Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/oom_kill.c
   4 * 
   5 *  Copyright (C)  1998,2000  Rik van Riel
   6 *	Thanks go out to Claus Fischer for some serious inspiration and
   7 *	for goading me into coding this file...
   8 *  Copyright (C)  2010  Google, Inc.
   9 *	Rewritten by David Rientjes
  10 *
  11 *  The routines in this file are used to kill a process when
  12 *  we're seriously out of memory. This gets called from __alloc_pages()
  13 *  in mm/page_alloc.c when we really run out of memory.
  14 *
  15 *  Since we won't call these routines often (on a well-configured
  16 *  machine) this file will double as a 'coding guide' and a signpost
  17 *  for newbie kernel hackers. It features several pointers to major
  18 *  kernel subsystems and hints as to where to find out what things do.
  19 */
  20
  21#include <linux/oom.h>
  22#include <linux/mm.h>
  23#include <linux/err.h>
  24#include <linux/gfp.h>
  25#include <linux/sched.h>
  26#include <linux/sched/mm.h>
  27#include <linux/sched/coredump.h>
  28#include <linux/sched/task.h>
  29#include <linux/sched/debug.h>
  30#include <linux/swap.h>
  31#include <linux/syscalls.h>
  32#include <linux/timex.h>
  33#include <linux/jiffies.h>
  34#include <linux/cpuset.h>
  35#include <linux/export.h>
  36#include <linux/notifier.h>
  37#include <linux/memcontrol.h>
  38#include <linux/mempolicy.h>
  39#include <linux/security.h>
  40#include <linux/ptrace.h>
  41#include <linux/freezer.h>
  42#include <linux/ftrace.h>
  43#include <linux/ratelimit.h>
  44#include <linux/kthread.h>
  45#include <linux/init.h>
  46#include <linux/mmu_notifier.h>
  47
  48#include <asm/tlb.h>
  49#include "internal.h"
  50#include "slab.h"
  51
  52#define CREATE_TRACE_POINTS
  53#include <trace/events/oom.h>
  54
  55static int sysctl_panic_on_oom;
  56static int sysctl_oom_kill_allocating_task;
  57static int sysctl_oom_dump_tasks = 1;
  58
  59/*
  60 * Serializes oom killer invocations (out_of_memory()) from all contexts to
  61 * prevent from over eager oom killing (e.g. when the oom killer is invoked
  62 * from different domains).
 
 
 
 
  63 *
  64 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
  65 * and mark_oom_victim
  66 */
  67DEFINE_MUTEX(oom_lock);
  68/* Serializes oom_score_adj and oom_score_adj_min updates */
  69DEFINE_MUTEX(oom_adj_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
  70
  71static inline bool is_memcg_oom(struct oom_control *oc)
  72{
  73	return oc->memcg != NULL;
  74}
  75
  76#ifdef CONFIG_NUMA
  77/**
  78 * oom_cpuset_eligible() - check task eligibility for kill
  79 * @start: task struct of which task to consider
  80 * @oc: pointer to struct oom_control
  81 *
  82 * Task eligibility is determined by whether or not a candidate task, @tsk,
  83 * shares the same mempolicy nodes as current if it is bound by such a policy
  84 * and whether or not it has the same set of allowed cpuset nodes.
  85 *
  86 * This function is assuming oom-killer context and 'current' has triggered
  87 * the oom-killer.
  88 */
  89static bool oom_cpuset_eligible(struct task_struct *start,
  90				struct oom_control *oc)
  91{
  92	struct task_struct *tsk;
  93	bool ret = false;
  94	const nodemask_t *mask = oc->nodemask;
  95
  96	rcu_read_lock();
  97	for_each_thread(start, tsk) {
  98		if (mask) {
  99			/*
 100			 * If this is a mempolicy constrained oom, tsk's
 101			 * cpuset is irrelevant.  Only return true if its
 102			 * mempolicy intersects current, otherwise it may be
 103			 * needlessly killed.
 104			 */
 105			ret = mempolicy_in_oom_domain(tsk, mask);
 
 106		} else {
 107			/*
 108			 * This is not a mempolicy constrained oom, so only
 109			 * check the mems of tsk's cpuset.
 110			 */
 111			ret = cpuset_mems_allowed_intersects(current, tsk);
 
 112		}
 113		if (ret)
 114			break;
 115	}
 116	rcu_read_unlock();
 117
 118	return ret;
 119}
 120#else
 121static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
 
 122{
 123	return true;
 124}
 125#endif /* CONFIG_NUMA */
 126
 127/*
 128 * The process p may have detached its own ->mm while exiting or through
 129 * kthread_use_mm(), but one or more of its subthreads may still have a valid
 130 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
 131 * task_lock() held.
 132 */
 133struct task_struct *find_lock_task_mm(struct task_struct *p)
 134{
 135	struct task_struct *t;
 136
 137	rcu_read_lock();
 138
 139	for_each_thread(p, t) {
 140		task_lock(t);
 141		if (likely(t->mm))
 142			goto found;
 143		task_unlock(t);
 144	}
 145	t = NULL;
 146found:
 147	rcu_read_unlock();
 148
 149	return t;
 150}
 151
 152/*
 153 * order == -1 means the oom kill is required by sysrq, otherwise only
 154 * for display purposes.
 155 */
 156static inline bool is_sysrq_oom(struct oom_control *oc)
 157{
 158	return oc->order == -1;
 159}
 160
 161/* return true if the task is not adequate as candidate victim task. */
 162static bool oom_unkillable_task(struct task_struct *p)
 
 163{
 164	if (is_global_init(p))
 165		return true;
 166	if (p->flags & PF_KTHREAD)
 167		return true;
 168	return false;
 169}
 170
 171/*
 172 * Check whether unreclaimable slab amount is greater than
 173 * all user memory(LRU pages).
 174 * dump_unreclaimable_slab() could help in the case that
 175 * oom due to too much unreclaimable slab used by kernel.
 176*/
 177static bool should_dump_unreclaim_slab(void)
 178{
 179	unsigned long nr_lru;
 180
 181	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
 182		 global_node_page_state(NR_INACTIVE_ANON) +
 183		 global_node_page_state(NR_ACTIVE_FILE) +
 184		 global_node_page_state(NR_INACTIVE_FILE) +
 185		 global_node_page_state(NR_ISOLATED_ANON) +
 186		 global_node_page_state(NR_ISOLATED_FILE) +
 187		 global_node_page_state(NR_UNEVICTABLE);
 188
 189	return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
 190}
 191
 192/**
 193 * oom_badness - heuristic function to determine which candidate task to kill
 194 * @p: task struct of which task we should calculate
 195 * @totalpages: total present RAM allowed for page allocation
 196 *
 197 * The heuristic for determining which task to kill is made to be as simple and
 198 * predictable as possible.  The goal is to return the highest value for the
 199 * task consuming the most memory to avoid subsequent oom failures.
 200 */
 201long oom_badness(struct task_struct *p, unsigned long totalpages)
 
 202{
 203	long points;
 204	long adj;
 205
 206	if (oom_unkillable_task(p))
 207		return LONG_MIN;
 208
 209	p = find_lock_task_mm(p);
 210	if (!p)
 211		return LONG_MIN;
 212
 213	/*
 214	 * Do not even consider tasks which are explicitly marked oom
 215	 * unkillable or have been already oom reaped or the are in
 216	 * the middle of vfork
 217	 */
 218	adj = (long)p->signal->oom_score_adj;
 219	if (adj == OOM_SCORE_ADJ_MIN ||
 220			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
 221			in_vfork(p)) {
 222		task_unlock(p);
 223		return LONG_MIN;
 224	}
 225
 226	/*
 
 
 
 
 
 
 
 227	 * The baseline for the badness score is the proportion of RAM that each
 228	 * task's rss, pagetable and swap space use.
 229	 */
 230	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
 231		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
 
 
 
 232	task_unlock(p);
 233
 234	/* Normalize to oom_score_adj units */
 235	adj *= totalpages / 1000;
 236	points += adj;
 237
 238	return points;
 239}
 240
 241static const char * const oom_constraint_text[] = {
 242	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
 243	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
 244	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
 245	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
 246};
 
 
 
 
 
 
 
 
 
 
 247
 248/*
 249 * Determine the type of allocation constraint.
 250 */
 251static enum oom_constraint constrained_alloc(struct oom_control *oc)
 
 
 
