Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
 
   3 * Copyright (c) International Business Machines Corp., 2006
   4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
   6 */
   7
   8/*
   9 * UBI wear-leveling sub-system.
  10 *
  11 * This sub-system is responsible for wear-leveling. It works in terms of
  12 * physical eraseblocks and erase counters and knows nothing about logical
  13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
  14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
  15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
  16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
  17 *
  18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
  19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
  20 *
  21 * When physical eraseblocks are returned to the WL sub-system by means of the
  22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
  23 * done asynchronously in context of the per-UBI device background thread,
  24 * which is also managed by the WL sub-system.
  25 *
  26 * The wear-leveling is ensured by means of moving the contents of used
  27 * physical eraseblocks with low erase counter to free physical eraseblocks
  28 * with high erase counter.
  29 *
 
 
 
 
 
 
  30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
  31 * bad.
  32 *
  33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
  34 * in a physical eraseblock, it has to be moved. Technically this is the same
  35 * as moving it for wear-leveling reasons.
  36 *
  37 * As it was said, for the UBI sub-system all physical eraseblocks are either
  38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
  39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
  40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
  41 *
  42 * When the WL sub-system returns a physical eraseblock, the physical
  43 * eraseblock is protected from being moved for some "time". For this reason,
  44 * the physical eraseblock is not directly moved from the @wl->free tree to the
  45 * @wl->used tree. There is a protection queue in between where this
  46 * physical eraseblock is temporarily stored (@wl->pq).
  47 *
  48 * All this protection stuff is needed because:
  49 *  o we don't want to move physical eraseblocks just after we have given them
  50 *    to the user; instead, we first want to let users fill them up with data;
  51 *
  52 *  o there is a chance that the user will put the physical eraseblock very
  53 *    soon, so it makes sense not to move it for some time, but wait.
 
  54 *
  55 * Physical eraseblocks stay protected only for limited time. But the "time" is
  56 * measured in erase cycles in this case. This is implemented with help of the
  57 * protection queue. Eraseblocks are put to the tail of this queue when they
  58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
  59 * head of the queue on each erase operation (for any eraseblock). So the
  60 * length of the queue defines how may (global) erase cycles PEBs are protected.
  61 *
  62 * To put it differently, each physical eraseblock has 2 main states: free and
  63 * used. The former state corresponds to the @wl->free tree. The latter state
  64 * is split up on several sub-states:
  65 * o the WL movement is allowed (@wl->used tree);
  66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
  67 *   erroneous - e.g., there was a read error;
  68 * o the WL movement is temporarily prohibited (@wl->pq queue);
  69 * o scrubbing is needed (@wl->scrub tree).
  70 *
  71 * Depending on the sub-state, wear-leveling entries of the used physical
  72 * eraseblocks may be kept in one of those structures.
  73 *
  74 * Note, in this implementation, we keep a small in-RAM object for each physical
  75 * eraseblock. This is surely not a scalable solution. But it appears to be good
  76 * enough for moderately large flashes and it is simple. In future, one may
  77 * re-work this sub-system and make it more scalable.
  78 *
  79 * At the moment this sub-system does not utilize the sequence number, which
  80 * was introduced relatively recently. But it would be wise to do this because
  81 * the sequence number of a logical eraseblock characterizes how old is it. For
  82 * example, when we move a PEB with low erase counter, and we need to pick the
  83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
  84 * pick target PEB with an average EC if our PEB is not very "old". This is a
  85 * room for future re-works of the WL sub-system.
  86 */
  87
  88#include <linux/slab.h>
  89#include <linux/crc32.h>
  90#include <linux/freezer.h>
  91#include <linux/kthread.h>
  92#include "ubi.h"
  93#include "wl.h"
  94
  95/* Number of physical eraseblocks reserved for wear-leveling purposes */
  96#define WL_RESERVED_PEBS 1
  97
  98/*
  99 * Maximum difference between two erase counters. If this threshold is
 100 * exceeded, the WL sub-system starts moving data from used physical
 101 * eraseblocks with low erase counter to free physical eraseblocks with high
 102 * erase counter.
 103 */
 104#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
 105
 106/*
 107 * When a physical eraseblock is moved, the WL sub-system has to pick the target
 108 * physical eraseblock to move to. The simplest way would be just to pick the
 109 * one with the highest erase counter. But in certain workloads this could lead
 110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
 111 * situation when the picked physical eraseblock is constantly erased after the
 112 * data is written to it. So, we have a constant which limits the highest erase
 113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
 114 * does not pick eraseblocks with erase counter greater than the lowest erase
 115 * counter plus %WL_FREE_MAX_DIFF.
 116 */
 117#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
 118
 119/*
 120 * Maximum number of consecutive background thread failures which is enough to
 121 * switch to read-only mode.
 122 */
 123#define WL_MAX_FAILURES 32
 124
 125static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
 126static int self_check_in_wl_tree(const struct ubi_device *ubi,
 127				 struct ubi_wl_entry *e, struct rb_root *root);
 128static int self_check_in_pq(const struct ubi_device *ubi,
 129			    struct ubi_wl_entry *e);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130
 131/**
 132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
 133 * @e: the wear-leveling entry to add
 134 * @root: the root of the tree
 135 *
 136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
 137 * the @ubi->used and @ubi->free RB-trees.
 138 */
 139static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
 140{
 141	struct rb_node **p, *parent = NULL;
 142
 143	p = &root->rb_node;
 144	while (*p) {
 145		struct ubi_wl_entry *e1;
 146
 147		parent = *p;
 148		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
 149
 150		if (e->ec < e1->ec)
 151			p = &(*p)->rb_left;
 152		else if (e->ec > e1->ec)
 153			p = &(*p)->rb_right;
 154		else {
 155			ubi_assert(e->pnum != e1->pnum);
 156			if (e->pnum < e1->pnum)
 157				p = &(*p)->rb_left;
 158			else
 159				p = &(*p)->rb_right;
 160		}
 161	}
 162
 163	rb_link_node(&e->u.rb, parent, p);
 164	rb_insert_color(&e->u.rb, root);
 165}
 166
 167/**
 168 * wl_entry_destroy - destroy a wear-leveling entry.
 169 * @ubi: UBI device description object
 170 * @e: the wear-leveling entry to add
 171 *
 172 * This function destroys a wear leveling entry and removes
 173 * the reference from the lookup table.
 174 */
 175static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
 176{
 177	ubi->lookuptbl[e->pnum] = NULL;
 178	kmem_cache_free(ubi_wl_entry_slab, e);
 179}
 180
 181/**
 182 * do_work - do one pending work.
 183 * @ubi: UBI device description object
 184 * @executed: whether there is one work is executed
 185 *
 186 * This function returns zero in case of success and a negative error code in
 187 * case of failure. If @executed is not NULL and there is one work executed,
 188 * @executed is set as %1, otherwise @executed is set as %0.
 189 */
 190static int do_work(struct ubi_device *ubi, int *executed)
 191{
 192	int err;
 193	struct ubi_work *wrk;
 194
 195	cond_resched();
 196
 197	/*
 198	 * @ubi->work_sem is used to synchronize with the workers. Workers take
 199	 * it in read mode, so many of them may be doing works at a time. But
 200	 * the queue flush code has to be sure the whole queue of works is
 201	 * done, and it takes the mutex in write mode.
 202	 */
 203	down_read(&ubi->work_sem);
 204	spin_lock(&ubi->wl_lock);
 205	if (list_empty(&ubi->works)) {
 206		spin_unlock(&ubi->wl_lock);
 207		up_read(&ubi->work_sem);
 208		if (executed)
 209			*executed = 0;
 210		return 0;
 211	}
 212
 213	if (executed)
 214		*executed = 1;
 215	wrk = list_entry(ubi->works.next, struct ubi_work, list);
 216	list_del(&wrk->list);
 217	ubi->works_count -= 1;
 218	ubi_assert(ubi->works_count >= 0);
 219	spin_unlock(&ubi->wl_lock);
 220
 221	/*
 222	 * Call the worker function. Do not touch the work structure
 223	 * after this call as it will have been freed or reused by that
 224	 * time by the worker function.
 225	 */
 226	err = wrk->func(ubi, wrk, 0);
 227	if (err)
 228		ubi_err(ubi, "work failed with error code %d", err);
 229	up_read(&ubi->work_sem);
 230
 231	return err;
 232}
 233
 234/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 235 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
 236 * @e: the wear-leveling entry to check
 237 * @root: the root of the tree
 238 *
 239 * This function returns non-zero if @e is in the @root RB-tree and zero if it
 240 * is not.
 241 */
 242static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
 243{
 244	struct rb_node *p;
 245
 246	p = root->rb_node;
 247	while (p) {
 248		struct ubi_wl_entry *e1;
 249
 250		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 251
 252		if (e->pnum == e1->pnum) {
 253			ubi_assert(e == e1);
 254			return 1;
 255		}
 256
 257		if (e->ec < e1->ec)
 258			p = p->rb_left;
 259		else if (e->ec > e1->ec)
 260			p = p->rb_right;
 261		else {
 262			ubi_assert(e->pnum != e1->pnum);
 263			if (e->pnum < e1->pnum)
 264				p = p->rb_left;
 265			else
 266				p = p->rb_right;
 267		}
 268	}
 269
 270	return 0;
 271}
 272
 273/**
 274 * in_pq - check if a wear-leveling entry is present in the protection queue.
 275 * @ubi: UBI device description object
 276 * @e: the wear-leveling entry to check
 277 *
 278 * This function returns non-zero if @e is in the protection queue and zero
 279 * if it is not.
 280 */
 281static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
 282{
 283	struct ubi_wl_entry *p;
 284	int i;
 285
 286	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
 287		list_for_each_entry(p, &ubi->pq[i], u.list)
 288			if (p == e)
 289				return 1;
 290
 291	return 0;
 292}
 293
 294/**
 295 * prot_queue_add - add physical eraseblock to the protection queue.
 296 * @ubi: UBI device description object
 297 * @e: the physical eraseblock to add
 298 *
 299 * This function adds @e to the tail of the protection queue @ubi->pq, where
 300 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
 301 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
 302 * be locked.
 303 */
 304static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
 305{
 306	int pq_tail = ubi->pq_head - 1;
 307
 308	if (pq_tail < 0)
 309		pq_tail = UBI_PROT_QUEUE_LEN - 1;
 310	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
 311	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
 312	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
 313}
 314
 315/**
 316 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
 317 * @ubi: UBI device description object
 318 * @root: the RB-tree where to look for
 319 * @diff: maximum possible difference from the smallest erase counter
 320 * @pick_max: pick PEB even its erase counter beyonds 'min_ec + @diff'
 321 *
 322 * This function looks for a wear leveling entry with erase counter closest to
 323 * min + @diff, where min is the smallest erase counter.
 324 */
 325static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
 326					  struct rb_root *root, int diff,
 327					  int pick_max)
 328{
 329	struct rb_node *p;
 330	struct ubi_wl_entry *e;
 331	int max;
 332
 333	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
 334	max = e->ec + diff;
 335
 336	p = root->rb_node;
 337	while (p) {
 338		struct ubi_wl_entry *e1;
 339
 340		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 341		if (e1->ec >= max) {
 342			if (pick_max)
 343				e = e1;
 344			p = p->rb_left;
 345		} else {
 346			p = p->rb_right;
 347			e = e1;
 348		}
 349	}
 350
 351	return e;
 352}
 353
 354/**
 355 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
 356 * @ubi: UBI device description object
 357 * @root: the RB-tree where to look for
 358 *
 359 * This function looks for a wear leveling entry with medium erase counter,
 360 * but not greater or equivalent than the lowest erase counter plus
 361 * %WL_FREE_MAX_DIFF/2.
 362 */
 363static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
 364					       struct rb_root *root)
 365{
 
 366	struct ubi_wl_entry *e, *first, *last;
 367
 368	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
 369	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
 
 
 
 
 
 
 
 
 
 
 
 370
 371	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
 372		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
 
 
 
 373
 
 
 374		/*
 375		 * If no fastmap has been written and fm_anchor is not
 376		 * reserved and this WL entry can be used as anchor PEB
 377		 * hold it back and return the second best WL entry such
 378		 * that fastmap can use the anchor PEB later.
 379		 */
 380		e = may_reserve_for_fm(ubi, e, root);
 381	} else
 382		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2, 0);
 383
 384	return e;
 385}
 386
 387/**
 388 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
 389 * refill_wl_user_pool().
 390 * @ubi: UBI device description object
 391 *
 392 * This function returns a wear leveling entry in case of success and
 393 * NULL in case of failure.
 394 */
 395static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
 396{
 397	struct ubi_wl_entry *e;
 398
 399	e = find_mean_wl_entry(ubi, &ubi->free);
 400	if (!e) {
 401		ubi_err(ubi, "no free eraseblocks");
 402		return NULL;
 
 
 
 
 
 
 
 403	}
 404
 405	self_check_in_wl_tree(ubi, e, &ubi->free);
 406
 407	/*
 408	 * Move the physical eraseblock to the protection queue where it will
 409	 * be protected from being moved for some time.
 410	 */
 411	rb_erase(&e->u.rb, &ubi->free);
 412	ubi->free_count--;
 413	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
 
 
 414
 415	return e;
 
 
 
 
 
 
 
 416}
 417
 418/**
 419 * prot_queue_del - remove a physical eraseblock from the protection queue.
 420 * @ubi: UBI device description object
 421 * @pnum: the physical eraseblock to remove
 422 *
 423 * This function deletes PEB @pnum from the protection queue and returns zero
 424 * in case of success and %-ENODEV if the PEB was not found.
 425 */
 426static int prot_queue_del(struct ubi_device *ubi, int pnum)
 427{
 428	struct ubi_wl_entry *e;
 429
 430	e = ubi->lookuptbl[pnum];
 431	if (!e)
 432		return -ENODEV;
 433
 434	if (self_check_in_pq(ubi, e))
 435		return -ENODEV;
 436
 437	list_del(&e->u.list);
 438	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
 439	return 0;
 440}
 441
 442/**
 443 * ubi_sync_erase - synchronously erase a physical eraseblock.
 444 * @ubi: UBI device description object
 445 * @e: the physical eraseblock to erase
 446 * @torture: if the physical eraseblock has to be tortured
 447 *
 448 * This function returns zero in case of success and a negative error code in
 449 * case of failure.
 450 */
 451int ubi_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture)
 
