Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 *	This program is free software; you can redistribute it and/or
   3 *	modify it under the terms of the GNU General Public License
   4 *	as published by the Free Software Foundation; either version
   5 *	2 of the License, or (at your option) any later version.
   6 *
   7 *	(c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
   8 *	(c) Copyright 2000, 2001 Red Hat Inc
   9 *
  10 *	Development of this driver was funded by Equiinet Ltd
  11 *			http://www.equiinet.com
  12 *
  13 *	ChangeLog:
  14 *
  15 *	Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
  16 *	unification of all the Z85x30 asynchronous drivers for real.
  17 *
  18 *	DMA now uses get_free_page as kmalloc buffers may span a 64K 
  19 *	boundary.
  20 *
  21 *	Modified for SMP safety and SMP locking by Alan Cox
  22 *					<alan@lxorguk.ukuu.org.uk>
  23 *
  24 *	Performance
  25 *
  26 *	Z85230:
  27 *	Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
  28 *	X.25 is not unrealistic on all machines. DMA mode can in theory
  29 *	handle T1/E1 quite nicely. In practice the limit seems to be about
  30 *	512Kbit->1Mbit depending on motherboard.
  31 *
  32 *	Z85C30:
  33 *	64K will take DMA, 9600 baud X.25 should be ok.
  34 *
  35 *	Z8530:
  36 *	Synchronous mode without DMA is unlikely to pass about 2400 baud.
  37 */
  38
  39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  40
  41#include <linux/module.h>
  42#include <linux/kernel.h>
  43#include <linux/mm.h>
  44#include <linux/net.h>
  45#include <linux/skbuff.h>
  46#include <linux/netdevice.h>
  47#include <linux/if_arp.h>
  48#include <linux/delay.h>
  49#include <linux/hdlc.h>
  50#include <linux/ioport.h>
  51#include <linux/init.h>
  52#include <linux/gfp.h>
  53#include <asm/dma.h>
  54#include <asm/io.h>
  55#define RT_LOCK
  56#define RT_UNLOCK
  57#include <linux/spinlock.h>
  58
  59#include "z85230.h"
  60
  61
  62/**
  63 *	z8530_read_port - Architecture specific interface function
  64 *	@p: port to read
  65 *
  66 *	Provided port access methods. The Comtrol SV11 requires no delays
  67 *	between accesses and uses PC I/O. Some drivers may need a 5uS delay
  68 *	
  69 *	In the longer term this should become an architecture specific
  70 *	section so that this can become a generic driver interface for all
  71 *	platforms. For now we only handle PC I/O ports with or without the
  72 *	dread 5uS sanity delay.
  73 *
  74 *	The caller must hold sufficient locks to avoid violating the horrible
  75 *	5uS delay rule.
  76 */
  77
  78static inline int z8530_read_port(unsigned long p)
  79{
  80	u8 r=inb(Z8530_PORT_OF(p));
  81	if(p&Z8530_PORT_SLEEP)	/* gcc should figure this out efficiently ! */
  82		udelay(5);
  83	return r;
  84}
  85
  86/**
  87 *	z8530_write_port - Architecture specific interface function
  88 *	@p: port to write
  89 *	@d: value to write
  90 *
  91 *	Write a value to a port with delays if need be. Note that the
  92 *	caller must hold locks to avoid read/writes from other contexts
  93 *	violating the 5uS rule
  94 *
  95 *	In the longer term this should become an architecture specific
  96 *	section so that this can become a generic driver interface for all
  97 *	platforms. For now we only handle PC I/O ports with or without the
  98 *	dread 5uS sanity delay.
  99 */
 100
 101
 102static inline void z8530_write_port(unsigned long p, u8 d)
 103{
 104	outb(d,Z8530_PORT_OF(p));
 105	if(p&Z8530_PORT_SLEEP)
 106		udelay(5);
 107}
 108
 109
 110
 111static void z8530_rx_done(struct z8530_channel *c);
 112static void z8530_tx_done(struct z8530_channel *c);
 113
 114
 115/**
 116 *	read_zsreg - Read a register from a Z85230 
 117 *	@c: Z8530 channel to read from (2 per chip)
 118 *	@reg: Register to read
 119 *	FIXME: Use a spinlock.
 120 *	
 121 *	Most of the Z8530 registers are indexed off the control registers.
 122 *	A read is done by writing to the control register and reading the
 123 *	register back.  The caller must hold the lock
 124 */
 125 
 126static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
 127{
 128	if(reg)
 129		z8530_write_port(c->ctrlio, reg);
 130	return z8530_read_port(c->ctrlio);
 131}
 132
 133/**
 134 *	read_zsdata - Read the data port of a Z8530 channel
 135 *	@c: The Z8530 channel to read the data port from
 136 *
 137 *	The data port provides fast access to some things. We still
 138 *	have all the 5uS delays to worry about.
 139 */
 140
 141static inline u8 read_zsdata(struct z8530_channel *c)
 142{
 143	u8 r;
 144	r=z8530_read_port(c->dataio);
 145	return r;
 146}
 147
 148/**
 149 *	write_zsreg - Write to a Z8530 channel register
 150 *	@c: The Z8530 channel
 151 *	@reg: Register number
 152 *	@val: Value to write
 153 *
 154 *	Write a value to an indexed register. The caller must hold the lock
 155 *	to honour the irritating delay rules. We know about register 0
 156 *	being fast to access.
 157 *
 158 *      Assumes c->lock is held.
 159 */
 160static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
 161{
 162	if(reg)
 163		z8530_write_port(c->ctrlio, reg);
 164	z8530_write_port(c->ctrlio, val);
 165
 166}
 167
 168/**
 169 *	write_zsctrl - Write to a Z8530 control register
 170 *	@c: The Z8530 channel
 171 *	@val: Value to write
 172 *
 173 *	Write directly to the control register on the Z8530
 174 */
 175
 176static inline void write_zsctrl(struct z8530_channel *c, u8 val)
 177{
 178	z8530_write_port(c->ctrlio, val);
 179}
 180
 181/**
 182 *	write_zsdata - Write to a Z8530 control register
 183 *	@c: The Z8530 channel
 184 *	@val: Value to write
 185 *
 186 *	Write directly to the data register on the Z8530
 187 */
 188
 189
 190static inline void write_zsdata(struct z8530_channel *c, u8 val)
 191{
 192	z8530_write_port(c->dataio, val);
 193}
 194
 195/*
 196 *	Register loading parameters for a dead port
 197 */
 198 
 199u8 z8530_dead_port[]=
 200{
 201	255
 202};
 203
 204EXPORT_SYMBOL(z8530_dead_port);
 205
 206/*
 207 *	Register loading parameters for currently supported circuit types
 208 */
 209
 210
 211/*
 212 *	Data clocked by telco end. This is the correct data for the UK
 213 *	"kilostream" service, and most other similar services.
 214 */
 215 
 216u8 z8530_hdlc_kilostream[]=
 217{
 218	4,	SYNC_ENAB|SDLC|X1CLK,
 219	2,	0,	/* No vector */
 220	1,	0,
 221	3,	ENT_HM|RxCRC_ENAB|Rx8,
 222	5,	TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
 223	9,	0,		/* Disable interrupts */
 224	6,	0xFF,
 225	7,	FLAG,
 226	10,	ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
 227	11,	TCTRxCP,
 228	14,	DISDPLL,
 229	15,	DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
 230	1,	EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
 231	9,	NV|MIE|NORESET,
 232	255
 233};
 234
 235EXPORT_SYMBOL(z8530_hdlc_kilostream);
 236
 237/*
 238 *	As above but for enhanced chips.
