Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
   3	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
   4	<http://rt2x00.serialmonkey.com>
   5
   6	This program is free software; you can redistribute it and/or modify
   7	it under the terms of the GNU General Public License as published by
   8	the Free Software Foundation; either version 2 of the License, or
   9	(at your option) any later version.
  10
  11	This program is distributed in the hope that it will be useful,
  12	but WITHOUT ANY WARRANTY; without even the implied warranty of
  13	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14	GNU General Public License for more details.
  15
  16	You should have received a copy of the GNU General Public License
  17	along with this program; if not, write to the
  18	Free Software Foundation, Inc.,
  19	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  20 */
  21
  22/*
  23	Module: rt2x00lib
  24	Abstract: rt2x00 generic device routines.
  25 */
  26
  27#include <linux/kernel.h>
  28#include <linux/module.h>
  29#include <linux/slab.h>
  30#include <linux/log2.h>
  31
  32#include "rt2x00.h"
  33#include "rt2x00lib.h"
  34
  35/*
  36 * Radio control handlers.
  37 */
  38int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
  39{
  40	int status;
  41
  42	/*
  43	 * Don't enable the radio twice.
  44	 * And check if the hardware button has been disabled.
  45	 */
  46	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  47		return 0;
  48
  49	/*
  50	 * Initialize all data queues.
  51	 */
  52	rt2x00queue_init_queues(rt2x00dev);
  53
  54	/*
  55	 * Enable radio.
  56	 */
  57	status =
  58	    rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
  59	if (status)
  60		return status;
  61
  62	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
  63
  64	rt2x00leds_led_radio(rt2x00dev, true);
  65	rt2x00led_led_activity(rt2x00dev, true);
  66
  67	set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
  68
  69	/*
  70	 * Enable queues.
  71	 */
  72	rt2x00queue_start_queues(rt2x00dev);
  73	rt2x00link_start_tuner(rt2x00dev);
  74	rt2x00link_start_agc(rt2x00dev);
  75
  76	/*
  77	 * Start watchdog monitoring.
  78	 */
  79	rt2x00link_start_watchdog(rt2x00dev);
  80
  81	return 0;
  82}
  83
  84void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
  85{
  86	if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  87		return;
  88
  89	/*
  90	 * Stop watchdog monitoring.
  91	 */
  92	rt2x00link_stop_watchdog(rt2x00dev);
  93
  94	/*
  95	 * Stop all queues
  96	 */
  97	rt2x00link_stop_agc(rt2x00dev);
  98	rt2x00link_stop_tuner(rt2x00dev);
  99	rt2x00queue_stop_queues(rt2x00dev);
 100	rt2x00queue_flush_queues(rt2x00dev, true);
 101
 102	/*
 103	 * Disable radio.
 104	 */
 105	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
 106	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
 107	rt2x00led_led_activity(rt2x00dev, false);
 108	rt2x00leds_led_radio(rt2x00dev, false);
 109}
 110
 111static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
 112					  struct ieee80211_vif *vif)
 113{
 114	struct rt2x00_dev *rt2x00dev = data;
 115	struct rt2x00_intf *intf = vif_to_intf(vif);
 116
 117	/*
 118	 * It is possible the radio was disabled while the work had been
 119	 * scheduled. If that happens we should return here immediately,
 120	 * note that in the spinlock protected area above the delayed_flags
 121	 * have been cleared correctly.
 122	 */
 123	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 124		return;
 125
 126	if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
 127		rt2x00queue_update_beacon(rt2x00dev, vif);
 128}
 129
 130static void rt2x00lib_intf_scheduled(struct work_struct *work)
 131{
 132	struct rt2x00_dev *rt2x00dev =
 133	    container_of(work, struct rt2x00_dev, intf_work);
 134
 135	/*
 136	 * Iterate over each interface and perform the
 137	 * requested configurations.
 138	 */
 139	ieee80211_iterate_active_interfaces(rt2x00dev->hw,
 140					    rt2x00lib_intf_scheduled_iter,
 141					    rt2x00dev);
 142}
 143
 144static void rt2x00lib_autowakeup(struct work_struct *work)
 145{
 146	struct rt2x00_dev *rt2x00dev =
 147	    container_of(work, struct rt2x00_dev, autowakeup_work.work);
 148
 149	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
 150		return;
 151
 152	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 153		ERROR(rt2x00dev, "Device failed to wakeup.\n");
 154	clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
 155}
 156
 157/*
 158 * Interrupt context handlers.