 452{
 453	int err;
 454	struct ubi_ec_hdr *ec_hdr;
 455	unsigned long long ec = e->ec;
 456
 457	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
 458
 459	err = self_check_ec(ubi, e->pnum, e->ec);
 460	if (err)
 461		return -EINVAL;
 462
 463	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
 464	if (!ec_hdr)
 465		return -ENOMEM;
 466
 467	err = ubi_io_sync_erase(ubi, e->pnum, torture);
 468	if (err < 0)
 469		goto out_free;
 470
 471	ec += err;
 472	if (ec > UBI_MAX_ERASECOUNTER) {
 473		/*
 474		 * Erase counter overflow. Upgrade UBI and use 64-bit
 475		 * erase counters internally.
 476		 */
 477		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
 478			e->pnum, ec);
 479		err = -EINVAL;
 480		goto out_free;
 481	}
 482
 483	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
 484
 485	ec_hdr->ec = cpu_to_be64(ec);
 486
 487	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
 488	if (err)
 489		goto out_free;
 490
 491	e->ec = ec;
 492	spin_lock(&ubi->wl_lock);
 493	if (e->ec > ubi->max_ec)
 494		ubi->max_ec = e->ec;
 495	spin_unlock(&ubi->wl_lock);
 496
 497out_free:
 498	kfree(ec_hdr);
 499	return err;
 500}
 501
 502/**
 503 * serve_prot_queue - check if it is time to stop protecting PEBs.
 504 * @ubi: UBI device description object
 505 *
 506 * This function is called after each erase operation and removes PEBs from the
 507 * tail of the protection queue. These PEBs have been protected for long enough
 508 * and should be moved to the used tree.
 509 */
 510static void serve_prot_queue(struct ubi_device *ubi)
 511{
 512	struct ubi_wl_entry *e, *tmp;
 513	int count;
 514
 515	/*
 516	 * There may be several protected physical eraseblock to remove,
 517	 * process them all.
 518	 */
 519repeat:
 520	count = 0;
 521	spin_lock(&ubi->wl_lock);
 522	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
 523		dbg_wl("PEB %d EC %d protection over, move to used tree",
 524			e->pnum, e->ec);
 525
 526		list_del(&e->u.list);
 527		wl_tree_add(e, &ubi->used);
 528		if (count++ > 32) {
 529			/*
 530			 * Let's be nice and avoid holding the spinlock for
 531			 * too long.
 532			 */
 533			spin_unlock(&ubi->wl_lock);
 534			cond_resched();
 535			goto repeat;
 536		}
 537	}
 538
 539	ubi->pq_head += 1;
 540	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
 541		ubi->pq_head = 0;
 542	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
 543	spin_unlock(&ubi->wl_lock);
 544}
 545
 546/**
 547 * __schedule_ubi_work - schedule a work.
 548 * @ubi: UBI device description object
 549 * @wrk: the work to schedule
 550 *
 551 * This function adds a work defined by @wrk to the tail of the pending works
 552 * list. Can only be used if ubi->work_sem is already held in read mode!
 553 */
 554static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
 555{
 556	spin_lock(&ubi->wl_lock);
 557	list_add_tail(&wrk->list, &ubi->works);
 558	ubi_assert(ubi->works_count >= 0);
 559	ubi->works_count += 1;
 560	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
 561		wake_up_process(ubi->bgt_thread);
 562	spin_unlock(&ubi->wl_lock);
 563}
 564
 565/**
 566 * schedule_ubi_work - schedule a work.
 567 * @ubi: UBI device description object
 568 * @wrk: the work to schedule
 569 *
 570 * This function adds a work defined by @wrk to the tail of the pending works
 571 * list.
 572 */
 573static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
 574{
 575	down_read(&ubi->work_sem);
 576	__schedule_ubi_work(ubi, wrk);
 577	up_read(&ubi->work_sem);
 578}
 579
 580static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
 581			int shutdown);
 582
 583/**
 584 * schedule_erase - schedule an erase work.
 585 * @ubi: UBI device description object
 586 * @e: the WL entry of the physical eraseblock to erase
 587 * @vol_id: the volume ID that last used this PEB
 588 * @lnum: the last used logical eraseblock number for the PEB
 589 * @torture: if the physical eraseblock has to be tortured
 590 * @nested: denotes whether the work_sem is already held
 591 *
 592 * This function returns zero in case of success and a %-ENOMEM in case of
 593 * failure.
 594 */
 595static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 596			  int vol_id, int lnum, int torture, bool nested)
 597{
 598	struct ubi_work *wl_wrk;
 599
 600	ubi_assert(e);
 601
 602	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
 603	       e->pnum, e->ec, torture);
 604
 605	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
 606	if (!wl_wrk)
 607		return -ENOMEM;
 608
 609	wl_wrk->func = &erase_worker;
 610	wl_wrk->e = e;
 611	wl_wrk->vol_id = vol_id;
 612	wl_wrk->lnum = lnum;
 613	wl_wrk->torture = torture;
 614
 615	if (nested)
 616		__schedule_ubi_work(ubi, wl_wrk);
 617	else
 618		schedule_ubi_work(ubi, wl_wrk);
 619	return 0;
 620}
 621
 622static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
 623/**
 624 * do_sync_erase - run the erase worker synchronously.
 625 * @ubi: UBI device description object
 626 * @e: the WL entry of the physical eraseblock to erase
 627 * @vol_id: the volume ID that last used this PEB
 628 * @lnum: the last used logical eraseblock number for the PEB
 629 * @torture: if the physical eraseblock has to be tortured
 630 *
 631 */
 632static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 633			 int vol_id, int lnum, int torture)
 634{
 635	struct ubi_work wl_wrk;
 636
 637	dbg_wl("sync erase of PEB %i", e->pnum);
 638
 639	wl_wrk.e = e;
 640	wl_wrk.vol_id = vol_id;
 641	wl_wrk.lnum = lnum;
 642	wl_wrk.torture = torture;
 643
 644	return __erase_worker(ubi, &wl_wrk);
 645}
 646
 647static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
 648/**
 649 * wear_leveling_worker - wear-leveling worker function.
 650 * @ubi: UBI device description object
 651 * @wrk: the work object
 652 * @shutdown: non-zero if the worker has to free memory and exit
 653 * because the WL-subsystem is shutting down
 654 *
 655 * This function copies a more worn out physical eraseblock to a less worn out
 656 * one. Returns zero in case of success and a negative error code in case of
 657 * failure.
 658 */
 659static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
 660				int shutdown)
 661{
 662	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
 663	int erase = 0, keep = 0, vol_id = -1, lnum = -1;
 664	struct ubi_wl_entry *e1, *e2;
 665	struct ubi_vid_io_buf *vidb;
 666	struct ubi_vid_hdr *vid_hdr;
 667	int dst_leb_clean = 0;
 668
 669	kfree(wrk);
 670	if (shutdown)
 671		return 0;
 672
 673	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
 674	if (!vidb)
 675		return -ENOMEM;
 676
 677	vid_hdr = ubi_get_vid_hdr(vidb);
 678
 679	down_read(&ubi->fm_eba_sem);
 680	mutex_lock(&ubi->move_mutex);
 681	spin_lock(&ubi->wl_lock);
 682	ubi_assert(!ubi->move_from && !ubi->move_to);
 683	ubi_assert(!ubi->move_to_put);
 684
 685#ifdef CONFIG_MTD_UBI_FASTMAP
 686	if (!next_peb_for_wl(ubi) ||
 687#else
 688	if (!ubi->free.rb_node ||
 689#endif
 690	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
 691		/*
 692		 * No free physical eraseblocks? Well, they must be waiting in
 693		 * the queue to be erased. Cancel movement - it will be
 694		 * triggered again when a free physical eraseblock appears.
 695		 *
 696		 * No used physical eraseblocks? They must be temporarily
 697		 * protected from being moved. They will be moved to the
 698		 * @ubi->used tree later and the wear-leveling will be
 699		 * triggered again.
 700		 */
 701		dbg_wl("cancel WL, a list is empty: free %d, used %d",
 702		       !ubi->free.rb_node, !ubi->used.rb_node);
 703		goto out_cancel;
 704	}
 705
 706#ifdef CONFIG_MTD_UBI_FASTMAP
 707	e1 = find_anchor_wl_entry(&ubi->used);
 708	if (e1 && ubi->fm_anchor &&
 709	    (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) {
 710		ubi->fm_do_produce_anchor = 1;
 711		/*
 712		 * fm_anchor is no longer considered a good anchor.
 713		 * NULL assignment also prevents multiple wear level checks
 714		 * of this PEB.
 715		 */
 716		wl_tree_add(ubi->fm_anchor, &ubi->free);
 717		ubi->fm_anchor = NULL;
 718		ubi->free_count++;
 719	}
 720
 721	if (ubi->fm_do_produce_anchor) {
 722		if (!e1)
 723			goto out_cancel;
 724		e2 = get_peb_for_wl(ubi);
 725		if (!e2)
 726			goto out_cancel;
 727
 728		self_check_in_wl_tree(ubi, e1, &ubi->used);
 729		rb_erase(&e1->u.rb, &ubi->used);
 730		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
 731		ubi->fm_do_produce_anchor = 0;
 732	} else if (!ubi->scrub.rb_node) {
 733#else
 734	if (!ubi->scrub.rb_node) {
 735#endif
 736		/*
 737		 * Now pick the least worn-out used physical eraseblock and a
 738		 * highly worn-out free physical eraseblock. If the erase
 739		 * counters differ much enough, start wear-leveling.
 740		 */
 741		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
 742		e2 = get_peb_for_wl(ubi);
 743		if (!e2)
 744			goto out_cancel;
 745
 746		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
 747			dbg_wl("no WL needed: min used EC %d, max free EC %d",
 748			       e1->ec, e2->ec);
 749
 750			/* Give the unused PEB back */
 751			wl_tree_add(e2, &ubi->free);
 752			ubi->free_count++;
 753			goto out_cancel;
 754		}
 755		self_check_in_wl_tree(ubi, e1, &ubi->used);
 756		rb_erase(&e1->u.rb, &ubi->used);
 757		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
 758		       e1->pnum, e1->ec, e2->pnum, e2->ec);
 759	} else {
 760		/* Perform scrubbing */
 761		scrubbing = 1;
 762		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
 763		e2 = get_peb_for_wl(ubi);
 764		if (!e2)
 765			goto out_cancel;
 766
 767		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
 768		rb_erase(&e1->u.rb, &ubi->scrub);
 769		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
 770	}
 771
 
 
 772	ubi->move_from = e1;
 773	ubi->move_to = e2;
 774	spin_unlock(&ubi->wl_lock);
 775
 776	/*
 777	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
 778	 * We so far do not know which logical eraseblock our physical
 779	 * eraseblock (@e1) belongs to. We have to read the volume identifier
 780	 * header first.
 781	 *
 782	 * Note, we are protected from this PEB being unmapped and erased. The
 783	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
 784	 * which is being moved was unmapped.
 785	 */
 786
 787	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
 788	if (err && err != UBI_IO_BITFLIPS) {
 789		dst_leb_clean = 1;
 790		if (err == UBI_IO_FF) {
 791			/*
 792			 * We are trying to move PEB without a VID header. UBI
 793			 * always write VID headers shortly after the PEB was
 794			 * given, so we have a situation when it has not yet
 795			 * had a chance to write it, because it was preempted.
 796			 * So add this PEB to the protection queue so far,
 797			 * because presumably more data will be written there
 798			 * (including the missing VID header), and then we'll
 799			 * move it.
 800			 */
 801			dbg_wl("PEB %d has no VID header", e1->pnum);
 802			protect = 1;
 803			goto out_not_moved;
 804		} else if (err == UBI_IO_FF_BITFLIPS) {
 805			/*
 806			 * The same situation as %UBI_IO_FF, but bit-flips were
 807			 * detected. It is better to schedule this PEB for
 808			 * scrubbing.
 809			 */
 810			dbg_wl("PEB %d has no VID header but has bit-flips",
 811			       e1->pnum);
 812			scrubbing = 1;
 813			goto out_not_moved;
 814		} else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
 815			/*
 816			 * While a full scan would detect interrupted erasures
 817			 * at attach time we can face them here when attached from
 818			 * Fastmap.
 819			 */
 820			dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
 821			       e1->pnum);
 822			erase = 1;
 823			goto out_not_moved;
 824		}
 825
 826		ubi_err(ubi, "error %d while reading VID header from PEB %d",
 827			err, e1->pnum);
 828		goto out_error;
 829	}
 830
 831	vol_id = be32_to_cpu(vid_hdr->vol_id);
 832	lnum = be32_to_cpu(vid_hdr->lnum);
 833
 834	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
 835	if (err) {
 836		if (err == MOVE_CANCEL_RACE) {
 837			/*
 838			 * The LEB has not been moved because the volume is
 839			 * being deleted or the PEB has been put meanwhile. We
 840			 * should prevent this PEB from being selected for
 841			 * wear-leveling movement again, so put it to the
 842			 * protection queue.
 843			 */
 844			protect = 1;
 845			dst_leb_clean = 1;
 846			goto out_not_moved;
 847		}
 848		if (err == MOVE_RETRY) {
 849			scrubbing = 1;
 850			dst_leb_clean = 1;
 851			goto out_not_moved;
 852		}
 853		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
 854		    err == MOVE_TARGET_RD_ERR) {
 855			/*
 856			 * Target PEB had bit-flips or write error - torture it.
 857			 */
 858			torture = 1;
 859			keep = 1;
 860			goto out_not_moved;
 861		}
 862
 863		if (err == MOVE_SOURCE_RD_ERR) {
 864			/*
 865			 * An error happened while reading the source PEB. Do
 866			 * not switch to R/O mode in this case, and give the
 867			 * upper layers a possibility to recover from this,
 868			 * e.g. by unmapping corresponding LEB. Instead, just
 869			 * put this PEB to the @ubi->erroneous list to prevent
 870			 * UBI from trying to move it over and over again.
 871			 */
 872			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
 873				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
 874					ubi->erroneous_peb_count);
 875				goto out_error;
 876			}
 877			dst_leb_clean = 1;
 878			erroneous = 1;
 879			goto out_not_moved;
 880		}
 881
 882		if (err < 0)
 883			goto out_error;
 884
 885		ubi_assert(0);
 886	}
 887
 888	/* The PEB has been successfully moved */
 889	if (scrubbing)
 890		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
 891			e1->pnum, vol_id, lnum, e2->pnum);
 892	ubi_free_vid_buf(vidb);
 893
 894	spin_lock(&ubi->wl_lock);
 895	if (!ubi->move_to_put) {
 896		wl_tree_add(e2, &ubi->used);
 897		e2 = NULL;
 898	}
 899	ubi->move_from = ubi->move_to = NULL;
 900	ubi->move_to_put = ubi->wl_scheduled = 0;
 901	spin_unlock(&ubi->wl_lock);
 902
 903	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
 904	if (err) {
 905		if (e2) {
 906			spin_lock(&ubi->wl_lock);
 907			wl_entry_destroy(ubi, e2);
 908			spin_unlock(&ubi->wl_lock);
 909		}
 910		goto out_ro;
 911	}
 912
 913	if (e2) {
 914		/*
 915		 * Well, the target PEB was put meanwhile, schedule it for
 916		 * erasure.
 917		 */
 918		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
 919		       e2->pnum, vol_id, lnum);
 920		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
 921		if (err)
 
 922			goto out_ro;
 
 923	}
 924
 925	dbg_wl("done");
 926	mutex_unlock(&ubi->move_mutex);
 927	up_read(&ubi->fm_eba_sem);
 928	return 0;
 929
 930	/*
 931	 * For some reasons the LEB was not moved, might be an error, might be
 932	 * something else. @e1 was not changed, so return it back. @e2 might
 933	 * have been changed, schedule it for erasure.
 934	 */
 935out_not_moved:
 936	if (vol_id != -1)
 937		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
 938		       e1->pnum, vol_id, lnum, e2->pnum, err);
 939	else
 940		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
 941		       e1->pnum, e2->pnum, err);
 942	spin_lock(&ubi->wl_lock);
 943	if (protect)
 944		prot_queue_add(ubi, e1);
 945	else if (erroneous) {
 946		wl_tree_add(e1, &ubi->erroneous);
 947		ubi->erroneous_peb_count += 1;
 948	} else if (scrubbing)
 949		wl_tree_add(e1, &ubi->scrub);
 950	else if (keep)
 951		wl_tree_add(e1, &ubi->used);
 952	if (dst_leb_clean) {
 953		wl_tree_add(e2, &ubi->free);
 954		ubi->free_count++;
 955	}
 956
 957	ubi_assert(!ubi->move_to_put);
 958	ubi->move_from = ubi->move_to = NULL;
 959	ubi->wl_scheduled = 0;
 960	spin_unlock(&ubi->wl_lock);
 961
 962	ubi_free_vid_buf(vidb);
 963	if (dst_leb_clean) {
 964		ensure_wear_leveling(ubi, 1);
 965	} else {
 966		err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
 967		if (err)
 968			goto out_ro;
 969	}
 970
 971	if (erase) {
 972		err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
 973		if (err)
 974			goto out_ro;
 975	}
 976
 977	mutex_unlock(&ubi->move_mutex);
 978	up_read(&ubi->fm_eba_sem);
 979	return 0;
 980
 981out_error:
 982	if (vol_id != -1)
 983		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
 984			err, e1->pnum, e2->pnum);
 985	else
 986		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
 987			err, e1->pnum, vol_id, lnum, e2->pnum);
 988	spin_lock(&ubi->wl_lock);
 989	ubi->move_from = ubi->move_to = NULL;
 990	ubi->move_to_put = ubi->wl_scheduled = 0;
 991	wl_entry_destroy(ubi, e1);
 992	wl_entry_destroy(ubi, e2);
 993	spin_unlock(&ubi->wl_lock);
 994
 995	ubi_free_vid_buf(vidb);
 