 252{
 253	struct zone *zone;
 254	struct zoneref *z;
 255	enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
 256	bool cpuset_limited = false;
 257	int nid;
 258
 259	if (is_memcg_oom(oc)) {
 260		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
 261		return CONSTRAINT_MEMCG;
 262	}
 263
 264	/* Default to all available memory */
 265	oc->totalpages = totalram_pages() + total_swap_pages;
 266
 267	if (!IS_ENABLED(CONFIG_NUMA))
 268		return CONSTRAINT_NONE;
 269
 270	if (!oc->zonelist)
 271		return CONSTRAINT_NONE;
 272	/*
 273	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
 274	 * to kill current.We have to random task kill in this case.
 275	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
 276	 */
 277	if (oc->gfp_mask & __GFP_THISNODE)
 278		return CONSTRAINT_NONE;
 279
 280	/*
 281	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
 282	 * the page allocator means a mempolicy is in effect.  Cpuset policy
 283	 * is enforced in get_page_from_freelist().
 284	 */
 285	if (oc->nodemask &&
 286	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
 287		oc->totalpages = total_swap_pages;
 288		for_each_node_mask(nid, *oc->nodemask)
 289			oc->totalpages += node_present_pages(nid);
 290		return CONSTRAINT_MEMORY_POLICY;
 291	}
 292
 293	/* Check this allocation failure is caused by cpuset's wall function */
 294	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
 295			highest_zoneidx, oc->nodemask)
 296		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
 297			cpuset_limited = true;
 298
 299	if (cpuset_limited) {
 300		oc->totalpages = total_swap_pages;
 301		for_each_node_mask(nid, cpuset_current_mems_allowed)
 302			oc->totalpages += node_present_pages(nid);
 303		return CONSTRAINT_CPUSET;
 304	}
 305	return CONSTRAINT_NONE;
 306}
 307
 308static int oom_evaluate_task(struct task_struct *task, void *arg)
 
 
 309{
 310	struct oom_control *oc = arg;
 311	long points;
 312
 313	if (oom_unkillable_task(task))
 314		goto next;
 315
 316	/* p may not have freeable memory in nodemask */
 317	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
 318		goto next;
 319
 320	/*
 321	 * This task already has access to memory reserves and is being killed.
 322	 * Don't allow any other task to have access to the reserves unless
 323	 * the task has MMF_OOM_SKIP because chances that it would release
 324	 * any memory is quite low.
 325	 */
 326	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
 327		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
 328			goto next;
 329		goto abort;
 330	}
 331
 332	/*
 333	 * If task is allocating a lot of memory and has been marked to be
 334	 * killed first if it triggers an oom, then select it.
 335	 */
 336	if (oom_task_origin(task)) {
 337		points = LONG_MAX;
 338		goto select;
 339	}
 340
 341	points = oom_badness(task, oc->totalpages);
 342	if (points == LONG_MIN || points < oc->chosen_points)
 343		goto next;
 344
 345select:
 346	if (oc->chosen)
 347		put_task_struct(oc->chosen);
 348	get_task_struct(task);
 349	oc->chosen = task;
 350	oc->chosen_points = points;
 351next:
 352	return 0;
 353abort:
 354	if (oc->chosen)
 355		put_task_struct(oc->chosen);
 356	oc->chosen = (void *)-1UL;
 357	return 1;
 358}
 
 359
 360/*
 361 * Simple selection loop. We choose the process with the highest number of
 362 * 'points'. In case scan was aborted, oc->chosen is set to -1.
 
 
 363 */
 364static void select_bad_process(struct oom_control *oc)
 365{
 366	oc->chosen_points = LONG_MIN;
 367
 368	if (is_memcg_oom(oc))
 369		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
 370	else {
 371		struct task_struct *p;
 372
 373		rcu_read_lock();
 374		for_each_process(p)
 375			if (oom_evaluate_task(p, oc))
 376				break;
 377		rcu_read_unlock();
 378	}
 379}
 380
 381static int dump_task(struct task_struct *p, void *arg)
 382{
 383	struct oom_control *oc = arg;
 384	struct task_struct *task;
 
 385
 386	if (oom_unkillable_task(p))
 387		return 0;
 388
 389	/* p may not have freeable memory in nodemask */
 390	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
 391		return 0;
 
 392
 393	task = find_lock_task_mm(p);
 394	if (!task) {
 395		/*
 396		 * All of p's threads have already detached their mm's. There's
 397		 * no need to report them; they can't be oom killed anyway.
 
 
 
 
 
 398		 */
 399		return 0;
 400	}
 
 
 401
 402	pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu         %5hd %s\n",
 403		task->pid, from_kuid(&init_user_ns, task_uid(task)),
 404		task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
 405		get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES),
 406		get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm),
 407		get_mm_counter(task->mm, MM_SWAPENTS),
 408		task->signal->oom_score_adj, task->comm);
 409	task_unlock(task);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 410
 411	return 0;
 
 
 
 
 
 
 
 412}
 413
 414/**
 415 * dump_tasks - dump current memory state of all system tasks
 416 * @oc: pointer to struct oom_control
 
 417 *
 418 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
 419 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
 420 * are not shown.
 421 * State information includes task's pid, uid, tgid, vm size, rss,
 422 * pgtables_bytes, swapents, oom_score_adj value, and name.
 
 
 423 */
 424static void dump_tasks(struct oom_control *oc)
 425{
 426	pr_info("Tasks state (memory values in pages):\n");
 427	pr_info("[  pid  ]   uid  tgid total_vm      rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n");
 428
 429	if (is_memcg_oom(oc))
 430		mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
 431	else {
 432		struct task_struct *p;
 433
 434		rcu_read_lock();
 435		for_each_process(p)
 436			dump_task(p, oc);
 437		rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 438	}
 439}
 440
 441static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim)
 442{
 443	/* one line summary of the oom killer context. */
 444	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
 445			oom_constraint_text[oc->constraint],
 446			nodemask_pr_args(oc->nodemask));
 447	cpuset_print_current_mems_allowed();
 448	mem_cgroup_print_oom_context(oc->memcg, victim);
 449	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
 450		from_kuid(&init_user_ns, task_uid(victim)));
 451}
 452
 453static void dump_header(struct oom_control *oc)
 454{
 455	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
 456		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
 457			current->signal->oom_score_adj);
 458	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
 459		pr_warn("COMPACTION is disabled!!!\n");
 460
 461	dump_stack();
 462	if (is_memcg_oom(oc))
 463		mem_cgroup_print_oom_meminfo(oc->memcg);
 464	else {
 465		__show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask));
 466		if (should_dump_unreclaim_slab())
 467			dump_unreclaimable_slab();
 468	}
 469	if (sysctl_oom_dump_tasks)
 470		dump_tasks(oc);
 471}
 472
 473/*
 474 * Number of OOM victims in flight
 475 */
 476static atomic_t oom_victims = ATOMIC_INIT(0);
 477static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
 478
 479static bool oom_killer_disabled __read_mostly;
 480
 481/*
 482 * task->mm can be NULL if the task is the exited group leader.  So to
 483 * determine whether the task is using a particular mm, we examine all the
 484 * task's threads: if one of those is using this mm then this task was also
 485 * using it.
 486 */
 487bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
 488{
 489	struct task_struct *t;
 490
 491	for_each_thread(p, t) {
 492		struct mm_struct *t_mm = READ_ONCE(t->mm);
 493		if (t_mm)
 494			return t_mm == mm;
 495	}
 496	return false;
 497}
 498
 499#ifdef CONFIG_MMU
 500/*
 501 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
 502 * victim (if that is possible) to help the OOM killer to move on.
 503 */
 504static struct task_struct *oom_reaper_th;
 505static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
 506static struct task_struct *oom_reaper_list;
 507static DEFINE_SPINLOCK(oom_reaper_lock);
 508
 509static bool __oom_reap_task_mm(struct mm_struct *mm)
 510{
 511	struct vm_area_struct *vma;
 512	bool ret = true;
 513	VMA_ITERATOR(vmi, mm, 0);
 514
 515	/*
 516	 * Tell all users of get_user/copy_from_user etc... that the content
 517	 * is no longer stable. No barriers really needed because unmapping
 518	 * should imply barriers already and the reader would hit a page fault
 519	 * if it stumbled over a reaped memory.
 520	 */
 521	set_bit(MMF_UNSTABLE, &mm->flags);
 522
 523	for_each_vma(vmi, vma) {
 524		if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP))
 525			continue;
 
