Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 *	This program is free software; you can redistribute it and/or
   3 *	modify it under the terms of the GNU General Public License
   4 *	as published by the Free Software Foundation; either version
   5 *	2 of the License, or (at your option) any later version.
   6 *
   7 *	(c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
   8 *	(c) Copyright 2000, 2001 Red Hat Inc
   9 *
  10 *	Development of this driver was funded by Equiinet Ltd
  11 *			http://www.equiinet.com
  12 *
  13 *	ChangeLog:
  14 *
  15 *	Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
  16 *	unification of all the Z85x30 asynchronous drivers for real.
  17 *
  18 *	DMA now uses get_free_page as kmalloc buffers may span a 64K 
  19 *	boundary.
  20 *
  21 *	Modified for SMP safety and SMP locking by Alan Cox
  22 *					<alan@lxorguk.ukuu.org.uk>
  23 *
  24 *	Performance
  25 *
  26 *	Z85230:
  27 *	Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
  28 *	X.25 is not unrealistic on all machines. DMA mode can in theory
  29 *	handle T1/E1 quite nicely. In practice the limit seems to be about
  30 *	512Kbit->1Mbit depending on motherboard.
  31 *
  32 *	Z85C30:
  33 *	64K will take DMA, 9600 baud X.25 should be ok.
  34 *
  35 *	Z8530:
  36 *	Synchronous mode without DMA is unlikely to pass about 2400 baud.
  37 */
  38
  39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  40
  41#include <linux/module.h>
  42#include <linux/kernel.h>
  43#include <linux/mm.h>
  44#include <linux/net.h>
  45#include <linux/skbuff.h>
  46#include <linux/netdevice.h>
  47#include <linux/if_arp.h>
  48#include <linux/delay.h>
  49#include <linux/hdlc.h>
  50#include <linux/ioport.h>
  51#include <linux/init.h>
  52#include <linux/gfp.h>
  53#include <asm/dma.h>
  54#include <asm/io.h>
  55#define RT_LOCK
  56#define RT_UNLOCK
  57#include <linux/spinlock.h>
  58
  59#include "z85230.h"
  60
  61
  62/**
  63 *	z8530_read_port - Architecture specific interface function
  64 *	@p: port to read
  65 *
  66 *	Provided port access methods. The Comtrol SV11 requires no delays
  67 *	between accesses and uses PC I/O. Some drivers may need a 5uS delay
  68 *	
  69 *	In the longer term this should become an architecture specific
  70 *	section so that this can become a generic driver interface for all
  71 *	platforms. For now we only handle PC I/O ports with or without the
  72 *	dread 5uS sanity delay.
  73 *
  74 *	The caller must hold sufficient locks to avoid violating the horrible
  75 *	5uS delay rule.
  76 */
  77
  78static inline int z8530_read_port(unsigned long p)
  79{
  80	u8 r=inb(Z8530_PORT_OF(p));
  81	if(p&Z8530_PORT_SLEEP)	/* gcc should figure this out efficiently ! */
  82		udelay(5);
  83	return r;
  84}
  85
  86/**
  87 *	z8530_write_port - Architecture specific interface function
  88 *	@p: port to write
  89 *	@d: value to write
  90 *
  91 *	Write a value to a port with delays if need be. Note that the
  92 *	caller must hold locks to avoid read/writes from other contexts
  93 *	violating the 5uS rule
  94 *
  95 *	In the longer term this should become an architecture specific
  96 *	section so that this can become a generic driver interface for all
  97 *	platforms. For now we only handle PC I/O ports with or without the
  98 *	dread 5uS sanity delay.
  99 */
 100
 101
 102static inline void z8530_write_port(unsigned long p, u8 d)
 103{
 104	outb(d,Z8530_PORT_OF(p));
 105	if(p&Z8530_PORT_SLEEP)
 106		udelay(5);
 107}
 108
 109
 110
 111static void z8530_rx_done(struct z8530_channel *c);
 112static void z8530_tx_done(struct z8530_channel *c);
 113
 114
 115/**
 116 *	read_zsreg - Read a register from a Z85230 
 117 *	@c: Z8530 channel to read from (2 per chip)
 118 *	@reg: Register to read
 119 *	FIXME: Use a spinlock.
 120 *	
 121 *	Most of the Z8530 registers are indexed off the control registers.
 122 *	A read is done by writing to the control register and reading the
 123 *	register back.  The caller must hold the lock
 124 */
 125 
 126static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
 127{
 128	if(reg)
 129		z8530_write_port(c->ctrlio, reg);
 130	return z8530_read_port(c->ctrlio);
 131}
 132
 133/**
 134 *	read_zsdata - Read the data port of a Z8530 channel
 135 *	@c: The Z8530 channel to read the data port from
 136 *
 137 *	The data port provides fast access to some things. We still
 138 *	have all the 5uS delays to worry about.
 139 */
 140
 141static inline u8 read_zsdata(struct z8530_channel *c)
 142{
 143	u8 r;
 144	r=z8530_read_port(c->dataio);
 145	return r;
 146}
 147
 148/**
 149 *	write_zsreg - Write to a Z8530 channel register
 150 *	@c: The Z8530 channel
 151 *	@reg: Register number
 152 *	@val: Value to write
 153 *
 154 *	Write a value to an indexed register. The caller must hold the lock
 155 *	to honour the irritating delay rules. We know about register 0
 156 *	being fast to access.
 157 *
 158 *      Assumes c->lock is held.
 159 */
 160static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
 161{
 162	if(reg)
 163		z8530_write_port(c->ctrlio, reg);
 164	z8530_write_port(c->ctrlio, val);
 165
 166}
 167
 168/**
 169 *	write_zsctrl - Write to a Z8530 control register
 170 *	@c: The Z8530 channel
 171 *	@val: Value to write
 172 *
 173 *	Write directly to the control register on the Z8530
 174 */
 175
 176static inline void write_zsctrl(struct z8530_channel *c, u8 val)
 177{
 178	z8530_write_port(c->ctrlio, val);
 179}
 180
 181/**
 182 *	write_zsdata - Write to a Z8530 control register
 183 *	@c: The Z8530 channel
 184 *	@val: Value to write
 185 *
 186 *	Write directly to the data register on the Z8530
 187 */
 188
 189
 190static inline void write_zsdata(struct z8530_channel *c, u8 val)
 191{
 192	z8530_write_port(c->dataio, val);
 193}
 194
 195/*
 196 *	Register loading parameters for a dead port
 197 */
 198 
 199u8 z8530_dead_port[]=
 200{
 201	255
 202};
 203
 204EXPORT_SYMBOL(z8530_dead_port);
 205
 206/*
 207 *	Register loading parameters for currently supported circuit types
 208 */
 209
 210
 211/*
 212 *	Data clocked by telco end. This is the correct data for the UK
 213 *	"kilostream" service, and most other similar services.
 214 */
 215 
 216u8 z8530_hdlc_kilostream[]=
 217{
 218	4,	SYNC_ENAB|SDLC|X1CLK,
 219	2,	0,	/* No vector */
 220	1,	0,
 221	3,	ENT_HM|RxCRC_ENAB|Rx8,
 222	5,	TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
 223	9,	0,		/* Disable interrupts */
 224	6,	0xFF,
 225	7,	FLAG,
 226	10,	ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
 227	11,	TCTRxCP,
 228	14,	DISDPLL,
 229	15,	DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
 230	1,	EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
 231	9,	NV|MIE|NORESET,
 232	255
 233};
 234
 235EXPORT_SYMBOL(z8530_hdlc_kilostream);
 236
 237/*
 238 *	As above but for enhanced chips.
