Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4 *
5 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
6 *
7 * Thanks to Essential Communication for providing us with hardware
8 * and very comprehensive documentation without which I would not have
9 * been able to write this driver. A special thank you to John Gibbon
10 * for sorting out the legal issues, with the NDA, allowing the code to
11 * be released under the GPL.
12 *
13 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
14 * stupid bugs in my code.
15 *
16 * Softnet support and various other patches from Val Henson of
17 * ODS/Essential.
18 *
19 * PCI DMA mapping code partly based on work by Francois Romieu.
20 */
21
22
23#define DEBUG 1
24#define RX_DMA_SKBUFF 1
25#define PKT_COPY_THRESHOLD 512
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/errno.h>
30#include <linux/ioport.h>
31#include <linux/pci.h>
32#include <linux/kernel.h>
33#include <linux/netdevice.h>
34#include <linux/hippidevice.h>
35#include <linux/skbuff.h>
36#include <linux/delay.h>
37#include <linux/mm.h>
38#include <linux/slab.h>
39#include <net/sock.h>
40
41#include <asm/cache.h>
42#include <asm/byteorder.h>
43#include <asm/io.h>
44#include <asm/irq.h>
45#include <linux/uaccess.h>
46
47#define rr_if_busy(dev) netif_queue_stopped(dev)
48#define rr_if_running(dev) netif_running(dev)
49
50#include "rrunner.h"
51
52#define RUN_AT(x) (jiffies + (x))
53
54
55MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
56MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
57MODULE_LICENSE("GPL");
58
59static const char version[] =
60"rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
61
62
63static const struct net_device_ops rr_netdev_ops = {
64 .ndo_open = rr_open,
65 .ndo_stop = rr_close,
66 .ndo_siocdevprivate = rr_siocdevprivate,
67 .ndo_start_xmit = rr_start_xmit,
68 .ndo_set_mac_address = hippi_mac_addr,
69};
70
71/*
72 * Implementation notes:
73 *
74 * The DMA engine only allows for DMA within physical 64KB chunks of
75 * memory. The current approach of the driver (and stack) is to use
76 * linear blocks of memory for the skbuffs. However, as the data block
77 * is always the first part of the skb and skbs are 2^n aligned so we
78 * are guarantted to get the whole block within one 64KB align 64KB
79 * chunk.
80 *
81 * On the long term, relying on being able to allocate 64KB linear
82 * chunks of memory is not feasible and the skb handling code and the
83 * stack will need to know about I/O vectors or something similar.
84 */
85
86static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
87{
88 struct net_device *dev;
89 static int version_disp;
90 u8 pci_latency;
91 struct rr_private *rrpriv;
92 void *tmpptr;
93 dma_addr_t ring_dma;
94 int ret = -ENOMEM;
95
96 dev = alloc_hippi_dev(sizeof(struct rr_private));
97 if (!dev)
98 goto out3;
99
100 ret = pci_enable_device(pdev);
101 if (ret) {
102 ret = -ENODEV;
103 goto out2;
104 }
105
106 rrpriv = netdev_priv(dev);
107
108 SET_NETDEV_DEV(dev, &pdev->dev);
109
110 ret = pci_request_regions(pdev, "rrunner");
111 if (ret < 0)
112 goto out;
113
114 pci_set_drvdata(pdev, dev);
115
116 rrpriv->pci_dev = pdev;
117
118 spin_lock_init(&rrpriv->lock);
119
120 dev->netdev_ops = &rr_netdev_ops;
121
122 /* display version info if adapter is found */
123 if (!version_disp) {
124 /* set display flag to TRUE so that */
125 /* we only display this string ONCE */
126 version_disp = 1;
127 printk(version);
128 }
129
130 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
131 if (pci_latency <= 0x58){
132 pci_latency = 0x58;
133 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
134 }
135
136 pci_set_master(pdev);
137
138 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
139 "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
140 (unsigned long long)pci_resource_start(pdev, 0),
141 pdev->irq, pci_latency);
142
143 /*
144 * Remap the MMIO regs into kernel space.
145 */
146 rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
147 if (!rrpriv->regs) {
148 printk(KERN_ERR "%s: Unable to map I/O register, "
149 "RoadRunner will be disabled.\n", dev->name);
150 ret = -EIO;
151 goto out;
152 }
153
154 tmpptr = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
155 GFP_KERNEL);
156 rrpriv->tx_ring = tmpptr;
157 rrpriv->tx_ring_dma = ring_dma;
158
159 if (!tmpptr) {
160 ret = -ENOMEM;
161 goto out;
162 }
163
164 tmpptr = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
165 GFP_KERNEL);
166 rrpriv->rx_ring = tmpptr;
167 rrpriv->rx_ring_dma = ring_dma;
168
169 if (!tmpptr) {
170 ret = -ENOMEM;
171 goto out;
172 }
173
174 tmpptr = dma_alloc_coherent(&pdev->dev, EVT_RING_SIZE, &ring_dma,
175 GFP_KERNEL);
176 rrpriv->evt_ring = tmpptr;
177 rrpriv->evt_ring_dma = ring_dma;
178
179 if (!tmpptr) {
180 ret = -ENOMEM;
181 goto out;
182 }
183
184 /*
185 * Don't access any register before this point!
186 */
187#ifdef __BIG_ENDIAN
188 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
189 &rrpriv->regs->HostCtrl);
190#endif
191 /*
192 * Need to add a case for little-endian 64-bit hosts here.
193 */
194
195 rr_init(dev);
196
197 ret = register_netdev(dev);
198 if (ret)
199 goto out;
200 return 0;
201
202 out:
203 if (rrpriv->evt_ring)
204 dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rrpriv->evt_ring,
205 rrpriv->evt_ring_dma);
206 if (rrpriv->rx_ring)
207 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rrpriv->rx_ring,
208 rrpriv->rx_ring_dma);
209 if (rrpriv->tx_ring)
210 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rrpriv->tx_ring,
211 rrpriv->tx_ring_dma);
212 if (rrpriv->regs)
213 pci_iounmap(pdev, rrpriv->regs);
214 if (pdev)
215 pci_release_regions(pdev);
216 pci_disable_device(pdev);
217 out2:
218 free_netdev(dev);
219 out3:
220 return ret;
221}
222
223static void rr_remove_one(struct pci_dev *pdev)
224{
225 struct net_device *dev = pci_get_drvdata(pdev);
226 struct rr_private *rr = netdev_priv(dev);
227
228 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
229 printk(KERN_ERR "%s: trying to unload running NIC\n",
230 dev->name);
231 writel(HALT_NIC, &rr->regs->HostCtrl);
232 }
233
234 unregister_netdev(dev);
235 dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rr->evt_ring,
236 rr->evt_ring_dma);
237 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rr->rx_ring,
238 rr->rx_ring_dma);
239 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rr->tx_ring,
240 rr->tx_ring_dma);
241 pci_iounmap(pdev, rr->regs);
242 pci_release_regions(pdev);
243 pci_disable_device(pdev);
244 free_netdev(dev);
245}
246
247
248/*
249 * Commands are considered to be slow, thus there is no reason to
250 * inline this.
251 */
252static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
253{
254 struct rr_regs __iomem *regs;
255 u32 idx;
256
257 regs = rrpriv->regs;
258 /*
259 * This is temporary - it will go away in the final version.
260 * We probably also want to make this function inline.
261 */
262 if (readl(®s->HostCtrl) & NIC_HALTED){
263 printk("issuing command for halted NIC, code 0x%x, "
264 "HostCtrl %08x\n", cmd->code, readl(®s->HostCtrl));
265 if (readl(®s->Mode) & FATAL_ERR)
266 printk("error codes Fail1 %02x, Fail2 %02x\n",
267 readl(®s->Fail1), readl(®s->Fail2));
268 }
269
270 idx = rrpriv->info->cmd_ctrl.pi;
271
272 writel(*(u32*)(cmd), ®s->CmdRing[idx]);
273 wmb();
274
275 idx = (idx - 1) % CMD_RING_ENTRIES;
276 rrpriv->info->cmd_ctrl.pi = idx;
277 wmb();
278
279 if (readl(®s->Mode) & FATAL_ERR)
280 printk("error code %02x\n", readl(®s->Fail1));
281}
282
283
284/*
285 * Reset the board in a sensible manner. The NIC is already halted
286 * when we get here and a spin-lock is held.
287 */
288static int rr_reset(struct net_device *dev)
289{
290 struct rr_private *rrpriv;
291 struct rr_regs __iomem *regs;
292 u32 start_pc;
293 int i;
294
295 rrpriv = netdev_priv(dev);
296 regs = rrpriv->regs;
297
298 rr_load_firmware(dev);
299
300 writel(0x01000000, ®s->TX_state);
301 writel(0xff800000, ®s->RX_state);
302 writel(0, ®s->AssistState);
303 writel(CLEAR_INTA, ®s->LocalCtrl);
304 writel(0x01, ®s->BrkPt);
305 writel(0, ®s->Timer);
306 writel(0, ®s->TimerRef);
307 writel(RESET_DMA, ®s->DmaReadState);
308 writel(RESET_DMA, ®s->DmaWriteState);
309 writel(0, ®s->DmaWriteHostHi);
310 writel(0, ®s->DmaWriteHostLo);
311 writel(0, ®s->DmaReadHostHi);
312 writel(0, ®s->DmaReadHostLo);
313 writel(0, ®s->DmaReadLen);
314 writel(0, ®s->DmaWriteLen);
315 writel(0, ®s->DmaWriteLcl);
316 writel(0, ®s->DmaWriteIPchecksum);
317 writel(0, ®s->DmaReadLcl);
318 writel(0, ®s->DmaReadIPchecksum);
319 writel(0, ®s->PciState);
320#if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
321 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, ®s->Mode);
322#elif (BITS_PER_LONG == 64)
323 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, ®s->Mode);
324#else
325 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, ®s->Mode);
326#endif
327
328#if 0
329 /*
330 * Don't worry, this is just black magic.
331 */
332 writel(0xdf000, ®s->RxBase);
333 writel(0xdf000, ®s->RxPrd);
334 writel(0xdf000, ®s->RxCon);
335 writel(0xce000, ®s->TxBase);
336 writel(0xce000, ®s->TxPrd);
337 writel(0xce000, ®s->TxCon);
338 writel(0, ®s->RxIndPro);
339 writel(0, ®s->RxIndCon);
340 writel(0, ®s->RxIndRef);
341 writel(0, ®s->TxIndPro);
342 writel(0, ®s->TxIndCon);
343 writel(0, ®s->TxIndRef);
344 writel(0xcc000, ®s->pad10[0]);
345 writel(0, ®s->DrCmndPro);
346 writel(0, ®s->DrCmndCon);
347 writel(0, ®s->DwCmndPro);
348 writel(0, ®s->DwCmndCon);
349 writel(0, ®s->DwCmndRef);
350 writel(0, ®s->DrDataPro);
351 writel(0, ®s->DrDataCon);
352 writel(0, ®s->DrDataRef);
353 writel(0, ®s->DwDataPro);
354 writel(0, ®s->DwDataCon);
355 writel(0, ®s->DwDataRef);
356#endif
357
358 writel(0xffffffff, ®s->MbEvent);
359 writel(0, ®s->Event);
360
361 writel(0, ®s->TxPi);
362 writel(0, ®s->IpRxPi);
363
364 writel(0, ®s->EvtCon);
365 writel(0, ®s->EvtPrd);
366
367 rrpriv->info->evt_ctrl.pi = 0;
368
369 for (i = 0; i < CMD_RING_ENTRIES; i++)
370 writel(0, ®s->CmdRing[i]);
371
372/*
373 * Why 32 ? is this not cache line size dependent?
374 */
375 writel(RBURST_64|WBURST_64, ®s->PciState);
376 wmb();
377
378 start_pc = rr_read_eeprom_word(rrpriv,
379 offsetof(struct eeprom, rncd_info.FwStart));
380
381#if (DEBUG > 1)
382 printk("%s: Executing firmware at address 0x%06x\n",
383 dev->name, start_pc);
384#endif
385
386 writel(start_pc + 0x800, ®s->Pc);
387 wmb();
388 udelay(5);
389
390 writel(start_pc, ®s->Pc);
391 wmb();
392
393 return 0;
394}
395
396
397/*
398 * Read a string from the EEPROM.
399 */
400static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
401 unsigned long offset,
402 unsigned char *buf,
403 unsigned long length)
404{
405 struct rr_regs __iomem *regs = rrpriv->regs;
406 u32 misc, io, host, i;
407
408 io = readl(®s->ExtIo);
409 writel(0, ®s->ExtIo);
410 misc = readl(®s->LocalCtrl);
411 writel(0, ®s->LocalCtrl);
412 host = readl(®s->HostCtrl);
413 writel(host | HALT_NIC, ®s->HostCtrl);
414 mb();
415
416 for (i = 0; i < length; i++){
417 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase);
418 mb();
419 buf[i] = (readl(®s->WinData) >> 24) & 0xff;
420 mb();
421 }
422
423 writel(host, ®s->HostCtrl);
424 writel(misc, ®s->LocalCtrl);
425 writel(io, ®s->ExtIo);
426 mb();
427 return i;
428}
429
430
431/*
432 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
433 * it to our CPU byte-order.