 
 526
 527		/*
 528		 * Only anonymous pages have a good chance to be dropped
 529		 * without additional steps which we cannot afford as we
 530		 * are OOM already.
 531		 *
 532		 * We do not even care about fs backed pages because all
 533		 * which are reclaimable have already been reclaimed and
 534		 * we do not want to block exit_mmap by keeping mm ref
 535		 * count elevated without a good reason.
 536		 */
 537		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
 538			struct mmu_notifier_range range;
 539			struct mmu_gather tlb;
 540
 541			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
 542						mm, vma->vm_start,
 543						vma->vm_end);
 544			tlb_gather_mmu(&tlb, mm);
 545			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
 546				tlb_finish_mmu(&tlb);
 547				ret = false;
 548				continue;
 549			}
 550			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
 551			mmu_notifier_invalidate_range_end(&range);
 552			tlb_finish_mmu(&tlb);
 553		}
 554	}
 555
 556	return ret;
 
 
 
 557}
 
 558
 559/*
 560 * Reaps the address space of the give task.
 561 *
 562 * Returns true on success and false if none or part of the address space
 563 * has been reclaimed and the caller should retry later.
 564 */
 565static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
 566{
 567	bool ret = true;
 568
 569	if (!mmap_read_trylock(mm)) {
 570		trace_skip_task_reaping(tsk->pid);
 571		return false;
 572	}
 573
 574	/*
 575	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
 576	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
 577	 * under mmap_lock for reading because it serializes against the
 578	 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
 579	 */
 580	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
 581		trace_skip_task_reaping(tsk->pid);
 582		goto out_unlock;
 583	}
 584
 585	trace_start_task_reaping(tsk->pid);
 586
 587	/* failed to reap part of the address space. Try again later */
 588	ret = __oom_reap_task_mm(mm);
 589	if (!ret)
 590		goto out_finish;
 591
 592	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
 593			task_pid_nr(tsk), tsk->comm,
 594			K(get_mm_counter(mm, MM_ANONPAGES)),
 595			K(get_mm_counter(mm, MM_FILEPAGES)),
 596			K(get_mm_counter(mm, MM_SHMEMPAGES)));
 597out_finish:
 598	trace_finish_task_reaping(tsk->pid);
 599out_unlock:
 600	mmap_read_unlock(mm);
 601
 602	return ret;
 603}
 604
 605#define MAX_OOM_REAP_RETRIES 10
 606static void oom_reap_task(struct task_struct *tsk)
 607{
 608	int attempts = 0;
 609	struct mm_struct *mm = tsk->signal->oom_mm;
 610
 611	/* Retry the mmap_read_trylock(mm) a few times */
 612	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
 613		schedule_timeout_idle(HZ/10);
 614
 615	if (attempts <= MAX_OOM_REAP_RETRIES ||
 616	    test_bit(MMF_OOM_SKIP, &mm->flags))
 617		goto done;
 618
 619	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
 620		task_pid_nr(tsk), tsk->comm);
 621	sched_show_task(tsk);
 622	debug_show_all_locks();
 623
 624done:
 625	tsk->oom_reaper_list = NULL;
 626
 627	/*
 628	 * Hide this mm from OOM killer because it has been either reaped or
 629	 * somebody can't call mmap_write_unlock(mm).
 630	 */
 631	set_bit(MMF_OOM_SKIP, &mm->flags);
 
 
 
 
 632
 633	/* Drop a reference taken by queue_oom_reaper */
 634	put_task_struct(tsk);
 635}
 636
 637static int oom_reaper(void *unused)
 638{
 639	set_freezable();
 640
 641	while (true) {
 642		struct task_struct *tsk = NULL;
 643
 644		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
 645		spin_lock_irq(&oom_reaper_lock);
 646		if (oom_reaper_list != NULL) {
 647			tsk = oom_reaper_list;
 648			oom_reaper_list = tsk->oom_reaper_list;
 649		}
 650		spin_unlock_irq(&oom_reaper_lock);
 651
 652		if (tsk)
 653			oom_reap_task(tsk);
 654	}
 655
 656	return 0;
 657}
 658
 659static void wake_oom_reaper(struct timer_list *timer)
 660{
 661	struct task_struct *tsk = container_of(timer, struct task_struct,
 662			oom_reaper_timer);
 663	struct mm_struct *mm = tsk->signal->oom_mm;
 664	unsigned long flags;
 665
 666	/* The victim managed to terminate on its own - see exit_mmap */
 667	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
 668		put_task_struct(tsk);
 669		return;
 670	}
 671
 672	spin_lock_irqsave(&oom_reaper_lock, flags);
 673	tsk->oom_reaper_list = oom_reaper_list;
 674	oom_reaper_list = tsk;
 675	spin_unlock_irqrestore(&oom_reaper_lock, flags);
 676	trace_wake_reaper(tsk->pid);
 677	wake_up(&oom_reaper_wait);
 678}
 679
 680/*
 681 * Give the OOM victim time to exit naturally before invoking the oom_reaping.
 682 * The timers timeout is arbitrary... the longer it is, the longer the worst
 683 * case scenario for the OOM can take. If it is too small, the oom_reaper can
 684 * get in the way and release resources needed by the process exit path.
 685 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
 686 * before the exit path is able to wake the futex waiters.
 687 */
 688#define OOM_REAPER_DELAY (2*HZ)
 689static void queue_oom_reaper(struct task_struct *tsk)
 690{
 691	/* mm is already queued? */
 692	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
 693		return;
 694
 695	get_task_struct(tsk);
 696	timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
 697	tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
 698	add_timer(&tsk->oom_reaper_timer);
 699}
 700
 701#ifdef CONFIG_SYSCTL
 702static struct ctl_table vm_oom_kill_table[] = {
 703	{
 704		.procname	= "panic_on_oom",
 705		.data		= &sysctl_panic_on_oom,
 706		.maxlen		= sizeof(sysctl_panic_on_oom),
 707		.mode		= 0644,
 708		.proc_handler	= proc_dointvec_minmax,
 709		.extra1		= SYSCTL_ZERO,
 710		.extra2		= SYSCTL_TWO,
 711	},
 712	{
 713		.procname	= "oom_kill_allocating_task",
 714		.data		= &sysctl_oom_kill_allocating_task,
 715		.maxlen		= sizeof(sysctl_oom_kill_allocating_task),
 716		.mode		= 0644,
 717		.proc_handler	= proc_dointvec,
 718	},
 719	{
 720		.procname	= "oom_dump_tasks",
 721		.data		= &sysctl_oom_dump_tasks,
 722		.maxlen		= sizeof(sysctl_oom_dump_tasks),
 723		.mode		= 0644,
 724		.proc_handler	= proc_dointvec,
 725	},
 726	{}
 727};
 728#endif
 729
 730static int __init oom_init(void)
 731{
 732	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
 733#ifdef CONFIG_SYSCTL
 734	register_sysctl_init("vm", vm_oom_kill_table);
 735#endif
 736	return 0;
 737}
 738subsys_initcall(oom_init)
 739#else
 740static inline void queue_oom_reaper(struct task_struct *tsk)
 741{
 742}
 743#endif /* CONFIG_MMU */
 744
 745/**
 746 * mark_oom_victim - mark the given task as OOM victim
 747 * @tsk: task to mark
 748 *
 749 * Has to be called with oom_lock held and never after
 750 * oom has been disabled already.
 751 *
 752 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
 753 * under task_lock or operate on the current).
 754 */
 755static void mark_oom_victim(struct task_struct *tsk)
 756{
 757	struct mm_struct *mm = tsk->mm;
 758
 759	WARN_ON(oom_killer_disabled);
 760	/* OOM killer might race with memcg OOM */
 761	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
 762		return;
 763
 764	/* oom_mm is bound to the signal struct life time. */
 765	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
 766		mmgrab(tsk->signal->oom_mm);
 767
 768	/*
 769	 * Make sure that the task is woken up from uninterruptible sleep
 770	 * if it is frozen because OOM killer wouldn't be able to free
 771	 * any memory and livelock. freezing_slow_path will tell the freezer
 772	 * that TIF_MEMDIE tasks should be ignored.
 773	 */
 774	__thaw_task(tsk);
 775	atomic_inc(&oom_victims);
 776	trace_mark_victim(tsk->pid);
 777}
 778
 779/**
 780 * exit_oom_victim - note the exit of an OOM victim
 781 */
 782void exit_oom_victim(void)
 783{
 784	clear_thread_flag(TIF_MEMDIE);
 785
 786	if (!atomic_dec_return(&oom_victims))
 787		wake_up_all(&oom_victims_wait);
 