 159 */
 160static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
 161				     struct ieee80211_vif *vif)
 162{
 163	struct rt2x00_dev *rt2x00dev = data;
 164	struct sk_buff *skb;
 165
 166	/*
 167	 * Only AP mode interfaces do broad- and multicast buffering
 168	 */
 169	if (vif->type != NL80211_IFTYPE_AP)
 170		return;
 171
 172	/*
 173	 * Send out buffered broad- and multicast frames
 174	 */
 175	skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
 176	while (skb) {
 177		rt2x00mac_tx(rt2x00dev->hw, skb);
 178		skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
 179	}
 180}
 181
 182static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
 183					struct ieee80211_vif *vif)
 184{
 185	struct rt2x00_dev *rt2x00dev = data;
 186
 187	if (vif->type != NL80211_IFTYPE_AP &&
 188	    vif->type != NL80211_IFTYPE_ADHOC &&
 189	    vif->type != NL80211_IFTYPE_MESH_POINT &&
 190	    vif->type != NL80211_IFTYPE_WDS)
 191		return;
 192
 193	/*
 194	 * Update the beacon without locking. This is safe on PCI devices
 195	 * as they only update the beacon periodically here. This should
 196	 * never be called for USB devices.
 197	 */
 198	WARN_ON(rt2x00_is_usb(rt2x00dev));
 199	rt2x00queue_update_beacon_locked(rt2x00dev, vif);
 200}
 201
 202void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
 203{
 204	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 205		return;
 206
 207	/* send buffered bc/mc frames out for every bssid */
 208	ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
 209						   rt2x00lib_bc_buffer_iter,
 210						   rt2x00dev);
 211	/*
 212	 * Devices with pre tbtt interrupt don't need to update the beacon
 213	 * here as they will fetch the next beacon directly prior to
 214	 * transmission.
 215	 */
 216	if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
 217		return;
 218
 219	/* fetch next beacon */
 220	ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
 221						   rt2x00lib_beaconupdate_iter,
 222						   rt2x00dev);
 223}
 224EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
 225
 226void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
 227{
 228	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 229		return;
 230
 231	/* fetch next beacon */
 232	ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
 233						   rt2x00lib_beaconupdate_iter,
 234						   rt2x00dev);
 235}
 236EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
 237
 238void rt2x00lib_dmastart(struct queue_entry *entry)
 239{
 240	set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
 241	rt2x00queue_index_inc(entry, Q_INDEX);
 242}
 243EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
 244
 245void rt2x00lib_dmadone(struct queue_entry *entry)
 246{
 247	set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
 248	clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
 249	rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
 250}
 251EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
 252
 253void rt2x00lib_txdone(struct queue_entry *entry,
 254		      struct txdone_entry_desc *txdesc)
 255{
 256	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 257	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
 258	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 259	unsigned int header_length, i;
 260	u8 rate_idx, rate_flags, retry_rates;
 261	u8 skbdesc_flags = skbdesc->flags;
 262	bool success;
 263
 264	/*
 265	 * Unmap the skb.
 266	 */
 267	rt2x00queue_unmap_skb(entry);
 268
 269	/*
 270	 * Remove the extra tx headroom from the skb.
 271	 */
 272	skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
 273
 274	/*
 275	 * Signal that the TX descriptor is no longer in the skb.
 276	 */
 277	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
 278
 279	/*
 280	 * Determine the length of 802.11 header.
 281	 */
 282	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
 283
 284	/*
 285	 * Remove L2 padding which was added during
 286	 */
 287	if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
 288		rt2x00queue_remove_l2pad(entry->skb, header_length);
 289
 290	/*
 291	 * If the IV/EIV data was stripped from the frame before it was
 292	 * passed to the hardware, we should now reinsert it again because
 293	 * mac80211 will expect the same data to be present it the
 294	 * frame as it was passed to us.
 295	 */
 296	if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
 297		rt2x00crypto_tx_insert_iv(entry->skb, header_length);
 298
 299	/*
 300	 * Send frame to debugfs immediately, after this call is completed
 301	 * we are going to overwrite the skb->cb array.
 302	 */
 303	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
 304
 305	/*
 306	 * Determine if the frame has been successfully transmitted.
 307	 */
 308	success =
 309	    test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
 310	    test_bit(TXDONE_UNKNOWN, &txdesc->flags);
 311
 312	/*
 313	 * Update TX statistics.
 314	 */
 315	rt2x00dev->link.qual.tx_success += success;
 316	rt2x00dev->link.qual.tx_failed += !success;
 317
 318	rate_idx = skbdesc->tx_rate_idx;
 319	rate_flags = skbdesc->tx_rate_flags;
 320	retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
 321	    (txdesc->retry + 1) : 1;
 322
 323	/*
 324	 * Initialize TX status
 325	 */
 326	memset(&tx_info->status, 0, sizeof(tx_info->status));
 327	tx_info->status.ack_signal = 0;
 328
 329	/*
 330	 * Frame was send with retries, hardware tried
 331	 * different rates to send out the frame, at each
 332	 * retry it lowered the rate 1 step except when the
 333	 * lowest rate was used.
