Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for Broadcom BCM2835 SPI Controllers
   4 *
   5 * Copyright (C) 2012 Chris Boot
   6 * Copyright (C) 2013 Stephen Warren
   7 * Copyright (C) 2015 Martin Sperl
   8 *
   9 * This driver is inspired by:
  10 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
  11 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
  12 */
  13
  14#include <linux/cleanup.h>
  15#include <linux/clk.h>
  16#include <linux/completion.h>
  17#include <linux/debugfs.h>
  18#include <linux/delay.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/dmaengine.h>
  21#include <linux/err.h>
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
  24#include <linux/kernel.h>
  25#include <linux/module.h>
  26#include <linux/of.h>
  27#include <linux/of_address.h>
  28#include <linux/platform_device.h>
  29#include <linux/gpio/consumer.h>
  30#include <linux/gpio/machine.h> /* FIXME: using GPIO lookup tables */
  31#include <linux/of_irq.h>
  32#include <linux/overflow.h>
  33#include <linux/slab.h>
  34#include <linux/spi/spi.h>
  35
  36/* SPI register offsets */
  37#define BCM2835_SPI_CS			0x00
  38#define BCM2835_SPI_FIFO		0x04
  39#define BCM2835_SPI_CLK			0x08
  40#define BCM2835_SPI_DLEN		0x0c
  41#define BCM2835_SPI_LTOH		0x10
  42#define BCM2835_SPI_DC			0x14
  43
  44/* Bitfields in CS */
  45#define BCM2835_SPI_CS_LEN_LONG		0x02000000
  46#define BCM2835_SPI_CS_DMA_LEN		0x01000000
  47#define BCM2835_SPI_CS_CSPOL2		0x00800000
  48#define BCM2835_SPI_CS_CSPOL1		0x00400000
  49#define BCM2835_SPI_CS_CSPOL0		0x00200000
  50#define BCM2835_SPI_CS_RXF		0x00100000
  51#define BCM2835_SPI_CS_RXR		0x00080000
  52#define BCM2835_SPI_CS_TXD		0x00040000
  53#define BCM2835_SPI_CS_RXD		0x00020000
  54#define BCM2835_SPI_CS_DONE		0x00010000
  55#define BCM2835_SPI_CS_LEN		0x00002000
  56#define BCM2835_SPI_CS_REN		0x00001000
  57#define BCM2835_SPI_CS_ADCS		0x00000800
  58#define BCM2835_SPI_CS_INTR		0x00000400
  59#define BCM2835_SPI_CS_INTD		0x00000200
  60#define BCM2835_SPI_CS_DMAEN		0x00000100
  61#define BCM2835_SPI_CS_TA		0x00000080
  62#define BCM2835_SPI_CS_CSPOL		0x00000040
  63#define BCM2835_SPI_CS_CLEAR_RX		0x00000020
  64#define BCM2835_SPI_CS_CLEAR_TX		0x00000010
  65#define BCM2835_SPI_CS_CPOL		0x00000008
  66#define BCM2835_SPI_CS_CPHA		0x00000004
  67#define BCM2835_SPI_CS_CS_10		0x00000002
  68#define BCM2835_SPI_CS_CS_01		0x00000001
  69
  70#define BCM2835_SPI_FIFO_SIZE		64
  71#define BCM2835_SPI_FIFO_SIZE_3_4	48
  72#define BCM2835_SPI_DMA_MIN_LENGTH	96
  73#define BCM2835_SPI_MODE_BITS	(SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
  74				| SPI_NO_CS | SPI_3WIRE)
  75
  76#define DRV_NAME	"spi-bcm2835"
  77
  78/* define polling limits */
  79static unsigned int polling_limit_us = 30;
  80module_param(polling_limit_us, uint, 0664);
  81MODULE_PARM_DESC(polling_limit_us,
  82		 "time in us to run a transfer in polling mode\n");
  83
  84/**
  85 * struct bcm2835_spi - BCM2835 SPI controller
  86 * @regs: base address of register map
  87 * @clk: core clock, divided to calculate serial clock
  88 * @cs_gpio: chip-select GPIO descriptor
  89 * @clk_hz: core clock cached speed
  90 * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
  91 * @tfr: SPI transfer currently processed
  92 * @ctlr: SPI controller reverse lookup
  93 * @tx_buf: pointer whence next transmitted byte is read
  94 * @rx_buf: pointer where next received byte is written
  95 * @tx_len: remaining bytes to transmit
  96 * @rx_len: remaining bytes to receive
  97 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
  98 *	length is not a multiple of 4 (to overcome hardware limitation)
  99 * @rx_prologue: bytes received without DMA if first RX sglist entry's
 100 *	length is not a multiple of 4 (to overcome hardware limitation)
 101 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
 102 * @debugfs_dir: the debugfs directory - neede to remove debugfs when
 103 *      unloading the module
 104 * @count_transfer_polling: count of how often polling mode is used
 105 * @count_transfer_irq: count of how often interrupt mode is used
 106 * @count_transfer_irq_after_polling: count of how often we fall back to
 107 *      interrupt mode after starting in polling mode.
