Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/oom_kill.c
4 *
5 * Copyright (C) 1998,2000 Rik van Riel
6 * Thanks go out to Claus Fischer for some serious inspiration and
7 * for goading me into coding this file...
8 * Copyright (C) 2010 Google, Inc.
9 * Rewritten by David Rientjes
10 *
11 * The routines in this file are used to kill a process when
12 * we're seriously out of memory. This gets called from __alloc_pages()
13 * in mm/page_alloc.c when we really run out of memory.
14 *
15 * Since we won't call these routines often (on a well-configured
16 * machine) this file will double as a 'coding guide' and a signpost
17 * for newbie kernel hackers. It features several pointers to major
18 * kernel subsystems and hints as to where to find out what things do.
19 */
20
21#include <linux/oom.h>
22#include <linux/mm.h>
23#include <linux/err.h>
24#include <linux/gfp.h>
25#include <linux/sched.h>
26#include <linux/sched/mm.h>
27#include <linux/sched/coredump.h>
28#include <linux/sched/task.h>
29#include <linux/sched/debug.h>
30#include <linux/swap.h>
31#include <linux/syscalls.h>
32#include <linux/timex.h>
33#include <linux/jiffies.h>
34#include <linux/cpuset.h>
35#include <linux/export.h>
36#include <linux/notifier.h>
37#include <linux/memcontrol.h>
38#include <linux/mempolicy.h>
39#include <linux/security.h>
40#include <linux/ptrace.h>
41#include <linux/freezer.h>
42#include <linux/ftrace.h>
43#include <linux/ratelimit.h>
44#include <linux/kthread.h>
45#include <linux/init.h>
46#include <linux/mmu_notifier.h>
47
48#include <asm/tlb.h>
49#include "internal.h"
50#include "slab.h"
51
52#define CREATE_TRACE_POINTS
53#include <trace/events/oom.h>
54
55static int sysctl_panic_on_oom;
56static int sysctl_oom_kill_allocating_task;
57static int sysctl_oom_dump_tasks = 1;
58
59/*
60 * Serializes oom killer invocations (out_of_memory()) from all contexts to
61 * prevent from over eager oom killing (e.g. when the oom killer is invoked
62 * from different domains).
63 *
64 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
65 * and mark_oom_victim
66 */
67DEFINE_MUTEX(oom_lock);
68/* Serializes oom_score_adj and oom_score_adj_min updates */
69DEFINE_MUTEX(oom_adj_mutex);
70
71static inline bool is_memcg_oom(struct oom_control *oc)
72{
73 return oc->memcg != NULL;
74}
75
76#ifdef CONFIG_NUMA
77/**
78 * oom_cpuset_eligible() - check task eligibility for kill
79 * @start: task struct of which task to consider
80 * @oc: pointer to struct oom_control
81 *
82 * Task eligibility is determined by whether or not a candidate task, @tsk,
83 * shares the same mempolicy nodes as current if it is bound by such a policy
84 * and whether or not it has the same set of allowed cpuset nodes.
85 *
86 * This function is assuming oom-killer context and 'current' has triggered
87 * the oom-killer.
88 */
89static bool oom_cpuset_eligible(struct task_struct *start,
90 struct oom_control *oc)
91{
92 struct task_struct *tsk;
93 bool ret = false;
94 const nodemask_t *mask = oc->nodemask;
95
96 rcu_read_lock();
97 for_each_thread(start, tsk) {
98 if (mask) {
99 /*
100 * If this is a mempolicy constrained oom, tsk's
101 * cpuset is irrelevant. Only return true if its
102 * mempolicy intersects current, otherwise it may be
103 * needlessly killed.
104 */
105 ret = mempolicy_in_oom_domain(tsk, mask);
106 } else {
107 /*
108 * This is not a mempolicy constrained oom, so only
109 * check the mems of tsk's cpuset.
110 */
111 ret = cpuset_mems_allowed_intersects(current, tsk);
112 }
113 if (ret)
114 break;
115 }
116 rcu_read_unlock();
117
118 return ret;
119}
120#else
121static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
122{
123 return true;
124}
125#endif /* CONFIG_NUMA */
126
127/*
128 * The process p may have detached its own ->mm while exiting or through
129 * kthread_use_mm(), but one or more of its subthreads may still have a valid
130 * pointer. Return p, or any of its subthreads with a valid ->mm, with
131 * task_lock() held.
132 */
133struct task_struct *find_lock_task_mm(struct task_struct *p)
134{
135 struct task_struct *t;
136
137 rcu_read_lock();
138
139 for_each_thread(p, t) {
140 task_lock(t);
141 if (likely(t->mm))
142 goto found;
143 task_unlock(t);
144 }
145 t = NULL;
146found:
147 rcu_read_unlock();
148
149 return t;
150}
151
152/*
153 * order == -1 means the oom kill is required by sysrq, otherwise only
154 * for display purposes.
155 */
156static inline bool is_sysrq_oom(struct oom_control *oc)
157{
158 return oc->order == -1;
159}
160
161/* return true if the task is not adequate as candidate victim task. */
162static bool oom_unkillable_task(struct task_struct *p)
163{
164 if (is_global_init(p))
165 return true;
166 if (p->flags & PF_KTHREAD)
167 return true;
168 return false;
169}
170
171/*
172 * Check whether unreclaimable slab amount is greater than
173 * all user memory(LRU pages).
174 * dump_unreclaimable_slab() could help in the case that
175 * oom due to too much unreclaimable slab used by kernel.
176*/
177static bool should_dump_unreclaim_slab(void)
178{
179 unsigned long nr_lru;
180
181 nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
182 global_node_page_state(NR_INACTIVE_ANON) +
183 global_node_page_state(NR_ACTIVE_FILE) +
184 global_node_page_state(NR_INACTIVE_FILE) +
185 global_node_page_state(NR_ISOLATED_ANON) +
186 global_node_page_state(NR_ISOLATED_FILE) +
187 global_node_page_state(NR_UNEVICTABLE);
188
189 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
190}
191
192/**
193 * oom_badness - heuristic function to determine which candidate task to kill
194 * @p: task struct of which task we should calculate
195 * @totalpages: total present RAM allowed for page allocation
196 *
197 * The heuristic for determining which task to kill is made to be as simple and
198 * predictable as possible. The goal is to return the highest value for the
199 * task consuming the most memory to avoid subsequent oom failures.
200 */
201long oom_badness(struct task_struct *p, unsigned long totalpages)
202{
203 long points;
204 long adj;
205
206 if (oom_unkillable_task(p))
207 return LONG_MIN;
208
209 p = find_lock_task_mm(p);
210 if (!p)
211 return LONG_MIN;
212
213 /*
214 * Do not even consider tasks which are explicitly marked oom
215 * unkillable or have been already oom reaped or the are in
216 * the middle of vfork
217 */
218 adj = (long)p->signal->oom_score_adj;
219 if (adj == OOM_SCORE_ADJ_MIN ||
220 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
221 in_vfork(p)) {
222 task_unlock(p);
223 return LONG_MIN;
224 }
225
226 /*
227 * The baseline for the badness score is the proportion of RAM that each
228 * task's rss, pagetable and swap space use.
229 */
230 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
231 mm_pgtables_bytes(p->mm) / PAGE_SIZE;
232 task_unlock(p);
233
234 /* Normalize to oom_score_adj units */
235 adj *= totalpages / 1000;
236 points += adj;
237
238 return points;
239}
240
241static const char * const oom_constraint_text[] = {
242 [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
243 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
244 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
245 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
246};
247
248/*
249 * Determine the type of allocation constraint.
