Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1/*
  2 * Dynamic DMA mapping support.
  3 *
  4 * This implementation is a fallback for platforms that do not support
  5 * I/O TLBs (aka DMA address translation hardware).
  6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
  7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
  8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
  9 *	David Mosberger-Tang <davidm@hpl.hp.com>
 10 *
 11 * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
 12 * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
 13 *			unnecessary i-cache flushing.
 14 * 04/07/.. ak		Better overflow handling. Assorted fixes.
 15 * 05/09/10 linville	Add support for syncing ranges, support syncing for
 16 *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
 17 * 08/12/11 beckyb	Add highmem support
 18 */
 19
 20#include <linux/cache.h>
 21#include <linux/dma-mapping.h>
 22#include <linux/mm.h>
 23#include <linux/export.h>
 24#include <linux/spinlock.h>
 25#include <linux/string.h>
 26#include <linux/swiotlb.h>
 27#include <linux/pfn.h>
 28#include <linux/types.h>
 29#include <linux/ctype.h>
 30#include <linux/highmem.h>
 31#include <linux/gfp.h>
 32
 33#include <asm/io.h>
 34#include <asm/dma.h>
 35#include <asm/scatterlist.h>
 36
 37#include <linux/init.h>
 38#include <linux/bootmem.h>
 39#include <linux/iommu-helper.h>
 40
 41#define OFFSET(val,align) ((unsigned long)	\
 42	                   ( (val) & ( (align) - 1)))
 43
 44#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
 45
 46/*
 47 * Minimum IO TLB size to bother booting with.  Systems with mainly
 48 * 64bit capable cards will only lightly use the swiotlb.  If we can't
 49 * allocate a contiguous 1MB, we're probably in trouble anyway.
 50 */
 51#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
 52
 53int swiotlb_force;
 54
 55/*
 56 * Used to do a quick range check in swiotlb_tbl_unmap_single and
 57 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
 58 * API.
 59 */
 60static char *io_tlb_start, *io_tlb_end;
 61
 62/*
 63 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
 64 * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
 65 */
 66static unsigned long io_tlb_nslabs;
 67
 68/*
 69 * When the IOMMU overflows we return a fallback buffer. This sets the size.
 70 */
 71static unsigned long io_tlb_overflow = 32*1024;
 72
 73static void *io_tlb_overflow_buffer;
 74
 75/*
 76 * This is a free list describing the number of free entries available from
 77 * each index
 78 */
 79static unsigned int *io_tlb_list;
 80static unsigned int io_tlb_index;
 81
 82/*
 83 * We need to save away the original address corresponding to a mapped entry
 84 * for the sync operations.
 85 */
 86static phys_addr_t *io_tlb_orig_addr;
 87
 88/*
 89 * Protect the above data structures in the map and unmap calls
 90 */
 91static DEFINE_SPINLOCK(io_tlb_lock);
 92
 93static int late_alloc;
 94
 95static int __init
 96setup_io_tlb_npages(char *str)
 97{
 98	if (isdigit(*str)) {
 99		io_tlb_nslabs = simple_strtoul(str, &str, 0);
100		/* avoid tail segment of size < IO_TLB_SEGSIZE */
101		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
102	}
103	if (*str == ',')
104		++str;
105	if (!strcmp(str, "force"))
106		swiotlb_force = 1;
107
108	return 1;
109}
110__setup("swiotlb=", setup_io_tlb_npages);
111/* make io_tlb_overflow tunable too? */
112
113unsigned long swiotlb_nr_tbl(void)
114{
115	return io_tlb_nslabs;
116}
117EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
118/* Note that this doesn't work with highmem page */
119static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
120				      volatile void *address)
121{
122	return phys_to_dma(hwdev, virt_to_phys(address));
123}
124
125void swiotlb_print_info(void)
126{
127	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
128	phys_addr_t pstart, pend;
129
130	pstart = virt_to_phys(io_tlb_start);
131	pend = virt_to_phys(io_tlb_end);
132
133	printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
134	       (unsigned long long)pstart, (unsigned long long)pend - 1,
135	       bytes >> 20, io_tlb_start, io_tlb_end - 1);
136}
137
138void __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
139{
140	unsigned long i, bytes;
141
142	bytes = nslabs << IO_TLB_SHIFT;
143
144	io_tlb_nslabs = nslabs;
145	io_tlb_start = tlb;
146	io_tlb_end = io_tlb_start + bytes;
147
148	/*
149	 * Allocate and initialize the free list array.  This array is used
150	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
151	 * between io_tlb_start and io_tlb_end.
