Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (c) International Business Machines Corp., 2006
   4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
   6 */
   7
   8/*
   9 * UBI wear-leveling sub-system.
  10 *
  11 * This sub-system is responsible for wear-leveling. It works in terms of
  12 * physical eraseblocks and erase counters and knows nothing about logical
  13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
  14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
  15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
  16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
  17 *
  18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
  19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
  20 *
  21 * When physical eraseblocks are returned to the WL sub-system by means of the
  22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
  23 * done asynchronously in context of the per-UBI device background thread,
  24 * which is also managed by the WL sub-system.
  25 *
  26 * The wear-leveling is ensured by means of moving the contents of used
  27 * physical eraseblocks with low erase counter to free physical eraseblocks
  28 * with high erase counter.
  29 *
  30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
  31 * bad.
  32 *
  33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
  34 * in a physical eraseblock, it has to be moved. Technically this is the same
  35 * as moving it for wear-leveling reasons.
  36 *
  37 * As it was said, for the UBI sub-system all physical eraseblocks are either
  38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
  39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
  40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
  41 *
  42 * When the WL sub-system returns a physical eraseblock, the physical
  43 * eraseblock is protected from being moved for some "time". For this reason,
  44 * the physical eraseblock is not directly moved from the @wl->free tree to the
  45 * @wl->used tree. There is a protection queue in between where this
  46 * physical eraseblock is temporarily stored (@wl->pq).
  47 *
  48 * All this protection stuff is needed because:
  49 *  o we don't want to move physical eraseblocks just after we have given them
  50 *    to the user; instead, we first want to let users fill them up with data;
  51 *
  52 *  o there is a chance that the user will put the physical eraseblock very
  53 *    soon, so it makes sense not to move it for some time, but wait.
  54 *
  55 * Physical eraseblocks stay protected only for limited time. But the "time" is
  56 * measured in erase cycles in this case. This is implemented with help of the
  57 * protection queue. Eraseblocks are put to the tail of this queue when they
  58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
  59 * head of the queue on each erase operation (for any eraseblock). So the
  60 * length of the queue defines how may (global) erase cycles PEBs are protected.
  61 *
  62 * To put it differently, each physical eraseblock has 2 main states: free and
  63 * used. The former state corresponds to the @wl->free tree. The latter state
  64 * is split up on several sub-states:
  65 * o the WL movement is allowed (@wl->used tree);
  66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
  67 *   erroneous - e.g., there was a read error;
  68 * o the WL movement is temporarily prohibited (@wl->pq queue);
  69 * o scrubbing is needed (@wl->scrub tree).
  70 *
  71 * Depending on the sub-state, wear-leveling entries of the used physical
  72 * eraseblocks may be kept in one of those structures.
  73 *
  74 * Note, in this implementation, we keep a small in-RAM object for each physical
  75 * eraseblock. This is surely not a scalable solution. But it appears to be good
  76 * enough for moderately large flashes and it is simple. In future, one may
  77 * re-work this sub-system and make it more scalable.
  78 *
  79 * At the moment this sub-system does not utilize the sequence number, which
  80 * was introduced relatively recently. But it would be wise to do this because
  81 * the sequence number of a logical eraseblock characterizes how old is it. For