 239 */
 240 
 241u8 z8530_hdlc_kilostream_85230[]=
 242{
 243	4,	SYNC_ENAB|SDLC|X1CLK,
 244	2,	0,	/* No vector */
 245	1,	0,
 246	3,	ENT_HM|RxCRC_ENAB|Rx8,
 247	5,	TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
 248	9,	0,		/* Disable interrupts */
 249	6,	0xFF,
 250	7,	FLAG,
 251	10,	ABUNDER|NRZ|CRCPS,	/* MARKIDLE?? */
 252	11,	TCTRxCP,
 253	14,	DISDPLL,
 254	15,	DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
 255	1,	EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
 256	9,	NV|MIE|NORESET,
 257	23,	3,		/* Extended mode AUTO TX and EOM*/
 258	
 259	255
 260};
 261
 262EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
 263
 264/**
 265 *	z8530_flush_fifo - Flush on chip RX FIFO
 266 *	@c: Channel to flush
 267 *
 268 *	Flush the receive FIFO. There is no specific option for this, we 
 269 *	blindly read bytes and discard them. Reading when there is no data
 270 *	is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
 271 *	
 272 *	All locking is handled for the caller. On return data may still be
 273 *	present if it arrived during the flush.
 274 */
 275 
 276static void z8530_flush_fifo(struct z8530_channel *c)
 277{
 278	read_zsreg(c, R1);
 279	read_zsreg(c, R1);
 280	read_zsreg(c, R1);
 281	read_zsreg(c, R1);
 282	if(c->dev->type==Z85230)
 283	{
 284		read_zsreg(c, R1);
 285		read_zsreg(c, R1);
 286		read_zsreg(c, R1);
 287		read_zsreg(c, R1);
 288	}
 289}	
 290
 291/**
 292 *	z8530_rtsdtr - Control the outgoing DTS/RTS line
 293 *	@c: The Z8530 channel to control;
 294 *	@set: 1 to set, 0 to clear
 295 *
 296 *	Sets or clears DTR/RTS on the requested line. All locking is handled
 297 *	by the caller. For now we assume all boards use the actual RTS/DTR
 298 *	on the chip. Apparently one or two don't. We'll scream about them
 299 *	later.
 300 */
 301
 302static void z8530_rtsdtr(struct z8530_channel *c, int set)
 303{
 304	if (set)
 305		c->regs[5] |= (RTS | DTR);
 306	else
 307		c->regs[5] &= ~(RTS | DTR);
 308	write_zsreg(c, R5, c->regs[5]);
 309}
 310
 311/**
 312 *	z8530_rx - Handle a PIO receive event
 313 *	@c: Z8530 channel to process
 314 *
 315 *	Receive handler for receiving in PIO mode. This is much like the 
 316 *	async one but not quite the same or as complex
 317 *
 318 *	Note: Its intended that this handler can easily be separated from
 319 *	the main code to run realtime. That'll be needed for some machines
 320 *	(eg to ever clock 64kbits on a sparc ;)).
 321 *
 322 *	The RT_LOCK macros don't do anything now. Keep the code covered
 323 *	by them as short as possible in all circumstances - clocks cost
 324 *	baud. The interrupt handler is assumed to be atomic w.r.t. to
 325 *	other code - this is true in the RT case too.
 326 *
 327 *	We only cover the sync cases for this. If you want 2Mbit async
 328 *	do it yourself but consider medical assistance first. This non DMA 
 329 *	synchronous mode is portable code. The DMA mode assumes PCI like 
 330 *	ISA DMA
 331 *
 332 *	Called with the device lock held
 333 */
 334 
 335static void z8530_rx(struct z8530_channel *c)
 336{
 337	u8 ch,stat;
 338
 339	while(1)
 340	{
 341		/* FIFO empty ? */
 342		if(!(read_zsreg(c, R0)&1))
 343			break;
 344		ch=read_zsdata(c);
 345		stat=read_zsreg(c, R1);
 346	
 347		/*
 348		 *	Overrun ?
 349		 */
 350		if(c->count < c->max)
 351		{
 352			*c->dptr++=ch;
 353			c->count++;
 354		}
 355
 356		if(stat&END_FR)
 357		{
 358		
 359			/*
 360			 *	Error ?
 361			 */
 362			if(stat&(Rx_OVR|CRC_ERR))
 363			{
 364				/* Rewind the buffer and return */
 365				if(c->skb)
 366					c->dptr=c->skb->data;
 367				c->count=0;
 368				if(stat&Rx_OVR)
 369				{
 370					pr_warn("%s: overrun\n", c->dev->name);
 371					c->rx_overrun++;
 372				}
 373				if(stat&CRC_ERR)
 374				{
 375					c->rx_crc_err++;
 376					/* printk("crc error\n"); */
 377				}
 378				/* Shove the frame upstream */
 379			}
 380			else
 381			{
 382				/*
 383				 *	Drop the lock for RX processing, or
 384		 		 *	there are deadlocks
 385		 		 */
 386				z8530_rx_done(c);
 387				write_zsctrl(c, RES_Rx_CRC);
 388			}
 389		}
 390	}
 391	/*
 392	 *	Clear irq
 393	 */
 394	write_zsctrl(c, ERR_RES);
 395	write_zsctrl(c, RES_H_IUS);
 396}
 397
 398
 399/**
 400 *	z8530_tx - Handle a PIO transmit event
 401 *	@c: Z8530 channel to process
 402 *
 403 *	Z8530 transmit interrupt handler for the PIO mode. The basic
 404 *	idea is to attempt to keep the FIFO fed. We fill as many bytes
 405 *	in as possible, its quite possible that we won't keep up with the
 406 *	data rate otherwise.
 407 */
 408 
 409static void z8530_tx(struct z8530_channel *c)
 410{
 411	while(c->txcount) {
 412		/* FIFO full ? */
 413		if(!(read_zsreg(c, R0)&4))
 414			return;
 415		c->txcount--;
 416		/*
 417		 *	Shovel out the byte
 418		 */
 419		write_zsreg(c, R8, *c->tx_ptr++);
 420		write_zsctrl(c, RES_H_IUS);
 421		/* We are about to underflow */
 422		if(c->txcount==0)
 423		{
 424			write_zsctrl(c, RES_EOM_L);
 425			write_zsreg(c, R10, c->regs[10]&~ABUNDER);
 426		}
 427	}
 428
 429	
 430	/*
 431	 *	End of frame TX - fire another one
 432	 */
 433	 
 434	write_zsctrl(c, RES_Tx_P);
 435
 436	z8530_tx_done(c);	 
 437	write_zsctrl(c, RES_H_IUS);
 438}
 439
 440/**
 441 *	z8530_status - Handle a PIO status exception
 442 *	@chan: Z8530 channel to process
 443 *
 444 *	A status event occurred in PIO synchronous mode. There are several
 445 *	reasons the chip will bother us here. A transmit underrun means we
 446 *	failed to feed the chip fast enough and just broke a packet. A DCD
 447 *	change is a line up or down.
