Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
   3	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
   4	<http://rt2x00.serialmonkey.com>
   5
   6	This program is free software; you can redistribute it and/or modify
   7	it under the terms of the GNU General Public License as published by
   8	the Free Software Foundation; either version 2 of the License, or
   9	(at your option) any later version.
  10
  11	This program is distributed in the hope that it will be useful,
  12	but WITHOUT ANY WARRANTY; without even the implied warranty of
  13	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14	GNU General Public License for more details.
  15
  16	You should have received a copy of the GNU General Public License
  17	along with this program; if not, write to the
  18	Free Software Foundation, Inc.,
  19	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  20 */
  21
  22/*
  23	Module: rt2x00lib
  24	Abstract: rt2x00 generic device routines.
  25 */
  26
  27#include <linux/kernel.h>
  28#include <linux/module.h>
  29#include <linux/slab.h>
  30#include <linux/log2.h>
  31
  32#include "rt2x00.h"
  33#include "rt2x00lib.h"
  34
  35/*
  36 * Utility functions.
  37 */
  38u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
  39			 struct ieee80211_vif *vif)
  40{
  41	/*
  42	 * When in STA mode, bssidx is always 0 otherwise local_address[5]
  43	 * contains the bss number, see BSS_ID_MASK comments for details.
  44	 */
  45	if (rt2x00dev->intf_sta_count)
  46		return 0;
  47	return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
  48}
  49EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
  50
  51/*
  52 * Radio control handlers.
  53 */
  54int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
  55{
  56	int status;
  57
  58	/*
  59	 * Don't enable the radio twice.
  60	 * And check if the hardware button has been disabled.
  61	 */
  62	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  63		return 0;
  64
  65	/*
  66	 * Initialize all data queues.
  67	 */
  68	rt2x00queue_init_queues(rt2x00dev);
  69
  70	/*
  71	 * Enable radio.
  72	 */
  73	status =
  74	    rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
  75	if (status)
  76		return status;
  77
  78	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
  79
  80	rt2x00leds_led_radio(rt2x00dev, true);
  81	rt2x00led_led_activity(rt2x00dev, true);
  82
  83	set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
  84
  85	/*
  86	 * Enable queues.
  87	 */
  88	rt2x00queue_start_queues(rt2x00dev);
  89	rt2x00link_start_tuner(rt2x00dev);
  90	rt2x00link_start_agc(rt2x00dev);
  91	if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
  92		rt2x00link_start_vcocal(rt2x00dev);
  93
  94	/*
  95	 * Start watchdog monitoring.
  96	 */
  97	rt2x00link_start_watchdog(rt2x00dev);
  98
  99	return 0;
 100}
 101
 102void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
 103{
 104	if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 105		return;
 106
 107	/*
 108	 * Stop watchdog monitoring.
 109	 */
 110	rt2x00link_stop_watchdog(rt2x00dev);
 111
 112	/*
 113	 * Stop all queues
 114	 */
 115	rt2x00link_stop_agc(rt2x00dev);
 116	if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
 117		rt2x00link_stop_vcocal(rt2x00dev);
 118	rt2x00link_stop_tuner(rt2x00dev);
 119	rt2x00queue_stop_queues(rt2x00dev);
 120	rt2x00queue_flush_queues(rt2x00dev, true);
 121
 122	/*
 123	 * Disable radio.
 124	 */
 125	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
 126	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
 127	rt2x00led_led_activity(rt2x00dev, false);
 128	rt2x00leds_led_radio(rt2x00dev, false);
 129}
 130
 131static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
 132					  struct ieee80211_vif *vif)
 133{
 134	struct rt2x00_dev *rt2x00dev = data;
 135	struct rt2x00_intf *intf = vif_to_intf(vif);
 136
 137	/*
 138	 * It is possible the radio was disabled while the work had been
 139	 * scheduled. If that happens we should return here immediately,
 140	 * note that in the spinlock protected area above the delayed_flags
 141	 * have been cleared correctly.
 142	 */
 143	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 144		return;
 145
 146	if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
 147		rt2x00queue_update_beacon(rt2x00dev, vif);
 148}
 149
 150static void rt2x00lib_intf_scheduled(struct work_struct *work)
 151{
 152	struct rt2x00_dev *rt2x00dev =
 153	    container_of(work, struct rt2x00_dev, intf_work);
 154
 155	/*
 156	 * Iterate over each interface and perform the
 157	 * requested configurations.
 158	 */
 159	ieee80211_iterate_active_interfaces(rt2x00dev->hw,
 160					    rt2x00lib_intf_scheduled_iter,
 161					    rt2x00dev);
 162}
 163
 164static void rt2x00lib_autowakeup(struct work_struct *work)
 165{
 166	struct rt2x00_dev *rt2x00dev =
 167	    container_of(work, struct rt2x00_dev, autowakeup_work.work);
 168
 169	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
 170		return;
 171
 172	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 173		ERROR(rt2x00dev, "Device failed to wakeup.\n");
 174	clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
 175}
 176
 177/*
 178 * Interrupt context handlers.