 
 
 
 
 
 
 
 
 
 
 788}
 
 789
 790/**
 791 * oom_killer_enable - enable OOM killer
 792 */
 793void oom_killer_enable(void)
 794{
 795	oom_killer_disabled = false;
 796	pr_info("OOM killer enabled.\n");
 797}
 798
 799/**
 800 * oom_killer_disable - disable OOM killer
 801 * @timeout: maximum timeout to wait for oom victims in jiffies
 802 *
 803 * Forces all page allocations to fail rather than trigger OOM killer.
 804 * Will block and wait until all OOM victims are killed or the given
 805 * timeout expires.
 806 *
 807 * The function cannot be called when there are runnable user tasks because
 808 * the userspace would see unexpected allocation failures as a result. Any
 809 * new usage of this function should be consulted with MM people.
 810 *
 811 * Returns true if successful and false if the OOM killer cannot be
 812 * disabled.
 813 */
 814bool oom_killer_disable(signed long timeout)
 815{
 816	signed long ret;
 817
 818	/*
 819	 * Make sure to not race with an ongoing OOM killer. Check that the
 820	 * current is not killed (possibly due to sharing the victim's memory).
 821	 */
 822	if (mutex_lock_killable(&oom_lock))
 823		return false;
 824	oom_killer_disabled = true;
 825	mutex_unlock(&oom_lock);
 826
 827	ret = wait_event_interruptible_timeout(oom_victims_wait,
 828			!atomic_read(&oom_victims), timeout);
 829	if (ret <= 0) {
 830		oom_killer_enable();
 831		return false;
 832	}
 833	pr_info("OOM killer disabled.\n");
 834
 835	return true;
 836}
 
 837
 838static inline bool __task_will_free_mem(struct task_struct *task)
 839{
 840	struct signal_struct *sig = task->signal;
 841
 842	/*
 843	 * A coredumping process may sleep for an extended period in
 844	 * coredump_task_exit(), so the oom killer cannot assume that
 845	 * the process will promptly exit and release memory.
 846	 */
 847	if (sig->core_state)
 848		return false;
 849
 850	if (sig->flags & SIGNAL_GROUP_EXIT)
 851		return true;
 852
 853	if (thread_group_empty(task) && (task->flags & PF_EXITING))
 854		return true;
 855
 856	return false;
 857}
 
 858
 859/*
 860 * Checks whether the given task is dying or exiting and likely to
 861 * release its address space. This means that all threads and processes
 862 * sharing the same mm have to be killed or exiting.
 863 * Caller has to make sure that task->mm is stable (hold task_lock or
 864 * it operates on the current).
 865 */
 866static bool task_will_free_mem(struct task_struct *task)
 867{
 868	struct mm_struct *mm = task->mm;
 869	struct task_struct *p;
 870	bool ret = true;
 871
 872	/*
 873	 * Skip tasks without mm because it might have passed its exit_mm and
 874	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
 875	 * on that for now. We can consider find_lock_task_mm in future.
 876	 */
 877	if (!mm)
 878		return false;
 879
 880	if (!__task_will_free_mem(task))
 881		return false;
 882
 883	/*
 884	 * This task has already been drained by the oom reaper so there are
 885	 * only small chances it will free some more
 886	 */
 887	if (test_bit(MMF_OOM_SKIP, &mm->flags))
 888		return false;
 889
 890	if (atomic_read(&mm->mm_users) <= 1)
 891		return true;
 892
 893	/*
 894	 * Make sure that all tasks which share the mm with the given tasks
 895	 * are dying as well to make sure that a) nobody pins its mm and
 896	 * b) the task is also reapable by the oom reaper.
 897	 */
 898	rcu_read_lock();
 899	for_each_process(p) {
 900		if (!process_shares_mm(p, mm))
 901			continue;
 902		if (same_thread_group(task, p))
 903			continue;
 904		ret = __task_will_free_mem(p);
 905		if (!ret)
 906			break;
 907	}
 908	rcu_read_unlock();
 909
 910	return ret;
 911}
 912
 913static void __oom_kill_process(struct task_struct *victim, const char *message)
 914{
 915	struct task_struct *p;
 916	struct mm_struct *mm;
 917	bool can_oom_reap = true;
 918
 919	p = find_lock_task_mm(victim);
 920	if (!p) {
 921		pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
 922			message, task_pid_nr(victim), victim->comm);
 923		put_task_struct(victim);
 924		return;
 925	} else if (victim != p) {
 926		get_task_struct(p);
 927		put_task_struct(victim);
 928		victim = p;
 929	}
 930
 931	/* Get a reference to safely compare mm after task_unlock(victim) */
 932	mm = victim->mm;
 933	mmgrab(mm);
 934
 935	/* Raise event before sending signal: task reaper must see this */
 936	count_vm_event(OOM_KILL);
 937	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
 938
 939	/*
 940	 * We should send SIGKILL before granting access to memory reserves
 941	 * in order to prevent the OOM victim from depleting the memory
 942	 * reserves from the user space under its control.
 943	 */
 944	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
 945	mark_oom_victim(victim);
 946	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
 947		message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
 948		K(get_mm_counter(mm, MM_ANONPAGES)),
 949		K(get_mm_counter(mm, MM_FILEPAGES)),
 950		K(get_mm_counter(mm, MM_SHMEMPAGES)),
 951		from_kuid(&init_user_ns, task_uid(victim)),
 952		mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
 953	task_unlock(victim);
 954
 955	/*
 956	 * Kill all user processes sharing victim->mm in other thread groups, if
 957	 * any.  They don't get access to memory reserves, though, to avoid
 958	 * depletion of all memory.  This prevents mm->mmap_lock livelock when an
 959	 * oom killed thread cannot exit because it requires the semaphore and
 960	 * its contended by another thread trying to allocate memory itself.
 961	 * That thread will now get access to memory reserves since it has a
 962	 * pending fatal signal.
 963	 */
 964	rcu_read_lock();
 965	for_each_process(p) {
 966		if (!process_shares_mm(p, mm))
 967			continue;
 968		if (same_thread_group(p, victim))
 969			continue;
 970		if (is_global_init(p)) {
 971			can_oom_reap = false;
 972			set_bit(MMF_OOM_SKIP, &mm->flags);
 973			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
 974					task_pid_nr(victim), victim->comm,
 975					task_pid_nr(p), p->comm);
 976			continue;
 977		}
 978		/*
 979		 * No kthread_use_mm() user needs to read from the userspace so
 980		 * we are ok to reap it.
 
 981		 */
 982		if (unlikely(p->flags & PF_KTHREAD))
 983			continue;
 984		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
 985	}
 986	rcu_read_unlock();
 987
 988	if (can_oom_reap)
 989		queue_oom_reaper(victim);
 990
 991	mmdrop(mm);
 992	put_task_struct(victim);
 
 993}
 994
 995/*
 996 * Kill provided task unless it's secured by setting
 997 * oom_score_adj to OOM_SCORE_ADJ_MIN.
 