434 */
435static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
436 size_t offset)
437{
438 __be32 word;
439
440 if ((rr_read_eeprom(rrpriv, offset,
441 (unsigned char *)&word, 4) == 4))
442 return be32_to_cpu(word);
443 return 0;
444}
445
446
447/*
448 * Write a string to the EEPROM.
449 *
450 * This is only called when the firmware is not running.
451 */
452static unsigned int write_eeprom(struct rr_private *rrpriv,
453 unsigned long offset,
454 unsigned char *buf,
455 unsigned long length)
456{
457 struct rr_regs __iomem *regs = rrpriv->regs;
458 u32 misc, io, data, i, j, ready, error = 0;
459
460 io = readl(®s->ExtIo);
461 writel(0, ®s->ExtIo);
462 misc = readl(®s->LocalCtrl);
463 writel(ENABLE_EEPROM_WRITE, ®s->LocalCtrl);
464 mb();
465
466 for (i = 0; i < length; i++){
467 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase);
468 mb();
469 data = buf[i] << 24;
470 /*
471 * Only try to write the data if it is not the same
472 * value already.
473 */
474 if ((readl(®s->WinData) & 0xff000000) != data){
475 writel(data, ®s->WinData);
476 ready = 0;
477 j = 0;
478 mb();
479 while(!ready){
480 udelay(20);
481 if ((readl(®s->WinData) & 0xff000000) ==
482 data)
483 ready = 1;
484 mb();
485 if (j++ > 5000){
486 printk("data mismatch: %08x, "
487 "WinData %08x\n", data,
488 readl(®s->WinData));
489 ready = 1;
490 error = 1;
491 }
492 }
493 }
494 }
495
496 writel(misc, ®s->LocalCtrl);
497 writel(io, ®s->ExtIo);
498 mb();
499
500 return error;
501}
502
503
504static int rr_init(struct net_device *dev)
505{
506 u8 addr[HIPPI_ALEN] __aligned(4);
507 struct rr_private *rrpriv;
508 struct rr_regs __iomem *regs;
509 u32 sram_size, rev;
510
511 rrpriv = netdev_priv(dev);
512 regs = rrpriv->regs;
513
514 rev = readl(®s->FwRev);
515 rrpriv->fw_rev = rev;
516 if (rev > 0x00020024)
517 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
518 ((rev >> 8) & 0xff), (rev & 0xff));
519 else if (rev >= 0x00020000) {
520 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
521 "later is recommended)\n", (rev >> 16),
522 ((rev >> 8) & 0xff), (rev & 0xff));
523 }else{
524 printk(" Firmware revision too old: %i.%i.%i, please "
525 "upgrade to 2.0.37 or later.\n",
526 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
527 }
528
529#if (DEBUG > 2)
530 printk(" Maximum receive rings %i\n", readl(®s->MaxRxRng));
531#endif
532
533 /*
534 * Read the hardware address from the eeprom. The HW address
535 * is not really necessary for HIPPI but awfully convenient.
536 * The pointer arithmetic to put it in dev_addr is ugly, but
537 * Donald Becker does it this way for the GigE version of this
538 * card and it's shorter and more portable than any
539 * other method I've seen. -VAL
540 */
541
542 *(__be16 *)(addr) =
543 htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
544 *(__be32 *)(addr+2) =
545 htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
546 dev_addr_set(dev, addr);
547
548 printk(" MAC: %pM\n", dev->dev_addr);
549
550 sram_size = rr_read_eeprom_word(rrpriv, 8);
551 printk(" SRAM size 0x%06x\n", sram_size);
552
553 return 0;
554}
555
556
557static int rr_init1(struct net_device *dev)
558{
559 struct rr_private *rrpriv;
560 struct rr_regs __iomem *regs;
561 unsigned long myjif, flags;
562 struct cmd cmd;
563 u32 hostctrl;
564 int ecode = 0;
565 short i;
566
567 rrpriv = netdev_priv(dev);
568 regs = rrpriv->regs;
569
570 spin_lock_irqsave(&rrpriv->lock, flags);
571
572 hostctrl = readl(®s->HostCtrl);
573 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, ®s->HostCtrl);
574 wmb();
575
576 if (hostctrl & PARITY_ERR){
577 printk("%s: Parity error halting NIC - this is serious!\n",
578 dev->name);
579 spin_unlock_irqrestore(&rrpriv->lock, flags);
580 ecode = -EFAULT;
581 goto error;
582 }
583
584 set_rxaddr(regs, rrpriv->rx_ctrl_dma);
585 set_infoaddr(regs, rrpriv->info_dma);
586
587 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
588 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
589 rrpriv->info->evt_ctrl.mode = 0;
590 rrpriv->info->evt_ctrl.pi = 0;
591 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
592
593 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
594 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
595 rrpriv->info->cmd_ctrl.mode = 0;
596 rrpriv->info->cmd_ctrl.pi = 15;
597
598 for (i = 0; i < CMD_RING_ENTRIES; i++) {
599 writel(0, ®s->CmdRing[i]);
600 }
601
602 for (i = 0; i < TX_RING_ENTRIES; i++) {
603 rrpriv->tx_ring[i].size = 0;
604 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
605 rrpriv->tx_skbuff[i] = NULL;
606 }
607 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
608 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
609 rrpriv->info->tx_ctrl.mode = 0;
610 rrpriv->info->tx_ctrl.pi = 0;
611 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
612
613 /*
614 * Set dirty_tx before we start receiving interrupts, otherwise
615 * the interrupt handler might think it is supposed to process
616 * tx ints before we are up and running, which may cause a null
617 * pointer access in the int handler.
618 */
619 rrpriv->tx_full = 0;
620 rrpriv->cur_rx = 0;
621 rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
622
623 rr_reset(dev);
624
625 /* Tuning values */
626 writel(0x5000, ®s->ConRetry);
627 writel(0x100, ®s->ConRetryTmr);
628 writel(0x500000, ®s->ConTmout);
629 writel(0x60, ®s->IntrTmr);
630 writel(0x500000, ®s->TxDataMvTimeout);
631 writel(0x200000, ®s->RxDataMvTimeout);
632 writel(0x80, ®s->WriteDmaThresh);
633 writel(0x80, ®s->ReadDmaThresh);
634
635 rrpriv->fw_running = 0;
636 wmb();
637
638 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
639 writel(hostctrl, ®s->HostCtrl);
640 wmb();
641
642 spin_unlock_irqrestore(&rrpriv->lock, flags);
643
644 for (i = 0; i < RX_RING_ENTRIES; i++) {
645 struct sk_buff *skb;
646 dma_addr_t addr;
647
648 rrpriv->rx_ring[i].mode = 0;
649 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
650 if (!skb) {
651 printk(KERN_WARNING "%s: Unable to allocate memory "
652 "for receive ring - halting NIC\n", dev->name);
653 ecode = -ENOMEM;
654 goto error;
655 }
656 rrpriv->rx_skbuff[i] = skb;
657 addr = dma_map_single(&rrpriv->pci_dev->dev, skb->data,
658 dev->mtu + HIPPI_HLEN, DMA_FROM_DEVICE);
659 /*
660 * Sanity test to see if we conflict with the DMA
661 * limitations of the Roadrunner.
662 */
663 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
664 printk("skb alloc error\n");
665
666 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
667 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
668 }
669
670 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
671 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
672 rrpriv->rx_ctrl[4].mode = 8;
673 rrpriv->rx_ctrl[4].pi = 0;
674 wmb();
675 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
676
677 udelay(1000);
678
679 /*
680 * Now start the FirmWare.
681 */
682 cmd.code = C_START_FW;
683 cmd.ring = 0;
684 cmd.index = 0;
685
686 rr_issue_cmd(rrpriv, &cmd);
687
688 /*
689 * Give the FirmWare time to chew on the `get running' command.
690 */
691 myjif = jiffies + 5 * HZ;
692 while (time_before(jiffies, myjif) && !rrpriv->fw_running)
693 cpu_relax();
694
695 netif_start_queue(dev);
696
697 return ecode;
698
699 error:
700 /*
701 * We might have gotten here because we are out of memory,
702 * make sure we release everything we allocated before failing
703 */
704 for (i = 0; i < RX_RING_ENTRIES; i++) {
705 struct sk_buff *skb = rrpriv->rx_skbuff[i];
706
707 if (skb) {
708 dma_unmap_single(&rrpriv->pci_dev->dev,
709 rrpriv->rx_ring[i].addr.addrlo,
710 dev->mtu + HIPPI_HLEN,
711 DMA_FROM_DEVICE);
712 rrpriv->rx_ring[i].size = 0;
713 set_rraddr(&rrpriv->rx_ring[i].addr, 0);
714 dev_kfree_skb(skb);
715 rrpriv->rx_skbuff[i] = NULL;
716 }
717 }
718 return ecode;
719}
720
721
722/*
723 * All events are considered to be slow (RX/TX ints do not generate
724 * events) and are handled here, outside the main interrupt handler,
725 * to reduce the size of the handler.
726 */
727static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
728{
729 struct rr_private *rrpriv;
730 struct rr_regs __iomem *regs;
731 u32 tmp;
732
733 rrpriv = netdev_priv(dev);
734 regs = rrpriv->regs;
735
736 while (prodidx != eidx){
737 switch (rrpriv->evt_ring[eidx].code){
738 case E_NIC_UP:
739 tmp = readl(®s->FwRev);
740 printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
741 "up and running\n", dev->name,
742 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
743 rrpriv->fw_running = 1;
744 writel(RX_RING_ENTRIES - 1, ®s->IpRxPi);
745 wmb();
746 break;
747 case E_LINK_ON:
748 printk(KERN_INFO "%s: Optical link ON\n", dev->name);
749 break;
750 case E_LINK_OFF:
751 printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
752 break;
753 case E_RX_IDLE:
754 printk(KERN_WARNING "%s: RX data not moving\n",
755 dev->name);
756 goto drop;
757 case E_WATCHDOG:
758 printk(KERN_INFO "%s: The watchdog is here to see "
759 "us\n", dev->name);
760 break;
761 case E_INTERN_ERR:
762 printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
763 dev->name);
764 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
765 ®s->HostCtrl);
766 wmb();
767 break;
768 case E_HOST_ERR:
769 printk(KERN_ERR "%s: Host software error\n",
770 dev->name);
771 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
772 ®s->HostCtrl);
773 wmb();
774 break;
775 /*
776 * TX events.
777 */
778 case E_CON_REJ:
779 printk(KERN_WARNING "%s: Connection rejected\n",
780 dev->name);
781 dev->stats.tx_aborted_errors++;
782 break;
783 case E_CON_TMOUT:
784 printk(KERN_WARNING "%s: Connection timeout\n",
785 dev->name);
786 break;
787 case E_DISC_ERR:
788 printk(KERN_WARNING "%s: HIPPI disconnect error\n",
789 dev->name);
790 dev->stats.tx_aborted_errors++;
791 break;
792 case E_INT_PRTY:
793 printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
794 dev->name);
795 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
796 ®s->HostCtrl);
797 wmb();
798 break;
799 case E_TX_IDLE:
800 printk(KERN_WARNING "%s: Transmitter idle\n",
801 dev->name);
802 break;
803 case E_TX_LINK_DROP:
804 printk(KERN_WARNING "%s: Link lost during transmit\n",
805 dev->name);
806 dev->stats.tx_aborted_errors++;
807 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
808 ®s->HostCtrl);
809 wmb();
810 break;
811 case E_TX_INV_RNG:
812 printk(KERN_ERR "%s: Invalid send ring block\n",
813 dev->name);
814 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
815 ®s->HostCtrl);
816 wmb();
817 break;
818 case E_TX_INV_BUF:
819 printk(KERN_ERR "%s: Invalid send buffer address\n",
820 dev->name);
821 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
822 ®s->HostCtrl);
823 wmb();
824 break;
825 case E_TX_INV_DSC:
826 printk(KERN_ERR "%s: Invalid descriptor address\n",
827 dev->name);
828 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
829 ®s->HostCtrl);
830 wmb();
831 break;
832 /*
833 * RX events.
