Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1/*
  2 * Dynamic DMA mapping support.
  3 *
  4 * This implementation is a fallback for platforms that do not support
  5 * I/O TLBs (aka DMA address translation hardware).
  6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
  7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
  8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
  9 *	David Mosberger-Tang <davidm@hpl.hp.com>
 10 *
 11 * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
 12 * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
 13 *			unnecessary i-cache flushing.
 14 * 04/07/.. ak		Better overflow handling. Assorted fixes.
 15 * 05/09/10 linville	Add support for syncing ranges, support syncing for
 16 *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
 17 * 08/12/11 beckyb	Add highmem support
 18 */
 19
 20#include <linux/cache.h>
 21#include <linux/dma-mapping.h>
 22#include <linux/mm.h>
 23#include <linux/module.h>
 24#include <linux/spinlock.h>
 25#include <linux/string.h>
 26#include <linux/swiotlb.h>
 27#include <linux/pfn.h>
 28#include <linux/types.h>
 29#include <linux/ctype.h>
 30#include <linux/highmem.h>
 31#include <linux/gfp.h>
 32
 33#include <asm/io.h>
 34#include <asm/dma.h>
 35#include <asm/scatterlist.h>
 36
 37#include <linux/init.h>
 38#include <linux/bootmem.h>
 39#include <linux/iommu-helper.h>
 40
 41#define OFFSET(val,align) ((unsigned long)	\
 42	                   ( (val) & ( (align) - 1)))
 43
 44#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
 45
 46/*
 47 * Minimum IO TLB size to bother booting with.  Systems with mainly
 48 * 64bit capable cards will only lightly use the swiotlb.  If we can't
 49 * allocate a contiguous 1MB, we're probably in trouble anyway.
 50 */
 51#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
 52
 53int swiotlb_force;
 54
 55/*
 56 * Used to do a quick range check in swiotlb_tbl_unmap_single and
 57 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
 58 * API.
 59 */
 60static char *io_tlb_start, *io_tlb_end;
 61
 62/*
 63 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
 64 * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
 65 */
 66static unsigned long io_tlb_nslabs;
 67
 68/*
 69 * When the IOMMU overflows we return a fallback buffer. This sets the size.
 70 */
 71static unsigned long io_tlb_overflow = 32*1024;
 72
 73static void *io_tlb_overflow_buffer;
 74
 75/*
 76 * This is a free list describing the number of free entries available from
 77 * each index
 78 */
 79static unsigned int *io_tlb_list;
 80static unsigned int io_tlb_index;
 81
 82/*
 83 * We need to save away the original address corresponding to a mapped entry
 84 * for the sync operations.
 85 */
 86static phys_addr_t *io_tlb_orig_addr;
 87
 88/*
 89 * Protect the above data structures in the map and unmap calls
 90 */
 91static DEFINE_SPINLOCK(io_tlb_lock);
 92
 93static int late_alloc;
 94
 95static int __init
 96setup_io_tlb_npages(char *str)
 97{
 98	if (isdigit(*str)) {
 99		io_tlb_nslabs = simple_strtoul(str, &str, 0);
100		/* avoid tail segment of size < IO_TLB_SEGSIZE */
101		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
102	}
103	if (*str == ',')
104		++str;
105	if (!strcmp(str, "force"))
106		swiotlb_force = 1;
107
108	return 1;
109}
110__setup("swiotlb=", setup_io_tlb_npages);
111/* make io_tlb_overflow tunable too? */
112
113unsigned long swioltb_nr_tbl(void)
114{
115	return io_tlb_nslabs;
116}
117
118/* Note that this doesn't work with highmem page */
119static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
120				      volatile void *address)
121{
122	return phys_to_dma(hwdev, virt_to_phys(address));
123}
124
125void swiotlb_print_info(void)
126{
127	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
128	phys_addr_t pstart, pend;
129
130	pstart = virt_to_phys(io_tlb_start);
131	pend = virt_to_phys(io_tlb_end);
132
133	printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
134	       bytes >> 20, io_tlb_start, io_tlb_end);
135	printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
136	       (unsigned long long)pstart,
137	       (unsigned long long)pend);
138}
139
140void __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
141{
142	unsigned long i, bytes;
143
144	bytes = nslabs << IO_TLB_SHIFT;
145
146	io_tlb_nslabs = nslabs;
147	io_tlb_start = tlb;
148	io_tlb_end = io_tlb_start + bytes;
149
150	/*
151	 * Allocate and initialize the free list array.  This array is used
152	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
153	 * between io_tlb_start and io_tlb_end.