 108 *      These are counted as well in @count_transfer_polling and
 109 *      @count_transfer_irq
 110 * @count_transfer_dma: count how often dma mode is used
 111 * @target: SPI target currently selected
 112 *	(used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
 113 * @tx_dma_active: whether a TX DMA descriptor is in progress
 114 * @rx_dma_active: whether a RX DMA descriptor is in progress
 115 *	(used by bcm2835_spi_dma_tx_done() to handle a race)
 116 * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
 117 *	(cyclically copies from zero page to TX FIFO)
 118 * @fill_tx_addr: bus address of zero page
 119 */
 120struct bcm2835_spi {
 121	void __iomem *regs;
 122	struct clk *clk;
 123	struct gpio_desc *cs_gpio;
 124	unsigned long clk_hz;
 125	int irq;
 126	struct spi_transfer *tfr;
 127	struct spi_controller *ctlr;
 128	const u8 *tx_buf;
 129	u8 *rx_buf;
 130	int tx_len;
 131	int rx_len;
 132	int tx_prologue;
 133	int rx_prologue;
 134	unsigned int tx_spillover;
 135
 136	struct dentry *debugfs_dir;
 137	u64 count_transfer_polling;
 138	u64 count_transfer_irq;
 139	u64 count_transfer_irq_after_polling;
 140	u64 count_transfer_dma;
 141
 142	struct bcm2835_spidev *target;
 143	unsigned int tx_dma_active;
 144	unsigned int rx_dma_active;
 145	struct dma_async_tx_descriptor *fill_tx_desc;
 146	dma_addr_t fill_tx_addr;
 147};
 148
 149/**
 150 * struct bcm2835_spidev - BCM2835 SPI target
 151 * @prepare_cs: precalculated CS register value for ->prepare_message()
 152 *	(uses target-specific clock polarity and phase settings)
 153 * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
 154 *	(cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
 155 * @clear_rx_addr: bus address of @clear_rx_cs
 156 * @clear_rx_cs: precalculated CS register value to clear RX FIFO
 157 *	(uses target-specific clock polarity and phase settings)
 158 */
 159struct bcm2835_spidev {
 160	u32 prepare_cs;
 161	struct dma_async_tx_descriptor *clear_rx_desc;
 162	dma_addr_t clear_rx_addr;
 163	u32 clear_rx_cs ____cacheline_aligned;
 164};
 165
 166#if defined(CONFIG_DEBUG_FS)
 167static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
 168				   const char *dname)
 169{
 170	char name[64];
 171	struct dentry *dir;
 172
 173	/* get full name */
 174	snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
 175
 176	/* the base directory */
 177	dir = debugfs_create_dir(name, NULL);
 178	bs->debugfs_dir = dir;
 179
 180	/* the counters */
 181	debugfs_create_u64("count_transfer_polling", 0444, dir,
 182			   &bs->count_transfer_polling);
 183	debugfs_create_u64("count_transfer_irq", 0444, dir,
 184			   &bs->count_transfer_irq);
 185	debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
 186			   &bs->count_transfer_irq_after_polling);
 187	debugfs_create_u64("count_transfer_dma", 0444, dir,
 188			   &bs->count_transfer_dma);
 189}
 190
 191static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
 192{
 193	debugfs_remove_recursive(bs->debugfs_dir);
 194	bs->debugfs_dir = NULL;
 195}
 196#else
 197static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
 198				   const char *dname)
 199{
 200}
 201
 202static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
 203{
 204}
 205#endif /* CONFIG_DEBUG_FS */
 206
 207static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg)
 208{
 209	return readl(bs->regs + reg);
 210}
 211
 212static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val)
 213{
 214	writel(val, bs->regs + reg);
 215}
 216
 217static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
 218{
 219	u8 byte;
 220
 221	while ((bs->rx_len) &&
 222	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
 223		byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
 224		if (bs->rx_buf)
 225			*bs->rx_buf++ = byte;
 226		bs->rx_len--;
 227	}
 228}
 229
 230static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
 231{
 232	u8 byte;
 233
 234	while ((bs->tx_len) &&
 235	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
 236		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
 237		bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
 238		bs->tx_len--;
 239	}
 240}
 241
 242/**
 243 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
 244 * @bs: BCM2835 SPI controller
 245 * @count: bytes to read from RX FIFO
 246 *
 247 * The caller must ensure that @bs->rx_len is greater than or equal to @count,
 248 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
 249 * in the CS register is set (such that a read from the FIFO register receives
 250 * 32-bit instead of just 8-bit).  Moreover @bs->rx_buf must not be %NULL.
 251 */
 252static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
 253{
 254	u32 val;
 255	int len;
 256
 257	bs->rx_len -= count;
 258
 259	do {
 260		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
 261		len = min(count, 4);
 262		memcpy(bs->rx_buf, &val, len);
 263		bs->rx_buf += len;
 264		count -= 4;
 265	} while (count > 0);
 266}
 267
 268/**
 269 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
 270 * @bs: BCM2835 SPI controller
 271 * @count: bytes to write to TX FIFO
 272 *
 273 * The caller must ensure that @bs->tx_len is greater than or equal to @count,
 274 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
 275 * in the CS register is set (such that a write to the FIFO register transmits
 276 * 32-bit instead of just 8-bit).
 277 */
 278static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
 279{
 280	u32 val;
 281	int len;
 282
 283	bs->tx_len -= count;
 284
 285	do {
 286		if (bs->tx_buf) {
 287			len = min(count, 4);
 288			memcpy(&val, bs->tx_buf, len);
 289			bs->tx_buf += len;
 290		} else {
 291			val = 0;
 292		}
 293		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
 294		count -= 4;
 295	} while (count > 0);
 296}
 297
 298/**
 299 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
 300 * @bs: BCM2835 SPI controller
 301 *
 302 * The caller must ensure that the RX FIFO can accommodate as many bytes
 303 * as have been written to the TX FIFO:  Transmission is halted once the
 304 * RX FIFO is full, causing this function to spin forever.
 305 */
 306static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
 307{
 308	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
 309		cpu_relax();
 310}
 311
 312/**
 313 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
 314 * @bs: BCM2835 SPI controller
 315 * @count: bytes available for reading in RX FIFO
 316 */
 317static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
 318{
 319	u8 val;
 320
 321	count = min(count, bs->rx_len);
 322	bs->rx_len -= count;
 323
 324	do {
 325		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
 326		if (bs->rx_buf)
 327			*bs->rx_buf++ = val;
 328	} while (--count);
 329}
 330
 331/**
 332 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
 333 * @bs: BCM2835 SPI controller
 334 * @count: bytes available for writing in TX FIFO
 335 */
 336static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
 337{
 338	u8 val;
 339
 340	count = min(count, bs->tx_len);
 341	bs->tx_len -= count;
 342
 343	do {
 344		val = bs->tx_buf ? *bs->tx_buf++ : 0;
 345		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
 346	} while (--count);
 347}
 348
 349static void bcm2835_spi_reset_hw(struct bcm2835_spi *bs)
 350{
 351	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
 352
 353	/* Disable SPI interrupts and transfer */
 354	cs &= ~(BCM2835_SPI_CS_INTR |
 355		BCM2835_SPI_CS_INTD |
 356		BCM2835_SPI_CS_DMAEN |
 357		BCM2835_SPI_CS_TA);
 358	/*
 359	 * Transmission sometimes breaks unless the DONE bit is written at the
 360	 * end of every transfer.  The spec says it's a RO bit.  Either the
 361	 * spec is wrong and the bit is actually of type RW1C, or it's a
 362	 * hardware erratum.
