operation will then fail if the context is not permitted. */
5288 tsec = new->security;
5289 if (!strcmp(name, "exec")) {
5290 tsec->exec_sid = sid;
5291 } else if (!strcmp(name, "fscreate")) {
5292 tsec->create_sid = sid;
5293 } else if (!strcmp(name, "keycreate")) {
5294 error = may_create_key(sid, p);
5295 if (error)
5296 goto abort_change;
5297 tsec->keycreate_sid = sid;
5298 } else if (!strcmp(name, "sockcreate")) {
5299 tsec->sockcreate_sid = sid;
5300 } else if (!strcmp(name, "current")) {
5301 error = -EINVAL;
5302 if (sid == 0)
5303 goto abort_change;
5304
5305 /* Only allow single threaded processes to change context */
5306 error = -EPERM;
5307 if (!current_is_single_threaded()) {
5308 error = security_bounded_transition(tsec->sid, sid);
5309 if (error)
5310 goto abort_change;
5311 }
5312
5313 /* Check permissions for the transition. */
5314 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5315 PROCESS__DYNTRANSITION, NULL);
5316 if (error)
5317 goto abort_change;
5318
5319 /* Check for ptracing, and update the task SID if ok.
5320 Otherwise, leave SID unchanged and fail. */
5321 ptsid = 0;
5322 task_lock(p);
5323 tracer = ptrace_parent(p);
5324 if (tracer)
5325 ptsid = task_sid(tracer);
5326 task_unlock(p);
5327
5328 if (tracer) {
5329 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5330 PROCESS__PTRACE, NULL);
5331 if (error)
5332 goto abort_change;
5333 }
5334
5335 tsec->sid = sid;
5336 } else {
5337 error = -EINVAL;
5338 goto abort_change;
5339 }
5340
5341 commit_creds(new);
5342 return size;
5343
5344abort_change:
5345 abort_creds(new);
5346 return error;
5347}
5348
5349static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5350{
5351 return security_sid_to_context(secid, secdata, seclen);
5352}
5353
5354static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5355{
5356 return security_context_to_sid(secdata, seclen, secid);
5357}
5358
5359static void selinux_release_secctx(char *secdata, u32 seclen)
5360{
5361 kfree(secdata);
5362}
5363
5364/*
5365 * called with inode->i_mutex locked
5366 */
5367static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5368{
5369 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5370}
5371
5372/*
5373 * called with inode->i_mutex locked
5374 */
5375static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5376{
5377 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5378}
5379
5380static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5381{
5382 int len = 0;
5383 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5384 ctx, true);
5385 if (len < 0)
5386 return len;
5387 *ctxlen = len;
5388 return 0;
5389}
5390#ifdef CONFIG_KEYS
5391
5392static int selinux_key_alloc(struct key *k, const struct cred *cred,
5393 unsigned long flags)
5394{
5395 const struct task_security_struct *tsec;
5396 struct key_security_struct *ksec;
5397
5398 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5399 if (!ksec)
5400 return -ENOMEM;
5401
5402 tsec = cred->security;
5403 if (tsec->keycreate_sid)
5404 ksec->sid = tsec->keycreate_sid;
5405 else
5406 ksec->sid = tsec->sid;
5407
5408 k->security = ksec;
5409 return 0;
5410}
5411
5412static void selinux_key_free(struct key *k)
5413{
5414 struct key_security_struct *ksec = k->security;
5415
5416 k->security = NULL;
5417 kfree(ksec);
5418}
5419
5420static int selinux_key_permission(key_ref_t key_ref,
5421 const struct cred *cred,
5422 key_perm_t perm)
5423{
5424 struct key *key;
5425 struct key_security_struct *ksec;
5426 u32 sid;
5427
5428 /* if no specific permissions are requested, we skip the
5429 permission check. No serious, additional covert channels
5430 appear to be created. */
5431 if (perm == 0)
5432 return 0;
5433
5434 sid = cred_sid(cred);
5435
5436 key = key_ref_to_ptr(key_ref);
5437 ksec = key->security;
5438
5439 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5440}
5441
5442static int selinux_key_getsecurity(struct key *key, char **_buffer)
5443{
5444 struct key_security_struct *ksec = key->security;
5445 char *context = NULL;
5446 unsigned len;
5447 int rc;
5448
5449 rc = security_sid_to_context(ksec->sid, &context, &len);
5450 if (!rc)
5451 rc = len;
5452 *_buffer = context;
5453 return rc;
5454}
5455
5456#endif
5457
5458static struct security_operations selinux_ops = {
5459 .name = "selinux",