 
 996
 997out_ro:
 998	ubi_ro_mode(ubi);
 999	mutex_unlock(&ubi->move_mutex);
1000	up_read(&ubi->fm_eba_sem);
1001	ubi_assert(err != 0);
1002	return err < 0 ? err : -EIO;
1003
1004out_cancel:
1005	ubi->wl_scheduled = 0;
1006	spin_unlock(&ubi->wl_lock);
1007	mutex_unlock(&ubi->move_mutex);
1008	up_read(&ubi->fm_eba_sem);
1009	ubi_free_vid_buf(vidb);
1010	return 0;
1011}
1012
1013/**
1014 * ensure_wear_leveling - schedule wear-leveling if it is needed.
1015 * @ubi: UBI device description object
1016 * @nested: set to non-zero if this function is called from UBI worker
1017 *
1018 * This function checks if it is time to start wear-leveling and schedules it
1019 * if yes. This function returns zero in case of success and a negative error
1020 * code in case of failure.
1021 */
1022static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1023{
1024	int err = 0;
 
 
1025	struct ubi_work *wrk;
1026
1027	spin_lock(&ubi->wl_lock);
1028	if (ubi->wl_scheduled)
1029		/* Wear-leveling is already in the work queue */
1030		goto out_unlock;
1031
1032	/*
1033	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1034	 * WL worker has to be scheduled anyway.
1035	 */
1036	if (!ubi->scrub.rb_node) {
1037#ifdef CONFIG_MTD_UBI_FASTMAP
1038		if (!need_wear_leveling(ubi))
1039			goto out_unlock;
1040#else
1041		struct ubi_wl_entry *e1;
1042		struct ubi_wl_entry *e2;
1043
1044		if (!ubi->used.rb_node || !ubi->free.rb_node)
1045			/* No physical eraseblocks - no deal */
1046			goto out_unlock;
1047
1048		/*
1049		 * We schedule wear-leveling only if the difference between the
1050		 * lowest erase counter of used physical eraseblocks and a high
1051		 * erase counter of free physical eraseblocks is greater than
1052		 * %UBI_WL_THRESHOLD.
1053		 */
1054		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1055		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF, 0);
1056
1057		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1058			goto out_unlock;
1059#endif
1060		dbg_wl("schedule wear-leveling");
1061	} else
1062		dbg_wl("schedule scrubbing");
1063
1064	ubi->wl_scheduled = 1;
1065	spin_unlock(&ubi->wl_lock);
1066
1067	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1068	if (!wrk) {
1069		err = -ENOMEM;
1070		goto out_cancel;
1071	}
1072
1073	wrk->func = &wear_leveling_worker;
1074	if (nested)
1075		__schedule_ubi_work(ubi, wrk);
1076	else
1077		schedule_ubi_work(ubi, wrk);
1078	return err;
1079
1080out_cancel:
1081	spin_lock(&ubi->wl_lock);
1082	ubi->wl_scheduled = 0;
1083out_unlock:
1084	spin_unlock(&ubi->wl_lock);
1085	return err;
1086}
1087
1088/**
1089 * __erase_worker - physical eraseblock erase worker function.
1090 * @ubi: UBI device description object
1091 * @wl_wrk: the work object
 
1092 *
1093 * This function erases a physical eraseblock and perform torture testing if
1094 * needed. It also takes care about marking the physical eraseblock bad if
1095 * needed. Returns zero in case of success and a negative error code in case of
1096 * failure.
1097 */
1098static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
 
1099{
1100	struct ubi_wl_entry *e = wl_wrk->e;
1101	int pnum = e->pnum;
1102	int vol_id = wl_wrk->vol_id;
1103	int lnum = wl_wrk->lnum;
1104	int err, available_consumed = 0;
 
 
 
 
1105
1106	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1107	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1108
1109	err = ubi_sync_erase(ubi, e, wl_wrk->torture);
1110	if (!err) {
1111		spin_lock(&ubi->wl_lock);
1112
1113		if (!ubi->fm_disabled && !ubi->fm_anchor &&
1114		    e->pnum < UBI_FM_MAX_START) {
1115			/*
1116			 * Abort anchor production, if needed it will be
1117			 * enabled again in the wear leveling started below.
1118			 */
1119			ubi->fm_anchor = e;
1120			ubi->fm_do_produce_anchor = 0;
1121		} else {
1122			wl_tree_add(e, &ubi->free);
1123			ubi->free_count++;
1124		}
1125
 
 
1126		spin_unlock(&ubi->wl_lock);
1127
1128		/*
1129		 * One more erase operation has happened, take care about
1130		 * protected physical eraseblocks.
1131		 */
1132		serve_prot_queue(ubi);
1133
1134		/* And take care about wear-leveling */
1135		err = ensure_wear_leveling(ubi, 1);
1136		return err;
1137	}
1138
1139	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
 
 
1140
1141	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1142	    err == -EBUSY) {
1143		int err1;
1144
1145		/* Re-schedule the LEB for erasure */
1146		err1 = schedule_erase(ubi, e, vol_id, lnum, 0, true);
1147		if (err1) {
1148			spin_lock(&ubi->wl_lock);
1149			wl_entry_destroy(ubi, e);
1150			spin_unlock(&ubi->wl_lock);
1151			err = err1;
1152			goto out_ro;
1153		}
1154		return err;
1155	}
1156
1157	spin_lock(&ubi->wl_lock);
1158	wl_entry_destroy(ubi, e);
1159	spin_unlock(&ubi->wl_lock);
1160	if (err != -EIO)
1161		/*
1162		 * If this is not %-EIO, we have no idea what to do. Scheduling
1163		 * this physical eraseblock for erasure again would cause
1164		 * errors again and again. Well, lets switch to R/O mode.
1165		 */
1166		goto out_ro;
 
1167
1168	/* It is %-EIO, the PEB went bad */
1169
1170	if (!ubi->bad_allowed) {
1171		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1172		goto out_ro;
1173	}
1174
1175	spin_lock(&ubi->volumes_lock);
 
 
 
 
 
 
 
 
 
 
1176	if (ubi->beb_rsvd_pebs == 0) {
1177		if (ubi->avail_pebs == 0) {
1178			spin_unlock(&ubi->volumes_lock);
1179			ubi_err(ubi, "no reserved/available physical eraseblocks");
1180			goto out_ro;
1181		}
1182		ubi->avail_pebs -= 1;
1183		available_consumed = 1;
1184	}
1185	spin_unlock(&ubi->volumes_lock);
1186
1187	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1188	err = ubi_io_mark_bad(ubi, pnum);
1189	if (err)
1190		goto out_ro;
1191
1192	spin_lock(&ubi->volumes_lock);
1193	if (ubi->beb_rsvd_pebs > 0) {
1194		if (available_consumed) {
1195			/*
1196			 * The amount of reserved PEBs increased since we last
1197			 * checked.
1198			 */
1199			ubi->avail_pebs += 1;
1200			available_consumed = 0;
1201		}
1202		ubi->beb_rsvd_pebs -= 1;
1203	}
1204	ubi->bad_peb_count += 1;
1205	ubi->good_peb_count -= 1;
1206	ubi_calculate_reserved(ubi);
1207	if (available_consumed)
1208		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1209	else if (ubi->beb_rsvd_pebs)
1210		ubi_msg(ubi, "%d PEBs left in the reserve",
1211			ubi->beb_rsvd_pebs);
1212	else
1213		ubi_warn(ubi, "last PEB from the reserve was used");
1214	spin_unlock(&ubi->volumes_lock);
1215
1216	return err;
1217
1218out_ro:
1219	if (available_consumed) {
1220		spin_lock(&ubi->volumes_lock);
1221		ubi->avail_pebs += 1;
1222		spin_unlock(&ubi->volumes_lock);
1223	}
1224	ubi_ro_mode(ubi);
1225	return err;
1226}
1227
1228static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1229			  int shutdown)
1230{
1231	int ret;
1232
1233	if (shutdown) {
1234		struct ubi_wl_entry *e = wl_wrk->e;
1235
1236		dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1237		kfree(wl_wrk);
1238		wl_entry_destroy(ubi, e);
1239		return 0;
1240	}
1241
1242	ret = __erase_worker(ubi, wl_wrk);
1243	kfree(wl_wrk);
1244	return ret;
1245}
1246
1247/**
1248 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1249 * @ubi: UBI device description object
1250 * @vol_id: the volume ID that last used this PEB
1251 * @lnum: the last used logical eraseblock number for the PEB
1252 * @pnum: physical eraseblock to return
1253 * @torture: if this physical eraseblock has to be tortured
1254 *
1255 * This function is called to return physical eraseblock @pnum to the pool of
1256 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1257 * occurred to this @pnum and it has to be tested. This function returns zero
1258 * in case of success, and a negative error code in case of failure.
1259 */
1260int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1261		   int pnum, int torture)
1262{
1263	int err;
1264	struct ubi_wl_entry *e;
1265
1266	dbg_wl("PEB %d", pnum);
1267	ubi_assert(pnum >= 0);
1268	ubi_assert(pnum < ubi->peb_count);
1269
1270	down_read(&ubi->fm_protect);
1271
1272retry:
1273	spin_lock(&ubi->wl_lock);
1274	e = ubi->lookuptbl[pnum];
1275	if (!e) {
1276		/*
1277		 * This wl entry has been removed for some errors by other
1278		 * process (eg. wear leveling worker), corresponding process
1279		 * (except __erase_worker, which cannot concurrent with
1280		 * ubi_wl_put_peb) will set ubi ro_mode at the same time,
1281		 * just ignore this wl entry.
1282		 */
1283		spin_unlock(&ubi->wl_lock);
1284		up_read(&ubi->fm_protect);
1285		return 0;
1286	}
1287	if (e == ubi->move_from) {
1288		/*
1289		 * User is putting the physical eraseblock which was selected to
1290		 * be moved. It will be scheduled for erasure in the
1291		 * wear-leveling worker.
1292		 */
1293		dbg_wl("PEB %d is being moved, wait", pnum);
1294		spin_unlock(&ubi->wl_lock);
1295
1296		/* Wait for the WL worker by taking the @ubi->move_mutex */
1297		mutex_lock(&ubi->move_mutex);
1298		mutex_unlock(&ubi->move_mutex);
1299		goto retry;
1300	} else if (e == ubi->move_to) {
1301		/*
1302		 * User is putting the physical eraseblock which was selected
1303		 * as the target the data is moved to. It may happen if the EBA
1304		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1305		 * but the WL sub-system has not put the PEB to the "used" tree
1306		 * yet, but it is about to do this. So we just set a flag which
1307		 * will tell the WL worker that the PEB is not needed anymore
1308		 * and should be scheduled for erasure.
1309		 */
1310		dbg_wl("PEB %d is the target of data moving", pnum);
1311		ubi_assert(!ubi->move_to_put);
1312		ubi->move_to_put = 1;
1313		spin_unlock(&ubi->wl_lock);
1314		up_read(&ubi->fm_protect);
1315		return 0;
1316	} else {
1317		if (in_wl_tree(e, &ubi->used)) {
1318			self_check_in_wl_tree(ubi, e, &ubi->used);
1319			rb_erase(&e->u.rb, &ubi->used);
1320		} else if (in_wl_tree(e, &ubi->scrub)) {
1321			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1322			rb_erase(&e->u.rb, &ubi->scrub);
1323		} else if (in_wl_tree(e, &ubi->erroneous)) {
1324			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1325			rb_erase(&e->u.rb, &ubi->erroneous);
1326			ubi->erroneous_peb_count -= 1;
1327			ubi_assert(ubi->erroneous_peb_count >= 0);
1328			/* Erroneous PEBs should be tortured */
1329			torture = 1;
1330		} else {
1331			err = prot_queue_del(ubi, e->pnum);
1332			if (err) {
1333				ubi_err(ubi, "PEB %d not found", pnum);
1334				ubi_ro_mode(ubi);
1335				spin_unlock(&ubi->wl_lock);
1336				up_read(&ubi->fm_protect);
1337				return err;
1338			}
1339		}
1340	}
1341	spin_unlock(&ubi->wl_lock);
1342
1343	err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1344	if (err) {
1345		spin_lock(&ubi->wl_lock);
1346		wl_tree_add(e, &ubi->used);
1347		spin_unlock(&ubi->wl_lock);
1348	}
1349
1350	up_read(&ubi->fm_protect);
1351	return err;
1352}
1353
1354/**
1355 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1356 * @ubi: UBI device description object
1357 * @pnum: the physical eraseblock to schedule
1358 *
1359 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1360 * needs scrubbing. This function schedules a physical eraseblock for
1361 * scrubbing which is done in background. This function returns zero in case of
1362 * success and a negative error code in case of failure.
1363 */
1364int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1365{
1366	struct ubi_wl_entry *e;
1367
1368	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1369
1370retry:
1371	spin_lock(&ubi->wl_lock);
1372	e = ubi->lookuptbl[pnum];
1373	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1374				   in_wl_tree(e, &ubi->erroneous)) {
1375		spin_unlock(&ubi->wl_lock);
1376		return 0;
1377	}
1378
1379	if (e == ubi->move_to) {
1380		/*
1381		 * This physical eraseblock was used to move data to. The data
1382		 * was moved but the PEB was not yet inserted to the proper
1383		 * tree. We should just wait a little and let the WL worker
1384		 * proceed.
1385		 */
1386		spin_unlock(&ubi->wl_lock);
1387		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1388		yield();
1389		goto retry;
1390	}
1391
1392	if (in_wl_tree(e, &ubi->used)) {
1393		self_check_in_wl_tree(ubi, e, &ubi->used);
1394		rb_erase(&e->u.rb, &ubi->used);
1395	} else {
1396		int err;
1397
1398		err = prot_queue_del(ubi, e->pnum);
1399		if (err) {
1400			ubi_err(ubi, "PEB %d not found", pnum);
1401			ubi_ro_mode(ubi);
1402			spin_unlock(&ubi->wl_lock);
1403			return err;
1404		}
1405	}
1406
1407	wl_tree_add(e, &ubi->scrub);
1408	spin_unlock(&ubi->wl_lock);
1409
1410	/*
1411	 * Technically scrubbing is the same as wear-leveling, so it is done
1412	 * by the WL worker.
1413	 */
1414	return ensure_wear_leveling(ubi, 0);
1415}
1416
1417/**
1418 * ubi_wl_flush - flush all pending works.
1419 * @ubi: UBI device description object
1420 * @vol_id: the volume id to flush for
1421 * @lnum: the logical eraseblock number to flush for
1422 *
1423 * This function executes all pending works for a particular volume id /
1424 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1425 * acts as a wildcard for all of the corresponding volume numbers or logical
1426 * eraseblock numbers. It returns zero in case of success and a negative error
1427 * code in case of failure.
1428 */
1429int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1430{
1431	int err = 0;
1432	int found = 1;
1433
1434	/*
1435	 * Erase while the pending works queue is not empty, but not more than
1436	 * the number of currently pending works.
1437	 */
1438	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1439	       vol_id, lnum, ubi->works_count);
1440
1441	while (found) {
1442		struct ubi_work *wrk, *tmp;
1443		found = 0;
1444
1445		down_read(&ubi->work_sem);
1446		spin_lock(&ubi->wl_lock);
1447		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1448			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1449			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1450				list_del(&wrk->list);
1451				ubi->works_count -= 1;
1452				ubi_assert(ubi->works_count >= 0);
1453				spin_unlock(&ubi->wl_lock);
1454
1455				err = wrk->func(ubi, wrk, 0);
1456				if (err) {
1457					up_read(&ubi->work_sem);
1458					return err;
1459				}
1460
1461				spin_lock(&ubi->wl_lock);
1462				found = 1;
1463				break;
1464			}
1465		}
1466		spin_unlock(&ubi->wl_lock);
1467		up_read(&ubi->work_sem);
1468	}
1469
1470	/*
1471	 * Make sure all the works which have been done in parallel are
1472	 * finished.
1473	 */
1474	down_write(&ubi->work_sem);
1475	up_write(&ubi->work_sem);
1476
1477	return err;
1478}
1479
1480static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1481{
1482	if (in_wl_tree(e, &ubi->scrub))
1483		return false;
1484	else if (in_wl_tree(e, &ubi->erroneous))
1485		return false;
1486	else if (ubi->move_from == e)
1487		return false;
1488	else if (ubi->move_to == e)
1489		return false;
1490
1491	return true;
1492}
1493
1494/**
1495 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1496 * @ubi: UBI device description object
1497 * @pnum: the physical eraseblock to schedule
1498 * @force: don't read the block, assume bitflips happened and take action.
1499 *
1500 * This function reads the given eraseblock and checks if bitflips occured.
1501 * In case of bitflips, the eraseblock is scheduled for scrubbing.
1502 * If scrubbing is forced with @force, the eraseblock is not read,
1503 * but scheduled for scrubbing right away.
1504 *
1505 * Returns:
1506 * %EINVAL, PEB is out of range
1507 * %ENOENT, PEB is no longer used by UBI
1508 * %EBUSY, PEB cannot be checked now or a check is currently running on it
1509 * %EAGAIN, bit flips happened but scrubbing is currently not possible
1510 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1511 * %0, no bit flips detected
1512 */
1513int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1514{
1515	int err = 0;
1516	struct ubi_wl_entry *e;
1517
1518	if (pnum < 0 || pnum >= ubi->peb_count) {
1519		err = -EINVAL;
1520		goto out;
1521	}
1522
1523	/*
1524	 * Pause all parallel work, otherwise it can happen that the
1525	 * erase worker frees a wl entry under us.
1526	 */
1527	down_write(&ubi->work_sem);
1528
1529	/*
1530	 * Make sure that the wl entry does not change state while
1531	 * inspecting it.
1532	 */
1533	spin_lock(&ubi->wl_lock);
1534	e = ubi->lookuptbl[pnum];
1535	if (!e) {
1536		spin_unlock(&ubi->wl_lock);
1537		err = -ENOENT;
1538		goto out_resume;
1539	}
1540
1541	/*
1542	 * Does it make sense to check this PEB?
 