 363	 */
 364	cs |= BCM2835_SPI_CS_DONE;
 365	/* and reset RX/TX FIFOS */
 366	cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
 367
 368	/* and reset the SPI_HW */
 369	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
 370	/* as well as DLEN */
 371	bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
 372}
 373
 374static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
 375{
 376	struct bcm2835_spi *bs = dev_id;
 377	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
 378
 379	/* Bail out early if interrupts are not enabled */
 380	if (!(cs & BCM2835_SPI_CS_INTR))
 381		return IRQ_NONE;
 382
 383	/*
 384	 * An interrupt is signaled either if DONE is set (TX FIFO empty)
 385	 * or if RXR is set (RX FIFO >= ¾ full).
 386	 */
 387	if (cs & BCM2835_SPI_CS_RXF)
 388		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
 389	else if (cs & BCM2835_SPI_CS_RXR)
 390		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
 391
 392	if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
 393		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
 394
 395	/* Read as many bytes as possible from FIFO */
 396	bcm2835_rd_fifo(bs);
 397	/* Write as many bytes as possible to FIFO */
 398	bcm2835_wr_fifo(bs);
 399
 400	if (!bs->rx_len) {
 401		/* Transfer complete - reset SPI HW */
 402		bcm2835_spi_reset_hw(bs);
 403		/* wake up the framework */
 404		spi_finalize_current_transfer(bs->ctlr);
 405	}
 406
 407	return IRQ_HANDLED;
 408}
 409
 410static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
 411					struct spi_device *spi,
 412					struct spi_transfer *tfr,
 413					u32 cs, bool fifo_empty)
 414{
 415	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 416
 417	/* update usage statistics */
 418	bs->count_transfer_irq++;
 419
 420	/*
 421	 * Enable HW block, but with interrupts still disabled.
 422	 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
 423	 */
 424	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
 425
 426	/* fill TX FIFO as much as possible */
 427	if (fifo_empty)
 428		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
 429	bcm2835_wr_fifo(bs);
 430
 431	/* enable interrupts */
 432	cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
 433	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
 434
 435	/* signal that we need to wait for completion */
 436	return 1;
 437}
 438
 439/**
 440 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
 441 * @ctlr: SPI host controller
 442 * @tfr: SPI transfer
 443 * @bs: BCM2835 SPI controller
 444 * @cs: CS register
 445 *
 446 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
 447 * Only the final write access is permitted to transmit less than 4 bytes, the
 448 * SPI controller deduces its intended size from the DLEN register.
 449 *
 450 * If a TX or RX sglist contains multiple entries, one per page, and the first
 451 * entry starts in the middle of a page, that first entry's length may not be
 452 * a multiple of 4.  Subsequent entries are fine because they span an entire
 453 * page, hence do have a length that's a multiple of 4.
 454 *
 455 * This cannot happen with kmalloc'ed buffers (which is what most clients use)
 456 * because they are contiguous in physical memory and therefore not split on
 457 * page boundaries by spi_map_buf().  But it *can* happen with vmalloc'ed
 458 * buffers.
 459 *
 460 * The DMA engine is incapable of combining sglist entries into a continuous
 461 * stream of 4 byte chunks, it treats every entry separately:  A TX entry is
 462 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
 463 * entry is rounded up by throwing away received bytes.
 464 *
 465 * Overcome this limitation by transferring the first few bytes without DMA:
 466 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
 467 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
 468 * The residue of 1 byte in the RX FIFO is picked up by DMA.  Together with
 469 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
 470 *
 471 * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
 472 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
 473 * Caution, the additional 4 bytes spill over to the second TX sglist entry
 474 * if the length of the first is *exactly* 1.
 475 *
 476 * At most 6 bytes are written and at most 3 bytes read.  Do we know the
 477 * transfer has this many bytes?  Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
 478 *
 479 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
 480 * by the DMA engine.  Toggling the DMA Enable flag in the CS register switches
 481 * the width but also garbles the FIFO's contents.  The prologue must therefore
 482 * be transmitted in 32-bit width to ensure that the following DMA transfer can
 483 * pick up the residue in the RX FIFO in ungarbled form.
 484 */
 485static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
 486					  struct spi_transfer *tfr,
 487					  struct bcm2835_spi *bs,
 488					  u32 cs)
 489{
 490	int tx_remaining;
 491
 492	bs->tfr		 = tfr;
 493	bs->tx_prologue  = 0;
 494	bs->rx_prologue  = 0;
 495	bs->tx_spillover = false;
 496
 497	if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
 498		bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
 499
 500	if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
 501		bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
 502
 503		if (bs->rx_prologue > bs->tx_prologue) {
 504			if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
 505				bs->tx_prologue  = bs->rx_prologue;
 506			} else {
 507				bs->tx_prologue += 4;
 508				bs->tx_spillover =
 509					!(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
 510			}
 511		}
 512	}
 513
 514	/* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
 515	if (!bs->tx_prologue)
 516		return;
 517
 518	/* Write and read RX prologue.  Adjust first entry in RX sglist. */
 519	if (bs->rx_prologue) {
 520		bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
 521		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
 522						  | BCM2835_SPI_CS_DMAEN);
 523		bcm2835_wr_fifo_count(bs, bs->rx_prologue);
 524		bcm2835_wait_tx_fifo_empty(bs);
 525		bcm2835_rd_fifo_count(bs, bs->rx_prologue);
 526		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
 527						  | BCM2835_SPI_CS_CLEAR_TX
 528						  | BCM2835_SPI_CS_DONE);
 529
 530		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
 531					   sg_dma_address(&tfr->rx_sg.sgl[0]),
 532					   bs->rx_prologue, DMA_FROM_DEVICE);
 533
 534		sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
 535		sg_dma_len(&tfr->rx_sg.sgl[0])     -= bs->rx_prologue;
 536	}
 537
 538	if (!bs->tx_buf)
 539		return;
 540
 541	/*
 542	 * Write remaining TX prologue.  Adjust first entry in TX sglist.
 543	 * Also adjust second entry if prologue spills over to it.