 448 */
 449
 450static void z8530_status(struct z8530_channel *chan)
 451{
 452	u8 status, altered;
 453
 454	status = read_zsreg(chan, R0);
 455	altered = chan->status ^ status;
 456
 457	chan->status = status;
 458
 459	if (status & TxEOM) {
 460/*		printk("%s: Tx underrun.\n", chan->dev->name); */
 461		chan->netdevice->stats.tx_fifo_errors++;
 462		write_zsctrl(chan, ERR_RES);
 463		z8530_tx_done(chan);
 464	}
 465
 466	if (altered & chan->dcdcheck)
 467	{
 468		if (status & chan->dcdcheck) {
 469			pr_info("%s: DCD raised\n", chan->dev->name);
 470			write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
 471			if (chan->netdevice)
 472				netif_carrier_on(chan->netdevice);
 473		} else {
 474			pr_info("%s: DCD lost\n", chan->dev->name);
 475			write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
 476			z8530_flush_fifo(chan);
 477			if (chan->netdevice)
 478				netif_carrier_off(chan->netdevice);
 479		}
 480
 481	}
 482	write_zsctrl(chan, RES_EXT_INT);
 483	write_zsctrl(chan, RES_H_IUS);
 484}
 485
 486struct z8530_irqhandler z8530_sync =
 487{
 488	z8530_rx,
 489	z8530_tx,
 490	z8530_status
 491};
 492
 493EXPORT_SYMBOL(z8530_sync);
 494
 495/**
 496 *	z8530_dma_rx - Handle a DMA RX event
 497 *	@chan: Channel to handle
 498 *
 499 *	Non bus mastering DMA interfaces for the Z8x30 devices. This
 500 *	is really pretty PC specific. The DMA mode means that most receive
 501 *	events are handled by the DMA hardware. We get a kick here only if
 502 *	a frame ended.
 503 */
 504 
 505static void z8530_dma_rx(struct z8530_channel *chan)
 506{
 507	if(chan->rxdma_on)
 508	{
 509		/* Special condition check only */
 510		u8 status;
 511	
 512		read_zsreg(chan, R7);
 513		read_zsreg(chan, R6);
 514		
 515		status=read_zsreg(chan, R1);
 516	
 517		if(status&END_FR)
 518		{
 519			z8530_rx_done(chan);	/* Fire up the next one */
 520		}		
 521		write_zsctrl(chan, ERR_RES);
 522		write_zsctrl(chan, RES_H_IUS);
 523	}
 524	else
 525	{
 526		/* DMA is off right now, drain the slow way */
 527		z8530_rx(chan);
 528	}	
 529}
 530
 531/**
 532 *	z8530_dma_tx - Handle a DMA TX event
 533 *	@chan:	The Z8530 channel to handle
 534 *
 535 *	We have received an interrupt while doing DMA transmissions. It
 536 *	shouldn't happen. Scream loudly if it does.
 537 */
 538 
 539static void z8530_dma_tx(struct z8530_channel *chan)
 540{
 541	if(!chan->dma_tx)
 542	{
 543		pr_warn("Hey who turned the DMA off?\n");
 544		z8530_tx(chan);
 545		return;
 546	}
 547	/* This shouldn't occur in DMA mode */
 548	pr_err("DMA tx - bogus event!\n");
 549	z8530_tx(chan);
 550}
 551
 552/**
 553 *	z8530_dma_status - Handle a DMA status exception
 554 *	@chan: Z8530 channel to process
 555 *	
 556 *	A status event occurred on the Z8530. We receive these for two reasons
 557 *	when in DMA mode. Firstly if we finished a packet transfer we get one
 558 *	and kick the next packet out. Secondly we may see a DCD change.
 559 *
 560 */
 561 
 562static void z8530_dma_status(struct z8530_channel *chan)
 563{
 564	u8 status, altered;
 565
 566	status=read_zsreg(chan, R0);
 567	altered=chan->status^status;
 568	
 569	chan->status=status;
 570
 571
 572	if(chan->dma_tx)
 573	{
 574		if(status&TxEOM)
 575		{
 576			unsigned long flags;
 577	
 578			flags=claim_dma_lock();
 579			disable_dma(chan->txdma);
 580			clear_dma_ff(chan->txdma);	
 581			chan->txdma_on=0;
 582			release_dma_lock(flags);
 583			z8530_tx_done(chan);
 584		}
 585	}
 586
 587	if (altered & chan->dcdcheck)
 588	{
 589		if (status & chan->dcdcheck) {
 590			pr_info("%s: DCD raised\n", chan->dev->name);
 591			write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
 592			if (chan->netdevice)
 593				netif_carrier_on(chan->netdevice);
 594		} else {
 595			pr_info("%s: DCD lost\n", chan->dev->name);
 596			write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
 597			z8530_flush_fifo(chan);
 598			if (chan->netdevice)
 599				netif_carrier_off(chan->netdevice);
 600		}
 601	}
 602
 603	write_zsctrl(chan, RES_EXT_INT);
 604	write_zsctrl(chan, RES_H_IUS);
 605}
 606
 607static struct z8530_irqhandler z8530_dma_sync = {
 608	z8530_dma_rx,
 609	z8530_dma_tx,
 610	z8530_dma_status
 611};
 612
 613static struct z8530_irqhandler z8530_txdma_sync = {
 614	z8530_rx,
 615	z8530_dma_tx,
 616	z8530_dma_status
 617};
 618
 619/**
 620 *	z8530_rx_clear - Handle RX events from a stopped chip
 621 *	@c: Z8530 channel to shut up
 622 *
 623 *	Receive interrupt vectors for a Z8530 that is in 'parked' mode.
 624 *	For machines with PCI Z85x30 cards, or level triggered interrupts
 625 *	(eg the MacII) we must clear the interrupt cause or die.
 626 */
 627
 628
 629static void z8530_rx_clear(struct z8530_channel *c)
 630{
 631	/*
 632	 *	Data and status bytes
 633	 */
 634	u8 stat;
 635
 636	read_zsdata(c);
 637	stat=read_zsreg(c, R1);
 638	
 639	if(stat&END_FR)
 640		write_zsctrl(c, RES_Rx_CRC);
 641	/*
 642	 *	Clear irq
 643	 */
 644	write_zsctrl(c, ERR_RES);
 645	write_zsctrl(c, RES_H_IUS);
 646}
 647
 648/**
 649 *	z8530_tx_clear - Handle TX events from a stopped chip
 650 *	@c: Z8530 channel to shut up
 651 *
 652 *	Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
 653 *	For machines with PCI Z85x30 cards, or level triggered interrupts
 654 *	(eg the MacII) we must clear the interrupt cause or die.
 655 */
 656
 657static void z8530_tx_clear(struct z8530_channel *c)
 658{
 659	write_zsctrl(c, RES_Tx_P);
 660	write_zsctrl(c, RES_H_IUS);
 661}
 662
 663/**
 664 *	z8530_status_clear - Handle status events from a stopped chip
 665 *	@chan: Z8530 channel to shut up
 666 *
 667 *	Status interrupt vectors for a Z8530 that is in 'parked' mode.
 668 *	For machines with PCI Z85x30 cards, or level triggered interrupts
 669 *	(eg the MacII) we must clear the interrupt cause or die.