250 */
251static enum oom_constraint constrained_alloc(struct oom_control *oc)
252{
253 struct zone *zone;
254 struct zoneref *z;
255 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
256 bool cpuset_limited = false;
257 int nid;
258
259 if (is_memcg_oom(oc)) {
260 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
261 return CONSTRAINT_MEMCG;
262 }
263
264 /* Default to all available memory */
265 oc->totalpages = totalram_pages() + total_swap_pages;
266
267 if (!IS_ENABLED(CONFIG_NUMA))
268 return CONSTRAINT_NONE;
269
270 if (!oc->zonelist)
271 return CONSTRAINT_NONE;
272 /*
273 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
274 * to kill current.We have to random task kill in this case.
275 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
276 */
277 if (oc->gfp_mask & __GFP_THISNODE)
278 return CONSTRAINT_NONE;
279
280 /*
281 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
282 * the page allocator means a mempolicy is in effect. Cpuset policy
283 * is enforced in get_page_from_freelist().
284 */
285 if (oc->nodemask &&
286 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
287 oc->totalpages = total_swap_pages;
288 for_each_node_mask(nid, *oc->nodemask)
289 oc->totalpages += node_present_pages(nid);
290 return CONSTRAINT_MEMORY_POLICY;
291 }
292
293 /* Check this allocation failure is caused by cpuset's wall function */
294 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
295 highest_zoneidx, oc->nodemask)
296 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
297 cpuset_limited = true;
298
299 if (cpuset_limited) {
300 oc->totalpages = total_swap_pages;
301 for_each_node_mask(nid, cpuset_current_mems_allowed)
302 oc->totalpages += node_present_pages(nid);
303 return CONSTRAINT_CPUSET;
304 }
305 return CONSTRAINT_NONE;
306}
307
308static int oom_evaluate_task(struct task_struct *task, void *arg)
309{
310 struct oom_control *oc = arg;
311 long points;
312
313 if (oom_unkillable_task(task))
314 goto next;
315
316 /* p may not have freeable memory in nodemask */
317 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
318 goto next;
319
320 /*
321 * This task already has access to memory reserves and is being killed.
322 * Don't allow any other task to have access to the reserves unless
323 * the task has MMF_OOM_SKIP because chances that it would release
324 * any memory is quite low.
325 */
326 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
327 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
328 goto next;
329 goto abort;
330 }
331
332 /*
333 * If task is allocating a lot of memory and has been marked to be
334 * killed first if it triggers an oom, then select it.
335 */
336 if (oom_task_origin(task)) {
337 points = LONG_MAX;
338 goto select;
339 }
340
341 points = oom_badness(task, oc->totalpages);
342 if (points == LONG_MIN || points < oc->chosen_points)
343 goto next;
344
345select:
346 if (oc->chosen)
347 put_task_struct(oc->chosen);
348 get_task_struct(task);
349 oc->chosen = task;
350 oc->chosen_points = points;
351next:
352 return 0;
353abort:
354 if (oc->chosen)
355 put_task_struct(oc->chosen);
356 oc->chosen = (void *)-1UL;
357 return 1;
358}
359
360/*
361 * Simple selection loop. We choose the process with the highest number of
362 * 'points'. In case scan was aborted, oc->chosen is set to -1.
363 */
364static void select_bad_process(struct oom_control *oc)
365{
366 oc->chosen_points = LONG_MIN;
367
368 if (is_memcg_oom(oc))
369 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
370 else {
371 struct task_struct *p;
372
373 rcu_read_lock();
374 for_each_process(p)
375 if (oom_evaluate_task(p, oc))
376 break;
377 rcu_read_unlock();
378 }
379}
380
381static int dump_task(struct task_struct *p, void *arg)
382{
383 struct oom_control *oc = arg;
384 struct task_struct *task;
385
386 if (oom_unkillable_task(p))
387 return 0;
388
389 /* p may not have freeable memory in nodemask */
390 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
391 return 0;
392
393 task = find_lock_task_mm(p);
394 if (!task) {
395 /*
396 * All of p's threads have already detached their mm's. There's
397 * no need to report them; they can't be oom killed anyway.
398 */
399 return 0;
400 }
401
402 pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu %5hd %s\n",
403 task->pid, from_kuid(&init_user_ns, task_uid(task)),
404 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
405 get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES),
406 get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm),
407 get_mm_counter(task->mm, MM_SWAPENTS),
408 task->signal->oom_score_adj, task->comm);
409 task_unlock(task);
410
411 return 0;
412}
413
414/**
415 * dump_tasks - dump current memory state of all system tasks
416 * @oc: pointer to struct oom_control
417 *
418 * Dumps the current memory state of all eligible tasks. Tasks not in the same
419 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
420 * are not shown.
421 * State information includes task's pid, uid, tgid, vm size, rss,
422 * pgtables_bytes, swapents, oom_score_adj value, and name.
423 */
424static void dump_tasks(struct oom_control *oc)
425{
426 pr_info("Tasks state (memory values in pages):\n");
427 pr_info("[ pid ] uid tgid total_vm rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n");
428
429 if (is_memcg_oom(oc))
430 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
431 else {
432 struct task_struct *p;
433
434 rcu_read_lock();
435 for_each_process(p)
436 dump_task(p, oc);
437 rcu_read_unlock();
438 }
439}
440
441static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim)
442{
443 /* one line summary of the oom killer context. */
444 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
445 oom_constraint_text[oc->constraint],
446 nodemask_pr_args(oc->nodemask));
447 cpuset_print_current_mems_allowed();
448 mem_cgroup_print_oom_context(oc->memcg, victim);
449 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
450 from_kuid(&init_user_ns, task_uid(victim)));
451}
452
453static void dump_header(struct oom_control *oc)
454{
455 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
456 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
457 current->signal->oom_score_adj);
458 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
459 pr_warn("COMPACTION is disabled!!!\n");
460
461 dump_stack();
462 if (is_memcg_oom(oc))
463 mem_cgroup_print_oom_meminfo(oc->memcg);
464 else {
465 __show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask));
466 if (should_dump_unreclaim_slab())
467 dump_unreclaimable_slab();
468 }
469 if (sysctl_oom_dump_tasks)
470 dump_tasks(oc);
471}
472
473/*
474 * Number of OOM victims in flight
475 */
476static atomic_t oom_victims = ATOMIC_INIT(0);
477static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
478
479static bool oom_killer_disabled __read_mostly;
480
481/*
482 * task->mm can be NULL if the task is the exited group leader. So to
483 * determine whether the task is using a particular mm, we examine all the
484 * task's threads: if one of those is using this mm then this task was also
485 * using it.
486 */
487bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
488{
489 struct task_struct *t;
490
491 for_each_thread(p, t) {
492 struct mm_struct *t_mm = READ_ONCE(t->mm);
493 if (t_mm)
494 return t_mm == mm;
495 }
496 return false;
497}
498
499#ifdef CONFIG_MMU
500/*
501 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
502 * victim (if that is possible) to help the OOM killer to move on.
503 */
504static struct task_struct *oom_reaper_th;
505static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
506static struct task_struct *oom_reaper_list;
507static DEFINE_SPINLOCK(oom_reaper_lock);
508
509static bool __oom_reap_task_mm(struct mm_struct *mm)
510{
511 struct vm_area_struct *vma;
512 bool ret = true;
513 VMA_ITERATOR(vmi, mm, 0);
514
515 /*
516 * Tell all users of get_user/copy_from_user etc... that the content
517 * is no longer stable. No barriers really needed because unmapping
518 * should imply barriers already and the reader would hit a page fault
519 * if it stumbled over a reaped memory.