 544	 */
 545	tx_remaining = bs->tx_prologue - bs->rx_prologue;
 546	if (tx_remaining) {
 547		bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
 548		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
 549						  | BCM2835_SPI_CS_DMAEN);
 550		bcm2835_wr_fifo_count(bs, tx_remaining);
 551		bcm2835_wait_tx_fifo_empty(bs);
 552		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
 553						  | BCM2835_SPI_CS_DONE);
 554	}
 555
 556	if (likely(!bs->tx_spillover)) {
 557		sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
 558		sg_dma_len(&tfr->tx_sg.sgl[0])     -= bs->tx_prologue;
 559	} else {
 560		sg_dma_len(&tfr->tx_sg.sgl[0])      = 0;
 561		sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
 562		sg_dma_len(&tfr->tx_sg.sgl[1])     -= 4;
 563	}
 564}
 565
 566/**
 567 * bcm2835_spi_undo_prologue() - reconstruct original sglist state
 568 * @bs: BCM2835 SPI controller
 569 *
 570 * Undo changes which were made to an SPI transfer's sglist when transmitting
 571 * the prologue.  This is necessary to ensure the same memory ranges are
 572 * unmapped that were originally mapped.
 573 */
 574static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
 575{
 576	struct spi_transfer *tfr = bs->tfr;
 577
 578	if (!bs->tx_prologue)
 579		return;
 580
 581	if (bs->rx_prologue) {
 582		sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
 583		sg_dma_len(&tfr->rx_sg.sgl[0])     += bs->rx_prologue;
 584	}
 585
 586	if (!bs->tx_buf)
 587		goto out;
 588
 589	if (likely(!bs->tx_spillover)) {
 590		sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
 591		sg_dma_len(&tfr->tx_sg.sgl[0])     += bs->tx_prologue;
 592	} else {
 593		sg_dma_len(&tfr->tx_sg.sgl[0])      = bs->tx_prologue - 4;
 594		sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
 595		sg_dma_len(&tfr->tx_sg.sgl[1])     += 4;
 596	}
 597out:
 598	bs->tx_prologue = 0;
 599}
 600
 601/**
 602 * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
 603 * @data: SPI host controller
 604 *
 605 * Used for bidirectional and RX-only transfers.
 606 */
 607static void bcm2835_spi_dma_rx_done(void *data)
 608{
 609	struct spi_controller *ctlr = data;
 610	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 611
 612	/* terminate tx-dma as we do not have an irq for it
 613	 * because when the rx dma will terminate and this callback
 614	 * is called the tx-dma must have finished - can't get to this
 615	 * situation otherwise...
 616	 */
 617	dmaengine_terminate_async(ctlr->dma_tx);
 618	bs->tx_dma_active = false;
 619	bs->rx_dma_active = false;
 620	bcm2835_spi_undo_prologue(bs);
 621
 622	/* reset fifo and HW */
 623	bcm2835_spi_reset_hw(bs);
 624
 625	/* and mark as completed */;
 626	spi_finalize_current_transfer(ctlr);
 627}
 628
 629/**
 630 * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
 631 * @data: SPI host controller
 632 *
 633 * Used for TX-only transfers.
 634 */
 635static void bcm2835_spi_dma_tx_done(void *data)
 636{
 637	struct spi_controller *ctlr = data;
 638	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 639
 640	/* busy-wait for TX FIFO to empty */
 641	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
 642		bcm2835_wr(bs, BCM2835_SPI_CS, bs->target->clear_rx_cs);
 643
 644	bs->tx_dma_active = false;
 645	smp_wmb();
 646
 647	/*
 648	 * In case of a very short transfer, RX DMA may not have been
 649	 * issued yet.  The onus is then on bcm2835_spi_transfer_one_dma()
 650	 * to terminate it immediately after issuing.
 651	 */
 652	if (cmpxchg(&bs->rx_dma_active, true, false))
 653		dmaengine_terminate_async(ctlr->dma_rx);
 654
 655	bcm2835_spi_undo_prologue(bs);
 656	bcm2835_spi_reset_hw(bs);
 657	spi_finalize_current_transfer(ctlr);
 658}
 659
 660/**
 661 * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
 662 * @ctlr: SPI host controller
 663 * @tfr: SPI transfer
 664 * @bs: BCM2835 SPI controller
 665 * @target: BCM2835 SPI target
 666 * @is_tx: whether to submit DMA descriptor for TX or RX sglist
 667 *
 668 * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
 669 * Return 0 on success or a negative error number.
 670 */
 671static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
 672				  struct spi_transfer *tfr,
 673				  struct bcm2835_spi *bs,
 674				  struct bcm2835_spidev *target,
 675				  bool is_tx)
 676{
 677	struct dma_chan *chan;
 678	struct scatterlist *sgl;
 679	unsigned int nents;
 680	enum dma_transfer_direction dir;
 681	unsigned long flags;
 682
 683	struct dma_async_tx_descriptor *desc;
 684	dma_cookie_t cookie;
 685
 686	if (is_tx) {
 687		dir   = DMA_MEM_TO_DEV;
 688		chan  = ctlr->dma_tx;
 689		nents = tfr->tx_sg.nents;
 690		sgl   = tfr->tx_sg.sgl;
 691		flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
 692	} else {
 693		dir   = DMA_DEV_TO_MEM;
 694		chan  = ctlr->dma_rx;
 695		nents = tfr->rx_sg.nents;
 696		sgl   = tfr->rx_sg.sgl;
 697		flags = DMA_PREP_INTERRUPT;
 698	}
 699	/* prepare the channel */
 700	desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
 701	if (!desc)
 702		return -EINVAL;
 703
 704	/*
 705	 * Completion is signaled by the RX channel for bidirectional and
 706	 * RX-only transfers; else by the TX channel for TX-only transfers.
 707	 */
 708	if (!is_tx) {
 709		desc->callback = bcm2835_spi_dma_rx_done;
 710		desc->callback_param = ctlr;
 711	} else if (!tfr->rx_buf) {
 712		desc->callback = bcm2835_spi_dma_tx_done;
 713		desc->callback_param = ctlr;
 714		bs->target = target;
 715	}
 716
 717	/* submit it to DMA-engine */
 718	cookie = dmaengine_submit(desc);
 719
 720	return dma_submit_error(cookie);
 721}
 722
 723/**
 724 * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
 725 * @ctlr: SPI host controller
 726 * @tfr: SPI transfer
 727 * @target: BCM2835 SPI target
 728 * @cs: CS register
 729 *
 730 * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
 731 * the TX and RX DMA channel to copy between memory and FIFO register.
