Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
   4 *
   5 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
   6 *
   7 * Thanks to Essential Communication for providing us with hardware
   8 * and very comprehensive documentation without which I would not have
   9 * been able to write this driver. A special thank you to John Gibbon
  10 * for sorting out the legal issues, with the NDA, allowing the code to
  11 * be released under the GPL.
  12 *
  13 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
  14 * stupid bugs in my code.
  15 *
  16 * Softnet support and various other patches from Val Henson of
  17 * ODS/Essential.
  18 *
  19 * PCI DMA mapping code partly based on work by Francois Romieu.
  20 */
  21
  22
  23#define DEBUG 1
  24#define RX_DMA_SKBUFF 1
  25#define PKT_COPY_THRESHOLD 512
  26
  27#include <linux/module.h>
  28#include <linux/types.h>
  29#include <linux/errno.h>
  30#include <linux/ioport.h>
  31#include <linux/pci.h>
  32#include <linux/kernel.h>
  33#include <linux/netdevice.h>
  34#include <linux/hippidevice.h>
  35#include <linux/skbuff.h>
  36#include <linux/delay.h>
  37#include <linux/mm.h>
  38#include <linux/slab.h>
  39#include <net/sock.h>
  40
  41#include <asm/cache.h>
  42#include <asm/byteorder.h>
  43#include <asm/io.h>
  44#include <asm/irq.h>
  45#include <linux/uaccess.h>
  46
  47#define rr_if_busy(dev)     netif_queue_stopped(dev)
  48#define rr_if_running(dev)  netif_running(dev)
  49
  50#include "rrunner.h"
  51
  52#define RUN_AT(x) (jiffies + (x))
  53
  54
  55MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
  56MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
  57MODULE_LICENSE("GPL");
  58
  59static const char version[] =
  60"rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
  61
  62
  63static const struct net_device_ops rr_netdev_ops = {
  64	.ndo_open 		= rr_open,
  65	.ndo_stop		= rr_close,
  66	.ndo_siocdevprivate	= rr_siocdevprivate,
  67	.ndo_start_xmit		= rr_start_xmit,
  68	.ndo_set_mac_address	= hippi_mac_addr,
  69};
  70
  71/*
  72 * Implementation notes:
  73 *
  74 * The DMA engine only allows for DMA within physical 64KB chunks of
  75 * memory. The current approach of the driver (and stack) is to use
  76 * linear blocks of memory for the skbuffs. However, as the data block
  77 * is always the first part of the skb and skbs are 2^n aligned so we
  78 * are guarantted to get the whole block within one 64KB align 64KB
  79 * chunk.
  80 *
  81 * On the long term, relying on being able to allocate 64KB linear
  82 * chunks of memory is not feasible and the skb handling code and the
  83 * stack will need to know about I/O vectors or something similar.
  84 */
  85
  86static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  87{
  88	struct net_device *dev;
  89	static int version_disp;
  90	u8 pci_latency;
  91	struct rr_private *rrpriv;
  92	void *tmpptr;
  93	dma_addr_t ring_dma;
  94	int ret = -ENOMEM;
  95
  96	dev = alloc_hippi_dev(sizeof(struct rr_private));
  97	if (!dev)
  98		goto out3;
  99
 100	ret = pci_enable_device(pdev);
 101	if (ret) {
 102		ret = -ENODEV;
 103		goto out2;
 104	}
 105
 106	rrpriv = netdev_priv(dev);
 107
 108	SET_NETDEV_DEV(dev, &pdev->dev);
 109
 110	ret = pci_request_regions(pdev, "rrunner");
 111	if (ret < 0)
 112		goto out;
 113
 114	pci_set_drvdata(pdev, dev);
 115
 116	rrpriv->pci_dev = pdev;
 117
 118	spin_lock_init(&rrpriv->lock);
 119
 120	dev->netdev_ops = &rr_netdev_ops;
 121
 122	/* display version info if adapter is found */
 123	if (!version_disp) {
 124		/* set display flag to TRUE so that */
 125		/* we only display this string ONCE */
 126		version_disp = 1;
 127		printk(version);
 128	}
 129
 130	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
 131	if (pci_latency <= 0x58){
 132		pci_latency = 0x58;
 133		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
 134	}
 135
 136	pci_set_master(pdev);
 137
 138	printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
 139	       "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
 140	       (unsigned long long)pci_resource_start(pdev, 0),
 141	       pdev->irq, pci_latency);
 142
 143	/*
 144	 * Remap the MMIO regs into kernel space.
 145	 */
 146	rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
 147	if (!rrpriv->regs) {
 148		printk(KERN_ERR "%s:  Unable to map I/O register, "
 149			"RoadRunner will be disabled.\n", dev->name);
 150		ret = -EIO;
 151		goto out;
 152	}
 153
 154	tmpptr = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
 155				    GFP_KERNEL);
 156	rrpriv->tx_ring = tmpptr;
 157	rrpriv->tx_ring_dma = ring_dma;
 158
 159	if (!tmpptr) {
 160		ret = -ENOMEM;
 161		goto out;
 162	}
 163
 164	tmpptr = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
 165				    GFP_KERNEL);
 166	rrpriv->rx_ring = tmpptr;
 167	rrpriv->rx_ring_dma = ring_dma;
 168
 169	if (!tmpptr) {
 170		ret = -ENOMEM;
 171		goto out;
 172	}
 173
 174	tmpptr = dma_alloc_coherent(&pdev->dev, EVT_RING_SIZE, &ring_dma,
 175				    GFP_KERNEL);
 176	rrpriv->evt_ring = tmpptr;
 177	rrpriv->evt_ring_dma = ring_dma;
 178
 179	if (!tmpptr) {
 180		ret = -ENOMEM;
 181		goto out;
 182	}
 183
 184	/*
 185	 * Don't access any register before this point!
 186	 */
 187#ifdef __BIG_ENDIAN
 188	writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
 189		&rrpriv->regs->HostCtrl);
 190#endif
 191	/*
 192	 * Need to add a case for little-endian 64-bit hosts here.
 193	 */
 194
 195	rr_init(dev);
 196
 197	ret = register_netdev(dev);
 198	if (ret)
 199		goto out;
 200	return 0;
 201
 202 out:
 203	if (rrpriv->evt_ring)
 204		dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rrpriv->evt_ring,
 205				  rrpriv->evt_ring_dma);
 206	if (rrpriv->rx_ring)
 207		dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rrpriv->rx_ring,
 208				  rrpriv->rx_ring_dma);
 209	if (rrpriv->tx_ring)
 210		dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rrpriv->tx_ring,
 211				  rrpriv->tx_ring_dma);
 212	if (rrpriv->regs)
 213		pci_iounmap(pdev, rrpriv->regs);
 214	if (pdev)
 215		pci_release_regions(pdev);
 216	pci_disable_device(pdev);
 217 out2:
 218	free_netdev(dev);
 219 out3:
 220	return ret;
 221}
 222
 223static void rr_remove_one(struct pci_dev *pdev)
 224{
 225	struct net_device *dev = pci_get_drvdata(pdev);
 226	struct rr_private *rr = netdev_priv(dev);
 227
 228	if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
 229		printk(KERN_ERR "%s: trying to unload running NIC\n",
 230		       dev->name);
 231		writel(HALT_NIC, &rr->regs->HostCtrl);
 232	}
 233
 234	unregister_netdev(dev);
 235	dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rr->evt_ring,
 236			  rr->evt_ring_dma);
 237	dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rr->rx_ring,
 238			  rr->rx_ring_dma);
 239	dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rr->tx_ring,
 240			  rr->tx_ring_dma);
 241	pci_iounmap(pdev, rr->regs);
 242	pci_release_regions(pdev);
 243	pci_disable_device(pdev);
 244	free_netdev(dev);
 245}
 246
 247
 248/*
 249 * Commands are considered to be slow, thus there is no reason to
 250 * inline this.