154	 */
155	io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
156	for (i = 0; i < io_tlb_nslabs; i++)
157 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
158	io_tlb_index = 0;
159	io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
160
161	/*
162	 * Get the overflow emergency buffer
163	 */
164	io_tlb_overflow_buffer = alloc_bootmem_low_pages(PAGE_ALIGN(io_tlb_overflow));
165	if (!io_tlb_overflow_buffer)
166		panic("Cannot allocate SWIOTLB overflow buffer!\n");
167	if (verbose)
168		swiotlb_print_info();
169}
170
171/*
172 * Statically reserve bounce buffer space and initialize bounce buffer data
173 * structures for the software IO TLB used to implement the DMA API.
174 */
175void __init
176swiotlb_init_with_default_size(size_t default_size, int verbose)
177{
178	unsigned long bytes;
179
180	if (!io_tlb_nslabs) {
181		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
182		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
183	}
184
185	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
186
187	/*
188	 * Get IO TLB memory from the low pages
189	 */
190	io_tlb_start = alloc_bootmem_low_pages(PAGE_ALIGN(bytes));
191	if (!io_tlb_start)
192		panic("Cannot allocate SWIOTLB buffer");
193
194	swiotlb_init_with_tbl(io_tlb_start, io_tlb_nslabs, verbose);
195}
196
197void __init
198swiotlb_init(int verbose)
199{
200	swiotlb_init_with_default_size(64 * (1<<20), verbose);	/* default to 64MB */
201}
202
203/*
204 * Systems with larger DMA zones (those that don't support ISA) can
205 * initialize the swiotlb later using the slab allocator if needed.
206 * This should be just like above, but with some error catching.
207 */
208int
209swiotlb_late_init_with_default_size(size_t default_size)
210{
211	unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
212	unsigned int order;
213
214	if (!io_tlb_nslabs) {
215		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
216		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
217	}
218
219	/*
220	 * Get IO TLB memory from the low pages
221	 */
222	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
223	io_tlb_nslabs = SLABS_PER_PAGE << order;
224	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
225
226	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
227		io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
228							order);
229		if (io_tlb_start)
230			break;
231		order--;
232	}
233
234	if (!io_tlb_start)
235		goto cleanup1;
236
237	if (order != get_order(bytes)) {
238		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
239		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
240		io_tlb_nslabs = SLABS_PER_PAGE << order;
241		bytes = io_tlb_nslabs << IO_TLB_SHIFT;
242	}
243	io_tlb_end = io_tlb_start + bytes;
244	memset(io_tlb_start, 0, bytes);
245
246	/*
247	 * Allocate and initialize the free list array.  This array is used
248	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
249	 * between io_tlb_start and io_tlb_end.
250	 */
251	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
252	                              get_order(io_tlb_nslabs * sizeof(int)));
253	if (!io_tlb_list)
254		goto cleanup2;
255
256	for (i = 0; i < io_tlb_nslabs; i++)
257 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
258	io_tlb_index = 0;
259
260	io_tlb_orig_addr = (phys_addr_t *)
261		__get_free_pages(GFP_KERNEL,
262				 get_order(io_tlb_nslabs *
263					   sizeof(phys_addr_t)));
264	if (!io_tlb_orig_addr)
265		goto cleanup3;
266
267	memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
268
269	/*
270	 * Get the overflow emergency buffer
271	 */
272	io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
273	                                          get_order(io_tlb_overflow));
274	if (!io_tlb_overflow_buffer)
275		goto cleanup4;
276
277	swiotlb_print_info();
278
279	late_alloc = 1;
280
281	return 0;
282
283cleanup4:
284	free_pages((unsigned long)io_tlb_orig_addr,
285		   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
286	io_tlb_orig_addr = NULL;
287cleanup3:
288	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
289	                                                 sizeof(int)));
290	io_tlb_list = NULL;
291cleanup2:
292	io_tlb_end = NULL;
293	free_pages((unsigned long)io_tlb_start, order);
294	io_tlb_start = NULL;
295cleanup1:
296	io_tlb_nslabs = req_nslabs;
297	return -ENOMEM;
298}
299
300void __init swiotlb_free(void)
301{