 732 *
 733 * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
 734 * memory is pointless.  However not reading the RX FIFO isn't an option either
 735 * because transmission is halted once it's full.  As a workaround, cyclically
 736 * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
 737 *
 738 * The CS register value is precalculated in bcm2835_spi_setup().  Normally
 739 * this is called only once, on target registration.  A DMA descriptor to write
 740 * this value is preallocated in bcm2835_dma_init().  All that's left to do
 741 * when performing a TX-only transfer is to submit this descriptor to the RX
 742 * DMA channel.  Latency is thereby minimized.  The descriptor does not
 743 * generate any interrupts while running.  It must be terminated once the
 744 * TX DMA channel is done.
 745 *
 746 * Clearing the RX FIFO is paced by the DREQ signal.  The signal is asserted
 747 * when the RX FIFO becomes half full, i.e. 32 bytes.  (Tuneable with the DC
 748 * register.)  Reading 32 bytes from the RX FIFO would normally require 8 bus
 749 * accesses, whereas clearing it requires only 1 bus access.  So an 8-fold
 750 * reduction in bus traffic and thus energy consumption is achieved.
 751 *
 752 * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
 753 * copying from the zero page.  The DMA descriptor to do this is preallocated
 754 * in bcm2835_dma_init().  It must be terminated once the RX DMA channel is
 755 * done and can then be reused.
 756 *
 757 * The BCM2835 DMA driver autodetects when a transaction copies from the zero
 758 * page and utilizes the DMA controller's ability to synthesize zeroes instead
 759 * of copying them from memory.  This reduces traffic on the memory bus.  The
 760 * feature is not available on so-called "lite" channels, but normally TX DMA
 761 * is backed by a full-featured channel.
 762 *
 763 * Zero-filling the TX FIFO is paced by the DREQ signal.  Unfortunately the
 764 * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
 765 * has been counted down to zero (hardware erratum).  Thus, when the transfer
 766 * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
 767 * (Tuneable with the DC register.)  So up to 9 gratuitous bus accesses are
 768 * performed at the end of an RX-only transfer.
 769 */
 770static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
 771					struct spi_transfer *tfr,
 772					struct bcm2835_spidev *target,
 773					u32 cs)
 774{
 775	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 776	dma_cookie_t cookie;
 777	int ret;
 778
 779	/* update usage statistics */
 780	bs->count_transfer_dma++;
 781
 782	/*
 783	 * Transfer first few bytes without DMA if length of first TX or RX
 784	 * sglist entry is not a multiple of 4 bytes (hardware limitation).
 785	 */
 786	bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
 787
 788	/* setup tx-DMA */
 789	if (bs->tx_buf) {
 790		ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, target, true);
 791	} else {
 792		cookie = dmaengine_submit(bs->fill_tx_desc);
 793		ret = dma_submit_error(cookie);
 794	}
 795	if (ret)
 796		goto err_reset_hw;
 797
 798	/* set the DMA length */
 799	bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
 800
 801	/* start the HW */
 802	bcm2835_wr(bs, BCM2835_SPI_CS,
 803		   cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
 804
 805	bs->tx_dma_active = true;
 806	smp_wmb();
 807
 808	/* start TX early */
 809	dma_async_issue_pending(ctlr->dma_tx);
 810
 811	/* setup rx-DMA late - to run transfers while
 812	 * mapping of the rx buffers still takes place
 813	 * this saves 10us or more.
 814	 */
 815	if (bs->rx_buf) {
 816		ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, target, false);
 817	} else {
 818		cookie = dmaengine_submit(target->clear_rx_desc);
 819		ret = dma_submit_error(cookie);
 820	}
 821	if (ret) {
 822		/* need to reset on errors */
 823		dmaengine_terminate_sync(ctlr->dma_tx);
 824		bs->tx_dma_active = false;
 825		goto err_reset_hw;
 826	}
 827
 828	/* start rx dma late */
 829	dma_async_issue_pending(ctlr->dma_rx);
 830	bs->rx_dma_active = true;
 831	smp_mb();
 832
 833	/*
 834	 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
 835	 * may run before RX DMA is issued.  Terminate RX DMA if so.
 836	 */
 837	if (!bs->rx_buf && !bs->tx_dma_active &&
 838	    cmpxchg(&bs->rx_dma_active, true, false)) {
 839		dmaengine_terminate_async(ctlr->dma_rx);
 840		bcm2835_spi_reset_hw(bs);
 841	}
 842
 843	/* wait for wakeup in framework */
 844	return 1;
 845
 846err_reset_hw:
 847	bcm2835_spi_reset_hw(bs);
 848	bcm2835_spi_undo_prologue(bs);
 849	return ret;
 850}
 851
 852static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
 853				struct spi_device *spi,
 854				struct spi_transfer *tfr)
 855{
 856	/* we start DMA efforts only on bigger transfers */
 857	if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
 858		return false;
 859
 860	/* return OK */
 861	return true;
 862}
 863
 864static void bcm2835_dma_release(struct spi_controller *ctlr,
 865				struct bcm2835_spi *bs)
 866{
 867	if (ctlr->dma_tx) {
 868		dmaengine_terminate_sync(ctlr->dma_tx);
 869
 870		if (bs->fill_tx_desc)
 871			dmaengine_desc_free(bs->fill_tx_desc);
 872
 873		if (bs->fill_tx_addr)
 874			dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
 875					     bs->fill_tx_addr, sizeof(u32),
 876					     DMA_TO_DEVICE,
 877					     DMA_ATTR_SKIP_CPU_SYNC);
 878
 879		dma_release_channel(ctlr->dma_tx);
 880		ctlr->dma_tx = NULL;
 881	}
 882
 883	if (ctlr->dma_rx) {
 884		dmaengine_terminate_sync(ctlr->dma_rx);
 885		dma_release_channel(ctlr->dma_rx);
 886		ctlr->dma_rx = NULL;
 887	}
 888}
 889
 890static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
 891			    struct bcm2835_spi *bs)
 892{
 893	struct dma_slave_config slave_config;
 894	const __be32 *addr;
 895	dma_addr_t dma_reg_base;
 896	int ret;
 897
 898	/* base address in dma-space */
 899	addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
 900	if (!addr) {
 901		dev_err(dev, "could not get DMA-register address - not using dma mode\n");
 902		/* Fall back to interrupt mode */
 903		return 0;
 904	}
 905	dma_reg_base = be32_to_cpup(addr);
 906
 907	/* get tx/rx dma */
 908	ctlr->dma_tx = dma_request_chan(dev, "tx");
 909	if (IS_ERR(ctlr->dma_tx)) {
 910		ret = dev_err_probe(dev, PTR_ERR(ctlr->dma_tx),
 911			"no tx-dma configuration found - not using dma mode\n");
 912		ctlr->dma_tx = NULL;
 913		goto err;
 914	}
 915	ctlr->dma_rx = dma_request_chan(dev, "rx");
 916	if (IS_ERR(ctlr->dma_rx)) {
 917		ret = dev_err_probe(dev, PTR_ERR(ctlr->dma_rx),
 918			"no rx-dma configuration found - not using dma mode\n");
 919		ctlr->dma_rx = NULL;
 920		goto err_release;
 921	}
 922
 923	/*
 924	 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
 925	 * or, in case of an RX-only transfer, cyclically copies from the zero
 926	 * page to the FIFO using a preallocated, reusable descriptor.
