Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for Broadcom BCM2835 SPI Controllers
   4 *
   5 * Copyright (C) 2012 Chris Boot
   6 * Copyright (C) 2013 Stephen Warren
   7 * Copyright (C) 2015 Martin Sperl
   8 *
   9 * This driver is inspired by:
  10 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
  11 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
  12 */
  13
  14#include <linux/cleanup.h>
  15#include <linux/clk.h>
  16#include <linux/completion.h>
  17#include <linux/debugfs.h>
  18#include <linux/delay.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/dmaengine.h>
  21#include <linux/err.h>
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
  24#include <linux/kernel.h>
  25#include <linux/module.h>
  26#include <linux/of.h>
  27#include <linux/of_address.h>
  28#include <linux/platform_device.h>
  29#include <linux/gpio/consumer.h>
  30#include <linux/gpio/machine.h> /* FIXME: using GPIO lookup tables */
 
  31#include <linux/of_irq.h>
  32#include <linux/overflow.h>
  33#include <linux/slab.h>
  34#include <linux/spi/spi.h>
  35
  36/* SPI register offsets */
  37#define BCM2835_SPI_CS			0x00
  38#define BCM2835_SPI_FIFO		0x04
  39#define BCM2835_SPI_CLK			0x08
  40#define BCM2835_SPI_DLEN		0x0c
  41#define BCM2835_SPI_LTOH		0x10
  42#define BCM2835_SPI_DC			0x14
  43
  44/* Bitfields in CS */
  45#define BCM2835_SPI_CS_LEN_LONG		0x02000000
  46#define BCM2835_SPI_CS_DMA_LEN		0x01000000
  47#define BCM2835_SPI_CS_CSPOL2		0x00800000
  48#define BCM2835_SPI_CS_CSPOL1		0x00400000
  49#define BCM2835_SPI_CS_CSPOL0		0x00200000
  50#define BCM2835_SPI_CS_RXF		0x00100000
  51#define BCM2835_SPI_CS_RXR		0x00080000
  52#define BCM2835_SPI_CS_TXD		0x00040000
  53#define BCM2835_SPI_CS_RXD		0x00020000
  54#define BCM2835_SPI_CS_DONE		0x00010000
  55#define BCM2835_SPI_CS_LEN		0x00002000
  56#define BCM2835_SPI_CS_REN		0x00001000
  57#define BCM2835_SPI_CS_ADCS		0x00000800
  58#define BCM2835_SPI_CS_INTR		0x00000400
  59#define BCM2835_SPI_CS_INTD		0x00000200
  60#define BCM2835_SPI_CS_DMAEN		0x00000100
  61#define BCM2835_SPI_CS_TA		0x00000080
  62#define BCM2835_SPI_CS_CSPOL		0x00000040
  63#define BCM2835_SPI_CS_CLEAR_RX		0x00000020
  64#define BCM2835_SPI_CS_CLEAR_TX		0x00000010
  65#define BCM2835_SPI_CS_CPOL		0x00000008
  66#define BCM2835_SPI_CS_CPHA		0x00000004
  67#define BCM2835_SPI_CS_CS_10		0x00000002
  68#define BCM2835_SPI_CS_CS_01		0x00000001
  69
  70#define BCM2835_SPI_FIFO_SIZE		64
  71#define BCM2835_SPI_FIFO_SIZE_3_4	48
  72#define BCM2835_SPI_DMA_MIN_LENGTH	96
 
  73#define BCM2835_SPI_MODE_BITS	(SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
  74				| SPI_NO_CS | SPI_3WIRE)
  75
  76#define DRV_NAME	"spi-bcm2835"
  77
  78/* define polling limits */
  79static unsigned int polling_limit_us = 30;
  80module_param(polling_limit_us, uint, 0664);
  81MODULE_PARM_DESC(polling_limit_us,
  82		 "time in us to run a transfer in polling mode\n");
  83
  84/**
  85 * struct bcm2835_spi - BCM2835 SPI controller
  86 * @regs: base address of register map
  87 * @clk: core clock, divided to calculate serial clock
  88 * @cs_gpio: chip-select GPIO descriptor
  89 * @clk_hz: core clock cached speed
  90 * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
  91 * @tfr: SPI transfer currently processed
  92 * @ctlr: SPI controller reverse lookup
  93 * @tx_buf: pointer whence next transmitted byte is read
  94 * @rx_buf: pointer where next received byte is written
  95 * @tx_len: remaining bytes to transmit
  96 * @rx_len: remaining bytes to receive
  97 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
  98 *	length is not a multiple of 4 (to overcome hardware limitation)
  99 * @rx_prologue: bytes received without DMA if first RX sglist entry's
 100 *	length is not a multiple of 4 (to overcome hardware limitation)
 101 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
 
 
 102 * @debugfs_dir: the debugfs directory - neede to remove debugfs when
 103 *      unloading the module
 104 * @count_transfer_polling: count of how often polling mode is used
 105 * @count_transfer_irq: count of how often interrupt mode is used
 106 * @count_transfer_irq_after_polling: count of how often we fall back to
 107 *      interrupt mode after starting in polling mode.
 108 *      These are counted as well in @count_transfer_polling and
 109 *      @count_transfer_irq
 110 * @count_transfer_dma: count how often dma mode is used
 111 * @target: SPI target currently selected
 112 *	(used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
 113 * @tx_dma_active: whether a TX DMA descriptor is in progress
 114 * @rx_dma_active: whether a RX DMA descriptor is in progress
 115 *	(used by bcm2835_spi_dma_tx_done() to handle a race)
 116 * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
 117 *	(cyclically copies from zero page to TX FIFO)
 118 * @fill_tx_addr: bus address of zero page
 
 
 
 
 
 119 */
 120struct bcm2835_spi {
 121	void __iomem *regs;
 122	struct clk *clk;
 123	struct gpio_desc *cs_gpio;
 124	unsigned long clk_hz;
 125	int irq;
 126	struct spi_transfer *tfr;
 127	struct spi_controller *ctlr;
 128	const u8 *tx_buf;
 129	u8 *rx_buf;
 130	int tx_len;
 131	int rx_len;
 132	int tx_prologue;
 133	int rx_prologue;
 134	unsigned int tx_spillover;
 
 135
 136	struct dentry *debugfs_dir;
 137	u64 count_transfer_polling;
 138	u64 count_transfer_irq;
 139	u64 count_transfer_irq_after_polling;
 140	u64 count_transfer_dma;
 141
 142	struct bcm2835_spidev *target;
 143	unsigned int tx_dma_active;
 144	unsigned int rx_dma_active;
 145	struct dma_async_tx_descriptor *fill_tx_desc;
 146	dma_addr_t fill_tx_addr;
 147};
 148
 149/**
 150 * struct bcm2835_spidev - BCM2835 SPI target
 151 * @prepare_cs: precalculated CS register value for ->prepare_message()
 152 *	(uses target-specific clock polarity and phase settings)
 153 * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
 154 *	(cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
 155 * @clear_rx_addr: bus address of @clear_rx_cs
 156 * @clear_rx_cs: precalculated CS register value to clear RX FIFO
 157 *	(uses target-specific clock polarity and phase settings)
 158 */
 159struct bcm2835_spidev {
 160	u32 prepare_cs;
 161	struct dma_async_tx_descriptor *clear_rx_desc;
 162	dma_addr_t clear_rx_addr;
 163	u32 clear_rx_cs ____cacheline_aligned;
 164};
 165
 166#if defined(CONFIG_DEBUG_FS)
 167static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
 168				   const char *dname)
 169{
 170	char name[64];
 171	struct dentry *dir;
 172
 173	/* get full name */
 174	snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
 175
 176	/* the base directory */
 177	dir = debugfs_create_dir(name, NULL);
 178	bs->debugfs_dir = dir;
 179
 180	/* the counters */
 181	debugfs_create_u64("count_transfer_polling", 0444, dir,
 182			   &bs->count_transfer_polling);
 183	debugfs_create_u64("count_transfer_irq", 0444, dir,
 184			   &bs->count_transfer_irq);
 185	debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
 186			   &bs->count_transfer_irq_after_polling);
 187	debugfs_create_u64("count_transfer_dma", 0444, dir,
 188			   &bs->count_transfer_dma);
 189}
 190
 191static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
 192{
 193	debugfs_remove_recursive(bs->debugfs_dir);
 194	bs->debugfs_dir = NULL;
 195}
 196#else
 197static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
 198				   const char *dname)
 199{
 200}
 201
 202static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
 203{
 204}
 205#endif /* CONFIG_DEBUG_FS */
 206
 207static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg)
 208{
 209	return readl(bs->regs + reg);
 210}
 211
 212static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val)
 213{
 214	writel(val, bs->regs + reg);
 215}
 216
 217static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
 218{
 219	u8 byte;
 220
 221	while ((bs->rx_len) &&
 222	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
 223		byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
 224		if (bs->rx_buf)
 225			*bs->rx_buf++ = byte;
 226		bs->rx_len--;
 227	}
 228}
 229
 230static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
 231{
 232	u8 byte;
 233
 234	while ((bs->tx_len) &&
 235	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
 236		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
 237		bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
 238		bs->tx_len--;
 239	}
 240}
 241
 242/**
 243 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
 244 * @bs: BCM2835 SPI controller
 245 * @count: bytes to read from RX FIFO
 246 *
 247 * The caller must ensure that @bs->rx_len is greater than or equal to @count,
 248 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
 249 * in the CS register is set (such that a read from the FIFO register receives
 250 * 32-bit instead of just 8-bit).  Moreover @bs->rx_buf must not be %NULL.
 251 */
 252static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
 253{
 254	u32 val;
 255	int len;
 256
 257	bs->rx_len -= count;
 258
 259	do {
 260		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
 261		len = min(count, 4);
 262		memcpy(bs->rx_buf, &val, len);
 263		bs->rx_buf += len;
 264		count -= 4;
 265	} while (count > 0);
 266}
 267
 268/**
 269 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
 270 * @bs: BCM2835 SPI controller
 271 * @count: bytes to write to TX FIFO
 272 *
 273 * The caller must ensure that @bs->tx_len is greater than or equal to @count,
 274 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
 275 * in the CS register is set (such that a write to the FIFO register transmits
 276 * 32-bit instead of just 8-bit).
 277 */
 278static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
 279{
 280	u32 val;
 281	int len;
 282
 283	bs->tx_len -= count;
 284
 285	do {
 286		if (bs->tx_buf) {
 287			len = min(count, 4);
 288			memcpy(&val, bs->tx_buf, len);
 289			bs->tx_buf += len;
 290		} else {
 291			val = 0;
 292		}
 293		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
 294		count -= 4;
 295	} while (count > 0);
 296}
 297
 298/**
 299 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
 300 * @bs: BCM2835 SPI controller
 301 *
 302 * The caller must ensure that the RX FIFO can accommodate as many bytes
 303 * as have been written to the TX FIFO:  Transmission is halted once the
 304 * RX FIFO is full, causing this function to spin forever.
 305 */
 306static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
 307{
 308	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
 309		cpu_relax();
 310}
 311
 312/**
 313 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
 314 * @bs: BCM2835 SPI controller
 315 * @count: bytes available for reading in RX FIFO
 316 */
 317static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
 318{
 319	u8 val;
 320
 321	count = min(count, bs->rx_len);
 322	bs->rx_len -= count;
 323
 324	do {
 325		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
 326		if (bs->rx_buf)
 327			*bs->rx_buf++ = val;
 328	} while (--count);
 
 329}
 330
 331/**
 332 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
 333 * @bs: BCM2835 SPI controller
 334 * @count: bytes available for writing in TX FIFO
 335 */
 336static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
 337{
 338	u8 val;
 339
 340	count = min(count, bs->tx_len);
 341	bs->tx_len -= count;
 342
 343	do {
 344		val = bs->tx_buf ? *bs->tx_buf++ : 0;
 345		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
 346	} while (--count);
 