 179 */
 180static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
 181				     struct ieee80211_vif *vif)
 182{
 183	struct rt2x00_dev *rt2x00dev = data;
 184	struct sk_buff *skb;
 185
 186	/*
 187	 * Only AP mode interfaces do broad- and multicast buffering
 188	 */
 189	if (vif->type != NL80211_IFTYPE_AP)
 190		return;
 191
 192	/*
 193	 * Send out buffered broad- and multicast frames
 194	 */
 195	skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
 196	while (skb) {
 197		rt2x00mac_tx(rt2x00dev->hw, skb);
 198		skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
 199	}
 200}
 201
 202static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
 203					struct ieee80211_vif *vif)
 204{
 205	struct rt2x00_dev *rt2x00dev = data;
 206
 207	if (vif->type != NL80211_IFTYPE_AP &&
 208	    vif->type != NL80211_IFTYPE_ADHOC &&
 209	    vif->type != NL80211_IFTYPE_MESH_POINT &&
 210	    vif->type != NL80211_IFTYPE_WDS)
 211		return;
 212
 213	/*
 214	 * Update the beacon without locking. This is safe on PCI devices
 215	 * as they only update the beacon periodically here. This should
 216	 * never be called for USB devices.
 217	 */
 218	WARN_ON(rt2x00_is_usb(rt2x00dev));
 219	rt2x00queue_update_beacon_locked(rt2x00dev, vif);
 220}
 221
 222void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
 223{
 224	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 225		return;
 226
 227	/* send buffered bc/mc frames out for every bssid */
 228	ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
 229						   rt2x00lib_bc_buffer_iter,
 230						   rt2x00dev);
 231	/*
 232	 * Devices with pre tbtt interrupt don't need to update the beacon
 233	 * here as they will fetch the next beacon directly prior to
 234	 * transmission.
 235	 */
 236	if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
 237		return;
 238
 239	/* fetch next beacon */
 240	ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
 241						   rt2x00lib_beaconupdate_iter,
 242						   rt2x00dev);
 243}
 244EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
 245
 246void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
 247{
 248	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 249		return;
 250
 251	/* fetch next beacon */
 252	ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
 253						   rt2x00lib_beaconupdate_iter,
 254						   rt2x00dev);
 255}
 256EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
 257
 258void rt2x00lib_dmastart(struct queue_entry *entry)
 259{
 260	set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
 261	rt2x00queue_index_inc(entry, Q_INDEX);
 262}
 263EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
 264
 265void rt2x00lib_dmadone(struct queue_entry *entry)
 266{
 267	set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
 268	clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
 269	rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
 270}
 271EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
 272
 273void rt2x00lib_txdone(struct queue_entry *entry,
 274		      struct txdone_entry_desc *txdesc)
 275{
 276	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 277	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
 278	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 279	unsigned int header_length, i;
 280	u8 rate_idx, rate_flags, retry_rates;
 281	u8 skbdesc_flags = skbdesc->flags;
 282	bool success;
 283
 284	/*
 285	 * Unmap the skb.
 286	 */
 287	rt2x00queue_unmap_skb(entry);
 288
 289	/*
 290	 * Remove the extra tx headroom from the skb.
 291	 */
 292	skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
 293
 294	/*
 295	 * Signal that the TX descriptor is no longer in the skb.
 296	 */
 297	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
 298
 299	/*
 300	 * Determine the length of 802.11 header.
 301	 */
 302	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
 303
 304	/*
 305	 * Remove L2 padding which was added during
 306	 */
 307	if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
 308		rt2x00queue_remove_l2pad(entry->skb, header_length);
 309
 310	/*
 311	 * If the IV/EIV data was stripped from the frame before it was
 312	 * passed to the hardware, we should now reinsert it again because
 313	 * mac80211 will expect the same data to be present it the
 314	 * frame as it was passed to us.
 315	 */
 316	if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
 317		rt2x00crypto_tx_insert_iv(entry->skb, header_length);
 318
 319	/*
 320	 * Send frame to debugfs immediately, after this call is completed
 321	 * we are going to overwrite the skb->cb array.
 322	 */
 323	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
 324
 325	/*
 326	 * Determine if the frame has been successfully transmitted.
 327	 */
 328	success =
 329	    test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
 330	    test_bit(TXDONE_UNKNOWN, &txdesc->flags);
 331
 332	/*
 333	 * Update TX statistics.
 334	 */
 335	rt2x00dev->link.qual.tx_success += success;
 336	rt2x00dev->link.qual.tx_failed += !success;
 337
 338	rate_idx = skbdesc->tx_rate_idx;
 339	rate_flags = skbdesc->tx_rate_flags;
 340	retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
 341	    (txdesc->retry + 1) : 1;
 342
 343	/*
 344	 * Initialize TX status
 345	 */
 346	memset(&tx_info->status, 0, sizeof(tx_info->status));
 347	tx_info->status.ack_signal = 0;
 348
 349	/*
 350	 * Frame was send with retries, hardware tried
 351	 * different rates to send out the frame, at each
 352	 * retry it lowered the rate 1 step except when the
 353	 * lowest rate was used.