  82 * example, when we move a PEB with low erase counter, and we need to pick the
  83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
  84 * pick target PEB with an average EC if our PEB is not very "old". This is a
  85 * room for future re-works of the WL sub-system.
  86 */
  87
  88#include <linux/slab.h>
  89#include <linux/crc32.h>
  90#include <linux/freezer.h>
  91#include <linux/kthread.h>
  92#include "ubi.h"
  93#include "wl.h"
  94
  95/* Number of physical eraseblocks reserved for wear-leveling purposes */
  96#define WL_RESERVED_PEBS 1
  97
  98/*
  99 * Maximum difference between two erase counters. If this threshold is
 100 * exceeded, the WL sub-system starts moving data from used physical
 101 * eraseblocks with low erase counter to free physical eraseblocks with high
 102 * erase counter.
 103 */
 104#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
 105
 106/*
 107 * When a physical eraseblock is moved, the WL sub-system has to pick the target
 108 * physical eraseblock to move to. The simplest way would be just to pick the
 109 * one with the highest erase counter. But in certain workloads this could lead
 110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
 111 * situation when the picked physical eraseblock is constantly erased after the
 112 * data is written to it. So, we have a constant which limits the highest erase
 113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
 114 * does not pick eraseblocks with erase counter greater than the lowest erase
 115 * counter plus %WL_FREE_MAX_DIFF.
 116 */
 117#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
 118
 119/*
 120 * Maximum number of consecutive background thread failures which is enough to
 121 * switch to read-only mode.
 122 */
 123#define WL_MAX_FAILURES 32
 124
 125static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
 126static int self_check_in_wl_tree(const struct ubi_device *ubi,
 127				 struct ubi_wl_entry *e, struct rb_root *root);
 128static int self_check_in_pq(const struct ubi_device *ubi,
 129			    struct ubi_wl_entry *e);
 130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 131/**
 132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
 133 * @e: the wear-leveling entry to add
 134 * @root: the root of the tree
 135 *
 136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
 137 * the @ubi->used and @ubi->free RB-trees.
 138 */
 139static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
 140{
 141	struct rb_node **p, *parent = NULL;
 142
 143	p = &root->rb_node;
 144	while (*p) {
 145		struct ubi_wl_entry *e1;
 146
 147		parent = *p;
 148		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
 149
 150		if (e->ec < e1->ec)
 151			p = &(*p)->rb_left;
 152		else if (e->ec > e1->ec)
 153			p = &(*p)->rb_right;
 154		else {
 155			ubi_assert(e->pnum != e1->pnum);
 156			if (e->pnum < e1->pnum)
 157				p = &(*p)->rb_left;
 158			else
 159				p = &(*p)->rb_right;
 160		}
 161	}
 162
 163	rb_link_node(&e->u.rb, parent, p);
 164	rb_insert_color(&e->u.rb, root);
 165}
 166
 167/**
 168 * wl_entry_destroy - destroy a wear-leveling entry.
 169 * @ubi: UBI device description object
 170 * @e: the wear-leveling entry to add
 171 *
 172 * This function destroys a wear leveling entry and removes
 173 * the reference from the lookup table.
 174 */
 175static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
 176{
 177	ubi->lookuptbl[e->pnum] = NULL;
 178	kmem_cache_free(ubi_wl_entry_slab, e);
 179}
 180
 181/**
 182 * do_work - do one pending work.
 183 * @ubi: UBI device description object
 184 * @executed: whether there is one work is executed
 185 *
 186 * This function returns zero in case of success and a negative error code in
 187 * case of failure. If @executed is not NULL and there is one work executed,
 188 * @executed is set as %1, otherwise @executed is set as %0.
 189 */
 190static int do_work(struct ubi_device *ubi, int *executed)
 191{
 192	int err;
 193	struct ubi_work *wrk;
 194
 195	cond_resched();
 196
 197	/*
 198	 * @ubi->work_sem is used to synchronize with the workers. Workers take
 199	 * it in read mode, so many of them may be doing works at a time. But
 200	 * the queue flush code has to be sure the whole queue of works is