520 */
521 set_bit(MMF_UNSTABLE, &mm->flags);
522
523 for_each_vma(vmi, vma) {
524 if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP))
525 continue;
526
527 /*
528 * Only anonymous pages have a good chance to be dropped
529 * without additional steps which we cannot afford as we
530 * are OOM already.
531 *
532 * We do not even care about fs backed pages because all
533 * which are reclaimable have already been reclaimed and
534 * we do not want to block exit_mmap by keeping mm ref
535 * count elevated without a good reason.
536 */
537 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
538 struct mmu_notifier_range range;
539 struct mmu_gather tlb;
540
541 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
542 mm, vma->vm_start,
543 vma->vm_end);
544 tlb_gather_mmu(&tlb, mm);
545 if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
546 tlb_finish_mmu(&tlb);
547 ret = false;
548 continue;
549 }
550 unmap_page_range(&tlb, vma, range.start, range.end, NULL);
551 mmu_notifier_invalidate_range_end(&range);
552 tlb_finish_mmu(&tlb);
553 }
554 }
555
556 return ret;
557}
558
559/*
560 * Reaps the address space of the give task.
561 *
562 * Returns true on success and false if none or part of the address space
563 * has been reclaimed and the caller should retry later.
564 */
565static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
566{
567 bool ret = true;
568
569 if (!mmap_read_trylock(mm)) {
570 trace_skip_task_reaping(tsk->pid);
571 return false;
572 }
573
574 /*
575 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
576 * work on the mm anymore. The check for MMF_OOM_SKIP must run
577 * under mmap_lock for reading because it serializes against the
578 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
579 */
580 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
581 trace_skip_task_reaping(tsk->pid);
582 goto out_unlock;
583 }
584
585 trace_start_task_reaping(tsk->pid);
586
587 /* failed to reap part of the address space. Try again later */
588 ret = __oom_reap_task_mm(mm);
589 if (!ret)
590 goto out_finish;
591
592 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
593 task_pid_nr(tsk), tsk->comm,
594 K(get_mm_counter(mm, MM_ANONPAGES)),
595 K(get_mm_counter(mm, MM_FILEPAGES)),
596 K(get_mm_counter(mm, MM_SHMEMPAGES)));
597out_finish:
598 trace_finish_task_reaping(tsk->pid);
599out_unlock:
600 mmap_read_unlock(mm);
601
602 return ret;
603}
604
605#define MAX_OOM_REAP_RETRIES 10
606static void oom_reap_task(struct task_struct *tsk)
607{
608 int attempts = 0;
609 struct mm_struct *mm = tsk->signal->oom_mm;
610
611 /* Retry the mmap_read_trylock(mm) a few times */
612 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
613 schedule_timeout_idle(HZ/10);
614
615 if (attempts <= MAX_OOM_REAP_RETRIES ||
616 test_bit(MMF_OOM_SKIP, &mm->flags))
617 goto done;
618
619 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
620 task_pid_nr(tsk), tsk->comm);
621 sched_show_task(tsk);
622 debug_show_all_locks();
623
624done:
625 tsk->oom_reaper_list = NULL;
626
627 /*
628 * Hide this mm from OOM killer because it has been either reaped or
629 * somebody can't call mmap_write_unlock(mm).
630 */
631 set_bit(MMF_OOM_SKIP, &mm->flags);
632
633 /* Drop a reference taken by queue_oom_reaper */
634 put_task_struct(tsk);
635}
636
637static int oom_reaper(void *unused)
638{
639 set_freezable();
640
641 while (true) {
642 struct task_struct *tsk = NULL;
643
644 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
645 spin_lock_irq(&oom_reaper_lock);
646 if (oom_reaper_list != NULL) {
647 tsk = oom_reaper_list;
648 oom_reaper_list = tsk->oom_reaper_list;
649 }
650 spin_unlock_irq(&oom_reaper_lock);
651
652 if (tsk)
653 oom_reap_task(tsk);
654 }
655
656 return 0;
657}
658
659static void wake_oom_reaper(struct timer_list *timer)
660{
661 struct task_struct *tsk = container_of(timer, struct task_struct,
662 oom_reaper_timer);
663 struct mm_struct *mm = tsk->signal->oom_mm;
664 unsigned long flags;
665
666 /* The victim managed to terminate on its own - see exit_mmap */
667 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
668 put_task_struct(tsk);
669 return;
670 }
671
672 spin_lock_irqsave(&oom_reaper_lock, flags);
673 tsk->oom_reaper_list = oom_reaper_list;
674 oom_reaper_list = tsk;
675 spin_unlock_irqrestore(&oom_reaper_lock, flags);
676 trace_wake_reaper(tsk->pid);
677 wake_up(&oom_reaper_wait);
678}
679
680/*
681 * Give the OOM victim time to exit naturally before invoking the oom_reaping.
682 * The timers timeout is arbitrary... the longer it is, the longer the worst
683 * case scenario for the OOM can take. If it is too small, the oom_reaper can
684 * get in the way and release resources needed by the process exit path.
685 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
686 * before the exit path is able to wake the futex waiters.
687 */
688#define OOM_REAPER_DELAY (2*HZ)
689static void queue_oom_reaper(struct task_struct *tsk)
690{
691 /* mm is already queued? */
692 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
693 return;
694
695 get_task_struct(tsk);
696 timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
697 tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
698 add_timer(&tsk->oom_reaper_timer);
699}
700
701#ifdef CONFIG_SYSCTL
702static struct ctl_table vm_oom_kill_table[] = {
703 {
704 .procname = "panic_on_oom",
705 .data = &sysctl_panic_on_oom,
706 .maxlen = sizeof(sysctl_panic_on_oom),
707 .mode = 0644,
708 .proc_handler = proc_dointvec_minmax,
709 .extra1 = SYSCTL_ZERO,
710 .extra2 = SYSCTL_TWO,
711 },
712 {
713 .procname = "oom_kill_allocating_task",
714 .data = &sysctl_oom_kill_allocating_task,
715 .maxlen = sizeof(sysctl_oom_kill_allocating_task),
716 .mode = 0644,
717 .proc_handler = proc_dointvec,
718 },
719 {
720 .procname = "oom_dump_tasks",
721 .data = &sysctl_oom_dump_tasks,
722 .maxlen = sizeof(sysctl_oom_dump_tasks),
723 .mode = 0644,
724 .proc_handler = proc_dointvec,
725 },
726 {}
727};
728#endif
729
730static int __init oom_init(void)
731{
732 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
733#ifdef CONFIG_SYSCTL
734 register_sysctl_init("vm", vm_oom_kill_table);
735#endif
736 return 0;
737}
738subsys_initcall(oom_init)
739#else
740static inline void queue_oom_reaper(struct task_struct *tsk)
741{
742}
743#endif /* CONFIG_MMU */
744
745/**
746 * mark_oom_victim - mark the given task as OOM victim
747 * @tsk: task to mark
748 *
749 * Has to be called with oom_lock held and never after
750 * oom has been disabled already.
751 *
752 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
753 * under task_lock or operate on the current).
754 */
755static void mark_oom_victim(struct task_struct *tsk)
756{
757 struct mm_struct *mm = tsk->mm;
758
759 WARN_ON(oom_killer_disabled);
760 /* OOM killer might race with memcg OOM */
761 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
762 return;
763
764 /* oom_mm is bound to the signal struct life time. */
765 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
766 mmgrab(tsk->signal->oom_mm);
767
768 /*
769 * Make sure that the task is woken up from uninterruptible sleep
770 * if it is frozen because OOM killer wouldn't be able to free
771 * any memory and livelock. freezing_slow_path will tell the freezer
772 * that TIF_MEMDIE tasks should be ignored.