 354	 */
 355	for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
 356		tx_info->status.rates[i].idx = rate_idx - i;
 357		tx_info->status.rates[i].flags = rate_flags;
 358
 359		if (rate_idx - i == 0) {
 360			/*
 361			 * The lowest rate (index 0) was used until the
 362			 * number of max retries was reached.
 363			 */
 364			tx_info->status.rates[i].count = retry_rates - i;
 365			i++;
 366			break;
 367		}
 368		tx_info->status.rates[i].count = 1;
 369	}
 370	if (i < (IEEE80211_TX_MAX_RATES - 1))
 371		tx_info->status.rates[i].idx = -1; /* terminate */
 372
 373	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
 374		if (success)
 375			tx_info->flags |= IEEE80211_TX_STAT_ACK;
 376		else
 377			rt2x00dev->low_level_stats.dot11ACKFailureCount++;
 378	}
 379
 380	/*
 381	 * Every single frame has it's own tx status, hence report
 382	 * every frame as ampdu of size 1.
 383	 *
 384	 * TODO: if we can find out how many frames were aggregated
 385	 * by the hw we could provide the real ampdu_len to mac80211
 386	 * which would allow the rc algorithm to better decide on
 387	 * which rates are suitable.
 388	 */
 389	if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
 390	    tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
 391		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
 392		tx_info->status.ampdu_len = 1;
 393		tx_info->status.ampdu_ack_len = success ? 1 : 0;
 394		/*
 395		 * TODO: Need to tear down BA session here
 396		 * if not successful.
 397		 */
 398	}
 399
 400	if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
 401		if (success)
 402			rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
 403		else
 404			rt2x00dev->low_level_stats.dot11RTSFailureCount++;
 405	}
 406
 407	/*
 408	 * Only send the status report to mac80211 when it's a frame
 409	 * that originated in mac80211. If this was a extra frame coming
 410	 * through a mac80211 library call (RTS/CTS) then we should not
 411	 * send the status report back.
 412	 */
 413	if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
 414		if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
 415			ieee80211_tx_status(rt2x00dev->hw, entry->skb);
 416		else
 417			ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
 418	} else
 419		dev_kfree_skb_any(entry->skb);
 420
 421	/*
 422	 * Make this entry available for reuse.
 423	 */
 424	entry->skb = NULL;
 425	entry->flags = 0;
 426
 427	rt2x00dev->ops->lib->clear_entry(entry);
 428
 429	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
 430
 431	/*
 432	 * If the data queue was below the threshold before the txdone
 433	 * handler we must make sure the packet queue in the mac80211 stack
 434	 * is reenabled when the txdone handler has finished. This has to be
 435	 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
 436	 * before it was stopped.
 437	 */
 438	spin_lock_bh(&entry->queue->tx_lock);
 439	if (!rt2x00queue_threshold(entry->queue))
 440		rt2x00queue_unpause_queue(entry->queue);
 441	spin_unlock_bh(&entry->queue->tx_lock);
 442}
 443EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
 444
 445void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
 446{
 447	struct txdone_entry_desc txdesc;
 448
 449	txdesc.flags = 0;
 450	__set_bit(status, &txdesc.flags);
 451	txdesc.retry = 0;
 452
 453	rt2x00lib_txdone(entry, &txdesc);
 454}
 455EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
 456
 457static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
 458{
 459	struct ieee80211_mgmt *mgmt = (void *)data;
 460	u8 *pos, *end;
 461
 462	pos = (u8 *)mgmt->u.beacon.variable;
 463	end = data + len;
 464	while (pos < end) {
 465		if (pos + 2 + pos[1] > end)
 466			return NULL;
 467
 468		if (pos[0] == ie)
 469			return pos;
 470
 471		pos += 2 + pos[1];
 472	}
 473
 474	return NULL;
 475}
 476
 477static void rt2x00lib_sleep(struct work_struct *work)
 478{
 479	struct rt2x00_dev *rt2x00dev =
 480	    container_of(work, struct rt2x00_dev, sleep_work);
 481
 482	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
 483		return;
 484
 485	/*
 486	 * Check again is powersaving is enabled, to prevent races from delayed
 487	 * work execution.