1543	 */
1544	if (!scrub_possible(ubi, e)) {
1545		spin_unlock(&ubi->wl_lock);
1546		err = -EBUSY;
1547		goto out_resume;
1548	}
1549	spin_unlock(&ubi->wl_lock);
1550
1551	if (!force) {
1552		mutex_lock(&ubi->buf_mutex);
1553		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1554		mutex_unlock(&ubi->buf_mutex);
1555	}
1556
1557	if (force || err == UBI_IO_BITFLIPS) {
1558		/*
1559		 * Okay, bit flip happened, let's figure out what we can do.
1560		 */
1561		spin_lock(&ubi->wl_lock);
1562
1563		/*
1564		 * Recheck. We released wl_lock, UBI might have killed the
1565		 * wl entry under us.
1566		 */
1567		e = ubi->lookuptbl[pnum];
1568		if (!e) {
1569			spin_unlock(&ubi->wl_lock);
1570			err = -ENOENT;
1571			goto out_resume;
1572		}
1573
1574		/*
1575		 * Need to re-check state
1576		 */
1577		if (!scrub_possible(ubi, e)) {
1578			spin_unlock(&ubi->wl_lock);
1579			err = -EBUSY;
1580			goto out_resume;
1581		}
1582
1583		if (in_pq(ubi, e)) {
1584			prot_queue_del(ubi, e->pnum);
1585			wl_tree_add(e, &ubi->scrub);
1586			spin_unlock(&ubi->wl_lock);
1587
1588			err = ensure_wear_leveling(ubi, 1);
1589		} else if (in_wl_tree(e, &ubi->used)) {
1590			rb_erase(&e->u.rb, &ubi->used);
1591			wl_tree_add(e, &ubi->scrub);
1592			spin_unlock(&ubi->wl_lock);
1593
1594			err = ensure_wear_leveling(ubi, 1);
1595		} else if (in_wl_tree(e, &ubi->free)) {
1596			rb_erase(&e->u.rb, &ubi->free);
1597			ubi->free_count--;
1598			spin_unlock(&ubi->wl_lock);
1599
1600			/*
1601			 * This PEB is empty we can schedule it for
1602			 * erasure right away. No wear leveling needed.
1603			 */
1604			err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1605					     force ? 0 : 1, true);
1606		} else {
1607			spin_unlock(&ubi->wl_lock);
1608			err = -EAGAIN;
1609		}
1610
1611		if (!err && !force)
1612			err = -EUCLEAN;
1613	} else {
1614		err = 0;
1615	}
1616
1617out_resume:
1618	up_write(&ubi->work_sem);
1619out:
1620
1621	return err;
1622}
1623
1624/**
1625 * tree_destroy - destroy an RB-tree.
1626 * @ubi: UBI device description object
1627 * @root: the root of the tree to destroy
1628 */
1629static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1630{
1631	struct rb_node *rb;
1632	struct ubi_wl_entry *e;
1633
1634	rb = root->rb_node;
1635	while (rb) {
1636		if (rb->rb_left)
1637			rb = rb->rb_left;
1638		else if (rb->rb_right)
1639			rb = rb->rb_right;
1640		else {
1641			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1642
1643			rb = rb_parent(rb);
1644			if (rb) {
1645				if (rb->rb_left == &e->u.rb)
1646					rb->rb_left = NULL;
1647				else
1648					rb->rb_right = NULL;
1649			}
1650
1651			wl_entry_destroy(ubi, e);
1652		}
1653	}
1654}
1655
1656/**
1657 * ubi_thread - UBI background thread.
1658 * @u: the UBI device description object pointer
1659 */
1660int ubi_thread(void *u)
1661{
1662	int failures = 0;
1663	struct ubi_device *ubi = u;
1664
1665	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1666		ubi->bgt_name, task_pid_nr(current));
1667
1668	set_freezable();
1669	for (;;) {
1670		int err;
1671
1672		if (kthread_should_stop())
1673			break;
1674
1675		if (try_to_freeze())
1676			continue;
1677
1678		spin_lock(&ubi->wl_lock);
1679		if (list_empty(&ubi->works) || ubi->ro_mode ||
1680		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1681			set_current_state(TASK_INTERRUPTIBLE);
1682			spin_unlock(&ubi->wl_lock);
1683
1684			/*
1685			 * Check kthread_should_stop() after we set the task
1686			 * state to guarantee that we either see the stop bit
1687			 * and exit or the task state is reset to runnable such
1688			 * that it's not scheduled out indefinitely and detects
1689			 * the stop bit at kthread_should_stop().
1690			 */
1691			if (kthread_should_stop()) {
1692				set_current_state(TASK_RUNNING);
1693				break;
1694			}
1695
1696			schedule();
1697			continue;
1698		}
1699		spin_unlock(&ubi->wl_lock);
1700
1701		err = do_work(ubi, NULL);
1702		if (err) {
1703			ubi_err(ubi, "%s: work failed with error code %d",
1704				ubi->bgt_name, err);
1705			if (failures++ > WL_MAX_FAILURES) {
1706				/*
1707				 * Too many failures, disable the thread and
1708				 * switch to read-only mode.
1709				 */
1710				ubi_msg(ubi, "%s: %d consecutive failures",
1711					ubi->bgt_name, WL_MAX_FAILURES);
1712				ubi_ro_mode(ubi);
1713				ubi->thread_enabled = 0;
1714				continue;
1715			}
1716		} else
1717			failures = 0;
1718
1719		cond_resched();
1720	}
1721
1722	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1723	ubi->thread_enabled = 0;
1724	return 0;
1725}
1726
1727/**
1728 * shutdown_work - shutdown all pending works.
1729 * @ubi: UBI device description object
1730 */
1731static void shutdown_work(struct ubi_device *ubi)
1732{
1733	while (!list_empty(&ubi->works)) {
1734		struct ubi_work *wrk;
1735
1736		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1737		list_del(&wrk->list);
1738		wrk->func(ubi, wrk, 1);
1739		ubi->works_count -= 1;
1740		ubi_assert(ubi->works_count >= 0);
1741	}
1742}
1743
1744/**
1745 * erase_aeb - erase a PEB given in UBI attach info PEB
1746 * @ubi: UBI device description object
1747 * @aeb: UBI attach info PEB
1748 * @sync: If true, erase synchronously. Otherwise schedule for erasure
1749 */
1750static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1751{
1752	struct ubi_wl_entry *e;
1753	int err;
1754
1755	e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1756	if (!e)
1757		return -ENOMEM;
1758
1759	e->pnum = aeb->pnum;
1760	e->ec = aeb->ec;
1761	ubi->lookuptbl[e->pnum] = e;
1762
1763	if (sync) {
1764		err = ubi_sync_erase(ubi, e, false);
1765		if (err)
1766			goto out_free;
1767
1768		wl_tree_add(e, &ubi->free);
1769		ubi->free_count++;
1770	} else {
1771		err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1772		if (err)
1773			goto out_free;
1774	}
1775
1776	return 0;
1777
1778out_free:
1779	wl_entry_destroy(ubi, e);
1780
1781	return err;
1782}
1783
1784/**
1785 * ubi_wl_init - initialize the WL sub-system using attaching information.
1786 * @ubi: UBI device description object
1787 * @ai: attaching information
1788 *
1789 * This function returns zero in case of success, and a negative error code in
1790 * case of failure.
1791 */
1792int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1793{
1794	int err, i, reserved_pebs, found_pebs = 0;
1795	struct rb_node *rb1, *rb2;
1796	struct ubi_ainf_volume *av;
1797	struct ubi_ainf_peb *aeb, *tmp;
1798	struct ubi_wl_entry *e;
1799
1800	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1801	spin_lock_init(&ubi->wl_lock);
1802	mutex_init(&ubi->move_mutex);
1803	init_rwsem(&ubi->work_sem);
1804	ubi->max_ec = ai->max_ec;
1805	INIT_LIST_HEAD(&ubi->works);
1806
1807	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1808
1809	err = -ENOMEM;
1810	ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1811	if (!ubi->lookuptbl)
1812		return err;
1813
1814	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1815		INIT_LIST_HEAD(&ubi->pq[i]);
1816	ubi->pq_head = 0;
1817
1818	ubi->free_count = 0;
1819	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1820		cond_resched();
1821
1822		err = erase_aeb(ubi, aeb, false);
1823		if (err)
1824			goto out_free;
1825
1826		found_pebs++;
 
 
 
 
 
 
1827	}
1828
1829	list_for_each_entry(aeb, &ai->free, u.list) {
1830		cond_resched();
1831
1832		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1833		if (!e) {
1834			err = -ENOMEM;
1835			goto out_free;
1836		}
1837
1838		e->pnum = aeb->pnum;
1839		e->ec = aeb->ec;
1840		ubi_assert(e->ec >= 0);
1841
1842		wl_tree_add(e, &ubi->free);
1843		ubi->free_count++;
1844
1845		ubi->lookuptbl[e->pnum] = e;
1846
1847		found_pebs++;
1848	}
1849
1850	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1851		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1852			cond_resched();
1853
1854			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1855			if (!e) {
1856				err = -ENOMEM;
1857				goto out_free;
1858			}
1859
1860			e->pnum = aeb->pnum;
1861			e->ec = aeb->ec;
1862			ubi->lookuptbl[e->pnum] = e;
1863
1864			if (!aeb->scrub) {
1865				dbg_wl("add PEB %d EC %d to the used tree",
1866				       e->pnum, e->ec);
1867				wl_tree_add(e, &ubi->used);
1868			} else {
1869				dbg_wl("add PEB %d EC %d to the scrub tree",
1870				       e->pnum, e->ec);
1871				wl_tree_add(e, &ubi->scrub);
1872			}
1873
1874			found_pebs++;
1875		}
1876	}
1877
1878	list_for_each_entry(aeb, &ai->fastmap, u.list) {
1879		cond_resched();
1880
1881		e = ubi_find_fm_block(ubi, aeb->pnum);
1882
1883		if (e) {
1884			ubi_assert(!ubi->lookuptbl[e->pnum]);
1885			ubi->lookuptbl[e->pnum] = e;
1886		} else {
1887			bool sync = false;
1888
1889			/*
1890			 * Usually old Fastmap PEBs are scheduled for erasure
1891			 * and we don't have to care about them but if we face
1892			 * an power cut before scheduling them we need to
1893			 * take care of them here.
1894			 */
1895			if (ubi->lookuptbl[aeb->pnum])
1896				continue;
1897
1898			/*
1899			 * The fastmap update code might not find a free PEB for
1900			 * writing the fastmap anchor to and then reuses the
1901			 * current fastmap anchor PEB. When this PEB gets erased
1902			 * and a power cut happens before it is written again we
1903			 * must make sure that the fastmap attach code doesn't
1904			 * find any outdated fastmap anchors, hence we erase the
1905			 * outdated fastmap anchor PEBs synchronously here.
1906			 */
1907			if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1908				sync = true;
1909
1910			err = erase_aeb(ubi, aeb, sync);
1911			if (err)
1912				goto out_free;
1913		}
1914
1915		found_pebs++;
1916	}
1917
1918	dbg_wl("found %i PEBs", found_pebs);
1919
1920	ubi_assert(ubi->good_peb_count == found_pebs);
1921
1922	reserved_pebs = WL_RESERVED_PEBS;
1923	ubi_fastmap_init(ubi, &reserved_pebs);
1924
1925	if (ubi->avail_pebs < reserved_pebs) {
1926		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1927			ubi->avail_pebs, reserved_pebs);
1928		if (ubi->corr_peb_count)
1929			ubi_err(ubi, "%d PEBs are corrupted and not used",
1930				ubi->corr_peb_count);
1931		err = -ENOSPC;
1932		goto out_free;
1933	}
1934	ubi->avail_pebs -= reserved_pebs;
1935	ubi->rsvd_pebs += reserved_pebs;
1936
1937	/* Schedule wear-leveling if needed */
1938	err = ensure_wear_leveling(ubi, 0);
1939	if (err)
1940		goto out_free;
1941
1942#ifdef CONFIG_MTD_UBI_FASTMAP
1943	if (!ubi->ro_mode && !ubi->fm_disabled)
1944		ubi_ensure_anchor_pebs(ubi);
1945#endif
1946	return 0;
1947
1948out_free:
1949	shutdown_work(ubi);
1950	tree_destroy(ubi, &ubi->used);
1951	tree_destroy(ubi, &ubi->free);
1952	tree_destroy(ubi, &ubi->scrub);
1953	kfree(ubi->lookuptbl);
1954	return err;
1955}
1956
1957/**
1958 * protection_queue_destroy - destroy the protection queue.
1959 * @ubi: UBI device description object
1960 */
1961static void protection_queue_destroy(struct ubi_device *ubi)
1962{
1963	int i;
1964	struct ubi_wl_entry *e, *tmp;
1965
1966	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1967		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1968			list_del(&e->u.list);
1969			wl_entry_destroy(ubi, e);
1970		}
1971	}
1972}
1973
1974/**
1975 * ubi_wl_close - close the wear-leveling sub-system.
1976 * @ubi: UBI device description object
1977 */
1978void ubi_wl_close(struct ubi_device *ubi)
1979{
1980	dbg_wl("close the WL sub-system");
1981	ubi_fastmap_close(ubi);
1982	shutdown_work(ubi);
1983	protection_queue_destroy(ubi);
1984	tree_destroy(ubi, &ubi->used);
1985	tree_destroy(ubi, &ubi->erroneous);
1986	tree_destroy(ubi, &ubi->free);
1987	tree_destroy(ubi, &ubi->scrub);
1988	kfree(ubi->lookuptbl);
1989}
1990
 