 998 */
 999static int oom_kill_memcg_member(struct task_struct *task, void *message)
1000{
1001	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
1002	    !is_global_init(task)) {
1003		get_task_struct(task);
1004		__oom_kill_process(task, message);
1005	}
1006	return 0;
1007}
1008
1009static void oom_kill_process(struct oom_control *oc, const char *message)
1010{
1011	struct task_struct *victim = oc->chosen;
1012	struct mem_cgroup *oom_group;
1013	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1014					      DEFAULT_RATELIMIT_BURST);
1015
1016	/*
1017	 * If the task is already exiting, don't alarm the sysadmin or kill
1018	 * its children or threads, just give it access to memory reserves
1019	 * so it can die quickly
1020	 */
1021	task_lock(victim);
1022	if (task_will_free_mem(victim)) {
1023		mark_oom_victim(victim);
1024		queue_oom_reaper(victim);
1025		task_unlock(victim);
1026		put_task_struct(victim);
1027		return;
1028	}
1029	task_unlock(victim);
1030
1031	if (__ratelimit(&oom_rs)) {
1032		dump_header(oc);
1033		dump_oom_victim(oc, victim);
1034	}
1035
1036	/*
1037	 * Do we need to kill the entire memory cgroup?
1038	 * Or even one of the ancestor memory cgroups?
1039	 * Check this out before killing the victim task.
1040	 */
1041	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1042
1043	__oom_kill_process(victim, message);
1044
1045	/*
1046	 * If necessary, kill all tasks in the selected memory cgroup.
1047	 */
1048	if (oom_group) {
1049		memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL);
1050		mem_cgroup_print_oom_group(oom_group);
1051		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1052				      (void *)message);
1053		mem_cgroup_put(oom_group);
1054	}
 
1055}
1056
1057/*
1058 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
 
 
1059 */
1060static void check_panic_on_oom(struct oom_control *oc)
1061{
1062	if (likely(!sysctl_panic_on_oom))
1063		return;
1064	if (sysctl_panic_on_oom != 2) {
1065		/*
1066		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1067		 * does not panic for cpuset, mempolicy, or memcg allocation
1068		 * failures.
1069		 */
1070		if (oc->constraint != CONSTRAINT_NONE)
1071			return;
1072	}
1073	/* Do not panic for oom kills triggered by sysrq */
1074	if (is_sysrq_oom(oc))
1075		return;
1076	dump_header(oc);
1077	panic("Out of memory: %s panic_on_oom is enabled\n",
1078		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1079}
1080
1081static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1082
1083int register_oom_notifier(struct notifier_block *nb)
1084{
1085	return blocking_notifier_chain_register(&oom_notify_list, nb);
 
 
 
 
 
 
 
 
1086}
1087EXPORT_SYMBOL_GPL(register_oom_notifier);
1088
1089int unregister_oom_notifier(struct notifier_block *nb)
 
 
 
 
1090{
1091	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
 
 
 
 
 
1092}
1093EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1094
1095/**
1096 * out_of_memory - kill the "best" process when we run out of memory
1097 * @oc: pointer to struct oom_control
 
 
 
1098 *
1099 * If we run out of memory, we have the choice between either
1100 * killing a random task (bad), letting the system crash (worse)
1101 * OR try to be smart about which process to kill. Note that we
1102 * don't have to be perfect here, we just have to be good.
1103 */
1104bool out_of_memory(struct oom_control *oc)
 
1105{
 
 
 
1106	unsigned long freed = 0;
1107
1108	if (oom_killer_disabled)
1109		return false;
1110
1111	if (!is_memcg_oom(oc)) {
1112		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1113		if (freed > 0 && !is_sysrq_oom(oc))
1114			/* Got some memory back in the last second. */
1115			return true;
1116	}
1117
1118	/*
1119	 * If current has a pending SIGKILL or is exiting, then automatically
1120	 * select it.  The goal is to allow it to allocate so that it may
1121	 * quickly exit and free its memory.
1122	 */
1123	if (task_will_free_mem(current)) {
1124		mark_oom_victim(current);
1125		queue_oom_reaper(current);
1126		return true;
1127	}
1128
1129	/*
1130	 * The OOM killer does not compensate for IO-less reclaim.
1131	 * But mem_cgroup_oom() has to invoke the OOM killer even
1132	 * if it is a GFP_NOFS allocation.
1133	 */
1134	if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1135		return true;
1136
1137	/*
1138	 * Check if there were limitations on the allocation (only relevant for
1139	 * NUMA and memcg) that may require different handling.
1140	 */
1141	oc->constraint = constrained_alloc(oc);
1142	if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1143		oc->nodemask = NULL;
1144	check_panic_on_oom(oc);
1145
1146	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1147	    current->mm && !oom_unkillable_task(current) &&
1148	    oom_cpuset_eligible(current, oc) &&
1149	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1150		get_task_struct(current);
1151		oc->chosen = current;
1152		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1153		return true;
1154	}
1155
1156	select_bad_process(oc);
1157	/* Found nothing?!?! */
1158	if (!oc->chosen) {
1159		dump_header(oc);
1160		pr_warn("Out of memory and no killable processes...\n");
1161		/*
1162		 * If we got here due to an actual allocation at the
1163		 * system level, we cannot survive this and will enter
1164		 * an endless loop in the allocator. Bail out now.
1165		 */
1166		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1167			panic("System is deadlocked on memory\n");
 
 
1168	}
1169	if (oc->chosen && oc->chosen != (void *)-1UL)
1170		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1171				 "Memory cgroup out of memory");
1172	return !!oc->chosen;
1173}
1174
1175/*
1176 * The pagefault handler calls here because some allocation has failed. We have
1177 * to take care of the memcg OOM here because this is the only safe context without
1178 * any locks held but let the oom killer triggered from the allocation context care
1179 * about the global OOM.
1180 */
1181void pagefault_out_of_memory(void)
1182{
1183	static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1184				      DEFAULT_RATELIMIT_BURST);
1185
1186	if (mem_cgroup_oom_synchronize(true))
1187		return;
1188
1189	if (fatal_signal_pending(current))
1190		return;
1191
1192	if (__ratelimit(&pfoom_rs))
1193		pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1194}
1195
1196SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1197{
1198#ifdef CONFIG_MMU
1199	struct mm_struct *mm = NULL;
1200	struct task_struct *task;
1201	struct task_struct *p;
1202	unsigned int f_flags;
1203	bool reap = false;
1204	long ret = 0;
1205
1206	if (flags)
1207		return -EINVAL;
1208
1209	task = pidfd_get_task(pidfd, &f_flags);
1210	if (IS_ERR(task))
1211		return PTR_ERR(task);
1212
1213	/*
1214	 * Make sure to choose a thread which still has a reference to mm
1215	 * during the group exit
1216	 */
1217	p = find_lock_task_mm(task);
1218	if (!p) {
1219		ret = -ESRCH;
1220		goto put_task;
 
1221	}
1222
1223	mm = p->mm;
1224	mmgrab(mm);
1225
1226	if (task_will_free_mem(p))
1227		reap = true;
1228	else {
1229		/* Error only if the work has not been done already */
1230		if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1231			ret = -EINVAL;
1232	}
1233	task_unlock(p);
1234
1235	if (!reap)
1236		goto drop_mm;
1237
1238	if (mmap_read_lock_killable(mm)) {
1239		ret = -EINTR;
1240		goto drop_mm;
1241	}
1242	/*
1243	 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1244	 * possible change in exit_mmap is seen
1245	 */
1246	if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm))
1247		ret = -EAGAIN;
1248	mmap_read_unlock(mm);
1249
1250drop_mm:
1251	mmdrop(mm);
1252put_task:
1253	put_task_struct(task);
1254	return ret;
1255#else
1256	return -ENOSYS;
1257#endif /* CONFIG_MMU */
 
 
 
 
 
 
1258}
v3.1
 
  1/*
  2 *  linux/mm/oom_kill.c
  3 * 
  4 *  Copyright (C)  1998,2000  Rik van Riel
  5 *	Thanks go out to Claus Fischer for some serious inspiration and
  6 *	for goading me into coding this file...
  7 *  Copyright (C)  2010  Google, Inc.
  8 *	Rewritten by David Rientjes
  9 *
 10 *  The routines in this file are used to kill a process when
 11 *  we're seriously out of memory. This gets called from __alloc_pages()
 12 *  in mm/page_alloc.c when we really run out of memory.
 13 *
 14 *  Since we won't call these routines often (on a well-configured
 15 *  machine) this file will double as a 'coding guide' and a signpost
 16 *  for newbie kernel hackers. It features several pointers to major
 17 *  kernel subsystems and hints as to where to find out what things do.
 18 */
 19
 20#include <linux/oom.h>
 21#include <linux/mm.h>
 22#include <linux/err.h>
 23#include <linux/gfp.h>
 24#include <linux/sched.h>
 
 
 