 488	 */
 489	if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
 490		rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
 491				 IEEE80211_CONF_CHANGE_PS);
 492}
 493
 494static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
 495				      struct sk_buff *skb,
 496				      struct rxdone_entry_desc *rxdesc)
 497{
 498	struct ieee80211_hdr *hdr = (void *) skb->data;
 499	struct ieee80211_tim_ie *tim_ie;
 500	u8 *tim;
 501	u8 tim_len;
 502	bool cam;
 503
 504	/* If this is not a beacon, or if mac80211 has no powersaving
 505	 * configured, or if the device is already in powersaving mode
 506	 * we can exit now. */
 507	if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
 508		   !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
 509		return;
 510
 511	/* min. beacon length + FCS_LEN */
 512	if (skb->len <= 40 + FCS_LEN)
 513		return;
 514
 515	/* and only beacons from the associated BSSID, please */
 516	if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
 517	    !rt2x00dev->aid)
 518		return;
 519
 520	rt2x00dev->last_beacon = jiffies;
 521
 522	tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
 523	if (!tim)
 524		return;
 525
 526	if (tim[1] < sizeof(*tim_ie))
 527		return;
 528
 529	tim_len = tim[1];
 530	tim_ie = (struct ieee80211_tim_ie *) &tim[2];
 531
 532	/* Check whenever the PHY can be turned off again. */
 533
 534	/* 1. What about buffered unicast traffic for our AID? */
 535	cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
 536
 537	/* 2. Maybe the AP wants to send multicast/broadcast data? */
 538	cam |= (tim_ie->bitmap_ctrl & 0x01);
 539
 540	if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
 541		queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
 542}
 543
 544static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
 545					struct rxdone_entry_desc *rxdesc)
 546{
 547	struct ieee80211_supported_band *sband;
 548	const struct rt2x00_rate *rate;
 549	unsigned int i;
 550	int signal = rxdesc->signal;
 551	int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
 552
 553	switch (rxdesc->rate_mode) {
 554	case RATE_MODE_CCK:
 555	case RATE_MODE_OFDM:
 556		/*
 557		 * For non-HT rates the MCS value needs to contain the
 558		 * actually used rate modulation (CCK or OFDM).
 559		 */
 560		if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
 561			signal = RATE_MCS(rxdesc->rate_mode, signal);
 562
 563		sband = &rt2x00dev->bands[rt2x00dev->curr_band];
 564		for (i = 0; i < sband->n_bitrates; i++) {
 565			rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
 566			if (((type == RXDONE_SIGNAL_PLCP) &&
 567			     (rate->plcp == signal)) ||
 568			    ((type == RXDONE_SIGNAL_BITRATE) &&
 569			      (rate->bitrate == signal)) ||
 570			    ((type == RXDONE_SIGNAL_MCS) &&
 571			      (rate->mcs == signal))) {
 572				return i;
 573			}
 574		}
 575		break;
 576	case RATE_MODE_HT_MIX:
 577	case RATE_MODE_HT_GREENFIELD:
 578		if (signal >= 0 && signal <= 76)
 579			return signal;
 580		break;
 581	default:
 582		break;
 583	}
 584
 585	WARNING(rt2x00dev, "Frame received with unrecognized signal, "
 586		"mode=0x%.4x, signal=0x%.4x, type=%d.\n",
 587		rxdesc->rate_mode, signal, type);
 588	return 0;
 589}
 590
 591void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
 592{
 593	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 594	struct rxdone_entry_desc rxdesc;
 595	struct sk_buff *skb;
 596	struct ieee80211_rx_status *rx_status;
 597	unsigned int header_length;
 598	int rate_idx;
 599
 600	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
 601	    !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 602		goto submit_entry;
 603
 604	if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
 605		goto submit_entry;
 606
 607	/*
 608	 * Allocate a new sk_buffer. If no new buffer available, drop the
 609	 * received frame and reuse the existing buffer.
 610	 */
 611	skb = rt2x00queue_alloc_rxskb(entry, gfp);
 612	if (!skb)
 613		goto submit_entry;
 614
 615	/*
 616	 * Unmap the skb.
 617	 */
 618	rt2x00queue_unmap_skb(entry);
 619
 620	/*
 621	 * Extract the RXD details.
 622	 */
 623	memset(&rxdesc, 0, sizeof(rxdesc));
 624	rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
 625
 626	/*
 627	 * Check for valid size in case we get corrupted descriptor from
 628	 * hardware.
 629	 */
 630	if (unlikely(rxdesc.size == 0 ||
 631		     rxdesc.size > entry->queue->data_size)) {
 632		ERROR(rt2x00dev, "Wrong frame size %d max %d.\n",
 633			rxdesc.size, entry->queue->data_size);
 634		dev_kfree_skb(entry->skb);
 635		goto renew_skb;
 636	}
 637
 638	/*
 639	 * The data behind the ieee80211 header must be
 640	 * aligned on a 4 byte boundary.
 641	 */
 642	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
 643
 644	/*
 645	 * Hardware might have stripped the IV/EIV/ICV data,
 646	 * in that case it is possible that the data was
 647	 * provided separately (through hardware descriptor)
 648	 * in which case we should reinsert the data into the frame.
 649	 */
 650	if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
 651	    (rxdesc.flags & RX_FLAG_IV_STRIPPED))
 652		rt2x00crypto_rx_insert_iv(entry->skb, header_length,
 653					  &rxdesc);
 654	else if (header_length &&
 655		 (rxdesc.size > header_length) &&
 656		 (rxdesc.dev_flags & RXDONE_L2PAD))
 657		rt2x00queue_remove_l2pad(entry->skb, header_length);
 658
 659	/* Trim buffer to correct size */
 660	skb_trim(entry->skb, rxdesc.size);
 661
 662	/*
 663	 * Translate the signal to the correct bitrate index.