302	if (!io_tlb_overflow_buffer)
303		return;
304
305	if (late_alloc) {
306		free_pages((unsigned long)io_tlb_overflow_buffer,
307			   get_order(io_tlb_overflow));
308		free_pages((unsigned long)io_tlb_orig_addr,
309			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
310		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
311								 sizeof(int)));
312		free_pages((unsigned long)io_tlb_start,
313			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
314	} else {
315		free_bootmem_late(__pa(io_tlb_overflow_buffer),
316				  PAGE_ALIGN(io_tlb_overflow));
317		free_bootmem_late(__pa(io_tlb_orig_addr),
318				  PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
319		free_bootmem_late(__pa(io_tlb_list),
320				  PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
321		free_bootmem_late(__pa(io_tlb_start),
322				  PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
323	}
324}
325
326static int is_swiotlb_buffer(phys_addr_t paddr)
327{
328	return paddr >= virt_to_phys(io_tlb_start) &&
329		paddr < virt_to_phys(io_tlb_end);
330}
331
332/*
333 * Bounce: copy the swiotlb buffer back to the original dma location
334 */
335void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
336		    enum dma_data_direction dir)
337{
338	unsigned long pfn = PFN_DOWN(phys);
339
340	if (PageHighMem(pfn_to_page(pfn))) {
341		/* The buffer does not have a mapping.  Map it in and copy */
342		unsigned int offset = phys & ~PAGE_MASK;
343		char *buffer;
344		unsigned int sz = 0;
345		unsigned long flags;
346
347		while (size) {
348			sz = min_t(size_t, PAGE_SIZE - offset, size);
349
350			local_irq_save(flags);
351			buffer = kmap_atomic(pfn_to_page(pfn),
352					     KM_BOUNCE_READ);
353			if (dir == DMA_TO_DEVICE)
354				memcpy(dma_addr, buffer + offset, sz);
355			else
356				memcpy(buffer + offset, dma_addr, sz);
357			kunmap_atomic(buffer, KM_BOUNCE_READ);
358			local_irq_restore(flags);
359
360			size -= sz;
361			pfn++;
362			dma_addr += sz;
363			offset = 0;
364		}
365	} else {
366		if (dir == DMA_TO_DEVICE)
367			memcpy(dma_addr, phys_to_virt(phys), size);
368		else
369			memcpy(phys_to_virt(phys), dma_addr, size);
370	}
371}
372EXPORT_SYMBOL_GPL(swiotlb_bounce);
373
374void *swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr,
375			     phys_addr_t phys, size_t size,
376			     enum dma_data_direction dir)
377{
378	unsigned long flags;
379	char *dma_addr;
380	unsigned int nslots, stride, index, wrap;
381	int i;
382	unsigned long mask;
383	unsigned long offset_slots;
384	unsigned long max_slots;
385
386	mask = dma_get_seg_boundary(hwdev);
387
388	tbl_dma_addr &= mask;
389
390	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
391
392	/*
393 	 * Carefully handle integer overflow which can occur when mask == ~0UL.
394 	 */
395	max_slots = mask + 1
396		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
397		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
398
399	/*
400	 * For mappings greater than a page, we limit the stride (and
401	 * hence alignment) to a page size.
402	 */
403	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
404	if (size > PAGE_SIZE)
405		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
406	else
407		stride = 1;
408
409	BUG_ON(!nslots);
410
411	/*
412	 * Find suitable number of IO TLB entries size that will fit this
413	 * request and allocate a buffer from that IO TLB pool.
414	 */
415	spin_lock_irqsave(&io_tlb_lock, flags);
416	index = ALIGN(io_tlb_index, stride);
417	if (index >= io_tlb_nslabs)
418		index = 0;
419	wrap = index;
420
421	do {
422		while (iommu_is_span_boundary(index, nslots, offset_slots,
423					      max_slots)) {
424			index += stride;
425			if (index >= io_tlb_nslabs)
426				index = 0;
427			if (index == wrap)
428				goto not_found;
429		}
430
431		/*
432		 * If we find a slot that indicates we have 'nslots' number of
433		 * contiguous buffers, we allocate the buffers from that slot
434		 * and mark the entries as '0' indicating unavailable.
435		 */
436		if (io_tlb_list[index] >= nslots) {
437			int count = 0;
438
439			for (i = index; i < (int) (index + nslots); i++)
440				io_tlb_list[i] = 0;
441			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
442				io_tlb_list[i] = ++count;
443			dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
444
445			/*
446			 * Update the indices to avoid searching in the next
447			 * round.