 239 */
 240 
 241u8 z8530_hdlc_kilostream_85230[]=
 242{
 243	4,	SYNC_ENAB|SDLC|X1CLK,
 244	2,	0,	/* No vector */
 245	1,	0,
 246	3,	ENT_HM|RxCRC_ENAB|Rx8,
 247	5,	TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
 248	9,	0,		/* Disable interrupts */
 249	6,	0xFF,
 250	7,	FLAG,
 251	10,	ABUNDER|NRZ|CRCPS,	/* MARKIDLE?? */
 252	11,	TCTRxCP,
 253	14,	DISDPLL,
 254	15,	DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
 255	1,	EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
 256	9,	NV|MIE|NORESET,
 257	23,	3,		/* Extended mode AUTO TX and EOM*/
 258	
 259	255
 260};
 261
 262EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
 263
 264/**
 265 *	z8530_flush_fifo - Flush on chip RX FIFO
 266 *	@c: Channel to flush
 267 *
 268 *	Flush the receive FIFO. There is no specific option for this, we 
 269 *	blindly read bytes and discard them. Reading when there is no data
 270 *	is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
 271 *	
 272 *	All locking is handled for the caller. On return data may still be
 273 *	present if it arrived during the flush.
 274 */
 275 
 276static void z8530_flush_fifo(struct z8530_channel *c)
 277{
 278	read_zsreg(c, R1);
 279	read_zsreg(c, R1);
 280	read_zsreg(c, R1);
 281	read_zsreg(c, R1);
 282	if(c->dev->type==Z85230)
 283	{
 284		read_zsreg(c, R1);
 285		read_zsreg(c, R1);
 286		read_zsreg(c, R1);
 287		read_zsreg(c, R1);
 288	}
 289}	
 290
 291/**
 292 *	z8530_rtsdtr - Control the outgoing DTS/RTS line
 293 *	@c: The Z8530 channel to control;
 294 *	@set: 1 to set, 0 to clear
 295 *
 296 *	Sets or clears DTR/RTS on the requested line. All locking is handled
 297 *	by the caller. For now we assume all boards use the actual RTS/DTR
 298 *	on the chip. Apparently one or two don't. We'll scream about them
 299 *	later.
 300 */
 301
 302static void z8530_rtsdtr(struct z8530_channel *c, int set)
 303{
 304	if (set)
 305		c->regs[5] |= (RTS | DTR);
 306	else
 307		c->regs[5] &= ~(RTS | DTR);
 308	write_zsreg(c, R5, c->regs[5]);
 309}
 310
 311/**
 312 *	z8530_rx - Handle a PIO receive event
 313 *	@c: Z8530 channel to process
 314 *
 315 *	Receive handler for receiving in PIO mode. This is much like the 
 316 *	async one but not quite the same or as complex
 317 *
 318 *	Note: Its intended that this handler can easily be separated from
 319 *	the main code to run realtime. That'll be needed for some machines
 320 *	(eg to ever clock 64kbits on a sparc ;)).
 321 *
 322 *	The RT_LOCK macros don't do anything now. Keep the code covered
 323 *	by them as short as possible in all circumstances - clocks cost
 324 *	baud. The interrupt handler is assumed to be atomic w.r.t. to
 325 *	other code - this is true in the RT case too.
 326 *
 327 *	We only cover the sync cases for this. If you want 2Mbit async
 328 *	do it yourself but consider medical assistance first. This non DMA 
 329 *	synchronous mode is portable code. The DMA mode assumes PCI like 
 330 *	ISA DMA
 331 *
 332 *	Called with the device lock held
 333 */
 334 
 335static void z8530_rx(struct z8530_channel *c)
 336{
 337	u8 ch,stat;
 338
 339	while(1)
 340	{
 341		/* FIFO empty ? */
 342		if(!(read_zsreg(c, R0)&1))
 343			break;
 344		ch=read_zsdata(c);
 345		stat=read_zsreg(c, R1);
 346	
 347		/*
 348		 *	Overrun ?
 349		 */
 350		if(c->count < c->max)
 351		{
 352			*c->dptr++=ch;
 353			c->count++;
 354		}
 355
 356		if(stat&END_FR)
 357		{
 358		
 359			/*
 360			 *	Error ?
 361			 */
 362			if(stat&(Rx_OVR|CRC_ERR))
 363			{
 364				/* Rewind the buffer and return */
 365				if(c->skb)
 366					c->dptr=c->skb->data;
 367				c->count=0;
 368				if(stat&Rx_OVR)
 369				{
 370					pr_warn("%s: overrun\n", c->dev->name);
 371					c->rx_overrun++;
 372				}
 373				if(stat&CRC_ERR)
 374				{
 375					c->rx_crc_err++;
 376					/* printk("crc error\n"); */
 377				}
 378				/* Shove the frame upstream */
 379			}
 380			else
 381			{
 382				/*
 383				 *	Drop the lock for RX processing, or
 384		 		 *	there are deadlocks
 385		 		 */
 386				z8530_rx_done(c);
 387				write_zsctrl(c, RES_Rx_CRC);
 388			}
 389		}
 390	}
 391	/*
 392	 *	Clear irq
 393	 */
 394	write_zsctrl(c, ERR_RES);
 395	write_zsctrl(c, RES_H_IUS);
 396}
 397
 398
 399/**
 400 *	z8530_tx - Handle a PIO transmit event
 401 *	@c: Z8530 channel to process
 402 *
 403 *	Z8530 transmit interrupt handler for the PIO mode. The basic
 404 *	idea is to attempt to keep the FIFO fed. We fill as many bytes
 405 *	in as possible, its quite possible that we won't keep up with the
 406 *	data rate otherwise.
 407 */
 408 
 409static void z8530_tx(struct z8530_channel *c)
 410{
 411	while(c->txcount) {
 412		/* FIFO full ? */
 413		if(!(read_zsreg(c, R0)&4))
 414			return;
 415		c->txcount--;
 416		/*
 417		 *	Shovel out the byte
 418		 */
 419		write_zsreg(c, R8, *c->tx_ptr++);
 420		write_zsctrl(c, RES_H_IUS);
 421		/* We are about to underflow */
 422		if(c->txcount==0)
 423		{
 424			write_zsctrl(c, RES_EOM_L);
 425			write_zsreg(c, R10, c->regs[10]&~ABUNDER);
 426		}
 427	}
 428
 429	
 430	/*
 431	 *	End of frame TX - fire another one
 432	 */
 433	 
 434	write_zsctrl(c, RES_Tx_P);
 435
 436	z8530_tx_done(c);	 
 437	write_zsctrl(c, RES_H_IUS);
 438}
 439
 440/**
 441 *	z8530_status - Handle a PIO status exception
 442 *	@chan: Z8530 channel to process
 443 *
 444 *	A status event occurred in PIO synchronous mode. There are several
 445 *	reasons the chip will bother us here. A transmit underrun means we
 446 *	failed to feed the chip fast enough and just broke a packet. A DCD
 447 *	change is a line up or down.