 251 */
 252static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
 253{
 254	struct rr_regs __iomem *regs;
 255	u32 idx;
 256
 257	regs = rrpriv->regs;
 258	/*
 259	 * This is temporary - it will go away in the final version.
 260	 * We probably also want to make this function inline.
 261	 */
 262	if (readl(&regs->HostCtrl) & NIC_HALTED){
 263		printk("issuing command for halted NIC, code 0x%x, "
 264		       "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
 265		if (readl(&regs->Mode) & FATAL_ERR)
 266			printk("error codes Fail1 %02x, Fail2 %02x\n",
 267			       readl(&regs->Fail1), readl(&regs->Fail2));
 268	}
 269
 270	idx = rrpriv->info->cmd_ctrl.pi;
 271
 272	writel(*(u32*)(cmd), &regs->CmdRing[idx]);
 273	wmb();
 274
 275	idx = (idx - 1) % CMD_RING_ENTRIES;
 276	rrpriv->info->cmd_ctrl.pi = idx;
 277	wmb();
 278
 279	if (readl(&regs->Mode) & FATAL_ERR)
 280		printk("error code %02x\n", readl(&regs->Fail1));
 281}
 282
 283
 284/*
 285 * Reset the board in a sensible manner. The NIC is already halted
 286 * when we get here and a spin-lock is held.
 287 */
 288static int rr_reset(struct net_device *dev)
 289{
 290	struct rr_private *rrpriv;
 291	struct rr_regs __iomem *regs;
 292	u32 start_pc;
 293	int i;
 294
 295	rrpriv = netdev_priv(dev);
 296	regs = rrpriv->regs;
 297
 298	rr_load_firmware(dev);
 299
 300	writel(0x01000000, &regs->TX_state);
 301	writel(0xff800000, &regs->RX_state);
 302	writel(0, &regs->AssistState);
 303	writel(CLEAR_INTA, &regs->LocalCtrl);
 304	writel(0x01, &regs->BrkPt);
 305	writel(0, &regs->Timer);
 306	writel(0, &regs->TimerRef);
 307	writel(RESET_DMA, &regs->DmaReadState);
 308	writel(RESET_DMA, &regs->DmaWriteState);
 309	writel(0, &regs->DmaWriteHostHi);
 310	writel(0, &regs->DmaWriteHostLo);
 311	writel(0, &regs->DmaReadHostHi);
 312	writel(0, &regs->DmaReadHostLo);
 313	writel(0, &regs->DmaReadLen);
 314	writel(0, &regs->DmaWriteLen);
 315	writel(0, &regs->DmaWriteLcl);
 316	writel(0, &regs->DmaWriteIPchecksum);
 317	writel(0, &regs->DmaReadLcl);
 318	writel(0, &regs->DmaReadIPchecksum);
 319	writel(0, &regs->PciState);
 320#if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
 321	writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
 322#elif (BITS_PER_LONG == 64)
 323	writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
 324#else
 325	writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
 326#endif
 327
 328#if 0
 329	/*
 330	 * Don't worry, this is just black magic.
 331	 */
 332	writel(0xdf000, &regs->RxBase);
 333	writel(0xdf000, &regs->RxPrd);
 334	writel(0xdf000, &regs->RxCon);
 335	writel(0xce000, &regs->TxBase);
 336	writel(0xce000, &regs->TxPrd);
 337	writel(0xce000, &regs->TxCon);
 338	writel(0, &regs->RxIndPro);
 339	writel(0, &regs->RxIndCon);
 340	writel(0, &regs->RxIndRef);
 341	writel(0, &regs->TxIndPro);
 342	writel(0, &regs->TxIndCon);
 343	writel(0, &regs->TxIndRef);
 344	writel(0xcc000, &regs->pad10[0]);
 345	writel(0, &regs->DrCmndPro);
 346	writel(0, &regs->DrCmndCon);
 347	writel(0, &regs->DwCmndPro);
 348	writel(0, &regs->DwCmndCon);
 349	writel(0, &regs->DwCmndRef);
 350	writel(0, &regs->DrDataPro);
 351	writel(0, &regs->DrDataCon);
 352	writel(0, &regs->DrDataRef);
 353	writel(0, &regs->DwDataPro);
 354	writel(0, &regs->DwDataCon);
 355	writel(0, &regs->DwDataRef);
 356#endif
 357
 358	writel(0xffffffff, &regs->MbEvent);
 359	writel(0, &regs->Event);
 360
 361	writel(0, &regs->TxPi);
 362	writel(0, &regs->IpRxPi);
 363
 364	writel(0, &regs->EvtCon);
 365	writel(0, &regs->EvtPrd);
 366
 367	rrpriv->info->evt_ctrl.pi = 0;
 368
 369	for (i = 0; i < CMD_RING_ENTRIES; i++)
 370		writel(0, &regs->CmdRing[i]);
 371
 372/*
 373 * Why 32 ? is this not cache line size dependent?
 374 */
 375	writel(RBURST_64|WBURST_64, &regs->PciState);
 376	wmb();
 377
 378	start_pc = rr_read_eeprom_word(rrpriv,
 379			offsetof(struct eeprom, rncd_info.FwStart));
 380
 381#if (DEBUG > 1)
 382	printk("%s: Executing firmware at address 0x%06x\n",
 383	       dev->name, start_pc);
 384#endif
 385
 386	writel(start_pc + 0x800, &regs->Pc);
 387	wmb();
 388	udelay(5);
 389
 390	writel(start_pc, &regs->Pc);
 391	wmb();
 392
 393	return 0;
 394}
 395
 396
 397/*
 398 * Read a string from the EEPROM.
 399 */
 400static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
 401				unsigned long offset,
 402				unsigned char *buf,
 403				unsigned long length)
 404{
 405	struct rr_regs __iomem *regs = rrpriv->regs;
 406	u32 misc, io, host, i;
 407
 408	io = readl(&regs->ExtIo);
 409	writel(0, &regs->ExtIo);
 410	misc = readl(&regs->LocalCtrl);
 411	writel(0, &regs->LocalCtrl);
 412	host = readl(&regs->HostCtrl);
 413	writel(host | HALT_NIC, &regs->HostCtrl);
 414	mb();
 415
 416	for (i = 0; i < length; i++){
 417		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
 418		mb();
 419		buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
 420		mb();
 421	}
 422
 423	writel(host, &regs->HostCtrl);
 424	writel(misc, &regs->LocalCtrl);
 425	writel(io, &regs->ExtIo);
 426	mb();
 427	return i;
 428}
 429
 430
 431/*
 432 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
 433 * it to our CPU byte-order.