 664	 */
 665	rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
 666	if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
 667	    rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
 668		rxdesc.flags |= RX_FLAG_HT;
 669
 670	/*
 671	 * Check if this is a beacon, and more frames have been
 672	 * buffered while we were in powersaving mode.
 673	 */
 674	rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
 675
 676	/*
 677	 * Update extra components
 678	 */
 679	rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
 680	rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
 681	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
 682
 683	/*
 684	 * Initialize RX status information, and send frame
 685	 * to mac80211.
 686	 */
 687	rx_status = IEEE80211_SKB_RXCB(entry->skb);
 688	rx_status->mactime = rxdesc.timestamp;
 689	rx_status->band = rt2x00dev->curr_band;
 690	rx_status->freq = rt2x00dev->curr_freq;
 691	rx_status->rate_idx = rate_idx;
 692	rx_status->signal = rxdesc.rssi;
 693	rx_status->flag = rxdesc.flags;
 694	rx_status->antenna = rt2x00dev->link.ant.active.rx;
 695
 696	ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
 697
 698renew_skb:
 699	/*
 700	 * Replace the skb with the freshly allocated one.
 701	 */
 702	entry->skb = skb;
 703
 704submit_entry:
 705	entry->flags = 0;
 706	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
 707	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
 708	    test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 709		rt2x00dev->ops->lib->clear_entry(entry);
 710}
 711EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
 712
 713/*
 714 * Driver initialization handlers.
 715 */
 716const struct rt2x00_rate rt2x00_supported_rates[12] = {
 717	{
 718		.flags = DEV_RATE_CCK,
 719		.bitrate = 10,
 720		.ratemask = BIT(0),
 721		.plcp = 0x00,
 722		.mcs = RATE_MCS(RATE_MODE_CCK, 0),
 723	},
 724	{
 725		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 726		.bitrate = 20,
 727		.ratemask = BIT(1),
 728		.plcp = 0x01,
 729		.mcs = RATE_MCS(RATE_MODE_CCK, 1),
 730	},
 731	{
 732		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 733		.bitrate = 55,
 734		.ratemask = BIT(2),
 735		.plcp = 0x02,
 736		.mcs = RATE_MCS(RATE_MODE_CCK, 2),
 737	},
 738	{
 739		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 740		.bitrate = 110,
 741		.ratemask = BIT(3),
 742		.plcp = 0x03,
 743		.mcs = RATE_MCS(RATE_MODE_CCK, 3),
 744	},
 745	{
 746		.flags = DEV_RATE_OFDM,
 747		.bitrate = 60,
 748		.ratemask = BIT(4),
 749		.plcp = 0x0b,
 750		.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
 751	},
 752	{
 753		.flags = DEV_RATE_OFDM,
 754		.bitrate = 90,
 755		.ratemask = BIT(5),
 756		.plcp = 0x0f,
 757		.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
 758	},
 759	{
 760		.flags = DEV_RATE_OFDM,
 761		.bitrate = 120,
 762		.ratemask = BIT(6),
 763		.plcp = 0x0a,
 764		.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
 765	},
 766	{
 767		.flags = DEV_RATE_OFDM,
 768		.bitrate = 180,
 769		.ratemask = BIT(7),
 770		.plcp = 0x0e,
 771		.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
 772	},
 773	{
 774		.flags = DEV_RATE_OFDM,
 775		.bitrate = 240,
 776		.ratemask = BIT(8),
 777		.plcp = 0x09,
 778		.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
 779	},
 780	{
 781		.flags = DEV_RATE_OFDM,
 782		.bitrate = 360,
 783		.ratemask = BIT(9),
 784		.plcp = 0x0d,
 785		.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
 786	},
 787	{
 788		.flags = DEV_RATE_OFDM,
 789		.bitrate = 480,
 790		.ratemask = BIT(10),
 791		.plcp = 0x08,
 792		.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
 793	},
 794	{
 795		.flags = DEV_RATE_OFDM,
 796		.bitrate = 540,
 797		.ratemask = BIT(11),
 798		.plcp = 0x0c,
 799		.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
 800	},
 801};
 802
 803static void rt2x00lib_channel(struct ieee80211_channel *entry,
 804			      const int channel, const int tx_power,
 805			      const int value)
 806{
 807	/* XXX: this assumption about the band is wrong for 802.11j */
 808	entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
 809	entry->center_freq = ieee80211_channel_to_frequency(channel,
 810							    entry->band);
 811	entry->hw_value = value;
 812	entry->max_power = tx_power;
 813	entry->max_antenna_gain = 0xff;
 814}
 815
 816static void rt2x00lib_rate(struct ieee80211_rate *entry,
 817			   const u16 index, const struct rt2x00_rate *rate)
 818{
 819	entry->flags = 0;
 820	entry->bitrate = rate->bitrate;
 821	entry->hw_value = index;
 822	entry->hw_value_short = index;
 823
 824	if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
 825		entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
 826}
 827
 828static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
 829				    struct hw_mode_spec *spec)
 830{
 831	struct ieee80211_hw *hw = rt2x00dev->hw;
 832	struct ieee80211_channel *channels;
 833	struct ieee80211_rate *rates;
 834	unsigned int num_rates;
 835	unsigned int i;
 836
 837	num_rates = 0;
 838	if (spec->supported_rates & SUPPORT_RATE_CCK)
 839		num_rates += 4;
 840	if (spec->supported_rates & SUPPORT_RATE_OFDM)
 841		num_rates += 8;
 842
 843	channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
 844	if (!channels)
 845		return -ENOMEM;
 846
 847	rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
 848	if (!rates)
 849		goto exit_free_channels;
 850
 851	/*
 852	 * Initialize Rate list.