 448 */
 449
 450static void z8530_status(struct z8530_channel *chan)
 451{
 452	u8 status, altered;
 453
 454	status = read_zsreg(chan, R0);
 455	altered = chan->status ^ status;
 456
 457	chan->status = status;
 458
 459	if (status & TxEOM) {
 460/*		printk("%s: Tx underrun.\n", chan->dev->name); */
 461		chan->netdevice->stats.tx_fifo_errors++;
 462		write_zsctrl(chan, ERR_RES);
 463		z8530_tx_done(chan);
 464	}
 465
 466	if (altered & chan->dcdcheck)
 467	{
 468		if (status & chan->dcdcheck) {
 469			pr_info("%s: DCD raised\n", chan->dev->name);
 470			write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
 471			if (chan->netdevice)
 472				netif_carrier_on(chan->netdevice);
 473		} else {
 474			pr_info("%s: DCD lost\n", chan->dev->name);
 475			write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
 476			z8530_flush_fifo(chan);
 477			if (chan->netdevice)
 478				netif_carrier_off(chan->netdevice);
 479		}
 480
 481	}
 482	write_zsctrl(chan, RES_EXT_INT);
 483	write_zsctrl(chan, RES_H_IUS);
 484}
 485
 486struct z8530_irqhandler z8530_sync = {
 487	.rx = z8530_rx,
 488	.tx = z8530_tx,
 489	.status = z8530_status,
 490};
 491
 492EXPORT_SYMBOL(z8530_sync);
 493
 494/**
 495 *	z8530_dma_rx - Handle a DMA RX event
 496 *	@chan: Channel to handle
 497 *
 498 *	Non bus mastering DMA interfaces for the Z8x30 devices. This
 499 *	is really pretty PC specific. The DMA mode means that most receive
 500 *	events are handled by the DMA hardware. We get a kick here only if
 501 *	a frame ended.
 502 */
 503 
 504static void z8530_dma_rx(struct z8530_channel *chan)
 505{
 506	if(chan->rxdma_on)
 507	{
 508		/* Special condition check only */
 509		u8 status;
 510	
 511		read_zsreg(chan, R7);
 512		read_zsreg(chan, R6);
 513		
 514		status=read_zsreg(chan, R1);
 515	
 516		if(status&END_FR)
 517		{
 518			z8530_rx_done(chan);	/* Fire up the next one */
 519		}		
 520		write_zsctrl(chan, ERR_RES);
 521		write_zsctrl(chan, RES_H_IUS);
 522	}
 523	else
 524	{
 525		/* DMA is off right now, drain the slow way */
 526		z8530_rx(chan);
 527	}	
 528}
 529
 530/**
 531 *	z8530_dma_tx - Handle a DMA TX event
 532 *	@chan:	The Z8530 channel to handle
 533 *
 534 *	We have received an interrupt while doing DMA transmissions. It
 535 *	shouldn't happen. Scream loudly if it does.
 536 */
 537 
 538static void z8530_dma_tx(struct z8530_channel *chan)
 539{
 540	if(!chan->dma_tx)
 541	{
 542		pr_warn("Hey who turned the DMA off?\n");
 543		z8530_tx(chan);
 544		return;
 545	}
 546	/* This shouldn't occur in DMA mode */
 547	pr_err("DMA tx - bogus event!\n");
 548	z8530_tx(chan);
 549}
 550
 551/**
 552 *	z8530_dma_status - Handle a DMA status exception
 553 *	@chan: Z8530 channel to process
 554 *	
 555 *	A status event occurred on the Z8530. We receive these for two reasons
 556 *	when in DMA mode. Firstly if we finished a packet transfer we get one
 557 *	and kick the next packet out. Secondly we may see a DCD change.
 558 *
 559 */
 560 
 561static void z8530_dma_status(struct z8530_channel *chan)
 562{
 563	u8 status, altered;
 564
 565	status=read_zsreg(chan, R0);
 566	altered=chan->status^status;
 567	
 568	chan->status=status;
 569
 570
 571	if(chan->dma_tx)
 572	{
 573		if(status&TxEOM)
 574		{
 575			unsigned long flags;
 576	
 577			flags=claim_dma_lock();
 578			disable_dma(chan->txdma);
 579			clear_dma_ff(chan->txdma);	
 580			chan->txdma_on=0;
 581			release_dma_lock(flags);
 582			z8530_tx_done(chan);
 583		}
 584	}
 585
 586	if (altered & chan->dcdcheck)
 587	{
 588		if (status & chan->dcdcheck) {
 589			pr_info("%s: DCD raised\n", chan->dev->name);
 590			write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
 591			if (chan->netdevice)
 592				netif_carrier_on(chan->netdevice);
 593		} else {
 594			pr_info("%s: DCD lost\n", chan->dev->name);
 595			write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
 596			z8530_flush_fifo(chan);
 597			if (chan->netdevice)
 598				netif_carrier_off(chan->netdevice);
 599		}
 600	}
 601
 602	write_zsctrl(chan, RES_EXT_INT);
 603	write_zsctrl(chan, RES_H_IUS);
 604}
 605
 606static struct z8530_irqhandler z8530_dma_sync = {
 607	.rx = z8530_dma_rx,
 608	.tx = z8530_dma_tx,
 609	.status = z8530_dma_status,
 610};
 611
 612static struct z8530_irqhandler z8530_txdma_sync = {
 613	.rx = z8530_rx,
 614	.tx = z8530_dma_tx,
 615	.status = z8530_dma_status,
 616};
 617
 618/**
 619 *	z8530_rx_clear - Handle RX events from a stopped chip
 620 *	@c: Z8530 channel to shut up
 621 *
 622 *	Receive interrupt vectors for a Z8530 that is in 'parked' mode.
 623 *	For machines with PCI Z85x30 cards, or level triggered interrupts
 624 *	(eg the MacII) we must clear the interrupt cause or die.
 625 */
 626
 627
 628static void z8530_rx_clear(struct z8530_channel *c)
 629{
 630	/*
 631	 *	Data and status bytes
 632	 */
 633	u8 stat;
 634
 635	read_zsdata(c);
 636	stat=read_zsreg(c, R1);
 637	
 638	if(stat&END_FR)
 639		write_zsctrl(c, RES_Rx_CRC);
 640	/*
 641	 *	Clear irq
 642	 */
 643	write_zsctrl(c, ERR_RES);
 644	write_zsctrl(c, RES_H_IUS);
 645}
 646
 647/**
 648 *	z8530_tx_clear - Handle TX events from a stopped chip
 649 *	@c: Z8530 channel to shut up
 650 *
 651 *	Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
 652 *	For machines with PCI Z85x30 cards, or level triggered interrupts
 653 *	(eg the MacII) we must clear the interrupt cause or die.
 654 */
 655
 656static void z8530_tx_clear(struct z8530_channel *c)
 657{
 658	write_zsctrl(c, RES_Tx_P);
 659	write_zsctrl(c, RES_H_IUS);
 660}
 661
 662/**
 663 *	z8530_status_clear - Handle status events from a stopped chip
 664 *	@chan: Z8530 channel to shut up
 665 *
 666 *	Status interrupt vectors for a Z8530 that is in 'parked' mode.
 667 *	For machines with PCI Z85x30 cards, or level triggered interrupts
 668 *	(eg the MacII) we must clear the interrupt cause or die.