 434 */
 435static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
 436			    size_t offset)
 437{
 438	__be32 word;
 439
 440	if ((rr_read_eeprom(rrpriv, offset,
 441			    (unsigned char *)&word, 4) == 4))
 442		return be32_to_cpu(word);
 443	return 0;
 444}
 445
 446
 447/*
 448 * Write a string to the EEPROM.
 449 *
 450 * This is only called when the firmware is not running.
 451 */
 452static unsigned int write_eeprom(struct rr_private *rrpriv,
 453				 unsigned long offset,
 454				 unsigned char *buf,
 455				 unsigned long length)
 456{
 457	struct rr_regs __iomem *regs = rrpriv->regs;
 458	u32 misc, io, data, i, j, ready, error = 0;
 459
 460	io = readl(&regs->ExtIo);
 461	writel(0, &regs->ExtIo);
 462	misc = readl(&regs->LocalCtrl);
 463	writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
 464	mb();
 465
 466	for (i = 0; i < length; i++){
 467		writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
 468		mb();
 469		data = buf[i] << 24;
 470		/*
 471		 * Only try to write the data if it is not the same
 472		 * value already.
 473		 */
 474		if ((readl(&regs->WinData) & 0xff000000) != data){
 475			writel(data, &regs->WinData);
 476			ready = 0;
 477			j = 0;
 478			mb();
 479			while(!ready){
 480				udelay(20);
 481				if ((readl(&regs->WinData) & 0xff000000) ==
 482				    data)
 483					ready = 1;
 484				mb();
 485				if (j++ > 5000){
 486					printk("data mismatch: %08x, "
 487					       "WinData %08x\n", data,
 488					       readl(&regs->WinData));
 489					ready = 1;
 490					error = 1;
 491				}
 492			}
 493		}
 494	}
 495
 496	writel(misc, &regs->LocalCtrl);
 497	writel(io, &regs->ExtIo);
 498	mb();
 499
 500	return error;
 501}
 502
 503
 504static int rr_init(struct net_device *dev)
 505{
 506	u8 addr[HIPPI_ALEN] __aligned(4);
 507	struct rr_private *rrpriv;
 508	struct rr_regs __iomem *regs;
 509	u32 sram_size, rev;
 510
 511	rrpriv = netdev_priv(dev);
 512	regs = rrpriv->regs;
 513
 514	rev = readl(&regs->FwRev);
 515	rrpriv->fw_rev = rev;
 516	if (rev > 0x00020024)
 517		printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
 518		       ((rev >> 8) & 0xff), (rev & 0xff));
 519	else if (rev >= 0x00020000) {
 520		printk("  Firmware revision: %i.%i.%i (2.0.37 or "
 521		       "later is recommended)\n", (rev >> 16),
 522		       ((rev >> 8) & 0xff), (rev & 0xff));
 523	}else{
 524		printk("  Firmware revision too old: %i.%i.%i, please "
 525		       "upgrade to 2.0.37 or later.\n",
 526		       (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
 527	}
 528
 529#if (DEBUG > 2)
 530	printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
 531#endif
 532
 533	/*
 534	 * Read the hardware address from the eeprom.  The HW address
 535	 * is not really necessary for HIPPI but awfully convenient.
 536	 * The pointer arithmetic to put it in dev_addr is ugly, but
 537	 * Donald Becker does it this way for the GigE version of this
 538	 * card and it's shorter and more portable than any
 539	 * other method I've seen.  -VAL
 540	 */
 541
 542	*(__be16 *)(addr) =
 543	  htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
 544	*(__be32 *)(addr+2) =
 545	  htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
 546	dev_addr_set(dev, addr);
 547
 548	printk("  MAC: %pM\n", dev->dev_addr);
 549
 550	sram_size = rr_read_eeprom_word(rrpriv, 8);
 551	printk("  SRAM size 0x%06x\n", sram_size);
 552
 553	return 0;
 554}
 555
 556
 557static int rr_init1(struct net_device *dev)
 558{
 559	struct rr_private *rrpriv;
 560	struct rr_regs __iomem *regs;
 561	unsigned long myjif, flags;
 562	struct cmd cmd;
 563	u32 hostctrl;
 564	int ecode = 0;
 565	short i;
 566
 567	rrpriv = netdev_priv(dev);
 568	regs = rrpriv->regs;
 569
 570	spin_lock_irqsave(&rrpriv->lock, flags);
 571
 572	hostctrl = readl(&regs->HostCtrl);
 573	writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
 574	wmb();
 575
 576	if (hostctrl & PARITY_ERR){
 577		printk("%s: Parity error halting NIC - this is serious!\n",
 578		       dev->name);
 579		spin_unlock_irqrestore(&rrpriv->lock, flags);
 580		ecode = -EFAULT;
 581		goto error;
 582	}
 583
 584	set_rxaddr(regs, rrpriv->rx_ctrl_dma);
 585	set_infoaddr(regs, rrpriv->info_dma);
 586
 587	rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
 588	rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
 589	rrpriv->info->evt_ctrl.mode = 0;
 590	rrpriv->info->evt_ctrl.pi = 0;
 591	set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
 592
 593	rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
 594	rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
 595	rrpriv->info->cmd_ctrl.mode = 0;
 596	rrpriv->info->cmd_ctrl.pi = 15;
 597
 598	for (i = 0; i < CMD_RING_ENTRIES; i++) {
 599		writel(0, &regs->CmdRing[i]);
 600	}
 601
 602	for (i = 0; i < TX_RING_ENTRIES; i++) {
 603		rrpriv->tx_ring[i].size = 0;
 604		set_rraddr(&rrpriv->tx_ring[i].addr, 0);
 605		rrpriv->tx_skbuff[i] = NULL;
 606	}
 607	rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
 608	rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
 609	rrpriv->info->tx_ctrl.mode = 0;
 610	rrpriv->info->tx_ctrl.pi = 0;
 611	set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
 612
 613	/*
 614	 * Set dirty_tx before we start receiving interrupts, otherwise
 615	 * the interrupt handler might think it is supposed to process
 616	 * tx ints before we are up and running, which may cause a null
 617	 * pointer access in the int handler.
 618	 */
 619	rrpriv->tx_full = 0;
 620	rrpriv->cur_rx = 0;
 621	rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
 622
 623	rr_reset(dev);
 624
 625	/* Tuning values */
 626	writel(0x5000, &regs->ConRetry);
 627	writel(0x100, &regs->ConRetryTmr);
 628	writel(0x500000, &regs->ConTmout);
 629 	writel(0x60, &regs->IntrTmr);
 630	writel(0x500000, &regs->TxDataMvTimeout);
 631	writel(0x200000, &regs->RxDataMvTimeout);
 632 	writel(0x80, &regs->WriteDmaThresh);
 633 	writel(0x80, &regs->ReadDmaThresh);
 634
 635	rrpriv->fw_running = 0;
 636	wmb();
 637
 638	hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
 639	writel(hostctrl, &regs->HostCtrl);
 640	wmb();
 641
 642	spin_unlock_irqrestore(&rrpriv->lock, flags);
 643
 644	for (i = 0; i < RX_RING_ENTRIES; i++) {
 645		struct sk_buff *skb;
 646		dma_addr_t addr;
 647
 648		rrpriv->rx_ring[i].mode = 0;
 649		skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
 650		if (!skb) {
 651			printk(KERN_WARNING "%s: Unable to allocate memory "
 652			       "for receive ring - halting NIC\n", dev->name);
 653			ecode = -ENOMEM;
 654			goto error;
 655		}
 656		rrpriv->rx_skbuff[i] = skb;
 657		addr = dma_map_single(&rrpriv->pci_dev->dev, skb->data,
 658				      dev->mtu + HIPPI_HLEN, DMA_FROM_DEVICE);
 659		/*
 660		 * Sanity test to see if we conflict with the DMA
 661		 * limitations of the Roadrunner.