 334	 */
 335	for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
 336		tx_info->status.rates[i].idx = rate_idx - i;
 337		tx_info->status.rates[i].flags = rate_flags;
 338
 339		if (rate_idx - i == 0) {
 340			/*
 341			 * The lowest rate (index 0) was used until the
 342			 * number of max retries was reached.
 343			 */
 344			tx_info->status.rates[i].count = retry_rates - i;
 345			i++;
 346			break;
 347		}
 348		tx_info->status.rates[i].count = 1;
 349	}
 350	if (i < (IEEE80211_TX_MAX_RATES - 1))
 351		tx_info->status.rates[i].idx = -1; /* terminate */
 352
 353	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
 354		if (success)
 355			tx_info->flags |= IEEE80211_TX_STAT_ACK;
 356		else
 357			rt2x00dev->low_level_stats.dot11ACKFailureCount++;
 358	}
 359
 360	/*
 361	 * Every single frame has it's own tx status, hence report
 362	 * every frame as ampdu of size 1.
 363	 *
 364	 * TODO: if we can find out how many frames were aggregated
 365	 * by the hw we could provide the real ampdu_len to mac80211
 366	 * which would allow the rc algorithm to better decide on
 367	 * which rates are suitable.
 368	 */
 369	if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
 370	    tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
 371		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
 372		tx_info->status.ampdu_len = 1;
 373		tx_info->status.ampdu_ack_len = success ? 1 : 0;
 374
 375		if (!success)
 376			tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
 377	}
 378
 379	if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
 380		if (success)
 381			rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
 382		else
 383			rt2x00dev->low_level_stats.dot11RTSFailureCount++;
 384	}
 385
 386	/*
 387	 * Only send the status report to mac80211 when it's a frame
 388	 * that originated in mac80211. If this was a extra frame coming
 389	 * through a mac80211 library call (RTS/CTS) then we should not
 390	 * send the status report back.
 391	 */
 392	if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
 393		if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
 394			ieee80211_tx_status(rt2x00dev->hw, entry->skb);
 395		else
 396			ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
 397	} else
 398		dev_kfree_skb_any(entry->skb);
 399
 400	/*
 401	 * Make this entry available for reuse.
 402	 */
 403	entry->skb = NULL;
 404	entry->flags = 0;
 405
 406	rt2x00dev->ops->lib->clear_entry(entry);
 407
 408	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
 409
 410	/*
 411	 * If the data queue was below the threshold before the txdone
 412	 * handler we must make sure the packet queue in the mac80211 stack
 413	 * is reenabled when the txdone handler has finished.
 414	 */
 415	if (!rt2x00queue_threshold(entry->queue))
 416		rt2x00queue_unpause_queue(entry->queue);
 417}
 418EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
 419
 420void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
 421{
 422	struct txdone_entry_desc txdesc;
 423
 424	txdesc.flags = 0;
 425	__set_bit(status, &txdesc.flags);
 426	txdesc.retry = 0;
 427
 428	rt2x00lib_txdone(entry, &txdesc);
 429}
 430EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
 431
 432static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
 433{
 434	struct ieee80211_mgmt *mgmt = (void *)data;
 435	u8 *pos, *end;
 436
 437	pos = (u8 *)mgmt->u.beacon.variable;
 438	end = data + len;
 439	while (pos < end) {
 440		if (pos + 2 + pos[1] > end)
 441			return NULL;
 442
 443		if (pos[0] == ie)
 444			return pos;
 445
 446		pos += 2 + pos[1];
 447	}
 448
 449	return NULL;
 450}
 451
 452static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
 453				      struct sk_buff *skb,
 454				      struct rxdone_entry_desc *rxdesc)
 455{
 456	struct ieee80211_hdr *hdr = (void *) skb->data;
 457	struct ieee80211_tim_ie *tim_ie;
 458	u8 *tim;
 459	u8 tim_len;
 460	bool cam;
 461
 462	/* If this is not a beacon, or if mac80211 has no powersaving
 463	 * configured, or if the device is already in powersaving mode
 464	 * we can exit now. */
 465	if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
 466		   !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
 467		return;
 468
 469	/* min. beacon length + FCS_LEN */
 470	if (skb->len <= 40 + FCS_LEN)
 471		return;
 472
 473	/* and only beacons from the associated BSSID, please */
 474	if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
 475	    !rt2x00dev->aid)
 476		return;
 477
 478	rt2x00dev->last_beacon = jiffies;
 479
 480	tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
 481	if (!tim)
 482		return;
 483
 484	if (tim[1] < sizeof(*tim_ie))
 485		return;
 486
 487	tim_len = tim[1];
 488	tim_ie = (struct ieee80211_tim_ie *) &tim[2];
 489
 490	/* Check whenever the PHY can be turned off again. */
 491
 492	/* 1. What about buffered unicast traffic for our AID? */
 493	cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
 494
 495	/* 2. Maybe the AP wants to send multicast/broadcast data? */
 496	cam |= (tim_ie->bitmap_ctrl & 0x01);
 497
 498	if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
 499		rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
 500				 IEEE80211_CONF_CHANGE_PS);
 501}
 502
 503static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
 504					struct rxdone_entry_desc *rxdesc)
 505{
 506	struct ieee80211_supported_band *sband;
 507	const struct rt2x00_rate *rate;
 508	unsigned int i;
 509	int signal = rxdesc->signal;
 510	int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
 511
 512	switch (rxdesc->rate_mode) {
 513	case RATE_MODE_CCK:
 514	case RATE_MODE_OFDM:
 515		/*
 516		 * For non-HT rates the MCS value needs to contain the
 517		 * actually used rate modulation (CCK or OFDM).