 853	 */
 854	for (i = 0; i < num_rates; i++)
 855		rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
 856
 857	/*
 858	 * Initialize Channel list.
 859	 */
 860	for (i = 0; i < spec->num_channels; i++) {
 861		rt2x00lib_channel(&channels[i],
 862				  spec->channels[i].channel,
 863				  spec->channels_info[i].max_power, i);
 864	}
 865
 866	/*
 867	 * Intitialize 802.11b, 802.11g
 868	 * Rates: CCK, OFDM.
 869	 * Channels: 2.4 GHz
 870	 */
 871	if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
 872		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
 873		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
 874		rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
 875		rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
 876		hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
 877		    &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
 878		memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
 879		       &spec->ht, sizeof(spec->ht));
 880	}
 881
 882	/*
 883	 * Intitialize 802.11a
 884	 * Rates: OFDM.
 885	 * Channels: OFDM, UNII, HiperLAN2.
 886	 */
 887	if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
 888		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
 889		    spec->num_channels - 14;
 890		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
 891		    num_rates - 4;
 892		rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
 893		rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
 894		hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
 895		    &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
 896		memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
 897		       &spec->ht, sizeof(spec->ht));
 898	}
 899
 900	return 0;
 901
 902 exit_free_channels:
 903	kfree(channels);
 904	ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
 905	return -ENOMEM;
 906}
 907
 908static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
 909{
 910	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
 911		ieee80211_unregister_hw(rt2x00dev->hw);
 912
 913	if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
 914		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
 915		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
 916		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
 917		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
 918	}
 919
 920	kfree(rt2x00dev->spec.channels_info);
 921}
 922
 923static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
 924{
 925	struct hw_mode_spec *spec = &rt2x00dev->spec;
 926	int status;
 927
 928	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
 929		return 0;
 930
 931	/*
 932	 * Initialize HW modes.
 933	 */
 934	status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
 935	if (status)
 936		return status;
 937
 938	/*
 939	 * Initialize HW fields.
 940	 */
 941	rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
 942
 943	/*
 944	 * Initialize extra TX headroom required.
 945	 */
 946	rt2x00dev->hw->extra_tx_headroom =
 947		max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
 948		      rt2x00dev->ops->extra_tx_headroom);
 949
 950	/*
 951	 * Take TX headroom required for alignment into account.
 952	 */
 953	if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
 954		rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
 955	else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
 956		rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
 957
 958	/*
 959	 * Tell mac80211 about the size of our private STA structure.
 960	 */
 961	rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
 962
 963	/*
 964	 * Allocate tx status FIFO for driver use.
 965	 */
 966	if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
 967		/*
 968		 * Allocate the txstatus fifo. In the worst case the tx
 969		 * status fifo has to hold the tx status of all entries
 970		 * in all tx queues. Hence, calculate the kfifo size as
 971		 * tx_queues * entry_num and round up to the nearest
 972		 * power of 2.
 973		 */
 974		int kfifo_size =
 975			roundup_pow_of_two(rt2x00dev->ops->tx_queues *
 976					   rt2x00dev->ops->tx->entry_num *
 977					   sizeof(u32));
 978
 979		status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
 980				     GFP_KERNEL);
 981		if (status)
 982			return status;
 983	}
 984
 985	/*
 986	 * Initialize tasklets if used by the driver. Tasklets are
 987	 * disabled until the interrupts are turned on. The driver
 988	 * has to handle that.
 989	 */
 990#define RT2X00_TASKLET_INIT(taskletname) \
 991	if (rt2x00dev->ops->lib->taskletname) { \
 992		tasklet_init(&rt2x00dev->taskletname, \
 993			     rt2x00dev->ops->lib->taskletname, \
 994			     (unsigned long)rt2x00dev); \
 995	}
 996
 997	RT2X00_TASKLET_INIT(txstatus_tasklet);
 998	RT2X00_TASKLET_INIT(pretbtt_tasklet);
 999	RT2X00_TASKLET_INIT(tbtt_tasklet);
1000	RT2X00_TASKLET_INIT(rxdone_tasklet);
1001	RT2X00_TASKLET_INIT(autowake_tasklet);
1002
1003#undef RT2X00_TASKLET_INIT
1004
1005	/*
1006	 * Register HW.