 
1991/**
1992 * self_check_ec - make sure that the erase counter of a PEB is correct.
1993 * @ubi: UBI device description object
1994 * @pnum: the physical eraseblock number to check
1995 * @ec: the erase counter to check
1996 *
1997 * This function returns zero if the erase counter of physical eraseblock @pnum
1998 * is equivalent to @ec, and a negative error code if not or if an error
1999 * occurred.
2000 */
2001static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2002{
2003	int err;
2004	long long read_ec;
2005	struct ubi_ec_hdr *ec_hdr;
2006
2007	if (!ubi_dbg_chk_gen(ubi))
2008		return 0;
2009
2010	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2011	if (!ec_hdr)
2012		return -ENOMEM;
2013
2014	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2015	if (err && err != UBI_IO_BITFLIPS) {
2016		/* The header does not have to exist */
2017		err = 0;
2018		goto out_free;
2019	}
2020
2021	read_ec = be64_to_cpu(ec_hdr->ec);
2022	if (ec != read_ec && read_ec - ec > 1) {
2023		ubi_err(ubi, "self-check failed for PEB %d", pnum);
2024		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
2025		dump_stack();
2026		err = 1;
2027	} else
2028		err = 0;
2029
2030out_free:
2031	kfree(ec_hdr);
2032	return err;
2033}
2034
2035/**
2036 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2037 * @ubi: UBI device description object
2038 * @e: the wear-leveling entry to check
2039 * @root: the root of the tree
2040 *
2041 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2042 * is not.
2043 */
2044static int self_check_in_wl_tree(const struct ubi_device *ubi,
2045				 struct ubi_wl_entry *e, struct rb_root *root)
 
2046{
2047	if (!ubi_dbg_chk_gen(ubi))
2048		return 0;
2049
2050	if (in_wl_tree(e, root))
2051		return 0;
2052
2053	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2054		e->pnum, e->ec, root);
2055	dump_stack();
2056	return -EINVAL;
2057}
2058
2059/**
2060 * self_check_in_pq - check if wear-leveling entry is in the protection
2061 *                        queue.
2062 * @ubi: UBI device description object
2063 * @e: the wear-leveling entry to check
2064 *
2065 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2066 */
2067static int self_check_in_pq(const struct ubi_device *ubi,
2068			    struct ubi_wl_entry *e)
2069{
2070	if (!ubi_dbg_chk_gen(ubi))
2071		return 0;
2072
2073	if (in_pq(ubi, e))
2074		return 0;
2075
2076	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
 
 
 
 
 
2077		e->pnum, e->ec);
2078	dump_stack();
2079	return -EINVAL;
2080}
2081#ifndef CONFIG_MTD_UBI_FASTMAP
2082static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2083{
2084	struct ubi_wl_entry *e;
2085
2086	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF, 0);
2087	self_check_in_wl_tree(ubi, e, &ubi->free);
2088	ubi->free_count--;
2089	ubi_assert(ubi->free_count >= 0);
2090	rb_erase(&e->u.rb, &ubi->free);
2091
2092	return e;
2093}
2094
2095/**
2096 * produce_free_peb - produce a free physical eraseblock.
2097 * @ubi: UBI device description object
2098 *
2099 * This function tries to make a free PEB by means of synchronous execution of
2100 * pending works. This may be needed if, for example the background thread is
2101 * disabled. Returns zero in case of success and a negative error code in case
2102 * of failure.
2103 */
2104static int produce_free_peb(struct ubi_device *ubi)
2105{
2106	int err;
2107
2108	while (!ubi->free.rb_node && ubi->works_count) {
2109		spin_unlock(&ubi->wl_lock);
2110
2111		dbg_wl("do one work synchronously");
2112		err = do_work(ubi, NULL);
2113
2114		spin_lock(&ubi->wl_lock);
2115		if (err)
2116			return err;
2117	}
2118
2119	return 0;
2120}
2121
2122/**
2123 * ubi_wl_get_peb - get a physical eraseblock.
2124 * @ubi: UBI device description object
2125 *
2126 * This function returns a physical eraseblock in case of success and a
2127 * negative error code in case of failure.
2128 * Returns with ubi->fm_eba_sem held in read mode!
2129 */
2130int ubi_wl_get_peb(struct ubi_device *ubi)
2131{
2132	int err;
2133	struct ubi_wl_entry *e;
2134
2135retry:
2136	down_read(&ubi->fm_eba_sem);
2137	spin_lock(&ubi->wl_lock);
2138	if (!ubi->free.rb_node) {
2139		if (ubi->works_count == 0) {
2140			ubi_err(ubi, "no free eraseblocks");
2141			ubi_assert(list_empty(&ubi->works));
2142			spin_unlock(&ubi->wl_lock);
2143			return -ENOSPC;
2144		}
2145
2146		err = produce_free_peb(ubi);
2147		if (err < 0) {
2148			spin_unlock(&ubi->wl_lock);
2149			return err;
2150		}
2151		spin_unlock(&ubi->wl_lock);
2152		up_read(&ubi->fm_eba_sem);
2153		goto retry;
2154
2155	}
2156	e = wl_get_wle(ubi);
2157	prot_queue_add(ubi, e);
2158	spin_unlock(&ubi->wl_lock);
2159
2160	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2161				    ubi->peb_size - ubi->vid_hdr_aloffset);
2162	if (err) {
2163		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2164		return err;
2165	}
2166
2167	return e->pnum;
2168}
2169#else
2170#include "fastmap-wl.c"
2171#endif
v3.1
 
   1/*
   2 * @ubi: UBI device description object
   3 * Copyright (c) International Business Machines Corp., 2006
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13 * the GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
  20 */
  21
  22/*
  23 * UBI wear-leveling sub-system.
  24 *
  25 * This sub-system is responsible for wear-leveling. It works in terms of
  26 * physical eraseblocks and erase counters and knows nothing about logical
  27 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
  28 * eraseblocks are of two types - used and free. Used physical eraseblocks are
  29 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
  30 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
  31 *
  32 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
  33 * header. The rest of the physical eraseblock contains only %0xFF bytes.
  34 *
  35 * When physical eraseblocks are returned to the WL sub-system by means of the
  36 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
  37 * done asynchronously in context of the per-UBI device background thread,
  38 * which is also managed by the WL sub-system.
  39 *
  40 * The wear-leveling is ensured by means of moving the contents of used
  41 * physical eraseblocks with low erase counter to free physical eraseblocks
  42 * with high erase counter.
  43 *
  44 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
  45 * an "optimal" physical eraseblock. For example, when it is known that the
  46 * physical eraseblock will be "put" soon because it contains short-term data,
  47 * the WL sub-system may pick a free physical eraseblock with low erase
  48 * counter, and so forth.
  49 *
  50 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
  51 * bad.
  52 *
  53 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
  54 * in a physical eraseblock, it has to be moved. Technically this is the same
  55 * as moving it for wear-leveling reasons.
  56 *
  57 * As it was said, for the UBI sub-system all physical eraseblocks are either
  58 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
  59 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
  60 * RB-trees, as well as (temporarily) in the @wl->pq queue.
  61 *
  62 * When the WL sub-system returns a physical eraseblock, the physical
  63 * eraseblock is protected from being moved for some "time". For this reason,
  64 * the physical eraseblock is not directly moved from the @wl->free tree to the
  65 * @wl->used tree. There is a protection queue in between where this
  66 * physical eraseblock is temporarily stored (@wl->pq).
  67 *
  68 * All this protection stuff is needed because:
  69 *  o we don't want to move physical eraseblocks just after we have given them
  70 *    to the user; instead, we first want to let users fill them up with data;
  71 *
  72 *  o there is a chance that the user will put the physical eraseblock very
  73 *    soon, so it makes sense not to move it for some time, but wait; this is
  74 *    especially important in case of "short term" physical eraseblocks.
  75 *
  76 * Physical eraseblocks stay protected only for limited time. But the "time" is
  77 * measured in erase cycles in this case. This is implemented with help of the
  78 * protection queue. Eraseblocks are put to the tail of this queue when they
  79 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
  80 * head of the queue on each erase operation (for any eraseblock). So the
  81 * length of the queue defines how may (global) erase cycles PEBs are protected.
  82 *
  83 * To put it differently, each physical eraseblock has 2 main states: free and
  84 * used. The former state corresponds to the @wl->free tree. The latter state
  85 * is split up on several sub-states:
  86 * o the WL movement is allowed (@wl->used tree);
  87 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
  88 *   erroneous - e.g., there was a read error;
  89 * o the WL movement is temporarily prohibited (@wl->pq queue);
  90 * o scrubbing is needed (@wl->scrub tree).
  91 *
  92 * Depending on the sub-state, wear-leveling entries of the used physical
  93 * eraseblocks may be kept in one of those structures.
  94 *
  95 * Note, in this implementation, we keep a small in-RAM object for each physical
  96 * eraseblock. This is surely not a scalable solution. But it appears to be good
  97 * enough for moderately large flashes and it is simple. In future, one may
  98 * re-work this sub-system and make it more scalable.
  99 *
 100 * At the moment this sub-system does not utilize the sequence number, which
 101 * was introduced relatively recently. But it would be wise to do this because
 102 * the sequence number of a logical eraseblock characterizes how old is it. For
 103 * example, when we move a PEB with low erase counter, and we need to pick the
 104 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
 105 * pick target PEB with an average EC if our PEB is not very "old". This is a
 106 * room for future re-works of the WL sub-system.
 107 */
 108
 109#include <linux/slab.h>
 110#include <linux/crc32.h>
 111#include <linux/freezer.h>
 112#include <linux/kthread.h>
 113#include "ubi.h"
 
 114
 115/* Number of physical eraseblocks reserved for wear-leveling purposes */
 116#define WL_RESERVED_PEBS 1
 117
 118/*
 119 * Maximum difference between two erase counters. If this threshold is
 120 * exceeded, the WL sub-system starts moving data from used physical
 121 * eraseblocks with low erase counter to free physical eraseblocks with high
 122 * erase counter.
 123 */
 124#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
 125
 126/*
 127 * When a physical eraseblock is moved, the WL sub-system has to pick the target
 128 * physical eraseblock to move to. The simplest way would be just to pick the
 129 * one with the highest erase counter. But in certain workloads this could lead
 130 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
 131 * situation when the picked physical eraseblock is constantly erased after the
 132 * data is written to it. So, we have a constant which limits the highest erase
 133 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
 134 * does not pick eraseblocks with erase counter greater than the lowest erase
 135 * counter plus %WL_FREE_MAX_DIFF.
 136 */
 137#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
 138
 139/*
 140 * Maximum number of consecutive background thread failures which is enough to
 141 * switch to read-only mode.
 142 */
 143#define WL_MAX_FAILURES 32
 144
 145/**
 146 * struct ubi_work - UBI work description data structure.
 147 * @list: a link in the list of pending works
 148 * @func: worker function
 149 * @e: physical eraseblock to erase
 150 * @torture: if the physical eraseblock has to be tortured
 151 *
 152 * The @func pointer points to the worker function. If the @cancel argument is
 153 * not zero, the worker has to free the resources and exit immediately. The
 154 * worker has to return zero in case of success and a negative error code in
 155 * case of failure.
 156 */
 157struct ubi_work {
 158	struct list_head list;
 159	int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
 160	/* The below fields are only relevant to erasure works */
 161	struct ubi_wl_entry *e;
 162	int torture;
 163};
 164
 165#ifdef CONFIG_MTD_UBI_DEBUG
 166static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
 167static int paranoid_check_in_wl_tree(const struct ubi_device *ubi,
 168				     struct ubi_wl_entry *e,
 169				     struct rb_root *root);
 170static int paranoid_check_in_pq(const struct ubi_device *ubi,
 171				struct ubi_wl_entry *e);
 172#else
 173#define paranoid_check_ec(ubi, pnum, ec) 0
 174#define paranoid_check_in_wl_tree(ubi, e, root)
 175#define paranoid_check_in_pq(ubi, e) 0
 176#endif
 177
 178/**
 179 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
 180 * @e: the wear-leveling entry to add
 181 * @root: the root of the tree
 182 *
 183 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
 184 * the @ubi->used and @ubi->free RB-trees.
 185 */
 186static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
 187{
 188	struct rb_node **p, *parent = NULL;
 189
 190	p = &root->rb_node;
 191	while (*p) {
 192		struct ubi_wl_entry *e1;
 193
 194		parent = *p;
 195		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
 196
 197		if (e->ec < e1->ec)
 198			p = &(*p)->rb_left;
 199		else if (e->ec > e1->ec)
 200			p = &(*p)->rb_right;
 201		else {
 202			ubi_assert(e->pnum != e1->pnum);
 203			if (e->pnum < e1->pnum)
 204				p = &(*p)->rb_left;
 205			else
 206				p = &(*p)->rb_right;
 207		}
 208	}
 209
 210	rb_link_node(&e->u.rb, parent, p);
 211	rb_insert_color(&e->u.rb, root);
 212}
 213
 214/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 215 * do_work - do one pending work.
 216 * @ubi: UBI device description object
 
 217 *
 218 * This function returns zero in case of success and a negative error code in
 219 * case of failure.
 