 518		 */
 519		if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
 520			signal = RATE_MCS(rxdesc->rate_mode, signal);
 521
 522		sband = &rt2x00dev->bands[rt2x00dev->curr_band];
 523		for (i = 0; i < sband->n_bitrates; i++) {
 524			rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
 525			if (((type == RXDONE_SIGNAL_PLCP) &&
 526			     (rate->plcp == signal)) ||
 527			    ((type == RXDONE_SIGNAL_BITRATE) &&
 528			      (rate->bitrate == signal)) ||
 529			    ((type == RXDONE_SIGNAL_MCS) &&
 530			      (rate->mcs == signal))) {
 531				return i;
 532			}
 533		}
 534		break;
 535	case RATE_MODE_HT_MIX:
 536	case RATE_MODE_HT_GREENFIELD:
 537		if (signal >= 0 && signal <= 76)
 538			return signal;
 539		break;
 540	default:
 541		break;
 542	}
 543
 544	WARNING(rt2x00dev, "Frame received with unrecognized signal, "
 545		"mode=0x%.4x, signal=0x%.4x, type=%d.\n",
 546		rxdesc->rate_mode, signal, type);
 547	return 0;
 548}
 549
 550void rt2x00lib_rxdone(struct queue_entry *entry)
 551{
 552	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 553	struct rxdone_entry_desc rxdesc;
 554	struct sk_buff *skb;
 555	struct ieee80211_rx_status *rx_status;
 556	unsigned int header_length;
 557	int rate_idx;
 558
 559	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
 560	    !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 561		goto submit_entry;
 562
 563	if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
 564		goto submit_entry;
 565
 566	/*
 567	 * Allocate a new sk_buffer. If no new buffer available, drop the
 568	 * received frame and reuse the existing buffer.
 569	 */
 570	skb = rt2x00queue_alloc_rxskb(entry);
 571	if (!skb)
 572		goto submit_entry;
 573
 574	/*
 575	 * Unmap the skb.
 576	 */
 577	rt2x00queue_unmap_skb(entry);
 578
 579	/*
 580	 * Extract the RXD details.
 581	 */
 582	memset(&rxdesc, 0, sizeof(rxdesc));
 583	rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
 584
 585	/*
 586	 * Check for valid size in case we get corrupted descriptor from
 587	 * hardware.
 588	 */
 589	if (unlikely(rxdesc.size == 0 ||
 590		     rxdesc.size > entry->queue->data_size)) {
 591		WARNING(rt2x00dev, "Wrong frame size %d max %d.\n",
 592			rxdesc.size, entry->queue->data_size);
 593		dev_kfree_skb(entry->skb);
 594		goto renew_skb;
 595	}
 596
 597	/*
 598	 * The data behind the ieee80211 header must be
 599	 * aligned on a 4 byte boundary.
 600	 */
 601	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
 602
 603	/*
 604	 * Hardware might have stripped the IV/EIV/ICV data,
 605	 * in that case it is possible that the data was
 606	 * provided separately (through hardware descriptor)
 607	 * in which case we should reinsert the data into the frame.
 608	 */
 609	if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
 610	    (rxdesc.flags & RX_FLAG_IV_STRIPPED))
 611		rt2x00crypto_rx_insert_iv(entry->skb, header_length,
 612					  &rxdesc);
 613	else if (header_length &&
 614		 (rxdesc.size > header_length) &&
 615		 (rxdesc.dev_flags & RXDONE_L2PAD))
 616		rt2x00queue_remove_l2pad(entry->skb, header_length);
 617
 618	/* Trim buffer to correct size */
 619	skb_trim(entry->skb, rxdesc.size);
 620
 621	/*
 622	 * Translate the signal to the correct bitrate index.