152	 */
153	io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
154	for (i = 0; i < io_tlb_nslabs; i++)
155 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
156	io_tlb_index = 0;
157	io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
158
159	/*
160	 * Get the overflow emergency buffer
161	 */
162	io_tlb_overflow_buffer = alloc_bootmem_low_pages(PAGE_ALIGN(io_tlb_overflow));
163	if (!io_tlb_overflow_buffer)
164		panic("Cannot allocate SWIOTLB overflow buffer!\n");
165	if (verbose)
166		swiotlb_print_info();
167}
168
169/*
170 * Statically reserve bounce buffer space and initialize bounce buffer data
171 * structures for the software IO TLB used to implement the DMA API.
172 */
173void __init
174swiotlb_init_with_default_size(size_t default_size, int verbose)
175{
176	unsigned long bytes;
177
178	if (!io_tlb_nslabs) {
179		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
180		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
181	}
182
183	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
184
185	/*
186	 * Get IO TLB memory from the low pages
187	 */
188	io_tlb_start = alloc_bootmem_low_pages(PAGE_ALIGN(bytes));
189	if (!io_tlb_start)
190		panic("Cannot allocate SWIOTLB buffer");
191
192	swiotlb_init_with_tbl(io_tlb_start, io_tlb_nslabs, verbose);
193}
194
195void __init
196swiotlb_init(int verbose)
197{
198	swiotlb_init_with_default_size(64 * (1<<20), verbose);	/* default to 64MB */
199}
200
201/*
202 * Systems with larger DMA zones (those that don't support ISA) can
203 * initialize the swiotlb later using the slab allocator if needed.
204 * This should be just like above, but with some error catching.
205 */
206int
207swiotlb_late_init_with_default_size(size_t default_size)
208{
209	unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
210	unsigned int order;
211
212	if (!io_tlb_nslabs) {
213		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
214		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
215	}
216
217	/*
218	 * Get IO TLB memory from the low pages
219	 */
220	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
221	io_tlb_nslabs = SLABS_PER_PAGE << order;
222	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
223
224	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
225		io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
226							order);
227		if (io_tlb_start)
228			break;
229		order--;
230	}
231
232	if (!io_tlb_start)
233		goto cleanup1;
234
235	if (order != get_order(bytes)) {
236		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
237		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
238		io_tlb_nslabs = SLABS_PER_PAGE << order;
239		bytes = io_tlb_nslabs << IO_TLB_SHIFT;
240	}
241	io_tlb_end = io_tlb_start + bytes;
242	memset(io_tlb_start, 0, bytes);
243
244	/*
245	 * Allocate and initialize the free list array.  This array is used
246	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
247	 * between io_tlb_start and io_tlb_end.
248	 */
249	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
250	                              get_order(io_tlb_nslabs * sizeof(int)));
251	if (!io_tlb_list)
252		goto cleanup2;
253
254	for (i = 0; i < io_tlb_nslabs; i++)
255 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
256	io_tlb_index = 0;
257
258	io_tlb_orig_addr = (phys_addr_t *)
259		__get_free_pages(GFP_KERNEL,
260				 get_order(io_tlb_nslabs *
261					   sizeof(phys_addr_t)));
262	if (!io_tlb_orig_addr)
263		goto cleanup3;
264
265	memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
266
267	/*
268	 * Get the overflow emergency buffer
269	 */
270	io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
271	                                          get_order(io_tlb_overflow));
272	if (!io_tlb_overflow_buffer)
273		goto cleanup4;
274
275	swiotlb_print_info();
276
277	late_alloc = 1;
278
279	return 0;
280
281cleanup4:
282	free_pages((unsigned long)io_tlb_orig_addr,
283		   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
284	io_tlb_orig_addr = NULL;
285cleanup3:
286	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
287	                                                 sizeof(int)));
288	io_tlb_list = NULL;
289cleanup2:
290	io_tlb_end = NULL;
291	free_pages((unsigned long)io_tlb_start, order);
292	io_tlb_start = NULL;
293cleanup1:
294	io_tlb_nslabs = req_nslabs;
295	return -ENOMEM;
296}
297
298void __init swiotlb_free(void)