 670 */
 671
 672static void z8530_status_clear(struct z8530_channel *chan)
 673{
 674	u8 status=read_zsreg(chan, R0);
 675	if(status&TxEOM)
 676		write_zsctrl(chan, ERR_RES);
 677	write_zsctrl(chan, RES_EXT_INT);
 678	write_zsctrl(chan, RES_H_IUS);
 679}
 680
 681struct z8530_irqhandler z8530_nop=
 682{
 683	z8530_rx_clear,
 684	z8530_tx_clear,
 685	z8530_status_clear
 686};
 687
 688
 689EXPORT_SYMBOL(z8530_nop);
 690
 691/**
 692 *	z8530_interrupt - Handle an interrupt from a Z8530
 693 *	@irq: 	Interrupt number
 694 *	@dev_id: The Z8530 device that is interrupting.
 695 *
 696 *	A Z85[2]30 device has stuck its hand in the air for attention.
 697 *	We scan both the channels on the chip for events and then call
 698 *	the channel specific call backs for each channel that has events.
 699 *	We have to use callback functions because the two channels can be
 700 *	in different modes.
 701 *
 702 *	Locking is done for the handlers. Note that locking is done
 703 *	at the chip level (the 5uS delay issue is per chip not per
 704 *	channel). c->lock for both channels points to dev->lock
 705 */
 706
 707irqreturn_t z8530_interrupt(int irq, void *dev_id)
 708{
 709	struct z8530_dev *dev=dev_id;
 710	u8 uninitialized_var(intr);
 711	static volatile int locker=0;
 712	int work=0;
 713	struct z8530_irqhandler *irqs;
 714	
 715	if(locker)
 716	{
 717		pr_err("IRQ re-enter\n");
 718		return IRQ_NONE;
 719	}
 720	locker=1;
 721
 722	spin_lock(&dev->lock);
 723
 724	while(++work<5000)
 725	{
 726
 727		intr = read_zsreg(&dev->chanA, R3);
 728		if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
 729			break;
 730	
 731		/* This holds the IRQ status. On the 8530 you must read it from chan 
 732		   A even though it applies to the whole chip */
 733		
 734		/* Now walk the chip and see what it is wanting - it may be
 735		   an IRQ for someone else remember */
 736		   
 737		irqs=dev->chanA.irqs;
 738
 739		if(intr & (CHARxIP|CHATxIP|CHAEXT))
 740		{
 741			if(intr&CHARxIP)
 742				irqs->rx(&dev->chanA);
 743			if(intr&CHATxIP)
 744				irqs->tx(&dev->chanA);
 745			if(intr&CHAEXT)
 746				irqs->status(&dev->chanA);
 747		}
 748
 749		irqs=dev->chanB.irqs;
 750
 751		if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
 752		{
 753			if(intr&CHBRxIP)
 754				irqs->rx(&dev->chanB);
 755			if(intr&CHBTxIP)
 756				irqs->tx(&dev->chanB);
 757			if(intr&CHBEXT)
 758				irqs->status(&dev->chanB);
 759		}
 760	}
 761	spin_unlock(&dev->lock);
 762	if(work==5000)
 763		pr_err("%s: interrupt jammed - abort(0x%X)!\n",
 764		       dev->name, intr);
 765	/* Ok all done */
 766	locker=0;
 767	return IRQ_HANDLED;
 768}
 769
 770EXPORT_SYMBOL(z8530_interrupt);
 771
 772static const u8 reg_init[16]=
 773{
 774	0,0,0,0,
 775	0,0,0,0,
 776	0,0,0,0,
 777	0x55,0,0,0
 778};
 779
 780
 781/**
 782 *	z8530_sync_open - Open a Z8530 channel for PIO
 783 *	@dev:	The network interface we are using
 784 *	@c:	The Z8530 channel to open in synchronous PIO mode
 785 *
 786 *	Switch a Z8530 into synchronous mode without DMA assist. We
 787 *	raise the RTS/DTR and commence network operation.
 788 */
 789 
 790int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
 791{
 792	unsigned long flags;
 793
 794	spin_lock_irqsave(c->lock, flags);
 795
 796	c->sync = 1;
 797	c->mtu = dev->mtu+64;
 798	c->count = 0;
 799	c->skb = NULL;
 800	c->skb2 = NULL;
 801	c->irqs = &z8530_sync;
 802
 803	/* This loads the double buffer up */
 804	z8530_rx_done(c);	/* Load the frame ring */
 805	z8530_rx_done(c);	/* Load the backup frame */
 806	z8530_rtsdtr(c,1);
 807	c->dma_tx = 0;
 808	c->regs[R1]|=TxINT_ENAB;
 809	write_zsreg(c, R1, c->regs[R1]);
 810	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
 811
 812	spin_unlock_irqrestore(c->lock, flags);
 813	return 0;
 814}
 815
 816
 817EXPORT_SYMBOL(z8530_sync_open);
 818
 819/**
 820 *	z8530_sync_close - Close a PIO Z8530 channel
 821 *	@dev: Network device to close
 822 *	@c: Z8530 channel to disassociate and move to idle
 823 *
 824 *	Close down a Z8530 interface and switch its interrupt handlers
 825 *	to discard future events.
 826 */
 827 
 828int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
 829{
 830	u8 chk;
 831	unsigned long flags;
 832	
 833	spin_lock_irqsave(c->lock, flags);
 834	c->irqs = &z8530_nop;
 835	c->max = 0;
 836	c->sync = 0;
 837	
 838	chk=read_zsreg(c,R0);
 839	write_zsreg(c, R3, c->regs[R3]);
 840	z8530_rtsdtr(c,0);
 841
 842	spin_unlock_irqrestore(c->lock, flags);
 843	return 0;
 844}
 845
 846EXPORT_SYMBOL(z8530_sync_close);
 847
 848/**
 849 *	z8530_sync_dma_open - Open a Z8530 for DMA I/O
 850 *	@dev: The network device to attach
 851 *	@c: The Z8530 channel to configure in sync DMA mode.
 852 *
 853 *	Set up a Z85x30 device for synchronous DMA in both directions. Two
 854 *	ISA DMA channels must be available for this to work. We assume ISA
 855 *	DMA driven I/O and PC limits on access.
 856 */
 857 
 858int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
 859{
 860	unsigned long cflags, dflags;
 861	
 862	c->sync = 1;
 863	c->mtu = dev->mtu+64;
 864	c->count = 0;
 865	c->skb = NULL;
 866	c->skb2 = NULL;
 867	/*
 868	 *	Load the DMA interfaces up
 869	 */
 870	c->rxdma_on = 0;
 871	c->txdma_on = 0;
 872	
 873	/*
 874	 *	Allocate the DMA flip buffers. Limit by page size.
 875	 *	Everyone runs 1500 mtu or less on wan links so this
 876	 *	should be fine.