 623	 */
 624	rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
 625	if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
 626	    rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
 627		rxdesc.flags |= RX_FLAG_HT;
 628
 629	/*
 630	 * Check if this is a beacon, and more frames have been
 631	 * buffered while we were in powersaving mode.
 632	 */
 633	rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
 634
 635	/*
 636	 * Update extra components
 637	 */
 638	rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
 639	rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
 640	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
 641
 642	/*
 643	 * Initialize RX status information, and send frame
 644	 * to mac80211.
 645	 */
 646	rx_status = IEEE80211_SKB_RXCB(entry->skb);
 647	rx_status->mactime = rxdesc.timestamp;
 648	rx_status->band = rt2x00dev->curr_band;
 649	rx_status->freq = rt2x00dev->curr_freq;
 650	rx_status->rate_idx = rate_idx;
 651	rx_status->signal = rxdesc.rssi;
 652	rx_status->flag = rxdesc.flags;
 653	rx_status->antenna = rt2x00dev->link.ant.active.rx;
 654
 655	ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
 656
 657renew_skb:
 658	/*
 659	 * Replace the skb with the freshly allocated one.
 660	 */
 661	entry->skb = skb;
 662
 663submit_entry:
 664	entry->flags = 0;
 665	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
 666	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
 667	    test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 668		rt2x00dev->ops->lib->clear_entry(entry);
 669}
 670EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
 671
 672/*
 673 * Driver initialization handlers.
 674 */
 675const struct rt2x00_rate rt2x00_supported_rates[12] = {
 676	{
 677		.flags = DEV_RATE_CCK,
 678		.bitrate = 10,
 679		.ratemask = BIT(0),
 680		.plcp = 0x00,
 681		.mcs = RATE_MCS(RATE_MODE_CCK, 0),
 682	},
 683	{
 684		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 685		.bitrate = 20,
 686		.ratemask = BIT(1),
 687		.plcp = 0x01,
 688		.mcs = RATE_MCS(RATE_MODE_CCK, 1),
 689	},
 690	{
 691		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 692		.bitrate = 55,
 693		.ratemask = BIT(2),
 694		.plcp = 0x02,
 695		.mcs = RATE_MCS(RATE_MODE_CCK, 2),
 696	},
 697	{
 698		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 699		.bitrate = 110,
 700		.ratemask = BIT(3),
 701		.plcp = 0x03,
 702		.mcs = RATE_MCS(RATE_MODE_CCK, 3),
 703	},
 704	{
 705		.flags = DEV_RATE_OFDM,
 706		.bitrate = 60,
 707		.ratemask = BIT(4),
 708		.plcp = 0x0b,
 709		.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
 710	},
 711	{
 712		.flags = DEV_RATE_OFDM,
 713		.bitrate = 90,
 714		.ratemask = BIT(5),
 715		.plcp = 0x0f,
 716		.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
 717	},
 718	{
 719		.flags = DEV_RATE_OFDM,
 720		.bitrate = 120,
 721		.ratemask = BIT(6),
 722		.plcp = 0x0a,
 723		.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
 724	},
 725	{
 726		.flags = DEV_RATE_OFDM,
 727		.bitrate = 180,
 728		.ratemask = BIT(7),
 729		.plcp = 0x0e,
 730		.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
 731	},
 732	{
 733		.flags = DEV_RATE_OFDM,
 734		.bitrate = 240,
 735		.ratemask = BIT(8),
 736		.plcp = 0x09,
 737		.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
 738	},
 739	{
 740		.flags = DEV_RATE_OFDM,
 741		.bitrate = 360,
 742		.ratemask = BIT(9),
 743		.plcp = 0x0d,
 744		.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
 745	},
 746	{
 747		.flags = DEV_RATE_OFDM,
 748		.bitrate = 480,
 749		.ratemask = BIT(10),
 750		.plcp = 0x08,
 751		.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
 752	},
 753	{
 754		.flags = DEV_RATE_OFDM,
 755		.bitrate = 540,
 756		.ratemask = BIT(11),
 757		.plcp = 0x0c,
 758		.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
 759	},
 760};
 761
 762static void rt2x00lib_channel(struct ieee80211_channel *entry,
 763			      const int channel, const int tx_power,
 764			      const int value)
 765{
 766	/* XXX: this assumption about the band is wrong for 802.11j */
 767	entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
 768	entry->center_freq = ieee80211_channel_to_frequency(channel,
 769							    entry->band);
 770	entry->hw_value = value;
 771	entry->max_power = tx_power;
 772	entry->max_antenna_gain = 0xff;
 773}
 774
 775static void rt2x00lib_rate(struct ieee80211_rate *entry,
 776			   const u16 index, const struct rt2x00_rate *rate)
 777{
 778	entry->flags = 0;
 779	entry->bitrate = rate->bitrate;
 780	entry->hw_value = index;
 781	entry->hw_value_short = index;
 782
 783	if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
 784		entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
 785}
 786
 787static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
 788				    struct hw_mode_spec *spec)
 789{
 790	struct ieee80211_hw *hw = rt2x00dev->hw;
 791	struct ieee80211_channel *channels;
 792	struct ieee80211_rate *rates;
 793	unsigned int num_rates;
 794	unsigned int i;
 795
 796	num_rates = 0;
 797	if (spec->supported_rates & SUPPORT_RATE_CCK)
 798		num_rates += 4;
 799	if (spec->supported_rates & SUPPORT_RATE_OFDM)
 800		num_rates += 8;
 801
 802	channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
 803	if (!channels)
 804		return -ENOMEM;
 805
 806	rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
 807	if (!rates)
 808		goto exit_free_channels;
 809
 810	/*
 811	 * Initialize Rate list.