 347}
 348
 349static void bcm2835_spi_reset_hw(struct bcm2835_spi *bs)
 350{
 
 351	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
 352
 353	/* Disable SPI interrupts and transfer */
 354	cs &= ~(BCM2835_SPI_CS_INTR |
 355		BCM2835_SPI_CS_INTD |
 356		BCM2835_SPI_CS_DMAEN |
 357		BCM2835_SPI_CS_TA);
 358	/*
 359	 * Transmission sometimes breaks unless the DONE bit is written at the
 360	 * end of every transfer.  The spec says it's a RO bit.  Either the
 361	 * spec is wrong and the bit is actually of type RW1C, or it's a
 362	 * hardware erratum.
 363	 */
 364	cs |= BCM2835_SPI_CS_DONE;
 365	/* and reset RX/TX FIFOS */
 366	cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
 367
 368	/* and reset the SPI_HW */
 369	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
 370	/* as well as DLEN */
 371	bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
 372}
 373
 374static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
 375{
 376	struct bcm2835_spi *bs = dev_id;
 
 377	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
 378
 379	/* Bail out early if interrupts are not enabled */
 380	if (!(cs & BCM2835_SPI_CS_INTR))
 381		return IRQ_NONE;
 382
 383	/*
 384	 * An interrupt is signaled either if DONE is set (TX FIFO empty)
 385	 * or if RXR is set (RX FIFO >= ¾ full).
 386	 */
 387	if (cs & BCM2835_SPI_CS_RXF)
 388		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
 389	else if (cs & BCM2835_SPI_CS_RXR)
 390		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
 391
 392	if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
 393		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
 394
 395	/* Read as many bytes as possible from FIFO */
 396	bcm2835_rd_fifo(bs);
 397	/* Write as many bytes as possible to FIFO */
 398	bcm2835_wr_fifo(bs);
 399
 400	if (!bs->rx_len) {
 401		/* Transfer complete - reset SPI HW */
 402		bcm2835_spi_reset_hw(bs);
 403		/* wake up the framework */
 404		spi_finalize_current_transfer(bs->ctlr);
 405	}
 406
 407	return IRQ_HANDLED;
 408}
 409
 410static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
 411					struct spi_device *spi,
 412					struct spi_transfer *tfr,
 413					u32 cs, bool fifo_empty)
 414{
 415	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 416
 417	/* update usage statistics */
 418	bs->count_transfer_irq++;
 419
 420	/*
 421	 * Enable HW block, but with interrupts still disabled.
 422	 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
 423	 */
 424	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
 425
 426	/* fill TX FIFO as much as possible */
 427	if (fifo_empty)
 428		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
 429	bcm2835_wr_fifo(bs);
 430
 431	/* enable interrupts */
 432	cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
 433	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
 434
 435	/* signal that we need to wait for completion */
 436	return 1;
 437}
 438
 439/**
 440 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
 441 * @ctlr: SPI host controller
 442 * @tfr: SPI transfer
 443 * @bs: BCM2835 SPI controller
 444 * @cs: CS register
 445 *
 446 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
 447 * Only the final write access is permitted to transmit less than 4 bytes, the
 448 * SPI controller deduces its intended size from the DLEN register.
 449 *
 450 * If a TX or RX sglist contains multiple entries, one per page, and the first
 451 * entry starts in the middle of a page, that first entry's length may not be
 452 * a multiple of 4.  Subsequent entries are fine because they span an entire
 453 * page, hence do have a length that's a multiple of 4.
 454 *
 455 * This cannot happen with kmalloc'ed buffers (which is what most clients use)
 456 * because they are contiguous in physical memory and therefore not split on
 457 * page boundaries by spi_map_buf().  But it *can* happen with vmalloc'ed
 458 * buffers.
 459 *
 460 * The DMA engine is incapable of combining sglist entries into a continuous
 461 * stream of 4 byte chunks, it treats every entry separately:  A TX entry is
 462 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
 463 * entry is rounded up by throwing away received bytes.
 464 *
 465 * Overcome this limitation by transferring the first few bytes without DMA:
 466 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
 467 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
 468 * The residue of 1 byte in the RX FIFO is picked up by DMA.  Together with
 469 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
 470 *
 471 * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
 472 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
 473 * Caution, the additional 4 bytes spill over to the second TX sglist entry
 474 * if the length of the first is *exactly* 1.
 475 *
 476 * At most 6 bytes are written and at most 3 bytes read.  Do we know the
 477 * transfer has this many bytes?  Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
 478 *
 479 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
 480 * by the DMA engine.  Toggling the DMA Enable flag in the CS register switches
 481 * the width but also garbles the FIFO's contents.  The prologue must therefore
 482 * be transmitted in 32-bit width to ensure that the following DMA transfer can
 483 * pick up the residue in the RX FIFO in ungarbled form.
 484 */
 485static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
 486					  struct spi_transfer *tfr,
 487					  struct bcm2835_spi *bs,
 488					  u32 cs)
 489{
 490	int tx_remaining;
 491
 492	bs->tfr		 = tfr;
 493	bs->tx_prologue  = 0;
 494	bs->rx_prologue  = 0;
 495	bs->tx_spillover = false;
 496
 497	if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
 498		bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
 499
 500	if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
 501		bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
 502
 503		if (bs->rx_prologue > bs->tx_prologue) {
 504			if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
 505				bs->tx_prologue  = bs->rx_prologue;
 506			} else {
 507				bs->tx_prologue += 4;
 508				bs->tx_spillover =
 509					!(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
 510			}
 511		}
 512	}
 513
 514	/* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
 515	if (!bs->tx_prologue)
 516		return;
 517
 518	/* Write and read RX prologue.  Adjust first entry in RX sglist. */
 519	if (bs->rx_prologue) {
 520		bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
 521		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
 522						  | BCM2835_SPI_CS_DMAEN);
 523		bcm2835_wr_fifo_count(bs, bs->rx_prologue);
 524		bcm2835_wait_tx_fifo_empty(bs);
 525		bcm2835_rd_fifo_count(bs, bs->rx_prologue);
 526		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
 527						  | BCM2835_SPI_CS_CLEAR_TX
 528						  | BCM2835_SPI_CS_DONE);
 529
 530		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
 531					   sg_dma_address(&tfr->rx_sg.sgl[0]),
 532					   bs->rx_prologue, DMA_FROM_DEVICE);
 533
 534		sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
 535		sg_dma_len(&tfr->rx_sg.sgl[0])     -= bs->rx_prologue;
 536	}
 537
 538	if (!bs->tx_buf)
 539		return;
 540
 541	/*
 542	 * Write remaining TX prologue.  Adjust first entry in TX sglist.
 543	 * Also adjust second entry if prologue spills over to it.
 544	 */
 545	tx_remaining = bs->tx_prologue - bs->rx_prologue;
 546	if (tx_remaining) {
 547		bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
 548		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
 549						  | BCM2835_SPI_CS_DMAEN);
 550		bcm2835_wr_fifo_count(bs, tx_remaining);
 551		bcm2835_wait_tx_fifo_empty(bs);
 552		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
 553						  | BCM2835_SPI_CS_DONE);
 554	}
 555
 556	if (likely(!bs->tx_spillover)) {
 557		sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
 558		sg_dma_len(&tfr->tx_sg.sgl[0])     -= bs->tx_prologue;
 559	} else {
 560		sg_dma_len(&tfr->tx_sg.sgl[0])      = 0;
 561		sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
 562		sg_dma_len(&tfr->tx_sg.sgl[1])     -= 4;
 563	}
 564}
 565
 566/**
 567 * bcm2835_spi_undo_prologue() - reconstruct original sglist state
 568 * @bs: BCM2835 SPI controller
 569 *
 570 * Undo changes which were made to an SPI transfer's sglist when transmitting
 571 * the prologue.  This is necessary to ensure the same memory ranges are
 572 * unmapped that were originally mapped.
 573 */
 574static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
 575{
 576	struct spi_transfer *tfr = bs->tfr;
 577
 578	if (!bs->tx_prologue)
 579		return;
 580
 581	if (bs->rx_prologue) {
 582		sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
 583		sg_dma_len(&tfr->rx_sg.sgl[0])     += bs->rx_prologue;
 584	}
 585
 586	if (!bs->tx_buf)
 587		goto out;
 588
 589	if (likely(!bs->tx_spillover)) {
 590		sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
 591		sg_dma_len(&tfr->tx_sg.sgl[0])     += bs->tx_prologue;
 592	} else {
 593		sg_dma_len(&tfr->tx_sg.sgl[0])      = bs->tx_prologue - 4;
 594		sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
 595		sg_dma_len(&tfr->tx_sg.sgl[1])     += 4;
 596	}
 597out:
 598	bs->tx_prologue = 0;
 599}
 600
 601/**
 602 * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
 603 * @data: SPI host controller
 604 *
 605 * Used for bidirectional and RX-only transfers.
 606 */
 607static void bcm2835_spi_dma_rx_done(void *data)
 608{
 609	struct spi_controller *ctlr = data;
 610	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 611
 612	/* terminate tx-dma as we do not have an irq for it
 613	 * because when the rx dma will terminate and this callback
 614	 * is called the tx-dma must have finished - can't get to this
 615	 * situation otherwise...
 616	 */
 617	dmaengine_terminate_async(ctlr->dma_tx);
 618	bs->tx_dma_active = false;
 619	bs->rx_dma_active = false;
 620	bcm2835_spi_undo_prologue(bs);
 621
 622	/* reset fifo and HW */
 623	bcm2835_spi_reset_hw(bs);
 624
 625	/* and mark as completed */;
 626	spi_finalize_current_transfer(ctlr);
 627}
 628
 629/**
 630 * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
 631 * @data: SPI host controller
 632 *
 633 * Used for TX-only transfers.
 634 */
 635static void bcm2835_spi_dma_tx_done(void *data)
 636{
 637	struct spi_controller *ctlr = data;
 638	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 639
 640	/* busy-wait for TX FIFO to empty */
 641	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
 642		bcm2835_wr(bs, BCM2835_SPI_CS, bs->target->clear_rx_cs);
 
 643
 644	bs->tx_dma_active = false;
 645	smp_wmb();
 646
 647	/*
 648	 * In case of a very short transfer, RX DMA may not have been
 649	 * issued yet.  The onus is then on bcm2835_spi_transfer_one_dma()
 650	 * to terminate it immediately after issuing.
 651	 */
 652	if (cmpxchg(&bs->rx_dma_active, true, false))
 653		dmaengine_terminate_async(ctlr->dma_rx);
 654
 655	bcm2835_spi_undo_prologue(bs);
 656	bcm2835_spi_reset_hw(bs);
 657	spi_finalize_current_transfer(ctlr);
 658}
 659
 660/**
 661 * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
 662 * @ctlr: SPI host controller
 
 663 * @tfr: SPI transfer
 664 * @bs: BCM2835 SPI controller
 665 * @target: BCM2835 SPI target
 666 * @is_tx: whether to submit DMA descriptor for TX or RX sglist
 667 *
 668 * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
 669 * Return 0 on success or a negative error number.
 670 */
 671static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
 
 672				  struct spi_transfer *tfr,
 673				  struct bcm2835_spi *bs,
 674				  struct bcm2835_spidev *target,
 675				  bool is_tx)
 676{
 677	struct dma_chan *chan;
 678	struct scatterlist *sgl;
 679	unsigned int nents;
 680	enum dma_transfer_direction dir;
 681	unsigned long flags;
 682
 683	struct dma_async_tx_descriptor *desc;
 684	dma_cookie_t cookie;
 685
 686	if (is_tx) {
 687		dir   = DMA_MEM_TO_DEV;
 688		chan  = ctlr->dma_tx;
 689		nents = tfr->tx_sg.nents;
 690		sgl   = tfr->tx_sg.sgl;
 691		flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
 692	} else {
 693		dir   = DMA_DEV_TO_MEM;
 694		chan  = ctlr->dma_rx;
 695		nents = tfr->rx_sg.nents;
 696		sgl   = tfr->rx_sg.sgl;
 697		flags = DMA_PREP_INTERRUPT;
 698	}
 699	/* prepare the channel */
 700	desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
 701	if (!desc)
 702		return -EINVAL;
 703
 704	/*
 705	 * Completion is signaled by the RX channel for bidirectional and
 706	 * RX-only transfers; else by the TX channel for TX-only transfers.
 707	 */
 708	if (!is_tx) {
 709		desc->callback = bcm2835_spi_dma_rx_done;
 710		desc->callback_param = ctlr;
 711	} else if (!tfr->rx_buf) {
 712		desc->callback = bcm2835_spi_dma_tx_done;
 713		desc->callback_param = ctlr;
 714		bs->target = target;
 715	}
 716
 717	/* submit it to DMA-engine */
 718	cookie = dmaengine_submit(desc);
 719
 720	return dma_submit_error(cookie);
 721}
 722
 723/**
 724 * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
 725 * @ctlr: SPI host controller
 