299{
300	if (!io_tlb_overflow_buffer)
301		return;
302
303	if (late_alloc) {
304		free_pages((unsigned long)io_tlb_overflow_buffer,
305			   get_order(io_tlb_overflow));
306		free_pages((unsigned long)io_tlb_orig_addr,
307			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
308		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
309								 sizeof(int)));
310		free_pages((unsigned long)io_tlb_start,
311			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
312	} else {
313		free_bootmem_late(__pa(io_tlb_overflow_buffer),
314				  PAGE_ALIGN(io_tlb_overflow));
315		free_bootmem_late(__pa(io_tlb_orig_addr),
316				  PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
317		free_bootmem_late(__pa(io_tlb_list),
318				  PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
319		free_bootmem_late(__pa(io_tlb_start),
320				  PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
321	}
322	io_tlb_nslabs = 0;
323}
324
325static int is_swiotlb_buffer(phys_addr_t paddr)
326{
327	return paddr >= virt_to_phys(io_tlb_start) &&
328		paddr < virt_to_phys(io_tlb_end);
329}
330
331/*
332 * Bounce: copy the swiotlb buffer back to the original dma location
333 */
334void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
335		    enum dma_data_direction dir)
336{
337	unsigned long pfn = PFN_DOWN(phys);
338
339	if (PageHighMem(pfn_to_page(pfn))) {
340		/* The buffer does not have a mapping.  Map it in and copy */
341		unsigned int offset = phys & ~PAGE_MASK;
342		char *buffer;
343		unsigned int sz = 0;
344		unsigned long flags;
345
346		while (size) {
347			sz = min_t(size_t, PAGE_SIZE - offset, size);
348
349			local_irq_save(flags);
350			buffer = kmap_atomic(pfn_to_page(pfn));
351			if (dir == DMA_TO_DEVICE)
352				memcpy(dma_addr, buffer + offset, sz);
353			else
354				memcpy(buffer + offset, dma_addr, sz);
355			kunmap_atomic(buffer);
356			local_irq_restore(flags);
357
358			size -= sz;
359			pfn++;
360			dma_addr += sz;
361			offset = 0;
362		}
363	} else {
364		if (dir == DMA_TO_DEVICE)
365			memcpy(dma_addr, phys_to_virt(phys), size);
366		else
367			memcpy(phys_to_virt(phys), dma_addr, size);
368	}
369}
370EXPORT_SYMBOL_GPL(swiotlb_bounce);
371
372void *swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr,
373			     phys_addr_t phys, size_t size,
374			     enum dma_data_direction dir)
375{
376	unsigned long flags;
377	char *dma_addr;
378	unsigned int nslots, stride, index, wrap;
379	int i;
380	unsigned long mask;
381	unsigned long offset_slots;
382	unsigned long max_slots;
383
384	mask = dma_get_seg_boundary(hwdev);
385
386	tbl_dma_addr &= mask;
387
388	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
389
390	/*
391 	 * Carefully handle integer overflow which can occur when mask == ~0UL.
392 	 */
393	max_slots = mask + 1
394		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
395		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
396
397	/*
398	 * For mappings greater than a page, we limit the stride (and
399	 * hence alignment) to a page size.
400	 */
401	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
402	if (size > PAGE_SIZE)
403		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
404	else
405		stride = 1;
406
407	BUG_ON(!nslots);
408
409	/*
410	 * Find suitable number of IO TLB entries size that will fit this
411	 * request and allocate a buffer from that IO TLB pool.
412	 */
413	spin_lock_irqsave(&io_tlb_lock, flags);
414	index = ALIGN(io_tlb_index, stride);
415	if (index >= io_tlb_nslabs)
416		index = 0;
417	wrap = index;
418
419	do {
420		while (iommu_is_span_boundary(index, nslots, offset_slots,
421					      max_slots)) {
422			index += stride;
423			if (index >= io_tlb_nslabs)
424				index = 0;
425			if (index == wrap)
426				goto not_found;
427		}
428
429		/*
430		 * If we find a slot that indicates we have 'nslots' number of
431		 * contiguous buffers, we allocate the buffers from that slot
432		 * and mark the entries as '0' indicating unavailable.
433		 */
434		if (io_tlb_list[index] >= nslots) {
435			int count = 0;
436
437			for (i = index; i < (int) (index + nslots); i++)
438				io_tlb_list[i] = 0;
439			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
440				io_tlb_list[i] = ++count;
441			dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
442
443			/*
444			 * Update the indices to avoid searching in the next
445			 * round.