834 */
835 case E_RX_RNG_OUT:
836 printk(KERN_INFO "%s: Receive ring full\n", dev->name);
837 break;
838
839 case E_RX_PAR_ERR:
840 printk(KERN_WARNING "%s: Receive parity error\n",
841 dev->name);
842 goto drop;
843 case E_RX_LLRC_ERR:
844 printk(KERN_WARNING "%s: Receive LLRC error\n",
845 dev->name);
846 goto drop;
847 case E_PKT_LN_ERR:
848 printk(KERN_WARNING "%s: Receive packet length "
849 "error\n", dev->name);
850 goto drop;
851 case E_DTA_CKSM_ERR:
852 printk(KERN_WARNING "%s: Data checksum error\n",
853 dev->name);
854 goto drop;
855 case E_SHT_BST:
856 printk(KERN_WARNING "%s: Unexpected short burst "
857 "error\n", dev->name);
858 goto drop;
859 case E_STATE_ERR:
860 printk(KERN_WARNING "%s: Recv. state transition"
861 " error\n", dev->name);
862 goto drop;
863 case E_UNEXP_DATA:
864 printk(KERN_WARNING "%s: Unexpected data error\n",
865 dev->name);
866 goto drop;
867 case E_LST_LNK_ERR:
868 printk(KERN_WARNING "%s: Link lost error\n",
869 dev->name);
870 goto drop;
871 case E_FRM_ERR:
872 printk(KERN_WARNING "%s: Framing Error\n",
873 dev->name);
874 goto drop;
875 case E_FLG_SYN_ERR:
876 printk(KERN_WARNING "%s: Flag sync. lost during "
877 "packet\n", dev->name);
878 goto drop;
879 case E_RX_INV_BUF:
880 printk(KERN_ERR "%s: Invalid receive buffer "
881 "address\n", dev->name);
882 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
883 ®s->HostCtrl);
884 wmb();
885 break;
886 case E_RX_INV_DSC:
887 printk(KERN_ERR "%s: Invalid receive descriptor "
888 "address\n", dev->name);
889 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
890 ®s->HostCtrl);
891 wmb();
892 break;
893 case E_RNG_BLK:
894 printk(KERN_ERR "%s: Invalid ring block\n",
895 dev->name);
896 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
897 ®s->HostCtrl);
898 wmb();
899 break;
900 drop:
901 /* Label packet to be dropped.
902 * Actual dropping occurs in rx
903 * handling.
904 *
905 * The index of packet we get to drop is
906 * the index of the packet following
907 * the bad packet. -kbf
908 */
909 {
910 u16 index = rrpriv->evt_ring[eidx].index;
911 index = (index + (RX_RING_ENTRIES - 1)) %
912 RX_RING_ENTRIES;
913 rrpriv->rx_ring[index].mode |=
914 (PACKET_BAD | PACKET_END);
915 }
916 break;
917 default:
918 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
919 dev->name, rrpriv->evt_ring[eidx].code);
920 }
921 eidx = (eidx + 1) % EVT_RING_ENTRIES;
922 }
923
924 rrpriv->info->evt_ctrl.pi = eidx;
925 wmb();
926 return eidx;
927}
928
929
930static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
931{
932 struct rr_private *rrpriv = netdev_priv(dev);
933 struct rr_regs __iomem *regs = rrpriv->regs;
934
935 do {
936 struct rx_desc *desc;
937 u32 pkt_len;
938
939 desc = &(rrpriv->rx_ring[index]);
940 pkt_len = desc->size;
941#if (DEBUG > 2)
942 printk("index %i, rxlimit %i\n", index, rxlimit);
943 printk("len %x, mode %x\n", pkt_len, desc->mode);
944#endif
945 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
946 dev->stats.rx_dropped++;
947 goto defer;
948 }
949
950 if (pkt_len > 0){
951 struct sk_buff *skb, *rx_skb;
952
953 rx_skb = rrpriv->rx_skbuff[index];
954
955 if (pkt_len < PKT_COPY_THRESHOLD) {
956 skb = alloc_skb(pkt_len, GFP_ATOMIC);
957 if (skb == NULL){
958 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
959 dev->stats.rx_dropped++;
960 goto defer;
961 } else {
962 dma_sync_single_for_cpu(&rrpriv->pci_dev->dev,
963 desc->addr.addrlo,
964 pkt_len,
965 DMA_FROM_DEVICE);
966
967 skb_put_data(skb, rx_skb->data,
968 pkt_len);
969
970 dma_sync_single_for_device(&rrpriv->pci_dev->dev,
971 desc->addr.addrlo,
972 pkt_len,
973 DMA_FROM_DEVICE);
974 }
975 }else{
976 struct sk_buff *newskb;
977
978 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
979 GFP_ATOMIC);
980 if (newskb){
981 dma_addr_t addr;
982
983 dma_unmap_single(&rrpriv->pci_dev->dev,
984 desc->addr.addrlo,
985 dev->mtu + HIPPI_HLEN,
986 DMA_FROM_DEVICE);
987 skb = rx_skb;
988 skb_put(skb, pkt_len);
989 rrpriv->rx_skbuff[index] = newskb;
990 addr = dma_map_single(&rrpriv->pci_dev->dev,
991 newskb->data,
992 dev->mtu + HIPPI_HLEN,
993 DMA_FROM_DEVICE);
994 set_rraddr(&desc->addr, addr);
995 } else {
996 printk("%s: Out of memory, deferring "
997 "packet\n", dev->name);
998 dev->stats.rx_dropped++;
999 goto defer;
1000 }
1001 }
1002 skb->protocol = hippi_type_trans(skb, dev);
1003
1004 netif_rx(skb); /* send it up */
1005
1006 dev->stats.rx_packets++;
1007 dev->stats.rx_bytes += pkt_len;
1008 }
1009 defer:
1010 desc->mode = 0;
1011 desc->size = dev->mtu + HIPPI_HLEN;
1012
1013 if ((index & 7) == 7)
1014 writel(index, ®s->IpRxPi);
1015
1016 index = (index + 1) % RX_RING_ENTRIES;
1017 } while(index != rxlimit);
1018
1019 rrpriv->cur_rx = index;
1020 wmb();
1021}
1022
1023
1024static irqreturn_t rr_interrupt(int irq, void *dev_id)
1025{
1026 struct rr_private *rrpriv;
1027 struct rr_regs __iomem *regs;
1028 struct net_device *dev = (struct net_device *)dev_id;
1029 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1030
1031 rrpriv = netdev_priv(dev);
1032 regs = rrpriv->regs;
1033
1034 if (!(readl(®s->HostCtrl) & RR_INT))
1035 return IRQ_NONE;
1036
1037 spin_lock(&rrpriv->lock);
1038
1039 prodidx = readl(®s->EvtPrd);
1040 txcsmr = (prodidx >> 8) & 0xff;
1041 rxlimit = (prodidx >> 16) & 0xff;
1042 prodidx &= 0xff;
1043
1044#if (DEBUG > 2)
1045 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1046 prodidx, rrpriv->info->evt_ctrl.pi);
1047#endif
1048 /*
1049 * Order here is important. We must handle events
1050 * before doing anything else in order to catch
1051 * such things as LLRC errors, etc -kbf
1052 */
1053
1054 eidx = rrpriv->info->evt_ctrl.pi;
1055 if (prodidx != eidx)
1056 eidx = rr_handle_event(dev, prodidx, eidx);
1057
1058 rxindex = rrpriv->cur_rx;
1059 if (rxindex != rxlimit)
1060 rx_int(dev, rxlimit, rxindex);
1061
1062 txcon = rrpriv->dirty_tx;
1063 if (txcsmr != txcon) {
1064 do {
1065 /* Due to occational firmware TX producer/consumer out
1066 * of sync. error need to check entry in ring -kbf
1067 */
1068 if(rrpriv->tx_skbuff[txcon]){
1069 struct tx_desc *desc;
1070 struct sk_buff *skb;
1071
1072 desc = &(rrpriv->tx_ring[txcon]);
1073 skb = rrpriv->tx_skbuff[txcon];
1074
1075 dev->stats.tx_packets++;
1076 dev->stats.tx_bytes += skb->len;
1077
1078 dma_unmap_single(&rrpriv->pci_dev->dev,
1079 desc->addr.addrlo, skb->len,
1080 DMA_TO_DEVICE);
1081 dev_kfree_skb_irq(skb);
1082
1083 rrpriv->tx_skbuff[txcon] = NULL;
1084 desc->size = 0;
1085 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1086 desc->mode = 0;
1087 }
1088 txcon = (txcon + 1) % TX_RING_ENTRIES;
1089 } while (txcsmr != txcon);
1090 wmb();
1091
1092 rrpriv->dirty_tx = txcon;
1093 if (rrpriv->tx_full && rr_if_busy(dev) &&
1094 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1095 != rrpriv->dirty_tx)){
1096 rrpriv->tx_full = 0;
1097 netif_wake_queue(dev);
1098 }
1099 }
1100
1101 eidx |= ((txcsmr << 8) | (rxlimit << 16));
1102 writel(eidx, ®s->EvtCon);
1103 wmb();
1104
1105 spin_unlock(&rrpriv->lock);
1106 return IRQ_HANDLED;
1107}
1108
1109static inline void rr_raz_tx(struct rr_private *rrpriv,
1110 struct net_device *dev)
1111{
1112 int i;
1113
1114 for (i = 0; i < TX_RING_ENTRIES; i++) {
1115 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1116
1117 if (skb) {
1118 struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1119
1120 dma_unmap_single(&rrpriv->pci_dev->dev,
1121 desc->addr.addrlo, skb->len,
1122 DMA_TO_DEVICE);
1123 desc->size = 0;
1124 set_rraddr(&desc->addr, 0);
1125 dev_kfree_skb(skb);
1126 rrpriv->tx_skbuff[i] = NULL;
1127 }
1128 }
1129}
1130
1131
1132static inline void rr_raz_rx(struct rr_private *rrpriv,
1133 struct net_device *dev)
1134{
1135 int i;
1136
1137 for (i = 0; i < RX_RING_ENTRIES; i++) {
1138 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1139
1140 if (skb) {
1141 struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1142
1143 dma_unmap_single(&rrpriv->pci_dev->dev,
1144 desc->addr.addrlo,
1145 dev->mtu + HIPPI_HLEN,
1146 DMA_FROM_DEVICE);
1147 desc->size = 0;
1148 set_rraddr(&desc->addr, 0);
1149 dev_kfree_skb(skb);
1150 rrpriv->rx_skbuff[i] = NULL;
1151 }
1152 }
1153}
1154
1155static void rr_timer(struct timer_list *t)
1156{
1157 struct rr_private *rrpriv = from_timer(rrpriv, t, timer);
1158 struct net_device *dev = pci_get_drvdata(rrpriv->pci_dev);
1159 struct rr_regs __iomem *regs = rrpriv->regs;
1160 unsigned long flags;
1161
1162 if (readl(®s->HostCtrl) & NIC_HALTED){
1163 printk("%s: Restarting nic\n", dev->name);
1164 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1165 memset(rrpriv->info, 0, sizeof(struct rr_info));
1166 wmb();
1167
1168 rr_raz_tx(rrpriv, dev);
1169 rr_raz_rx(rrpriv, dev);
1170
1171 if (rr_init1(dev)) {
1172 spin_lock_irqsave(&rrpriv->lock, flags);
1173 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1174 ®s->HostCtrl);
1175 spin_unlock_irqrestore(&rrpriv->lock, flags);
1176 }
1177 }
1178 rrpriv->timer.expires = RUN_AT(5*HZ);
1179 add_timer(&rrpriv->timer);
1180}
1181
1182
1183static int rr_open(struct net_device *dev)
1184{
1185 struct rr_private *rrpriv = netdev_priv(dev);
1186 struct pci_dev *pdev = rrpriv->pci_dev;
1187 struct rr_regs __iomem *regs;
1188 int ecode = 0;
1189 unsigned long flags;
1190 dma_addr_t dma_addr;
1191
1192 regs = rrpriv->regs;
1193
1194 if (rrpriv->fw_rev < 0x00020000) {
1195 printk(KERN_WARNING "%s: trying to configure device with "
1196 "obsolete firmware\n", dev->name);
1197 ecode = -EBUSY;
1198 goto error;
1199 }
1200
1201 rrpriv->rx_ctrl = dma_alloc_coherent(&pdev->dev,
1202 256 * sizeof(struct ring_ctrl),
1203 &dma_addr, GFP_KERNEL);
1204 if (!rrpriv->rx_ctrl) {
1205 ecode = -ENOMEM;
1206 goto error;
1207 }
1208 rrpriv->rx_ctrl_dma = dma_addr;
1209
1210 rrpriv->info = dma_alloc_coherent(&pdev->dev, sizeof(struct rr_info),
1211 &dma_addr, GFP_KERNEL);
1212 if (!rrpriv->info) {
1213 ecode = -ENOMEM;
1214 goto error;
1215 }
1216 rrpriv->info_dma = dma_addr;
1217 wmb();
1218
1219 spin_lock_irqsave(&rrpriv->lock, flags);
1220 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl);
1221 readl(®s->HostCtrl);
1222 spin_unlock_irqrestore(&rrpriv->lock, flags);
1223
1224 if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1225 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1226 dev->name, pdev->irq);
1227 ecode = -EAGAIN;
1228 goto error;
1229 }
1230
1231 if ((ecode = rr_init1(dev)))
1232 goto error;
1233
1234 /* Set the timer to switch to check for link beat and perhaps switch
1235 to an alternate media type. */
1236 timer_setup(&rrpriv->timer, rr_timer, 0);
1237 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
1238 add_timer(&rrpriv->timer);
1239
1240 netif_start_queue(dev);
1241
1242 return ecode;
1243
1244 error:
1245 spin_lock_irqsave(&rrpriv->lock, flags);
1246 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl);
1247 spin_unlock_irqrestore(&rrpriv->lock, flags);
1248
1249 if (rrpriv->info) {
1250 dma_free_coherent(&pdev->dev, sizeof(struct rr_info),
1251 rrpriv->info, rrpriv->info_dma);
1252 rrpriv->info = NULL;
1253 }
1254 if (rrpriv->rx_ctrl) {
1255 dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1256 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1257 rrpriv->rx_ctrl = NULL;
1258 }
1259
1260 netif_stop_queue(dev);
1261
1262 return ecode;
1263}
1264
1265
1266static void rr_dump(struct net_device *dev)
1267{
1268 struct rr_private *rrpriv;
1269 struct rr_regs __iomem *regs;
1270 u32 index, cons;
1271 short i;
1272 int len;
1273
1274 rrpriv = netdev_priv(dev);
1275 regs = rrpriv->regs;
1276
1277 printk("%s: dumping NIC TX rings\n", dev->name);
1278
1279 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1280 readl(®s->RxPrd), readl(®s->TxPrd),
1281 readl(®s->EvtPrd), readl(®s->TxPi),
1282 rrpriv->info->tx_ctrl.pi);
1283
1284 printk("Error code 0x%x\n", readl(®s->Fail1));
1285
1286 index = (((readl(®s->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1287 cons = rrpriv->dirty_tx;
1288 printk("TX ring index %i, TX consumer %i\n",
1289 index, cons);
1290
1291 if (rrpriv->tx_skbuff[index]){
1292 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1293 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1294 for (i = 0; i < len; i++){
1295 if (!(i & 7))
1296 printk("\n");
1297 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1298 }
1299 printk("\n");
1300 }
1301
1302 if (rrpriv->tx_skbuff[cons]){
1303 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1304 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1305 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %p, truesize 0x%x\n",
1306 rrpriv->tx_ring[cons].mode,
1307 rrpriv->tx_ring[cons].size,
1308 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1309 rrpriv->tx_skbuff[cons]->data,
1310 (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1311 for (i = 0; i < len; i++){
1312 if (!(i & 7))
1313 printk("\n");
1314 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1315 }
1316 printk("\n");
1317 }
1318
1319 printk("dumping TX ring info:\n");
1320 for (i = 0; i < TX_RING_ENTRIES; i++)
1321 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1322 rrpriv->tx_ring[i].mode,
1323 rrpriv->tx_ring[i].size,
1324 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1325
1326}
1327
1328
1329static int rr_close(struct net_device *dev)
1330{
1331 struct rr_private *rrpriv = netdev_priv(dev);
1332 struct rr_regs __iomem *regs = rrpriv->regs;
1333 struct pci_dev *pdev = rrpriv->pci_dev;
1334 unsigned long flags;
1335 u32 tmp;
1336 short i;
1337
1338 netif_stop_queue(dev);
1339
1340
1341 /*
1342 * Lock to make sure we are not cleaning up while another CPU
1343 * is handling interrupts.