 669 */
 670
 671static void z8530_status_clear(struct z8530_channel *chan)
 672{
 673	u8 status=read_zsreg(chan, R0);
 674	if(status&TxEOM)
 675		write_zsctrl(chan, ERR_RES);
 676	write_zsctrl(chan, RES_EXT_INT);
 677	write_zsctrl(chan, RES_H_IUS);
 678}
 679
 680struct z8530_irqhandler z8530_nop = {
 681	.rx = z8530_rx_clear,
 682	.tx = z8530_tx_clear,
 683	.status = z8530_status_clear,
 684};
 685
 686
 687EXPORT_SYMBOL(z8530_nop);
 688
 689/**
 690 *	z8530_interrupt - Handle an interrupt from a Z8530
 691 *	@irq: 	Interrupt number
 692 *	@dev_id: The Z8530 device that is interrupting.
 693 *
 694 *	A Z85[2]30 device has stuck its hand in the air for attention.
 695 *	We scan both the channels on the chip for events and then call
 696 *	the channel specific call backs for each channel that has events.
 697 *	We have to use callback functions because the two channels can be
 698 *	in different modes.
 699 *
 700 *	Locking is done for the handlers. Note that locking is done
 701 *	at the chip level (the 5uS delay issue is per chip not per
 702 *	channel). c->lock for both channels points to dev->lock
 703 */
 704
 705irqreturn_t z8530_interrupt(int irq, void *dev_id)
 706{
 707	struct z8530_dev *dev=dev_id;
 708	u8 uninitialized_var(intr);
 709	static volatile int locker=0;
 710	int work=0;
 711	struct z8530_irqhandler *irqs;
 712	
 713	if(locker)
 714	{
 715		pr_err("IRQ re-enter\n");
 716		return IRQ_NONE;
 717	}
 718	locker=1;
 719
 720	spin_lock(&dev->lock);
 721
 722	while(++work<5000)
 723	{
 724
 725		intr = read_zsreg(&dev->chanA, R3);
 726		if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
 727			break;
 728	
 729		/* This holds the IRQ status. On the 8530 you must read it from chan 
 730		   A even though it applies to the whole chip */
 731		
 732		/* Now walk the chip and see what it is wanting - it may be
 733		   an IRQ for someone else remember */
 734		   
 735		irqs=dev->chanA.irqs;
 736
 737		if(intr & (CHARxIP|CHATxIP|CHAEXT))
 738		{
 739			if(intr&CHARxIP)
 740				irqs->rx(&dev->chanA);
 741			if(intr&CHATxIP)
 742				irqs->tx(&dev->chanA);
 743			if(intr&CHAEXT)
 744				irqs->status(&dev->chanA);
 745		}
 746
 747		irqs=dev->chanB.irqs;
 748
 749		if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
 750		{
 751			if(intr&CHBRxIP)
 752				irqs->rx(&dev->chanB);
 753			if(intr&CHBTxIP)
 754				irqs->tx(&dev->chanB);
 755			if(intr&CHBEXT)
 756				irqs->status(&dev->chanB);
 757		}
 758	}
 759	spin_unlock(&dev->lock);
 760	if(work==5000)
 761		pr_err("%s: interrupt jammed - abort(0x%X)!\n",
 762		       dev->name, intr);
 763	/* Ok all done */
 764	locker=0;
 765	return IRQ_HANDLED;
 766}
 767
 768EXPORT_SYMBOL(z8530_interrupt);
 769
 770static const u8 reg_init[16]=
 771{
 772	0,0,0,0,
 773	0,0,0,0,
 774	0,0,0,0,
 775	0x55,0,0,0
 776};
 777
 778
 779/**
 780 *	z8530_sync_open - Open a Z8530 channel for PIO
 781 *	@dev:	The network interface we are using
 782 *	@c:	The Z8530 channel to open in synchronous PIO mode
 783 *
 784 *	Switch a Z8530 into synchronous mode without DMA assist. We
 785 *	raise the RTS/DTR and commence network operation.
 786 */
 787 
 788int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
 789{
 790	unsigned long flags;
 791
 792	spin_lock_irqsave(c->lock, flags);
 793
 794	c->sync = 1;
 795	c->mtu = dev->mtu+64;
 796	c->count = 0;
 797	c->skb = NULL;
 798	c->skb2 = NULL;
 799	c->irqs = &z8530_sync;
 800
 801	/* This loads the double buffer up */
 802	z8530_rx_done(c);	/* Load the frame ring */
 803	z8530_rx_done(c);	/* Load the backup frame */
 804	z8530_rtsdtr(c,1);
 805	c->dma_tx = 0;
 806	c->regs[R1]|=TxINT_ENAB;
 807	write_zsreg(c, R1, c->regs[R1]);
 808	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
 809
 810	spin_unlock_irqrestore(c->lock, flags);
 811	return 0;
 812}
 813
 814
 815EXPORT_SYMBOL(z8530_sync_open);
 816
 817/**
 818 *	z8530_sync_close - Close a PIO Z8530 channel
 819 *	@dev: Network device to close
 820 *	@c: Z8530 channel to disassociate and move to idle
 821 *
 822 *	Close down a Z8530 interface and switch its interrupt handlers
 823 *	to discard future events.
 824 */
 825 
 826int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
 827{
 828	u8 chk;
 829	unsigned long flags;
 830	
 831	spin_lock_irqsave(c->lock, flags);
 832	c->irqs = &z8530_nop;
 833	c->max = 0;
 834	c->sync = 0;
 835	
 836	chk=read_zsreg(c,R0);
 837	write_zsreg(c, R3, c->regs[R3]);
 838	z8530_rtsdtr(c,0);
 839
 840	spin_unlock_irqrestore(c->lock, flags);
 841	return 0;
 842}
 843
 844EXPORT_SYMBOL(z8530_sync_close);
 845
 846/**
 847 *	z8530_sync_dma_open - Open a Z8530 for DMA I/O
 848 *	@dev: The network device to attach
 849 *	@c: The Z8530 channel to configure in sync DMA mode.
 850 *
 851 *	Set up a Z85x30 device for synchronous DMA in both directions. Two
 852 *	ISA DMA channels must be available for this to work. We assume ISA
 853 *	DMA driven I/O and PC limits on access.
 854 */
 855 
 856int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
 857{
 858	unsigned long cflags, dflags;
 859	
 860	c->sync = 1;
 861	c->mtu = dev->mtu+64;
 862	c->count = 0;
 863	c->skb = NULL;
 864	c->skb2 = NULL;
 865	/*
 866	 *	Load the DMA interfaces up
 867	 */
 868	c->rxdma_on = 0;
 869	c->txdma_on = 0;
 870	
 871	/*
 872	 *	Allocate the DMA flip buffers. Limit by page size.
 873	 *	Everyone runs 1500 mtu or less on wan links so this
 874	 *	should be fine.