1007	 */
1008	status = ieee80211_register_hw(rt2x00dev->hw);
1009	if (status)
1010		return status;
1011
1012	set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1013
1014	return 0;
1015}
1016
1017/*
1018 * Initialization/uninitialization handlers.
1019 */
1020static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1021{
1022	if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1023		return;
1024
1025	/*
1026	 * Unregister extra components.
1027	 */
1028	rt2x00rfkill_unregister(rt2x00dev);
1029
1030	/*
1031	 * Allow the HW to uninitialize.
1032	 */
1033	rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1034
1035	/*
1036	 * Free allocated queue entries.
1037	 */
1038	rt2x00queue_uninitialize(rt2x00dev);
1039}
1040
1041static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1042{
1043	int status;
1044
1045	if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1046		return 0;
1047
1048	/*
1049	 * Allocate all queue entries.
1050	 */
1051	status = rt2x00queue_initialize(rt2x00dev);
1052	if (status)
1053		return status;
1054
1055	/*
1056	 * Initialize the device.
1057	 */
1058	status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1059	if (status) {
1060		rt2x00queue_uninitialize(rt2x00dev);
1061		return status;
1062	}
1063
1064	set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1065
1066	return 0;
1067}
1068
1069int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1070{
1071	int retval;
1072
1073	if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1074		return 0;
1075
1076	/*
1077	 * If this is the first interface which is added,
1078	 * we should load the firmware now.
1079	 */
1080	retval = rt2x00lib_load_firmware(rt2x00dev);
1081	if (retval)
1082		return retval;
1083
1084	/*
1085	 * Initialize the device.
1086	 */
1087	retval = rt2x00lib_initialize(rt2x00dev);
1088	if (retval)
1089		return retval;
1090
1091	rt2x00dev->intf_ap_count = 0;
1092	rt2x00dev->intf_sta_count = 0;
1093	rt2x00dev->intf_associated = 0;
1094
1095	/* Enable the radio */
1096	retval = rt2x00lib_enable_radio(rt2x00dev);
1097	if (retval)
1098		return retval;
1099
1100	set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1101
1102	return 0;
1103}
1104
1105void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1106{
1107	if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1108		return;
1109
1110	/*
1111	 * Perhaps we can add something smarter here,
1112	 * but for now just disabling the radio should do.
1113	 */
1114	rt2x00lib_disable_radio(rt2x00dev);
1115
1116	rt2x00dev->intf_ap_count = 0;
1117	rt2x00dev->intf_sta_count = 0;
1118	rt2x00dev->intf_associated = 0;
1119}
1120
1121/*
1122 * driver allocation handlers.
1123 */
1124int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1125{
1126	int retval = -ENOMEM;
1127
1128	/*
1129	 * Allocate the driver data memory, if necessary.
1130	 */
1131	if (rt2x00dev->ops->drv_data_size > 0) {
1132		rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1133			                      GFP_KERNEL);
1134		if (!rt2x00dev->drv_data) {
1135			retval = -ENOMEM;
1136			goto exit;
1137		}
1138	}
1139
1140	spin_lock_init(&rt2x00dev->irqmask_lock);
1141	mutex_init(&rt2x00dev->csr_mutex);
1142
1143	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1144
1145	/*
1146	 * Make room for rt2x00_intf inside the per-interface
1147	 * structure ieee80211_vif.
1148	 */
1149	rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1150
1151	/*
1152	 * Determine which operating modes are supported, all modes
1153	 * which require beaconing, depend on the availability of
1154	 * beacon entries.
1155	 */
1156	rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1157	if (rt2x00dev->ops->bcn->entry_num > 0)
1158		rt2x00dev->hw->wiphy->interface_modes |=
1159		    BIT(NL80211_IFTYPE_ADHOC) |
1160		    BIT(NL80211_IFTYPE_AP) |
1161		    BIT(NL80211_IFTYPE_MESH_POINT) |
1162		    BIT(NL80211_IFTYPE_WDS);
1163
1164	/*
1165	 * Initialize work.
1166	 */
1167	rt2x00dev->workqueue =
1168	    alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1169	if (!rt2x00dev->workqueue) {
1170		retval = -ENOMEM;
1171		goto exit;
1172	}
1173
1174	INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1175	INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1176	INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1177
1178	/*
1179	 * Let the driver probe the device to detect the capabilities.
1180	 */
1181	retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1182	if (retval) {
1183		ERROR(rt2x00dev, "Failed to allocate device.\n");
1184		goto exit;
1185	}
1186
1187	/*
1188	 * Allocate queue array.
1189	 */
1190	retval = rt2x00queue_allocate(rt2x00dev);
1191	if (retval)
1192		goto exit;
1193
1194	/*
1195	 * Initialize ieee80211 structure.