 812	 */
 813	for (i = 0; i < num_rates; i++)
 814		rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
 815
 816	/*
 817	 * Initialize Channel list.
 818	 */
 819	for (i = 0; i < spec->num_channels; i++) {
 820		rt2x00lib_channel(&channels[i],
 821				  spec->channels[i].channel,
 822				  spec->channels_info[i].max_power, i);
 823	}
 824
 825	/*
 826	 * Intitialize 802.11b, 802.11g
 827	 * Rates: CCK, OFDM.
 828	 * Channels: 2.4 GHz
 829	 */
 830	if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
 831		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
 832		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
 833		rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
 834		rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
 835		hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
 836		    &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
 837		memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
 838		       &spec->ht, sizeof(spec->ht));
 839	}
 840
 841	/*
 842	 * Intitialize 802.11a
 843	 * Rates: OFDM.
 844	 * Channels: OFDM, UNII, HiperLAN2.
 845	 */
 846	if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
 847		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
 848		    spec->num_channels - 14;
 849		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
 850		    num_rates - 4;
 851		rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
 852		rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
 853		hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
 854		    &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
 855		memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
 856		       &spec->ht, sizeof(spec->ht));
 857	}
 858
 859	return 0;
 860
 861 exit_free_channels:
 862	kfree(channels);
 863	ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
 864	return -ENOMEM;
 865}
 866
 867static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
 868{
 869	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
 870		ieee80211_unregister_hw(rt2x00dev->hw);
 871
 872	if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
 873		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
 874		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
 875		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
 876		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
 877	}
 878
 879	kfree(rt2x00dev->spec.channels_info);
 880}
 881
 882static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
 883{
 884	struct hw_mode_spec *spec = &rt2x00dev->spec;
 885	int status;
 886
 887	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
 888		return 0;
 889
 890	/*
 891	 * Initialize HW modes.
 892	 */
 893	status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
 894	if (status)
 895		return status;
 896
 897	/*
 898	 * Initialize HW fields.
 899	 */
 900	rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
 901
 902	/*
 903	 * Initialize extra TX headroom required.
 904	 */
 905	rt2x00dev->hw->extra_tx_headroom =
 906		max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
 907		      rt2x00dev->ops->extra_tx_headroom);
 908
 909	/*
 910	 * Take TX headroom required for alignment into account.
 911	 */
 912	if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
 913		rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
 914	else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
 915		rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
 916
 917	/*
 918	 * Allocate tx status FIFO for driver use.
 919	 */
 920	if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
 921		/*
 922		 * Allocate the txstatus fifo. In the worst case the tx
 923		 * status fifo has to hold the tx status of all entries
 924		 * in all tx queues. Hence, calculate the kfifo size as
 925		 * tx_queues * entry_num and round up to the nearest
 926		 * power of 2.
 927		 */
 928		int kfifo_size =
 929			roundup_pow_of_two(rt2x00dev->ops->tx_queues *
 930					   rt2x00dev->ops->tx->entry_num *
 931					   sizeof(u32));
 932
 933		status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
 934				     GFP_KERNEL);
 935		if (status)
 936			return status;
 937	}
 938
 939	/*
 940	 * Initialize tasklets if used by the driver. Tasklets are
 941	 * disabled until the interrupts are turned on. The driver
 942	 * has to handle that.
 943	 */
 944#define RT2X00_TASKLET_INIT(taskletname) \
 945	if (rt2x00dev->ops->lib->taskletname) { \
 946		tasklet_init(&rt2x00dev->taskletname, \
 947			     rt2x00dev->ops->lib->taskletname, \
 948			     (unsigned long)rt2x00dev); \
 949		tasklet_disable(&rt2x00dev->taskletname); \
 950	}
 951
 952	RT2X00_TASKLET_INIT(txstatus_tasklet);
 953	RT2X00_TASKLET_INIT(pretbtt_tasklet);
 954	RT2X00_TASKLET_INIT(tbtt_tasklet);
 955	RT2X00_TASKLET_INIT(rxdone_tasklet);
 956	RT2X00_TASKLET_INIT(autowake_tasklet);
 957
 958#undef RT2X00_TASKLET_INIT
 959
 960	/*
 961	 * Register HW.