 662		 */
 663		if ((((unsigned long)skb->data) & 0xfff) > ~65320)
 664			printk("skb alloc error\n");
 665
 666		set_rraddr(&rrpriv->rx_ring[i].addr, addr);
 667		rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
 668	}
 669
 670	rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
 671	rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
 672	rrpriv->rx_ctrl[4].mode = 8;
 673	rrpriv->rx_ctrl[4].pi = 0;
 674	wmb();
 675	set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
 676
 677	udelay(1000);
 678
 679	/*
 680	 * Now start the FirmWare.
 681	 */
 682	cmd.code = C_START_FW;
 683	cmd.ring = 0;
 684	cmd.index = 0;
 685
 686	rr_issue_cmd(rrpriv, &cmd);
 687
 688	/*
 689	 * Give the FirmWare time to chew on the `get running' command.
 690	 */
 691	myjif = jiffies + 5 * HZ;
 692	while (time_before(jiffies, myjif) && !rrpriv->fw_running)
 693		cpu_relax();
 694
 695	netif_start_queue(dev);
 696
 697	return ecode;
 698
 699 error:
 700	/*
 701	 * We might have gotten here because we are out of memory,
 702	 * make sure we release everything we allocated before failing
 703	 */
 704	for (i = 0; i < RX_RING_ENTRIES; i++) {
 705		struct sk_buff *skb = rrpriv->rx_skbuff[i];
 706
 707		if (skb) {
 708			dma_unmap_single(&rrpriv->pci_dev->dev,
 709					 rrpriv->rx_ring[i].addr.addrlo,
 710					 dev->mtu + HIPPI_HLEN,
 711					 DMA_FROM_DEVICE);
 712			rrpriv->rx_ring[i].size = 0;
 713			set_rraddr(&rrpriv->rx_ring[i].addr, 0);
 714			dev_kfree_skb(skb);
 715			rrpriv->rx_skbuff[i] = NULL;
 716		}
 717	}
 718	return ecode;
 719}
 720
 721
 722/*
 723 * All events are considered to be slow (RX/TX ints do not generate
 724 * events) and are handled here, outside the main interrupt handler,
 725 * to reduce the size of the handler.
 726 */
 727static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
 728{
 729	struct rr_private *rrpriv;
 730	struct rr_regs __iomem *regs;
 731	u32 tmp;
 732
 733	rrpriv = netdev_priv(dev);
 734	regs = rrpriv->regs;
 735
 736	while (prodidx != eidx){
 737		switch (rrpriv->evt_ring[eidx].code){
 738		case E_NIC_UP:
 739			tmp = readl(&regs->FwRev);
 740			printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
 741			       "up and running\n", dev->name,
 742			       (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
 743			rrpriv->fw_running = 1;
 744			writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
 745			wmb();
 746			break;
 747		case E_LINK_ON:
 748			printk(KERN_INFO "%s: Optical link ON\n", dev->name);
 749			break;
 750		case E_LINK_OFF:
 751			printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
 752			break;
 753		case E_RX_IDLE:
 754			printk(KERN_WARNING "%s: RX data not moving\n",
 755			       dev->name);
 756			goto drop;
 757		case E_WATCHDOG:
 758			printk(KERN_INFO "%s: The watchdog is here to see "
 759			       "us\n", dev->name);
 760			break;
 761		case E_INTERN_ERR:
 762			printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
 763			       dev->name);
 764			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 765			       &regs->HostCtrl);
 766			wmb();
 767			break;
 768		case E_HOST_ERR:
 769			printk(KERN_ERR "%s: Host software error\n",
 770			       dev->name);
 771			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 772			       &regs->HostCtrl);
 773			wmb();
 774			break;
 775		/*
 776		 * TX events.
 777		 */
 778		case E_CON_REJ:
 779			printk(KERN_WARNING "%s: Connection rejected\n",
 780			       dev->name);
 781			dev->stats.tx_aborted_errors++;
 782			break;
 783		case E_CON_TMOUT:
 784			printk(KERN_WARNING "%s: Connection timeout\n",
 785			       dev->name);
 786			break;
 787		case E_DISC_ERR:
 788			printk(KERN_WARNING "%s: HIPPI disconnect error\n",
 789			       dev->name);
 790			dev->stats.tx_aborted_errors++;
 791			break;
 792		case E_INT_PRTY:
 793			printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
 794			       dev->name);
 795			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 796			       &regs->HostCtrl);
 797			wmb();
 798			break;
 799		case E_TX_IDLE:
 800			printk(KERN_WARNING "%s: Transmitter idle\n",
 801			       dev->name);
 802			break;
 803		case E_TX_LINK_DROP:
 804			printk(KERN_WARNING "%s: Link lost during transmit\n",
 805			       dev->name);
 806			dev->stats.tx_aborted_errors++;
 807			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 808			       &regs->HostCtrl);
 809			wmb();
 810			break;
 811		case E_TX_INV_RNG:
 812			printk(KERN_ERR "%s: Invalid send ring block\n",
 813			       dev->name);
 814			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 815			       &regs->HostCtrl);
 816			wmb();
 817			break;
 818		case E_TX_INV_BUF:
 819			printk(KERN_ERR "%s: Invalid send buffer address\n",
 820			       dev->name);
 821			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 822			       &regs->HostCtrl);
 823			wmb();
 824			break;
 825		case E_TX_INV_DSC:
 826			printk(KERN_ERR "%s: Invalid descriptor address\n",
 827			       dev->name);
 828			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 829			       &regs->HostCtrl);
 830			wmb();
 831			break;
 832		/*
 833		 * RX events.