 
 25#include <linux/swap.h>
 
 26#include <linux/timex.h>
 27#include <linux/jiffies.h>
 28#include <linux/cpuset.h>
 29#include <linux/module.h>
 30#include <linux/notifier.h>
 31#include <linux/memcontrol.h>
 32#include <linux/mempolicy.h>
 33#include <linux/security.h>
 34#include <linux/ptrace.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 35
 36int sysctl_panic_on_oom;
 37int sysctl_oom_kill_allocating_task;
 38int sysctl_oom_dump_tasks = 1;
 39static DEFINE_SPINLOCK(zone_scan_lock);
 40
 41/**
 42 * test_set_oom_score_adj() - set current's oom_score_adj and return old value
 43 * @new_val: new oom_score_adj value
 44 *
 45 * Sets the oom_score_adj value for current to @new_val with proper
 46 * synchronization and returns the old value.  Usually used to temporarily
 47 * set a value, save the old value in the caller, and then reinstate it later.
 48 */
 49int test_set_oom_score_adj(int new_val)
 50{
 51	struct sighand_struct *sighand = current->sighand;
 52	int old_val;
 53
 54	spin_lock_irq(&sighand->siglock);
 55	old_val = current->signal->oom_score_adj;
 56	if (new_val != old_val) {
 57		if (new_val == OOM_SCORE_ADJ_MIN)
 58			atomic_inc(&current->mm->oom_disable_count);
 59		else if (old_val == OOM_SCORE_ADJ_MIN)
 60			atomic_dec(&current->mm->oom_disable_count);
 61		current->signal->oom_score_adj = new_val;
 62	}
 63	spin_unlock_irq(&sighand->siglock);
 64
 65	return old_val;
 
 
 66}
 67
 68#ifdef CONFIG_NUMA
 69/**
 70 * has_intersects_mems_allowed() - check task eligiblity for kill
 71 * @tsk: task struct of which task to consider
 72 * @mask: nodemask passed to page allocator for mempolicy ooms
 73 *
 74 * Task eligibility is determined by whether or not a candidate task, @tsk,
 75 * shares the same mempolicy nodes as current if it is bound by such a policy
 76 * and whether or not it has the same set of allowed cpuset nodes.
 
 
 
 77 */
 78static bool has_intersects_mems_allowed(struct task_struct *tsk,
 79					const nodemask_t *mask)
 80{
 81	struct task_struct *start = tsk;
 
 
 82
 83	do {
 
 84		if (mask) {
 85			/*
 86			 * If this is a mempolicy constrained oom, tsk's
 87			 * cpuset is irrelevant.  Only return true if its
 88			 * mempolicy intersects current, otherwise it may be
 89			 * needlessly killed.
 90			 */
 91			if (mempolicy_nodemask_intersects(tsk, mask))
 92				return true;
 93		} else {
 94			/*
 95			 * This is not a mempolicy constrained oom, so only
 96			 * check the mems of tsk's cpuset.
 97			 */
 98			if (cpuset_mems_allowed_intersects(current, tsk))
 99				return true;
100		}
101	} while_each_thread(start, tsk);
 
 
 
102
103	return false;
104}
105#else
106static bool has_intersects_mems_allowed(struct task_struct *tsk,
107					const nodemask_t *mask)
108{
109	return true;
110}
111#endif /* CONFIG_NUMA */
112
113/*
114 * The process p may have detached its own ->mm while exiting or through
115 * use_mm(), but one or more of its subthreads may still have a valid
116 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
117 * task_lock() held.
118 */
119struct task_struct *find_lock_task_mm(struct task_struct *p)
120{
121	struct task_struct *t = p;
 
 
122
123	do {
124		task_lock(t);
125		if (likely(t->mm))
126			return t;
127		task_unlock(t);
128	} while_each_thread(p, t);
 
 
 
129
130	return NULL;
 
 
 
 
 
 
 
 
 
131}
132
133/* return true if the task is not adequate as candidate victim task. */
134static bool oom_unkillable_task(struct task_struct *p,
135		const struct mem_cgroup *mem, const nodemask_t *nodemask)
136{
137	if (is_global_init(p))
138		return true;
139	if (p->flags & PF_KTHREAD)
140		return true;
 
 
141
142	/* When mem_cgroup_out_of_memory() and p is not member of the group */
143	if (mem && !task_in_mem_cgroup(p, mem))
144		return true;
145
146	/* p may not have freeable memory in nodemask */
147	if (!has_intersects_mems_allowed(p, nodemask))
148		return true;
 
 
 
 
 
 
 
 
 
 
149
150	return false;
151}
152
153/**
154 * oom_badness - heuristic function to determine which candidate task to kill
155 * @p: task struct of which task we should calculate
156 * @totalpages: total present RAM allowed for page allocation
157 *
158 * The heuristic for determining which task to kill is made to be as simple and
159 * predictable as possible.  The goal is to return the highest value for the
160 * task consuming the most memory to avoid subsequent oom failures.
161 */
162unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *mem,
163		      const nodemask_t *nodemask, unsigned long totalpages)
164{
165	int points;
 
166
167	if (oom_unkillable_task(p, mem, nodemask))
168		return 0;
169
170	p = find_lock_task_mm(p);
171	if (!p)
172		return 0;
173
174	/*
175	 * Shortcut check for a thread sharing p->mm that is OOM_SCORE_ADJ_MIN
176	 * so the entire heuristic doesn't need to be executed for something
177	 * that cannot be killed.
178	 */
179	if (atomic_read(&p->mm->oom_disable_count)) {
 
 
 
180		task_unlock(p);
181		return 0;
182	}
183
184	/*
185	 * The memory controller may have a limit of 0 bytes, so avoid a divide
186	 * by zero, if necessary.
187	 */
188	if (!totalpages)
189		totalpages = 1;
190
191	/*
192	 * The baseline for the badness score is the proportion of RAM that each
193	 * task's rss, pagetable and swap space use.
194	 */
195	points = get_mm_rss(p->mm) + p->mm->nr_ptes;
196	points += get_mm_counter(p->mm, MM_SWAPENTS);
197
198	points *= 1000;
199	points /= totalpages;
200	task_unlock(p);
201
202	/*
203	 * Root processes get 3% bonus, just like the __vm_enough_memory()
204	 * implementation used by LSMs.
205	 */
206	if (has_capability_noaudit(p, CAP_SYS_ADMIN))
207		points -= 30;
208
209	/*
210	 * /proc/pid/oom_score_adj ranges from -1000 to +1000 such that it may
211	 * either completely disable oom killing or always prefer a certain
212	 * task.
213	 */
214	points += p->signal->oom_score_adj;
215
216	/*
217	 * Never return 0 for an eligible task that may be killed since it's
218	 * possible that no single user task uses more than 0.1% of memory and
219	 * no single admin tasks uses more than 3.0%.
220	 */
221	if (points <= 0)
222		return 1;
223	return (points < 1000) ? points : 1000;
224}
225
226/*
227 * Determine the type of allocation constraint.
228 */
229#ifdef CONFIG_NUMA
230static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
231				gfp_t gfp_mask, nodemask_t *nodemask,
232				unsigned long *totalpages)
233{
234	struct zone *zone;
235	struct zoneref *z;
236	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
237	bool cpuset_limited = false;
238	int nid;
239
 
 
 
 
 
240	/* Default to all available memory */
241	*totalpages = totalram_pages + total_swap_pages;
242
243	if (!zonelist)
 
 
 
244		return CONSTRAINT_NONE;
245	/*
246	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
247	 * to kill current.We have to random task kill in this case.
248	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
249	 */
250	if (gfp_mask & __GFP_THISNODE)
251		return CONSTRAINT_NONE;
252
253	/*
254	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
255	 * the page allocator means a mempolicy is in effect.  Cpuset policy
256	 * is enforced in get_page_from_freelist().
257	 */
258	if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) {
259		*totalpages = total_swap_pages;
260		for_each_node_mask(nid, *nodemask)
261			*totalpages += node_spanned_pages(nid);
 
262		return CONSTRAINT_MEMORY_POLICY;
263	}
264
265	/* Check this allocation failure is caused by cpuset's wall function */
266	for_each_zone_zonelist_nodemask(zone, z, zonelist,
267			high_zoneidx, nodemask)
268		if (!cpuset_zone_allowed_softwall(zone, gfp_mask))
269			cpuset_limited = true;
270
271	if (cpuset_limited) {
272		*totalpages = total_swap_pages;
273		for_each_node_mask(nid, cpuset_current_mems_allowed)
274			*totalpages += node_spanned_pages(nid);
275		return CONSTRAINT_CPUSET;
276	}
277	return CONSTRAINT_NONE;
278}
279#else
280static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
281				gfp_t gfp_mask, nodemask_t *nodemask,
282				unsigned long *totalpages)
283{
284	*totalpages = totalram_pages + total_swap_pages;
285	return CONSTRAINT_NONE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286}
287#endif
288
289/*
290 * Simple selection loop. We chose the process with the highest
291 * number of 'points'. We expect the caller will lock the tasklist.
292 *
293 * (not docbooked, we don't want this one cluttering up the manual)
294 */
295static struct task_struct *select_bad_process(unsigned int *ppoints,
296		unsigned long totalpages, struct mem_cgroup *mem,
297		const nodemask_t *nodemask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298{
299	struct task_struct *g, *p;
300	struct task_struct *chosen = NULL;
301	*ppoints = 0;
302
303	do_each_thread(g, p) {
304		unsigned int points;
305
306		if (p->exit_state)
307			continue;
308		if (oom_unkillable_task(p, mem, nodemask))
309			continue;
310
 