 927	 */
 928	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
 929	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 930
 931	ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
 932	if (ret)
 933		goto err_config;
 934
 935	bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
 936					      ZERO_PAGE(0), 0, sizeof(u32),
 937					      DMA_TO_DEVICE,
 938					      DMA_ATTR_SKIP_CPU_SYNC);
 939	if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
 940		dev_err(dev, "cannot map zero page - not using DMA mode\n");
 941		bs->fill_tx_addr = 0;
 942		ret = -ENOMEM;
 943		goto err_release;
 944	}
 945
 946	bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
 947						     bs->fill_tx_addr,
 948						     sizeof(u32), 0,
 949						     DMA_MEM_TO_DEV, 0);
 950	if (!bs->fill_tx_desc) {
 951		dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
 952		ret = -ENOMEM;
 953		goto err_release;
 954	}
 955
 956	ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
 957	if (ret) {
 958		dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
 959		goto err_release;
 960	}
 961
 962	/*
 963	 * The RX DMA channel is used bidirectionally:  It either reads the
 964	 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
 965	 * precalculated value to the CS register to clear the RX FIFO.
 966	 */
 967	slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
 968	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 969	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
 970	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 971
 972	ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
 973	if (ret)
 974		goto err_config;
 975
 976	/* all went well, so set can_dma */
 977	ctlr->can_dma = bcm2835_spi_can_dma;
 978
 979	return 0;
 980
 981err_config:
 982	dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
 983		ret);
 984err_release:
 985	bcm2835_dma_release(ctlr, bs);
 986err:
 987	/*
 988	 * Only report error for deferred probing, otherwise fall back to
 989	 * interrupt mode
 990	 */
 991	if (ret != -EPROBE_DEFER)
 992		ret = 0;
 993
 994	return ret;
 995}
 996
 997static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
 998					 struct spi_device *spi,
 999					 struct spi_transfer *tfr,
1000					 u32 cs)
1001{
1002	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1003	unsigned long timeout;
1004
1005	/* update usage statistics */
1006	bs->count_transfer_polling++;
1007
1008	/* enable HW block without interrupts */
1009	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
1010
1011	/* fill in the fifo before timeout calculations
1012	 * if we are interrupted here, then the data is
1013	 * getting transferred by the HW while we are interrupted
1014	 */
1015	bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
1016
1017	/* set the timeout to at least 2 jiffies */
1018	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
1019
1020	/* loop until finished the transfer */
1021	while (bs->rx_len) {
1022		/* fill in tx fifo with remaining data */
1023		bcm2835_wr_fifo(bs);
1024
1025		/* read from fifo as much as possible */
1026		bcm2835_rd_fifo(bs);
1027
1028		/* if there is still data pending to read
1029		 * then check the timeout
1030		 */
1031		if (bs->rx_len && time_after(jiffies, timeout)) {
1032			dev_dbg_ratelimited(&spi->dev,
1033					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
1034					    jiffies - timeout,
1035					    bs->tx_len, bs->rx_len);
1036			/* fall back to interrupt mode */
1037
1038			/* update usage statistics */
1039			bs->count_transfer_irq_after_polling++;
1040
1041			return bcm2835_spi_transfer_one_irq(ctlr, spi,
1042							    tfr, cs, false);
1043		}
1044	}
1045
1046	/* Transfer complete - reset SPI HW */
1047	bcm2835_spi_reset_hw(bs);
1048	/* and return without waiting for completion */
1049	return 0;
1050}
1051
1052static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
1053				    struct spi_device *spi,
1054				    struct spi_transfer *tfr)
1055{
1056	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1057	struct bcm2835_spidev *target = spi_get_ctldata(spi);
1058	unsigned long spi_hz, cdiv;
1059	unsigned long hz_per_byte, byte_limit;
1060	u32 cs = target->prepare_cs;
1061
1062	/* set clock */
1063	spi_hz = tfr->speed_hz;
1064
1065	if (spi_hz >= bs->clk_hz / 2) {
1066		cdiv = 2; /* clk_hz/2 is the fastest we can go */
1067	} else if (spi_hz) {
1068		/* CDIV must be a multiple of two */
1069		cdiv = DIV_ROUND_UP(bs->clk_hz, spi_hz);
1070		cdiv += (cdiv % 2);
1071
1072		if (cdiv >= 65536)
1073			cdiv = 0; /* 0 is the slowest we can go */
1074	} else {
1075		cdiv = 0; /* 0 is the slowest we can go */
1076	}
1077	tfr->effective_speed_hz = cdiv ? (bs->clk_hz / cdiv) : (bs->clk_hz / 65536);
1078	bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
1079
1080	/* handle all the 3-wire mode */
1081	if (spi->mode & SPI_3WIRE && tfr->rx_buf)
1082		cs |= BCM2835_SPI_CS_REN;
1083
1084	/* set transmit buffers and length */
1085	bs->tx_buf = tfr->tx_buf;
1086	bs->rx_buf = tfr->rx_buf;
1087	bs->tx_len = tfr->len;
1088	bs->rx_len = tfr->len;
1089
1090	/* Calculate the estimated time in us the transfer runs.  Note that
1091	 * there is 1 idle clocks cycles after each byte getting transferred
1092	 * so we have 9 cycles/byte.  This is used to find the number of Hz
1093	 * per byte per polling limit.  E.g., we can transfer 1 byte in 30 us
1094	 * per 300,000 Hz of bus clock.