 726 * @tfr: SPI transfer
 727 * @target: BCM2835 SPI target
 728 * @cs: CS register
 729 *
 730 * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
 731 * the TX and RX DMA channel to copy between memory and FIFO register.
 732 *
 733 * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
 734 * memory is pointless.  However not reading the RX FIFO isn't an option either
 735 * because transmission is halted once it's full.  As a workaround, cyclically
 736 * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
 737 *
 738 * The CS register value is precalculated in bcm2835_spi_setup().  Normally
 739 * this is called only once, on target registration.  A DMA descriptor to write
 740 * this value is preallocated in bcm2835_dma_init().  All that's left to do
 741 * when performing a TX-only transfer is to submit this descriptor to the RX
 742 * DMA channel.  Latency is thereby minimized.  The descriptor does not
 743 * generate any interrupts while running.  It must be terminated once the
 744 * TX DMA channel is done.
 745 *
 746 * Clearing the RX FIFO is paced by the DREQ signal.  The signal is asserted
 747 * when the RX FIFO becomes half full, i.e. 32 bytes.  (Tuneable with the DC
 748 * register.)  Reading 32 bytes from the RX FIFO would normally require 8 bus
 749 * accesses, whereas clearing it requires only 1 bus access.  So an 8-fold
 750 * reduction in bus traffic and thus energy consumption is achieved.
 751 *
 752 * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
 753 * copying from the zero page.  The DMA descriptor to do this is preallocated
 754 * in bcm2835_dma_init().  It must be terminated once the RX DMA channel is
 755 * done and can then be reused.
 756 *
 757 * The BCM2835 DMA driver autodetects when a transaction copies from the zero
 758 * page and utilizes the DMA controller's ability to synthesize zeroes instead
 759 * of copying them from memory.  This reduces traffic on the memory bus.  The
 760 * feature is not available on so-called "lite" channels, but normally TX DMA
 761 * is backed by a full-featured channel.
 762 *
 763 * Zero-filling the TX FIFO is paced by the DREQ signal.  Unfortunately the
 764 * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
 765 * has been counted down to zero (hardware erratum).  Thus, when the transfer
 766 * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
 767 * (Tuneable with the DC register.)  So up to 9 gratuitous bus accesses are
 768 * performed at the end of an RX-only transfer.
 769 */
 770static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
 
 771					struct spi_transfer *tfr,
 772					struct bcm2835_spidev *target,
 773					u32 cs)
 774{
 775	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 776	dma_cookie_t cookie;
 777	int ret;
 778
 779	/* update usage statistics */
 780	bs->count_transfer_dma++;
 781
 782	/*
 783	 * Transfer first few bytes without DMA if length of first TX or RX
 784	 * sglist entry is not a multiple of 4 bytes (hardware limitation).
 785	 */
 786	bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
 787
 788	/* setup tx-DMA */
 789	if (bs->tx_buf) {
 790		ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, target, true);
 791	} else {
 792		cookie = dmaengine_submit(bs->fill_tx_desc);
 793		ret = dma_submit_error(cookie);
 794	}
 795	if (ret)
 796		goto err_reset_hw;
 797
 798	/* set the DMA length */
 799	bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
 800
 801	/* start the HW */
 802	bcm2835_wr(bs, BCM2835_SPI_CS,
 803		   cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
 804
 805	bs->tx_dma_active = true;
 806	smp_wmb();
 807
 808	/* start TX early */
 809	dma_async_issue_pending(ctlr->dma_tx);
 810
 811	/* setup rx-DMA late - to run transfers while
 812	 * mapping of the rx buffers still takes place
 813	 * this saves 10us or more.
 814	 */
 815	if (bs->rx_buf) {
 816		ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, target, false);
 817	} else {
 818		cookie = dmaengine_submit(target->clear_rx_desc);
 819		ret = dma_submit_error(cookie);
 820	}
 821	if (ret) {
 822		/* need to reset on errors */
 823		dmaengine_terminate_sync(ctlr->dma_tx);
 824		bs->tx_dma_active = false;
 825		goto err_reset_hw;
 826	}
 827
 828	/* start rx dma late */
 829	dma_async_issue_pending(ctlr->dma_rx);
 830	bs->rx_dma_active = true;
 831	smp_mb();
 832
 833	/*
 834	 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
 835	 * may run before RX DMA is issued.  Terminate RX DMA if so.
 836	 */
 837	if (!bs->rx_buf && !bs->tx_dma_active &&
 838	    cmpxchg(&bs->rx_dma_active, true, false)) {
 839		dmaengine_terminate_async(ctlr->dma_rx);
 840		bcm2835_spi_reset_hw(bs);
 841	}
 842
 843	/* wait for wakeup in framework */
 844	return 1;
 845
 846err_reset_hw:
 847	bcm2835_spi_reset_hw(bs);
 848	bcm2835_spi_undo_prologue(bs);
 849	return ret;
 850}
 851
 852static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
 853				struct spi_device *spi,
 854				struct spi_transfer *tfr)
 855{
 856	/* we start DMA efforts only on bigger transfers */
 857	if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
 858		return false;
 859
 860	/* return OK */
 861	return true;
 862}
 863
 864static void bcm2835_dma_release(struct spi_controller *ctlr,
 865				struct bcm2835_spi *bs)
 866{
 
 
 867	if (ctlr->dma_tx) {
 868		dmaengine_terminate_sync(ctlr->dma_tx);
 869
 870		if (bs->fill_tx_desc)
 871			dmaengine_desc_free(bs->fill_tx_desc);
 872
 873		if (bs->fill_tx_addr)
 874			dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
 875					     bs->fill_tx_addr, sizeof(u32),
 876					     DMA_TO_DEVICE,
 877					     DMA_ATTR_SKIP_CPU_SYNC);
 878
 879		dma_release_channel(ctlr->dma_tx);
 880		ctlr->dma_tx = NULL;
 881	}
 882
 883	if (ctlr->dma_rx) {
 884		dmaengine_terminate_sync(ctlr->dma_rx);
 
 
 
 
 
 
 
 
 
 
 
 885		dma_release_channel(ctlr->dma_rx);
 886		ctlr->dma_rx = NULL;
 887	}
 888}
 889
 890static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
 891			    struct bcm2835_spi *bs)
 892{
 893	struct dma_slave_config slave_config;
 894	const __be32 *addr;
 895	dma_addr_t dma_reg_base;
 896	int ret;
 897
 898	/* base address in dma-space */
 899	addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
 900	if (!addr) {
 901		dev_err(dev, "could not get DMA-register address - not using dma mode\n");
 902		/* Fall back to interrupt mode */
 903		return 0;
 904	}
 905	dma_reg_base = be32_to_cpup(addr);
 906
 907	/* get tx/rx dma */
 908	ctlr->dma_tx = dma_request_chan(dev, "tx");
 909	if (IS_ERR(ctlr->dma_tx)) {
 910		ret = dev_err_probe(dev, PTR_ERR(ctlr->dma_tx),
 911			"no tx-dma configuration found - not using dma mode\n");
 912		ctlr->dma_tx = NULL;
 913		goto err;
 914	}
 915	ctlr->dma_rx = dma_request_chan(dev, "rx");
 916	if (IS_ERR(ctlr->dma_rx)) {
 917		ret = dev_err_probe(dev, PTR_ERR(ctlr->dma_rx),
 918			"no rx-dma configuration found - not using dma mode\n");
 919		ctlr->dma_rx = NULL;
 920		goto err_release;
 921	}
 922
 923	/*
 924	 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
 925	 * or, in case of an RX-only transfer, cyclically copies from the zero
 926	 * page to the FIFO using a preallocated, reusable descriptor.
 927	 */
 928	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
 929	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 930
 931	ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
 932	if (ret)
 933		goto err_config;
 934
 935	bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
 936					      ZERO_PAGE(0), 0, sizeof(u32),
 937					      DMA_TO_DEVICE,
 938					      DMA_ATTR_SKIP_CPU_SYNC);
 939	if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
 940		dev_err(dev, "cannot map zero page - not using DMA mode\n");
 941		bs->fill_tx_addr = 0;
 942		ret = -ENOMEM;
 943		goto err_release;
 944	}
 945
 946	bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
 947						     bs->fill_tx_addr,
 948						     sizeof(u32), 0,
 949						     DMA_MEM_TO_DEV, 0);
 950	if (!bs->fill_tx_desc) {
 951		dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
 952		ret = -ENOMEM;
 953		goto err_release;
 954	}
 955
 956	ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
 957	if (ret) {
 958		dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
 959		goto err_release;
 960	}
 961
 962	/*
 963	 * The RX DMA channel is used bidirectionally:  It either reads the
 964	 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
 965	 * precalculated value to the CS register to clear the RX FIFO.
 966	 */
 967	slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
 968	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 969	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
 970	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 971
 972	ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
 973	if (ret)
 974		goto err_config;
 975
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976	/* all went well, so set can_dma */
 977	ctlr->can_dma = bcm2835_spi_can_dma;
 978
 979	return 0;
 980
 981err_config:
 982	dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
 983		ret);
 984err_release:
 985	bcm2835_dma_release(ctlr, bs);
 986err:
 987	/*
 988	 * Only report error for deferred probing, otherwise fall back to
 989	 * interrupt mode
 990	 */
 991	if (ret != -EPROBE_DEFER)
 992		ret = 0;
 993
 994	return ret;
 995}
 996
 997static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
 998					 struct spi_device *spi,
 999					 struct spi_transfer *tfr,
1000					 u32 cs)
1001{
1002	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1003	unsigned long timeout;
1004
1005	/* update usage statistics */
1006	bs->count_transfer_polling++;
1007
1008	/* enable HW block without interrupts */
1009	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
1010
1011	/* fill in the fifo before timeout calculations
1012	 * if we are interrupted here, then the data is
1013	 * getting transferred by the HW while we are interrupted
1014	 */
1015	bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
1016
1017	/* set the timeout to at least 2 jiffies */
1018	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
1019
1020	/* loop until finished the transfer */
1021	while (bs->rx_len) {
1022		/* fill in tx fifo with remaining data */
1023		bcm2835_wr_fifo(bs);
1024
1025		/* read from fifo as much as possible */
1026		bcm2835_rd_fifo(bs);
1027
1028		/* if there is still data pending to read
1029		 * then check the timeout
1030		 */
1031		if (bs->rx_len && time_after(jiffies, timeout)) {
1032			dev_dbg_ratelimited(&spi->dev,
1033					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
1034					    jiffies - timeout,
1035					    bs->tx_len, bs->rx_len);
1036			/* fall back to interrupt mode */
1037
1038			/* update usage statistics */
1039			bs->count_transfer_irq_after_polling++;
1040
1041			return bcm2835_spi_transfer_one_irq(ctlr, spi,
1042							    tfr, cs, false);
1043		}
1044	}
1045
1046	/* Transfer complete - reset SPI HW */
1047	bcm2835_spi_reset_hw(bs);
1048	/* and return without waiting for completion */
1049	return 0;
1050}
1051
1052static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
1053				    struct spi_device *spi,
1054				    struct spi_transfer *tfr)
1055{
1056	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1057	struct bcm2835_spidev *target = spi_get_ctldata(spi);
1058	unsigned long spi_hz, cdiv;
1059	unsigned long hz_per_byte, byte_limit;
1060	u32 cs = target->prepare_cs;
1061
1062	/* set clock */
1063	spi_hz = tfr->speed_hz;
 