446			 */
447			io_tlb_index = ((index + nslots) < io_tlb_nslabs
448					? (index + nslots) : 0);
449
450			goto found;
451		}
452		index += stride;
453		if (index >= io_tlb_nslabs)
454			index = 0;
455	} while (index != wrap);
456
457not_found:
458	spin_unlock_irqrestore(&io_tlb_lock, flags);
459	return NULL;
460found:
461	spin_unlock_irqrestore(&io_tlb_lock, flags);
462
463	/*
464	 * Save away the mapping from the original address to the DMA address.
465	 * This is needed when we sync the memory.  Then we sync the buffer if
466	 * needed.
467	 */
468	for (i = 0; i < nslots; i++)
469		io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
470	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
471		swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
472
473	return dma_addr;
474}
475EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
476
477/*
478 * Allocates bounce buffer and returns its kernel virtual address.
479 */
480
481static void *
482map_single(struct device *hwdev, phys_addr_t phys, size_t size,
483	   enum dma_data_direction dir)
484{
485	dma_addr_t start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start);
486
487	return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
488}
489
490/*
491 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
492 */
493void
494swiotlb_tbl_unmap_single(struct device *hwdev, char *dma_addr, size_t size,
495			enum dma_data_direction dir)
496{
497	unsigned long flags;
498	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
499	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
500	phys_addr_t phys = io_tlb_orig_addr[index];
501
502	/*
503	 * First, sync the memory before unmapping the entry
504	 */
505	if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
506		swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
507
508	/*
509	 * Return the buffer to the free list by setting the corresponding
510	 * entries to indicate the number of contiguous entries available.
511	 * While returning the entries to the free list, we merge the entries
512	 * with slots below and above the pool being returned.
513	 */
514	spin_lock_irqsave(&io_tlb_lock, flags);
515	{
516		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
517			 io_tlb_list[index + nslots] : 0);
518		/*
519		 * Step 1: return the slots to the free list, merging the
520		 * slots with superceeding slots
521		 */
522		for (i = index + nslots - 1; i >= index; i--)
523			io_tlb_list[i] = ++count;
524		/*
525		 * Step 2: merge the returned slots with the preceding slots,
526		 * if available (non zero)
527		 */
528		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
529			io_tlb_list[i] = ++count;
530	}
531	spin_unlock_irqrestore(&io_tlb_lock, flags);
532}
533EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
534
535void
536swiotlb_tbl_sync_single(struct device *hwdev, char *dma_addr, size_t size,
537			enum dma_data_direction dir,
538			enum dma_sync_target target)
539{
540	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
541	phys_addr_t phys = io_tlb_orig_addr[index];
542
543	phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
544
545	switch (target) {
546	case SYNC_FOR_CPU:
547		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
548			swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
549		else
550			BUG_ON(dir != DMA_TO_DEVICE);
551		break;
552	case SYNC_FOR_DEVICE:
553		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
554			swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
555		else
556			BUG_ON(dir != DMA_FROM_DEVICE);
557		break;
558	default:
559		BUG();
560	}
561}
562EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
563
564void *
565swiotlb_alloc_coherent(struct device *hwdev, size_t size,
566		       dma_addr_t *dma_handle, gfp_t flags)
567{
568	dma_addr_t dev_addr;
569	void *ret;
570	int order = get_order(size);
571	u64 dma_mask = DMA_BIT_MASK(32);
572
573	if (hwdev && hwdev->coherent_dma_mask)
574		dma_mask = hwdev->coherent_dma_mask;
575
576	ret = (void *)__get_free_pages(flags, order);
577	if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
578		/*
579		 * The allocated memory isn't reachable by the device.
580		 */
581		free_pages((unsigned long) ret, order);
582		ret = NULL;
583	}
584	if (!ret) {
585		/*
586		 * We are either out of memory or the device can't DMA to
587		 * GFP_DMA memory; fall back on map_single(), which
588		 * will grab memory from the lowest available address range.