 201	 * done, and it takes the mutex in write mode.
 202	 */
 203	down_read(&ubi->work_sem);
 204	spin_lock(&ubi->wl_lock);
 205	if (list_empty(&ubi->works)) {
 206		spin_unlock(&ubi->wl_lock);
 207		up_read(&ubi->work_sem);
 208		if (executed)
 209			*executed = 0;
 210		return 0;
 211	}
 212
 213	if (executed)
 214		*executed = 1;
 215	wrk = list_entry(ubi->works.next, struct ubi_work, list);
 216	list_del(&wrk->list);
 217	ubi->works_count -= 1;
 218	ubi_assert(ubi->works_count >= 0);
 219	spin_unlock(&ubi->wl_lock);
 220
 221	/*
 222	 * Call the worker function. Do not touch the work structure
 223	 * after this call as it will have been freed or reused by that
 224	 * time by the worker function.
 225	 */
 226	err = wrk->func(ubi, wrk, 0);
 227	if (err)
 228		ubi_err(ubi, "work failed with error code %d", err);
 229	up_read(&ubi->work_sem);
 230
 231	return err;
 232}
 233
 234/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 235 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
 236 * @e: the wear-leveling entry to check
 237 * @root: the root of the tree
 238 *
 239 * This function returns non-zero if @e is in the @root RB-tree and zero if it
 240 * is not.
 241 */
 242static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
 243{
 244	struct rb_node *p;
 245
 246	p = root->rb_node;
 247	while (p) {
 248		struct ubi_wl_entry *e1;
 249
 250		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 251
 252		if (e->pnum == e1->pnum) {
 253			ubi_assert(e == e1);
 254			return 1;
 255		}
 256
 257		if (e->ec < e1->ec)
 258			p = p->rb_left;
 259		else if (e->ec > e1->ec)
 260			p = p->rb_right;
 261		else {
 262			ubi_assert(e->pnum != e1->pnum);
 263			if (e->pnum < e1->pnum)
 264				p = p->rb_left;
 265			else
 266				p = p->rb_right;
 267		}
 268	}
 269
 270	return 0;
 271}
 272
 273/**
 274 * in_pq - check if a wear-leveling entry is present in the protection queue.
 275 * @ubi: UBI device description object
 276 * @e: the wear-leveling entry to check
 277 *
 278 * This function returns non-zero if @e is in the protection queue and zero
 279 * if it is not.
 280 */
 281static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
 282{
 283	struct ubi_wl_entry *p;
 284	int i;
 285
 286	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
 287		list_for_each_entry(p, &ubi->pq[i], u.list)
 288			if (p == e)
 289				return 1;
 290
 291	return 0;
 292}
 293
 294/**
 295 * prot_queue_add - add physical eraseblock to the protection queue.
 296 * @ubi: UBI device description object
 297 * @e: the physical eraseblock to add
 298 *
 299 * This function adds @e to the tail of the protection queue @ubi->pq, where
 300 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
 301 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
 302 * be locked.
 303 */
 304static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
 305{
 306	int pq_tail = ubi->pq_head - 1;
 307
 308	if (pq_tail < 0)
 309		pq_tail = UBI_PROT_QUEUE_LEN - 1;
 310	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
 311	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
 312	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
 313}
 314
 315/**
 316 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
 317 * @ubi: UBI device description object
 318 * @root: the RB-tree where to look for
 319 * @diff: maximum possible difference from the smallest erase counter
 320 * @pick_max: pick PEB even its erase counter beyonds 'min_ec + @diff'
 321 *
 322 * This function looks for a wear leveling entry with erase counter closest to
 323 * min + @diff, where min is the smallest erase counter.
 324 */
 325static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
 326					  struct rb_root *root, int diff,
 327					  int pick_max)
 328{
 329	struct rb_node *p;
 330	struct ubi_wl_entry *e;
 331	int max;
 332
 333	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
 334	max = e->ec + diff;
 335
 336	p = root->rb_node;
 337	while (p) {
 338		struct ubi_wl_entry *e1;
 339
 340		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 341		if (e1->ec >= max) {
 342			if (pick_max)
 343				e = e1;
 344			p = p->rb_left;
 345		} else {
 346			p = p->rb_right;
 