1064
1065	if (spi_hz >= bs->clk_hz / 2) {
1066		cdiv = 2; /* clk_hz/2 is the fastest we can go */
1067	} else if (spi_hz) {
1068		/* CDIV must be a multiple of two */
1069		cdiv = DIV_ROUND_UP(bs->clk_hz, spi_hz);
1070		cdiv += (cdiv % 2);
1071
1072		if (cdiv >= 65536)
1073			cdiv = 0; /* 0 is the slowest we can go */
1074	} else {
1075		cdiv = 0; /* 0 is the slowest we can go */
1076	}
1077	tfr->effective_speed_hz = cdiv ? (bs->clk_hz / cdiv) : (bs->clk_hz / 65536);
1078	bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
1079
1080	/* handle all the 3-wire mode */
1081	if (spi->mode & SPI_3WIRE && tfr->rx_buf)
1082		cs |= BCM2835_SPI_CS_REN;
1083
1084	/* set transmit buffers and length */
1085	bs->tx_buf = tfr->tx_buf;
1086	bs->rx_buf = tfr->rx_buf;
1087	bs->tx_len = tfr->len;
1088	bs->rx_len = tfr->len;
1089
1090	/* Calculate the estimated time in us the transfer runs.  Note that
1091	 * there is 1 idle clocks cycles after each byte getting transferred
1092	 * so we have 9 cycles/byte.  This is used to find the number of Hz
1093	 * per byte per polling limit.  E.g., we can transfer 1 byte in 30 us
1094	 * per 300,000 Hz of bus clock.
1095	 */
1096	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
1097	byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
1098
1099	/* run in polling mode for short transfers */
1100	if (tfr->len < byte_limit)
1101		return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
1102
1103	/* run in dma mode if conditions are right
1104	 * Note that unlike poll or interrupt mode DMA mode does not have
1105	 * this 1 idle clock cycle pattern but runs the spi clock without gaps
1106	 */
1107	if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
1108		return bcm2835_spi_transfer_one_dma(ctlr, tfr, target, cs);
1109
1110	/* run in interrupt-mode */
1111	return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
1112}
1113
1114static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
1115				       struct spi_message *msg)
1116{
1117	struct spi_device *spi = msg->spi;
1118	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1119	struct bcm2835_spidev *target = spi_get_ctldata(spi);
1120	int ret;
1121
1122	if (ctlr->can_dma) {
1123		/*
1124		 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
1125		 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
1126		 * aligned) if the limit is exceeded.
1127		 */
1128		ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
1129						  GFP_KERNEL | GFP_DMA);
1130		if (ret)
1131			return ret;
1132	}
1133
1134	/*
1135	 * Set up clock polarity before spi_transfer_one_message() asserts
1136	 * chip select to avoid a gratuitous clock signal edge.
1137	 */
1138	bcm2835_wr(bs, BCM2835_SPI_CS, target->prepare_cs);
1139
1140	return 0;
1141}
1142
1143static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
1144				   struct spi_message *msg)
1145{
1146	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1147
1148	/* if an error occurred and we have an active dma, then terminate */
1149	if (ctlr->dma_tx) {
1150		dmaengine_terminate_sync(ctlr->dma_tx);
1151		bs->tx_dma_active = false;
1152	}
1153	if (ctlr->dma_rx) {
1154		dmaengine_terminate_sync(ctlr->dma_rx);
1155		bs->rx_dma_active = false;
1156	}
1157	bcm2835_spi_undo_prologue(bs);
1158
1159	/* and reset */
1160	bcm2835_spi_reset_hw(bs);
1161}
1162
1163static void bcm2835_spi_cleanup(struct spi_device *spi)
1164{
1165	struct bcm2835_spidev *target = spi_get_ctldata(spi);
1166	struct spi_controller *ctlr = spi->controller;
1167	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1168
1169	if (target->clear_rx_desc)
1170		dmaengine_desc_free(target->clear_rx_desc);
1171
1172	if (target->clear_rx_addr)
1173		dma_unmap_single(ctlr->dma_rx->device->dev,
1174				 target->clear_rx_addr,
1175				 sizeof(u32),
1176				 DMA_TO_DEVICE);
1177
1178	gpiod_put(bs->cs_gpio);
1179	spi_set_csgpiod(spi, 0, NULL);
1180
1181	kfree(target);
1182}
1183
1184static int bcm2835_spi_setup_dma(struct spi_controller *ctlr,
1185				 struct spi_device *spi,
1186				 struct bcm2835_spi *bs,
1187				 struct bcm2835_spidev *target)
1188{
1189	int ret;
1190
1191	if (!ctlr->dma_rx)
1192		return 0;
1193
1194	target->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
1195					       &target->clear_rx_cs,
1196					       sizeof(u32),
1197					       DMA_TO_DEVICE);
1198	if (dma_mapping_error(ctlr->dma_rx->device->dev, target->clear_rx_addr)) {
1199		dev_err(&spi->dev, "cannot map clear_rx_cs\n");
1200		target->clear_rx_addr = 0;
1201		return -ENOMEM;
1202	}
1203
1204	target->clear_rx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
1205						          target->clear_rx_addr,
1206						          sizeof(u32), 0,
1207						          DMA_MEM_TO_DEV, 0);
1208	if (!target->clear_rx_desc) {
1209		dev_err(&spi->dev, "cannot prepare clear_rx_desc\n");
1210		return -ENOMEM;
1211	}
1212
1213	ret = dmaengine_desc_set_reuse(target->clear_rx_desc);
1214	if (ret) {
1215		dev_err(&spi->dev, "cannot reuse clear_rx_desc\n");
1216		return ret;
1217	}
1218
1219	return 0;
1220}
1221
1222static int bcm2835_spi_setup(struct spi_device *spi)
1223{
1224	struct spi_controller *ctlr = spi->controller;
1225	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1226	struct bcm2835_spidev *target = spi_get_ctldata(spi);
1227	struct gpiod_lookup_table *lookup __free(kfree) = NULL;
1228	int ret;
1229	u32 cs;
1230
1231	if (!target) {
1232		target = kzalloc(ALIGN(sizeof(*target), dma_get_cache_alignment()),
1233			      GFP_KERNEL);
1234		if (!target)
1235			return -ENOMEM;
1236
1237		spi_set_ctldata(spi, target);
1238
1239		ret = bcm2835_spi_setup_dma(ctlr, spi, bs, target);
1240		if (ret)
1241			goto err_cleanup;
1242	}
1243
1244	/*
1245	 * Precalculate SPI target's CS register value for ->prepare_message():
1246	 * The driver always uses software-controlled GPIO chip select, hence
1247	 * set the hardware-controlled native chip select to an invalid value
1248	 * to prevent it from interfering.
1249	 */
1250	cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
1251	if (spi->mode & SPI_CPOL)
1252		cs |= BCM2835_SPI_CS_CPOL;
1253	if (spi->mode & SPI_CPHA)
1254		cs |= BCM2835_SPI_CS_CPHA;
1255	target->prepare_cs = cs;
1256
1257	/*
1258	 * Precalculate SPI target's CS register value to clear RX FIFO
1259	 * in case of a TX-only DMA transfer.
1260	 */
1261	if (ctlr->dma_rx) {
1262		target->clear_rx_cs = cs | BCM2835_SPI_CS_TA |
1263					BCM2835_SPI_CS_DMAEN |
1264					BCM2835_SPI_CS_CLEAR_RX;
 
1265		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
1266					   target->clear_rx_addr,
1267					   sizeof(u32),
1268					   DMA_TO_DEVICE);
1269	}
1270
1271	/*
1272	 * sanity checking the native-chipselects
1273	 */
1274	if (spi->mode & SPI_NO_CS)
1275		return 0;
1276	/*
1277	 * The SPI core has successfully requested the CS GPIO line from the
1278	 * device tree, so we are done.
1279	 */
1280	if (spi_get_csgpiod(spi, 0))
1281		return 0;
1282	if (spi_get_chipselect(spi, 0) > 1) {
1283		/* error in the case of native CS requested with CS > 1
1284		 * officially there is a CS2, but it is not documented
1285		 * which GPIO is connected with that...
1286		 */
1287		dev_err(&spi->dev,
1288			"setup: only two native chip-selects are supported\n");
1289		ret = -EINVAL;
1290		goto err_cleanup;
1291	}
1292
1293	/*
1294	 * TODO: The code below is a slightly better alternative to the utter
1295	 * abuse of the GPIO API that I found here before. It creates a
1296	 * temporary lookup table, assigns it to the SPI device, gets the GPIO
1297	 * descriptor and then releases the lookup table.
1298	 *
1299	 * More on the problem that it addresses:
1300	 *   https://www.spinics.net/lists/linux-gpio/msg36218.html
 
 
1301	 */
1302	lookup = kzalloc(struct_size(lookup, table, 2), GFP_KERNEL);
1303	if (!lookup) {
1304		ret = -ENOMEM;
1305		goto err_cleanup;
1306	}
1307
1308	lookup->dev_id = dev_name(&spi->dev);
1309	lookup->table[0] = GPIO_LOOKUP("pinctrl-bcm2835",
1310				       8 - (spi_get_chipselect(spi, 0)),
1311				       "cs", GPIO_LOOKUP_FLAGS_DEFAULT);
1312
1313	gpiod_add_lookup_table(lookup);
1314
1315	bs->cs_gpio = gpiod_get(&spi->dev, "cs", GPIOD_OUT_LOW);
1316	gpiod_remove_lookup_table(lookup);
1317	if (IS_ERR(bs->cs_gpio)) {
1318		ret = PTR_ERR(bs->cs_gpio);
1319		goto err_cleanup;
1320	}
1321
1322	spi_set_csgpiod(spi, 0, bs->cs_gpio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1323
1324	/* and set up the "mode" and level */
1325	dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
1326		 spi_get_chipselect(spi, 0));
1327
1328	return 0;
1329
1330err_cleanup:
1331	bcm2835_spi_cleanup(spi);
1332	return ret;
1333}
1334
1335static int bcm2835_spi_probe(struct platform_device *pdev)
1336{
1337	struct spi_controller *ctlr;
1338	struct bcm2835_spi *bs;
1339	int err;
1340
1341	ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*bs));
 
1342	if (!ctlr)
1343		return -ENOMEM;
1344
1345	platform_set_drvdata(pdev, ctlr);
1346
1347	ctlr->use_gpio_descriptors = true;
1348	ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
1349	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1350	ctlr->num_chipselect = 3;
1351	ctlr->setup = bcm2835_spi_setup;
1352	ctlr->cleanup = bcm2835_spi_cleanup;
1353	ctlr->transfer_one = bcm2835_spi_transfer_one;
1354	ctlr->handle_err = bcm2835_spi_handle_err;
1355	ctlr->prepare_message = bcm2835_spi_prepare_message;
1356	ctlr->dev.of_node = pdev->dev.of_node;
1357
1358	bs = spi_controller_get_devdata(ctlr);
1359	bs->ctlr = ctlr;
1360
1361	bs->regs = devm_platform_ioremap_resource(pdev, 0);
1362	if (IS_ERR(bs->regs))
1363		return PTR_ERR(bs->regs);
1364
1365	bs->clk = devm_clk_get_enabled(&pdev->dev, NULL);
1366	if (IS_ERR(bs->clk))
1367		return dev_err_probe(&pdev->dev, PTR_ERR(bs->clk),
1368				     "could not get clk\n");
1369
1370	ctlr->max_speed_hz = clk_get_rate(bs->clk) / 2;
 
 
 
 
 
1371
1372	bs->irq = platform_get_irq(pdev, 0);
1373	if (bs->irq < 0)
1374		return bs->irq;
 
 
1375
1376	bs->clk_hz = clk_get_rate(bs->clk);
1377
1378	err = bcm2835_dma_init(ctlr, &pdev->dev, bs);
1379	if (err)
1380		return err;
1381
1382	/* initialise the hardware with the default polarities */
1383	bcm2835_wr(bs, BCM2835_SPI_CS,
1384		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1385
1386	err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt,
1387			       IRQF_SHARED, dev_name(&pdev->dev), bs);
1388	if (err) {
1389		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
1390		goto out_dma_release;
1391	}
1392
1393	err = spi_register_controller(ctlr);
1394	if (err) {
1395		dev_err(&pdev->dev, "could not register SPI controller: %d\n",
1396			err);
1397		goto out_dma_release;
1398	}
1399
1400	bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
1401
1402	return 0;
1403
1404out_dma_release:
1405	bcm2835_dma_release(ctlr, bs);
 
 
1406	return err;
1407}
1408
1409static void bcm2835_spi_remove(struct platform_device *pdev)
1410{
1411	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1412	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1413
1414	bcm2835_debugfs_remove(bs);
1415
1416	spi_unregister_controller(ctlr);
1417
1418	bcm2835_dma_release(ctlr, bs);
1419
1420	/* Clear FIFOs, and disable the HW block */
1421	bcm2835_wr(bs, BCM2835_SPI_CS,
1422		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
 