773 */
774 __thaw_task(tsk);
775 atomic_inc(&oom_victims);
776 trace_mark_victim(tsk->pid);
777}
778
779/**
780 * exit_oom_victim - note the exit of an OOM victim
781 */
782void exit_oom_victim(void)
783{
784 clear_thread_flag(TIF_MEMDIE);
785
786 if (!atomic_dec_return(&oom_victims))
787 wake_up_all(&oom_victims_wait);
788}
789
790/**
791 * oom_killer_enable - enable OOM killer
792 */
793void oom_killer_enable(void)
794{
795 oom_killer_disabled = false;
796 pr_info("OOM killer enabled.\n");
797}
798
799/**
800 * oom_killer_disable - disable OOM killer
801 * @timeout: maximum timeout to wait for oom victims in jiffies
802 *
803 * Forces all page allocations to fail rather than trigger OOM killer.
804 * Will block and wait until all OOM victims are killed or the given
805 * timeout expires.
806 *
807 * The function cannot be called when there are runnable user tasks because
808 * the userspace would see unexpected allocation failures as a result. Any
809 * new usage of this function should be consulted with MM people.
810 *
811 * Returns true if successful and false if the OOM killer cannot be
812 * disabled.
813 */
814bool oom_killer_disable(signed long timeout)
815{
816 signed long ret;
817
818 /*
819 * Make sure to not race with an ongoing OOM killer. Check that the
820 * current is not killed (possibly due to sharing the victim's memory).
821 */
822 if (mutex_lock_killable(&oom_lock))
823 return false;
824 oom_killer_disabled = true;
825 mutex_unlock(&oom_lock);
826
827 ret = wait_event_interruptible_timeout(oom_victims_wait,
828 !atomic_read(&oom_victims), timeout);
829 if (ret <= 0) {
830 oom_killer_enable();
831 return false;
832 }
833 pr_info("OOM killer disabled.\n");
834
835 return true;
836}
837
838static inline bool __task_will_free_mem(struct task_struct *task)
839{
840 struct signal_struct *sig = task->signal;
841
842 /*
843 * A coredumping process may sleep for an extended period in
844 * coredump_task_exit(), so the oom killer cannot assume that
845 * the process will promptly exit and release memory.
846 */
847 if (sig->core_state)
848 return false;
849
850 if (sig->flags & SIGNAL_GROUP_EXIT)
851 return true;
852
853 if (thread_group_empty(task) && (task->flags & PF_EXITING))
854 return true;
855
856 return false;
857}
858
859/*
860 * Checks whether the given task is dying or exiting and likely to
861 * release its address space. This means that all threads and processes
862 * sharing the same mm have to be killed or exiting.
863 * Caller has to make sure that task->mm is stable (hold task_lock or
864 * it operates on the current).
865 */
866static bool task_will_free_mem(struct task_struct *task)
867{
868 struct mm_struct *mm = task->mm;
869 struct task_struct *p;
870 bool ret = true;
871
872 /*
873 * Skip tasks without mm because it might have passed its exit_mm and
874 * exit_oom_victim. oom_reaper could have rescued that but do not rely
875 * on that for now. We can consider find_lock_task_mm in future.
876 */
877 if (!mm)
878 return false;
879
880 if (!__task_will_free_mem(task))
881 return false;
882
883 /*
884 * This task has already been drained by the oom reaper so there are
885 * only small chances it will free some more
886 */
887 if (test_bit(MMF_OOM_SKIP, &mm->flags))
888 return false;
889
890 if (atomic_read(&mm->mm_users) <= 1)
891 return true;
892
893 /*
894 * Make sure that all tasks which share the mm with the given tasks
895 * are dying as well to make sure that a) nobody pins its mm and
896 * b) the task is also reapable by the oom reaper.
897 */
898 rcu_read_lock();
899 for_each_process(p) {
900 if (!process_shares_mm(p, mm))
901 continue;
902 if (same_thread_group(task, p))
903 continue;
904 ret = __task_will_free_mem(p);
905 if (!ret)
906 break;
907 }
908 rcu_read_unlock();
909
910 return ret;
911}
912
913static void __oom_kill_process(struct task_struct *victim, const char *message)
914{
915 struct task_struct *p;
916 struct mm_struct *mm;
917 bool can_oom_reap = true;
918
919 p = find_lock_task_mm(victim);
920 if (!p) {
921 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
922 message, task_pid_nr(victim), victim->comm);
923 put_task_struct(victim);
924 return;
925 } else if (victim != p) {
926 get_task_struct(p);
927 put_task_struct(victim);
928 victim = p;
929 }
930
931 /* Get a reference to safely compare mm after task_unlock(victim) */
932 mm = victim->mm;
933 mmgrab(mm);
934
935 /* Raise event before sending signal: task reaper must see this */
936 count_vm_event(OOM_KILL);
937 memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
938
939 /*
940 * We should send SIGKILL before granting access to memory reserves
941 * in order to prevent the OOM victim from depleting the memory
942 * reserves from the user space under its control.
943 */
944 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
945 mark_oom_victim(victim);
946 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
947 message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
948 K(get_mm_counter(mm, MM_ANONPAGES)),
949 K(get_mm_counter(mm, MM_FILEPAGES)),
950 K(get_mm_counter(mm, MM_SHMEMPAGES)),
951 from_kuid(&init_user_ns, task_uid(victim)),
952 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
953 task_unlock(victim);
954
955 /*
956 * Kill all user processes sharing victim->mm in other thread groups, if
957 * any. They don't get access to memory reserves, though, to avoid
958 * depletion of all memory. This prevents mm->mmap_lock livelock when an
959 * oom killed thread cannot exit because it requires the semaphore and
960 * its contended by another thread trying to allocate memory itself.
961 * That thread will now get access to memory reserves since it has a
962 * pending fatal signal.
963 */
964 rcu_read_lock();
965 for_each_process(p) {
966 if (!process_shares_mm(p, mm))
967 continue;
968 if (same_thread_group(p, victim))
969 continue;
970 if (is_global_init(p)) {
971 can_oom_reap = false;
972 set_bit(MMF_OOM_SKIP, &mm->flags);
973 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
974 task_pid_nr(victim), victim->comm,
975 task_pid_nr(p), p->comm);
976 continue;
977 }
978 /*
979 * No kthread_use_mm() user needs to read from the userspace so
980 * we are ok to reap it.
981 */
982 if (unlikely(p->flags & PF_KTHREAD))
983 continue;
984 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
985 }
986 rcu_read_unlock();
987
988 if (can_oom_reap)
989 queue_oom_reaper(victim);
990
991 mmdrop(mm);
992 put_task_struct(victim);
993}
994
995/*
996 * Kill provided task unless it's secured by setting
997 * oom_score_adj to OOM_SCORE_ADJ_MIN.
998 */
999static int oom_kill_memcg_member(struct task_struct *task, void *message)
1000{
1001 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
1002 !is_global_init(task)) {
1003 get_task_struct(task);
1004 __oom_kill_process(task, message);
1005 }
1006 return 0;
1007}
1008
1009static void oom_kill_process(struct oom_control *oc, const char *message)
1010{
1011 struct task_struct *victim = oc->chosen;
1012 struct mem_cgroup *oom_group;
1013 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1014 DEFAULT_RATELIMIT_BURST);
1015
1016 /*
1017 * If the task is already exiting, don't alarm the sysadmin or kill
1018 * its children or threads, just give it access to memory reserves
1019 * so it can die quickly
1020 */
1021 task_lock(victim);
1022 if (task_will_free_mem(victim)) {
1023 mark_oom_victim(victim);
1024 queue_oom_reaper(victim);
1025 task_unlock(victim);
1026 put_task_struct(victim);
1027 return;
1028 }
1029 task_unlock(victim);
1030
1031 if (__ratelimit(&oom_rs)) {
1032 dump_header(oc);
1033 dump_oom_victim(oc, victim);
1034 }
1035
1036 /*
1037 * Do we need to kill the entire memory cgroup?