5460
5461 .ptrace_access_check = selinux_ptrace_access_check,
5462 .ptrace_traceme = selinux_ptrace_traceme,
5463 .capget = selinux_capget,
5464 .capset = selinux_capset,
5465 .capable = selinux_capable,
5466 .quotactl = selinux_quotactl,
5467 .quota_on = selinux_quota_on,
5468 .syslog = selinux_syslog,
5469 .vm_enough_memory = selinux_vm_enough_memory,
5470
5471 .netlink_send = selinux_netlink_send,
5472 .netlink_recv = selinux_netlink_recv,
5473
5474 .bprm_set_creds = selinux_bprm_set_creds,
5475 .bprm_committing_creds = selinux_bprm_committing_creds,
5476 .bprm_committed_creds = selinux_bprm_committed_creds,
5477 .bprm_secureexec = selinux_bprm_secureexec,
5478
5479 .sb_alloc_security = selinux_sb_alloc_security,
5480 .sb_free_security = selinux_sb_free_security,
5481 .sb_copy_data = selinux_sb_copy_data,
5482 .sb_remount = selinux_sb_remount,
5483 .sb_kern_mount = selinux_sb_kern_mount,
5484 .sb_show_options = selinux_sb_show_options,
5485 .sb_statfs = selinux_sb_statfs,
5486 .sb_mount = selinux_mount,
5487 .sb_umount = selinux_umount,
5488 .sb_set_mnt_opts = selinux_set_mnt_opts,
5489 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5490 .sb_parse_opts_str = selinux_parse_opts_str,
5491
5492
5493 .inode_alloc_security = selinux_inode_alloc_security,
5494 .inode_free_security = selinux_inode_free_security,
5495 .inode_init_security = selinux_inode_init_security,
5496 .inode_create = selinux_inode_create,
5497 .inode_link = selinux_inode_link,
5498 .inode_unlink = selinux_inode_unlink,
5499 .inode_symlink = selinux_inode_symlink,
5500 .inode_mkdir = selinux_inode_mkdir,
5501 .inode_rmdir = selinux_inode_rmdir,
5502 .inode_mknod = selinux_inode_mknod,
5503 .inode_rename = selinux_inode_rename,
5504 .inode_readlink = selinux_inode_readlink,
5505 .inode_follow_link = selinux_inode_follow_link,
5506 .inode_permission = selinux_inode_permission,
5507 .inode_setattr = selinux_inode_setattr,
5508 .inode_getattr = selinux_inode_getattr,
5509 .inode_setxattr = selinux_inode_setxattr,
5510 .inode_post_setxattr = selinux_inode_post_setxattr,
5511 .inode_getxattr = selinux_inode_getxattr,
5512 .inode_listxattr = selinux_inode_listxattr,
5513 .inode_removexattr = selinux_inode_removexattr,
5514 .inode_getsecurity = selinux_inode_getsecurity,
5515 .inode_setsecurity = selinux_inode_setsecurity,
5516 .inode_listsecurity = selinux_inode_listsecurity,
5517 .inode_getsecid = selinux_inode_getsecid,
5518
5519 .file_permission = selinux_file_permission,
5520 .file_alloc_security = selinux_file_alloc_security,
5521 .file_free_security = selinux_file_free_security,
5522 .file_ioctl = selinux_file_ioctl,
5523 .file_mmap = selinux_file_mmap,
5524 .file_mprotect = selinux_file_mprotect,
5525 .file_lock = selinux_file_lock,
5526 .file_fcntl = selinux_file_fcntl,
5527 .file_set_fowner = selinux_file_set_fowner,
5528 .file_send_sigiotask = selinux_file_send_sigiotask,
5529 .file_receive = selinux_file_receive,
5530
5531 .dentry_open = selinux_dentry_open,
5532
5533 .task_create = selinux_task_create,
5534 .cred_alloc_blank = selinux_cred_alloc_blank,
5535 .cred_free = selinux_cred_free,
5536 .cred_prepare = selinux_cred_prepare,
5537 .cred_transfer = selinux_cred_transfer,
5538 .kernel_act_as = selinux_kernel_act_as,
5539 .kernel_create_files_as = selinux_kernel_create_files_as,
5540 .kernel_module_request = selinux_kernel_module_request,
5541 .task_setpgid = selinux_task_setpgid,
5542 .task_getpgid = selinux_task_getpgid,
5543 .task_getsid = selinux_task_getsid,
5544 .task_getsecid = selinux_task_getsecid,
5545 .task_setnice = selinux_task_setnice,
5546 .task_setioprio = selinux_task_setioprio,
5547 .task_getioprio = selinux_task_getioprio,
5548 .task_setrlimit = selinux_task_setrlimit,
5549 .task_setscheduler = selinux_task_setscheduler,
5550 .task_getscheduler = selinux_task_getscheduler,
5551 .task_movememory = selinux_task_movememory,
5552 .task_kill = selinux_task_kill,
5553 .task_wait = selinux_task_wait,
5554 .task_to_inode = selinux_task_to_inode,
5555
5556 .ipc_permission = selinux_ipc_permission,
5557 .ipc_getsecid = selinux_ipc_getsecid,
5558
5559 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5560 .msg_msg_free_security = selinux_msg_msg_free_security,
5561