 347			e = e1;
 348		}
 349	}
 350
 
 
 
 
 
 
 
 351	return e;
 352}
 353
 354/**
 355 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
 356 * @ubi: UBI device description object
 357 * @root: the RB-tree where to look for
 358 *
 359 * This function looks for a wear leveling entry with medium erase counter,
 360 * but not greater or equivalent than the lowest erase counter plus
 361 * %WL_FREE_MAX_DIFF/2.
 362 */
 363static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
 364					       struct rb_root *root)
 365{
 366	struct ubi_wl_entry *e, *first, *last;
 367
 368	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
 369	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
 370
 371	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
 372		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
 373
 374		/*
 375		 * If no fastmap has been written and fm_anchor is not
 376		 * reserved and this WL entry can be used as anchor PEB
 377		 * hold it back and return the second best WL entry such
 378		 * that fastmap can use the anchor PEB later.
 379		 */
 380		e = may_reserve_for_fm(ubi, e, root);
 
 
 381	} else
 382		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 383
 
 
 
 
 
 
 
 384	return e;
 385}
 
 386
 387/**
 388 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
 389 * refill_wl_user_pool().
 390 * @ubi: UBI device description object
 391 *
 392 * This function returns a wear leveling entry in case of success and
 393 * NULL in case of failure.
 394 */
 395static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
 396{
 
 397	struct ubi_wl_entry *e;
 398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 399	e = find_mean_wl_entry(ubi, &ubi->free);
 400	if (!e) {
 401		ubi_err(ubi, "no free eraseblocks");
 402		return NULL;
 403	}
 404
 405	self_check_in_wl_tree(ubi, e, &ubi->free);
 406
 407	/*
 408	 * Move the physical eraseblock to the protection queue where it will
 409	 * be protected from being moved for some time.
 410	 */
 411	rb_erase(&e->u.rb, &ubi->free);
 412	ubi->free_count--;
 413	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 414
 415	return e;
 416}
 417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 418/**
 419 * prot_queue_del - remove a physical eraseblock from the protection queue.
 420 * @ubi: UBI device description object
 421 * @pnum: the physical eraseblock to remove
 422 *
 423 * This function deletes PEB @pnum from the protection queue and returns zero
 424 * in case of success and %-ENODEV if the PEB was not found.
 425 */
 426static int prot_queue_del(struct ubi_device *ubi, int pnum)
 427{
 428	struct ubi_wl_entry *e;
 429
 430	e = ubi->lookuptbl[pnum];
 431	if (!e)
 432		return -ENODEV;
 433
 434	if (self_check_in_pq(ubi, e))
 435		return -ENODEV;
 436
 437	list_del(&e->u.list);
 438	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
 439	return 0;
 440}
 441
 442/**
 443 * ubi_sync_erase - synchronously erase a physical eraseblock.
 444 * @ubi: UBI device description object
 445 * @e: the physical eraseblock to erase
 446 * @torture: if the physical eraseblock has to be tortured
 447 *
 448 * This function returns zero in case of success and a negative error code in
 449 * case of failure.
 450 */
 451int ubi_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture)
 