448			 */
449			io_tlb_index = ((index + nslots) < io_tlb_nslabs
450					? (index + nslots) : 0);
451
452			goto found;
453		}
454		index += stride;
455		if (index >= io_tlb_nslabs)
456			index = 0;
457	} while (index != wrap);
458
459not_found:
460	spin_unlock_irqrestore(&io_tlb_lock, flags);
461	return NULL;
462found:
463	spin_unlock_irqrestore(&io_tlb_lock, flags);
464
465	/*
466	 * Save away the mapping from the original address to the DMA address.
467	 * This is needed when we sync the memory.  Then we sync the buffer if
468	 * needed.
469	 */
470	for (i = 0; i < nslots; i++)
471		io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
472	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
473		swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
474
475	return dma_addr;
476}
477EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
478
479/*
480 * Allocates bounce buffer and returns its kernel virtual address.
481 */
482
483static void *
484map_single(struct device *hwdev, phys_addr_t phys, size_t size,
485	   enum dma_data_direction dir)
486{
487	dma_addr_t start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start);
488
489	return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
490}
491
492/*
493 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
494 */
495void
496swiotlb_tbl_unmap_single(struct device *hwdev, char *dma_addr, size_t size,
497			enum dma_data_direction dir)
498{
499	unsigned long flags;
500	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
501	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
502	phys_addr_t phys = io_tlb_orig_addr[index];
503
504	/*
505	 * First, sync the memory before unmapping the entry
506	 */
507	if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
508		swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
509
510	/*
511	 * Return the buffer to the free list by setting the corresponding
512	 * entries to indicate the number of contiguous entries available.
513	 * While returning the entries to the free list, we merge the entries
514	 * with slots below and above the pool being returned.
515	 */
516	spin_lock_irqsave(&io_tlb_lock, flags);
517	{
518		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
519			 io_tlb_list[index + nslots] : 0);
520		/*
521		 * Step 1: return the slots to the free list, merging the
522		 * slots with superceeding slots
523		 */
524		for (i = index + nslots - 1; i >= index; i--)
525			io_tlb_list[i] = ++count;
526		/*
527		 * Step 2: merge the returned slots with the preceding slots,
528		 * if available (non zero)
529		 */
530		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
531			io_tlb_list[i] = ++count;
532	}
533	spin_unlock_irqrestore(&io_tlb_lock, flags);
534}
535EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
536
537void
538swiotlb_tbl_sync_single(struct device *hwdev, char *dma_addr, size_t size,
539			enum dma_data_direction dir,
540			enum dma_sync_target target)
541{
542	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
543	phys_addr_t phys = io_tlb_orig_addr[index];
544
545	phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
546
547	switch (target) {
548	case SYNC_FOR_CPU:
549		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
550			swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
551		else
552			BUG_ON(dir != DMA_TO_DEVICE);
553		break;
554	case SYNC_FOR_DEVICE:
555		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
556			swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
557		else
558			BUG_ON(dir != DMA_FROM_DEVICE);
559		break;
560	default:
561		BUG();
562	}
563}
564EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
565
566void *
567swiotlb_alloc_coherent(struct device *hwdev, size_t size,
568		       dma_addr_t *dma_handle, gfp_t flags)
569{
570	dma_addr_t dev_addr;
571	void *ret;
572	int order = get_order(size);
573	u64 dma_mask = DMA_BIT_MASK(32);
574
575	if (hwdev && hwdev->coherent_dma_mask)
576		dma_mask = hwdev->coherent_dma_mask;
577
578	ret = (void *)__get_free_pages(flags, order);
579	if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
580		/*
581		 * The allocated memory isn't reachable by the device.
582		 */
583		free_pages((unsigned long) ret, order);
584		ret = NULL;
585	}
586	if (!ret) {
587		/*
588		 * We are either out of memory or the device can't DMA to
589		 * GFP_DMA memory; fall back on map_single(), which
590		 * will grab memory from the lowest available address range.