 
 
 
 
 
1423}
1424
1425static const struct of_device_id bcm2835_spi_match[] = {
1426	{ .compatible = "brcm,bcm2835-spi", },
1427	{}
1428};
1429MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1430
1431static struct platform_driver bcm2835_spi_driver = {
1432	.driver		= {
1433		.name		= DRV_NAME,
1434		.of_match_table	= bcm2835_spi_match,
1435	},
1436	.probe		= bcm2835_spi_probe,
1437	.remove_new	= bcm2835_spi_remove,
1438	.shutdown	= bcm2835_spi_remove,
1439};
1440module_platform_driver(bcm2835_spi_driver);
1441
1442MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1443MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1444MODULE_LICENSE("GPL");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for Broadcom BCM2835 SPI Controllers
   4 *
   5 * Copyright (C) 2012 Chris Boot
   6 * Copyright (C) 2013 Stephen Warren
   7 * Copyright (C) 2015 Martin Sperl
   8 *
   9 * This driver is inspired by:
  10 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
  11 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
  12 */
  13
 
  14#include <linux/clk.h>
  15#include <linux/completion.h>
  16#include <linux/debugfs.h>
  17#include <linux/delay.h>
  18#include <linux/dma-mapping.h>
  19#include <linux/dmaengine.h>
  20#include <linux/err.h>
  21#include <linux/interrupt.h>
  22#include <linux/io.h>
  23#include <linux/kernel.h>
  24#include <linux/module.h>
  25#include <linux/of.h>
  26#include <linux/of_address.h>
  27#include <linux/of_device.h>
  28#include <linux/gpio/consumer.h>
  29#include <linux/gpio/machine.h> /* FIXME: using chip internals */
  30#include <linux/gpio/driver.h> /* FIXME: using chip internals */
  31#include <linux/of_irq.h>
 
 
  32#include <linux/spi/spi.h>
  33
  34/* SPI register offsets */
  35#define BCM2835_SPI_CS			0x00
  36#define BCM2835_SPI_FIFO		0x04
  37#define BCM2835_SPI_CLK			0x08
  38#define BCM2835_SPI_DLEN		0x0c
  39#define BCM2835_SPI_LTOH		0x10
  40#define BCM2835_SPI_DC			0x14
  41
  42/* Bitfields in CS */
  43#define BCM2835_SPI_CS_LEN_LONG		0x02000000
  44#define BCM2835_SPI_CS_DMA_LEN		0x01000000
  45#define BCM2835_SPI_CS_CSPOL2		0x00800000
  46#define BCM2835_SPI_CS_CSPOL1		0x00400000
  47#define BCM2835_SPI_CS_CSPOL0		0x00200000
  48#define BCM2835_SPI_CS_RXF		0x00100000
  49#define BCM2835_SPI_CS_RXR		0x00080000
  50#define BCM2835_SPI_CS_TXD		0x00040000
  51#define BCM2835_SPI_CS_RXD		0x00020000
  52#define BCM2835_SPI_CS_DONE		0x00010000
  53#define BCM2835_SPI_CS_LEN		0x00002000
  54#define BCM2835_SPI_CS_REN		0x00001000
  55#define BCM2835_SPI_CS_ADCS		0x00000800
  56#define BCM2835_SPI_CS_INTR		0x00000400
  57#define BCM2835_SPI_CS_INTD		0x00000200
  58#define BCM2835_SPI_CS_DMAEN		0x00000100
  59#define BCM2835_SPI_CS_TA		0x00000080
  60#define BCM2835_SPI_CS_CSPOL		0x00000040
  61#define BCM2835_SPI_CS_CLEAR_RX		0x00000020
  62#define BCM2835_SPI_CS_CLEAR_TX		0x00000010
  63#define BCM2835_SPI_CS_CPOL		0x00000008
  64#define BCM2835_SPI_CS_CPHA		0x00000004
  65#define BCM2835_SPI_CS_CS_10		0x00000002
  66#define BCM2835_SPI_CS_CS_01		0x00000001
  67
  68#define BCM2835_SPI_FIFO_SIZE		64
  69#define BCM2835_SPI_FIFO_SIZE_3_4	48
  70#define BCM2835_SPI_DMA_MIN_LENGTH	96
  71#define BCM2835_SPI_NUM_CS		3   /* raise as necessary */
  72#define BCM2835_SPI_MODE_BITS	(SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
  73				| SPI_NO_CS | SPI_3WIRE)
  74
  75#define DRV_NAME	"spi-bcm2835"
  76
  77/* define polling limits */
  78unsigned int polling_limit_us = 30;
  79module_param(polling_limit_us, uint, 0664);
  80MODULE_PARM_DESC(polling_limit_us,
  81		 "time in us to run a transfer in polling mode\n");
  82
  83/**
  84 * struct bcm2835_spi - BCM2835 SPI controller
  85 * @regs: base address of register map
  86 * @clk: core clock, divided to calculate serial clock
 
 
  87 * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
  88 * @tfr: SPI transfer currently processed
 
  89 * @tx_buf: pointer whence next transmitted byte is read
  90 * @rx_buf: pointer where next received byte is written
  91 * @tx_len: remaining bytes to transmit
  92 * @rx_len: remaining bytes to receive
  93 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
  94 *	length is not a multiple of 4 (to overcome hardware limitation)
  95 * @rx_prologue: bytes received without DMA if first RX sglist entry's
  96 *	length is not a multiple of 4 (to overcome hardware limitation)
  97 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
  98 * @prepare_cs: precalculated CS register value for ->prepare_message()
  99 *	(uses slave-specific clock polarity and phase settings)
 100 * @debugfs_dir: the debugfs directory - neede to remove debugfs when
 101 *      unloading the module
 102 * @count_transfer_polling: count of how often polling mode is used
 103 * @count_transfer_irq: count of how often interrupt mode is used
 104 * @count_transfer_irq_after_polling: count of how often we fall back to
 105 *      interrupt mode after starting in polling mode.
 106 *      These are counted as well in @count_transfer_polling and
 107 *      @count_transfer_irq
 108 * @count_transfer_dma: count how often dma mode is used
 109 * @chip_select: SPI slave currently selected
 110 *	(used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
 111 * @tx_dma_active: whether a TX DMA descriptor is in progress
 112 * @rx_dma_active: whether a RX DMA descriptor is in progress
 113 *	(used by bcm2835_spi_dma_tx_done() to handle a race)
 114 * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
 115 *	(cyclically copies from zero page to TX FIFO)
 116 * @fill_tx_addr: bus address of zero page
 117 * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
 118 *	(cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
 119 * @clear_rx_addr: bus address of @clear_rx_cs
 120 * @clear_rx_cs: precalculated CS register value to clear RX FIFO
 121 *	(uses slave-specific clock polarity and phase settings)
 122 */
 123struct bcm2835_spi {
 124	void __iomem *regs;
 125	struct clk *clk;
 
 
 126	int irq;
 127	struct spi_transfer *tfr;
 
 128	const u8 *tx_buf;
 129	u8 *rx_buf;
 130	int tx_len;
 131	int rx_len;
 132	int tx_prologue;
 133	int rx_prologue;
 134	unsigned int tx_spillover;
 135	u32 prepare_cs[BCM2835_SPI_NUM_CS];
 136
 137	struct dentry *debugfs_dir;
 138	u64 count_transfer_polling;
 139	u64 count_transfer_irq;
 140	u64 count_transfer_irq_after_polling;
 141	u64 count_transfer_dma;
 142
 143	u8 chip_select;
 144	unsigned int tx_dma_active;
 145	unsigned int rx_dma_active;
 146	struct dma_async_tx_descriptor *fill_tx_desc;
 147	dma_addr_t fill_tx_addr;
 148	struct dma_async_tx_descriptor *clear_rx_desc[BCM2835_SPI_NUM_CS];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 149	dma_addr_t clear_rx_addr;
 150	u32 clear_rx_cs[BCM2835_SPI_NUM_CS] ____cacheline_aligned;
 151};
 152
 153#if defined(CONFIG_DEBUG_FS)
 154static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
 155				   const char *dname)
 156{
 157	char name[64];
 158	struct dentry *dir;
 159
 160	/* get full name */
 161	snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
 162
 163	/* the base directory */
 164	dir = debugfs_create_dir(name, NULL);
 165	bs->debugfs_dir = dir;
 166
 167	/* the counters */
 168	debugfs_create_u64("count_transfer_polling", 0444, dir,
 169			   &bs->count_transfer_polling);
 170	debugfs_create_u64("count_transfer_irq", 0444, dir,
 171			   &bs->count_transfer_irq);
 172	debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
 173			   &bs->count_transfer_irq_after_polling);
 174	debugfs_create_u64("count_transfer_dma", 0444, dir,
 175			   &bs->count_transfer_dma);
 176}
 177
 178static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
 179{
 180	debugfs_remove_recursive(bs->debugfs_dir);
 181	bs->debugfs_dir = NULL;
 182}
 183#else
 184static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
 185				   const char *dname)
 186{
 187}
 188
 189static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
 190{
 191}
 192#endif /* CONFIG_DEBUG_FS */
 193
 194static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned reg)
 195{
 196	return readl(bs->regs + reg);
 197}
 198
 199static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned reg, u32 val)
 200{
 201	writel(val, bs->regs + reg);
 202}
 203
 204static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
 205{
 206	u8 byte;
 207
 208	while ((bs->rx_len) &&
 209	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
 210		byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
 211		if (bs->rx_buf)
 212			*bs->rx_buf++ = byte;
 213		bs->rx_len--;
 214	}
 215}
 216
 217static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
 218{
 219	u8 byte;
 220
 221	while ((bs->tx_len) &&
 222	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
 223		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
 224		bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
 225		bs->tx_len--;
 226	}
 227}
 228
 229/**
 230 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
 231 * @bs: BCM2835 SPI controller
 232 * @count: bytes to read from RX FIFO
 233 *
 234 * The caller must ensure that @bs->rx_len is greater than or equal to @count,
 235 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
 236 * in the CS register is set (such that a read from the FIFO register receives
 237 * 32-bit instead of just 8-bit).  Moreover @bs->rx_buf must not be %NULL.
 238 */
 239static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
 240{
 241	u32 val;
 242	int len;
 243
 244	bs->rx_len -= count;
 245
 246	while (count > 0) {
 247		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
 248		len = min(count, 4);
 249		memcpy(bs->rx_buf, &val, len);
 250		bs->rx_buf += len;
 251		count -= 4;
 252	}
 253}
 254
 255/**
 256 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
 257 * @bs: BCM2835 SPI controller
 258 * @count: bytes to write to TX FIFO
 259 *
 260 * The caller must ensure that @bs->tx_len is greater than or equal to @count,
 261 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
 262 * in the CS register is set (such that a write to the FIFO register transmits
 263 * 32-bit instead of just 8-bit).
 264 */
 265static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
 266{
 267	u32 val;
 268	int len;
 269
 270	bs->tx_len -= count;
 271
 272	while (count > 0) {
 273		if (bs->tx_buf) {
 274			len = min(count, 4);
 275			memcpy(&val, bs->tx_buf, len);
 276			bs->tx_buf += len;
 277		} else {
 278			val = 0;
 279		}
 280		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
 281		count -= 4;
 282	}
 283}
 284
 285/**
 286 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
 287 * @bs: BCM2835 SPI controller
 288 *
 289 * The caller must ensure that the RX FIFO can accommodate as many bytes
 290 * as have been written to the TX FIFO:  Transmission is halted once the
 291 * RX FIFO is full, causing this function to spin forever.
 292 */
 293static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
 294{
 295	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
 296		cpu_relax();
 297}
 298
 299/**
 300 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
 301 * @bs: BCM2835 SPI controller
 302 * @count: bytes available for reading in RX FIFO
 303 */
 304static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
 305{
 306	u8 val;
 307
 308	count = min(count, bs->rx_len);
 309	bs->rx_len -= count;
 310
 311	while (count) {
 312		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
 313		if (bs->rx_buf)
 314			*bs->rx_buf++ = val;
 315		count--;
 316	}
 317}
 318
 319/**
 320 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
 321 * @bs: BCM2835 SPI controller
 322 * @count: bytes available for writing in TX FIFO
 323 */
 324static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
 325{
 326	u8 val;
 327
 328	count = min(count, bs->tx_len);
 329	bs->tx_len -= count;
 330
 331	while (count) {
 332		val = bs->tx_buf ? *bs->tx_buf++ : 0;
 333		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
 334		count--;
 335	}
 336}
 337
 338static void bcm2835_spi_reset_hw(struct spi_controller *ctlr)
 339{
 340	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 341	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
 342
 343	/* Disable SPI interrupts and transfer */
 344	cs &= ~(BCM2835_SPI_CS_INTR |
 345		BCM2835_SPI_CS_INTD |
 346		BCM2835_SPI_CS_DMAEN |
 347		BCM2835_SPI_CS_TA);
 348	/*
 349	 * Transmission sometimes breaks unless the DONE bit is written at the
 350	 * end of every transfer.  The spec says it's a RO bit.  Either the
 351	 * spec is wrong and the bit is actually of type RW1C, or it's a
 352	 * hardware erratum.
 353	 */
 354	cs |= BCM2835_SPI_CS_DONE;
 355	/* and reset RX/TX FIFOS */
 356	cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
 357
 358	/* and reset the SPI_HW */
 359	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
 360	/* as well as DLEN */
 361	bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
 362}
 363
 364static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
 365{
 366	struct spi_controller *ctlr = dev_id;
 367	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 368	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
 369
 