1095	 */
1096	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
1097	byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
1098
1099	/* run in polling mode for short transfers */
1100	if (tfr->len < byte_limit)
1101		return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
1102
1103	/* run in dma mode if conditions are right
1104	 * Note that unlike poll or interrupt mode DMA mode does not have
1105	 * this 1 idle clock cycle pattern but runs the spi clock without gaps
1106	 */
1107	if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
1108		return bcm2835_spi_transfer_one_dma(ctlr, tfr, target, cs);
1109
1110	/* run in interrupt-mode */
1111	return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
1112}
1113
1114static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
1115				       struct spi_message *msg)
1116{
1117	struct spi_device *spi = msg->spi;
1118	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1119	struct bcm2835_spidev *target = spi_get_ctldata(spi);
1120	int ret;
1121
1122	if (ctlr->can_dma) {
1123		/*
1124		 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
1125		 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
1126		 * aligned) if the limit is exceeded.
1127		 */
1128		ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
1129						  GFP_KERNEL | GFP_DMA);
1130		if (ret)
1131			return ret;
1132	}
1133
1134	/*
1135	 * Set up clock polarity before spi_transfer_one_message() asserts
1136	 * chip select to avoid a gratuitous clock signal edge.
1137	 */
1138	bcm2835_wr(bs, BCM2835_SPI_CS, target->prepare_cs);
1139
1140	return 0;
1141}
1142
1143static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
1144				   struct spi_message *msg)
1145{
1146	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1147
1148	/* if an error occurred and we have an active dma, then terminate */
1149	if (ctlr->dma_tx) {
1150		dmaengine_terminate_sync(ctlr->dma_tx);
1151		bs->tx_dma_active = false;
1152	}
1153	if (ctlr->dma_rx) {
1154		dmaengine_terminate_sync(ctlr->dma_rx);
1155		bs->rx_dma_active = false;
1156	}
1157	bcm2835_spi_undo_prologue(bs);
1158
1159	/* and reset */
1160	bcm2835_spi_reset_hw(bs);
1161}
1162
1163static void bcm2835_spi_cleanup(struct spi_device *spi)
1164{
1165	struct bcm2835_spidev *target = spi_get_ctldata(spi);
1166	struct spi_controller *ctlr = spi->controller;
1167	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1168
1169	if (target->clear_rx_desc)
1170		dmaengine_desc_free(target->clear_rx_desc);
1171
1172	if (target->clear_rx_addr)
1173		dma_unmap_single(ctlr->dma_rx->device->dev,
1174				 target->clear_rx_addr,
1175				 sizeof(u32),
1176				 DMA_TO_DEVICE);
1177
1178	gpiod_put(bs->cs_gpio);
1179	spi_set_csgpiod(spi, 0, NULL);
1180
1181	kfree(target);
1182}
1183
1184static int bcm2835_spi_setup_dma(struct spi_controller *ctlr,
1185				 struct spi_device *spi,
1186				 struct bcm2835_spi *bs,
1187				 struct bcm2835_spidev *target)
1188{
1189	int ret;
1190
1191	if (!ctlr->dma_rx)
1192		return 0;
1193
1194	target->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
1195					       &target->clear_rx_cs,
1196					       sizeof(u32),
1197					       DMA_TO_DEVICE);
1198	if (dma_mapping_error(ctlr->dma_rx->device->dev, target->clear_rx_addr)) {
1199		dev_err(&spi->dev, "cannot map clear_rx_cs\n");
1200		target->clear_rx_addr = 0;
1201		return -ENOMEM;
1202	}
1203
1204	target->clear_rx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
1205						          target->clear_rx_addr,
1206						          sizeof(u32), 0,
1207						          DMA_MEM_TO_DEV, 0);
1208	if (!target->clear_rx_desc) {
1209		dev_err(&spi->dev, "cannot prepare clear_rx_desc\n");
1210		return -ENOMEM;
1211	}
1212
1213	ret = dmaengine_desc_set_reuse(target->clear_rx_desc);
1214	if (ret) {
1215		dev_err(&spi->dev, "cannot reuse clear_rx_desc\n");
1216		return ret;
1217	}
1218
1219	return 0;
1220}
1221
1222static int bcm2835_spi_setup(struct spi_device *spi)
1223{
1224	struct spi_controller *ctlr = spi->controller;
1225	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1226	struct bcm2835_spidev *target = spi_get_ctldata(spi);
1227	struct gpiod_lookup_table *lookup __free(kfree) = NULL;
1228	int ret;
1229	u32 cs;
1230
1231	if (!target) {
1232		target = kzalloc(ALIGN(sizeof(*target), dma_get_cache_alignment()),
1233			      GFP_KERNEL);
1234		if (!target)
1235			return -ENOMEM;
1236
1237		spi_set_ctldata(spi, target);
1238
1239		ret = bcm2835_spi_setup_dma(ctlr, spi, bs, target);
1240		if (ret)
1241			goto err_cleanup;
1242	}
1243
1244	/*
1245	 * Precalculate SPI target's CS register value for ->prepare_message():
1246	 * The driver always uses software-controlled GPIO chip select, hence
1247	 * set the hardware-controlled native chip select to an invalid value
1248	 * to prevent it from interfering.
1249	 */
1250	cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
1251	if (spi->mode & SPI_CPOL)
1252		cs |= BCM2835_SPI_CS_CPOL;
1253	if (spi->mode & SPI_CPHA)
1254		cs |= BCM2835_SPI_CS_CPHA;
1255	target->prepare_cs = cs;
1256
1257	/*
1258	 * Precalculate SPI target's CS register value to clear RX FIFO
1259	 * in case of a TX-only DMA transfer.