589		 */
590		ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
591		if (!ret)
592			return NULL;
593	}
594
595	memset(ret, 0, size);
596	dev_addr = swiotlb_virt_to_bus(hwdev, ret);
597
598	/* Confirm address can be DMA'd by device */
599	if (dev_addr + size - 1 > dma_mask) {
600		printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
601		       (unsigned long long)dma_mask,
602		       (unsigned long long)dev_addr);
603
604		/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
605		swiotlb_tbl_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
606		return NULL;
607	}
608	*dma_handle = dev_addr;
609	return ret;
610}
611EXPORT_SYMBOL(swiotlb_alloc_coherent);
612
613void
614swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
615		      dma_addr_t dev_addr)
616{
617	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
618
619	WARN_ON(irqs_disabled());
620	if (!is_swiotlb_buffer(paddr))
621		free_pages((unsigned long)vaddr, get_order(size));
622	else
623		/* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
624		swiotlb_tbl_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
625}
626EXPORT_SYMBOL(swiotlb_free_coherent);
627
628static void
629swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
630	     int do_panic)
631{
632	/*
633	 * Ran out of IOMMU space for this operation. This is very bad.
634	 * Unfortunately the drivers cannot handle this operation properly.
635	 * unless they check for dma_mapping_error (most don't)
636	 * When the mapping is small enough return a static buffer to limit
637	 * the damage, or panic when the transfer is too big.
638	 */
639	printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
640	       "device %s\n", size, dev ? dev_name(dev) : "?");
641
642	if (size <= io_tlb_overflow || !do_panic)
643		return;
644
645	if (dir == DMA_BIDIRECTIONAL)
646		panic("DMA: Random memory could be DMA accessed\n");
647	if (dir == DMA_FROM_DEVICE)
648		panic("DMA: Random memory could be DMA written\n");
649	if (dir == DMA_TO_DEVICE)
650		panic("DMA: Random memory could be DMA read\n");
651}
652
653/*
654 * Map a single buffer of the indicated size for DMA in streaming mode.  The
655 * physical address to use is returned.
656 *
657 * Once the device is given the dma address, the device owns this memory until
658 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
659 */
660dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
661			    unsigned long offset, size_t size,
662			    enum dma_data_direction dir,
663			    struct dma_attrs *attrs)
664{
665	phys_addr_t phys = page_to_phys(page) + offset;
666	dma_addr_t dev_addr = phys_to_dma(dev, phys);
667	void *map;
668
669	BUG_ON(dir == DMA_NONE);
670	/*
671	 * If the address happens to be in the device's DMA window,
672	 * we can safely return the device addr and not worry about bounce
673	 * buffering it.
674	 */
675	if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
676		return dev_addr;
677
678	/*
679	 * Oh well, have to allocate and map a bounce buffer.
680	 */
681	map = map_single(dev, phys, size, dir);
682	if (!map) {
683		swiotlb_full(dev, size, dir, 1);
684		map = io_tlb_overflow_buffer;
685	}
686
687	dev_addr = swiotlb_virt_to_bus(dev, map);
688
689	/*
690	 * Ensure that the address returned is DMA'ble
691	 */
692	if (!dma_capable(dev, dev_addr, size)) {
693		swiotlb_tbl_unmap_single(dev, map, size, dir);
694		dev_addr = swiotlb_virt_to_bus(dev, io_tlb_overflow_buffer);
695	}
696
697	return dev_addr;
698}
699EXPORT_SYMBOL_GPL(swiotlb_map_page);
700
701/*
702 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
703 * match what was provided for in a previous swiotlb_map_page call.  All
704 * other usages are undefined.
705 *
706 * After this call, reads by the cpu to the buffer are guaranteed to see
707 * whatever the device wrote there.
708 */
709static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
710			 size_t size, enum dma_data_direction dir)
711{
712	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
713
714	BUG_ON(dir == DMA_NONE);
715
716	if (is_swiotlb_buffer(paddr)) {
717		swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
718		return;
719	}
720
721	if (dir != DMA_FROM_DEVICE)
722		return;
723
724	/*
725	 * phys_to_virt doesn't work with hihgmem page but we could
726	 * call dma_mark_clean() with hihgmem page here. However, we
727	 * are fine since dma_mark_clean() is null on POWERPC. We can
728	 * make dma_mark_clean() take a physical address if necessary.
729	 */
730	dma_mark_clean(phys_to_virt(paddr), size);
731}
732
733void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
734			size_t size, enum dma_data_direction dir,
735			struct dma_attrs *attrs)
736{
737	unmap_single(hwdev, dev_addr, size, dir);
738}
739EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
740
741/*
742 * Make physical memory consistent for a single streaming mode DMA translation
743 * after a transfer.