1038 * Or even one of the ancestor memory cgroups?
1039 * Check this out before killing the victim task.
1040 */
1041 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1042
1043 __oom_kill_process(victim, message);
1044
1045 /*
1046 * If necessary, kill all tasks in the selected memory cgroup.
1047 */
1048 if (oom_group) {
1049 memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL);
1050 mem_cgroup_print_oom_group(oom_group);
1051 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1052 (void *)message);
1053 mem_cgroup_put(oom_group);
1054 }
1055}
1056
1057/*
1058 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1059 */
1060static void check_panic_on_oom(struct oom_control *oc)
1061{
1062 if (likely(!sysctl_panic_on_oom))
1063 return;
1064 if (sysctl_panic_on_oom != 2) {
1065 /*
1066 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1067 * does not panic for cpuset, mempolicy, or memcg allocation
1068 * failures.
1069 */
1070 if (oc->constraint != CONSTRAINT_NONE)
1071 return;
1072 }
1073 /* Do not panic for oom kills triggered by sysrq */
1074 if (is_sysrq_oom(oc))
1075 return;
1076 dump_header(oc);
1077 panic("Out of memory: %s panic_on_oom is enabled\n",
1078 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1079}
1080
1081static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1082
1083int register_oom_notifier(struct notifier_block *nb)
1084{
1085 return blocking_notifier_chain_register(&oom_notify_list, nb);
1086}
1087EXPORT_SYMBOL_GPL(register_oom_notifier);
1088
1089int unregister_oom_notifier(struct notifier_block *nb)
1090{
1091 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1092}
1093EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1094
1095/**
1096 * out_of_memory - kill the "best" process when we run out of memory
1097 * @oc: pointer to struct oom_control
1098 *
1099 * If we run out of memory, we have the choice between either
1100 * killing a random task (bad), letting the system crash (worse)
1101 * OR try to be smart about which process to kill. Note that we
1102 * don't have to be perfect here, we just have to be good.
1103 */
1104bool out_of_memory(struct oom_control *oc)
1105{
1106 unsigned long freed = 0;
1107
1108 if (oom_killer_disabled)
1109 return false;
1110
1111 if (!is_memcg_oom(oc)) {
1112 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1113 if (freed > 0 && !is_sysrq_oom(oc))
1114 /* Got some memory back in the last second. */
1115 return true;
1116 }
1117
1118 /*
1119 * If current has a pending SIGKILL or is exiting, then automatically
1120 * select it. The goal is to allow it to allocate so that it may
1121 * quickly exit and free its memory.
1122 */
1123 if (task_will_free_mem(current)) {
1124 mark_oom_victim(current);
1125 queue_oom_reaper(current);
1126 return true;
1127 }
1128
1129 /*
1130 * The OOM killer does not compensate for IO-less reclaim.
1131 * But mem_cgroup_oom() has to invoke the OOM killer even
1132 * if it is a GFP_NOFS allocation.
1133 */
1134 if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1135 return true;
1136
1137 /*
1138 * Check if there were limitations on the allocation (only relevant for
1139 * NUMA and memcg) that may require different handling.
1140 */
1141 oc->constraint = constrained_alloc(oc);
1142 if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1143 oc->nodemask = NULL;
1144 check_panic_on_oom(oc);
1145
1146 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1147 current->mm && !oom_unkillable_task(current) &&
1148 oom_cpuset_eligible(current, oc) &&
1149 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1150 get_task_struct(current);
1151 oc->chosen = current;
1152 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1153 return true;
1154 }
1155
1156 select_bad_process(oc);
1157 /* Found nothing?!?! */
1158 if (!oc->chosen) {
1159 dump_header(oc);
1160 pr_warn("Out of memory and no killable processes...\n");
1161 /*
1162 * If we got here due to an actual allocation at the
1163 * system level, we cannot survive this and will enter
1164 * an endless loop in the allocator. Bail out now.
1165 */
1166 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1167 panic("System is deadlocked on memory\n");
1168 }
1169 if (oc->chosen && oc->chosen != (void *)-1UL)
1170 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1171 "Memory cgroup out of memory");
1172 return !!oc->chosen;
1173}
1174
1175/*
1176 * The pagefault handler calls here because some allocation has failed. We have
1177 * to take care of the memcg OOM here because this is the only safe context without
1178 * any locks held but let the oom killer triggered from the allocation context care
1179 * about the global OOM.
1180 */
1181void pagefault_out_of_memory(void)
1182{
1183 static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1184 DEFAULT_RATELIMIT_BURST);
1185
1186 if (mem_cgroup_oom_synchronize(true))
1187 return;
1188
1189 if (fatal_signal_pending(current))
1190 return;
1191
1192 if (__ratelimit(&pfoom_rs))
1193 pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1194}
1195
1196SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1197{
1198#ifdef CONFIG_MMU
1199 struct mm_struct *mm = NULL;
1200 struct task_struct *task;
1201 struct task_struct *p;
1202 unsigned int f_flags;
1203 bool reap = false;
1204 long ret = 0;
1205
1206 if (flags)
1207 return -EINVAL;
1208
1209 task = pidfd_get_task(pidfd, &f_flags);
1210 if (IS_ERR(task))
1211 return PTR_ERR(task);
1212
1213 /*
1214 * Make sure to choose a thread which still has a reference to mm
1215 * during the group exit
1216 */
1217 p = find_lock_task_mm(task);
1218 if (!p) {
1219 ret = -ESRCH;
1220 goto put_task;
1221 }
1222
1223 mm = p->mm;
1224 mmgrab(mm);
1225
1226 if (task_will_free_mem(p))
1227 reap = true;
1228 else {
1229 /* Error only if the work has not been done already */
1230 if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1231 ret = -EINVAL;
1232 }
1233 task_unlock(p);
1234
1235 if (!reap)
1236 goto drop_mm;
1237
1238 if (mmap_read_lock_killable(mm)) {
1239 ret = -EINTR;
1240 goto drop_mm;
1241 }
1242 /*
1243 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1244 * possible change in exit_mmap is seen
1245 */
1246 if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm))
1247 ret = -EAGAIN;
1248 mmap_read_unlock(mm);
1249
1250drop_mm:
1251 mmdrop(mm);
1252put_task:
1253 put_task_struct(task);
1254 return ret;
1255#else
1256 return -ENOSYS;
1257#endif /* CONFIG_MMU */
1258}
1/*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
9 *
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
13 *
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
18 */
19
20#include <linux/oom.h>
21#include <linux/mm.h>
22#include <linux/err.h>
23#include <linux/gfp.h>
24#include <linux/sched.h>
25#include <linux/swap.h>
26#include <linux/timex.h>
27#include <linux/jiffies.h>
28#include <linux/cpuset.h>
29#include <linux/export.h>
30#include <linux/notifier.h>
31#include <linux/memcontrol.h>
32#include <linux/mempolicy.h>
33#include <linux/security.h>
34#include <linux/ptrace.h>
35#include <linux/freezer.h>
36#include <linux/ftrace.h>
37#include <linux/ratelimit.h>
38
39#define CREATE_TRACE_POINTS
40#include <trace/events/oom.h>
41
42int sysctl_panic_on_oom;
43int sysctl_oom_kill_allocating_task;
44int sysctl_oom_dump_tasks = 1;
45static DEFINE_SPINLOCK(zone_scan_lock);
46
47/*
48 * compare_swap_oom_score_adj() - compare and swap current's oom_score_adj
49 * @old_val: old oom_score_adj for compare
50 * @new_val: new oom_score_adj for swap
51 *
52 * Sets the oom_score_adj value for current to @new_val iff its present value is
53 * @old_val. Usually used to reinstate a previous value to prevent racing with
54 * userspacing tuning the value in the interim.