 877	 */
 878	 
 879	if(c->mtu  > PAGE_SIZE/2)
 880		return -EMSGSIZE;
 881	 
 882	c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
 883	if(c->rx_buf[0]==NULL)
 884		return -ENOBUFS;
 885	c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
 886	
 887	c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
 888	if(c->tx_dma_buf[0]==NULL)
 889	{
 890		free_page((unsigned long)c->rx_buf[0]);
 891		c->rx_buf[0]=NULL;
 892		return -ENOBUFS;
 893	}
 894	c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;
 895
 896	c->tx_dma_used=0;
 897	c->dma_tx = 1;
 898	c->dma_num=0;
 899	c->dma_ready=1;
 900	
 901	/*
 902	 *	Enable DMA control mode
 903	 */
 904
 905	spin_lock_irqsave(c->lock, cflags);
 906	 
 907	/*
 908	 *	TX DMA via DIR/REQ
 909	 */
 910	 
 911	c->regs[R14]|= DTRREQ;
 912	write_zsreg(c, R14, c->regs[R14]);     
 913
 914	c->regs[R1]&= ~TxINT_ENAB;
 915	write_zsreg(c, R1, c->regs[R1]);
 916	
 917	/*
 918	 *	RX DMA via W/Req
 919	 */	 
 920
 921	c->regs[R1]|= WT_FN_RDYFN;
 922	c->regs[R1]|= WT_RDY_RT;
 923	c->regs[R1]|= INT_ERR_Rx;
 924	c->regs[R1]&= ~TxINT_ENAB;
 925	write_zsreg(c, R1, c->regs[R1]);
 926	c->regs[R1]|= WT_RDY_ENAB;
 927	write_zsreg(c, R1, c->regs[R1]);            
 928	
 929	/*
 930	 *	DMA interrupts
 931	 */
 932	 
 933	/*
 934	 *	Set up the DMA configuration
 935	 */	
 936	 
 937	dflags=claim_dma_lock();
 938	 
 939	disable_dma(c->rxdma);
 940	clear_dma_ff(c->rxdma);
 941	set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
 942	set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
 943	set_dma_count(c->rxdma, c->mtu);
 944	enable_dma(c->rxdma);
 945
 946	disable_dma(c->txdma);
 947	clear_dma_ff(c->txdma);
 948	set_dma_mode(c->txdma, DMA_MODE_WRITE);
 949	disable_dma(c->txdma);
 950	
 951	release_dma_lock(dflags);
 952	
 953	/*
 954	 *	Select the DMA interrupt handlers
 955	 */
 956
 957	c->rxdma_on = 1;
 958	c->txdma_on = 1;
 959	c->tx_dma_used = 1;
 960	 
 961	c->irqs = &z8530_dma_sync;
 962	z8530_rtsdtr(c,1);
 963	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
 964
 965	spin_unlock_irqrestore(c->lock, cflags);
 966	
 967	return 0;
 968}
 969
 970EXPORT_SYMBOL(z8530_sync_dma_open);
 971
 972/**
 973 *	z8530_sync_dma_close - Close down DMA I/O
 974 *	@dev: Network device to detach
 975 *	@c: Z8530 channel to move into discard mode
 976 *
 977 *	Shut down a DMA mode synchronous interface. Halt the DMA, and
 978 *	free the buffers.
 979 */
 980 
 981int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
 982{
 983	u8 chk;
 984	unsigned long flags;
 985	
 986	c->irqs = &z8530_nop;
 987	c->max = 0;
 988	c->sync = 0;
 989	
 990	/*
 991	 *	Disable the PC DMA channels
 992	 */
 993	
 994	flags=claim_dma_lock(); 
 995	disable_dma(c->rxdma);
 996	clear_dma_ff(c->rxdma);
 997	
 998	c->rxdma_on = 0;
 999	
1000	disable_dma(c->txdma);
1001	clear_dma_ff(c->txdma);
1002	release_dma_lock(flags);
1003	
1004	c->txdma_on = 0;
1005	c->tx_dma_used = 0;
1006
1007	spin_lock_irqsave(c->lock, flags);
1008
1009	/*
1010	 *	Disable DMA control mode
1011	 */
1012	 
1013	c->regs[R1]&= ~WT_RDY_ENAB;
1014	write_zsreg(c, R1, c->regs[R1]);            
1015	c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1016	c->regs[R1]|= INT_ALL_Rx;
1017	write_zsreg(c, R1, c->regs[R1]);
1018	c->regs[R14]&= ~DTRREQ;
1019	write_zsreg(c, R14, c->regs[R14]);   
1020	
1021	if(c->rx_buf[0])
1022	{
1023		free_page((unsigned long)c->rx_buf[0]);
1024		c->rx_buf[0]=NULL;
1025	}
1026	if(c->tx_dma_buf[0])
1027	{
1028		free_page((unsigned  long)c->tx_dma_buf[0]);
1029		c->tx_dma_buf[0]=NULL;
1030	}
1031	chk=read_zsreg(c,R0);
1032	write_zsreg(c, R3, c->regs[R3]);
1033	z8530_rtsdtr(c,0);
1034
1035	spin_unlock_irqrestore(c->lock, flags);
1036
1037	return 0;
1038}
1039
1040EXPORT_SYMBOL(z8530_sync_dma_close);
1041
1042/**
1043 *	z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
1044 *	@dev: The network device to attach
1045 *	@c: The Z8530 channel to configure in sync DMA mode.
1046 *
1047 *	Set up a Z85x30 device for synchronous DMA tranmission. One
1048 *	ISA DMA channel must be available for this to work. The receive
1049 *	side is run in PIO mode, but then it has the bigger FIFO.
1050 */
1051
1052int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
1053{
1054	unsigned long cflags, dflags;
1055
1056	printk("Opening sync interface for TX-DMA\n");
1057	c->sync = 1;
1058	c->mtu = dev->mtu+64;
1059	c->count = 0;
1060	c->skb = NULL;
1061	c->skb2 = NULL;
1062	
1063	/*
1064	 *	Allocate the DMA flip buffers. Limit by page size.
1065	 *	Everyone runs 1500 mtu or less on wan links so this
1066	 *	should be fine.
1067	 */
1068	 
1069	if(c->mtu  > PAGE_SIZE/2)
1070		return -EMSGSIZE;
1071	 
1072	c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
1073	if(c->tx_dma_buf[0]==NULL)
1074		return -ENOBUFS;
1075
1076	c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;
1077
1078
1079	spin_lock_irqsave(c->lock, cflags);
1080
1081	/*
1082	 *	Load the PIO receive ring
1083	 */
1084
1085	z8530_rx_done(c);
1086	z8530_rx_done(c);
1087
1088 	/*
1089	 *	Load the DMA interfaces up
1090	 */
1091
1092	c->rxdma_on = 0;
1093	c->txdma_on = 0;
1094	
1095	c->tx_dma_used=0;
1096	c->dma_num=0;
1097	c->dma_ready=1;
1098	c->dma_tx = 1;
1099
1100 	/*
1101	 *	Enable DMA control mode
1102	 */
1103
1104 	/*
1105	 *	TX DMA via DIR/REQ
1106 	 */
1107	c->regs[R14]|= DTRREQ;
1108	write_zsreg(c, R14, c->regs[R14]);     
1109	
1110	c->regs[R1]&= ~TxINT_ENAB;
1111	write_zsreg(c, R1, c->regs[R1]);
1112	
1113	/*
1114	 *	Set up the DMA configuration
1115	 */	
1116	 
1117	dflags = claim_dma_lock();
1118
1119	disable_dma(c->txdma);
1120	clear_dma_ff(c->txdma);
1121	set_dma_mode(c->txdma, DMA_MODE_WRITE);
1122	disable_dma(c->txdma);
1123
1124	release_dma_lock(dflags);
1125	
1126	/*
1127	 *	Select the DMA interrupt handlers
1128	 */
1129
1130	c->rxdma_on = 0;
1131	c->txdma_on = 1;
1132	c->tx_dma_used = 1;
1133	 
1134	c->irqs = &z8530_txdma_sync;
1135	z8530_rtsdtr(c,1);
1136	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1137	spin_unlock_irqrestore(c->lock, cflags);
1138	
1139	return 0;
1140}
1141
1142EXPORT_SYMBOL(z8530_sync_txdma_open);
1143
1144/**
1145 *	z8530_sync_txdma_close - Close down a TX driven DMA channel
1146 *	@dev: Network device to detach
1147 *	@c: Z8530 channel to move into discard mode
1148 *
1149 *	Shut down a DMA/PIO split mode synchronous interface. Halt the DMA, 
1150 *	and  free the buffers.