 220 */
 221static int do_work(struct ubi_device *ubi)
 222{
 223	int err;
 224	struct ubi_work *wrk;
 225
 226	cond_resched();
 227
 228	/*
 229	 * @ubi->work_sem is used to synchronize with the workers. Workers take
 230	 * it in read mode, so many of them may be doing works at a time. But
 231	 * the queue flush code has to be sure the whole queue of works is
 232	 * done, and it takes the mutex in write mode.
 233	 */
 234	down_read(&ubi->work_sem);
 235	spin_lock(&ubi->wl_lock);
 236	if (list_empty(&ubi->works)) {
 237		spin_unlock(&ubi->wl_lock);
 238		up_read(&ubi->work_sem);
 
 
 239		return 0;
 240	}
 241
 
 
 242	wrk = list_entry(ubi->works.next, struct ubi_work, list);
 243	list_del(&wrk->list);
 244	ubi->works_count -= 1;
 245	ubi_assert(ubi->works_count >= 0);
 246	spin_unlock(&ubi->wl_lock);
 247
 248	/*
 249	 * Call the worker function. Do not touch the work structure
 250	 * after this call as it will have been freed or reused by that
 251	 * time by the worker function.
 252	 */
 253	err = wrk->func(ubi, wrk, 0);
 254	if (err)
 255		ubi_err("work failed with error code %d", err);
 256	up_read(&ubi->work_sem);
 257
 258	return err;
 259}
 260
 261/**
 262 * produce_free_peb - produce a free physical eraseblock.
 263 * @ubi: UBI device description object
 264 *
 265 * This function tries to make a free PEB by means of synchronous execution of
 266 * pending works. This may be needed if, for example the background thread is
 267 * disabled. Returns zero in case of success and a negative error code in case
 268 * of failure.
 269 */
 270static int produce_free_peb(struct ubi_device *ubi)
 271{
 272	int err;
 273
 274	spin_lock(&ubi->wl_lock);
 275	while (!ubi->free.rb_node) {
 276		spin_unlock(&ubi->wl_lock);
 277
 278		dbg_wl("do one work synchronously");
 279		err = do_work(ubi);
 280		if (err)
 281			return err;
 282
 283		spin_lock(&ubi->wl_lock);
 284	}
 285	spin_unlock(&ubi->wl_lock);
 286
 287	return 0;
 288}
 289
 290/**
 291 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
 292 * @e: the wear-leveling entry to check
 293 * @root: the root of the tree
 294 *
 295 * This function returns non-zero if @e is in the @root RB-tree and zero if it
 296 * is not.
 297 */
 298static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
 299{
 300	struct rb_node *p;
 301
 302	p = root->rb_node;
 303	while (p) {
 304		struct ubi_wl_entry *e1;
 305
 306		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 307
 308		if (e->pnum == e1->pnum) {
 309			ubi_assert(e == e1);
 310			return 1;
 311		}
 312
 313		if (e->ec < e1->ec)
 314			p = p->rb_left;
 315		else if (e->ec > e1->ec)
 316			p = p->rb_right;
 317		else {
 318			ubi_assert(e->pnum != e1->pnum);
 319			if (e->pnum < e1->pnum)
 320				p = p->rb_left;
 321			else
 322				p = p->rb_right;
 323		}
 324	}
 325
 326	return 0;
 327}
 328
 329/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330 * prot_queue_add - add physical eraseblock to the protection queue.
 331 * @ubi: UBI device description object
 332 * @e: the physical eraseblock to add
 333 *
 334 * This function adds @e to the tail of the protection queue @ubi->pq, where
 335 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
 336 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
 337 * be locked.
 338 */
 339static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
 340{
 341	int pq_tail = ubi->pq_head - 1;
 342
 343	if (pq_tail < 0)
 344		pq_tail = UBI_PROT_QUEUE_LEN - 1;
 345	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
 346	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
 347	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
 348}
 349
 350/**
 351 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
 
 352 * @root: the RB-tree where to look for
 353 * @max: highest possible erase counter
 
 354 *
 355 * This function looks for a wear leveling entry with erase counter closest to
 356 * @max and less than @max.
 357 */
 358static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
 
 
 359{
 360	struct rb_node *p;
 361	struct ubi_wl_entry *e;
 
 362
 363	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
 364	max += e->ec;
 365
 366	p = root->rb_node;
 367	while (p) {
 368		struct ubi_wl_entry *e1;
 369
 370		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 371		if (e1->ec >= max)
 
 
 372			p = p->rb_left;
 373		else {
 374			p = p->rb_right;
 375			e = e1;
 376		}
 377	}
 378
 379	return e;
 380}
 381
 382/**
 383 * ubi_wl_get_peb - get a physical eraseblock.
 384 * @ubi: UBI device description object
 385 * @dtype: type of data which will be stored in this physical eraseblock
 386 *
 387 * This function returns a physical eraseblock in case of success and a
 388 * negative error code in case of failure. Might sleep.
 
 389 */
 390int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
 
 391{
 392	int err, medium_ec;
 393	struct ubi_wl_entry *e, *first, *last;
 394
 395	ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
 396		   dtype == UBI_UNKNOWN);
 397
 398retry:
 399	spin_lock(&ubi->wl_lock);
 400	if (!ubi->free.rb_node) {
 401		if (ubi->works_count == 0) {
 402			ubi_assert(list_empty(&ubi->works));
 403			ubi_err("no free eraseblocks");
 404			spin_unlock(&ubi->wl_lock);
 405			return -ENOSPC;
 406		}
 407		spin_unlock(&ubi->wl_lock);
 408
 409		err = produce_free_peb(ubi);
 410		if (err < 0)
 411			return err;
 412		goto retry;
 413	}
 414
 415	switch (dtype) {
 416	case UBI_LONGTERM:
 417		/*
 418		 * For long term data we pick a physical eraseblock with high
 419		 * erase counter. But the highest erase counter we can pick is
 420		 * bounded by the the lowest erase counter plus
 421		 * %WL_FREE_MAX_DIFF.
 422		 */
 423		e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
 424		break;
 425	case UBI_UNKNOWN:
 426		/*
 427		 * For unknown data we pick a physical eraseblock with medium
 428		 * erase counter. But we by no means can pick a physical
 429		 * eraseblock with erase counter greater or equivalent than the
 430		 * lowest erase counter plus %WL_FREE_MAX_DIFF.
 431		 */
 432		first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry,
 433					u.rb);
 434		last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb);
 435
 436		if (last->ec - first->ec < WL_FREE_MAX_DIFF)
 437			e = rb_entry(ubi->free.rb_node,
 438					struct ubi_wl_entry, u.rb);
 439		else {
 440			medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
 441			e = find_wl_entry(&ubi->free, medium_ec);
 442		}
 443		break;
 444	case UBI_SHORTTERM:
 445		/*
 446		 * For short term data we pick a physical eraseblock with the
 447		 * lowest erase counter as we expect it will be erased soon.
 448		 */
 449		e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb);
 450		break;
 451	default:
 452		BUG();
 453	}
 454
 455	paranoid_check_in_wl_tree(ubi, e, &ubi->free);
 456
 457	/*
 458	 * Move the physical eraseblock to the protection queue where it will
 459	 * be protected from being moved for some time.
 460	 */
 461	rb_erase(&e->u.rb, &ubi->free);
 
 462	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
 463	prot_queue_add(ubi, e);
 464	spin_unlock(&ubi->wl_lock);
 465
 466	err = ubi_dbg_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
 467				   ubi->peb_size - ubi->vid_hdr_aloffset);
 468	if (err) {
 469		ubi_err("new PEB %d does not contain all 0xFF bytes", e->pnum);
 470		return err;
 471	}
 472
 473	return e->pnum;
 474}
 475
 476/**
 477 * prot_queue_del - remove a physical eraseblock from the protection queue.
 478 * @ubi: UBI device description object
 479 * @pnum: the physical eraseblock to remove
 480 *
 481 * This function deletes PEB @pnum from the protection queue and returns zero
 482 * in case of success and %-ENODEV if the PEB was not found.
 483 */
 484static int prot_queue_del(struct ubi_device *ubi, int pnum)
 485{
 486	struct ubi_wl_entry *e;
 487
 488	e = ubi->lookuptbl[pnum];
 489	if (!e)
 490		return -ENODEV;
 491
 492	if (paranoid_check_in_pq(ubi, e))
 493		return -ENODEV;
 494
 495	list_del(&e->u.list);
 496	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
 497	return 0;
 498}
 499
 500/**
 501 * sync_erase - synchronously erase a physical eraseblock.
 502 * @ubi: UBI device description object
 503 * @e: the the physical eraseblock to erase
 504 * @torture: if the physical eraseblock has to be tortured
 505 *
 506 * This function returns zero in case of success and a negative error code in
 507 * case of failure.
 508 */
 509static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 510		      int torture)
 511{
 512	int err;
 513	struct ubi_ec_hdr *ec_hdr;
 514	unsigned long long ec = e->ec;
 515
 516	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
 517
 518	err = paranoid_check_ec(ubi, e->pnum, e->ec);
 519	if (err)
 520		return -EINVAL;
 521
 522	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
 523	if (!ec_hdr)
 524		return -ENOMEM;
 525
 526	err = ubi_io_sync_erase(ubi, e->pnum, torture);
 527	if (err < 0)
 528		goto out_free;
 529
 530	ec += err;
 531	if (ec > UBI_MAX_ERASECOUNTER) {
 532		/*
 533		 * Erase counter overflow. Upgrade UBI and use 64-bit
 534		 * erase counters internally.
 535		 */
 536		ubi_err("erase counter overflow at PEB %d, EC %llu",
 537			e->pnum, ec);
 538		err = -EINVAL;
 539		goto out_free;
 540	}
 541
 542	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
 543
 544	ec_hdr->ec = cpu_to_be64(ec);
 545
 546	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
 547	if (err)
 548		goto out_free;
 549
 550	e->ec = ec;
 551	spin_lock(&ubi->wl_lock);
 552	if (e->ec > ubi->max_ec)
 553		ubi->max_ec = e->ec;
 554	spin_unlock(&ubi->wl_lock);
 555
 556out_free:
 557	kfree(ec_hdr);
 558	return err;
 559}
 560
 561/**
 562 * serve_prot_queue - check if it is time to stop protecting PEBs.
 563 * @ubi: UBI device description object
 564 *
 565 * This function is called after each erase operation and removes PEBs from the
 566 * tail of the protection queue. These PEBs have been protected for long enough
 567 * and should be moved to the used tree.
 568 */
 569static void serve_prot_queue(struct ubi_device *ubi)
 570{
 571	struct ubi_wl_entry *e, *tmp;
 572	int count;
 573
 574	/*
 575	 * There may be several protected physical eraseblock to remove,
 576	 * process them all.
 577	 */
 578repeat:
 579	count = 0;
 580	spin_lock(&ubi->wl_lock);
 581	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
 582		dbg_wl("PEB %d EC %d protection over, move to used tree",
 583			e->pnum, e->ec);
 584
 585		list_del(&e->u.list);
 586		wl_tree_add(e, &ubi->used);
 587		if (count++ > 32) {
 588			/*
 589			 * Let's be nice and avoid holding the spinlock for
 590			 * too long.
 591			 */
 592			spin_unlock(&ubi->wl_lock);
 593			cond_resched();
 594			goto repeat;
 595		}
 596	}
 597
 598	ubi->pq_head += 1;
 599	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
 600		ubi->pq_head = 0;
 601	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
 602	spin_unlock(&ubi->wl_lock);
 603}
 604
 605/**
 606 * schedule_ubi_work - schedule a work.
 607 * @ubi: UBI device description object
 608 * @wrk: the work to schedule
 609 *
 610 * This function adds a work defined by @wrk to the tail of the pending works
 611 * list.
 612 */
 613static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
 614{
 615	spin_lock(&ubi->wl_lock);
 616	list_add_tail(&wrk->list, &ubi->works);
 617	ubi_assert(ubi->works_count >= 0);
 618	ubi->works_count += 1;
 619	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
 620		wake_up_process(ubi->bgt_thread);
 621	spin_unlock(&ubi->wl_lock);
 622}
 623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 624static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
 625			int cancel);
 626
 627/**
 628 * schedule_erase - schedule an erase work.
 629 * @ubi: UBI device description object
 630 * @e: the WL entry of the physical eraseblock to erase
 
 
 631 * @torture: if the physical eraseblock has to be tortured
 
 632 *
 633 * This function returns zero in case of success and a %-ENOMEM in case of
 634 * failure.
 635 */
 636static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 637			  int torture)
 638{
 639	struct ubi_work *wl_wrk;
 640
 
 
 641	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
 642	       e->pnum, e->ec, torture);
 643
 644	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
 645	if (!wl_wrk)
 646		return -ENOMEM;
 647
 648	wl_wrk->func = &erase_worker;
 649	wl_wrk->e = e;
 
 
 650	wl_wrk->torture = torture;
 651
 652	schedule_ubi_work(ubi, wl_wrk);
 
 
 
 653	return 0;
 654}
 655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 656/**
 657 * wear_leveling_worker - wear-leveling worker function.
 658 * @ubi: UBI device description object
 659 * @wrk: the work object
 660 * @cancel: non-zero if the worker has to free memory and exit
 
 661 *
 662 * This function copies a more worn out physical eraseblock to a less worn out
 663 * one. Returns zero in case of success and a negative error code in case of
 664 * failure.
 665 */
 666static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
 667				int cancel)
 668{
 669	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
 670	int vol_id = -1, uninitialized_var(lnum);
 671	struct ubi_wl_entry *e1, *e2;
 
 672	struct ubi_vid_hdr *vid_hdr;
 
 673
 674	kfree(wrk);
 675	if (cancel)
 676		return 0;
 677
 678	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 679	if (!vid_hdr)
 680		return -ENOMEM;
 681
 
 
 
 682	mutex_lock(&ubi->move_mutex);
 683	spin_lock(&ubi->wl_lock);
 684	ubi_assert(!ubi->move_from && !ubi->move_to);
 685	ubi_assert(!ubi->move_to_put);
 686
 
 
 
 687	if (!ubi->free.rb_node ||
 
 688	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
 689		/*
 690		 * No free physical eraseblocks? Well, they must be waiting in
 691		 * the queue to be erased. Cancel movement - it will be
 692		 * triggered again when a free physical eraseblock appears.
 693		 *
 694		 * No used physical eraseblocks? They must be temporarily
 695		 * protected from being moved. They will be moved to the
 696		 * @ubi->used tree later and the wear-leveling will be
 697		 * triggered again.
 698		 */
 699		dbg_wl("cancel WL, a list is empty: free %d, used %d",
 700		       !ubi->free.rb_node, !ubi->used.rb_node);
 701		goto out_cancel;
 702	}
 703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 704	if (!ubi->scrub.rb_node) {
 
 705		/*
 706		 * Now pick the least worn-out used physical eraseblock and a
 707		 * highly worn-out free physical eraseblock. If the erase
 708		 * counters differ much enough, start wear-leveling.
 709		 */
 710		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
 711		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
 
 
 712
 713		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
 714			dbg_wl("no WL needed: min used EC %d, max free EC %d",
 715			       e1->ec, e2->ec);
 
 
 
 
 716			goto out_cancel;
 717		}
 718		paranoid_check_in_wl_tree(ubi, e1, &ubi->used);
 719		rb_erase(&e1->u.rb, &ubi->used);
 720		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
 721		       e1->pnum, e1->ec, e2->pnum, e2->ec);
 722	} else {
 723		/* Perform scrubbing */
 724		scrubbing = 1;
 725		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
 726		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
 727		paranoid_check_in_wl_tree(ubi, e1, &ubi->scrub);
 
 
 