55 */
56void compare_swap_oom_score_adj(int old_val, int new_val)
57{
58 struct sighand_struct *sighand = current->sighand;
59
60 spin_lock_irq(&sighand->siglock);
61 if (current->signal->oom_score_adj == old_val)
62 current->signal->oom_score_adj = new_val;
63 trace_oom_score_adj_update(current);
64 spin_unlock_irq(&sighand->siglock);
65}
66
67/**
68 * test_set_oom_score_adj() - set current's oom_score_adj and return old value
69 * @new_val: new oom_score_adj value
70 *
71 * Sets the oom_score_adj value for current to @new_val with proper
72 * synchronization and returns the old value. Usually used to temporarily
73 * set a value, save the old value in the caller, and then reinstate it later.
74 */
75int test_set_oom_score_adj(int new_val)
76{
77 struct sighand_struct *sighand = current->sighand;
78 int old_val;
79
80 spin_lock_irq(&sighand->siglock);
81 old_val = current->signal->oom_score_adj;
82 current->signal->oom_score_adj = new_val;
83 trace_oom_score_adj_update(current);
84 spin_unlock_irq(&sighand->siglock);
85
86 return old_val;
87}
88
89#ifdef CONFIG_NUMA
90/**
91 * has_intersects_mems_allowed() - check task eligiblity for kill
92 * @tsk: task struct of which task to consider
93 * @mask: nodemask passed to page allocator for mempolicy ooms
94 *
95 * Task eligibility is determined by whether or not a candidate task, @tsk,
96 * shares the same mempolicy nodes as current if it is bound by such a policy
97 * and whether or not it has the same set of allowed cpuset nodes.
98 */
99static bool has_intersects_mems_allowed(struct task_struct *tsk,
100 const nodemask_t *mask)
101{
102 struct task_struct *start = tsk;
103
104 do {
105 if (mask) {
106 /*
107 * If this is a mempolicy constrained oom, tsk's
108 * cpuset is irrelevant. Only return true if its
109 * mempolicy intersects current, otherwise it may be
110 * needlessly killed.
111 */
112 if (mempolicy_nodemask_intersects(tsk, mask))
113 return true;
114 } else {
115 /*
116 * This is not a mempolicy constrained oom, so only
117 * check the mems of tsk's cpuset.
118 */
119 if (cpuset_mems_allowed_intersects(current, tsk))
120 return true;
121 }
122 } while_each_thread(start, tsk);
123
124 return false;
125}
126#else
127static bool has_intersects_mems_allowed(struct task_struct *tsk,
128 const nodemask_t *mask)
129{
130 return true;
131}
132#endif /* CONFIG_NUMA */
133
134/*
135 * The process p may have detached its own ->mm while exiting or through
136 * use_mm(), but one or more of its subthreads may still have a valid
137 * pointer. Return p, or any of its subthreads with a valid ->mm, with
138 * task_lock() held.
139 */
140struct task_struct *find_lock_task_mm(struct task_struct *p)
141{
142 struct task_struct *t = p;
143
144 do {
145 task_lock(t);
146 if (likely(t->mm))
147 return t;
148 task_unlock(t);
149 } while_each_thread(p, t);
150
151 return NULL;
152}
153
154/* return true if the task is not adequate as candidate victim task. */
155static bool oom_unkillable_task(struct task_struct *p,
156 const struct mem_cgroup *memcg, const nodemask_t *nodemask)
157{
158 if (is_global_init(p))
159 return true;
160 if (p->flags & PF_KTHREAD)
161 return true;
162
163 /* When mem_cgroup_out_of_memory() and p is not member of the group */
164 if (memcg && !task_in_mem_cgroup(p, memcg))
165 return true;
166
167 /* p may not have freeable memory in nodemask */
168 if (!has_intersects_mems_allowed(p, nodemask))
169 return true;
170
171 return false;
172}
173
174/**
175 * oom_badness - heuristic function to determine which candidate task to kill
176 * @p: task struct of which task we should calculate
177 * @totalpages: total present RAM allowed for page allocation
178 *
179 * The heuristic for determining which task to kill is made to be as simple and
180 * predictable as possible. The goal is to return the highest value for the
181 * task consuming the most memory to avoid subsequent oom failures.
182 */
183unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
184 const nodemask_t *nodemask, unsigned long totalpages)
185{
186 long points;
187 long adj;
188
189 if (oom_unkillable_task(p, memcg, nodemask))
190 return 0;
191
192 p = find_lock_task_mm(p);
193 if (!p)
194 return 0;
195
196 adj = p->signal->oom_score_adj;
197 if (adj == OOM_SCORE_ADJ_MIN) {
198 task_unlock(p);
199 return 0;
200 }
201
202 /*
203 * The baseline for the badness score is the proportion of RAM that each
204 * task's rss, pagetable and swap space use.
205 */
206 points = get_mm_rss(p->mm) + p->mm->nr_ptes +
207 get_mm_counter(p->mm, MM_SWAPENTS);
208 task_unlock(p);
209
210 /*
211 * Root processes get 3% bonus, just like the __vm_enough_memory()
212 * implementation used by LSMs.
213 */
214 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
215 adj -= 30;
216
217 /* Normalize to oom_score_adj units */
218 adj *= totalpages / 1000;
219 points += adj;
220
221 /*
222 * Never return 0 for an eligible task regardless of the root bonus and
223 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
224 */
225 return points > 0 ? points : 1;
226}
227
228/*
229 * Determine the type of allocation constraint.
230 */
231#ifdef CONFIG_NUMA
232static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
233 gfp_t gfp_mask, nodemask_t *nodemask,
234 unsigned long *totalpages)
235{
236 struct zone *zone;
237 struct zoneref *z;
238 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
239 bool cpuset_limited = false;
240 int nid;
241
242 /* Default to all available memory */
243 *totalpages = totalram_pages + total_swap_pages;
244
245 if (!zonelist)
246 return CONSTRAINT_NONE;
247 /*
248 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
249 * to kill current.We have to random task kill in this case.
250 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
251 */
252 if (gfp_mask & __GFP_THISNODE)
253 return CONSTRAINT_NONE;
254
255 /*
256 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
257 * the page allocator means a mempolicy is in effect. Cpuset policy
258 * is enforced in get_page_from_freelist().
259 */
260 if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) {
261 *totalpages = total_swap_pages;
262 for_each_node_mask(nid, *nodemask)
263 *totalpages += node_spanned_pages(nid);
264 return CONSTRAINT_MEMORY_POLICY;
265 }
266
267 /* Check this allocation failure is caused by cpuset's wall function */
268 for_each_zone_zonelist_nodemask(zone, z, zonelist,
269 high_zoneidx, nodemask)
270 if (!cpuset_zone_allowed_softwall(zone, gfp_mask))
271 cpuset_limited = true;
272
273 if (cpuset_limited) {
274 *totalpages = total_swap_pages;
275 for_each_node_mask(nid, cpuset_current_mems_allowed)
276 *totalpages += node_spanned_pages(nid);
277 return CONSTRAINT_CPUSET;
278 }
279 return CONSTRAINT_NONE;
280}
281#else
282static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
283 gfp_t gfp_mask, nodemask_t *nodemask,
284 unsigned long *totalpages)
285{
286 *totalpages = totalram_pages + total_swap_pages;
287 return CONSTRAINT_NONE;
288}
289#endif
290
291/*
292 * Simple selection loop. We chose the process with the highest
293 * number of 'points'. We expect the caller will lock the tasklist.