 875	 */
 876	 
 877	if(c->mtu  > PAGE_SIZE/2)
 878		return -EMSGSIZE;
 879	 
 880	c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
 881	if(c->rx_buf[0]==NULL)
 882		return -ENOBUFS;
 883	c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
 884	
 885	c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
 886	if(c->tx_dma_buf[0]==NULL)
 887	{
 888		free_page((unsigned long)c->rx_buf[0]);
 889		c->rx_buf[0]=NULL;
 890		return -ENOBUFS;
 891	}
 892	c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;
 893
 894	c->tx_dma_used=0;
 895	c->dma_tx = 1;
 896	c->dma_num=0;
 897	c->dma_ready=1;
 898	
 899	/*
 900	 *	Enable DMA control mode
 901	 */
 902
 903	spin_lock_irqsave(c->lock, cflags);
 904	 
 905	/*
 906	 *	TX DMA via DIR/REQ
 907	 */
 908	 
 909	c->regs[R14]|= DTRREQ;
 910	write_zsreg(c, R14, c->regs[R14]);     
 911
 912	c->regs[R1]&= ~TxINT_ENAB;
 913	write_zsreg(c, R1, c->regs[R1]);
 914	
 915	/*
 916	 *	RX DMA via W/Req
 917	 */	 
 918
 919	c->regs[R1]|= WT_FN_RDYFN;
 920	c->regs[R1]|= WT_RDY_RT;
 921	c->regs[R1]|= INT_ERR_Rx;
 922	c->regs[R1]&= ~TxINT_ENAB;
 923	write_zsreg(c, R1, c->regs[R1]);
 924	c->regs[R1]|= WT_RDY_ENAB;
 925	write_zsreg(c, R1, c->regs[R1]);            
 926	
 927	/*
 928	 *	DMA interrupts
 929	 */
 930	 
 931	/*
 932	 *	Set up the DMA configuration
 933	 */	
 934	 
 935	dflags=claim_dma_lock();
 936	 
 937	disable_dma(c->rxdma);
 938	clear_dma_ff(c->rxdma);
 939	set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
 940	set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
 941	set_dma_count(c->rxdma, c->mtu);
 942	enable_dma(c->rxdma);
 943
 944	disable_dma(c->txdma);
 945	clear_dma_ff(c->txdma);
 946	set_dma_mode(c->txdma, DMA_MODE_WRITE);
 947	disable_dma(c->txdma);
 948	
 949	release_dma_lock(dflags);
 950	
 951	/*
 952	 *	Select the DMA interrupt handlers
 953	 */
 954
 955	c->rxdma_on = 1;
 956	c->txdma_on = 1;
 957	c->tx_dma_used = 1;
 958	 
 959	c->irqs = &z8530_dma_sync;
 960	z8530_rtsdtr(c,1);
 961	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
 962
 963	spin_unlock_irqrestore(c->lock, cflags);
 964	
 965	return 0;
 966}
 967
 968EXPORT_SYMBOL(z8530_sync_dma_open);
 969
 970/**
 971 *	z8530_sync_dma_close - Close down DMA I/O
 972 *	@dev: Network device to detach
 973 *	@c: Z8530 channel to move into discard mode
 974 *
 975 *	Shut down a DMA mode synchronous interface. Halt the DMA, and
 976 *	free the buffers.
 977 */
 978 
 979int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
 980{
 981	u8 chk;
 982	unsigned long flags;
 983	
 984	c->irqs = &z8530_nop;
 985	c->max = 0;
 986	c->sync = 0;
 987	
 988	/*
 989	 *	Disable the PC DMA channels
 990	 */
 991	
 992	flags=claim_dma_lock(); 
 993	disable_dma(c->rxdma);
 994	clear_dma_ff(c->rxdma);
 995	
 996	c->rxdma_on = 0;
 997	
 998	disable_dma(c->txdma);
 999	clear_dma_ff(c->txdma);
1000	release_dma_lock(flags);
1001	
1002	c->txdma_on = 0;
1003	c->tx_dma_used = 0;
1004
1005	spin_lock_irqsave(c->lock, flags);
1006
1007	/*
1008	 *	Disable DMA control mode
1009	 */
1010	 
1011	c->regs[R1]&= ~WT_RDY_ENAB;
1012	write_zsreg(c, R1, c->regs[R1]);            
1013	c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1014	c->regs[R1]|= INT_ALL_Rx;
1015	write_zsreg(c, R1, c->regs[R1]);
1016	c->regs[R14]&= ~DTRREQ;
1017	write_zsreg(c, R14, c->regs[R14]);   
1018	
1019	if(c->rx_buf[0])
1020	{
1021		free_page((unsigned long)c->rx_buf[0]);
1022		c->rx_buf[0]=NULL;
1023	}
1024	if(c->tx_dma_buf[0])
1025	{
1026		free_page((unsigned  long)c->tx_dma_buf[0]);
1027		c->tx_dma_buf[0]=NULL;
1028	}
1029	chk=read_zsreg(c,R0);
1030	write_zsreg(c, R3, c->regs[R3]);
1031	z8530_rtsdtr(c,0);
1032
1033	spin_unlock_irqrestore(c->lock, flags);
1034
1035	return 0;
1036}
1037
1038EXPORT_SYMBOL(z8530_sync_dma_close);
1039
1040/**
1041 *	z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
1042 *	@dev: The network device to attach
1043 *	@c: The Z8530 channel to configure in sync DMA mode.
1044 *
1045 *	Set up a Z85x30 device for synchronous DMA transmission. One
1046 *	ISA DMA channel must be available for this to work. The receive
1047 *	side is run in PIO mode, but then it has the bigger FIFO.
1048 */
1049
1050int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
1051{
1052	unsigned long cflags, dflags;
1053
1054	printk("Opening sync interface for TX-DMA\n");
1055	c->sync = 1;
1056	c->mtu = dev->mtu+64;
1057	c->count = 0;
1058	c->skb = NULL;
1059	c->skb2 = NULL;
1060	
1061	/*
1062	 *	Allocate the DMA flip buffers. Limit by page size.
1063	 *	Everyone runs 1500 mtu or less on wan links so this
1064	 *	should be fine.
1065	 */
1066	 
1067	if(c->mtu  > PAGE_SIZE/2)
1068		return -EMSGSIZE;
1069	 
1070	c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
1071	if(c->tx_dma_buf[0]==NULL)
1072		return -ENOBUFS;
1073
1074	c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;
1075
1076
1077	spin_lock_irqsave(c->lock, cflags);
1078
1079	/*
1080	 *	Load the PIO receive ring
1081	 */
1082
1083	z8530_rx_done(c);
1084	z8530_rx_done(c);
1085
1086 	/*
1087	 *	Load the DMA interfaces up
1088	 */
1089
1090	c->rxdma_on = 0;
1091	c->txdma_on = 0;
1092	
1093	c->tx_dma_used=0;
1094	c->dma_num=0;
1095	c->dma_ready=1;
1096	c->dma_tx = 1;
1097
1098 	/*
1099	 *	Enable DMA control mode
1100	 */
1101
1102 	/*
1103	 *	TX DMA via DIR/REQ
1104 	 */
1105	c->regs[R14]|= DTRREQ;
1106	write_zsreg(c, R14, c->regs[R14]);     
1107	
1108	c->regs[R1]&= ~TxINT_ENAB;
1109	write_zsreg(c, R1, c->regs[R1]);
1110	
1111	/*
1112	 *	Set up the DMA configuration
1113	 */	
1114	 
1115	dflags = claim_dma_lock();
1116
1117	disable_dma(c->txdma);
1118	clear_dma_ff(c->txdma);
1119	set_dma_mode(c->txdma, DMA_MODE_WRITE);
1120	disable_dma(c->txdma);
1121
1122	release_dma_lock(dflags);
1123	
1124	/*
1125	 *	Select the DMA interrupt handlers
1126	 */
1127
1128	c->rxdma_on = 0;
1129	c->txdma_on = 1;
1130	c->tx_dma_used = 1;
1131	 
1132	c->irqs = &z8530_txdma_sync;
1133	z8530_rtsdtr(c,1);
1134	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1135	spin_unlock_irqrestore(c->lock, cflags);
1136	
1137	return 0;
1138}
1139
1140EXPORT_SYMBOL(z8530_sync_txdma_open);
1141
1142/**
1143 *	z8530_sync_txdma_close - Close down a TX driven DMA channel
1144 *	@dev: Network device to detach
1145 *	@c: Z8530 channel to move into discard mode
1146 *
1147 *	Shut down a DMA/PIO split mode synchronous interface. Halt the DMA, 
1148 *	and  free the buffers.