1344 */
1345 spin_lock_irqsave(&rrpriv->lock, flags);
1346
1347 tmp = readl(®s->HostCtrl);
1348 if (tmp & NIC_HALTED){
1349 printk("%s: NIC already halted\n", dev->name);
1350 rr_dump(dev);
1351 }else{
1352 tmp |= HALT_NIC | RR_CLEAR_INT;
1353 writel(tmp, ®s->HostCtrl);
1354 readl(®s->HostCtrl);
1355 }
1356
1357 rrpriv->fw_running = 0;
1358
1359 spin_unlock_irqrestore(&rrpriv->lock, flags);
1360 del_timer_sync(&rrpriv->timer);
1361 spin_lock_irqsave(&rrpriv->lock, flags);
1362
1363 writel(0, ®s->TxPi);
1364 writel(0, ®s->IpRxPi);
1365
1366 writel(0, ®s->EvtCon);
1367 writel(0, ®s->EvtPrd);
1368
1369 for (i = 0; i < CMD_RING_ENTRIES; i++)
1370 writel(0, ®s->CmdRing[i]);
1371
1372 rrpriv->info->tx_ctrl.entries = 0;
1373 rrpriv->info->cmd_ctrl.pi = 0;
1374 rrpriv->info->evt_ctrl.pi = 0;
1375 rrpriv->rx_ctrl[4].entries = 0;
1376
1377 rr_raz_tx(rrpriv, dev);
1378 rr_raz_rx(rrpriv, dev);
1379
1380 dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1381 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1382 rrpriv->rx_ctrl = NULL;
1383
1384 dma_free_coherent(&pdev->dev, sizeof(struct rr_info), rrpriv->info,
1385 rrpriv->info_dma);
1386 rrpriv->info = NULL;
1387
1388 spin_unlock_irqrestore(&rrpriv->lock, flags);
1389 free_irq(pdev->irq, dev);
1390
1391 return 0;
1392}
1393
1394
1395static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1396 struct net_device *dev)
1397{
1398 struct rr_private *rrpriv = netdev_priv(dev);
1399 struct rr_regs __iomem *regs = rrpriv->regs;
1400 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1401 struct ring_ctrl *txctrl;
1402 unsigned long flags;
1403 u32 index, len = skb->len;
1404 u32 *ifield;
1405 struct sk_buff *new_skb;
1406
1407 if (readl(®s->Mode) & FATAL_ERR)
1408 printk("error codes Fail1 %02x, Fail2 %02x\n",
1409 readl(®s->Fail1), readl(®s->Fail2));
1410
1411 /*
1412 * We probably need to deal with tbusy here to prevent overruns.
1413 */
1414
1415 if (skb_headroom(skb) < 8){
1416 printk("incoming skb too small - reallocating\n");
1417 if (!(new_skb = dev_alloc_skb(len + 8))) {
1418 dev_kfree_skb(skb);
1419 netif_wake_queue(dev);
1420 return NETDEV_TX_OK;
1421 }
1422 skb_reserve(new_skb, 8);
1423 skb_put(new_skb, len);
1424 skb_copy_from_linear_data(skb, new_skb->data, len);
1425 dev_kfree_skb(skb);
1426 skb = new_skb;
1427 }
1428
1429 ifield = skb_push(skb, 8);
1430
1431 ifield[0] = 0;
1432 ifield[1] = hcb->ifield;
1433
1434 /*
1435 * We don't need the lock before we are actually going to start
1436 * fiddling with the control blocks.
1437 */
1438 spin_lock_irqsave(&rrpriv->lock, flags);
1439
1440 txctrl = &rrpriv->info->tx_ctrl;
1441
1442 index = txctrl->pi;
1443
1444 rrpriv->tx_skbuff[index] = skb;
1445 set_rraddr(&rrpriv->tx_ring[index].addr,
1446 dma_map_single(&rrpriv->pci_dev->dev, skb->data, len + 8, DMA_TO_DEVICE));
1447 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1448 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1449 txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1450 wmb();
1451 writel(txctrl->pi, ®s->TxPi);
1452
1453 if (txctrl->pi == rrpriv->dirty_tx){
1454 rrpriv->tx_full = 1;
1455 netif_stop_queue(dev);
1456 }
1457
1458 spin_unlock_irqrestore(&rrpriv->lock, flags);
1459
1460 return NETDEV_TX_OK;
1461}
1462
1463
1464/*
1465 * Read the firmware out of the EEPROM and put it into the SRAM
1466 * (or from user space - later)
1467 *
1468 * This operation requires the NIC to be halted and is performed with
1469 * interrupts disabled and with the spinlock hold.
1470 */
1471static int rr_load_firmware(struct net_device *dev)
1472{
1473 struct rr_private *rrpriv;
1474 struct rr_regs __iomem *regs;
1475 size_t eptr, segptr;
1476 int i, j;
1477 u32 localctrl, sptr, len, tmp;
1478 u32 p2len, p2size, nr_seg, revision, io, sram_size;
1479
1480 rrpriv = netdev_priv(dev);
1481 regs = rrpriv->regs;
1482
1483 if (dev->flags & IFF_UP)
1484 return -EBUSY;
1485
1486 if (!(readl(®s->HostCtrl) & NIC_HALTED)){
1487 printk("%s: Trying to load firmware to a running NIC.\n",
1488 dev->name);
1489 return -EBUSY;
1490 }
1491
1492 localctrl = readl(®s->LocalCtrl);
1493 writel(0, ®s->LocalCtrl);
1494
1495 writel(0, ®s->EvtPrd);
1496 writel(0, ®s->RxPrd);
1497 writel(0, ®s->TxPrd);
1498
1499 /*
1500 * First wipe the entire SRAM, otherwise we might run into all
1501 * kinds of trouble ... sigh, this took almost all afternoon
1502 * to track down ;-(
1503 */
1504 io = readl(®s->ExtIo);
1505 writel(0, ®s->ExtIo);
1506 sram_size = rr_read_eeprom_word(rrpriv, 8);
1507
1508 for (i = 200; i < sram_size / 4; i++){
1509 writel(i * 4, ®s->WinBase);
1510 mb();
1511 writel(0, ®s->WinData);
1512 mb();
1513 }
1514 writel(io, ®s->ExtIo);
1515 mb();
1516
1517 eptr = rr_read_eeprom_word(rrpriv,
1518 offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1519 eptr = ((eptr & 0x1fffff) >> 3);
1520
1521 p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1522 p2len = (p2len << 2);
1523 p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1524 p2size = ((p2size & 0x1fffff) >> 3);
1525
1526 if ((eptr < p2size) || (eptr > (p2size + p2len))){
1527 printk("%s: eptr is invalid\n", dev->name);
1528 goto out;
1529 }
1530
1531 revision = rr_read_eeprom_word(rrpriv,
1532 offsetof(struct eeprom, manf.HeaderFmt));
1533
1534 if (revision != 1){
1535 printk("%s: invalid firmware format (%i)\n",
1536 dev->name, revision);
1537 goto out;
1538 }
1539
1540 nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1541 eptr +=4;
1542#if (DEBUG > 1)
1543 printk("%s: nr_seg %i\n", dev->name, nr_seg);
1544#endif
1545
1546 for (i = 0; i < nr_seg; i++){
1547 sptr = rr_read_eeprom_word(rrpriv, eptr);
1548 eptr += 4;
1549 len = rr_read_eeprom_word(rrpriv, eptr);
1550 eptr += 4;
1551 segptr = rr_read_eeprom_word(rrpriv, eptr);
1552 segptr = ((segptr & 0x1fffff) >> 3);
1553 eptr += 4;
1554#if (DEBUG > 1)
1555 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1556 dev->name, i, sptr, len, segptr);
1557#endif
1558 for (j = 0; j < len; j++){
1559 tmp = rr_read_eeprom_word(rrpriv, segptr);
1560 writel(sptr, ®s->WinBase);
1561 mb();
1562 writel(tmp, ®s->WinData);
1563 mb();
1564 segptr += 4;
1565 sptr += 4;
1566 }
1567 }
1568
1569out:
1570 writel(localctrl, ®s->LocalCtrl);
1571 mb();
1572 return 0;
1573}
1574
1575
1576static int rr_siocdevprivate(struct net_device *dev, struct ifreq *rq,
1577 void __user *data, int cmd)
1578{
1579 struct rr_private *rrpriv;
1580 unsigned char *image, *oldimage;
1581 unsigned long flags;
1582 unsigned int i;
1583 int error = -EOPNOTSUPP;
1584
1585 rrpriv = netdev_priv(dev);
1586
1587 switch(cmd){
1588 case SIOCRRGFW:
1589 if (!capable(CAP_SYS_RAWIO)){
1590 return -EPERM;
1591 }
1592
1593 image = kmalloc_array(EEPROM_WORDS, sizeof(u32), GFP_KERNEL);
1594 if (!image)
1595 return -ENOMEM;
1596
1597 if (rrpriv->fw_running){
1598 printk("%s: Firmware already running\n", dev->name);
1599 error = -EPERM;
1600 goto gf_out;
1601 }
1602
1603 spin_lock_irqsave(&rrpriv->lock, flags);
1604 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1605 spin_unlock_irqrestore(&rrpriv->lock, flags);
1606 if (i != EEPROM_BYTES){
1607 printk(KERN_ERR "%s: Error reading EEPROM\n",
1608 dev->name);
1609 error = -EFAULT;
1610 goto gf_out;
1611 }
1612 error = copy_to_user(data, image, EEPROM_BYTES);
1613 if (error)
1614 error = -EFAULT;
1615 gf_out:
1616 kfree(image);
1617 return error;
1618
1619 case SIOCRRPFW:
1620 if (!capable(CAP_SYS_RAWIO)){
1621 return -EPERM;
1622 }
1623
1624 image = memdup_user(data, EEPROM_BYTES);
1625 if (IS_ERR(image))
1626 return PTR_ERR(image);
1627
1628 oldimage = kmalloc(EEPROM_BYTES, GFP_KERNEL);
1629 if (!oldimage) {
1630 kfree(image);
1631 return -ENOMEM;
1632 }
1633
1634 if (rrpriv->fw_running){
1635 printk("%s: Firmware already running\n", dev->name);
1636 error = -EPERM;
1637 goto wf_out;
1638 }
1639
1640 printk("%s: Updating EEPROM firmware\n", dev->name);
1641
1642 spin_lock_irqsave(&rrpriv->lock, flags);
1643 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1644 if (error)
1645 printk(KERN_ERR "%s: Error writing EEPROM\n",
1646 dev->name);
1647
1648 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1649 spin_unlock_irqrestore(&rrpriv->lock, flags);
1650
1651 if (i != EEPROM_BYTES)
1652 printk(KERN_ERR "%s: Error reading back EEPROM "
1653 "image\n", dev->name);
1654
1655 error = memcmp(image, oldimage, EEPROM_BYTES);
1656 if (error){
1657 printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1658 dev->name);
1659 error = -EFAULT;
1660 }
1661 wf_out:
1662 kfree(oldimage);
1663 kfree(image);
1664 return error;
1665
1666 case SIOCRRID:
1667 return put_user(0x52523032, (int __user *)data);
1668 default:
1669 return error;
1670 }
1671}
1672
1673static const struct pci_device_id rr_pci_tbl[] = {
1674 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1675 PCI_ANY_ID, PCI_ANY_ID, },
1676 { 0,}
1677};
1678MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1679
1680static struct pci_driver rr_driver = {
1681 .name = "rrunner",
1682 .id_table = rr_pci_tbl,
1683 .probe = rr_init_one,
1684 .remove = rr_remove_one,
1685};
1686
1687module_pci_driver(rr_driver);
1/*
2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
3 *
4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
5 *
6 * Thanks to Essential Communication for providing us with hardware
7 * and very comprehensive documentation without which I would not have
8 * been able to write this driver. A special thank you to John Gibbon
9 * for sorting out the legal issues, with the NDA, allowing the code to
10 * be released under the GPL.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18 * stupid bugs in my code.