1260	 */
1261	if (ctlr->dma_rx) {
1262		target->clear_rx_cs = cs | BCM2835_SPI_CS_TA |
1263					BCM2835_SPI_CS_DMAEN |
1264					BCM2835_SPI_CS_CLEAR_RX;
1265		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
1266					   target->clear_rx_addr,
1267					   sizeof(u32),
1268					   DMA_TO_DEVICE);
1269	}
1270
1271	/*
1272	 * sanity checking the native-chipselects
1273	 */
1274	if (spi->mode & SPI_NO_CS)
1275		return 0;
1276	/*
1277	 * The SPI core has successfully requested the CS GPIO line from the
1278	 * device tree, so we are done.
1279	 */
1280	if (spi_get_csgpiod(spi, 0))
1281		return 0;
1282	if (spi_get_chipselect(spi, 0) > 1) {
1283		/* error in the case of native CS requested with CS > 1
1284		 * officially there is a CS2, but it is not documented
1285		 * which GPIO is connected with that...
1286		 */
1287		dev_err(&spi->dev,
1288			"setup: only two native chip-selects are supported\n");
1289		ret = -EINVAL;
1290		goto err_cleanup;
1291	}
1292
1293	/*
1294	 * TODO: The code below is a slightly better alternative to the utter
1295	 * abuse of the GPIO API that I found here before. It creates a
1296	 * temporary lookup table, assigns it to the SPI device, gets the GPIO
1297	 * descriptor and then releases the lookup table.
1298	 *
1299	 * More on the problem that it addresses:
1300	 *   https://www.spinics.net/lists/linux-gpio/msg36218.html
1301	 */
1302	lookup = kzalloc(struct_size(lookup, table, 2), GFP_KERNEL);
1303	if (!lookup) {
1304		ret = -ENOMEM;
1305		goto err_cleanup;
1306	}
1307
1308	lookup->dev_id = dev_name(&spi->dev);
1309	lookup->table[0] = GPIO_LOOKUP("pinctrl-bcm2835",
1310				       8 - (spi_get_chipselect(spi, 0)),
1311				       "cs", GPIO_LOOKUP_FLAGS_DEFAULT);
1312
1313	gpiod_add_lookup_table(lookup);
1314
1315	bs->cs_gpio = gpiod_get(&spi->dev, "cs", GPIOD_OUT_LOW);
1316	gpiod_remove_lookup_table(lookup);
1317	if (IS_ERR(bs->cs_gpio)) {
1318		ret = PTR_ERR(bs->cs_gpio);
1319		goto err_cleanup;
1320	}
1321
1322	spi_set_csgpiod(spi, 0, bs->cs_gpio);
1323
1324	/* and set up the "mode" and level */
1325	dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
1326		 spi_get_chipselect(spi, 0));
1327
1328	return 0;
1329
1330err_cleanup:
1331	bcm2835_spi_cleanup(spi);
1332	return ret;
1333}
1334
1335static int bcm2835_spi_probe(struct platform_device *pdev)
1336{
1337	struct spi_controller *ctlr;
1338	struct bcm2835_spi *bs;
1339	int err;
1340
1341	ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*bs));
1342	if (!ctlr)
1343		return -ENOMEM;
1344
1345	platform_set_drvdata(pdev, ctlr);
1346
1347	ctlr->use_gpio_descriptors = true;
1348	ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
1349	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1350	ctlr->num_chipselect = 3;
1351	ctlr->setup = bcm2835_spi_setup;
1352	ctlr->cleanup = bcm2835_spi_cleanup;
1353	ctlr->transfer_one = bcm2835_spi_transfer_one;
1354	ctlr->handle_err = bcm2835_spi_handle_err;
1355	ctlr->prepare_message = bcm2835_spi_prepare_message;
1356	ctlr->dev.of_node = pdev->dev.of_node;
1357
1358	bs = spi_controller_get_devdata(ctlr);
1359	bs->ctlr = ctlr;
1360
1361	bs->regs = devm_platform_ioremap_resource(pdev, 0);
1362	if (IS_ERR(bs->regs))
1363		return PTR_ERR(bs->regs);
1364
1365	bs->clk = devm_clk_get_enabled(&pdev->dev, NULL);
1366	if (IS_ERR(bs->clk))
1367		return dev_err_probe(&pdev->dev, PTR_ERR(bs->clk),
1368				     "could not get clk\n");
1369
1370	ctlr->max_speed_hz = clk_get_rate(bs->clk) / 2;
1371
1372	bs->irq = platform_get_irq(pdev, 0);
1373	if (bs->irq < 0)
1374		return bs->irq;
1375
1376	bs->clk_hz = clk_get_rate(bs->clk);
1377
1378	err = bcm2835_dma_init(ctlr, &pdev->dev, bs);
1379	if (err)
1380		return err;
1381
1382	/* initialise the hardware with the default polarities */
1383	bcm2835_wr(bs, BCM2835_SPI_CS,
1384		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1385
1386	err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt,
1387			       IRQF_SHARED, dev_name(&pdev->dev), bs);
1388	if (err) {
1389		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
1390		goto out_dma_release;
1391	}
1392
1393	err = spi_register_controller(ctlr);
1394	if (err) {
1395		dev_err(&pdev->dev, "could not register SPI controller: %d\n",
1396			err);
1397		goto out_dma_release;
1398	}
1399
1400	bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
1401
1402	return 0;
1403
1404out_dma_release:
1405	bcm2835_dma_release(ctlr, bs);
1406	return err;
1407}
1408
1409static void bcm2835_spi_remove(struct platform_device *pdev)
1410{
1411	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1412	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1413
1414	bcm2835_debugfs_remove(bs);
1415
1416	spi_unregister_controller(ctlr);
1417
1418	bcm2835_dma_release(ctlr, bs);
1419
1420	/* Clear FIFOs, and disable the HW block */
1421	bcm2835_wr(bs, BCM2835_SPI_CS,
1422		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1423}
1424
1425static const struct of_device_id bcm2835_spi_match[] = {
1426	{ .compatible = "brcm,bcm2835-spi", },
1427	{}
1428};
1429MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1430
1431static struct platform_driver bcm2835_spi_driver = {
1432	.driver		= {
1433		.name		= DRV_NAME,
1434		.of_match_table	= bcm2835_spi_match,
1435	},
1436	.probe		= bcm2835_spi_probe,
1437	.remove_new	= bcm2835_spi_remove,
1438	.shutdown	= bcm2835_spi_remove,
1439};
1440module_platform_driver(bcm2835_spi_driver);
1441
1442MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1443MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1444MODULE_LICENSE("GPL");