591		 */
592		ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
593		if (!ret)
594			return NULL;
595	}
596
597	memset(ret, 0, size);
598	dev_addr = swiotlb_virt_to_bus(hwdev, ret);
599
600	/* Confirm address can be DMA'd by device */
601	if (dev_addr + size - 1 > dma_mask) {
602		printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
603		       (unsigned long long)dma_mask,
604		       (unsigned long long)dev_addr);
605
606		/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
607		swiotlb_tbl_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
608		return NULL;
609	}
610	*dma_handle = dev_addr;
611	return ret;
612}
613EXPORT_SYMBOL(swiotlb_alloc_coherent);
614
615void
616swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
617		      dma_addr_t dev_addr)
618{
619	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
620
621	WARN_ON(irqs_disabled());
622	if (!is_swiotlb_buffer(paddr))
623		free_pages((unsigned long)vaddr, get_order(size));
624	else
625		/* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
626		swiotlb_tbl_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
627}
628EXPORT_SYMBOL(swiotlb_free_coherent);
629
630static void
631swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
632	     int do_panic)
633{
634	/*
635	 * Ran out of IOMMU space for this operation. This is very bad.
636	 * Unfortunately the drivers cannot handle this operation properly.
637	 * unless they check for dma_mapping_error (most don't)
638	 * When the mapping is small enough return a static buffer to limit
639	 * the damage, or panic when the transfer is too big.
640	 */
641	printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
642	       "device %s\n", size, dev ? dev_name(dev) : "?");
643
644	if (size <= io_tlb_overflow || !do_panic)
645		return;
646
647	if (dir == DMA_BIDIRECTIONAL)
648		panic("DMA: Random memory could be DMA accessed\n");
649	if (dir == DMA_FROM_DEVICE)
650		panic("DMA: Random memory could be DMA written\n");
651	if (dir == DMA_TO_DEVICE)
652		panic("DMA: Random memory could be DMA read\n");
653}
654
655/*
656 * Map a single buffer of the indicated size for DMA in streaming mode.  The
657 * physical address to use is returned.
658 *
659 * Once the device is given the dma address, the device owns this memory until
660 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
661 */
662dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
663			    unsigned long offset, size_t size,
664			    enum dma_data_direction dir,
665			    struct dma_attrs *attrs)
666{
667	phys_addr_t phys = page_to_phys(page) + offset;
668	dma_addr_t dev_addr = phys_to_dma(dev, phys);
669	void *map;
670
671	BUG_ON(dir == DMA_NONE);
672	/*
673	 * If the address happens to be in the device's DMA window,
674	 * we can safely return the device addr and not worry about bounce
675	 * buffering it.
676	 */
677	if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
678		return dev_addr;
679
680	/*
681	 * Oh well, have to allocate and map a bounce buffer.
682	 */
683	map = map_single(dev, phys, size, dir);
684	if (!map) {
685		swiotlb_full(dev, size, dir, 1);
686		map = io_tlb_overflow_buffer;
687	}
688
689	dev_addr = swiotlb_virt_to_bus(dev, map);
690
691	/*
692	 * Ensure that the address returned is DMA'ble
693	 */
694	if (!dma_capable(dev, dev_addr, size)) {
695		swiotlb_tbl_unmap_single(dev, map, size, dir);
696		dev_addr = swiotlb_virt_to_bus(dev, io_tlb_overflow_buffer);
697	}
698
699	return dev_addr;
700}
701EXPORT_SYMBOL_GPL(swiotlb_map_page);
702
703/*
704 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
705 * match what was provided for in a previous swiotlb_map_page call.  All
706 * other usages are undefined.
707 *
708 * After this call, reads by the cpu to the buffer are guaranteed to see
709 * whatever the device wrote there.
710 */
711static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
712			 size_t size, enum dma_data_direction dir)
713{
714	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
715
716	BUG_ON(dir == DMA_NONE);
717
718	if (is_swiotlb_buffer(paddr)) {
719		swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
720		return;
721	}
722
723	if (dir != DMA_FROM_DEVICE)
724		return;
725
726	/*
727	 * phys_to_virt doesn't work with hihgmem page but we could
728	 * call dma_mark_clean() with hihgmem page here. However, we
729	 * are fine since dma_mark_clean() is null on POWERPC. We can
730	 * make dma_mark_clean() take a physical address if necessary.
731	 */
732	dma_mark_clean(phys_to_virt(paddr), size);
733}
734
735void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
736			size_t size, enum dma_data_direction dir,
737			struct dma_attrs *attrs)
738{
739	unmap_single(hwdev, dev_addr, size, dir);
740}
741EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
742
743/*
744 * Make physical memory consistent for a single streaming mode DMA translation
745 * after a transfer.