 728		rb_erase(&e1->u.rb, &ubi->scrub);
 729		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
 730	}
 731
 732	paranoid_check_in_wl_tree(ubi, e2, &ubi->free);
 733	rb_erase(&e2->u.rb, &ubi->free);
 734	ubi->move_from = e1;
 735	ubi->move_to = e2;
 736	spin_unlock(&ubi->wl_lock);
 737
 738	/*
 739	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
 740	 * We so far do not know which logical eraseblock our physical
 741	 * eraseblock (@e1) belongs to. We have to read the volume identifier
 742	 * header first.
 743	 *
 744	 * Note, we are protected from this PEB being unmapped and erased. The
 745	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
 746	 * which is being moved was unmapped.
 747	 */
 748
 749	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
 750	if (err && err != UBI_IO_BITFLIPS) {
 
 751		if (err == UBI_IO_FF) {
 752			/*
 753			 * We are trying to move PEB without a VID header. UBI
 754			 * always write VID headers shortly after the PEB was
 755			 * given, so we have a situation when it has not yet
 756			 * had a chance to write it, because it was preempted.
 757			 * So add this PEB to the protection queue so far,
 758			 * because presumably more data will be written there
 759			 * (including the missing VID header), and then we'll
 760			 * move it.
 761			 */
 762			dbg_wl("PEB %d has no VID header", e1->pnum);
 763			protect = 1;
 764			goto out_not_moved;
 765		} else if (err == UBI_IO_FF_BITFLIPS) {
 766			/*
 767			 * The same situation as %UBI_IO_FF, but bit-flips were
 768			 * detected. It is better to schedule this PEB for
 769			 * scrubbing.
 770			 */
 771			dbg_wl("PEB %d has no VID header but has bit-flips",
 772			       e1->pnum);
 773			scrubbing = 1;
 774			goto out_not_moved;
 
 
 
 
 
 
 
 
 
 
 775		}
 776
 777		ubi_err("error %d while reading VID header from PEB %d",
 778			err, e1->pnum);
 779		goto out_error;
 780	}
 781
 782	vol_id = be32_to_cpu(vid_hdr->vol_id);
 783	lnum = be32_to_cpu(vid_hdr->lnum);
 784
 785	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
 786	if (err) {
 787		if (err == MOVE_CANCEL_RACE) {
 788			/*
 789			 * The LEB has not been moved because the volume is
 790			 * being deleted or the PEB has been put meanwhile. We
 791			 * should prevent this PEB from being selected for
 792			 * wear-leveling movement again, so put it to the
 793			 * protection queue.
 794			 */
 795			protect = 1;
 
 796			goto out_not_moved;
 797		}
 798
 799		if (err == MOVE_CANCEL_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
 
 
 
 
 800		    err == MOVE_TARGET_RD_ERR) {
 801			/*
 802			 * Target PEB had bit-flips or write error - torture it.
 803			 */
 804			torture = 1;
 
 805			goto out_not_moved;
 806		}
 807
 808		if (err == MOVE_SOURCE_RD_ERR) {
 809			/*
 810			 * An error happened while reading the source PEB. Do
 811			 * not switch to R/O mode in this case, and give the
 812			 * upper layers a possibility to recover from this,
 813			 * e.g. by unmapping corresponding LEB. Instead, just
 814			 * put this PEB to the @ubi->erroneous list to prevent
 815			 * UBI from trying to move it over and over again.
 816			 */
 817			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
 818				ubi_err("too many erroneous eraseblocks (%d)",
 819					ubi->erroneous_peb_count);
 820				goto out_error;
 821			}
 
 822			erroneous = 1;
 823			goto out_not_moved;
 824		}
 825
 826		if (err < 0)
 827			goto out_error;
 828
 829		ubi_assert(0);
 830	}
 831
 832	/* The PEB has been successfully moved */
 833	if (scrubbing)
 834		ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
 835			e1->pnum, vol_id, lnum, e2->pnum);
 836	ubi_free_vid_hdr(ubi, vid_hdr);
 837
 838	spin_lock(&ubi->wl_lock);
 839	if (!ubi->move_to_put) {
 840		wl_tree_add(e2, &ubi->used);
 841		e2 = NULL;
 842	}
 843	ubi->move_from = ubi->move_to = NULL;
 844	ubi->move_to_put = ubi->wl_scheduled = 0;
 845	spin_unlock(&ubi->wl_lock);
 846
 847	err = schedule_erase(ubi, e1, 0);
 848	if (err) {
 849		kmem_cache_free(ubi_wl_entry_slab, e1);
 850		if (e2)
 851			kmem_cache_free(ubi_wl_entry_slab, e2);
 
 
 852		goto out_ro;
 853	}
 854
 855	if (e2) {
 856		/*
 857		 * Well, the target PEB was put meanwhile, schedule it for
 858		 * erasure.
 859		 */
 860		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
 861		       e2->pnum, vol_id, lnum);
 862		err = schedule_erase(ubi, e2, 0);
 863		if (err) {
 864			kmem_cache_free(ubi_wl_entry_slab, e2);
 865			goto out_ro;
 866		}
 867	}
 868
 869	dbg_wl("done");
 870	mutex_unlock(&ubi->move_mutex);
 
 871	return 0;
 872
 873	/*
 874	 * For some reasons the LEB was not moved, might be an error, might be
 875	 * something else. @e1 was not changed, so return it back. @e2 might
 876	 * have been changed, schedule it for erasure.
 877	 */
 878out_not_moved:
 879	if (vol_id != -1)
 880		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
 881		       e1->pnum, vol_id, lnum, e2->pnum, err);
 882	else
 883		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
 884		       e1->pnum, e2->pnum, err);
 885	spin_lock(&ubi->wl_lock);
 886	if (protect)
 887		prot_queue_add(ubi, e1);
 888	else if (erroneous) {
 889		wl_tree_add(e1, &ubi->erroneous);
 890		ubi->erroneous_peb_count += 1;
 891	} else if (scrubbing)
 892		wl_tree_add(e1, &ubi->scrub);
 893	else
 894		wl_tree_add(e1, &ubi->used);
 
 
 
 
 
 895	ubi_assert(!ubi->move_to_put);
 896	ubi->move_from = ubi->move_to = NULL;
 897	ubi->wl_scheduled = 0;
 898	spin_unlock(&ubi->wl_lock);
 899
 900	ubi_free_vid_hdr(ubi, vid_hdr);
 901	err = schedule_erase(ubi, e2, torture);
 902	if (err) {
 903		kmem_cache_free(ubi_wl_entry_slab, e2);
 904		goto out_ro;
 
 
 
 
 
 
 
 
 905	}
 
 906	mutex_unlock(&ubi->move_mutex);
 
 907	return 0;
 908
 909out_error:
 910	if (vol_id != -1)
 911		ubi_err("error %d while moving PEB %d to PEB %d",
 912			err, e1->pnum, e2->pnum);
 913	else
 914		ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
 915			err, e1->pnum, vol_id, lnum, e2->pnum);
 916	spin_lock(&ubi->wl_lock);
 917	ubi->move_from = ubi->move_to = NULL;
 918	ubi->move_to_put = ubi->wl_scheduled = 0;
 
 
 919	spin_unlock(&ubi->wl_lock);
 920
 921	ubi_free_vid_hdr(ubi, vid_hdr);
 922	kmem_cache_free(ubi_wl_entry_slab, e1);
 923	kmem_cache_free(ubi_wl_entry_slab, e2);
 924
 925out_ro:
 926	ubi_ro_mode(ubi);
 927	mutex_unlock(&ubi->move_mutex);
 
 928	ubi_assert(err != 0);
 929	return err < 0 ? err : -EIO;
 930
 931out_cancel:
 932	ubi->wl_scheduled = 0;
 933	spin_unlock(&ubi->wl_lock);
 934	mutex_unlock(&ubi->move_mutex);
 935	ubi_free_vid_hdr(ubi, vid_hdr);
 
 936	return 0;
 937}
 938
 939/**
 940 * ensure_wear_leveling - schedule wear-leveling if it is needed.
 941 * @ubi: UBI device description object
 
 942 *
 943 * This function checks if it is time to start wear-leveling and schedules it
 944 * if yes. This function returns zero in case of success and a negative error
 945 * code in case of failure.
 946 */
 947static int ensure_wear_leveling(struct ubi_device *ubi)
 948{
 949	int err = 0;
 950	struct ubi_wl_entry *e1;
 951	struct ubi_wl_entry *e2;
 952	struct ubi_work *wrk;
 953
 954	spin_lock(&ubi->wl_lock);
 955	if (ubi->wl_scheduled)
 956		/* Wear-leveling is already in the work queue */
 957		goto out_unlock;
 958
 959	/*
 960	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
 961	 * the WL worker has to be scheduled anyway.
 962	 */
 963	if (!ubi->scrub.rb_node) {
 
 
 
 
 
 
 
 964		if (!ubi->used.rb_node || !ubi->free.rb_node)
 965			/* No physical eraseblocks - no deal */
 966			goto out_unlock;
 967
 968		/*
 969		 * We schedule wear-leveling only if the difference between the
 970		 * lowest erase counter of used physical eraseblocks and a high
 971		 * erase counter of free physical eraseblocks is greater than
 972		 * %UBI_WL_THRESHOLD.
 973		 */
 974		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
 975		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
 976
 977		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
 978			goto out_unlock;
 
 979		dbg_wl("schedule wear-leveling");
 980	} else
 981		dbg_wl("schedule scrubbing");
 982
 983	ubi->wl_scheduled = 1;
 984	spin_unlock(&ubi->wl_lock);
 985
 986	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
 987	if (!wrk) {
 988		err = -ENOMEM;
 989		goto out_cancel;
 990	}
 991
 992	wrk->func = &wear_leveling_worker;
 993	schedule_ubi_work(ubi, wrk);
 
 
 
 994	return err;
 995
 996out_cancel:
 997	spin_lock(&ubi->wl_lock);
 998	ubi->wl_scheduled = 0;
 999out_unlock:
1000	spin_unlock(&ubi->wl_lock);
1001	return err;
1002}
1003
1004/**
1005 * erase_worker - physical eraseblock erase worker function.
1006 * @ubi: UBI device description object
1007 * @wl_wrk: the work object
1008 * @cancel: non-zero if the worker has to free memory and exit
1009 *
1010 * This function erases a physical eraseblock and perform torture testing if
1011 * needed. It also takes care about marking the physical eraseblock bad if
1012 * needed. Returns zero in case of success and a negative error code in case of
1013 * failure.
1014 */
1015static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1016			int cancel)
1017{
1018	struct ubi_wl_entry *e = wl_wrk->e;
1019	int pnum = e->pnum, err, need;
1020
1021	if (cancel) {
1022		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1023		kfree(wl_wrk);
1024		kmem_cache_free(ubi_wl_entry_slab, e);
1025		return 0;
1026	}
1027
1028	dbg_wl("erase PEB %d EC %d", pnum, e->ec);
 
1029
1030	err = sync_erase(ubi, e, wl_wrk->torture);
1031	if (!err) {
1032		/* Fine, we've erased it successfully */
1033		kfree(wl_wrk);
 
 
 
 
 
 
 
 
 
 
 
 
1034
1035		spin_lock(&ubi->wl_lock);
1036		wl_tree_add(e, &ubi->free);
1037		spin_unlock(&ubi->wl_lock);
1038
1039		/*
1040		 * One more erase operation has happened, take care about
1041		 * protected physical eraseblocks.
1042		 */
1043		serve_prot_queue(ubi);
1044
1045		/* And take care about wear-leveling */
1046		err = ensure_wear_leveling(ubi);
1047		return err;
1048	}
1049
1050	ubi_err("failed to erase PEB %d, error %d", pnum, err);
1051	kfree(wl_wrk);
1052	kmem_cache_free(ubi_wl_entry_slab, e);
1053
1054	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1055	    err == -EBUSY) {
1056		int err1;
1057
1058		/* Re-schedule the LEB for erasure */
1059		err1 = schedule_erase(ubi, e, 0);
1060		if (err1) {
 
 
 
1061			err = err1;
1062			goto out_ro;
1063		}
1064		return err;
1065	} else if (err != -EIO) {
 
 
 
 
 
1066		/*
1067		 * If this is not %-EIO, we have no idea what to do. Scheduling
1068		 * this physical eraseblock for erasure again would cause
1069		 * errors again and again. Well, lets switch to R/O mode.
1070		 */
1071		goto out_ro;
1072	}
1073
1074	/* It is %-EIO, the PEB went bad */
1075
1076	if (!ubi->bad_allowed) {
1077		ubi_err("bad physical eraseblock %d detected", pnum);
1078		goto out_ro;
1079	}
1080
1081	spin_lock(&ubi->volumes_lock);
1082	need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1083	if (need > 0) {
1084		need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1085		ubi->avail_pebs -= need;
1086		ubi->rsvd_pebs += need;
1087		ubi->beb_rsvd_pebs += need;
1088		if (need > 0)
1089			ubi_msg("reserve more %d PEBs", need);
1090	}
1091
1092	if (ubi->beb_rsvd_pebs == 0) {
1093		spin_unlock(&ubi->volumes_lock);
1094		ubi_err("no reserved physical eraseblocks");
1095		goto out_ro;
 
 
 
 
1096	}
1097	spin_unlock(&ubi->volumes_lock);
1098
1099	ubi_msg("mark PEB %d as bad", pnum);
1100	err = ubi_io_mark_bad(ubi, pnum);
1101	if (err)
1102		goto out_ro;
1103
1104	spin_lock(&ubi->volumes_lock);
1105	ubi->beb_rsvd_pebs -= 1;
 
 
 
 
 
 
 
 
 
 
1106	ubi->bad_peb_count += 1;
1107	ubi->good_peb_count -= 1;
1108	ubi_calculate_reserved(ubi);
1109	if (ubi->beb_rsvd_pebs)
1110		ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
 
 
 
1111	else
1112		ubi_warn("last PEB from the reserved pool was used");
1113	spin_unlock(&ubi->volumes_lock);
1114
1115	return err;
1116
1117out_ro:
 
 
 
 
 
1118	ubi_ro_mode(ubi);
1119	return err;
1120}
1121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122/**
1123 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1124 * @ubi: UBI device description object
 
 
1125 * @pnum: physical eraseblock to return
1126 * @torture: if this physical eraseblock has to be tortured
1127 *
1128 * This function is called to return physical eraseblock @pnum to the pool of
1129 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1130 * occurred to this @pnum and it has to be tested. This function returns zero
1131 * in case of success, and a negative error code in case of failure.
1132 */
1133int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
 
1134{
1135	int err;
1136	struct ubi_wl_entry *e;
1137
1138	dbg_wl("PEB %d", pnum);
1139	ubi_assert(pnum >= 0);
1140	ubi_assert(pnum < ubi->peb_count);
1141
 
 
1142retry:
1143	spin_lock(&ubi->wl_lock);
1144	e = ubi->lookuptbl[pnum];
 
 
 
 
 
 
 
 
 
 
 
 
1145	if (e == ubi->move_from) {
1146		/*
1147		 * User is putting the physical eraseblock which was selected to
1148		 * be moved. It will be scheduled for erasure in the
1149		 * wear-leveling worker.
1150		 */
1151		dbg_wl("PEB %d is being moved, wait", pnum);
1152		spin_unlock(&ubi->wl_lock);
1153
1154		/* Wait for the WL worker by taking the @ubi->move_mutex */
1155		mutex_lock(&ubi->move_mutex);
1156		mutex_unlock(&ubi->move_mutex);
1157		goto retry;
1158	} else if (e == ubi->move_to) {
1159		/*
1160		 * User is putting the physical eraseblock which was selected
1161		 * as the target the data is moved to. It may happen if the EBA
1162		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1163		 * but the WL sub-system has not put the PEB to the "used" tree
1164		 * yet, but it is about to do this. So we just set a flag which
1165		 * will tell the WL worker that the PEB is not needed anymore
1166		 * and should be scheduled for erasure.
1167		 */
1168		dbg_wl("PEB %d is the target of data moving", pnum);
1169		ubi_assert(!ubi->move_to_put);
1170		ubi->move_to_put = 1;
1171		spin_unlock(&ubi->wl_lock);
 