 
 
 
 370	/*
 371	 * An interrupt is signaled either if DONE is set (TX FIFO empty)
 372	 * or if RXR is set (RX FIFO >= ¾ full).
 373	 */
 374	if (cs & BCM2835_SPI_CS_RXF)
 375		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
 376	else if (cs & BCM2835_SPI_CS_RXR)
 377		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
 378
 379	if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
 380		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
 381
 382	/* Read as many bytes as possible from FIFO */
 383	bcm2835_rd_fifo(bs);
 384	/* Write as many bytes as possible to FIFO */
 385	bcm2835_wr_fifo(bs);
 386
 387	if (!bs->rx_len) {
 388		/* Transfer complete - reset SPI HW */
 389		bcm2835_spi_reset_hw(ctlr);
 390		/* wake up the framework */
 391		complete(&ctlr->xfer_completion);
 392	}
 393
 394	return IRQ_HANDLED;
 395}
 396
 397static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
 398					struct spi_device *spi,
 399					struct spi_transfer *tfr,
 400					u32 cs, bool fifo_empty)
 401{
 402	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 403
 404	/* update usage statistics */
 405	bs->count_transfer_irq++;
 406
 407	/*
 408	 * Enable HW block, but with interrupts still disabled.
 409	 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
 410	 */
 411	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
 412
 413	/* fill TX FIFO as much as possible */
 414	if (fifo_empty)
 415		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
 416	bcm2835_wr_fifo(bs);
 417
 418	/* enable interrupts */
 419	cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
 420	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
 421
 422	/* signal that we need to wait for completion */
 423	return 1;
 424}
 425
 426/**
 427 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
 428 * @ctlr: SPI master controller
 429 * @tfr: SPI transfer
 430 * @bs: BCM2835 SPI controller
 431 * @cs: CS register
 432 *
 433 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
 434 * Only the final write access is permitted to transmit less than 4 bytes, the
 435 * SPI controller deduces its intended size from the DLEN register.
 436 *
 437 * If a TX or RX sglist contains multiple entries, one per page, and the first
 438 * entry starts in the middle of a page, that first entry's length may not be
 439 * a multiple of 4.  Subsequent entries are fine because they span an entire
 440 * page, hence do have a length that's a multiple of 4.
 441 *
 442 * This cannot happen with kmalloc'ed buffers (which is what most clients use)
 443 * because they are contiguous in physical memory and therefore not split on
 444 * page boundaries by spi_map_buf().  But it *can* happen with vmalloc'ed
 445 * buffers.
 446 *
 447 * The DMA engine is incapable of combining sglist entries into a continuous
 448 * stream of 4 byte chunks, it treats every entry separately:  A TX entry is
 449 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
 450 * entry is rounded up by throwing away received bytes.
 451 *
 452 * Overcome this limitation by transferring the first few bytes without DMA:
 453 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
 454 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
 455 * The residue of 1 byte in the RX FIFO is picked up by DMA.  Together with
 456 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
 457 *
 458 * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
 459 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
 460 * Caution, the additional 4 bytes spill over to the second TX sglist entry
 461 * if the length of the first is *exactly* 1.
 462 *
 463 * At most 6 bytes are written and at most 3 bytes read.  Do we know the
 464 * transfer has this many bytes?  Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
 465 *
 466 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
 467 * by the DMA engine.  Toggling the DMA Enable flag in the CS register switches
 468 * the width but also garbles the FIFO's contents.  The prologue must therefore
 469 * be transmitted in 32-bit width to ensure that the following DMA transfer can
 470 * pick up the residue in the RX FIFO in ungarbled form.
 471 */
 472static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
 473					  struct spi_transfer *tfr,
 474					  struct bcm2835_spi *bs,
 475					  u32 cs)
 476{
 477	int tx_remaining;
 478
 479	bs->tfr		 = tfr;
 480	bs->tx_prologue  = 0;
 481	bs->rx_prologue  = 0;
 482	bs->tx_spillover = false;
 483
 484	if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
 485		bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
 486
 487	if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
 488		bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
 489
 490		if (bs->rx_prologue > bs->tx_prologue) {
 491			if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
 492				bs->tx_prologue  = bs->rx_prologue;
 493			} else {
 494				bs->tx_prologue += 4;
 495				bs->tx_spillover =
 496					!(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
 497			}
 498		}
 499	}
 500
 501	/* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
 502	if (!bs->tx_prologue)
 503		return;
 504
 505	/* Write and read RX prologue.  Adjust first entry in RX sglist. */
 506	if (bs->rx_prologue) {
 507		bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
 508		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
 509						  | BCM2835_SPI_CS_DMAEN);
 510		bcm2835_wr_fifo_count(bs, bs->rx_prologue);
 511		bcm2835_wait_tx_fifo_empty(bs);
 512		bcm2835_rd_fifo_count(bs, bs->rx_prologue);
 513		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
 514						  | BCM2835_SPI_CS_CLEAR_TX
 515						  | BCM2835_SPI_CS_DONE);
 516
 517		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
 518					   sg_dma_address(&tfr->rx_sg.sgl[0]),
 519					   bs->rx_prologue, DMA_FROM_DEVICE);
 520
 521		sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
 522		sg_dma_len(&tfr->rx_sg.sgl[0])     -= bs->rx_prologue;
 523	}
 524
 525	if (!bs->tx_buf)
 526		return;
 527
 528	/*
 529	 * Write remaining TX prologue.  Adjust first entry in TX sglist.
 530	 * Also adjust second entry if prologue spills over to it.
 531	 */
 532	tx_remaining = bs->tx_prologue - bs->rx_prologue;
 533	if (tx_remaining) {
 534		bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
 535		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
 536						  | BCM2835_SPI_CS_DMAEN);
 537		bcm2835_wr_fifo_count(bs, tx_remaining);
 538		bcm2835_wait_tx_fifo_empty(bs);
 539		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
 540						  | BCM2835_SPI_CS_DONE);
 541	}
 542
 543	if (likely(!bs->tx_spillover)) {
 544		sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
 545		sg_dma_len(&tfr->tx_sg.sgl[0])     -= bs->tx_prologue;
 546	} else {
 547		sg_dma_len(&tfr->tx_sg.sgl[0])      = 0;
 548		sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
 549		sg_dma_len(&tfr->tx_sg.sgl[1])     -= 4;
 550	}
 551}
 552
 553/**
 554 * bcm2835_spi_undo_prologue() - reconstruct original sglist state
 555 * @bs: BCM2835 SPI controller
 556 *
 557 * Undo changes which were made to an SPI transfer's sglist when transmitting
 558 * the prologue.  This is necessary to ensure the same memory ranges are
 559 * unmapped that were originally mapped.
 560 */
 561static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
 562{
 563	struct spi_transfer *tfr = bs->tfr;
 564
 565	if (!bs->tx_prologue)
 566		return;
 567
 568	if (bs->rx_prologue) {
 569		sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
 570		sg_dma_len(&tfr->rx_sg.sgl[0])     += bs->rx_prologue;
 571	}
 572
 573	if (!bs->tx_buf)
 574		goto out;
 575
 576	if (likely(!bs->tx_spillover)) {
 577		sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
 578		sg_dma_len(&tfr->tx_sg.sgl[0])     += bs->tx_prologue;
 579	} else {
 580		sg_dma_len(&tfr->tx_sg.sgl[0])      = bs->tx_prologue - 4;
 581		sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
 582		sg_dma_len(&tfr->tx_sg.sgl[1])     += 4;
 583	}
 584out:
 585	bs->tx_prologue = 0;
 586}
 587
 588/**
 589 * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
 590 * @data: SPI master controller
 591 *
 592 * Used for bidirectional and RX-only transfers.
 593 */
 594static void bcm2835_spi_dma_rx_done(void *data)
 595{
 596	struct spi_controller *ctlr = data;
 597	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 598
 599	/* terminate tx-dma as we do not have an irq for it
 600	 * because when the rx dma will terminate and this callback
 601	 * is called the tx-dma must have finished - can't get to this
 602	 * situation otherwise...
 603	 */
 604	dmaengine_terminate_async(ctlr->dma_tx);
 605	bs->tx_dma_active = false;
 606	bs->rx_dma_active = false;
 607	bcm2835_spi_undo_prologue(bs);
 608
 609	/* reset fifo and HW */
 610	bcm2835_spi_reset_hw(ctlr);
 611
 612	/* and mark as completed */;
 613	complete(&ctlr->xfer_completion);
 614}
 615
 616/**
 617 * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
 618 * @data: SPI master controller
 619 *
 620 * Used for TX-only transfers.
 621 */
 622static void bcm2835_spi_dma_tx_done(void *data)
 623{
 624	struct spi_controller *ctlr = data;
 625	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 626
 627	/* busy-wait for TX FIFO to empty */
 628	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
 629		bcm2835_wr(bs, BCM2835_SPI_CS,
 630			   bs->clear_rx_cs[bs->chip_select]);
 631
 632	bs->tx_dma_active = false;
 633	smp_wmb();
 634
 635	/*
 636	 * In case of a very short transfer, RX DMA may not have been
 637	 * issued yet.  The onus is then on bcm2835_spi_transfer_one_dma()
 638	 * to terminate it immediately after issuing.
 639	 */
 640	if (cmpxchg(&bs->rx_dma_active, true, false))
 641		dmaengine_terminate_async(ctlr->dma_rx);
 642
 643	bcm2835_spi_undo_prologue(bs);
 644	bcm2835_spi_reset_hw(ctlr);
 645	complete(&ctlr->xfer_completion);
 646}
 647
 648/**
 649 * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
 650 * @ctlr: SPI master controller
 651 * @spi: SPI slave
 652 * @tfr: SPI transfer
 653 * @bs: BCM2835 SPI controller
 
 654 * @is_tx: whether to submit DMA descriptor for TX or RX sglist
 655 *
 656 * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
 657 * Return 0 on success or a negative error number.
 658 */
 659static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
 660				  struct spi_device *spi,
 661				  struct spi_transfer *tfr,
 662				  struct bcm2835_spi *bs,
 