5562 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5563 .msg_queue_free_security = selinux_msg_queue_free_security,
5564 .msg_queue_associate = selinux_msg_queue_associate,
5565 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5566 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5567 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5568
5569 .shm_alloc_security = selinux_shm_alloc_security,
5570 .shm_free_security = selinux_shm_free_security,
5571 .shm_associate = selinux_shm_associate,
5572 .shm_shmctl = selinux_shm_shmctl,
5573 .shm_shmat = selinux_shm_shmat,
5574
5575 .sem_alloc_security = selinux_sem_alloc_security,
5576 .sem_free_security = selinux_sem_free_security,
5577 .sem_associate = selinux_sem_associate,
5578 .sem_semctl = selinux_sem_semctl,
5579 .sem_semop = selinux_sem_semop,
5580
5581 .d_instantiate = selinux_d_instantiate,
5582
5583 .getprocattr = selinux_getprocattr,
5584 .setprocattr = selinux_setprocattr,
5585
5586 .secid_to_secctx = selinux_secid_to_secctx,
5587 .secctx_to_secid = selinux_secctx_to_secid,
5588 .release_secctx = selinux_release_secctx,
5589 .inode_notifysecctx = selinux_inode_notifysecctx,
5590 .inode_setsecctx = selinux_inode_setsecctx,
5591 .inode_getsecctx = selinux_inode_getsecctx,
5592
5593 .unix_stream_connect = selinux_socket_unix_stream_connect,
5594 .unix_may_send = selinux_socket_unix_may_send,
5595
5596 .socket_create = selinux_socket_create,
5597 .socket_post_create = selinux_socket_post_create,
5598 .socket_bind = selinux_socket_bind,
5599 .socket_connect = selinux_socket_connect,
5600 .socket_listen = selinux_socket_listen,
5601 .socket_accept = selinux_socket_accept,
5602 .socket_sendmsg = selinux_socket_sendmsg,
5603 .socket_recvmsg = selinux_socket_recvmsg,
5604 .socket_getsockname = selinux_socket_getsockname,
5605 .socket_getpeername = selinux_socket_getpeername,
5606 .socket_getsockopt = selinux_socket_getsockopt,
5607 .socket_setsockopt = selinux_socket_setsockopt,
5608 .socket_shutdown = selinux_socket_shutdown,
5609 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5610 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5611 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5612 .sk_alloc_security = selinux_sk_alloc_security,
5613 .sk_free_security = selinux_sk_free_security,
5614 .sk_clone_security = selinux_sk_clone_security,
5615 .sk_getsecid = selinux_sk_getsecid,
5616 .sock_graft = selinux_sock_graft,
5617 .inet_conn_request = selinux_inet_conn_request,
5618 .inet_csk_clone = selinux_inet_csk_clone,
5619 .inet_conn_established = selinux_inet_conn_established,
5620 .secmark_relabel_packet = selinux_secmark_relabel_packet,
5621 .secmark_refcount_inc = selinux_secmark_refcount_inc,
5622 .secmark_refcount_dec = selinux_secmark_refcount_dec,
5623 .req_classify_flow = selinux_req_classify_flow,
5624 .tun_dev_create = selinux_tun_dev_create,
5625 .tun_dev_post_create = selinux_tun_dev_post_create,
5626 .tun_dev_attach = selinux_tun_dev_attach,
5627
5628#ifdef CONFIG_SECURITY_NETWORK_XFRM
5629 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5630 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5631 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5632 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5633 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
5634 .xfrm_state_free_security = selinux_xfrm_state_free,
5635 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5636 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5637 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5638 .xfrm_decode_session = selinux_xfrm_decode_session,
5639#endif
5640
5641#ifdef CONFIG_KEYS
5642 .key_alloc = selinux_key_alloc,
5643 .key_free = selinux_key_free,
5644 .key_permission = selinux_key_permission,
5645 .key_getsecurity = selinux_key_getsecurity,
5646#endif
5647
5648#ifdef CONFIG_AUDIT
5649 .audit_rule_init = selinux_audit_rule_init,
5650 .audit_rule_known = selinux_audit_rule_known,
5651 .audit_rule_match = selinux_audit_rule_match,
5652 .audit_rule_free = selinux_audit_rule_free,
5653#endif
5654};
5655
5656static __init int selinux_init(void)
5657{
5658 if (!security_module_enable(&selinux_ops)) {
5659 selinux_enabled = 0;
5660 return 0;
5661 }
5662
5663 if (!selinux_enabled) {
5664 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5665 return 0;
5666 }
5667