294 *
295 * (not docbooked, we don't want this one cluttering up the manual)
296 */
297static struct task_struct *select_bad_process(unsigned int *ppoints,
298 unsigned long totalpages, struct mem_cgroup *memcg,
299 const nodemask_t *nodemask, bool force_kill)
300{
301 struct task_struct *g, *p;
302 struct task_struct *chosen = NULL;
303 unsigned long chosen_points = 0;
304
305 do_each_thread(g, p) {
306 unsigned int points;
307
308 if (p->exit_state)
309 continue;
310 if (oom_unkillable_task(p, memcg, nodemask))
311 continue;
312
313 /*
314 * This task already has access to memory reserves and is
315 * being killed. Don't allow any other task access to the
316 * memory reserve.
317 *
318 * Note: this may have a chance of deadlock if it gets
319 * blocked waiting for another task which itself is waiting
320 * for memory. Is there a better alternative?
321 */
322 if (test_tsk_thread_flag(p, TIF_MEMDIE)) {
323 if (unlikely(frozen(p)))
324 __thaw_task(p);
325 if (!force_kill)
326 return ERR_PTR(-1UL);
327 }
328 if (!p->mm)
329 continue;
330
331 if (p->flags & PF_EXITING) {
332 /*
333 * If p is the current task and is in the process of
334 * releasing memory, we allow the "kill" to set
335 * TIF_MEMDIE, which will allow it to gain access to
336 * memory reserves. Otherwise, it may stall forever.
337 *
338 * The loop isn't broken here, however, in case other
339 * threads are found to have already been oom killed.
340 */
341 if (p == current) {
342 chosen = p;
343 chosen_points = ULONG_MAX;
344 } else if (!force_kill) {
345 /*
346 * If this task is not being ptraced on exit,
347 * then wait for it to finish before killing
348 * some other task unnecessarily.
349 */
350 if (!(p->group_leader->ptrace & PT_TRACE_EXIT))
351 return ERR_PTR(-1UL);
352 }
353 }
354
355 points = oom_badness(p, memcg, nodemask, totalpages);
356 if (points > chosen_points) {
357 chosen = p;
358 chosen_points = points;
359 }
360 } while_each_thread(g, p);
361
362 *ppoints = chosen_points * 1000 / totalpages;
363 return chosen;
364}
365
366/**
367 * dump_tasks - dump current memory state of all system tasks
368 * @memcg: current's memory controller, if constrained
369 * @nodemask: nodemask passed to page allocator for mempolicy ooms
370 *
371 * Dumps the current memory state of all eligible tasks. Tasks not in the same
372 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
373 * are not shown.
374 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
375 * value, oom_score_adj value, and name.
376 *
377 * Call with tasklist_lock read-locked.
378 */
379static void dump_tasks(const struct mem_cgroup *memcg, const nodemask_t *nodemask)
380{
381 struct task_struct *p;
382 struct task_struct *task;
383
384 pr_info("[ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name\n");
385 for_each_process(p) {
386 if (oom_unkillable_task(p, memcg, nodemask))
387 continue;
388
389 task = find_lock_task_mm(p);
390 if (!task) {
391 /*
392 * This is a kthread or all of p's threads have already
393 * detached their mm's. There's no need to report
394 * them; they can't be oom killed anyway.
395 */
396 continue;
397 }
398
399 pr_info("[%5d] %5d %5d %8lu %8lu %3u %3d %5d %s\n",
400 task->pid, from_kuid(&init_user_ns, task_uid(task)),
401 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
402 task_cpu(task), task->signal->oom_adj,
403 task->signal->oom_score_adj, task->comm);
404 task_unlock(task);
405 }
406}
407
408static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
409 struct mem_cgroup *memcg, const nodemask_t *nodemask)
410{
411 task_lock(current);
412 pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
413 "oom_adj=%d, oom_score_adj=%d\n",
414 current->comm, gfp_mask, order, current->signal->oom_adj,
415 current->signal->oom_score_adj);
416 cpuset_print_task_mems_allowed(current);
417 task_unlock(current);
418 dump_stack();
419 mem_cgroup_print_oom_info(memcg, p);
420 show_mem(SHOW_MEM_FILTER_NODES);
421 if (sysctl_oom_dump_tasks)
422 dump_tasks(memcg, nodemask);
423}
424
425#define K(x) ((x) << (PAGE_SHIFT-10))
426static void oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
427 unsigned int points, unsigned long totalpages,
428 struct mem_cgroup *memcg, nodemask_t *nodemask,
429 const char *message)
430{
431 struct task_struct *victim = p;
432 struct task_struct *child;
433 struct task_struct *t = p;
434 struct mm_struct *mm;
435 unsigned int victim_points = 0;
436 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
437 DEFAULT_RATELIMIT_BURST);
438
439 /*
440 * If the task is already exiting, don't alarm the sysadmin or kill
441 * its children or threads, just set TIF_MEMDIE so it can die quickly
442 */
443 if (p->flags & PF_EXITING) {
444 set_tsk_thread_flag(p, TIF_MEMDIE);
445 return;
446 }
447
448 if (__ratelimit(&oom_rs))
449 dump_header(p, gfp_mask, order, memcg, nodemask);
450
451 task_lock(p);
452 pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n",
453 message, task_pid_nr(p), p->comm, points);
454 task_unlock(p);
455
456 /*
457 * If any of p's children has a different mm and is eligible for kill,
458 * the one with the highest oom_badness() score is sacrificed for its
459 * parent. This attempts to lose the minimal amount of work done while
460 * still freeing memory.
461 */
462 do {
463 list_for_each_entry(child, &t->children, sibling) {
464 unsigned int child_points;
465
466 if (child->mm == p->mm)
467 continue;
468 /*
469 * oom_badness() returns 0 if the thread is unkillable
470 */
471 child_points = oom_badness(child, memcg, nodemask,
472 totalpages);
473 if (child_points > victim_points) {
474 victim = child;
475 victim_points = child_points;
476 }
477 }
478 } while_each_thread(p, t);
479
480 victim = find_lock_task_mm(victim);
481 if (!victim)
482 return;
483
484 /* mm cannot safely be dereferenced after task_unlock(victim) */
485 mm = victim->mm;
486 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
487 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
488 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
489 K(get_mm_counter(victim->mm, MM_FILEPAGES)));
490 task_unlock(victim);
491
492 /*
493 * Kill all user processes sharing victim->mm in other thread groups, if
494 * any. They don't get access to memory reserves, though, to avoid
495 * depletion of all memory. This prevents mm->mmap_sem livelock when an
496 * oom killed thread cannot exit because it requires the semaphore and
497 * its contended by another thread trying to allocate memory itself.
498 * That thread will now get access to memory reserves since it has a
499 * pending fatal signal.
500 */
501 for_each_process(p)
502 if (p->mm == mm && !same_thread_group(p, victim) &&
503 !(p->flags & PF_KTHREAD)) {
504 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
505 continue;
506
507 task_lock(p); /* Protect ->comm from prctl() */
508 pr_err("Kill process %d (%s) sharing same memory\n",
509 task_pid_nr(p), p->comm);
510 task_unlock(p);
511 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
512 }
513
514 set_tsk_thread_flag(victim, TIF_MEMDIE);
515 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
516}
517#undef K
518
519/*
520 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
521 */
522static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask,
523 int order, const nodemask_t *nodemask)
524{
525 if (likely(!sysctl_panic_on_oom))
526 return;
527 if (sysctl_panic_on_oom != 2) {
528 /*
529 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
530 * does not panic for cpuset, mempolicy, or memcg allocation
531 * failures.