 663				  bool is_tx)
 664{
 665	struct dma_chan *chan;
 666	struct scatterlist *sgl;
 667	unsigned int nents;
 668	enum dma_transfer_direction dir;
 669	unsigned long flags;
 670
 671	struct dma_async_tx_descriptor *desc;
 672	dma_cookie_t cookie;
 673
 674	if (is_tx) {
 675		dir   = DMA_MEM_TO_DEV;
 676		chan  = ctlr->dma_tx;
 677		nents = tfr->tx_sg.nents;
 678		sgl   = tfr->tx_sg.sgl;
 679		flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
 680	} else {
 681		dir   = DMA_DEV_TO_MEM;
 682		chan  = ctlr->dma_rx;
 683		nents = tfr->rx_sg.nents;
 684		sgl   = tfr->rx_sg.sgl;
 685		flags = DMA_PREP_INTERRUPT;
 686	}
 687	/* prepare the channel */
 688	desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
 689	if (!desc)
 690		return -EINVAL;
 691
 692	/*
 693	 * Completion is signaled by the RX channel for bidirectional and
 694	 * RX-only transfers; else by the TX channel for TX-only transfers.
 695	 */
 696	if (!is_tx) {
 697		desc->callback = bcm2835_spi_dma_rx_done;
 698		desc->callback_param = ctlr;
 699	} else if (!tfr->rx_buf) {
 700		desc->callback = bcm2835_spi_dma_tx_done;
 701		desc->callback_param = ctlr;
 702		bs->chip_select = spi->chip_select;
 703	}
 704
 705	/* submit it to DMA-engine */
 706	cookie = dmaengine_submit(desc);
 707
 708	return dma_submit_error(cookie);
 709}
 710
 711/**
 712 * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
 713 * @ctlr: SPI master controller
 714 * @spi: SPI slave
 715 * @tfr: SPI transfer
 
 716 * @cs: CS register
 717 *
 718 * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
 719 * the TX and RX DMA channel to copy between memory and FIFO register.
 720 *
 721 * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
 722 * memory is pointless.  However not reading the RX FIFO isn't an option either
 723 * because transmission is halted once it's full.  As a workaround, cyclically
 724 * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
 725 *
 726 * The CS register value is precalculated in bcm2835_spi_setup().  Normally
 727 * this is called only once, on slave registration.  A DMA descriptor to write
 728 * this value is preallocated in bcm2835_dma_init().  All that's left to do
 729 * when performing a TX-only transfer is to submit this descriptor to the RX
 730 * DMA channel.  Latency is thereby minimized.  The descriptor does not
 731 * generate any interrupts while running.  It must be terminated once the
 732 * TX DMA channel is done.
 733 *
 734 * Clearing the RX FIFO is paced by the DREQ signal.  The signal is asserted
 735 * when the RX FIFO becomes half full, i.e. 32 bytes.  (Tuneable with the DC
 736 * register.)  Reading 32 bytes from the RX FIFO would normally require 8 bus
 737 * accesses, whereas clearing it requires only 1 bus access.  So an 8-fold
 738 * reduction in bus traffic and thus energy consumption is achieved.
 739 *
 740 * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
 741 * copying from the zero page.  The DMA descriptor to do this is preallocated
 742 * in bcm2835_dma_init().  It must be terminated once the RX DMA channel is
 743 * done and can then be reused.
 744 *
 745 * The BCM2835 DMA driver autodetects when a transaction copies from the zero
 746 * page and utilizes the DMA controller's ability to synthesize zeroes instead
 747 * of copying them from memory.  This reduces traffic on the memory bus.  The
 748 * feature is not available on so-called "lite" channels, but normally TX DMA
 749 * is backed by a full-featured channel.
 750 *
 751 * Zero-filling the TX FIFO is paced by the DREQ signal.  Unfortunately the
 752 * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
 753 * has been counted down to zero (hardware erratum).  Thus, when the transfer
 754 * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
 755 * (Tuneable with the DC register.)  So up to 9 gratuitous bus accesses are
 756 * performed at the end of an RX-only transfer.
 757 */
 758static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
 759					struct spi_device *spi,
 760					struct spi_transfer *tfr,
 
 761					u32 cs)
 762{
 763	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 764	dma_cookie_t cookie;
 765	int ret;
 766
 767	/* update usage statistics */
 768	bs->count_transfer_dma++;
 769
 770	/*
 771	 * Transfer first few bytes without DMA if length of first TX or RX
 772	 * sglist entry is not a multiple of 4 bytes (hardware limitation).
 773	 */
 774	bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
 775
 776	/* setup tx-DMA */
 777	if (bs->tx_buf) {
 778		ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, true);
 779	} else {
 780		cookie = dmaengine_submit(bs->fill_tx_desc);
 781		ret = dma_submit_error(cookie);
 782	}
 783	if (ret)
 784		goto err_reset_hw;
 785
 786	/* set the DMA length */
 787	bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
 788
 789	/* start the HW */
 790	bcm2835_wr(bs, BCM2835_SPI_CS,
 791		   cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
 792
 793	bs->tx_dma_active = true;
 794	smp_wmb();
 795
 796	/* start TX early */
 797	dma_async_issue_pending(ctlr->dma_tx);
 798
 799	/* setup rx-DMA late - to run transfers while
 800	 * mapping of the rx buffers still takes place
 801	 * this saves 10us or more.
 802	 */
 803	if (bs->rx_buf) {
 804		ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, false);
 805	} else {
 806		cookie = dmaengine_submit(bs->clear_rx_desc[spi->chip_select]);
 807		ret = dma_submit_error(cookie);
 808	}
 809	if (ret) {
 810		/* need to reset on errors */
 811		dmaengine_terminate_sync(ctlr->dma_tx);
 812		bs->tx_dma_active = false;
 813		goto err_reset_hw;
 814	}
 815
 816	/* start rx dma late */
 817	dma_async_issue_pending(ctlr->dma_rx);
 818	bs->rx_dma_active = true;
 819	smp_mb();
 820
 821	/*
 822	 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
 823	 * may run before RX DMA is issued.  Terminate RX DMA if so.
 824	 */
 825	if (!bs->rx_buf && !bs->tx_dma_active &&
 826	    cmpxchg(&bs->rx_dma_active, true, false)) {
 827		dmaengine_terminate_async(ctlr->dma_rx);
 828		bcm2835_spi_reset_hw(ctlr);
 829	}
 830
 831	/* wait for wakeup in framework */
 832	return 1;
 833
 834err_reset_hw:
 835	bcm2835_spi_reset_hw(ctlr);
 836	bcm2835_spi_undo_prologue(bs);
 837	return ret;
 838}
 839
 840static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
 841				struct spi_device *spi,
 842				struct spi_transfer *tfr)
 843{
 844	/* we start DMA efforts only on bigger transfers */
 845	if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
 846		return false;
 847
 848	/* return OK */
 849	return true;
 850}
 851
 852static void bcm2835_dma_release(struct spi_controller *ctlr,
 853				struct bcm2835_spi *bs)
 854{
 855	int i;
 856
 857	if (ctlr->dma_tx) {
 858		dmaengine_terminate_sync(ctlr->dma_tx);
 859
 860		if (bs->fill_tx_desc)
 861			dmaengine_desc_free(bs->fill_tx_desc);
 862
 863		if (bs->fill_tx_addr)
 864			dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
 865					     bs->fill_tx_addr, sizeof(u32),
 866					     DMA_TO_DEVICE,
 867					     DMA_ATTR_SKIP_CPU_SYNC);
 868
 869		dma_release_channel(ctlr->dma_tx);
 870		ctlr->dma_tx = NULL;
 871	}
 872
 873	if (ctlr->dma_rx) {
 874		dmaengine_terminate_sync(ctlr->dma_rx);
 875
 876		for (i = 0; i < BCM2835_SPI_NUM_CS; i++)
 877			if (bs->clear_rx_desc[i])
 878				dmaengine_desc_free(bs->clear_rx_desc[i]);
 879
 880		if (bs->clear_rx_addr)
 881			dma_unmap_single(ctlr->dma_rx->device->dev,
 882					 bs->clear_rx_addr,
 883					 sizeof(bs->clear_rx_cs),
 884					 DMA_TO_DEVICE);
 885
 886		dma_release_channel(ctlr->dma_rx);
 887		ctlr->dma_rx = NULL;
 888	}
 889}
 890
 891static void bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
 892			     struct bcm2835_spi *bs)
 893{
 894	struct dma_slave_config slave_config;
 895	const __be32 *addr;
 896	dma_addr_t dma_reg_base;
 897	int ret, i;
 898
 899	/* base address in dma-space */
 900	addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
 901	if (!addr) {
 902		dev_err(dev, "could not get DMA-register address - not using dma mode\n");
 903		goto err;
 
 904	}
 905	dma_reg_base = be32_to_cpup(addr);
 906
 907	/* get tx/rx dma */
 908	ctlr->dma_tx = dma_request_slave_channel(dev, "tx");
 909	if (!ctlr->dma_tx) {
 910		dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
 
 
 911		goto err;
 912	}
 913	ctlr->dma_rx = dma_request_slave_channel(dev, "rx");
 914	if (!ctlr->dma_rx) {
 915		dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
 
 
 916		goto err_release;
 917	}
 918
 919	/*
 920	 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
 921	 * or, in case of an RX-only transfer, cyclically copies from the zero
 922	 * page to the FIFO using a preallocated, reusable descriptor.
 923	 */
 924	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
 925	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 926
 927	ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
 928	if (ret)
 929		goto err_config;
 930
 931	bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
 932					      ZERO_PAGE(0), 0, sizeof(u32),
 933					      DMA_TO_DEVICE,
 934					      DMA_ATTR_SKIP_CPU_SYNC);
 935	if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
 936		dev_err(dev, "cannot map zero page - not using DMA mode\n");
 937		bs->fill_tx_addr = 0;
 
 938		goto err_release;
 939	}
 940
 941	bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
 942						     bs->fill_tx_addr,
 943						     sizeof(u32), 0,
 944						     DMA_MEM_TO_DEV, 0);
 945	if (!bs->fill_tx_desc) {
 946		dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
 
 947		goto err_release;
 948	}
 949
 950	ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
 951	if (ret) {
 952		dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
 953		goto err_release;
 954	}
 955
 956	/*
 957	 * The RX DMA channel is used bidirectionally:  It either reads the
 958	 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
 959	 * precalculated value to the CS register to clear the RX FIFO.
 960	 */
 961	slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
 962	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 963	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
 964	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 965
 966	ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
 967	if (ret)
 968		goto err_config;
 969
 970	bs->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
 971					   bs->clear_rx_cs,
 972					   sizeof(bs->clear_rx_cs),
 973					   DMA_TO_DEVICE);
 974	if (dma_mapping_error(ctlr->dma_rx->device->dev, bs->clear_rx_addr)) {
 975		dev_err(dev, "cannot map clear_rx_cs - not using DMA mode\n");
 976		bs->clear_rx_addr = 0;
 977		goto err_release;
 978	}
 979
 980	for (i = 0; i < BCM2835_SPI_NUM_CS; i++) {
 981		bs->clear_rx_desc[i] = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
 982					   bs->clear_rx_addr + i * sizeof(u32),
 983					   sizeof(u32), 0,
 984					   DMA_MEM_TO_DEV, 0);
 985		if (!bs->clear_rx_desc[i]) {
 986			dev_err(dev, "cannot prepare clear_rx_desc - not using DMA mode\n");
 987			goto err_release;
 988		}
 989
 990		ret = dmaengine_desc_set_reuse(bs->clear_rx_desc[i]);
 991		if (ret) {
 992			dev_err(dev, "cannot reuse clear_rx_desc - not using DMA mode\n");
 993			goto err_release;
 994		}
 995	}
 996
 997	/* all went well, so set can_dma */
 998	ctlr->can_dma = bcm2835_spi_can_dma;
 999
1000	return;
1001
1002err_config:
1003	dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
1004		ret);
1005err_release:
1006	bcm2835_dma_release(ctlr, bs);
1007err:
1008	return;
 
 
 
 
 
 
 
1009}
1010
1011static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
1012					 struct spi_device *spi,
1013					 struct spi_transfer *tfr,
1014					 u32 cs)
1015{
1016	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1017	unsigned long timeout;
1018
1019	/* update usage statistics */
1020	bs->count_transfer_polling++;
1021
1022	/* enable HW block without interrupts */
1023	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
1024
1025	/* fill in the fifo before timeout calculations
1026	 * if we are interrupted here, then the data is
1027	 * getting transferred by the HW while we are interrupted
1028	 */
1029	bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
1030
1031	/* set the timeout to at least 2 jiffies */
1032	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
1033
1034	/* loop until finished the transfer */
1035	while (bs->rx_len) {
1036		/* fill in tx fifo with remaining data */
1037		bcm2835_wr_fifo(bs);
1038
1039		/* read from fifo as much as possible */
1040		bcm2835_rd_fifo(bs);
1041
1042		/* if there is still data pending to read
1043		 * then check the timeout
1044		 */
1045		if (bs->rx_len && time_after(jiffies, timeout)) {
1046			dev_dbg_ratelimited(&spi->dev,
1047					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
1048					    jiffies - timeout,
1049					    bs->tx_len, bs->rx_len);
1050			/* fall back to interrupt mode */
1051
1052			/* update usage statistics */
1053			bs->count_transfer_irq_after_polling++;
1054
1055			return bcm2835_spi_transfer_one_irq(ctlr, spi,
1056							    tfr, cs, false);
1057		}
1058	}
1059
1060	/* Transfer complete - reset SPI HW */
1061	bcm2835_spi_reset_hw(ctlr);
1062	/* and return without waiting for completion */
1063	return 0;
1064}
1065
1066static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
1067				    struct spi_device *spi,
1068				    struct spi_transfer *tfr)
1069{
1070	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1071	unsigned long spi_hz, clk_hz, cdiv, spi_used_hz;
 