 
311		/*
312		 * This task already has access to memory reserves and is
313		 * being killed. Don't allow any other task access to the
314		 * memory reserve.
315		 *
316		 * Note: this may have a chance of deadlock if it gets
317		 * blocked waiting for another task which itself is waiting
318		 * for memory. Is there a better alternative?
319		 */
320		if (test_tsk_thread_flag(p, TIF_MEMDIE))
321			return ERR_PTR(-1UL);
322		if (!p->mm)
323			continue;
324
325		if (p->flags & PF_EXITING) {
326			/*
327			 * If p is the current task and is in the process of
328			 * releasing memory, we allow the "kill" to set
329			 * TIF_MEMDIE, which will allow it to gain access to
330			 * memory reserves.  Otherwise, it may stall forever.
331			 *
332			 * The loop isn't broken here, however, in case other
333			 * threads are found to have already been oom killed.
334			 */
335			if (p == current) {
336				chosen = p;
337				*ppoints = 1000;
338			} else {
339				/*
340				 * If this task is not being ptraced on exit,
341				 * then wait for it to finish before killing
342				 * some other task unnecessarily.
343				 */
344				if (!(p->group_leader->ptrace & PT_TRACE_EXIT))
345					return ERR_PTR(-1UL);
346			}
347		}
348
349		points = oom_badness(p, mem, nodemask, totalpages);
350		if (points > *ppoints) {
351			chosen = p;
352			*ppoints = points;
353		}
354	} while_each_thread(g, p);
355
356	return chosen;
357}
358
359/**
360 * dump_tasks - dump current memory state of all system tasks
361 * @mem: current's memory controller, if constrained
362 * @nodemask: nodemask passed to page allocator for mempolicy ooms
363 *
364 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
365 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
366 * are not shown.
367 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
368 * value, oom_score_adj value, and name.
369 *
370 * Call with tasklist_lock read-locked.
371 */
372static void dump_tasks(const struct mem_cgroup *mem, const nodemask_t *nodemask)
373{
374	struct task_struct *p;
375	struct task_struct *task;
376
377	pr_info("[ pid ]   uid  tgid total_vm      rss cpu oom_adj oom_score_adj name\n");
378	for_each_process(p) {
379		if (oom_unkillable_task(p, mem, nodemask))
380			continue;
381
382		task = find_lock_task_mm(p);
383		if (!task) {
384			/*
385			 * This is a kthread or all of p's threads have already
386			 * detached their mm's.  There's no need to report
387			 * them; they can't be oom killed anyway.
388			 */
389			continue;
390		}
391
392		pr_info("[%5d] %5d %5d %8lu %8lu %3u     %3d         %5d %s\n",
393			task->pid, task_uid(task), task->tgid,
394			task->mm->total_vm, get_mm_rss(task->mm),
395			task_cpu(task), task->signal->oom_adj,
396			task->signal->oom_score_adj, task->comm);
397		task_unlock(task);
398	}
399}
400
401static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
402			struct mem_cgroup *mem, const nodemask_t *nodemask)
403{
404	task_lock(current);
405	pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
406		"oom_adj=%d, oom_score_adj=%d\n",
407		current->comm, gfp_mask, order, current->signal->oom_adj,
408		current->signal->oom_score_adj);
409	cpuset_print_task_mems_allowed(current);
410	task_unlock(current);
 
 
 
 
 
 
 
 
 
 
411	dump_stack();
412	mem_cgroup_print_oom_info(mem, p);
413	show_mem(SHOW_MEM_FILTER_NODES);
 
 
 
 
 
414	if (sysctl_oom_dump_tasks)
415		dump_tasks(mem, nodemask);
416}
417
418#define K(x) ((x) << (PAGE_SHIFT-10))
419static int oom_kill_task(struct task_struct *p, struct mem_cgroup *mem)
 
 
 
 
 
 
 
 
 
 
 
 
 
420{
421	struct task_struct *q;
422	struct mm_struct *mm;
 
 
 
 
 
 
 
423
424	p = find_lock_task_mm(p);
425	if (!p)
426		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
427
428	/* mm cannot be safely dereferenced after task_unlock(p) */
429	mm = p->mm;
 
 
 
 
 
430
431	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
432		task_pid_nr(p), p->comm, K(p->mm->total_vm),
433		K(get_mm_counter(p->mm, MM_ANONPAGES)),
434		K(get_mm_counter(p->mm, MM_FILEPAGES)));
435	task_unlock(p);
436
437	/*
438	 * Kill all processes sharing p->mm in other thread groups, if any.
439	 * They don't get access to memory reserves or a higher scheduler
440	 * priority, though, to avoid depletion of all memory or task
441	 * starvation.  This prevents mm->mmap_sem livelock when an oom killed
442	 * task cannot exit because it requires the semaphore and its contended
443	 * by another thread trying to allocate memory itself.  That thread will
444	 * now get access to memory reserves since it has a pending fatal
445	 * signal.
446	 */
447	for_each_process(q)
448		if (q->mm == mm && !same_thread_group(q, p)) {
449			task_lock(q);	/* Protect ->comm from prctl() */
450			pr_err("Kill process %d (%s) sharing same memory\n",
451				task_pid_nr(q), q->comm);
452			task_unlock(q);
453			force_sig(SIGKILL, q);
 
 
 
 
 
 
 
 
 
454		}
 
455
456	set_tsk_thread_flag(p, TIF_MEMDIE);
457	force_sig(SIGKILL, p);
458
459	return 0;
460}
461#undef K
462
463static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
464			    unsigned int points, unsigned long totalpages,
465			    struct mem_cgroup *mem, nodemask_t *nodemask,
466			    const char *message)
467{
468	struct task_struct *victim = p;
469	struct task_struct *child;
470	struct task_struct *t = p;
471	unsigned int victim_points = 0;
472
473	if (printk_ratelimit())
474		dump_header(p, gfp_mask, order, mem, nodemask);
 
 
475
476	/*
477	 * If the task is already exiting, don't alarm the sysadmin or kill
478	 * its children or threads, just set TIF_MEMDIE so it can die quickly
 
 
479	 */
480	if (p->flags & PF_EXITING) {
481		set_tsk_thread_flag(p, TIF_MEMDIE);
482		return 0;
483	}
484
485	task_lock(p);
486	pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n",
487		message, task_pid_nr(p), p->comm, points);
488	task_unlock(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
489
490	/*
491	 * If any of p's children has a different mm and is eligible for kill,
492	 * the one with the highest oom_badness() score is sacrificed for its
493	 * parent.  This attempts to lose the minimal amount of work done while
494	 * still freeing memory.
495	 */
496	do {
497		list_for_each_entry(child, &t->children, sibling) {
498			unsigned int child_points;
499
500			if (child->mm == p->mm)
501				continue;
502			/*
503			 * oom_badness() returns 0 if the thread is unkillable
504			 */
505			child_points = oom_badness(child, mem, nodemask,
506								totalpages);
507			if (child_points > victim_points) {
508				victim = child;
509				victim_points = child_points;
510			}
 
 
 
 
 
511		}
512	} while_each_thread(p, t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
513
514	return oom_kill_task(victim, mem);
 
 
 
 
 
515}
516
517/*
518 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
 
 
 
 
 
519 */
520static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask,
521				int order, const nodemask_t *nodemask)
522{
523	if (likely(!sysctl_panic_on_oom))
 
524		return;
525	if (sysctl_panic_on_oom != 2) {
526		/*
527		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
528		 * does not panic for cpuset, mempolicy, or memcg allocation
529		 * failures.
530		 */
531		if (constraint != CONSTRAINT_NONE)
532			return;
533	}
534	read_lock(&tasklist_lock);
535	dump_header(NULL, gfp_mask, order, NULL, nodemask);
536	read_unlock(&tasklist_lock);
537	panic("Out of memory: %s panic_on_oom is enabled\n",
538		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
539}
 
540
541#ifdef CONFIG_CGROUP_MEM_RES_CTLR
542void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
 
 
 
 
 
 
 
 
 
543{
544	unsigned long limit;
545	unsigned int points = 0;
546	struct task_struct *p;
 
 
 
 
 
 
 
547
548	/*
549	 * If current has a pending SIGKILL, then automatically select it.  The
550	 * goal is to allow it to allocate so that it may quickly exit and free
551	 * its memory.
 