532 */
533 if (constraint != CONSTRAINT_NONE)
534 return;
535 }
536 read_lock(&tasklist_lock);
537 dump_header(NULL, gfp_mask, order, NULL, nodemask);
538 read_unlock(&tasklist_lock);
539 panic("Out of memory: %s panic_on_oom is enabled\n",
540 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
541}
542
543#ifdef CONFIG_CGROUP_MEM_RES_CTLR
544void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
545 int order)
546{
547 unsigned long limit;
548 unsigned int points = 0;
549 struct task_struct *p;
550
551 /*
552 * If current has a pending SIGKILL, then automatically select it. The
553 * goal is to allow it to allocate so that it may quickly exit and free
554 * its memory.
555 */
556 if (fatal_signal_pending(current)) {
557 set_thread_flag(TIF_MEMDIE);
558 return;
559 }
560
561 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
562 limit = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
563 read_lock(&tasklist_lock);
564 p = select_bad_process(&points, limit, memcg, NULL, false);
565 if (p && PTR_ERR(p) != -1UL)
566 oom_kill_process(p, gfp_mask, order, points, limit, memcg, NULL,
567 "Memory cgroup out of memory");
568 read_unlock(&tasklist_lock);
569}
570#endif
571
572static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
573
574int register_oom_notifier(struct notifier_block *nb)
575{
576 return blocking_notifier_chain_register(&oom_notify_list, nb);
577}
578EXPORT_SYMBOL_GPL(register_oom_notifier);
579
580int unregister_oom_notifier(struct notifier_block *nb)
581{
582 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
583}
584EXPORT_SYMBOL_GPL(unregister_oom_notifier);
585
586/*
587 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
588 * if a parallel OOM killing is already taking place that includes a zone in
589 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
590 */
591int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
592{
593 struct zoneref *z;
594 struct zone *zone;
595 int ret = 1;
596
597 spin_lock(&zone_scan_lock);
598 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
599 if (zone_is_oom_locked(zone)) {
600 ret = 0;
601 goto out;
602 }
603 }
604
605 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
606 /*
607 * Lock each zone in the zonelist under zone_scan_lock so a
608 * parallel invocation of try_set_zonelist_oom() doesn't succeed
609 * when it shouldn't.
610 */
611 zone_set_flag(zone, ZONE_OOM_LOCKED);
612 }
613
614out:
615 spin_unlock(&zone_scan_lock);
616 return ret;
617}
618
619/*
620 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
621 * allocation attempts with zonelists containing them may now recall the OOM
622 * killer, if necessary.
623 */
624void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
625{
626 struct zoneref *z;
627 struct zone *zone;
628
629 spin_lock(&zone_scan_lock);
630 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
631 zone_clear_flag(zone, ZONE_OOM_LOCKED);
632 }
633 spin_unlock(&zone_scan_lock);
634}
635
636/*
637 * Try to acquire the oom killer lock for all system zones. Returns zero if a
638 * parallel oom killing is taking place, otherwise locks all zones and returns
639 * non-zero.
640 */
641static int try_set_system_oom(void)
642{
643 struct zone *zone;
644 int ret = 1;
645
646 spin_lock(&zone_scan_lock);
647 for_each_populated_zone(zone)
648 if (zone_is_oom_locked(zone)) {
649 ret = 0;
650 goto out;
651 }
652 for_each_populated_zone(zone)
653 zone_set_flag(zone, ZONE_OOM_LOCKED);
654out:
655 spin_unlock(&zone_scan_lock);
656 return ret;
657}
658
659/*
660 * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation
661 * attempts or page faults may now recall the oom killer, if necessary.
662 */
663static void clear_system_oom(void)
664{
665 struct zone *zone;
666
667 spin_lock(&zone_scan_lock);
668 for_each_populated_zone(zone)
669 zone_clear_flag(zone, ZONE_OOM_LOCKED);
670 spin_unlock(&zone_scan_lock);
671}
672
673/**
674 * out_of_memory - kill the "best" process when we run out of memory
675 * @zonelist: zonelist pointer
676 * @gfp_mask: memory allocation flags
677 * @order: amount of memory being requested as a power of 2
678 * @nodemask: nodemask passed to page allocator
679 * @force_kill: true if a task must be killed, even if others are exiting
680 *
681 * If we run out of memory, we have the choice between either
682 * killing a random task (bad), letting the system crash (worse)
683 * OR try to be smart about which process to kill. Note that we
684 * don't have to be perfect here, we just have to be good.
685 */
686void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
687 int order, nodemask_t *nodemask, bool force_kill)
688{
689 const nodemask_t *mpol_mask;
690 struct task_struct *p;
691 unsigned long totalpages;
692 unsigned long freed = 0;
693 unsigned int points;
694 enum oom_constraint constraint = CONSTRAINT_NONE;
695 int killed = 0;
696
697 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
698 if (freed > 0)
699 /* Got some memory back in the last second. */
700 return;
701
702 /*
703 * If current has a pending SIGKILL, then automatically select it. The
704 * goal is to allow it to allocate so that it may quickly exit and free
705 * its memory.
706 */
707 if (fatal_signal_pending(current)) {
708 set_thread_flag(TIF_MEMDIE);
709 return;
710 }
711
712 /*
713 * Check if there were limitations on the allocation (only relevant for
714 * NUMA) that may require different handling.
715 */
716 constraint = constrained_alloc(zonelist, gfp_mask, nodemask,
717 &totalpages);
718 mpol_mask = (constraint == CONSTRAINT_MEMORY_POLICY) ? nodemask : NULL;
719 check_panic_on_oom(constraint, gfp_mask, order, mpol_mask);
720
721 read_lock(&tasklist_lock);
722 if (sysctl_oom_kill_allocating_task &&
723 !oom_unkillable_task(current, NULL, nodemask) &&
724 current->mm) {
725 oom_kill_process(current, gfp_mask, order, 0, totalpages, NULL,
726 nodemask,
727 "Out of memory (oom_kill_allocating_task)");
728 goto out;
729 }
730
731 p = select_bad_process(&points, totalpages, NULL, mpol_mask,
732 force_kill);
733 /* Found nothing?!?! Either we hang forever, or we panic. */
734 if (!p) {
735 dump_header(NULL, gfp_mask, order, NULL, mpol_mask);
736 read_unlock(&tasklist_lock);
737 panic("Out of memory and no killable processes...\n");
738 }
739 if (PTR_ERR(p) != -1UL) {
740 oom_kill_process(p, gfp_mask, order, points, totalpages, NULL,
741 nodemask, "Out of memory");
742 killed = 1;
743 }
744out:
745 read_unlock(&tasklist_lock);
746
747 /*
748 * Give "p" a good chance of killing itself before we
749 * retry to allocate memory unless "p" is current
750 */
751 if (killed && !test_thread_flag(TIF_MEMDIE))
752 schedule_timeout_uninterruptible(1);
753}
754
755/*
756 * The pagefault handler calls here because it is out of memory, so kill a
757 * memory-hogging task. If a populated zone has ZONE_OOM_LOCKED set, a parallel
758 * oom killing is already in progress so do nothing. If a task is found with
759 * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit.
760 */
761void pagefault_out_of_memory(void)
762{
763 if (try_set_system_oom()) {
764 out_of_memory(NULL, 0, 0, NULL, false);
765 clear_system_oom();
766 }
767 if (!test_thread_flag(TIF_MEMDIE))
768 schedule_timeout_uninterruptible(1);
769}