 834		 */
 835		case E_RX_RNG_OUT:
 836			printk(KERN_INFO "%s: Receive ring full\n", dev->name);
 837			break;
 838
 839		case E_RX_PAR_ERR:
 840			printk(KERN_WARNING "%s: Receive parity error\n",
 841			       dev->name);
 842			goto drop;
 843		case E_RX_LLRC_ERR:
 844			printk(KERN_WARNING "%s: Receive LLRC error\n",
 845			       dev->name);
 846			goto drop;
 847		case E_PKT_LN_ERR:
 848			printk(KERN_WARNING "%s: Receive packet length "
 849			       "error\n", dev->name);
 850			goto drop;
 851		case E_DTA_CKSM_ERR:
 852			printk(KERN_WARNING "%s: Data checksum error\n",
 853			       dev->name);
 854			goto drop;
 855		case E_SHT_BST:
 856			printk(KERN_WARNING "%s: Unexpected short burst "
 857			       "error\n", dev->name);
 858			goto drop;
 859		case E_STATE_ERR:
 860			printk(KERN_WARNING "%s: Recv. state transition"
 861			       " error\n", dev->name);
 862			goto drop;
 863		case E_UNEXP_DATA:
 864			printk(KERN_WARNING "%s: Unexpected data error\n",
 865			       dev->name);
 866			goto drop;
 867		case E_LST_LNK_ERR:
 868			printk(KERN_WARNING "%s: Link lost error\n",
 869			       dev->name);
 870			goto drop;
 871		case E_FRM_ERR:
 872			printk(KERN_WARNING "%s: Framing Error\n",
 873			       dev->name);
 874			goto drop;
 875		case E_FLG_SYN_ERR:
 876			printk(KERN_WARNING "%s: Flag sync. lost during "
 877			       "packet\n", dev->name);
 878			goto drop;
 879		case E_RX_INV_BUF:
 880			printk(KERN_ERR "%s: Invalid receive buffer "
 881			       "address\n", dev->name);
 882			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 883			       &regs->HostCtrl);
 884			wmb();
 885			break;
 886		case E_RX_INV_DSC:
 887			printk(KERN_ERR "%s: Invalid receive descriptor "
 888			       "address\n", dev->name);
 889			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 890			       &regs->HostCtrl);
 891			wmb();
 892			break;
 893		case E_RNG_BLK:
 894			printk(KERN_ERR "%s: Invalid ring block\n",
 895			       dev->name);
 896			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 897			       &regs->HostCtrl);
 898			wmb();
 899			break;
 900		drop:
 901			/* Label packet to be dropped.
 902			 * Actual dropping occurs in rx
 903			 * handling.
 904			 *
 905			 * The index of packet we get to drop is
 906			 * the index of the packet following
 907			 * the bad packet. -kbf
 908			 */
 909			{
 910				u16 index = rrpriv->evt_ring[eidx].index;
 911				index = (index + (RX_RING_ENTRIES - 1)) %
 912					RX_RING_ENTRIES;
 913				rrpriv->rx_ring[index].mode |=
 914					(PACKET_BAD | PACKET_END);
 915			}
 916			break;
 917		default:
 918			printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
 919			       dev->name, rrpriv->evt_ring[eidx].code);
 920		}
 921		eidx = (eidx + 1) % EVT_RING_ENTRIES;
 922	}
 923
 924	rrpriv->info->evt_ctrl.pi = eidx;
 925	wmb();
 926	return eidx;
 927}
 928
 929
 930static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
 931{
 932	struct rr_private *rrpriv = netdev_priv(dev);
 933	struct rr_regs __iomem *regs = rrpriv->regs;
 934
 935	do {
 936		struct rx_desc *desc;
 937		u32 pkt_len;
 938
 939		desc = &(rrpriv->rx_ring[index]);
 940		pkt_len = desc->size;
 941#if (DEBUG > 2)
 942		printk("index %i, rxlimit %i\n", index, rxlimit);
 943		printk("len %x, mode %x\n", pkt_len, desc->mode);
 944#endif
 945		if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
 946			dev->stats.rx_dropped++;
 947			goto defer;
 948		}
 949
 950		if (pkt_len > 0){
 951			struct sk_buff *skb, *rx_skb;
 952
 953			rx_skb = rrpriv->rx_skbuff[index];
 954
 955			if (pkt_len < PKT_COPY_THRESHOLD) {
 956				skb = alloc_skb(pkt_len, GFP_ATOMIC);
 957				if (skb == NULL){
 958					printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
 959					dev->stats.rx_dropped++;
 960					goto defer;
 961				} else {
 962					dma_sync_single_for_cpu(&rrpriv->pci_dev->dev,
 963								desc->addr.addrlo,
 964								pkt_len,
 965								DMA_FROM_DEVICE);
 966
 967					skb_put_data(skb, rx_skb->data,
 968						     pkt_len);
 969
 970					dma_sync_single_for_device(&rrpriv->pci_dev->dev,
 971								   desc->addr.addrlo,
 972								   pkt_len,
 973								   DMA_FROM_DEVICE);
 974				}
 975			}else{
 976				struct sk_buff *newskb;
 977
 978				newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
 979					GFP_ATOMIC);
 980				if (newskb){
 981					dma_addr_t addr;
 982
 983					dma_unmap_single(&rrpriv->pci_dev->dev,
 984							 desc->addr.addrlo,
 985							 dev->mtu + HIPPI_HLEN,
 986							 DMA_FROM_DEVICE);
 987					skb = rx_skb;
 988					skb_put(skb, pkt_len);
 989					rrpriv->rx_skbuff[index] = newskb;
 990					addr = dma_map_single(&rrpriv->pci_dev->dev,
 991							      newskb->data,
 992							      dev->mtu + HIPPI_HLEN,
 993							      DMA_FROM_DEVICE);
 994					set_rraddr(&desc->addr, addr);
 995				} else {
 996					printk("%s: Out of memory, deferring "
 997					       "packet\n", dev->name);
 998					dev->stats.rx_dropped++;
 999					goto defer;
1000				}
1001			}
1002			skb->protocol = hippi_type_trans(skb, dev);
1003
1004			netif_rx(skb);		/* send it up */
1005
1006			dev->stats.rx_packets++;
1007			dev->stats.rx_bytes += pkt_len;
1008		}
1009	defer:
1010		desc->mode = 0;
1011		desc->size = dev->mtu + HIPPI_HLEN;
1012
1013		if ((index & 7) == 7)
1014			writel(index, &regs->IpRxPi);
1015
1016		index = (index + 1) % RX_RING_ENTRIES;
1017	} while(index != rxlimit);
1018
1019	rrpriv->cur_rx = index;
1020	wmb();
1021}
1022
1023
1024static irqreturn_t rr_interrupt(int irq, void *dev_id)
1025{
1026	struct rr_private *rrpriv;
1027	struct rr_regs __iomem *regs;
1028	struct net_device *dev = (struct net_device *)dev_id;
1029	u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1030
1031	rrpriv = netdev_priv(dev);
1032	regs = rrpriv->regs;
1033
1034	if (!(readl(&regs->HostCtrl) & RR_INT))
1035		return IRQ_NONE;
1036
1037	spin_lock(&rrpriv->lock);
1038
1039	prodidx = readl(&regs->EvtPrd);
1040	txcsmr = (prodidx >> 8) & 0xff;
1041	rxlimit = (prodidx >> 16) & 0xff;
1042	prodidx &= 0xff;
1043
1044#if (DEBUG > 2)
1045	printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1046	       prodidx, rrpriv->info->evt_ctrl.pi);