1172		return 0;
1173	} else {
1174		if (in_wl_tree(e, &ubi->used)) {
1175			paranoid_check_in_wl_tree(ubi, e, &ubi->used);
1176			rb_erase(&e->u.rb, &ubi->used);
1177		} else if (in_wl_tree(e, &ubi->scrub)) {
1178			paranoid_check_in_wl_tree(ubi, e, &ubi->scrub);
1179			rb_erase(&e->u.rb, &ubi->scrub);
1180		} else if (in_wl_tree(e, &ubi->erroneous)) {
1181			paranoid_check_in_wl_tree(ubi, e, &ubi->erroneous);
1182			rb_erase(&e->u.rb, &ubi->erroneous);
1183			ubi->erroneous_peb_count -= 1;
1184			ubi_assert(ubi->erroneous_peb_count >= 0);
1185			/* Erroneous PEBs should be tortured */
1186			torture = 1;
1187		} else {
1188			err = prot_queue_del(ubi, e->pnum);
1189			if (err) {
1190				ubi_err("PEB %d not found", pnum);
1191				ubi_ro_mode(ubi);
1192				spin_unlock(&ubi->wl_lock);
 
1193				return err;
1194			}
1195		}
1196	}
1197	spin_unlock(&ubi->wl_lock);
1198
1199	err = schedule_erase(ubi, e, torture);
1200	if (err) {
1201		spin_lock(&ubi->wl_lock);
1202		wl_tree_add(e, &ubi->used);
1203		spin_unlock(&ubi->wl_lock);
1204	}
1205
 
1206	return err;
1207}
1208
1209/**
1210 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1211 * @ubi: UBI device description object
1212 * @pnum: the physical eraseblock to schedule
1213 *
1214 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1215 * needs scrubbing. This function schedules a physical eraseblock for
1216 * scrubbing which is done in background. This function returns zero in case of
1217 * success and a negative error code in case of failure.
1218 */
1219int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1220{
1221	struct ubi_wl_entry *e;
1222
1223	dbg_msg("schedule PEB %d for scrubbing", pnum);
1224
1225retry:
1226	spin_lock(&ubi->wl_lock);
1227	e = ubi->lookuptbl[pnum];
1228	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1229				   in_wl_tree(e, &ubi->erroneous)) {
1230		spin_unlock(&ubi->wl_lock);
1231		return 0;
1232	}
1233
1234	if (e == ubi->move_to) {
1235		/*
1236		 * This physical eraseblock was used to move data to. The data
1237		 * was moved but the PEB was not yet inserted to the proper
1238		 * tree. We should just wait a little and let the WL worker
1239		 * proceed.
1240		 */
1241		spin_unlock(&ubi->wl_lock);
1242		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1243		yield();
1244		goto retry;
1245	}
1246
1247	if (in_wl_tree(e, &ubi->used)) {
1248		paranoid_check_in_wl_tree(ubi, e, &ubi->used);
1249		rb_erase(&e->u.rb, &ubi->used);
1250	} else {
1251		int err;
1252
1253		err = prot_queue_del(ubi, e->pnum);
1254		if (err) {
1255			ubi_err("PEB %d not found", pnum);
1256			ubi_ro_mode(ubi);
1257			spin_unlock(&ubi->wl_lock);
1258			return err;
1259		}
1260	}
1261
1262	wl_tree_add(e, &ubi->scrub);
1263	spin_unlock(&ubi->wl_lock);
1264
1265	/*
1266	 * Technically scrubbing is the same as wear-leveling, so it is done
1267	 * by the WL worker.
1268	 */
1269	return ensure_wear_leveling(ubi);
1270}
1271
1272/**
1273 * ubi_wl_flush - flush all pending works.
1274 * @ubi: UBI device description object
 
 
1275 *
1276 * This function returns zero in case of success and a negative error code in
1277 * case of failure.
 
 
 
1278 */
1279int ubi_wl_flush(struct ubi_device *ubi)
1280{
1281	int err;
 
1282
1283	/*
1284	 * Erase while the pending works queue is not empty, but not more than
1285	 * the number of currently pending works.
1286	 */
1287	dbg_wl("flush (%d pending works)", ubi->works_count);
1288	while (ubi->works_count) {
1289		err = do_work(ubi);
1290		if (err)
1291			return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1292	}
1293
1294	/*
1295	 * Make sure all the works which have been done in parallel are
1296	 * finished.
1297	 */
1298	down_write(&ubi->work_sem);
1299	up_write(&ubi->work_sem);
1300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1301	/*
1302	 * And in case last was the WL worker and it canceled the LEB
1303	 * movement, flush again.
1304	 */
1305	while (ubi->works_count) {
1306		dbg_wl("flush more (%d pending works)", ubi->works_count);
1307		err = do_work(ubi);
1308		if (err)
1309			return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1310	}
1311
1312	return 0;
 
 
 
 
1313}
1314
1315/**
1316 * tree_destroy - destroy an RB-tree.
 
1317 * @root: the root of the tree to destroy
1318 */
1319static void tree_destroy(struct rb_root *root)
1320{
1321	struct rb_node *rb;
1322	struct ubi_wl_entry *e;
1323
1324	rb = root->rb_node;
1325	while (rb) {
1326		if (rb->rb_left)
1327			rb = rb->rb_left;
1328		else if (rb->rb_right)
1329			rb = rb->rb_right;
1330		else {
1331			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1332
1333			rb = rb_parent(rb);
1334			if (rb) {
1335				if (rb->rb_left == &e->u.rb)
1336					rb->rb_left = NULL;
1337				else
1338					rb->rb_right = NULL;
1339			}
1340
1341			kmem_cache_free(ubi_wl_entry_slab, e);
1342		}
1343	}
1344}
1345
1346/**
1347 * ubi_thread - UBI background thread.
1348 * @u: the UBI device description object pointer
1349 */
1350int ubi_thread(void *u)
1351{
1352	int failures = 0;
1353	struct ubi_device *ubi = u;
1354
1355	ubi_msg("background thread \"%s\" started, PID %d",
1356		ubi->bgt_name, task_pid_nr(current));
1357
1358	set_freezable();
1359	for (;;) {
1360		int err;
1361
1362		if (kthread_should_stop())
1363			break;
1364
1365		if (try_to_freeze())
1366			continue;
1367
1368		spin_lock(&ubi->wl_lock);
1369		if (list_empty(&ubi->works) || ubi->ro_mode ||
1370		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1371			set_current_state(TASK_INTERRUPTIBLE);
1372			spin_unlock(&ubi->wl_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
1373			schedule();
1374			continue;
1375		}
1376		spin_unlock(&ubi->wl_lock);
1377
1378		err = do_work(ubi);
1379		if (err) {
1380			ubi_err("%s: work failed with error code %d",
1381				ubi->bgt_name, err);
1382			if (failures++ > WL_MAX_FAILURES) {
1383				/*
1384				 * Too many failures, disable the thread and
1385				 * switch to read-only mode.
1386				 */
1387				ubi_msg("%s: %d consecutive failures",
1388					ubi->bgt_name, WL_MAX_FAILURES);
1389				ubi_ro_mode(ubi);
1390				ubi->thread_enabled = 0;
1391				continue;
1392			}
1393		} else
1394			failures = 0;
1395
1396		cond_resched();
1397	}
1398
1399	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
 
1400	return 0;
1401}
1402
1403/**
1404 * cancel_pending - cancel all pending works.
1405 * @ubi: UBI device description object
1406 */
1407static void cancel_pending(struct ubi_device *ubi)
1408{
1409	while (!list_empty(&ubi->works)) {
1410		struct ubi_work *wrk;
1411
1412		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1413		list_del(&wrk->list);
1414		wrk->func(ubi, wrk, 1);
1415		ubi->works_count -= 1;
1416		ubi_assert(ubi->works_count >= 0);
1417	}
1418}
1419
1420/**
1421 * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
1422 * @ubi: UBI device description object
1423 * @si: scanning information
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424 *
1425 * This function returns zero in case of success, and a negative error code in
1426 * case of failure.
1427 */
1428int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1429{
1430	int err, i;
1431	struct rb_node *rb1, *rb2;
1432	struct ubi_scan_volume *sv;
1433	struct ubi_scan_leb *seb, *tmp;
1434	struct ubi_wl_entry *e;
1435
1436	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1437	spin_lock_init(&ubi->wl_lock);
1438	mutex_init(&ubi->move_mutex);
1439	init_rwsem(&ubi->work_sem);
1440	ubi->max_ec = si->max_ec;
1441	INIT_LIST_HEAD(&ubi->works);
1442
1443	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1444
1445	err = -ENOMEM;
1446	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1447	if (!ubi->lookuptbl)
1448		return err;
1449
1450	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1451		INIT_LIST_HEAD(&ubi->pq[i]);
1452	ubi->pq_head = 0;
1453
1454	list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
 
1455		cond_resched();
1456
1457		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1458		if (!e)
1459			goto out_free;
1460
1461		e->pnum = seb->pnum;
1462		e->ec = seb->ec;
1463		ubi->lookuptbl[e->pnum] = e;
1464		if (schedule_erase(ubi, e, 0)) {
1465			kmem_cache_free(ubi_wl_entry_slab, e);
1466			goto out_free;
1467		}
1468	}
1469
1470	list_for_each_entry(seb, &si->free, u.list) {
1471		cond_resched();
1472
1473		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1474		if (!e)
 
1475			goto out_free;
 
1476
1477		e->pnum = seb->pnum;
1478		e->ec = seb->ec;
1479		ubi_assert(e->ec >= 0);
 
1480		wl_tree_add(e, &ubi->free);
 
 
1481		ubi->lookuptbl[e->pnum] = e;
 
 
1482	}
1483
1484	ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1485		ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1486			cond_resched();
1487
1488			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1489			if (!e)
 
1490				goto out_free;
 
1491
1492			e->pnum = seb->pnum;
1493			e->ec = seb->ec;
1494			ubi->lookuptbl[e->pnum] = e;
1495			if (!seb->scrub) {
 
1496				dbg_wl("add PEB %d EC %d to the used tree",
1497				       e->pnum, e->ec);
1498				wl_tree_add(e, &ubi->used);
1499			} else {
1500				dbg_wl("add PEB %d EC %d to the scrub tree",
1501				       e->pnum, e->ec);
1502				wl_tree_add(e, &ubi->scrub);
1503			}
 
 
1504		}
1505	}
1506
1507	if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1508		ubi_err("no enough physical eraseblocks (%d, need %d)",
1509			ubi->avail_pebs, WL_RESERVED_PEBS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510		if (ubi->corr_peb_count)
1511			ubi_err("%d PEBs are corrupted and not used",
1512				ubi->corr_peb_count);
 
1513		goto out_free;
1514	}
1515	ubi->avail_pebs -= WL_RESERVED_PEBS;
1516	ubi->rsvd_pebs += WL_RESERVED_PEBS;
1517
1518	/* Schedule wear-leveling if needed */
1519	err = ensure_wear_leveling(ubi);
1520	if (err)
1521		goto out_free;
1522
 
 
 
 
1523	return 0;
1524
1525out_free:
1526	cancel_pending(ubi);
1527	tree_destroy(&ubi->used);
1528	tree_destroy(&ubi->free);
1529	tree_destroy(&ubi->scrub);
1530	kfree(ubi->lookuptbl);
1531	return err;
1532}
1533
1534/**
1535 * protection_queue_destroy - destroy the protection queue.
1536 * @ubi: UBI device description object
1537 */
1538static void protection_queue_destroy(struct ubi_device *ubi)
1539{
1540	int i;
1541	struct ubi_wl_entry *e, *tmp;
1542
1543	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1544		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1545			list_del(&e->u.list);
1546			kmem_cache_free(ubi_wl_entry_slab, e);
1547		}
1548	}
1549}
1550
1551/**
1552 * ubi_wl_close - close the wear-leveling sub-system.
1553 * @ubi: UBI device description object
1554 */
1555void ubi_wl_close(struct ubi_device *ubi)
1556{
1557	dbg_wl("close the WL sub-system");
1558	cancel_pending(ubi);
 
1559	protection_queue_destroy(ubi);
1560	tree_destroy(&ubi->used);
1561	tree_destroy(&ubi->erroneous);
1562	tree_destroy(&ubi->free);
1563	tree_destroy(&ubi->scrub);
1564	kfree(ubi->lookuptbl);
1565}
1566
1567#ifdef CONFIG_MTD_UBI_DEBUG
1568
1569/**
1570 * paranoid_check_ec - make sure that the erase counter of a PEB is correct.
1571 * @ubi: UBI device description object
1572 * @pnum: the physical eraseblock number to check
1573 * @ec: the erase counter to check
1574 *
1575 * This function returns zero if the erase counter of physical eraseblock @pnum
1576 * is equivalent to @ec, and a negative error code if not or if an error
1577 * occurred.
1578 */
1579static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1580{
1581	int err;
1582	long long read_ec;
1583	struct ubi_ec_hdr *ec_hdr;
1584
1585	if (!ubi->dbg->chk_gen)
1586		return 0;
1587
1588	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1589	if (!ec_hdr)
1590		return -ENOMEM;
1591
1592	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1593	if (err && err != UBI_IO_BITFLIPS) {
1594		/* The header does not have to exist */
1595		err = 0;
1596		goto out_free;
1597	}
1598
1599	read_ec = be64_to_cpu(ec_hdr->ec);
1600	if (ec != read_ec) {
1601		ubi_err("paranoid check failed for PEB %d", pnum);
1602		ubi_err("read EC is %lld, should be %d", read_ec, ec);
1603		ubi_dbg_dump_stack();
1604		err = 1;
1605	} else
1606		err = 0;
1607
1608out_free:
1609	kfree(ec_hdr);
1610	return err;
1611}
1612
1613/**
1614 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1615 * @ubi: UBI device description object
1616 * @e: the wear-leveling entry to check
1617 * @root: the root of the tree
1618 *
1619 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1620 * is not.
1621 */
1622static int paranoid_check_in_wl_tree(const struct ubi_device *ubi,
1623				     struct ubi_wl_entry *e,
1624				     struct rb_root *root)
1625{
1626	if (!ubi->dbg->chk_gen)
1627		return 0;
1628
1629	if (in_wl_tree(e, root))
1630		return 0;
1631
1632	ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1633		e->pnum, e->ec, root);
1634	ubi_dbg_dump_stack();
1635	return -EINVAL;
1636}
1637
1638/**
1639 * paranoid_check_in_pq - check if wear-leveling entry is in the protection
1640 *                        queue.
1641 * @ubi: UBI device description object
1642 * @e: the wear-leveling entry to check
1643 *
1644 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1645 */
1646static int paranoid_check_in_pq(const struct ubi_device *ubi,
1647				struct ubi_wl_entry *e)
1648{
1649	struct ubi_wl_entry *p;
1650	int i;
1651
1652	if (!ubi->dbg->chk_gen)
1653		return 0;
1654
1655	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1656		list_for_each_entry(p, &ubi->pq[i], u.list)
1657			if (p == e)
1658				return 0;
1659
1660	ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue",
1661		e->pnum, e->ec);
1662	ubi_dbg_dump_stack();
1663	return -EINVAL;
1664}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1665
1666#endif /* CONFIG_MTD_UBI_DEBUG */