1149 */
1150
1151int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
1152{
1153	unsigned long dflags, cflags;
1154	u8 chk;
1155
1156	
1157	spin_lock_irqsave(c->lock, cflags);
1158	
1159	c->irqs = &z8530_nop;
1160	c->max = 0;
1161	c->sync = 0;
1162	
1163	/*
1164	 *	Disable the PC DMA channels
1165	 */
1166	 
1167	dflags = claim_dma_lock();
1168
1169	disable_dma(c->txdma);
1170	clear_dma_ff(c->txdma);
1171	c->txdma_on = 0;
1172	c->tx_dma_used = 0;
1173
1174	release_dma_lock(dflags);
1175
1176	/*
1177	 *	Disable DMA control mode
1178	 */
1179	 
1180	c->regs[R1]&= ~WT_RDY_ENAB;
1181	write_zsreg(c, R1, c->regs[R1]);            
1182	c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1183	c->regs[R1]|= INT_ALL_Rx;
1184	write_zsreg(c, R1, c->regs[R1]);
1185	c->regs[R14]&= ~DTRREQ;
1186	write_zsreg(c, R14, c->regs[R14]);   
1187	
1188	if(c->tx_dma_buf[0])
1189	{
1190		free_page((unsigned long)c->tx_dma_buf[0]);
1191		c->tx_dma_buf[0]=NULL;
1192	}
1193	chk=read_zsreg(c,R0);
1194	write_zsreg(c, R3, c->regs[R3]);
1195	z8530_rtsdtr(c,0);
1196
1197	spin_unlock_irqrestore(c->lock, cflags);
1198	return 0;
1199}
1200
1201
1202EXPORT_SYMBOL(z8530_sync_txdma_close);
1203
1204
1205/*
1206 *	Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
1207 *	it exists...
1208 */
1209 
1210static const char *z8530_type_name[]={
1211	"Z8530",
1212	"Z85C30",
1213	"Z85230"
1214};
1215
1216/**
1217 *	z8530_describe - Uniformly describe a Z8530 port
1218 *	@dev: Z8530 device to describe
1219 *	@mapping: string holding mapping type (eg "I/O" or "Mem")
1220 *	@io: the port value in question
1221 *
1222 *	Describe a Z8530 in a standard format. We must pass the I/O as
1223 *	the port offset isn't predictable. The main reason for this function
1224 *	is to try and get a common format of report.
1225 */
1226
1227void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
1228{
1229	pr_info("%s: %s found at %s 0x%lX, IRQ %d\n",
1230		dev->name, 
1231		z8530_type_name[dev->type],
1232		mapping,
1233		Z8530_PORT_OF(io),
1234		dev->irq);
1235}
1236
1237EXPORT_SYMBOL(z8530_describe);
1238
1239/*
1240 *	Locked operation part of the z8530 init code
1241 */
1242 
1243static inline int do_z8530_init(struct z8530_dev *dev)
1244{
1245	/* NOP the interrupt handlers first - we might get a
1246	   floating IRQ transition when we reset the chip */
1247	dev->chanA.irqs=&z8530_nop;
1248	dev->chanB.irqs=&z8530_nop;
1249	dev->chanA.dcdcheck=DCD;
1250	dev->chanB.dcdcheck=DCD;
1251
1252	/* Reset the chip */
1253	write_zsreg(&dev->chanA, R9, 0xC0);
1254	udelay(200);
1255	/* Now check its valid */
1256	write_zsreg(&dev->chanA, R12, 0xAA);
1257	if(read_zsreg(&dev->chanA, R12)!=0xAA)
1258		return -ENODEV;
1259	write_zsreg(&dev->chanA, R12, 0x55);
1260	if(read_zsreg(&dev->chanA, R12)!=0x55)
1261		return -ENODEV;
1262		
1263	dev->type=Z8530;
1264	
1265	/*
1266	 *	See the application note.
1267	 */
1268	 
1269	write_zsreg(&dev->chanA, R15, 0x01);
1270	
1271	/*
1272	 *	If we can set the low bit of R15 then
1273	 *	the chip is enhanced.
1274	 */
1275	 
1276	if(read_zsreg(&dev->chanA, R15)==0x01)
1277	{
1278		/* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
1279		/* Put a char in the fifo */
1280		write_zsreg(&dev->chanA, R8, 0);
1281		if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
1282			dev->type = Z85230;	/* Has a FIFO */
1283		else
1284			dev->type = Z85C30;	/* Z85C30, 1 byte FIFO */
1285	}
1286		
1287	/*
1288	 *	The code assumes R7' and friends are
1289	 *	off. Use write_zsext() for these and keep
1290	 *	this bit clear.
1291	 */
1292	 
1293	write_zsreg(&dev->chanA, R15, 0);
1294		
1295	/*
1296	 *	At this point it looks like the chip is behaving
1297	 */
1298	 
1299	memcpy(dev->chanA.regs, reg_init, 16);
1300	memcpy(dev->chanB.regs, reg_init ,16);
1301	
1302	return 0;
1303}
1304
1305/**
1306 *	z8530_init - Initialise a Z8530 device
1307 *	@dev: Z8530 device to initialise.
1308 *
1309 *	Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
1310 *	is present, identify the type and then program it to hopefully
1311 *	keep quite and behave. This matters a lot, a Z8530 in the wrong
1312 *	state will sometimes get into stupid modes generating 10Khz
1313 *	interrupt streams and the like.
1314 *
1315 *	We set the interrupt handler up to discard any events, in case
1316 *	we get them during reset or setp.
1317 *
1318 *	Return 0 for success, or a negative value indicating the problem
1319 *	in errno form.
1320 */
1321
1322int z8530_init(struct z8530_dev *dev)
1323{
1324	unsigned long flags;
1325	int ret;
1326
1327	/* Set up the chip level lock */
1328	spin_lock_init(&dev->lock);
1329	dev->chanA.lock = &dev->lock;
1330	dev->chanB.lock = &dev->lock;
1331
1332	spin_lock_irqsave(&dev->lock, flags);
1333	ret = do_z8530_init(dev);
1334	spin_unlock_irqrestore(&dev->lock, flags);
1335
1336	return ret;
1337}
1338
1339
1340EXPORT_SYMBOL(z8530_init);
1341
1342/**
1343 *	z8530_shutdown - Shutdown a Z8530 device
1344 *	@dev: The Z8530 chip to shutdown
1345 *
1346 *	We set the interrupt handlers to silence any interrupts. We then 
1347 *	reset the chip and wait 100uS to be sure the reset completed. Just
1348 *	in case the caller then tries to do stuff.