1047#endif
1048	/*
1049	 * Order here is important.  We must handle events
1050	 * before doing anything else in order to catch
1051	 * such things as LLRC errors, etc -kbf
1052	 */
1053
1054	eidx = rrpriv->info->evt_ctrl.pi;
1055	if (prodidx != eidx)
1056		eidx = rr_handle_event(dev, prodidx, eidx);
1057
1058	rxindex = rrpriv->cur_rx;
1059	if (rxindex != rxlimit)
1060		rx_int(dev, rxlimit, rxindex);
1061
1062	txcon = rrpriv->dirty_tx;
1063	if (txcsmr != txcon) {
1064		do {
1065			/* Due to occational firmware TX producer/consumer out
1066			 * of sync. error need to check entry in ring -kbf
1067			 */
1068			if(rrpriv->tx_skbuff[txcon]){
1069				struct tx_desc *desc;
1070				struct sk_buff *skb;
1071
1072				desc = &(rrpriv->tx_ring[txcon]);
1073				skb = rrpriv->tx_skbuff[txcon];
1074
1075				dev->stats.tx_packets++;
1076				dev->stats.tx_bytes += skb->len;
1077
1078				dma_unmap_single(&rrpriv->pci_dev->dev,
1079						 desc->addr.addrlo, skb->len,
1080						 DMA_TO_DEVICE);
1081				dev_kfree_skb_irq(skb);
1082
1083				rrpriv->tx_skbuff[txcon] = NULL;
1084				desc->size = 0;
1085				set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1086				desc->mode = 0;
1087			}
1088			txcon = (txcon + 1) % TX_RING_ENTRIES;
1089		} while (txcsmr != txcon);
1090		wmb();
1091
1092		rrpriv->dirty_tx = txcon;
1093		if (rrpriv->tx_full && rr_if_busy(dev) &&
1094		    (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1095		     != rrpriv->dirty_tx)){
1096			rrpriv->tx_full = 0;
1097			netif_wake_queue(dev);
1098		}
1099	}
1100
1101	eidx |= ((txcsmr << 8) | (rxlimit << 16));
1102	writel(eidx, &regs->EvtCon);
1103	wmb();
1104
1105	spin_unlock(&rrpriv->lock);
1106	return IRQ_HANDLED;
1107}
1108
1109static inline void rr_raz_tx(struct rr_private *rrpriv,
1110			     struct net_device *dev)
1111{
1112	int i;
1113
1114	for (i = 0; i < TX_RING_ENTRIES; i++) {
1115		struct sk_buff *skb = rrpriv->tx_skbuff[i];
1116
1117		if (skb) {
1118			struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1119
1120			dma_unmap_single(&rrpriv->pci_dev->dev,
1121					 desc->addr.addrlo, skb->len,
1122					 DMA_TO_DEVICE);
1123			desc->size = 0;
1124			set_rraddr(&desc->addr, 0);
1125			dev_kfree_skb(skb);
1126			rrpriv->tx_skbuff[i] = NULL;
1127		}
1128	}
1129}
1130
1131
1132static inline void rr_raz_rx(struct rr_private *rrpriv,
1133			     struct net_device *dev)
1134{
1135	int i;
1136
1137	for (i = 0; i < RX_RING_ENTRIES; i++) {
1138		struct sk_buff *skb = rrpriv->rx_skbuff[i];
1139
1140		if (skb) {
1141			struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1142
1143			dma_unmap_single(&rrpriv->pci_dev->dev,
1144					 desc->addr.addrlo,
1145					 dev->mtu + HIPPI_HLEN,
1146					 DMA_FROM_DEVICE);
1147			desc->size = 0;
1148			set_rraddr(&desc->addr, 0);
1149			dev_kfree_skb(skb);
1150			rrpriv->rx_skbuff[i] = NULL;
1151		}
1152	}
1153}
1154
1155static void rr_timer(struct timer_list *t)
1156{
1157	struct rr_private *rrpriv = from_timer(rrpriv, t, timer);
1158	struct net_device *dev = pci_get_drvdata(rrpriv->pci_dev);
1159	struct rr_regs __iomem *regs = rrpriv->regs;
1160	unsigned long flags;
1161
1162	if (readl(&regs->HostCtrl) & NIC_HALTED){
1163		printk("%s: Restarting nic\n", dev->name);
1164		memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1165		memset(rrpriv->info, 0, sizeof(struct rr_info));
1166		wmb();
1167
1168		rr_raz_tx(rrpriv, dev);
1169		rr_raz_rx(rrpriv, dev);
1170
1171		if (rr_init1(dev)) {
1172			spin_lock_irqsave(&rrpriv->lock, flags);
1173			writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1174			       &regs->HostCtrl);
1175			spin_unlock_irqrestore(&rrpriv->lock, flags);
1176		}
1177	}
1178	rrpriv->timer.expires = RUN_AT(5*HZ);
1179	add_timer(&rrpriv->timer);
1180}
1181
1182
1183static int rr_open(struct net_device *dev)
1184{
1185	struct rr_private *rrpriv = netdev_priv(dev);
1186	struct pci_dev *pdev = rrpriv->pci_dev;
1187	struct rr_regs __iomem *regs;
1188	int ecode = 0;
1189	unsigned long flags;
1190	dma_addr_t dma_addr;
1191
1192	regs = rrpriv->regs;
1193
1194	if (rrpriv->fw_rev < 0x00020000) {
1195		printk(KERN_WARNING "%s: trying to configure device with "
1196		       "obsolete firmware\n", dev->name);
1197		ecode = -EBUSY;
1198		goto error;
1199	}
1200
1201	rrpriv->rx_ctrl = dma_alloc_coherent(&pdev->dev,
1202					     256 * sizeof(struct ring_ctrl),
1203					     &dma_addr, GFP_KERNEL);
1204	if (!rrpriv->rx_ctrl) {
1205		ecode = -ENOMEM;
1206		goto error;
1207	}
1208	rrpriv->rx_ctrl_dma = dma_addr;
1209
1210	rrpriv->info = dma_alloc_coherent(&pdev->dev, sizeof(struct rr_info),
1211					  &dma_addr, GFP_KERNEL);
1212	if (!rrpriv->info) {
1213		ecode = -ENOMEM;
1214		goto error;
1215	}
1216	rrpriv->info_dma = dma_addr;
1217	wmb();
1218
1219	spin_lock_irqsave(&rrpriv->lock, flags);
1220	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1221	readl(&regs->HostCtrl);
1222	spin_unlock_irqrestore(&rrpriv->lock, flags);
1223
1224	if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1225		printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1226		       dev->name, pdev->irq);
1227		ecode = -EAGAIN;
1228		goto error;
1229	}
1230
1231	if ((ecode = rr_init1(dev)))
1232		goto error;
1233
1234	/* Set the timer to switch to check for link beat and perhaps switch
1235	   to an alternate media type. */
1236	timer_setup(&rrpriv->timer, rr_timer, 0);
1237	rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1238	add_timer(&rrpriv->timer);
1239
1240	netif_start_queue(dev);
1241
1242	return ecode;
1243
1244 error:
1245	spin_lock_irqsave(&rrpriv->lock, flags);
1246	writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1247	spin_unlock_irqrestore(&rrpriv->lock, flags);
1248
1249	if (rrpriv->info) {
1250		dma_free_coherent(&pdev->dev, sizeof(struct rr_info),
1251				  rrpriv->info, rrpriv->info_dma);
1252		rrpriv->info = NULL;
1253	}
1254	if (rrpriv->rx_ctrl) {
1255		dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1256				  rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1257		rrpriv->rx_ctrl = NULL;
1258	}
1259
1260	netif_stop_queue(dev);
1261