19 *
20 * Softnet support and various other patches from Val Henson of
21 * ODS/Essential.
22 *
23 * PCI DMA mapping code partly based on work by Francois Romieu.
24 */
25
26
27#define DEBUG 1
28#define RX_DMA_SKBUFF 1
29#define PKT_COPY_THRESHOLD 512
30
31#include <linux/module.h>
32#include <linux/types.h>
33#include <linux/errno.h>
34#include <linux/ioport.h>
35#include <linux/pci.h>
36#include <linux/kernel.h>
37#include <linux/netdevice.h>
38#include <linux/hippidevice.h>
39#include <linux/skbuff.h>
40#include <linux/delay.h>
41#include <linux/mm.h>
42#include <linux/slab.h>
43#include <net/sock.h>
44
45#include <asm/cache.h>
46#include <asm/byteorder.h>
47#include <asm/io.h>
48#include <asm/irq.h>
49#include <linux/uaccess.h>
50
51#define rr_if_busy(dev) netif_queue_stopped(dev)
52#define rr_if_running(dev) netif_running(dev)
53
54#include "rrunner.h"
55
56#define RUN_AT(x) (jiffies + (x))
57
58
59MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
60MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
61MODULE_LICENSE("GPL");
62
63static char version[] = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
64
65
66static const struct net_device_ops rr_netdev_ops = {
67 .ndo_open = rr_open,
68 .ndo_stop = rr_close,
69 .ndo_do_ioctl = rr_ioctl,
70 .ndo_start_xmit = rr_start_xmit,
71 .ndo_set_mac_address = hippi_mac_addr,
72};
73
74/*
75 * Implementation notes:
76 *
77 * The DMA engine only allows for DMA within physical 64KB chunks of
78 * memory. The current approach of the driver (and stack) is to use
79 * linear blocks of memory for the skbuffs. However, as the data block
80 * is always the first part of the skb and skbs are 2^n aligned so we
81 * are guarantted to get the whole block within one 64KB align 64KB
82 * chunk.
83 *
84 * On the long term, relying on being able to allocate 64KB linear
85 * chunks of memory is not feasible and the skb handling code and the
86 * stack will need to know about I/O vectors or something similar.
87 */
88
89static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
90{
91 struct net_device *dev;
92 static int version_disp;
93 u8 pci_latency;
94 struct rr_private *rrpriv;
95 void *tmpptr;
96 dma_addr_t ring_dma;
97 int ret = -ENOMEM;
98
99 dev = alloc_hippi_dev(sizeof(struct rr_private));
100 if (!dev)
101 goto out3;
102
103 ret = pci_enable_device(pdev);
104 if (ret) {
105 ret = -ENODEV;
106 goto out2;
107 }
108
109 rrpriv = netdev_priv(dev);
110
111 SET_NETDEV_DEV(dev, &pdev->dev);
112
113 ret = pci_request_regions(pdev, "rrunner");
114 if (ret < 0)
115 goto out;
116
117 pci_set_drvdata(pdev, dev);
118
119 rrpriv->pci_dev = pdev;
120
121 spin_lock_init(&rrpriv->lock);
122
123 dev->netdev_ops = &rr_netdev_ops;
124
125 /* display version info if adapter is found */
126 if (!version_disp) {
127 /* set display flag to TRUE so that */
128 /* we only display this string ONCE */
129 version_disp = 1;
130 printk(version);
131 }
132
133 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
134 if (pci_latency <= 0x58){
135 pci_latency = 0x58;
136 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
137 }
138
139 pci_set_master(pdev);
140
141 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
142 "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
143 (unsigned long long)pci_resource_start(pdev, 0),
144 pdev->irq, pci_latency);
145
146 /*
147 * Remap the MMIO regs into kernel space.
148 */
149 rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
150 if (!rrpriv->regs) {
151 printk(KERN_ERR "%s: Unable to map I/O register, "
152 "RoadRunner will be disabled.\n", dev->name);
153 ret = -EIO;
154 goto out;
155 }
156
157 tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
158 rrpriv->tx_ring = tmpptr;
159 rrpriv->tx_ring_dma = ring_dma;
160
161 if (!tmpptr) {
162 ret = -ENOMEM;
163 goto out;
164 }
165
166 tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
167 rrpriv->rx_ring = tmpptr;
168 rrpriv->rx_ring_dma = ring_dma;
169
170 if (!tmpptr) {
171 ret = -ENOMEM;
172 goto out;
173 }
174
175 tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
176 rrpriv->evt_ring = tmpptr;
177 rrpriv->evt_ring_dma = ring_dma;
178
179 if (!tmpptr) {
180 ret = -ENOMEM;
181 goto out;
182 }
183
184 /*
185 * Don't access any register before this point!
186 */
187#ifdef __BIG_ENDIAN
188 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
189 &rrpriv->regs->HostCtrl);
190#endif
191 /*
192 * Need to add a case for little-endian 64-bit hosts here.
193 */
194
195 rr_init(dev);
196
197 ret = register_netdev(dev);
198 if (ret)
199 goto out;
200 return 0;
201
202 out:
203 if (rrpriv->evt_ring)
204 pci_free_consistent(pdev, EVT_RING_SIZE, rrpriv->evt_ring,
205 rrpriv->evt_ring_dma);
206 if (rrpriv->rx_ring)
207 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
208 rrpriv->rx_ring_dma);
209 if (rrpriv->tx_ring)
210 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
211 rrpriv->tx_ring_dma);
212 if (rrpriv->regs)
213 pci_iounmap(pdev, rrpriv->regs);
214 if (pdev)
215 pci_release_regions(pdev);
216 out2:
217 free_netdev(dev);
218 out3:
219 return ret;
220}
221
222static void rr_remove_one(struct pci_dev *pdev)
223{
224 struct net_device *dev = pci_get_drvdata(pdev);
225 struct rr_private *rr = netdev_priv(dev);
226
227 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
228 printk(KERN_ERR "%s: trying to unload running NIC\n",
229 dev->name);
230 writel(HALT_NIC, &rr->regs->HostCtrl);
231 }
232
233 unregister_netdev(dev);
234 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
235 rr->evt_ring_dma);
236 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
237 rr->rx_ring_dma);
238 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
239 rr->tx_ring_dma);
240 pci_iounmap(pdev, rr->regs);
241 pci_release_regions(pdev);
242 pci_disable_device(pdev);
243 free_netdev(dev);
244}
245
246
247/*
248 * Commands are considered to be slow, thus there is no reason to
249 * inline this.
250 */
251static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
252{
253 struct rr_regs __iomem *regs;
254 u32 idx;
255
256 regs = rrpriv->regs;
257 /*
258 * This is temporary - it will go away in the final version.
259 * We probably also want to make this function inline.
260 */
261 if (readl(®s->HostCtrl) & NIC_HALTED){
262 printk("issuing command for halted NIC, code 0x%x, "
263 "HostCtrl %08x\n", cmd->code, readl(®s->HostCtrl));
264 if (readl(®s->Mode) & FATAL_ERR)
265 printk("error codes Fail1 %02x, Fail2 %02x\n",
266 readl(®s->Fail1), readl(®s->Fail2));
267 }
268
269 idx = rrpriv->info->cmd_ctrl.pi;
270
271 writel(*(u32*)(cmd), ®s->CmdRing[idx]);
272 wmb();
273
274 idx = (idx - 1) % CMD_RING_ENTRIES;
275 rrpriv->info->cmd_ctrl.pi = idx;
276 wmb();
277
278 if (readl(®s->Mode) & FATAL_ERR)
279 printk("error code %02x\n", readl(®s->Fail1));
280}
281
282
283/*
284 * Reset the board in a sensible manner. The NIC is already halted
285 * when we get here and a spin-lock is held.
286 */
287static int rr_reset(struct net_device *dev)
288{
289 struct rr_private *rrpriv;
290 struct rr_regs __iomem *regs;
291 u32 start_pc;
292 int i;
293
294 rrpriv = netdev_priv(dev);
295 regs = rrpriv->regs;
296
297 rr_load_firmware(dev);
298
299 writel(0x01000000, ®s->TX_state);
300 writel(0xff800000, ®s->RX_state);
301 writel(0, ®s->AssistState);
302 writel(CLEAR_INTA, ®s->LocalCtrl);
303 writel(0x01, ®s->BrkPt);
304 writel(0, ®s->Timer);
305 writel(0, ®s->TimerRef);
306 writel(RESET_DMA, ®s->DmaReadState);
307 writel(RESET_DMA, ®s->DmaWriteState);
308 writel(0, ®s->DmaWriteHostHi);
309 writel(0, ®s->DmaWriteHostLo);
310 writel(0, ®s->DmaReadHostHi);
311 writel(0, ®s->DmaReadHostLo);
312 writel(0, ®s->DmaReadLen);
313 writel(0, ®s->DmaWriteLen);
314 writel(0, ®s->DmaWriteLcl);
315 writel(0, ®s->DmaWriteIPchecksum);
316 writel(0, ®s->DmaReadLcl);
317 writel(0, ®s->DmaReadIPchecksum);
318 writel(0, ®s->PciState);
319#if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
320 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, ®s->Mode);
321#elif (BITS_PER_LONG == 64)
322 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, ®s->Mode);
323#else
324 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, ®s->Mode);
325#endif
326
327#if 0
328 /*
329 * Don't worry, this is just black magic.
330 */
331 writel(0xdf000, ®s->RxBase);
332 writel(0xdf000, ®s->RxPrd);
333 writel(0xdf000, ®s->RxCon);
334 writel(0xce000, ®s->TxBase);
335 writel(0xce000, ®s->TxPrd);
336 writel(0xce000, ®s->TxCon);
337 writel(0, ®s->RxIndPro);
338 writel(0, ®s->RxIndCon);
339 writel(0, ®s->RxIndRef);
340 writel(0, ®s->TxIndPro);
341 writel(0, ®s->TxIndCon);
342 writel(0, ®s->TxIndRef);
343 writel(0xcc000, ®s->pad10[0]);
344 writel(0, ®s->DrCmndPro);
345 writel(0, ®s->DrCmndCon);
346 writel(0, ®s->DwCmndPro);
347 writel(0, ®s->DwCmndCon);
348 writel(0, ®s->DwCmndRef);
349 writel(0, ®s->DrDataPro);
350 writel(0, ®s->DrDataCon);
351 writel(0, ®s->DrDataRef);
352 writel(0, ®s->DwDataPro);
353 writel(0, ®s->DwDataCon);
354 writel(0, ®s->DwDataRef);
355#endif
356
357 writel(0xffffffff, ®s->MbEvent);
358 writel(0, ®s->Event);
359
360 writel(0, ®s->TxPi);
361 writel(0, ®s->IpRxPi);
362
363 writel(0, ®s->EvtCon);
364 writel(0, ®s->EvtPrd);
365
366 rrpriv->info->evt_ctrl.pi = 0;
367
368 for (i = 0; i < CMD_RING_ENTRIES; i++)
369 writel(0, ®s->CmdRing[i]);
370
371/*
372 * Why 32 ? is this not cache line size dependent?
373 */
374 writel(RBURST_64|WBURST_64, ®s->PciState);
375 wmb();
376
377 start_pc = rr_read_eeprom_word(rrpriv,
378 offsetof(struct eeprom, rncd_info.FwStart));
379
380#if (DEBUG > 1)
381 printk("%s: Executing firmware at address 0x%06x\n",
382 dev->name, start_pc);
383#endif
384
385 writel(start_pc + 0x800, ®s->Pc);
386 wmb();
387 udelay(5);
388
389 writel(start_pc, ®s->Pc);
390 wmb();
391
392 return 0;
393}
394
395
396/*
397 * Read a string from the EEPROM.