1349 *
1350 *	This is called without the lock held
1351 */
1352 
1353int z8530_shutdown(struct z8530_dev *dev)
1354{
1355	unsigned long flags;
1356	/* Reset the chip */
1357
1358	spin_lock_irqsave(&dev->lock, flags);
1359	dev->chanA.irqs=&z8530_nop;
1360	dev->chanB.irqs=&z8530_nop;
1361	write_zsreg(&dev->chanA, R9, 0xC0);
1362	/* We must lock the udelay, the chip is offlimits here */
1363	udelay(100);
1364	spin_unlock_irqrestore(&dev->lock, flags);
1365	return 0;
1366}
1367
1368EXPORT_SYMBOL(z8530_shutdown);
1369
1370/**
1371 *	z8530_channel_load - Load channel data
1372 *	@c: Z8530 channel to configure
1373 *	@rtable: table of register, value pairs
1374 *	FIXME: ioctl to allow user uploaded tables
1375 *
1376 *	Load a Z8530 channel up from the system data. We use +16 to 
1377 *	indicate the "prime" registers. The value 255 terminates the
1378 *	table.
1379 */
1380
1381int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
1382{
1383	unsigned long flags;
1384
1385	spin_lock_irqsave(c->lock, flags);
1386
1387	while(*rtable!=255)
1388	{
1389		int reg=*rtable++;
1390		if(reg>0x0F)
1391			write_zsreg(c, R15, c->regs[15]|1);
1392		write_zsreg(c, reg&0x0F, *rtable);
1393		if(reg>0x0F)
1394			write_zsreg(c, R15, c->regs[15]&~1);
1395		c->regs[reg]=*rtable++;
1396	}
1397	c->rx_function=z8530_null_rx;
1398	c->skb=NULL;
1399	c->tx_skb=NULL;
1400	c->tx_next_skb=NULL;
1401	c->mtu=1500;
1402	c->max=0;
1403	c->count=0;
1404	c->status=read_zsreg(c, R0);
1405	c->sync=1;
1406	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1407
1408	spin_unlock_irqrestore(c->lock, flags);
1409	return 0;
1410}
1411
1412EXPORT_SYMBOL(z8530_channel_load);
1413
1414
1415/**
1416 *	z8530_tx_begin - Begin packet transmission
1417 *	@c: The Z8530 channel to kick
1418 *
1419 *	This is the speed sensitive side of transmission. If we are called
1420 *	and no buffer is being transmitted we commence the next buffer. If
1421 *	nothing is queued we idle the sync. 
1422 *
1423 *	Note: We are handling this code path in the interrupt path, keep it
1424 *	fast or bad things will happen.
1425 *
1426 *	Called with the lock held.
1427 */
1428
1429static void z8530_tx_begin(struct z8530_channel *c)
1430{
1431	unsigned long flags;
1432	if(c->tx_skb)
1433		return;
1434		
1435	c->tx_skb=c->tx_next_skb;
1436	c->tx_next_skb=NULL;
1437	c->tx_ptr=c->tx_next_ptr;
1438	
1439	if(c->tx_skb==NULL)
1440	{
1441		/* Idle on */
1442		if(c->dma_tx)
1443		{
1444			flags=claim_dma_lock();
1445			disable_dma(c->txdma);
1446			/*
1447			 *	Check if we crapped out.
1448			 */
1449			if (get_dma_residue(c->txdma))
1450			{
1451				c->netdevice->stats.tx_dropped++;
1452				c->netdevice->stats.tx_fifo_errors++;
1453			}
1454			release_dma_lock(flags);
1455		}
1456		c->txcount=0;
1457	}
1458	else
1459	{
1460		c->txcount=c->tx_skb->len;
1461		
1462		
1463		if(c->dma_tx)
1464		{
1465			/*
1466			 *	FIXME. DMA is broken for the original 8530,
1467			 *	on the older parts we need to set a flag and
1468			 *	wait for a further TX interrupt to fire this
1469			 *	stage off	
1470			 */
1471			 
1472			flags=claim_dma_lock();
1473			disable_dma(c->txdma);
1474
1475			/*
1476			 *	These two are needed by the 8530/85C30
1477			 *	and must be issued when idling.
1478			 */
1479			 
1480			if(c->dev->type!=Z85230)
1481			{
1482				write_zsctrl(c, RES_Tx_CRC);
1483				write_zsctrl(c, RES_EOM_L);
1484			}	
1485			write_zsreg(c, R10, c->regs[10]&~ABUNDER);
1486			clear_dma_ff(c->txdma);
1487			set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
1488			set_dma_count(c->txdma, c->txcount);
1489			enable_dma(c->txdma);
1490			release_dma_lock(flags);
1491			write_zsctrl(c, RES_EOM_L);
1492			write_zsreg(c, R5, c->regs[R5]|TxENAB);
1493		}
1494		else
1495		{
1496
1497			/* ABUNDER off */
1498			write_zsreg(c, R10, c->regs[10]);
1499			write_zsctrl(c, RES_Tx_CRC);
1500	
1501			while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
1502			{		
1503				write_zsreg(c, R8, *c->tx_ptr++);
1504				c->txcount--;
1505			}
1506
1507		}
1508	}
1509	/*
1510	 *	Since we emptied tx_skb we can ask for more
1511	 */
1512	netif_wake_queue(c->netdevice);
1513}
1514
1515/**
1516 *	z8530_tx_done - TX complete callback
1517 *	@c: The channel that completed a transmit.
1518 *
1519 *	This is called when we complete a packet send. We wake the queue,
1520 *	start the next packet going and then free the buffer of the existing
1521 *	packet. This code is fairly timing sensitive.
1522 *
1523 *	Called with the register lock held.
1524 */
1525
1526static void z8530_tx_done(struct z8530_channel *c)
1527{
1528	struct sk_buff *skb;
1529
1530	/* Actually this can happen.*/
1531	if (c->tx_skb == NULL)
1532		return;
1533
1534	skb = c->tx_skb;
1535	c->tx_skb = NULL;
1536	z8530_tx_begin(c);
1537	c->netdevice->stats.tx_packets++;
1538	c->netdevice->stats.tx_bytes += skb->len;
1539	dev_kfree_skb_irq(skb);
1540}
1541
1542/**
1543 *	z8530_null_rx - Discard a packet
1544 *	@c: The channel the packet arrived on
1545 *	@skb: The buffer
1546 *
1547 *	We point the receive handler at this function when idle. Instead
1548 *	of processing the frames we get to throw them away.