1262	return ecode;
1263}
1264
1265
1266static void rr_dump(struct net_device *dev)
1267{
1268	struct rr_private *rrpriv;
1269	struct rr_regs __iomem *regs;
1270	u32 index, cons;
1271	short i;
1272	int len;
1273
1274	rrpriv = netdev_priv(dev);
1275	regs = rrpriv->regs;
1276
1277	printk("%s: dumping NIC TX rings\n", dev->name);
1278
1279	printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1280	       readl(&regs->RxPrd), readl(&regs->TxPrd),
1281	       readl(&regs->EvtPrd), readl(&regs->TxPi),
1282	       rrpriv->info->tx_ctrl.pi);
1283
1284	printk("Error code 0x%x\n", readl(&regs->Fail1));
1285
1286	index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1287	cons = rrpriv->dirty_tx;
1288	printk("TX ring index %i, TX consumer %i\n",
1289	       index, cons);
1290
1291	if (rrpriv->tx_skbuff[index]){
1292		len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1293		printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1294		for (i = 0; i < len; i++){
1295			if (!(i & 7))
1296				printk("\n");
1297			printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1298		}
1299		printk("\n");
1300	}
1301
1302	if (rrpriv->tx_skbuff[cons]){
1303		len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1304		printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1305		printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %p, truesize 0x%x\n",
1306		       rrpriv->tx_ring[cons].mode,
1307		       rrpriv->tx_ring[cons].size,
1308		       (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1309		       rrpriv->tx_skbuff[cons]->data,
1310		       (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1311		for (i = 0; i < len; i++){
1312			if (!(i & 7))
1313				printk("\n");
1314			printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1315		}
1316		printk("\n");
1317	}
1318
1319	printk("dumping TX ring info:\n");
1320	for (i = 0; i < TX_RING_ENTRIES; i++)
1321		printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1322		       rrpriv->tx_ring[i].mode,
1323		       rrpriv->tx_ring[i].size,
1324		       (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1325
1326}
1327
1328
1329static int rr_close(struct net_device *dev)
1330{
1331	struct rr_private *rrpriv = netdev_priv(dev);
1332	struct rr_regs __iomem *regs = rrpriv->regs;
1333	struct pci_dev *pdev = rrpriv->pci_dev;
1334	unsigned long flags;
1335	u32 tmp;
1336	short i;
1337
1338	netif_stop_queue(dev);
1339
1340
1341	/*
1342	 * Lock to make sure we are not cleaning up while another CPU
1343	 * is handling interrupts.
1344	 */
1345	spin_lock_irqsave(&rrpriv->lock, flags);
1346
1347	tmp = readl(&regs->HostCtrl);
1348	if (tmp & NIC_HALTED){
1349		printk("%s: NIC already halted\n", dev->name);
1350		rr_dump(dev);
1351	}else{
1352		tmp |= HALT_NIC | RR_CLEAR_INT;
1353		writel(tmp, &regs->HostCtrl);
1354		readl(&regs->HostCtrl);
1355	}
1356
1357	rrpriv->fw_running = 0;
1358
1359	spin_unlock_irqrestore(&rrpriv->lock, flags);
1360	del_timer_sync(&rrpriv->timer);
1361	spin_lock_irqsave(&rrpriv->lock, flags);
1362
1363	writel(0, &regs->TxPi);
1364	writel(0, &regs->IpRxPi);
1365
1366	writel(0, &regs->EvtCon);
1367	writel(0, &regs->EvtPrd);
1368
1369	for (i = 0; i < CMD_RING_ENTRIES; i++)
1370		writel(0, &regs->CmdRing[i]);
1371
1372	rrpriv->info->tx_ctrl.entries = 0;
1373	rrpriv->info->cmd_ctrl.pi = 0;
1374	rrpriv->info->evt_ctrl.pi = 0;
1375	rrpriv->rx_ctrl[4].entries = 0;
1376
1377	rr_raz_tx(rrpriv, dev);
1378	rr_raz_rx(rrpriv, dev);
1379
1380	dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1381			  rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1382	rrpriv->rx_ctrl = NULL;
1383
1384	dma_free_coherent(&pdev->dev, sizeof(struct rr_info), rrpriv->info,
1385			  rrpriv->info_dma);
1386	rrpriv->info = NULL;
1387
1388	spin_unlock_irqrestore(&rrpriv->lock, flags);
1389	free_irq(pdev->irq, dev);
1390
1391	return 0;
1392}
1393
1394
1395static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1396				 struct net_device *dev)
1397{
1398	struct rr_private *rrpriv = netdev_priv(dev);
1399	struct rr_regs __iomem *regs = rrpriv->regs;
1400	struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1401	struct ring_ctrl *txctrl;
1402	unsigned long flags;
1403	u32 index, len = skb->len;
1404	u32 *ifield;
1405	struct sk_buff *new_skb;
1406
1407	if (readl(&regs->Mode) & FATAL_ERR)
1408		printk("error codes Fail1 %02x, Fail2 %02x\n",
1409		       readl(&regs->Fail1), readl(&regs->Fail2));
1410
1411	/*
1412	 * We probably need to deal with tbusy here to prevent overruns.
1413	 */
1414
1415	if (skb_headroom(skb) < 8){
1416		printk("incoming skb too small - reallocating\n");
1417		if (!(new_skb = dev_alloc_skb(len + 8))) {
1418			dev_kfree_skb(skb);
1419			netif_wake_queue(dev);
1420			return NETDEV_TX_OK;
1421		}
1422		skb_reserve(new_skb, 8);
1423		skb_put(new_skb, len);
1424		skb_copy_from_linear_data(skb, new_skb->data, len);
1425		dev_kfree_skb(skb);
1426		skb = new_skb;
1427	}
1428
1429	ifield = skb_push(skb, 8);
1430
1431	ifield[0] = 0;
1432	ifield[1] = hcb->ifield;
1433
1434	/*
1435	 * We don't need the lock before we are actually going to start
1436	 * fiddling with the control blocks.
1437	 */
1438	spin_lock_irqsave(&rrpriv->lock, flags);
1439
1440	txctrl = &rrpriv->info->tx_ctrl;
1441
1442	index = txctrl->pi;
1443
1444	rrpriv->tx_skbuff[index] = skb;
1445	set_rraddr(&rrpriv->tx_ring[index].addr,
1446		   dma_map_single(&rrpriv->pci_dev->dev, skb->data, len + 8, DMA_TO_DEVICE));
1447	rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1448	rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1449	txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1450	wmb();
1451	writel(txctrl->pi, &regs->TxPi);
1452
1453	if (txctrl->pi == rrpriv->dirty_tx){
1454		rrpriv->tx_full = 1;
1455		netif_stop_queue(dev);
1456	}
1457
1458	spin_unlock_irqrestore(&rrpriv->lock, flags);
1459
1460	return NETDEV_TX_OK;
1461}
1462
1463
1464/*
1465 * Read the firmware out of the EEPROM and put it into the SRAM
1466 * (or from user space - later)
1467 *
1468 * This operation requires the NIC to be halted and is performed with
1469 * interrupts disabled and with the spinlock hold.