 962	 */
 963	status = ieee80211_register_hw(rt2x00dev->hw);
 964	if (status)
 965		return status;
 966
 967	set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
 968
 969	return 0;
 970}
 971
 972/*
 973 * Initialization/uninitialization handlers.
 974 */
 975static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
 976{
 977	if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
 978		return;
 979
 980	/*
 981	 * Unregister extra components.
 982	 */
 983	rt2x00rfkill_unregister(rt2x00dev);
 984
 985	/*
 986	 * Allow the HW to uninitialize.
 987	 */
 988	rt2x00dev->ops->lib->uninitialize(rt2x00dev);
 989
 990	/*
 991	 * Free allocated queue entries.
 992	 */
 993	rt2x00queue_uninitialize(rt2x00dev);
 994}
 995
 996static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
 997{
 998	int status;
 999
1000	if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1001		return 0;
1002
1003	/*
1004	 * Allocate all queue entries.
1005	 */
1006	status = rt2x00queue_initialize(rt2x00dev);
1007	if (status)
1008		return status;
1009
1010	/*
1011	 * Initialize the device.
1012	 */
1013	status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1014	if (status) {
1015		rt2x00queue_uninitialize(rt2x00dev);
1016		return status;
1017	}
1018
1019	set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1020
1021	/*
1022	 * Register the extra components.
1023	 */
1024	rt2x00rfkill_register(rt2x00dev);
1025
1026	return 0;
1027}
1028
1029int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1030{
1031	int retval;
1032
1033	if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1034		return 0;
1035
1036	/*
1037	 * If this is the first interface which is added,
1038	 * we should load the firmware now.
1039	 */
1040	retval = rt2x00lib_load_firmware(rt2x00dev);
1041	if (retval)
1042		return retval;
1043
1044	/*
1045	 * Initialize the device.
1046	 */
1047	retval = rt2x00lib_initialize(rt2x00dev);
1048	if (retval)
1049		return retval;
1050
1051	rt2x00dev->intf_ap_count = 0;
1052	rt2x00dev->intf_sta_count = 0;
1053	rt2x00dev->intf_associated = 0;
1054
1055	/* Enable the radio */
1056	retval = rt2x00lib_enable_radio(rt2x00dev);
1057	if (retval)
1058		return retval;
1059
1060	set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1061
1062	return 0;
1063}
1064
1065void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1066{
1067	if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1068		return;
1069
1070	/*
1071	 * Perhaps we can add something smarter here,
1072	 * but for now just disabling the radio should do.
1073	 */
1074	rt2x00lib_disable_radio(rt2x00dev);
1075
1076	rt2x00dev->intf_ap_count = 0;
1077	rt2x00dev->intf_sta_count = 0;
1078	rt2x00dev->intf_associated = 0;
1079}
1080
1081/*
1082 * driver allocation handlers.
1083 */
1084int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1085{
1086	int retval = -ENOMEM;
1087
1088	spin_lock_init(&rt2x00dev->irqmask_lock);
1089	mutex_init(&rt2x00dev->csr_mutex);
1090
1091	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1092
1093	/*
1094	 * Make room for rt2x00_intf inside the per-interface
1095	 * structure ieee80211_vif.
1096	 */
1097	rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1098
1099	/*
1100	 * Determine which operating modes are supported, all modes
1101	 * which require beaconing, depend on the availability of
1102	 * beacon entries.
1103	 */
1104	rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1105	if (rt2x00dev->ops->bcn->entry_num > 0)
1106		rt2x00dev->hw->wiphy->interface_modes |=
1107		    BIT(NL80211_IFTYPE_ADHOC) |
1108		    BIT(NL80211_IFTYPE_AP) |
1109		    BIT(NL80211_IFTYPE_MESH_POINT) |
1110		    BIT(NL80211_IFTYPE_WDS);
1111
1112	/*
1113	 * Initialize work.
1114	 */
1115	rt2x00dev->workqueue =
1116	    alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1117	if (!rt2x00dev->workqueue) {
1118		retval = -ENOMEM;
1119		goto exit;
1120	}
1121
1122	INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1123	INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1124
1125	/*
1126	 * Let the driver probe the device to detect the capabilities.
1127	 */
1128	retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1129	if (retval) {
1130		ERROR(rt2x00dev, "Failed to allocate device.\n");
1131		goto exit;
1132	}
1133
1134	/*
1135	 * Allocate queue array.
1136	 */
1137	retval = rt2x00queue_allocate(rt2x00dev);
1138	if (retval)
1139		goto exit;
1140
1141	/*
1142	 * Initialize ieee80211 structure.