744 *
745 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
746 * using the cpu, yet do not wish to teardown the dma mapping, you must
747 * call this function before doing so.  At the next point you give the dma
748 * address back to the card, you must first perform a
749 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
750 */
751static void
752swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
753		    size_t size, enum dma_data_direction dir,
754		    enum dma_sync_target target)
755{
756	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
757
758	BUG_ON(dir == DMA_NONE);
759
760	if (is_swiotlb_buffer(paddr)) {
761		swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
762				       target);
763		return;
764	}
765
766	if (dir != DMA_FROM_DEVICE)
767		return;
768
769	dma_mark_clean(phys_to_virt(paddr), size);
770}
771
772void
773swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
774			    size_t size, enum dma_data_direction dir)
775{
776	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
777}
778EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
779
780void
781swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
782			       size_t size, enum dma_data_direction dir)
783{
784	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
785}
786EXPORT_SYMBOL(swiotlb_sync_single_for_device);
787
788/*
789 * Map a set of buffers described by scatterlist in streaming mode for DMA.
790 * This is the scatter-gather version of the above swiotlb_map_page
791 * interface.  Here the scatter gather list elements are each tagged with the
792 * appropriate dma address and length.  They are obtained via
793 * sg_dma_{address,length}(SG).
794 *
795 * NOTE: An implementation may be able to use a smaller number of
796 *       DMA address/length pairs than there are SG table elements.
797 *       (for example via virtual mapping capabilities)
798 *       The routine returns the number of addr/length pairs actually
799 *       used, at most nents.
800 *
801 * Device ownership issues as mentioned above for swiotlb_map_page are the
802 * same here.
803 */
804int
805swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
806		     enum dma_data_direction dir, struct dma_attrs *attrs)
807{
808	struct scatterlist *sg;
809	int i;
810
811	BUG_ON(dir == DMA_NONE);
812
813	for_each_sg(sgl, sg, nelems, i) {
814		phys_addr_t paddr = sg_phys(sg);
815		dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
816
817		if (swiotlb_force ||
818		    !dma_capable(hwdev, dev_addr, sg->length)) {
819			void *map = map_single(hwdev, sg_phys(sg),
820					       sg->length, dir);
821			if (!map) {
822				/* Don't panic here, we expect map_sg users
823				   to do proper error handling. */
824				swiotlb_full(hwdev, sg->length, dir, 0);
825				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
826						       attrs);
827				sgl[0].dma_length = 0;
828				return 0;
829			}
830			sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
831		} else
832			sg->dma_address = dev_addr;
833		sg->dma_length = sg->length;
834	}
835	return nelems;
836}
837EXPORT_SYMBOL(swiotlb_map_sg_attrs);
838
839int
840swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
841	       enum dma_data_direction dir)
842{
843	return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
844}
845EXPORT_SYMBOL(swiotlb_map_sg);
846
847/*
848 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
849 * concerning calls here are the same as for swiotlb_unmap_page() above.
850 */
851void
852swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
853		       int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
854{
855	struct scatterlist *sg;
856	int i;
857
858	BUG_ON(dir == DMA_NONE);
859
860	for_each_sg(sgl, sg, nelems, i)
861		unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
862
863}
864EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
865
866void
867swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
868		 enum dma_data_direction dir)
869{
870	return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
871}
872EXPORT_SYMBOL(swiotlb_unmap_sg);
873
874/*
875 * Make physical memory consistent for a set of streaming mode DMA translations
876 * after a transfer.
877 *
878 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
879 * and usage.
880 */
881static void
882swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
883		int nelems, enum dma_data_direction dir,
884		enum dma_sync_target target)
885{
886	struct scatterlist *sg;
887	int i;
888
889	for_each_sg(sgl, sg, nelems, i)
890		swiotlb_sync_single(hwdev, sg->dma_address,
891				    sg->dma_length, dir, target);
892}
893
894void
895swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
896			int nelems, enum dma_data_direction dir)
897{
898	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
899}
900EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
901
902void
903swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
904			   int nelems, enum dma_data_direction dir)
905{
906	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
907}
908EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
909
910int
911swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
912{
913	return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
914}
915EXPORT_SYMBOL(swiotlb_dma_mapping_error);
916
917/*
918 * Return whether the given device DMA address mask can be supported
919 * properly.  For example, if your device can only drive the low 24-bits
920 * during bus mastering, then you would pass 0x00ffffff as the mask to
921 * this function.
922 */
923int
924swiotlb_dma_supported(struct device *hwdev, u64 mask)
925{
926	return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
927}
928EXPORT_SYMBOL(swiotlb_dma_supported);