5668 printk(KERN_INFO "SELinux: Initializing.\n");
5669
5670 /* Set the security state for the initial task. */
5671 cred_init_security();
5672
5673 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5674
5675 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5676 sizeof(struct inode_security_struct),
5677 0, SLAB_PANIC, NULL);
5678 avc_init();
5679
5680 if (register_security(&selinux_ops))
5681 panic("SELinux: Unable to register with kernel.\n");
5682
5683 if (selinux_enforcing)
5684 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5685 else
5686 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5687
5688 return 0;
5689}
5690
5691static void delayed_superblock_init(struct super_block *sb, void *unused)
5692{
5693 superblock_doinit(sb, NULL);
5694}
5695
5696void selinux_complete_init(void)
5697{
5698 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5699
5700 /* Set up any superblocks initialized prior to the policy load. */
5701 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5702 iterate_supers(delayed_superblock_init, NULL);
5703}
5704
5705/* SELinux requires early initialization in order to label
5706 all processes and objects when they are created. */
5707security_initcall(selinux_init);
5708
5709#if defined(CONFIG_NETFILTER)
5710
5711static struct nf_hook_ops selinux_ipv4_ops[] = {
5712 {
5713 .hook = selinux_ipv4_postroute,
5714 .owner = THIS_MODULE,
5715 .pf = PF_INET,
5716 .hooknum = NF_INET_POST_ROUTING,
5717 .priority = NF_IP_PRI_SELINUX_LAST,
5718 },
5719 {
5720 .hook = selinux_ipv4_forward,
5721 .owner = THIS_MODULE,
5722 .pf = PF_INET,
5723 .hooknum = NF_INET_FORWARD,
5724 .priority = NF_IP_PRI_SELINUX_FIRST,
5725 },
5726 {
5727 .hook = selinux_ipv4_output,
5728 .owner = THIS_MODULE,
5729 .pf = PF_INET,
5730 .hooknum = NF_INET_LOCAL_OUT,
5731 .priority = NF_IP_PRI_SELINUX_FIRST,
5732 }
5733};
5734
5735#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5736
5737static struct nf_hook_ops selinux_ipv6_ops[] = {
5738 {
5739 .hook = selinux_ipv6_postroute,
5740 .owner = THIS_MODULE,
5741 .pf = PF_INET6,
5742 .hooknum = NF_INET_POST_ROUTING,
5743 .priority = NF_IP6_PRI_SELINUX_LAST,
5744 },
5745 {
5746 .hook = selinux_ipv6_forward,
5747 .owner = THIS_MODULE,
5748 .pf = PF_INET6,
5749 .hooknum = NF_INET_FORWARD,
5750 .priority = NF_IP6_PRI_SELINUX_FIRST,
5751 }
5752};
5753
5754#endif /* IPV6 */
5755
5756static int __init selinux_nf_ip_init(void)
5757{
5758 int err = 0;
5759
5760 if (!selinux_enabled)
5761 goto out;
5762
5763 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5764
5765 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5766 if (err)
5767 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5768
5769#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5770 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5771 if (err)
5772 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5773#endif /* IPV6 */
5774
5775out:
5776 return err;
5777}
5778
5779__initcall(selinux_nf_ip_init);
5780
5781#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5782static void selinux_nf_ip_exit(void)
5783{
5784 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5785
5786 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5787#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5788 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5789#endif /* IPV6 */
5790}
5791#endif
5792
5793#else /* CONFIG_NETFILTER */
5794
5795#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5796#define selinux_nf_ip_exit()
5797#endif
5798
5799#endif /* CONFIG_NETFILTER */
5800
5801#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5802static int selinux_disabled;
5803
5804int selinux_disable(void)
5805{
5806 extern void exit_sel_fs(void);
5807
5808 if (ss_initialized) {
5809 /* Not permitted after initial policy load. */
5810 return -EINVAL;
5811 }
5812
5813 if (selinux_disabled) {
5814 /* Only do this once. */
5815 return -EINVAL;
5816 }
5817
5818 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5819
5820 selinux_disabled = 1;
5821 selinux_enabled = 0;
5822
5823 reset_security_ops();
5824
5825 /* Try to destroy the avc node cache */
5826 avc_disable();
5827
5828 /* Unregister netfilter hooks. */
5829 selinux_nf_ip_exit();
5830
5831 /* Unregister selinuxfs. */
5832 exit_sel_fs();
5833
5834 return 0;
5835}
5836#endif