398 */
399static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
400 unsigned long offset,
401 unsigned char *buf,
402 unsigned long length)
403{
404 struct rr_regs __iomem *regs = rrpriv->regs;
405 u32 misc, io, host, i;
406
407 io = readl(®s->ExtIo);
408 writel(0, ®s->ExtIo);
409 misc = readl(®s->LocalCtrl);
410 writel(0, ®s->LocalCtrl);
411 host = readl(®s->HostCtrl);
412 writel(host | HALT_NIC, ®s->HostCtrl);
413 mb();
414
415 for (i = 0; i < length; i++){
416 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase);
417 mb();
418 buf[i] = (readl(®s->WinData) >> 24) & 0xff;
419 mb();
420 }
421
422 writel(host, ®s->HostCtrl);
423 writel(misc, ®s->LocalCtrl);
424 writel(io, ®s->ExtIo);
425 mb();
426 return i;
427}
428
429
430/*
431 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
432 * it to our CPU byte-order.
433 */
434static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
435 size_t offset)
436{
437 __be32 word;
438
439 if ((rr_read_eeprom(rrpriv, offset,
440 (unsigned char *)&word, 4) == 4))
441 return be32_to_cpu(word);
442 return 0;
443}
444
445
446/*
447 * Write a string to the EEPROM.
448 *
449 * This is only called when the firmware is not running.
450 */
451static unsigned int write_eeprom(struct rr_private *rrpriv,
452 unsigned long offset,
453 unsigned char *buf,
454 unsigned long length)
455{
456 struct rr_regs __iomem *regs = rrpriv->regs;
457 u32 misc, io, data, i, j, ready, error = 0;
458
459 io = readl(®s->ExtIo);
460 writel(0, ®s->ExtIo);
461 misc = readl(®s->LocalCtrl);
462 writel(ENABLE_EEPROM_WRITE, ®s->LocalCtrl);
463 mb();
464
465 for (i = 0; i < length; i++){
466 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase);
467 mb();
468 data = buf[i] << 24;
469 /*
470 * Only try to write the data if it is not the same
471 * value already.
472 */
473 if ((readl(®s->WinData) & 0xff000000) != data){
474 writel(data, ®s->WinData);
475 ready = 0;
476 j = 0;
477 mb();
478 while(!ready){
479 udelay(20);
480 if ((readl(®s->WinData) & 0xff000000) ==
481 data)
482 ready = 1;
483 mb();
484 if (j++ > 5000){
485 printk("data mismatch: %08x, "
486 "WinData %08x\n", data,
487 readl(®s->WinData));
488 ready = 1;
489 error = 1;
490 }
491 }
492 }
493 }
494
495 writel(misc, ®s->LocalCtrl);
496 writel(io, ®s->ExtIo);
497 mb();
498
499 return error;
500}
501
502
503static int rr_init(struct net_device *dev)
504{
505 struct rr_private *rrpriv;
506 struct rr_regs __iomem *regs;
507 u32 sram_size, rev;
508
509 rrpriv = netdev_priv(dev);
510 regs = rrpriv->regs;
511
512 rev = readl(®s->FwRev);
513 rrpriv->fw_rev = rev;
514 if (rev > 0x00020024)
515 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
516 ((rev >> 8) & 0xff), (rev & 0xff));
517 else if (rev >= 0x00020000) {
518 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
519 "later is recommended)\n", (rev >> 16),
520 ((rev >> 8) & 0xff), (rev & 0xff));
521 }else{
522 printk(" Firmware revision too old: %i.%i.%i, please "
523 "upgrade to 2.0.37 or later.\n",
524 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
525 }
526
527#if (DEBUG > 2)
528 printk(" Maximum receive rings %i\n", readl(®s->MaxRxRng));
529#endif
530
531 /*
532 * Read the hardware address from the eeprom. The HW address
533 * is not really necessary for HIPPI but awfully convenient.
534 * The pointer arithmetic to put it in dev_addr is ugly, but
535 * Donald Becker does it this way for the GigE version of this
536 * card and it's shorter and more portable than any
537 * other method I've seen. -VAL
538 */
539
540 *(__be16 *)(dev->dev_addr) =
541 htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
542 *(__be32 *)(dev->dev_addr+2) =
543 htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
544
545 printk(" MAC: %pM\n", dev->dev_addr);
546
547 sram_size = rr_read_eeprom_word(rrpriv, 8);
548 printk(" SRAM size 0x%06x\n", sram_size);
549
550 return 0;
551}
552
553
554static int rr_init1(struct net_device *dev)
555{
556 struct rr_private *rrpriv;
557 struct rr_regs __iomem *regs;
558 unsigned long myjif, flags;
559 struct cmd cmd;
560 u32 hostctrl;
561 int ecode = 0;
562 short i;
563
564 rrpriv = netdev_priv(dev);
565 regs = rrpriv->regs;
566
567 spin_lock_irqsave(&rrpriv->lock, flags);
568
569 hostctrl = readl(®s->HostCtrl);
570 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, ®s->HostCtrl);
571 wmb();
572
573 if (hostctrl & PARITY_ERR){
574 printk("%s: Parity error halting NIC - this is serious!\n",
575 dev->name);
576 spin_unlock_irqrestore(&rrpriv->lock, flags);
577 ecode = -EFAULT;
578 goto error;
579 }
580
581 set_rxaddr(regs, rrpriv->rx_ctrl_dma);
582 set_infoaddr(regs, rrpriv->info_dma);
583
584 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
585 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
586 rrpriv->info->evt_ctrl.mode = 0;
587 rrpriv->info->evt_ctrl.pi = 0;
588 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
589
590 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
591 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
592 rrpriv->info->cmd_ctrl.mode = 0;
593 rrpriv->info->cmd_ctrl.pi = 15;
594
595 for (i = 0; i < CMD_RING_ENTRIES; i++) {
596 writel(0, ®s->CmdRing[i]);
597 }
598
599 for (i = 0; i < TX_RING_ENTRIES; i++) {
600 rrpriv->tx_ring[i].size = 0;
601 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
602 rrpriv->tx_skbuff[i] = NULL;
603 }
604 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
605 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
606 rrpriv->info->tx_ctrl.mode = 0;
607 rrpriv->info->tx_ctrl.pi = 0;
608 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
609
610 /*
611 * Set dirty_tx before we start receiving interrupts, otherwise
612 * the interrupt handler might think it is supposed to process
613 * tx ints before we are up and running, which may cause a null
614 * pointer access in the int handler.
615 */
616 rrpriv->tx_full = 0;
617 rrpriv->cur_rx = 0;
618 rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
619
620 rr_reset(dev);
621
622 /* Tuning values */
623 writel(0x5000, ®s->ConRetry);
624 writel(0x100, ®s->ConRetryTmr);
625 writel(0x500000, ®s->ConTmout);
626 writel(0x60, ®s->IntrTmr);
627 writel(0x500000, ®s->TxDataMvTimeout);
628 writel(0x200000, ®s->RxDataMvTimeout);
629 writel(0x80, ®s->WriteDmaThresh);
630 writel(0x80, ®s->ReadDmaThresh);
631
632 rrpriv->fw_running = 0;
633 wmb();
634
635 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
636 writel(hostctrl, ®s->HostCtrl);
637 wmb();
638
639 spin_unlock_irqrestore(&rrpriv->lock, flags);
640
641 for (i = 0; i < RX_RING_ENTRIES; i++) {
642 struct sk_buff *skb;
643 dma_addr_t addr;
644
645 rrpriv->rx_ring[i].mode = 0;
646 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
647 if (!skb) {
648 printk(KERN_WARNING "%s: Unable to allocate memory "
649 "for receive ring - halting NIC\n", dev->name);
650 ecode = -ENOMEM;
651 goto error;
652 }
653 rrpriv->rx_skbuff[i] = skb;
654 addr = pci_map_single(rrpriv->pci_dev, skb->data,
655 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
656 /*
657 * Sanity test to see if we conflict with the DMA
658 * limitations of the Roadrunner.
659 */
660 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
661 printk("skb alloc error\n");
662
663 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
664 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
665 }
666
667 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
668 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
669 rrpriv->rx_ctrl[4].mode = 8;
670 rrpriv->rx_ctrl[4].pi = 0;
671 wmb();
672 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
673
674 udelay(1000);
675
676 /*
677 * Now start the FirmWare.
678 */
679 cmd.code = C_START_FW;
680 cmd.ring = 0;
681 cmd.index = 0;
682
683 rr_issue_cmd(rrpriv, &cmd);
684
685 /*
686 * Give the FirmWare time to chew on the `get running' command.
687 */
688 myjif = jiffies + 5 * HZ;
689 while (time_before(jiffies, myjif) && !rrpriv->fw_running)
690 cpu_relax();
691
692 netif_start_queue(dev);
693
694 return ecode;
695
696 error:
697 /*
698 * We might have gotten here because we are out of memory,
699 * make sure we release everything we allocated before failing
700 */
701 for (i = 0; i < RX_RING_ENTRIES; i++) {
702 struct sk_buff *skb = rrpriv->rx_skbuff[i];
703
704 if (skb) {
705 pci_unmap_single(rrpriv->pci_dev,
706 rrpriv->rx_ring[i].addr.addrlo,
707 dev->mtu + HIPPI_HLEN,
708 PCI_DMA_FROMDEVICE);
709 rrpriv->rx_ring[i].size = 0;
710 set_rraddr(&rrpriv->rx_ring[i].addr, 0);
711 dev_kfree_skb(skb);
712 rrpriv->rx_skbuff[i] = NULL;
713 }
714 }
715 return ecode;
716}
717
718
719/*
720 * All events are considered to be slow (RX/TX ints do not generate
721 * events) and are handled here, outside the main interrupt handler,
722 * to reduce the size of the handler.
723 */
724static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
725{
726 struct rr_private *rrpriv;
727 struct rr_regs __iomem *regs;
728 u32 tmp;
729
730 rrpriv = netdev_priv(dev);
731 regs = rrpriv->regs;
732
733 while (prodidx != eidx){
734 switch (rrpriv->evt_ring[eidx].code){
735 case E_NIC_UP:
736 tmp = readl(®s->FwRev);
737 printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
738 "up and running\n", dev->name,
739 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
740 rrpriv->fw_running = 1;
741 writel(RX_RING_ENTRIES - 1, ®s->IpRxPi);
742 wmb();
743 break;
744 case E_LINK_ON:
745 printk(KERN_INFO "%s: Optical link ON\n", dev->name);
746 break;
747 case E_LINK_OFF:
748 printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
749 break;
750 case E_RX_IDLE:
751 printk(KERN_WARNING "%s: RX data not moving\n",
752 dev->name);
753 goto drop;
754 case E_WATCHDOG:
755 printk(KERN_INFO "%s: The watchdog is here to see "
756 "us\n", dev->name);
757 break;
758 case E_INTERN_ERR:
759 printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
760 dev->name);
761 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
762 ®s->HostCtrl);
763 wmb();
764 break;
765 case E_HOST_ERR:
766 printk(KERN_ERR "%s: Host software error\n",
767 dev->name);
768 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
769 ®s->HostCtrl);
770 wmb();
771 break;
772 /*
773 * TX events.
774 */
775 case E_CON_REJ:
776 printk(KERN_WARNING "%s: Connection rejected\n",
777 dev->name);
778 dev->stats.tx_aborted_errors++;
779 break;
780 case E_CON_TMOUT:
781 printk(KERN_WARNING "%s: Connection timeout\n",
782 dev->name);
783 break;
784 case E_DISC_ERR:
785 printk(KERN_WARNING "%s: HIPPI disconnect error\n",
786 dev->name);
787 dev->stats.tx_aborted_errors++;
788 break;
789 case E_INT_PRTY:
790 printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
791 dev->name);
792 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
793 ®s->HostCtrl);
794 wmb();
795 break;
796 case E_TX_IDLE:
797 printk(KERN_WARNING "%s: Transmitter idle\n",
798 dev->name);
799 break;
800 case E_TX_LINK_DROP:
801 printk(KERN_WARNING "%s: Link lost during transmit\n",
802 dev->name);
803 dev->stats.tx_aborted_errors++;
804 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
805 ®s->HostCtrl);
806 wmb();
807 break;
808 case E_TX_INV_RNG:
809 printk(KERN_ERR "%s: Invalid send ring block\n",
810 dev->name);
811 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
812 ®s->HostCtrl);
813 wmb();
814 break;
815 case E_TX_INV_BUF:
816 printk(KERN_ERR "%s: Invalid send buffer address\n",
817 dev->name);
818 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
819 ®s->HostCtrl);
820 wmb();
821 break;
822 case E_TX_INV_DSC:
823 printk(KERN_ERR "%s: Invalid descriptor address\n",
824 dev->name);
825 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
826 ®s->HostCtrl);
827 wmb();
828 break;
829 /*
830 * RX events.