1151 */
1152
1153int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
1154{
1155	unsigned long dflags, cflags;
1156	u8 chk;
1157
1158	
1159	spin_lock_irqsave(c->lock, cflags);
1160	
1161	c->irqs = &z8530_nop;
1162	c->max = 0;
1163	c->sync = 0;
1164	
1165	/*
1166	 *	Disable the PC DMA channels
1167	 */
1168	 
1169	dflags = claim_dma_lock();
1170
1171	disable_dma(c->txdma);
1172	clear_dma_ff(c->txdma);
1173	c->txdma_on = 0;
1174	c->tx_dma_used = 0;
1175
1176	release_dma_lock(dflags);
1177
1178	/*
1179	 *	Disable DMA control mode
1180	 */
1181	 
1182	c->regs[R1]&= ~WT_RDY_ENAB;
1183	write_zsreg(c, R1, c->regs[R1]);            
1184	c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1185	c->regs[R1]|= INT_ALL_Rx;
1186	write_zsreg(c, R1, c->regs[R1]);
1187	c->regs[R14]&= ~DTRREQ;
1188	write_zsreg(c, R14, c->regs[R14]);   
1189	
1190	if(c->tx_dma_buf[0])
1191	{
1192		free_page((unsigned long)c->tx_dma_buf[0]);
1193		c->tx_dma_buf[0]=NULL;
1194	}
1195	chk=read_zsreg(c,R0);
1196	write_zsreg(c, R3, c->regs[R3]);
1197	z8530_rtsdtr(c,0);
1198
1199	spin_unlock_irqrestore(c->lock, cflags);
1200	return 0;
1201}
1202
1203
1204EXPORT_SYMBOL(z8530_sync_txdma_close);
1205
1206
1207/*
1208 *	Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
1209 *	it exists...
1210 */
1211 
1212static const char *z8530_type_name[]={
1213	"Z8530",
1214	"Z85C30",
1215	"Z85230"
1216};
1217
1218/**
1219 *	z8530_describe - Uniformly describe a Z8530 port
1220 *	@dev: Z8530 device to describe
1221 *	@mapping: string holding mapping type (eg "I/O" or "Mem")
1222 *	@io: the port value in question
1223 *
1224 *	Describe a Z8530 in a standard format. We must pass the I/O as
1225 *	the port offset isn't predictable. The main reason for this function
1226 *	is to try and get a common format of report.
1227 */
1228
1229void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
1230{
1231	pr_info("%s: %s found at %s 0x%lX, IRQ %d\n",
1232		dev->name, 
1233		z8530_type_name[dev->type],
1234		mapping,
1235		Z8530_PORT_OF(io),
1236		dev->irq);
1237}
1238
1239EXPORT_SYMBOL(z8530_describe);
1240
1241/*
1242 *	Locked operation part of the z8530 init code
1243 */
1244 
1245static inline int do_z8530_init(struct z8530_dev *dev)
1246{
1247	/* NOP the interrupt handlers first - we might get a
1248	   floating IRQ transition when we reset the chip */
1249	dev->chanA.irqs=&z8530_nop;
1250	dev->chanB.irqs=&z8530_nop;
1251	dev->chanA.dcdcheck=DCD;
1252	dev->chanB.dcdcheck=DCD;
1253
1254	/* Reset the chip */
1255	write_zsreg(&dev->chanA, R9, 0xC0);
1256	udelay(200);
1257	/* Now check its valid */
1258	write_zsreg(&dev->chanA, R12, 0xAA);
1259	if(read_zsreg(&dev->chanA, R12)!=0xAA)
1260		return -ENODEV;
1261	write_zsreg(&dev->chanA, R12, 0x55);
1262	if(read_zsreg(&dev->chanA, R12)!=0x55)
1263		return -ENODEV;
1264		
1265	dev->type=Z8530;
1266	
1267	/*
1268	 *	See the application note.
1269	 */
1270	 
1271	write_zsreg(&dev->chanA, R15, 0x01);
1272	
1273	/*
1274	 *	If we can set the low bit of R15 then
1275	 *	the chip is enhanced.
1276	 */
1277	 
1278	if(read_zsreg(&dev->chanA, R15)==0x01)
1279	{
1280		/* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
1281		/* Put a char in the fifo */
1282		write_zsreg(&dev->chanA, R8, 0);
1283		if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
1284			dev->type = Z85230;	/* Has a FIFO */
1285		else
1286			dev->type = Z85C30;	/* Z85C30, 1 byte FIFO */
1287	}
1288		
1289	/*
1290	 *	The code assumes R7' and friends are
1291	 *	off. Use write_zsext() for these and keep
1292	 *	this bit clear.
1293	 */
1294	 
1295	write_zsreg(&dev->chanA, R15, 0);
1296		
1297	/*
1298	 *	At this point it looks like the chip is behaving
1299	 */
1300	 
1301	memcpy(dev->chanA.regs, reg_init, 16);
1302	memcpy(dev->chanB.regs, reg_init ,16);
1303	
1304	return 0;
1305}
1306
1307/**
1308 *	z8530_init - Initialise a Z8530 device
1309 *	@dev: Z8530 device to initialise.
1310 *
1311 *	Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
1312 *	is present, identify the type and then program it to hopefully
1313 *	keep quite and behave. This matters a lot, a Z8530 in the wrong
1314 *	state will sometimes get into stupid modes generating 10Khz
1315 *	interrupt streams and the like.
1316 *
1317 *	We set the interrupt handler up to discard any events, in case
1318 *	we get them during reset or setp.
1319 *
1320 *	Return 0 for success, or a negative value indicating the problem
1321 *	in errno form.
1322 */
1323
1324int z8530_init(struct z8530_dev *dev)
1325{
1326	unsigned long flags;
1327	int ret;
1328
1329	/* Set up the chip level lock */
1330	spin_lock_init(&dev->lock);
1331	dev->chanA.lock = &dev->lock;
1332	dev->chanB.lock = &dev->lock;
1333
1334	spin_lock_irqsave(&dev->lock, flags);
1335	ret = do_z8530_init(dev);
1336	spin_unlock_irqrestore(&dev->lock, flags);
1337
1338	return ret;
1339}
1340
1341
1342EXPORT_SYMBOL(z8530_init);
1343
1344/**
1345 *	z8530_shutdown - Shutdown a Z8530 device
1346 *	@dev: The Z8530 chip to shutdown
1347 *
1348 *	We set the interrupt handlers to silence any interrupts. We then 
1349 *	reset the chip and wait 100uS to be sure the reset completed. Just
1350 *	in case the caller then tries to do stuff.