1470 */
1471static int rr_load_firmware(struct net_device *dev)
1472{
1473	struct rr_private *rrpriv;
1474	struct rr_regs __iomem *regs;
1475	size_t eptr, segptr;
1476	int i, j;
1477	u32 localctrl, sptr, len, tmp;
1478	u32 p2len, p2size, nr_seg, revision, io, sram_size;
1479
1480	rrpriv = netdev_priv(dev);
1481	regs = rrpriv->regs;
1482
1483	if (dev->flags & IFF_UP)
1484		return -EBUSY;
1485
1486	if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1487		printk("%s: Trying to load firmware to a running NIC.\n",
1488		       dev->name);
1489		return -EBUSY;
1490	}
1491
1492	localctrl = readl(&regs->LocalCtrl);
1493	writel(0, &regs->LocalCtrl);
1494
1495	writel(0, &regs->EvtPrd);
1496	writel(0, &regs->RxPrd);
1497	writel(0, &regs->TxPrd);
1498
1499	/*
1500	 * First wipe the entire SRAM, otherwise we might run into all
1501	 * kinds of trouble ... sigh, this took almost all afternoon
1502	 * to track down ;-(
1503	 */
1504	io = readl(&regs->ExtIo);
1505	writel(0, &regs->ExtIo);
1506	sram_size = rr_read_eeprom_word(rrpriv, 8);
1507
1508	for (i = 200; i < sram_size / 4; i++){
1509		writel(i * 4, &regs->WinBase);
1510		mb();
1511		writel(0, &regs->WinData);
1512		mb();
1513	}
1514	writel(io, &regs->ExtIo);
1515	mb();
1516
1517	eptr = rr_read_eeprom_word(rrpriv,
1518		       offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1519	eptr = ((eptr & 0x1fffff) >> 3);
1520
1521	p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1522	p2len = (p2len << 2);
1523	p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1524	p2size = ((p2size & 0x1fffff) >> 3);
1525
1526	if ((eptr < p2size) || (eptr > (p2size + p2len))){
1527		printk("%s: eptr is invalid\n", dev->name);
1528		goto out;
1529	}
1530
1531	revision = rr_read_eeprom_word(rrpriv,
1532			offsetof(struct eeprom, manf.HeaderFmt));
1533
1534	if (revision != 1){
1535		printk("%s: invalid firmware format (%i)\n",
1536		       dev->name, revision);
1537		goto out;
1538	}
1539
1540	nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1541	eptr +=4;
1542#if (DEBUG > 1)
1543	printk("%s: nr_seg %i\n", dev->name, nr_seg);
1544#endif
1545
1546	for (i = 0; i < nr_seg; i++){
1547		sptr = rr_read_eeprom_word(rrpriv, eptr);
1548		eptr += 4;
1549		len = rr_read_eeprom_word(rrpriv, eptr);
1550		eptr += 4;
1551		segptr = rr_read_eeprom_word(rrpriv, eptr);
1552		segptr = ((segptr & 0x1fffff) >> 3);
1553		eptr += 4;
1554#if (DEBUG > 1)
1555		printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1556		       dev->name, i, sptr, len, segptr);
1557#endif
1558		for (j = 0; j < len; j++){
1559			tmp = rr_read_eeprom_word(rrpriv, segptr);
1560			writel(sptr, &regs->WinBase);
1561			mb();
1562			writel(tmp, &regs->WinData);
1563			mb();
1564			segptr += 4;
1565			sptr += 4;
1566		}
1567	}
1568
1569out:
1570	writel(localctrl, &regs->LocalCtrl);
1571	mb();
1572	return 0;
1573}
1574
1575
1576static int rr_siocdevprivate(struct net_device *dev, struct ifreq *rq,
1577			     void __user *data, int cmd)
1578{
1579	struct rr_private *rrpriv;
1580	unsigned char *image, *oldimage;
1581	unsigned long flags;
1582	unsigned int i;
1583	int error = -EOPNOTSUPP;
1584
1585	rrpriv = netdev_priv(dev);
1586
1587	switch(cmd){
1588	case SIOCRRGFW:
1589		if (!capable(CAP_SYS_RAWIO)){
1590			return -EPERM;
1591		}
1592
1593		image = kmalloc_array(EEPROM_WORDS, sizeof(u32), GFP_KERNEL);
1594		if (!image)
1595			return -ENOMEM;
1596
1597		if (rrpriv->fw_running){
1598			printk("%s: Firmware already running\n", dev->name);
1599			error = -EPERM;
1600			goto gf_out;
1601		}
1602
1603		spin_lock_irqsave(&rrpriv->lock, flags);
1604		i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1605		spin_unlock_irqrestore(&rrpriv->lock, flags);
1606		if (i != EEPROM_BYTES){
1607			printk(KERN_ERR "%s: Error reading EEPROM\n",
1608			       dev->name);
1609			error = -EFAULT;
1610			goto gf_out;
1611		}
1612		error = copy_to_user(data, image, EEPROM_BYTES);
1613		if (error)
1614			error = -EFAULT;
1615	gf_out:
1616		kfree(image);
1617		return error;
1618
1619	case SIOCRRPFW:
1620		if (!capable(CAP_SYS_RAWIO)){
1621			return -EPERM;
1622		}
1623
1624		image = memdup_user(data, EEPROM_BYTES);
1625		if (IS_ERR(image))
1626			return PTR_ERR(image);
1627
1628		oldimage = kmalloc(EEPROM_BYTES, GFP_KERNEL);
1629		if (!oldimage) {
1630			kfree(image);
1631			return -ENOMEM;
1632		}
1633
1634		if (rrpriv->fw_running){
1635			printk("%s: Firmware already running\n", dev->name);
1636			error = -EPERM;
1637			goto wf_out;
1638		}
1639
1640		printk("%s: Updating EEPROM firmware\n", dev->name);
1641
1642		spin_lock_irqsave(&rrpriv->lock, flags);
1643		error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1644		if (error)
1645			printk(KERN_ERR "%s: Error writing EEPROM\n",
1646			       dev->name);
1647
1648		i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1649		spin_unlock_irqrestore(&rrpriv->lock, flags);
1650
1651		if (i != EEPROM_BYTES)
1652			printk(KERN_ERR "%s: Error reading back EEPROM "
1653			       "image\n", dev->name);
1654
1655		error = memcmp(image, oldimage, EEPROM_BYTES);
1656		if (error){
1657			printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1658			       dev->name);
1659			error = -EFAULT;
1660		}
1661	wf_out:
1662		kfree(oldimage);
1663		kfree(image);
1664		return error;
1665
1666	case SIOCRRID:
1667		return put_user(0x52523032, (int __user *)data);
1668	default:
1669		return error;
1670	}
1671}
1672
1673static const struct pci_device_id rr_pci_tbl[] = {
1674	{ PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1675		PCI_ANY_ID, PCI_ANY_ID, },
1676	{ 0,}
1677};
1678MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1679
1680static struct pci_driver rr_driver = {
1681	.name		= "rrunner",
1682	.id_table	= rr_pci_tbl,
1683	.probe		= rr_init_one,
1684	.remove		= rr_remove_one,
1685};
1686
1687module_pci_driver(rr_driver);