831 */
832 case E_RX_RNG_OUT:
833 printk(KERN_INFO "%s: Receive ring full\n", dev->name);
834 break;
835
836 case E_RX_PAR_ERR:
837 printk(KERN_WARNING "%s: Receive parity error\n",
838 dev->name);
839 goto drop;
840 case E_RX_LLRC_ERR:
841 printk(KERN_WARNING "%s: Receive LLRC error\n",
842 dev->name);
843 goto drop;
844 case E_PKT_LN_ERR:
845 printk(KERN_WARNING "%s: Receive packet length "
846 "error\n", dev->name);
847 goto drop;
848 case E_DTA_CKSM_ERR:
849 printk(KERN_WARNING "%s: Data checksum error\n",
850 dev->name);
851 goto drop;
852 case E_SHT_BST:
853 printk(KERN_WARNING "%s: Unexpected short burst "
854 "error\n", dev->name);
855 goto drop;
856 case E_STATE_ERR:
857 printk(KERN_WARNING "%s: Recv. state transition"
858 " error\n", dev->name);
859 goto drop;
860 case E_UNEXP_DATA:
861 printk(KERN_WARNING "%s: Unexpected data error\n",
862 dev->name);
863 goto drop;
864 case E_LST_LNK_ERR:
865 printk(KERN_WARNING "%s: Link lost error\n",
866 dev->name);
867 goto drop;
868 case E_FRM_ERR:
869 printk(KERN_WARNING "%s: Framming Error\n",
870 dev->name);
871 goto drop;
872 case E_FLG_SYN_ERR:
873 printk(KERN_WARNING "%s: Flag sync. lost during "
874 "packet\n", dev->name);
875 goto drop;
876 case E_RX_INV_BUF:
877 printk(KERN_ERR "%s: Invalid receive buffer "
878 "address\n", dev->name);
879 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
880 ®s->HostCtrl);
881 wmb();
882 break;
883 case E_RX_INV_DSC:
884 printk(KERN_ERR "%s: Invalid receive descriptor "
885 "address\n", dev->name);
886 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
887 ®s->HostCtrl);
888 wmb();
889 break;
890 case E_RNG_BLK:
891 printk(KERN_ERR "%s: Invalid ring block\n",
892 dev->name);
893 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
894 ®s->HostCtrl);
895 wmb();
896 break;
897 drop:
898 /* Label packet to be dropped.
899 * Actual dropping occurs in rx
900 * handling.
901 *
902 * The index of packet we get to drop is
903 * the index of the packet following
904 * the bad packet. -kbf
905 */
906 {
907 u16 index = rrpriv->evt_ring[eidx].index;
908 index = (index + (RX_RING_ENTRIES - 1)) %
909 RX_RING_ENTRIES;
910 rrpriv->rx_ring[index].mode |=
911 (PACKET_BAD | PACKET_END);
912 }
913 break;
914 default:
915 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
916 dev->name, rrpriv->evt_ring[eidx].code);
917 }
918 eidx = (eidx + 1) % EVT_RING_ENTRIES;
919 }
920
921 rrpriv->info->evt_ctrl.pi = eidx;
922 wmb();
923 return eidx;
924}
925
926
927static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
928{
929 struct rr_private *rrpriv = netdev_priv(dev);
930 struct rr_regs __iomem *regs = rrpriv->regs;
931
932 do {
933 struct rx_desc *desc;
934 u32 pkt_len;
935
936 desc = &(rrpriv->rx_ring[index]);
937 pkt_len = desc->size;
938#if (DEBUG > 2)
939 printk("index %i, rxlimit %i\n", index, rxlimit);
940 printk("len %x, mode %x\n", pkt_len, desc->mode);
941#endif
942 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
943 dev->stats.rx_dropped++;
944 goto defer;
945 }
946
947 if (pkt_len > 0){
948 struct sk_buff *skb, *rx_skb;
949
950 rx_skb = rrpriv->rx_skbuff[index];
951
952 if (pkt_len < PKT_COPY_THRESHOLD) {
953 skb = alloc_skb(pkt_len, GFP_ATOMIC);
954 if (skb == NULL){
955 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
956 dev->stats.rx_dropped++;
957 goto defer;
958 } else {
959 pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
960 desc->addr.addrlo,
961 pkt_len,
962 PCI_DMA_FROMDEVICE);
963
964 memcpy(skb_put(skb, pkt_len),
965 rx_skb->data, pkt_len);
966
967 pci_dma_sync_single_for_device(rrpriv->pci_dev,
968 desc->addr.addrlo,
969 pkt_len,
970 PCI_DMA_FROMDEVICE);
971 }
972 }else{
973 struct sk_buff *newskb;
974
975 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
976 GFP_ATOMIC);
977 if (newskb){
978 dma_addr_t addr;
979
980 pci_unmap_single(rrpriv->pci_dev,
981 desc->addr.addrlo, dev->mtu +
982 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
983 skb = rx_skb;
984 skb_put(skb, pkt_len);
985 rrpriv->rx_skbuff[index] = newskb;
986 addr = pci_map_single(rrpriv->pci_dev,
987 newskb->data,
988 dev->mtu + HIPPI_HLEN,
989 PCI_DMA_FROMDEVICE);
990 set_rraddr(&desc->addr, addr);
991 } else {
992 printk("%s: Out of memory, deferring "
993 "packet\n", dev->name);
994 dev->stats.rx_dropped++;
995 goto defer;
996 }
997 }
998 skb->protocol = hippi_type_trans(skb, dev);
999
1000 netif_rx(skb); /* send it up */
1001
1002 dev->stats.rx_packets++;
1003 dev->stats.rx_bytes += pkt_len;
1004 }
1005 defer:
1006 desc->mode = 0;
1007 desc->size = dev->mtu + HIPPI_HLEN;
1008
1009 if ((index & 7) == 7)
1010 writel(index, ®s->IpRxPi);
1011
1012 index = (index + 1) % RX_RING_ENTRIES;
1013 } while(index != rxlimit);
1014
1015 rrpriv->cur_rx = index;
1016 wmb();
1017}
1018
1019
1020static irqreturn_t rr_interrupt(int irq, void *dev_id)
1021{
1022 struct rr_private *rrpriv;
1023 struct rr_regs __iomem *regs;
1024 struct net_device *dev = (struct net_device *)dev_id;
1025 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1026
1027 rrpriv = netdev_priv(dev);
1028 regs = rrpriv->regs;
1029
1030 if (!(readl(®s->HostCtrl) & RR_INT))
1031 return IRQ_NONE;
1032
1033 spin_lock(&rrpriv->lock);
1034
1035 prodidx = readl(®s->EvtPrd);
1036 txcsmr = (prodidx >> 8) & 0xff;
1037 rxlimit = (prodidx >> 16) & 0xff;
1038 prodidx &= 0xff;
1039
1040#if (DEBUG > 2)
1041 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1042 prodidx, rrpriv->info->evt_ctrl.pi);
1043#endif
1044 /*
1045 * Order here is important. We must handle events
1046 * before doing anything else in order to catch
1047 * such things as LLRC errors, etc -kbf
1048 */
1049
1050 eidx = rrpriv->info->evt_ctrl.pi;
1051 if (prodidx != eidx)
1052 eidx = rr_handle_event(dev, prodidx, eidx);
1053
1054 rxindex = rrpriv->cur_rx;
1055 if (rxindex != rxlimit)
1056 rx_int(dev, rxlimit, rxindex);
1057
1058 txcon = rrpriv->dirty_tx;
1059 if (txcsmr != txcon) {
1060 do {
1061 /* Due to occational firmware TX producer/consumer out
1062 * of sync. error need to check entry in ring -kbf
1063 */
1064 if(rrpriv->tx_skbuff[txcon]){
1065 struct tx_desc *desc;
1066 struct sk_buff *skb;
1067
1068 desc = &(rrpriv->tx_ring[txcon]);
1069 skb = rrpriv->tx_skbuff[txcon];
1070
1071 dev->stats.tx_packets++;
1072 dev->stats.tx_bytes += skb->len;
1073
1074 pci_unmap_single(rrpriv->pci_dev,
1075 desc->addr.addrlo, skb->len,
1076 PCI_DMA_TODEVICE);
1077 dev_kfree_skb_irq(skb);
1078
1079 rrpriv->tx_skbuff[txcon] = NULL;
1080 desc->size = 0;
1081 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1082 desc->mode = 0;
1083 }
1084 txcon = (txcon + 1) % TX_RING_ENTRIES;
1085 } while (txcsmr != txcon);
1086 wmb();
1087
1088 rrpriv->dirty_tx = txcon;
1089 if (rrpriv->tx_full && rr_if_busy(dev) &&
1090 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1091 != rrpriv->dirty_tx)){
1092 rrpriv->tx_full = 0;
1093 netif_wake_queue(dev);
1094 }
1095 }
1096
1097 eidx |= ((txcsmr << 8) | (rxlimit << 16));
1098 writel(eidx, ®s->EvtCon);
1099 wmb();
1100
1101 spin_unlock(&rrpriv->lock);
1102 return IRQ_HANDLED;
1103}
1104
1105static inline void rr_raz_tx(struct rr_private *rrpriv,
1106 struct net_device *dev)
1107{
1108 int i;
1109
1110 for (i = 0; i < TX_RING_ENTRIES; i++) {
1111 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1112
1113 if (skb) {
1114 struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1115
1116 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1117 skb->len, PCI_DMA_TODEVICE);
1118 desc->size = 0;
1119 set_rraddr(&desc->addr, 0);
1120 dev_kfree_skb(skb);
1121 rrpriv->tx_skbuff[i] = NULL;
1122 }
1123 }
1124}
1125
1126
1127static inline void rr_raz_rx(struct rr_private *rrpriv,
1128 struct net_device *dev)
1129{
1130 int i;
1131
1132 for (i = 0; i < RX_RING_ENTRIES; i++) {
1133 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1134
1135 if (skb) {
1136 struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1137
1138 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1139 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1140 desc->size = 0;
1141 set_rraddr(&desc->addr, 0);
1142 dev_kfree_skb(skb);
1143 rrpriv->rx_skbuff[i] = NULL;
1144 }
1145 }
1146}
1147
1148static void rr_timer(unsigned long data)
1149{
1150 struct net_device *dev = (struct net_device *)data;
1151 struct rr_private *rrpriv = netdev_priv(dev);
1152 struct rr_regs __iomem *regs = rrpriv->regs;
1153 unsigned long flags;
1154
1155 if (readl(®s->HostCtrl) & NIC_HALTED){
1156 printk("%s: Restarting nic\n", dev->name);
1157 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1158 memset(rrpriv->info, 0, sizeof(struct rr_info));
1159 wmb();
1160
1161 rr_raz_tx(rrpriv, dev);
1162 rr_raz_rx(rrpriv, dev);
1163
1164 if (rr_init1(dev)) {
1165 spin_lock_irqsave(&rrpriv->lock, flags);
1166 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1167 ®s->HostCtrl);
1168 spin_unlock_irqrestore(&rrpriv->lock, flags);
1169 }
1170 }
1171 rrpriv->timer.expires = RUN_AT(5*HZ);
1172 add_timer(&rrpriv->timer);
1173}
1174
1175
1176static int rr_open(struct net_device *dev)
1177{
1178 struct rr_private *rrpriv = netdev_priv(dev);
1179 struct pci_dev *pdev = rrpriv->pci_dev;
1180 struct rr_regs __iomem *regs;
1181 int ecode = 0;
1182 unsigned long flags;
1183 dma_addr_t dma_addr;
1184
1185 regs = rrpriv->regs;
1186
1187 if (rrpriv->fw_rev < 0x00020000) {
1188 printk(KERN_WARNING "%s: trying to configure device with "
1189 "obsolete firmware\n", dev->name);
1190 ecode = -EBUSY;
1191 goto error;
1192 }
1193
1194 rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1195 256 * sizeof(struct ring_ctrl),
1196 &dma_addr);
1197 if (!rrpriv->rx_ctrl) {
1198 ecode = -ENOMEM;
1199 goto error;
1200 }
1201 rrpriv->rx_ctrl_dma = dma_addr;
1202 memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1203
1204 rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1205 &dma_addr);
1206 if (!rrpriv->info) {
1207 ecode = -ENOMEM;
1208 goto error;
1209 }
1210 rrpriv->info_dma = dma_addr;
1211 memset(rrpriv->info, 0, sizeof(struct rr_info));
1212 wmb();
1213
1214 spin_lock_irqsave(&rrpriv->lock, flags);
1215 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl);
1216 readl(®s->HostCtrl);
1217 spin_unlock_irqrestore(&rrpriv->lock, flags);
1218
1219 if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1220 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1221 dev->name, pdev->irq);
1222 ecode = -EAGAIN;
1223 goto error;
1224 }
1225
1226 if ((ecode = rr_init1(dev)))
1227 goto error;
1228
1229 /* Set the timer to switch to check for link beat and perhaps switch
1230 to an alternate media type. */
1231 init_timer(&rrpriv->timer);
1232 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
1233 rrpriv->timer.data = (unsigned long)dev;
1234 rrpriv->timer.function = rr_timer; /* timer handler */
1235 add_timer(&rrpriv->timer);
1236
1237 netif_start_queue(dev);
1238
1239 return ecode;
1240
1241 error:
1242 spin_lock_irqsave(&rrpriv->lock, flags);
1243 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl);
1244 spin_unlock_irqrestore(&rrpriv->lock, flags);
1245
1246 if (rrpriv->info) {
1247 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1248 rrpriv->info_dma);
1249 rrpriv->info = NULL;
1250 }
1251 if (rrpriv->rx_ctrl) {
1252 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1253 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1254 rrpriv->rx_ctrl = NULL;
1255 }
1256
1257 netif_stop_queue(dev);
1258
1259 return ecode;
1260}
1261
1262
1263static void rr_dump(struct net_device *dev)
1264{
1265 struct rr_private *rrpriv;
1266 struct rr_regs __iomem *regs;
1267 u32 index, cons;
1268 short i;
1269 int len;
1270
1271 rrpriv = netdev_priv(dev);
1272 regs = rrpriv->regs;
1273
1274 printk("%s: dumping NIC TX rings\n", dev->name);
1275
1276 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1277 readl(®s->RxPrd), readl(®s->TxPrd),
1278 readl(®s->EvtPrd), readl(®s->TxPi),
1279 rrpriv->info->tx_ctrl.pi);
1280
1281 printk("Error code 0x%x\n", readl(®s->Fail1));
1282
1283 index = (((readl(®s->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1284 cons = rrpriv->dirty_tx;
1285 printk("TX ring index %i, TX consumer %i\n",
1286 index, cons);
1287
1288 if (rrpriv->tx_skbuff[index]){
1289 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1290 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1291 for (i = 0; i < len; i++){
1292 if (!(i & 7))
1293 printk("\n");
1294 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1295 }
1296 printk("\n");
1297 }
1298
1299 if (rrpriv->tx_skbuff[cons]){
1300 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1301 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1302 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1303 rrpriv->tx_ring[cons].mode,
1304 rrpriv->tx_ring[cons].size,
1305 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1306 (unsigned long)rrpriv->tx_skbuff[cons]->data,
1307 (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1308 for (i = 0; i < len; i++){
1309 if (!(i & 7))
1310 printk("\n");
1311 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1312 }
1313 printk("\n");
1314 }
1315
1316 printk("dumping TX ring info:\n");
1317 for (i = 0; i < TX_RING_ENTRIES; i++)
1318 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1319 rrpriv->tx_ring[i].mode,
1320 rrpriv->tx_ring[i].size,
1321 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1322
1323}
1324
1325
1326static int rr_close(struct net_device *dev)
1327{
1328 struct rr_private *rrpriv = netdev_priv(dev);
1329 struct rr_regs __iomem *regs = rrpriv->regs;
1330 struct pci_dev *pdev = rrpriv->pci_dev;
1331 unsigned long flags;
1332 u32 tmp;
1333 short i;
1334
1335 netif_stop_queue(dev);
1336
1337
1338 /*
1339 * Lock to make sure we are not cleaning up while another CPU
1340 * is handling interrupts.