1351 *
1352 *	This is called without the lock held
1353 */
1354 
1355int z8530_shutdown(struct z8530_dev *dev)
1356{
1357	unsigned long flags;
1358	/* Reset the chip */
1359
1360	spin_lock_irqsave(&dev->lock, flags);
1361	dev->chanA.irqs=&z8530_nop;
1362	dev->chanB.irqs=&z8530_nop;
1363	write_zsreg(&dev->chanA, R9, 0xC0);
1364	/* We must lock the udelay, the chip is offlimits here */
1365	udelay(100);
1366	spin_unlock_irqrestore(&dev->lock, flags);
1367	return 0;
1368}
1369
1370EXPORT_SYMBOL(z8530_shutdown);
1371
1372/**
1373 *	z8530_channel_load - Load channel data
1374 *	@c: Z8530 channel to configure
1375 *	@rtable: table of register, value pairs
1376 *	FIXME: ioctl to allow user uploaded tables
1377 *
1378 *	Load a Z8530 channel up from the system data. We use +16 to 
1379 *	indicate the "prime" registers. The value 255 terminates the
1380 *	table.
1381 */
1382
1383int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
1384{
1385	unsigned long flags;
1386
1387	spin_lock_irqsave(c->lock, flags);
1388
1389	while(*rtable!=255)
1390	{
1391		int reg=*rtable++;
1392		if(reg>0x0F)
1393			write_zsreg(c, R15, c->regs[15]|1);
1394		write_zsreg(c, reg&0x0F, *rtable);
1395		if(reg>0x0F)
1396			write_zsreg(c, R15, c->regs[15]&~1);
1397		c->regs[reg]=*rtable++;
1398	}
1399	c->rx_function=z8530_null_rx;
1400	c->skb=NULL;
1401	c->tx_skb=NULL;
1402	c->tx_next_skb=NULL;
1403	c->mtu=1500;
1404	c->max=0;
1405	c->count=0;
1406	c->status=read_zsreg(c, R0);
1407	c->sync=1;
1408	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1409
1410	spin_unlock_irqrestore(c->lock, flags);
1411	return 0;
1412}
1413
1414EXPORT_SYMBOL(z8530_channel_load);
1415
1416
1417/**
1418 *	z8530_tx_begin - Begin packet transmission
1419 *	@c: The Z8530 channel to kick
1420 *
1421 *	This is the speed sensitive side of transmission. If we are called
1422 *	and no buffer is being transmitted we commence the next buffer. If
1423 *	nothing is queued we idle the sync. 
1424 *
1425 *	Note: We are handling this code path in the interrupt path, keep it
1426 *	fast or bad things will happen.
1427 *
1428 *	Called with the lock held.
1429 */
1430
1431static void z8530_tx_begin(struct z8530_channel *c)
1432{
1433	unsigned long flags;
1434	if(c->tx_skb)
1435		return;
1436		
1437	c->tx_skb=c->tx_next_skb;
1438	c->tx_next_skb=NULL;
1439	c->tx_ptr=c->tx_next_ptr;
1440	
1441	if(c->tx_skb==NULL)
1442	{
1443		/* Idle on */
1444		if(c->dma_tx)
1445		{
1446			flags=claim_dma_lock();
1447			disable_dma(c->txdma);
1448			/*
1449			 *	Check if we crapped out.
1450			 */
1451			if (get_dma_residue(c->txdma))
1452			{
1453				c->netdevice->stats.tx_dropped++;
1454				c->netdevice->stats.tx_fifo_errors++;
1455			}
1456			release_dma_lock(flags);
1457		}
1458		c->txcount=0;
1459	}
1460	else
1461	{
1462		c->txcount=c->tx_skb->len;
1463		
1464		
1465		if(c->dma_tx)
1466		{
1467			/*
1468			 *	FIXME. DMA is broken for the original 8530,
1469			 *	on the older parts we need to set a flag and
1470			 *	wait for a further TX interrupt to fire this
1471			 *	stage off	
1472			 */
1473			 
1474			flags=claim_dma_lock();
1475			disable_dma(c->txdma);
1476
1477			/*
1478			 *	These two are needed by the 8530/85C30
1479			 *	and must be issued when idling.
1480			 */
1481			 
1482			if(c->dev->type!=Z85230)
1483			{
1484				write_zsctrl(c, RES_Tx_CRC);
1485				write_zsctrl(c, RES_EOM_L);
1486			}	
1487			write_zsreg(c, R10, c->regs[10]&~ABUNDER);
1488			clear_dma_ff(c->txdma);
1489			set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
1490			set_dma_count(c->txdma, c->txcount);
1491			enable_dma(c->txdma);
1492			release_dma_lock(flags);
1493			write_zsctrl(c, RES_EOM_L);
1494			write_zsreg(c, R5, c->regs[R5]|TxENAB);
1495		}
1496		else
1497		{
1498
1499			/* ABUNDER off */
1500			write_zsreg(c, R10, c->regs[10]);
1501			write_zsctrl(c, RES_Tx_CRC);
1502	
1503			while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
1504			{		
1505				write_zsreg(c, R8, *c->tx_ptr++);
1506				c->txcount--;
1507			}
1508
1509		}
1510	}
1511	/*
1512	 *	Since we emptied tx_skb we can ask for more
1513	 */
1514	netif_wake_queue(c->netdevice);
1515}
1516
1517/**
1518 *	z8530_tx_done - TX complete callback
1519 *	@c: The channel that completed a transmit.
1520 *
1521 *	This is called when we complete a packet send. We wake the queue,
1522 *	start the next packet going and then free the buffer of the existing
1523 *	packet. This code is fairly timing sensitive.
1524 *
1525 *	Called with the register lock held.
1526 */
1527
1528static void z8530_tx_done(struct z8530_channel *c)
1529{
1530	struct sk_buff *skb;
1531
1532	/* Actually this can happen.*/
1533	if (c->tx_skb == NULL)
1534		return;
1535
1536	skb = c->tx_skb;
1537	c->tx_skb = NULL;
1538	z8530_tx_begin(c);
1539	c->netdevice->stats.tx_packets++;
1540	c->netdevice->stats.tx_bytes += skb->len;
1541	dev_kfree_skb_irq(skb);
1542}
1543
1544/**
1545 *	z8530_null_rx - Discard a packet
1546 *	@c: The channel the packet arrived on
1547 *	@skb: The buffer
1548 *
1549 *	We point the receive handler at this function when idle. Instead
1550 *	of processing the frames we get to throw them away.