746 *
747 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
748 * using the cpu, yet do not wish to teardown the dma mapping, you must
749 * call this function before doing so.  At the next point you give the dma
750 * address back to the card, you must first perform a
751 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
752 */
753static void
754swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
755		    size_t size, enum dma_data_direction dir,
756		    enum dma_sync_target target)
757{
758	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
759
760	BUG_ON(dir == DMA_NONE);
761
762	if (is_swiotlb_buffer(paddr)) {
763		swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
764				       target);
765		return;
766	}
767
768	if (dir != DMA_FROM_DEVICE)
769		return;
770
771	dma_mark_clean(phys_to_virt(paddr), size);
772}
773
774void
775swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
776			    size_t size, enum dma_data_direction dir)
777{
778	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
779}
780EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
781
782void
783swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
784			       size_t size, enum dma_data_direction dir)
785{
786	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
787}
788EXPORT_SYMBOL(swiotlb_sync_single_for_device);
789
790/*
791 * Map a set of buffers described by scatterlist in streaming mode for DMA.
792 * This is the scatter-gather version of the above swiotlb_map_page
793 * interface.  Here the scatter gather list elements are each tagged with the
794 * appropriate dma address and length.  They are obtained via
795 * sg_dma_{address,length}(SG).
796 *
797 * NOTE: An implementation may be able to use a smaller number of
798 *       DMA address/length pairs than there are SG table elements.
799 *       (for example via virtual mapping capabilities)
800 *       The routine returns the number of addr/length pairs actually
801 *       used, at most nents.
802 *
803 * Device ownership issues as mentioned above for swiotlb_map_page are the
804 * same here.
805 */
806int
807swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
808		     enum dma_data_direction dir, struct dma_attrs *attrs)
809{
810	struct scatterlist *sg;
811	int i;
812
813	BUG_ON(dir == DMA_NONE);
814
815	for_each_sg(sgl, sg, nelems, i) {
816		phys_addr_t paddr = sg_phys(sg);
817		dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
818
819		if (swiotlb_force ||
820		    !dma_capable(hwdev, dev_addr, sg->length)) {
821			void *map = map_single(hwdev, sg_phys(sg),
822					       sg->length, dir);
823			if (!map) {
824				/* Don't panic here, we expect map_sg users
825				   to do proper error handling. */
826				swiotlb_full(hwdev, sg->length, dir, 0);
827				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
828						       attrs);
829				sgl[0].dma_length = 0;
830				return 0;
831			}
832			sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
833		} else
834			sg->dma_address = dev_addr;
835		sg->dma_length = sg->length;
836	}
837	return nelems;
838}
839EXPORT_SYMBOL(swiotlb_map_sg_attrs);
840
841int
842swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
843	       enum dma_data_direction dir)
844{
845	return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
846}
847EXPORT_SYMBOL(swiotlb_map_sg);
848
849/*
850 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
851 * concerning calls here are the same as for swiotlb_unmap_page() above.
852 */
853void
854swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
855		       int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
856{
857	struct scatterlist *sg;
858	int i;
859
860	BUG_ON(dir == DMA_NONE);
861
862	for_each_sg(sgl, sg, nelems, i)
863		unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
864
865}
866EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
867
868void
869swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
870		 enum dma_data_direction dir)
871{
872	return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
873}
874EXPORT_SYMBOL(swiotlb_unmap_sg);
875
876/*
877 * Make physical memory consistent for a set of streaming mode DMA translations
878 * after a transfer.
879 *
880 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
881 * and usage.
882 */
883static void
884swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
885		int nelems, enum dma_data_direction dir,
886		enum dma_sync_target target)
887{
888	struct scatterlist *sg;
889	int i;
890
891	for_each_sg(sgl, sg, nelems, i)
892		swiotlb_sync_single(hwdev, sg->dma_address,
893				    sg->dma_length, dir, target);
894}
895
896void
897swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
898			int nelems, enum dma_data_direction dir)
899{
900	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
901}
902EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
903
904void
905swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
906			   int nelems, enum dma_data_direction dir)
907{
908	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
909}
910EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
911
912int
913swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
914{
915	return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
916}
917EXPORT_SYMBOL(swiotlb_dma_mapping_error);
918
919/*
920 * Return whether the given device DMA address mask can be supported
921 * properly.  For example, if your device can only drive the low 24-bits
922 * during bus mastering, then you would pass 0x00ffffff as the mask to
923 * this function.
924 */
925int
926swiotlb_dma_supported(struct device *hwdev, u64 mask)
927{
928	return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
929}
930EXPORT_SYMBOL(swiotlb_dma_supported);