1549 */
1550 
1551void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
1552{
1553	dev_kfree_skb_any(skb);
1554}
1555
1556EXPORT_SYMBOL(z8530_null_rx);
1557
1558/**
1559 *	z8530_rx_done - Receive completion callback
1560 *	@c: The channel that completed a receive
1561 *
1562 *	A new packet is complete. Our goal here is to get back into receive
1563 *	mode as fast as possible. On the Z85230 we could change to using
1564 *	ESCC mode, but on the older chips we have no choice. We flip to the
1565 *	new buffer immediately in DMA mode so that the DMA of the next
1566 *	frame can occur while we are copying the previous buffer to an sk_buff
1567 *
1568 *	Called with the lock held
1569 */
1570 
1571static void z8530_rx_done(struct z8530_channel *c)
1572{
1573	struct sk_buff *skb;
1574	int ct;
1575	
1576	/*
1577	 *	Is our receive engine in DMA mode
1578	 */
1579	 
1580	if(c->rxdma_on)
1581	{
1582		/*
1583		 *	Save the ready state and the buffer currently
1584		 *	being used as the DMA target
1585		 */
1586		 
1587		int ready=c->dma_ready;
1588		unsigned char *rxb=c->rx_buf[c->dma_num];
1589		unsigned long flags;
1590		
1591		/*
1592		 *	Complete this DMA. Necessary to find the length
1593		 */		
1594		 
1595		flags=claim_dma_lock();
1596		
1597		disable_dma(c->rxdma);
1598		clear_dma_ff(c->rxdma);
1599		c->rxdma_on=0;
1600		ct=c->mtu-get_dma_residue(c->rxdma);
1601		if(ct<0)
1602			ct=2;	/* Shit happens.. */
1603		c->dma_ready=0;
1604		
1605		/*
1606		 *	Normal case: the other slot is free, start the next DMA
1607		 *	into it immediately.
1608		 */
1609		 
1610		if(ready)
1611		{
1612			c->dma_num^=1;
1613			set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
1614			set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
1615			set_dma_count(c->rxdma, c->mtu);
1616			c->rxdma_on = 1;
1617			enable_dma(c->rxdma);
1618			/* Stop any frames that we missed the head of 
1619			   from passing */
1620			write_zsreg(c, R0, RES_Rx_CRC);
1621		}
1622		else
1623			/* Can't occur as we dont reenable the DMA irq until
1624			   after the flip is done */
1625			netdev_warn(c->netdevice, "DMA flip overrun!\n");
1626
1627		release_dma_lock(flags);
1628
1629		/*
1630		 *	Shove the old buffer into an sk_buff. We can't DMA
1631		 *	directly into one on a PC - it might be above the 16Mb
1632		 *	boundary. Optimisation - we could check to see if we
1633		 *	can avoid the copy. Optimisation 2 - make the memcpy
1634		 *	a copychecksum.
1635		 */
1636
1637		skb = dev_alloc_skb(ct);
1638		if (skb == NULL) {
1639			c->netdevice->stats.rx_dropped++;
1640			netdev_warn(c->netdevice, "Memory squeeze\n");
1641		} else {
1642			skb_put(skb, ct);
1643			skb_copy_to_linear_data(skb, rxb, ct);
1644			c->netdevice->stats.rx_packets++;
1645			c->netdevice->stats.rx_bytes += ct;
1646		}
1647		c->dma_ready = 1;
1648	} else {
1649		RT_LOCK;
1650		skb = c->skb;
1651
1652		/*
1653		 *	The game we play for non DMA is similar. We want to
1654		 *	get the controller set up for the next packet as fast
1655		 *	as possible. We potentially only have one byte + the
1656		 *	fifo length for this. Thus we want to flip to the new
1657		 *	buffer and then mess around copying and allocating
1658		 *	things. For the current case it doesn't matter but
1659		 *	if you build a system where the sync irq isn't blocked
1660		 *	by the kernel IRQ disable then you need only block the
1661		 *	sync IRQ for the RT_LOCK area.
1662		 *
1663		 */
1664		ct=c->count;
1665
1666		c->skb = c->skb2;
1667		c->count = 0;
1668		c->max = c->mtu;
1669		if (c->skb) {
1670			c->dptr = c->skb->data;
1671			c->max = c->mtu;
1672		} else {
1673			c->count = 0;
1674			c->max = 0;
1675		}
1676		RT_UNLOCK;
1677
1678		c->skb2 = dev_alloc_skb(c->mtu);
1679		if (c->skb2 == NULL)
1680			netdev_warn(c->netdevice, "memory squeeze\n");
1681		else
1682			skb_put(c->skb2, c->mtu);
1683		c->netdevice->stats.rx_packets++;
1684		c->netdevice->stats.rx_bytes += ct;
1685	}
1686	/*
1687	 *	If we received a frame we must now process it.
1688	 */
1689	if (skb) {
1690		skb_trim(skb, ct);
1691		c->rx_function(c, skb);
1692	} else {
1693		c->netdevice->stats.rx_dropped++;
1694		netdev_err(c->netdevice, "Lost a frame\n");
1695	}
1696}
1697
1698/**
1699 *	spans_boundary - Check a packet can be ISA DMA'd
1700 *	@skb: The buffer to check
1701 *
1702 *	Returns true if the buffer cross a DMA boundary on a PC. The poor
1703 *	thing can only DMA within a 64K block not across the edges of it.
1704 */
1705
1706static inline int spans_boundary(struct sk_buff *skb)
1707{
1708	unsigned long a=(unsigned long)skb->data;
1709	a^=(a+skb->len);
1710	if(a&0x00010000)	/* If the 64K bit is different.. */
1711		return 1;
1712	return 0;
1713}
1714
1715/**
1716 *	z8530_queue_xmit - Queue a packet
1717 *	@c: The channel to use
1718 *	@skb: The packet to kick down the channel
1719 *
1720 *	Queue a packet for transmission. Because we have rather
1721 *	hard to hit interrupt latencies for the Z85230 per packet 
1722 *	even in DMA mode we do the flip to DMA buffer if needed here
1723 *	not in the IRQ.
1724 *
1725 *	Called from the network code. The lock is not held at this 
1726 *	point.
1727 */
1728
1729netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
1730{
1731	unsigned long flags;
1732	
1733	netif_stop_queue(c->netdevice);
1734	if(c->tx_next_skb)
1735		return NETDEV_TX_BUSY;
1736
1737	
1738	/* PC SPECIFIC - DMA limits */
1739	
1740	/*
1741	 *	If we will DMA the transmit and its gone over the ISA bus
1742	 *	limit, then copy to the flip buffer
1743	 */
1744	 
1745	if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
1746	{
1747		/* 
1748		 *	Send the flip buffer, and flip the flippy bit.
1749		 *	We don't care which is used when just so long as
1750		 *	we never use the same buffer twice in a row. Since
1751		 *	only one buffer can be going out at a time the other
1752		 *	has to be safe.
1753		 */
1754		c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
1755		c->tx_dma_used^=1;	/* Flip temp buffer */
1756		skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
1757	}
1758	else
1759		c->tx_next_ptr=skb->data;	
1760	RT_LOCK;
1761	c->tx_next_skb=skb;
1762	RT_UNLOCK;
1763	
1764	spin_lock_irqsave(c->lock, flags);
1765	z8530_tx_begin(c);
1766	spin_unlock_irqrestore(c->lock, flags);
1767	
1768	return NETDEV_TX_OK;
1769}
1770
1771EXPORT_SYMBOL(z8530_queue_xmit);
1772
1773/*
1774 *	Module support
1775 */
1776static const char banner[] __initconst =
1777	KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
1778
1779static int __init z85230_init_driver(void)
1780{
1781	printk(banner);
1782	return 0;
1783}
1784module_init(z85230_init_driver);
1785
1786static void __exit z85230_cleanup_driver(void)
1787{
1788}
1789module_exit(z85230_cleanup_driver);
1790
1791MODULE_AUTHOR("Red Hat Inc.");
1792MODULE_DESCRIPTION("Z85x30 synchronous driver core");
1793MODULE_LICENSE("GPL");