1143	 */
1144	retval = rt2x00lib_probe_hw(rt2x00dev);
1145	if (retval) {
1146		ERROR(rt2x00dev, "Failed to initialize hw.\n");
1147		goto exit;
1148	}
1149
1150	/*
1151	 * Register extra components.
1152	 */
1153	rt2x00link_register(rt2x00dev);
1154	rt2x00leds_register(rt2x00dev);
1155	rt2x00debug_register(rt2x00dev);
1156
1157	return 0;
1158
1159exit:
1160	rt2x00lib_remove_dev(rt2x00dev);
1161
1162	return retval;
1163}
1164EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1165
1166void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1167{
1168	clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1169
1170	/*
1171	 * Disable radio.
1172	 */
1173	rt2x00lib_disable_radio(rt2x00dev);
1174
1175	/*
1176	 * Stop all work.
1177	 */
1178	cancel_work_sync(&rt2x00dev->intf_work);
1179	cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1180	if (rt2x00_is_usb(rt2x00dev)) {
1181		del_timer_sync(&rt2x00dev->txstatus_timer);
1182		cancel_work_sync(&rt2x00dev->rxdone_work);
1183		cancel_work_sync(&rt2x00dev->txdone_work);
1184	}
1185	destroy_workqueue(rt2x00dev->workqueue);
1186
1187	/*
1188	 * Free the tx status fifo.
1189	 */
1190	kfifo_free(&rt2x00dev->txstatus_fifo);
1191
1192	/*
1193	 * Kill the tx status tasklet.
1194	 */
1195	tasklet_kill(&rt2x00dev->txstatus_tasklet);
1196	tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1197	tasklet_kill(&rt2x00dev->tbtt_tasklet);
1198	tasklet_kill(&rt2x00dev->rxdone_tasklet);
1199	tasklet_kill(&rt2x00dev->autowake_tasklet);
1200
1201	/*
1202	 * Uninitialize device.
1203	 */
1204	rt2x00lib_uninitialize(rt2x00dev);
1205
1206	/*
1207	 * Free extra components
1208	 */
1209	rt2x00debug_deregister(rt2x00dev);
1210	rt2x00leds_unregister(rt2x00dev);
1211
1212	/*
1213	 * Free ieee80211_hw memory.
1214	 */
1215	rt2x00lib_remove_hw(rt2x00dev);
1216
1217	/*
1218	 * Free firmware image.
1219	 */
1220	rt2x00lib_free_firmware(rt2x00dev);
1221
1222	/*
1223	 * Free queue structures.
1224	 */
1225	rt2x00queue_free(rt2x00dev);
1226}
1227EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1228
1229/*
1230 * Device state handlers
1231 */
1232#ifdef CONFIG_PM
1233int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1234{
1235	NOTICE(rt2x00dev, "Going to sleep.\n");
1236
1237	/*
1238	 * Prevent mac80211 from accessing driver while suspended.
1239	 */
1240	if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1241		return 0;
1242
1243	/*
1244	 * Cleanup as much as possible.
1245	 */
1246	rt2x00lib_uninitialize(rt2x00dev);
1247
1248	/*
1249	 * Suspend/disable extra components.
1250	 */
1251	rt2x00leds_suspend(rt2x00dev);
1252	rt2x00debug_deregister(rt2x00dev);
1253
1254	/*
1255	 * Set device mode to sleep for power management,
1256	 * on some hardware this call seems to consistently fail.
1257	 * From the specifications it is hard to tell why it fails,
1258	 * and if this is a "bad thing".
1259	 * Overall it is safe to just ignore the failure and
1260	 * continue suspending. The only downside is that the
1261	 * device will not be in optimal power save mode, but with
1262	 * the radio and the other components already disabled the
1263	 * device is as good as disabled.
1264	 */
1265	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1266		WARNING(rt2x00dev, "Device failed to enter sleep state, "
1267			"continue suspending.\n");
1268
1269	return 0;
1270}
1271EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1272
1273int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1274{
1275	NOTICE(rt2x00dev, "Waking up.\n");
1276
1277	/*
1278	 * Restore/enable extra components.
1279	 */
1280	rt2x00debug_register(rt2x00dev);
1281	rt2x00leds_resume(rt2x00dev);
1282
1283	/*
1284	 * We are ready again to receive requests from mac80211.
1285	 */
1286	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1287
1288	return 0;
1289}
1290EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1291#endif /* CONFIG_PM */
1292
1293/*
1294 * rt2x00lib module information.
1295 */
1296MODULE_AUTHOR(DRV_PROJECT);
1297MODULE_VERSION(DRV_VERSION);
1298MODULE_DESCRIPTION("rt2x00 library");
1299MODULE_LICENSE("GPL");