1072	unsigned long hz_per_byte, byte_limit;
1073	u32 cs = bs->prepare_cs[spi->chip_select];
1074
1075	/* set clock */
1076	spi_hz = tfr->speed_hz;
1077	clk_hz = clk_get_rate(bs->clk);
1078
1079	if (spi_hz >= clk_hz / 2) {
1080		cdiv = 2; /* clk_hz/2 is the fastest we can go */
1081	} else if (spi_hz) {
1082		/* CDIV must be a multiple of two */
1083		cdiv = DIV_ROUND_UP(clk_hz, spi_hz);
1084		cdiv += (cdiv % 2);
1085
1086		if (cdiv >= 65536)
1087			cdiv = 0; /* 0 is the slowest we can go */
1088	} else {
1089		cdiv = 0; /* 0 is the slowest we can go */
1090	}
1091	spi_used_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536);
1092	bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
1093
1094	/* handle all the 3-wire mode */
1095	if (spi->mode & SPI_3WIRE && tfr->rx_buf)
1096		cs |= BCM2835_SPI_CS_REN;
1097
1098	/* set transmit buffers and length */
1099	bs->tx_buf = tfr->tx_buf;
1100	bs->rx_buf = tfr->rx_buf;
1101	bs->tx_len = tfr->len;
1102	bs->rx_len = tfr->len;
1103
1104	/* Calculate the estimated time in us the transfer runs.  Note that
1105	 * there is 1 idle clocks cycles after each byte getting transferred
1106	 * so we have 9 cycles/byte.  This is used to find the number of Hz
1107	 * per byte per polling limit.  E.g., we can transfer 1 byte in 30 us
1108	 * per 300,000 Hz of bus clock.
1109	 */
1110	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
1111	byte_limit = hz_per_byte ? spi_used_hz / hz_per_byte : 1;
1112
1113	/* run in polling mode for short transfers */
1114	if (tfr->len < byte_limit)
1115		return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
1116
1117	/* run in dma mode if conditions are right
1118	 * Note that unlike poll or interrupt mode DMA mode does not have
1119	 * this 1 idle clock cycle pattern but runs the spi clock without gaps
1120	 */
1121	if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
1122		return bcm2835_spi_transfer_one_dma(ctlr, spi, tfr, cs);
1123
1124	/* run in interrupt-mode */
1125	return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
1126}
1127
1128static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
1129				       struct spi_message *msg)
1130{
1131	struct spi_device *spi = msg->spi;
1132	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 
1133	int ret;
1134
1135	if (ctlr->can_dma) {
1136		/*
1137		 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
1138		 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
1139		 * aligned) if the limit is exceeded.
1140		 */
1141		ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
1142						  GFP_KERNEL | GFP_DMA);
1143		if (ret)
1144			return ret;
1145	}
1146
1147	/*
1148	 * Set up clock polarity before spi_transfer_one_message() asserts
1149	 * chip select to avoid a gratuitous clock signal edge.
1150	 */
1151	bcm2835_wr(bs, BCM2835_SPI_CS, bs->prepare_cs[spi->chip_select]);
1152
1153	return 0;
1154}
1155
1156static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
1157				   struct spi_message *msg)
1158{
1159	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1160
1161	/* if an error occurred and we have an active dma, then terminate */
1162	dmaengine_terminate_sync(ctlr->dma_tx);
1163	bs->tx_dma_active = false;
1164	dmaengine_terminate_sync(ctlr->dma_rx);
1165	bs->rx_dma_active = false;
 
 
 
 
1166	bcm2835_spi_undo_prologue(bs);
1167
1168	/* and reset */
1169	bcm2835_spi_reset_hw(ctlr);
1170}
1171
1172static int chip_match_name(struct gpio_chip *chip, void *data)
1173{
1174	return !strcmp(chip->label, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1175}
1176
1177static int bcm2835_spi_setup(struct spi_device *spi)
1178{
1179	struct spi_controller *ctlr = spi->controller;
1180	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1181	struct gpio_chip *chip;
1182	enum gpio_lookup_flags lflags;
 
1183	u32 cs;
1184
 
 
 
 
 
 
 
 
 
 
 
 
 
1185	/*
1186	 * Precalculate SPI slave's CS register value for ->prepare_message():
1187	 * The driver always uses software-controlled GPIO chip select, hence
1188	 * set the hardware-controlled native chip select to an invalid value
1189	 * to prevent it from interfering.
1190	 */
1191	cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
1192	if (spi->mode & SPI_CPOL)
1193		cs |= BCM2835_SPI_CS_CPOL;
1194	if (spi->mode & SPI_CPHA)
1195		cs |= BCM2835_SPI_CS_CPHA;
1196	bs->prepare_cs[spi->chip_select] = cs;
1197
1198	/*
1199	 * Precalculate SPI slave's CS register value to clear RX FIFO
1200	 * in case of a TX-only DMA transfer.
1201	 */
1202	if (ctlr->dma_rx) {
1203		bs->clear_rx_cs[spi->chip_select] = cs |
1204						    BCM2835_SPI_CS_TA |
1205						    BCM2835_SPI_CS_DMAEN |
1206						    BCM2835_SPI_CS_CLEAR_RX;
1207		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
1208					   bs->clear_rx_addr,
1209					   sizeof(bs->clear_rx_cs),
1210					   DMA_TO_DEVICE);
1211	}
1212
1213	/*
1214	 * sanity checking the native-chipselects
1215	 */
1216	if (spi->mode & SPI_NO_CS)
1217		return 0;
1218	/*
1219	 * The SPI core has successfully requested the CS GPIO line from the
1220	 * device tree, so we are done.
1221	 */
1222	if (spi->cs_gpiod)
1223		return 0;
1224	if (spi->chip_select > 1) {
1225		/* error in the case of native CS requested with CS > 1
1226		 * officially there is a CS2, but it is not documented
1227		 * which GPIO is connected with that...
1228		 */
1229		dev_err(&spi->dev,
1230			"setup: only two native chip-selects are supported\n");
1231		return -EINVAL;
 
1232	}
1233
1234	/*
1235	 * Translate native CS to GPIO
 
 
 
1236	 *
1237	 * FIXME: poking around in the gpiolib internals like this is
1238	 * not very good practice. Find a way to locate the real problem
1239	 * and fix it. Why is the GPIO descriptor in spi->cs_gpiod
1240	 * sometimes not assigned correctly? Erroneous device trees?
1241	 */
 
 
 
 
 
 
 
 
 
 
1242
1243	/* get the gpio chip for the base */
1244	chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
1245	if (!chip)
1246		return 0;
 
 
 
 
1247
1248	/*
1249	 * Retrieve the corresponding GPIO line used for CS.
1250	 * The inversion semantics will be handled by the GPIO core
1251	 * code, so we pass GPIOS_OUT_LOW for "unasserted" and
1252	 * the correct flag for inversion semantics. The SPI_CS_HIGH
1253	 * on spi->mode cannot be checked for polarity in this case
1254	 * as the flag use_gpio_descriptors enforces SPI_CS_HIGH.
1255	 */
1256	if (of_property_read_bool(spi->dev.of_node, "spi-cs-high"))
1257		lflags = GPIO_ACTIVE_HIGH;
1258	else
1259		lflags = GPIO_ACTIVE_LOW;
1260	spi->cs_gpiod = gpiochip_request_own_desc(chip, 8 - spi->chip_select,
1261						  DRV_NAME,
1262						  lflags,
1263						  GPIOD_OUT_LOW);
1264	if (IS_ERR(spi->cs_gpiod))
1265		return PTR_ERR(spi->cs_gpiod);
1266
1267	/* and set up the "mode" and level */
1268	dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
1269		 spi->chip_select);
1270
1271	return 0;
 
 
 
 
1272}
1273
1274static int bcm2835_spi_probe(struct platform_device *pdev)
1275{
1276	struct spi_controller *ctlr;
1277	struct bcm2835_spi *bs;
1278	int err;
1279
1280	ctlr = spi_alloc_master(&pdev->dev, ALIGN(sizeof(*bs),
1281						  dma_get_cache_alignment()));
1282	if (!ctlr)
1283		return -ENOMEM;
1284
1285	platform_set_drvdata(pdev, ctlr);
1286
1287	ctlr->use_gpio_descriptors = true;
1288	ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
1289	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1290	ctlr->num_chipselect = BCM2835_SPI_NUM_CS;
1291	ctlr->setup = bcm2835_spi_setup;
 
1292	ctlr->transfer_one = bcm2835_spi_transfer_one;
1293	ctlr->handle_err = bcm2835_spi_handle_err;
1294	ctlr->prepare_message = bcm2835_spi_prepare_message;
1295	ctlr->dev.of_node = pdev->dev.of_node;
1296
1297	bs = spi_controller_get_devdata(ctlr);
 
1298
1299	bs->regs = devm_platform_ioremap_resource(pdev, 0);
1300	if (IS_ERR(bs->regs)) {
1301		err = PTR_ERR(bs->regs);
1302		goto out_controller_put;
1303	}
 
 
 
1304
1305	bs->clk = devm_clk_get(&pdev->dev, NULL);
1306	if (IS_ERR(bs->clk)) {
1307		err = PTR_ERR(bs->clk);
1308		dev_err(&pdev->dev, "could not get clk: %d\n", err);
1309		goto out_controller_put;
1310	}
1311
1312	bs->irq = platform_get_irq(pdev, 0);
1313	if (bs->irq <= 0) {
1314		err = bs->irq ? bs->irq : -ENODEV;
1315		goto out_controller_put;
1316	}
1317
1318	clk_prepare_enable(bs->clk);
1319
1320	bcm2835_dma_init(ctlr, &pdev->dev, bs);
 
 
1321
1322	/* initialise the hardware with the default polarities */
1323	bcm2835_wr(bs, BCM2835_SPI_CS,
1324		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1325
1326	err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
1327			       dev_name(&pdev->dev), ctlr);
1328	if (err) {
1329		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
1330		goto out_clk_disable;
1331	}
1332
1333	err = devm_spi_register_controller(&pdev->dev, ctlr);
1334	if (err) {
1335		dev_err(&pdev->dev, "could not register SPI controller: %d\n",
1336			err);
1337		goto out_clk_disable;
1338	}
1339
1340	bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
1341
1342	return 0;
1343
1344out_clk_disable:
1345	clk_disable_unprepare(bs->clk);
1346out_controller_put:
1347	spi_controller_put(ctlr);
1348	return err;
1349}
1350
1351static int bcm2835_spi_remove(struct platform_device *pdev)
1352{
1353	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1354	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1355
1356	bcm2835_debugfs_remove(bs);
1357
 
 
 
 
1358	/* Clear FIFOs, and disable the HW block */
1359	bcm2835_wr(bs, BCM2835_SPI_CS,
1360		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1361
1362	clk_disable_unprepare(bs->clk);
1363
1364	bcm2835_dma_release(ctlr, bs);
1365
1366	return 0;
1367}
1368
1369static const struct of_device_id bcm2835_spi_match[] = {
1370	{ .compatible = "brcm,bcm2835-spi", },
1371	{}
1372};
1373MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1374
1375static struct platform_driver bcm2835_spi_driver = {
1376	.driver		= {
1377		.name		= DRV_NAME,
1378		.of_match_table	= bcm2835_spi_match,
1379	},
1380	.probe		= bcm2835_spi_probe,
1381	.remove		= bcm2835_spi_remove,
 
1382};
1383module_platform_driver(bcm2835_spi_driver);
1384
1385MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1386MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1387MODULE_LICENSE("GPL");