1551 */
1552 
1553void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
1554{
1555	dev_kfree_skb_any(skb);
1556}
1557
1558EXPORT_SYMBOL(z8530_null_rx);
1559
1560/**
1561 *	z8530_rx_done - Receive completion callback
1562 *	@c: The channel that completed a receive
1563 *
1564 *	A new packet is complete. Our goal here is to get back into receive
1565 *	mode as fast as possible. On the Z85230 we could change to using
1566 *	ESCC mode, but on the older chips we have no choice. We flip to the
1567 *	new buffer immediately in DMA mode so that the DMA of the next
1568 *	frame can occur while we are copying the previous buffer to an sk_buff
1569 *
1570 *	Called with the lock held
1571 */
1572 
1573static void z8530_rx_done(struct z8530_channel *c)
1574{
1575	struct sk_buff *skb;
1576	int ct;
1577	
1578	/*
1579	 *	Is our receive engine in DMA mode
1580	 */
1581	 
1582	if(c->rxdma_on)
1583	{
1584		/*
1585		 *	Save the ready state and the buffer currently
1586		 *	being used as the DMA target
1587		 */
1588		 
1589		int ready=c->dma_ready;
1590		unsigned char *rxb=c->rx_buf[c->dma_num];
1591		unsigned long flags;
1592		
1593		/*
1594		 *	Complete this DMA. Necessary to find the length
1595		 */		
1596		 
1597		flags=claim_dma_lock();
1598		
1599		disable_dma(c->rxdma);
1600		clear_dma_ff(c->rxdma);
1601		c->rxdma_on=0;
1602		ct=c->mtu-get_dma_residue(c->rxdma);
1603		if(ct<0)
1604			ct=2;	/* Shit happens.. */
1605		c->dma_ready=0;
1606		
1607		/*
1608		 *	Normal case: the other slot is free, start the next DMA
1609		 *	into it immediately.
1610		 */
1611		 
1612		if(ready)
1613		{
1614			c->dma_num^=1;
1615			set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
1616			set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
1617			set_dma_count(c->rxdma, c->mtu);
1618			c->rxdma_on = 1;
1619			enable_dma(c->rxdma);
1620			/* Stop any frames that we missed the head of 
1621			   from passing */
1622			write_zsreg(c, R0, RES_Rx_CRC);
1623		}
1624		else
1625			/* Can't occur as we dont reenable the DMA irq until
1626			   after the flip is done */
1627			netdev_warn(c->netdevice, "DMA flip overrun!\n");
1628
1629		release_dma_lock(flags);
1630
1631		/*
1632		 *	Shove the old buffer into an sk_buff. We can't DMA
1633		 *	directly into one on a PC - it might be above the 16Mb
1634		 *	boundary. Optimisation - we could check to see if we
1635		 *	can avoid the copy. Optimisation 2 - make the memcpy
1636		 *	a copychecksum.
1637		 */
1638
1639		skb = dev_alloc_skb(ct);
1640		if (skb == NULL) {
1641			c->netdevice->stats.rx_dropped++;
1642			netdev_warn(c->netdevice, "Memory squeeze\n");
1643		} else {
1644			skb_put(skb, ct);
1645			skb_copy_to_linear_data(skb, rxb, ct);
1646			c->netdevice->stats.rx_packets++;
1647			c->netdevice->stats.rx_bytes += ct;
1648		}
1649		c->dma_ready = 1;
1650	} else {
1651		RT_LOCK;
1652		skb = c->skb;
1653
1654		/*
1655		 *	The game we play for non DMA is similar. We want to
1656		 *	get the controller set up for the next packet as fast
1657		 *	as possible. We potentially only have one byte + the
1658		 *	fifo length for this. Thus we want to flip to the new
1659		 *	buffer and then mess around copying and allocating
1660		 *	things. For the current case it doesn't matter but
1661		 *	if you build a system where the sync irq isn't blocked
1662		 *	by the kernel IRQ disable then you need only block the
1663		 *	sync IRQ for the RT_LOCK area.
1664		 *
1665		 */
1666		ct=c->count;
1667
1668		c->skb = c->skb2;
1669		c->count = 0;
1670		c->max = c->mtu;
1671		if (c->skb) {
1672			c->dptr = c->skb->data;
1673			c->max = c->mtu;
1674		} else {
1675			c->count = 0;
1676			c->max = 0;
1677		}
1678		RT_UNLOCK;
1679
1680		c->skb2 = dev_alloc_skb(c->mtu);
1681		if (c->skb2 == NULL)
1682			netdev_warn(c->netdevice, "memory squeeze\n");
1683		else
1684			skb_put(c->skb2, c->mtu);
1685		c->netdevice->stats.rx_packets++;
1686		c->netdevice->stats.rx_bytes += ct;
1687	}
1688	/*
1689	 *	If we received a frame we must now process it.
1690	 */
1691	if (skb) {
1692		skb_trim(skb, ct);
1693		c->rx_function(c, skb);
1694	} else {
1695		c->netdevice->stats.rx_dropped++;
1696		netdev_err(c->netdevice, "Lost a frame\n");
1697	}
1698}
1699
1700/**
1701 *	spans_boundary - Check a packet can be ISA DMA'd
1702 *	@skb: The buffer to check
1703 *
1704 *	Returns true if the buffer cross a DMA boundary on a PC. The poor
1705 *	thing can only DMA within a 64K block not across the edges of it.
1706 */
1707
1708static inline int spans_boundary(struct sk_buff *skb)
1709{
1710	unsigned long a=(unsigned long)skb->data;
1711	a^=(a+skb->len);
1712	if(a&0x00010000)	/* If the 64K bit is different.. */
1713		return 1;
1714	return 0;
1715}
1716
1717/**
1718 *	z8530_queue_xmit - Queue a packet
1719 *	@c: The channel to use
1720 *	@skb: The packet to kick down the channel
1721 *
1722 *	Queue a packet for transmission. Because we have rather
1723 *	hard to hit interrupt latencies for the Z85230 per packet 
1724 *	even in DMA mode we do the flip to DMA buffer if needed here
1725 *	not in the IRQ.
1726 *
1727 *	Called from the network code. The lock is not held at this 
1728 *	point.
1729 */
1730
1731netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
1732{
1733	unsigned long flags;
1734	
1735	netif_stop_queue(c->netdevice);
1736	if(c->tx_next_skb)
1737		return NETDEV_TX_BUSY;
1738
1739	
1740	/* PC SPECIFIC - DMA limits */
1741	
1742	/*
1743	 *	If we will DMA the transmit and its gone over the ISA bus
1744	 *	limit, then copy to the flip buffer
1745	 */
1746	 
1747	if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
1748	{
1749		/* 
1750		 *	Send the flip buffer, and flip the flippy bit.
1751		 *	We don't care which is used when just so long as
1752		 *	we never use the same buffer twice in a row. Since
1753		 *	only one buffer can be going out at a time the other
1754		 *	has to be safe.
1755		 */
1756		c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
1757		c->tx_dma_used^=1;	/* Flip temp buffer */
1758		skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
1759	}
1760	else
1761		c->tx_next_ptr=skb->data;	
1762	RT_LOCK;
1763	c->tx_next_skb=skb;
1764	RT_UNLOCK;
1765	
1766	spin_lock_irqsave(c->lock, flags);
1767	z8530_tx_begin(c);
1768	spin_unlock_irqrestore(c->lock, flags);
1769	
1770	return NETDEV_TX_OK;
1771}
1772
1773EXPORT_SYMBOL(z8530_queue_xmit);
1774
1775/*
1776 *	Module support
1777 */
1778static const char banner[] __initdata =
1779	KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
1780
1781static int __init z85230_init_driver(void)
1782{
1783	printk(banner);
1784	return 0;
1785}
1786module_init(z85230_init_driver);
1787
1788static void __exit z85230_cleanup_driver(void)
1789{
1790}
1791module_exit(z85230_cleanup_driver);
1792
1793MODULE_AUTHOR("Red Hat Inc.");
1794MODULE_DESCRIPTION("Z85x30 synchronous driver core");
1795MODULE_LICENSE("GPL");