1341 */
1342 spin_lock_irqsave(&rrpriv->lock, flags);
1343
1344 tmp = readl(®s->HostCtrl);
1345 if (tmp & NIC_HALTED){
1346 printk("%s: NIC already halted\n", dev->name);
1347 rr_dump(dev);
1348 }else{
1349 tmp |= HALT_NIC | RR_CLEAR_INT;
1350 writel(tmp, ®s->HostCtrl);
1351 readl(®s->HostCtrl);
1352 }
1353
1354 rrpriv->fw_running = 0;
1355
1356 del_timer_sync(&rrpriv->timer);
1357
1358 writel(0, ®s->TxPi);
1359 writel(0, ®s->IpRxPi);
1360
1361 writel(0, ®s->EvtCon);
1362 writel(0, ®s->EvtPrd);
1363
1364 for (i = 0; i < CMD_RING_ENTRIES; i++)
1365 writel(0, ®s->CmdRing[i]);
1366
1367 rrpriv->info->tx_ctrl.entries = 0;
1368 rrpriv->info->cmd_ctrl.pi = 0;
1369 rrpriv->info->evt_ctrl.pi = 0;
1370 rrpriv->rx_ctrl[4].entries = 0;
1371
1372 rr_raz_tx(rrpriv, dev);
1373 rr_raz_rx(rrpriv, dev);
1374
1375 pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl),
1376 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1377 rrpriv->rx_ctrl = NULL;
1378
1379 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1380 rrpriv->info_dma);
1381 rrpriv->info = NULL;
1382
1383 free_irq(pdev->irq, dev);
1384 spin_unlock_irqrestore(&rrpriv->lock, flags);
1385
1386 return 0;
1387}
1388
1389
1390static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1391 struct net_device *dev)
1392{
1393 struct rr_private *rrpriv = netdev_priv(dev);
1394 struct rr_regs __iomem *regs = rrpriv->regs;
1395 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1396 struct ring_ctrl *txctrl;
1397 unsigned long flags;
1398 u32 index, len = skb->len;
1399 u32 *ifield;
1400 struct sk_buff *new_skb;
1401
1402 if (readl(®s->Mode) & FATAL_ERR)
1403 printk("error codes Fail1 %02x, Fail2 %02x\n",
1404 readl(®s->Fail1), readl(®s->Fail2));
1405
1406 /*
1407 * We probably need to deal with tbusy here to prevent overruns.
1408 */
1409
1410 if (skb_headroom(skb) < 8){
1411 printk("incoming skb too small - reallocating\n");
1412 if (!(new_skb = dev_alloc_skb(len + 8))) {
1413 dev_kfree_skb(skb);
1414 netif_wake_queue(dev);
1415 return NETDEV_TX_OK;
1416 }
1417 skb_reserve(new_skb, 8);
1418 skb_put(new_skb, len);
1419 skb_copy_from_linear_data(skb, new_skb->data, len);
1420 dev_kfree_skb(skb);
1421 skb = new_skb;
1422 }
1423
1424 ifield = (u32 *)skb_push(skb, 8);
1425
1426 ifield[0] = 0;
1427 ifield[1] = hcb->ifield;
1428
1429 /*
1430 * We don't need the lock before we are actually going to start
1431 * fiddling with the control blocks.
1432 */
1433 spin_lock_irqsave(&rrpriv->lock, flags);
1434
1435 txctrl = &rrpriv->info->tx_ctrl;
1436
1437 index = txctrl->pi;
1438
1439 rrpriv->tx_skbuff[index] = skb;
1440 set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1441 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1442 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1443 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1444 txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1445 wmb();
1446 writel(txctrl->pi, ®s->TxPi);
1447
1448 if (txctrl->pi == rrpriv->dirty_tx){
1449 rrpriv->tx_full = 1;
1450 netif_stop_queue(dev);
1451 }
1452
1453 spin_unlock_irqrestore(&rrpriv->lock, flags);
1454
1455 return NETDEV_TX_OK;
1456}
1457
1458
1459/*
1460 * Read the firmware out of the EEPROM and put it into the SRAM
1461 * (or from user space - later)
1462 *
1463 * This operation requires the NIC to be halted and is performed with
1464 * interrupts disabled and with the spinlock hold.
1465 */
1466static int rr_load_firmware(struct net_device *dev)
1467{
1468 struct rr_private *rrpriv;
1469 struct rr_regs __iomem *regs;
1470 size_t eptr, segptr;
1471 int i, j;
1472 u32 localctrl, sptr, len, tmp;
1473 u32 p2len, p2size, nr_seg, revision, io, sram_size;
1474
1475 rrpriv = netdev_priv(dev);
1476 regs = rrpriv->regs;
1477
1478 if (dev->flags & IFF_UP)
1479 return -EBUSY;
1480
1481 if (!(readl(®s->HostCtrl) & NIC_HALTED)){
1482 printk("%s: Trying to load firmware to a running NIC.\n",
1483 dev->name);
1484 return -EBUSY;
1485 }
1486
1487 localctrl = readl(®s->LocalCtrl);
1488 writel(0, ®s->LocalCtrl);
1489
1490 writel(0, ®s->EvtPrd);
1491 writel(0, ®s->RxPrd);
1492 writel(0, ®s->TxPrd);
1493
1494 /*
1495 * First wipe the entire SRAM, otherwise we might run into all
1496 * kinds of trouble ... sigh, this took almost all afternoon
1497 * to track down ;-(
1498 */
1499 io = readl(®s->ExtIo);
1500 writel(0, ®s->ExtIo);
1501 sram_size = rr_read_eeprom_word(rrpriv, 8);
1502
1503 for (i = 200; i < sram_size / 4; i++){
1504 writel(i * 4, ®s->WinBase);
1505 mb();
1506 writel(0, ®s->WinData);
1507 mb();
1508 }
1509 writel(io, ®s->ExtIo);
1510 mb();
1511
1512 eptr = rr_read_eeprom_word(rrpriv,
1513 offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1514 eptr = ((eptr & 0x1fffff) >> 3);
1515
1516 p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1517 p2len = (p2len << 2);
1518 p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1519 p2size = ((p2size & 0x1fffff) >> 3);
1520
1521 if ((eptr < p2size) || (eptr > (p2size + p2len))){
1522 printk("%s: eptr is invalid\n", dev->name);
1523 goto out;
1524 }
1525
1526 revision = rr_read_eeprom_word(rrpriv,
1527 offsetof(struct eeprom, manf.HeaderFmt));
1528
1529 if (revision != 1){
1530 printk("%s: invalid firmware format (%i)\n",
1531 dev->name, revision);
1532 goto out;
1533 }
1534
1535 nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1536 eptr +=4;
1537#if (DEBUG > 1)
1538 printk("%s: nr_seg %i\n", dev->name, nr_seg);
1539#endif
1540
1541 for (i = 0; i < nr_seg; i++){
1542 sptr = rr_read_eeprom_word(rrpriv, eptr);
1543 eptr += 4;
1544 len = rr_read_eeprom_word(rrpriv, eptr);
1545 eptr += 4;
1546 segptr = rr_read_eeprom_word(rrpriv, eptr);
1547 segptr = ((segptr & 0x1fffff) >> 3);
1548 eptr += 4;
1549#if (DEBUG > 1)
1550 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1551 dev->name, i, sptr, len, segptr);
1552#endif
1553 for (j = 0; j < len; j++){
1554 tmp = rr_read_eeprom_word(rrpriv, segptr);
1555 writel(sptr, ®s->WinBase);
1556 mb();
1557 writel(tmp, ®s->WinData);
1558 mb();
1559 segptr += 4;
1560 sptr += 4;
1561 }
1562 }
1563
1564out:
1565 writel(localctrl, ®s->LocalCtrl);
1566 mb();
1567 return 0;
1568}
1569
1570
1571static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1572{
1573 struct rr_private *rrpriv;
1574 unsigned char *image, *oldimage;
1575 unsigned long flags;
1576 unsigned int i;
1577 int error = -EOPNOTSUPP;
1578
1579 rrpriv = netdev_priv(dev);
1580
1581 switch(cmd){
1582 case SIOCRRGFW:
1583 if (!capable(CAP_SYS_RAWIO)){
1584 return -EPERM;
1585 }
1586
1587 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1588 if (!image)
1589 return -ENOMEM;
1590
1591 if (rrpriv->fw_running){
1592 printk("%s: Firmware already running\n", dev->name);
1593 error = -EPERM;
1594 goto gf_out;
1595 }
1596
1597 spin_lock_irqsave(&rrpriv->lock, flags);
1598 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1599 spin_unlock_irqrestore(&rrpriv->lock, flags);
1600 if (i != EEPROM_BYTES){
1601 printk(KERN_ERR "%s: Error reading EEPROM\n",
1602 dev->name);
1603 error = -EFAULT;
1604 goto gf_out;
1605 }
1606 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1607 if (error)
1608 error = -EFAULT;
1609 gf_out:
1610 kfree(image);
1611 return error;
1612
1613 case SIOCRRPFW:
1614 if (!capable(CAP_SYS_RAWIO)){
1615 return -EPERM;
1616 }
1617
1618 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1619 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1620 if (!image || !oldimage) {
1621 error = -ENOMEM;
1622 goto wf_out;
1623 }
1624
1625 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1626 if (error) {
1627 error = -EFAULT;
1628 goto wf_out;
1629 }
1630
1631 if (rrpriv->fw_running){
1632 printk("%s: Firmware already running\n", dev->name);
1633 error = -EPERM;
1634 goto wf_out;
1635 }
1636
1637 printk("%s: Updating EEPROM firmware\n", dev->name);
1638
1639 spin_lock_irqsave(&rrpriv->lock, flags);
1640 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1641 if (error)
1642 printk(KERN_ERR "%s: Error writing EEPROM\n",
1643 dev->name);
1644
1645 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1646 spin_unlock_irqrestore(&rrpriv->lock, flags);
1647
1648 if (i != EEPROM_BYTES)
1649 printk(KERN_ERR "%s: Error reading back EEPROM "
1650 "image\n", dev->name);
1651
1652 error = memcmp(image, oldimage, EEPROM_BYTES);
1653 if (error){
1654 printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1655 dev->name);
1656 error = -EFAULT;
1657 }
1658 wf_out:
1659 kfree(oldimage);
1660 kfree(image);
1661 return error;
1662
1663 case SIOCRRID:
1664 return put_user(0x52523032, (int __user *)rq->ifr_data);
1665 default:
1666 return error;
1667 }
1668}
1669
1670static const struct pci_device_id rr_pci_tbl[] = {
1671 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1672 PCI_ANY_ID, PCI_ANY_ID, },
1673 { 0,}
1674};
1675MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1676
1677static struct pci_driver rr_driver = {
1678 .name = "rrunner",
1679 .id_table = rr_pci_tbl,
1680 .probe = rr_init_one,
1681 .remove = rr_remove_one,
1682};
1683
1684module_pci_driver(rr_driver);