552	 */
553	if (fatal_signal_pending(current)) {
554		set_thread_flag(TIF_MEMDIE);
555		return;
556	}
 
 
 
 
 
 
 
557
558	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0, NULL);
559	limit = mem_cgroup_get_limit(mem) >> PAGE_SHIFT;
560	read_lock(&tasklist_lock);
561retry:
562	p = select_bad_process(&points, limit, mem, NULL);
563	if (!p || PTR_ERR(p) == -1UL)
564		goto out;
565
566	if (oom_kill_process(p, gfp_mask, 0, points, limit, mem, NULL,
567				"Memory cgroup out of memory"))
568		goto retry;
569out:
570	read_unlock(&tasklist_lock);
571}
572#endif
573
574static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
 
 
 
 
 
 
 
575
576int register_oom_notifier(struct notifier_block *nb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
577{
578	return blocking_notifier_chain_register(&oom_notify_list, nb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
579}
580EXPORT_SYMBOL_GPL(register_oom_notifier);
581
582int unregister_oom_notifier(struct notifier_block *nb)
583{
584	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
585}
586EXPORT_SYMBOL_GPL(unregister_oom_notifier);
587
588/*
589 * Try to acquire the OOM killer lock for the zones in zonelist.  Returns zero
590 * if a parallel OOM killing is already taking place that includes a zone in
591 * the zonelist.  Otherwise, locks all zones in the zonelist and returns 1.
 
 
592 */
593int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
594{
595	struct zoneref *z;
596	struct zone *zone;
597	int ret = 1;
598
599	spin_lock(&zone_scan_lock);
600	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
601		if (zone_is_oom_locked(zone)) {
602			ret = 0;
603			goto out;
604		}
 
 
 
 
605	}
606
607	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
608		/*
609		 * Lock each zone in the zonelist under zone_scan_lock so a
610		 * parallel invocation of try_set_zonelist_oom() doesn't succeed
611		 * when it shouldn't.
612		 */
613		zone_set_flag(zone, ZONE_OOM_LOCKED);
 
 
614	}
 
 
 
 
615
616out:
617	spin_unlock(&zone_scan_lock);
618	return ret;
619}
620
621/*
622 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
623 * allocation attempts with zonelists containing them may now recall the OOM
624 * killer, if necessary.
625 */
626void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
 
 
 
 
 
 
 
 
 
 
627{
628	struct zoneref *z;
629	struct zone *zone;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
630
631	spin_lock(&zone_scan_lock);
632	for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
633		zone_clear_flag(zone, ZONE_OOM_LOCKED);
 
 
 
 
 
 
634	}
635	spin_unlock(&zone_scan_lock);
636}
637
638/*
639 * Try to acquire the oom killer lock for all system zones.  Returns zero if a
640 * parallel oom killing is taking place, otherwise locks all zones and returns
641 * non-zero.
642 */
643static int try_set_system_oom(void)
644{
645	struct zone *zone;
646	int ret = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
647
648	spin_lock(&zone_scan_lock);
649	for_each_populated_zone(zone)
650		if (zone_is_oom_locked(zone)) {
651			ret = 0;
652			goto out;
653		}
654	for_each_populated_zone(zone)
655		zone_set_flag(zone, ZONE_OOM_LOCKED);
656out:
657	spin_unlock(&zone_scan_lock);
658	return ret;
659}
 
660
661/*
662 * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation
663 * attempts or page faults may now recall the oom killer, if necessary.
664 */
665static void clear_system_oom(void)
666{
667	struct zone *zone;
668
669	spin_lock(&zone_scan_lock);
670	for_each_populated_zone(zone)
671		zone_clear_flag(zone, ZONE_OOM_LOCKED);
672	spin_unlock(&zone_scan_lock);
673}
 
674
675/**
676 * out_of_memory - kill the "best" process when we run out of memory
677 * @zonelist: zonelist pointer
678 * @gfp_mask: memory allocation flags
679 * @order: amount of memory being requested as a power of 2
680 * @nodemask: nodemask passed to page allocator
681 *
682 * If we run out of memory, we have the choice between either
683 * killing a random task (bad), letting the system crash (worse)
684 * OR try to be smart about which process to kill. Note that we
685 * don't have to be perfect here, we just have to be good.
686 */
687void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
688		int order, nodemask_t *nodemask)
689{
690	const nodemask_t *mpol_mask;
691	struct task_struct *p;
692	unsigned long totalpages;
693	unsigned long freed = 0;
694	unsigned int points;
695	enum oom_constraint constraint = CONSTRAINT_NONE;
696	int killed = 0;
697
698	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
699	if (freed > 0)
700		/* Got some memory back in the last second. */
701		return;
 
 
702
703	/*
704	 * If current has a pending SIGKILL, then automatically select it.  The
705	 * goal is to allow it to allocate so that it may quickly exit and free
706	 * its memory.
707	 */
708	if (fatal_signal_pending(current)) {
709		set_thread_flag(TIF_MEMDIE);
710		return;
 
711	}
712
713	/*
 
 
 
 
 
 
 
 
714	 * Check if there were limitations on the allocation (only relevant for
715	 * NUMA) that may require different handling.
716	 */
717	constraint = constrained_alloc(zonelist, gfp_mask, nodemask,
718						&totalpages);
719	mpol_mask = (constraint == CONSTRAINT_MEMORY_POLICY) ? nodemask : NULL;
720	check_panic_on_oom(constraint, gfp_mask, order, mpol_mask);
721
722	read_lock(&tasklist_lock);
723	if (sysctl_oom_kill_allocating_task &&
724	    !oom_unkillable_task(current, NULL, nodemask) &&
725	    current->mm && !atomic_read(&current->mm->oom_disable_count)) {
 
 
 
 
 
 
 
 
 
 
 
726		/*
727		 * oom_kill_process() needs tasklist_lock held.  If it returns
728		 * non-zero, current could not be killed so we must fallback to
729		 * the tasklist scan.
730		 */
731		if (!oom_kill_process(current, gfp_mask, order, 0, totalpages,
732				NULL, nodemask,
733				"Out of memory (oom_kill_allocating_task)"))
734			goto out;
735	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
736
737retry:
738	p = select_bad_process(&points, totalpages, NULL, mpol_mask);
739	if (PTR_ERR(p) == -1UL)
740		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
741
742	/* Found nothing?!?! Either we hang forever, or we panic. */
 
 
 
 
743	if (!p) {
744		dump_header(NULL, gfp_mask, order, NULL, mpol_mask);
745		read_unlock(&tasklist_lock);
746		panic("Out of memory and no killable processes...\n");
747	}
748
749	if (oom_kill_process(p, gfp_mask, order, points, totalpages, NULL,
750				nodemask, "Out of memory"))
751		goto retry;
752	killed = 1;
753out:
754	read_unlock(&tasklist_lock);
 
 
 
 
 
755
 
 
 
 
 
 
 
756	/*
757	 * Give "p" a good chance of killing itself before we
758	 * retry to allocate memory unless "p" is current
759	 */
760	if (killed && !test_thread_flag(TIF_MEMDIE))
761		schedule_timeout_uninterruptible(1);
762}
763
764/*
765 * The pagefault handler calls here because it is out of memory, so kill a
766 * memory-hogging task.  If a populated zone has ZONE_OOM_LOCKED set, a parallel
767 * oom killing is already in progress so do nothing.  If a task is found with
768 * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit.
769 */
770void pagefault_out_of_memory(void)
771{
772	if (try_set_system_oom()) {
773		out_of_memory(NULL, 0, 0, NULL);
774		clear_system_oom();
775	}
776	if (!test_thread_flag(TIF_MEMDIE))
777		schedule_timeout_uninterruptible(1);
778}