1196	 */
1197	retval = rt2x00lib_probe_hw(rt2x00dev);
1198	if (retval) {
1199		ERROR(rt2x00dev, "Failed to initialize hw.\n");
1200		goto exit;
1201	}
1202
1203	/*
1204	 * Register extra components.
1205	 */
1206	rt2x00link_register(rt2x00dev);
1207	rt2x00leds_register(rt2x00dev);
1208	rt2x00debug_register(rt2x00dev);
1209	rt2x00rfkill_register(rt2x00dev);
1210
1211	return 0;
1212
1213exit:
1214	rt2x00lib_remove_dev(rt2x00dev);
1215
1216	return retval;
1217}
1218EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1219
1220void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1221{
1222	clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1223
1224	/*
1225	 * Disable radio.
1226	 */
1227	rt2x00lib_disable_radio(rt2x00dev);
1228
1229	/*
1230	 * Stop all work.
1231	 */
1232	cancel_work_sync(&rt2x00dev->intf_work);
1233	cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1234	cancel_work_sync(&rt2x00dev->sleep_work);
1235	if (rt2x00_is_usb(rt2x00dev)) {
1236		hrtimer_cancel(&rt2x00dev->txstatus_timer);
1237		cancel_work_sync(&rt2x00dev->rxdone_work);
1238		cancel_work_sync(&rt2x00dev->txdone_work);
1239	}
1240	if (rt2x00dev->workqueue)
1241		destroy_workqueue(rt2x00dev->workqueue);
1242
1243	/*
1244	 * Free the tx status fifo.
1245	 */
1246	kfifo_free(&rt2x00dev->txstatus_fifo);
1247
1248	/*
1249	 * Kill the tx status tasklet.
1250	 */
1251	tasklet_kill(&rt2x00dev->txstatus_tasklet);
1252	tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1253	tasklet_kill(&rt2x00dev->tbtt_tasklet);
1254	tasklet_kill(&rt2x00dev->rxdone_tasklet);
1255	tasklet_kill(&rt2x00dev->autowake_tasklet);
1256
1257	/*
1258	 * Uninitialize device.
1259	 */
1260	rt2x00lib_uninitialize(rt2x00dev);
1261
1262	/*
1263	 * Free extra components
1264	 */
1265	rt2x00debug_deregister(rt2x00dev);
1266	rt2x00leds_unregister(rt2x00dev);
1267
1268	/*
1269	 * Free ieee80211_hw memory.
1270	 */
1271	rt2x00lib_remove_hw(rt2x00dev);
1272
1273	/*
1274	 * Free firmware image.
1275	 */
1276	rt2x00lib_free_firmware(rt2x00dev);
1277
1278	/*
1279	 * Free queue structures.
1280	 */
1281	rt2x00queue_free(rt2x00dev);
1282
1283	/*
1284	 * Free the driver data.
1285	 */
1286	if (rt2x00dev->drv_data)
1287		kfree(rt2x00dev->drv_data);
1288}
1289EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1290
1291/*
1292 * Device state handlers
1293 */
1294#ifdef CONFIG_PM
1295int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1296{
1297	NOTICE(rt2x00dev, "Going to sleep.\n");
1298
1299	/*
1300	 * Prevent mac80211 from accessing driver while suspended.
1301	 */
1302	if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1303		return 0;
1304
1305	/*
1306	 * Cleanup as much as possible.
1307	 */
1308	rt2x00lib_uninitialize(rt2x00dev);
1309
1310	/*
1311	 * Suspend/disable extra components.
1312	 */
1313	rt2x00leds_suspend(rt2x00dev);
1314	rt2x00debug_deregister(rt2x00dev);
1315
1316	/*
1317	 * Set device mode to sleep for power management,
1318	 * on some hardware this call seems to consistently fail.
1319	 * From the specifications it is hard to tell why it fails,
1320	 * and if this is a "bad thing".
1321	 * Overall it is safe to just ignore the failure and
1322	 * continue suspending. The only downside is that the
1323	 * device will not be in optimal power save mode, but with
1324	 * the radio and the other components already disabled the
1325	 * device is as good as disabled.
1326	 */
1327	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1328		WARNING(rt2x00dev, "Device failed to enter sleep state, "
1329			"continue suspending.\n");
1330
1331	return 0;
1332}
1333EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1334
1335int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1336{
1337	NOTICE(rt2x00dev, "Waking up.\n");
1338
1339	/*
1340	 * Restore/enable extra components.
1341	 */
1342	rt2x00debug_register(rt2x00dev);
1343	rt2x00leds_resume(rt2x00dev);
1344
1345	/*
1346	 * We are ready again to receive requests from mac80211.
1347	 */
1348	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1349
1350	return 0;
1351}
1352EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1353#endif /* CONFIG_PM */
1354
1355/*
1356 * rt2x00lib module information.
1357 */
1358MODULE_AUTHOR(DRV_PROJECT);
1359MODULE_VERSION(DRV_VERSION);
1360MODULE_DESCRIPTION("rt2x00 library");
1361MODULE_LICENSE("GPL");