 452{
 453	int err;
 454	struct ubi_ec_hdr *ec_hdr;
 455	unsigned long long ec = e->ec;
 456
 457	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
 458
 459	err = self_check_ec(ubi, e->pnum, e->ec);
 460	if (err)
 461		return -EINVAL;
 462
 463	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
 464	if (!ec_hdr)
 465		return -ENOMEM;
 466
 467	err = ubi_io_sync_erase(ubi, e->pnum, torture);
 468	if (err < 0)
 469		goto out_free;
 470
 471	ec += err;
 472	if (ec > UBI_MAX_ERASECOUNTER) {
 473		/*
 474		 * Erase counter overflow. Upgrade UBI and use 64-bit
 475		 * erase counters internally.
 476		 */
 477		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
 478			e->pnum, ec);
 479		err = -EINVAL;
 480		goto out_free;
 481	}
 482
 483	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
 484
 485	ec_hdr->ec = cpu_to_be64(ec);
 486
 487	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
 488	if (err)
 489		goto out_free;
 490
 491	e->ec = ec;
 492	spin_lock(&ubi->wl_lock);
 493	if (e->ec > ubi->max_ec)
 494		ubi->max_ec = e->ec;
 495	spin_unlock(&ubi->wl_lock);
 496
 497out_free:
 498	kfree(ec_hdr);
 499	return err;
 500}
 501
 502/**
 503 * serve_prot_queue - check if it is time to stop protecting PEBs.
 504 * @ubi: UBI device description object
 505 *
 506 * This function is called after each erase operation and removes PEBs from the
 507 * tail of the protection queue. These PEBs have been protected for long enough
 508 * and should be moved to the used tree.
 509 */
 510static void serve_prot_queue(struct ubi_device *ubi)
 511{
 512	struct ubi_wl_entry *e, *tmp;
 513	int count;
 514
 515	/*
 516	 * There may be several protected physical eraseblock to remove,
 517	 * process them all.
 518	 */
 519repeat:
 520	count = 0;
 521	spin_lock(&ubi->wl_lock);
 522	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
 523		dbg_wl("PEB %d EC %d protection over, move to used tree",
 524			e->pnum, e->ec);
 525
 526		list_del(&e->u.list);
 527		wl_tree_add(e, &ubi->used);
 528		if (count++ > 32) {
 529			/*
 530			 * Let's be nice and avoid holding the spinlock for
 531			 * too long.
 532			 */
 533			spin_unlock(&ubi->wl_lock);
 534			cond_resched();
 535			goto repeat;
 536		}
 537	}
 538
 539	ubi->pq_head += 1;
 540	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
 541		ubi->pq_head = 0;
 542	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
 543	spin_unlock(&ubi->wl_lock);
 544}
 545
 546/**
 547 * __schedule_ubi_work - schedule a work.
 548 * @ubi: UBI device description object
 549 * @wrk: the work to schedule
 550 *
 551 * This function adds a work defined by @wrk to the tail of the pending works
 552 * list. Can only be used if ubi->work_sem is already held in read mode!
 553 */
 554static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
 555{
 556	spin_lock(&ubi->wl_lock);
 557	list_add_tail(&wrk->list, &ubi->works);
 558	ubi_assert(ubi->works_count >= 0);
 559	ubi->works_count += 1;
 560	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
 561		wake_up_process(ubi->bgt_thread);
 562	spin_unlock(&ubi->wl_lock);
 563}
 564
 565/**
 566 * schedule_ubi_work - schedule a work.
 567 * @ubi: UBI device description object
 568 * @wrk: the work to schedule
 569 *
 570 * This function adds a work defined by @wrk to the tail of the pending works
 571 * list.
 572 */
 573static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
 574{
 575	down_read(&ubi->work_sem);
 576	__schedule_ubi_work(ubi, wrk);
 577	up_read(&ubi->work_sem);
 578}
 579
 580static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
 581			int shutdown);
 
 
 
 
 
 
 
 
 
 
 
 582
 583/**
 584 * schedule_erase - schedule an erase work.
 585 * @ubi: UBI device description object
 586 * @e: the WL entry of the physical eraseblock to erase
 587 * @vol_id: the volume ID that last used this PEB
 588 * @lnum: the last used logical eraseblock number for the PEB
 589 * @torture: if the physical eraseblock has to be tortured
 590 * @nested: denotes whether the work_sem is already held
 591 *
 592 * This function returns zero in case of success and a %-ENOMEM in case of
 593 * failure.
 594 */
 595static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 596			  int vol_id, int lnum, int torture, bool nested)
 597{
 598	struct ubi_work *wl_wrk;
 599
 600	ubi_assert(e);
 
 601
 602	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
 603	       e->pnum, e->ec, torture);
 604
 605	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
 606	if (!wl_wrk)
 607		return -ENOMEM;
 608
 609	wl_wrk->func = &erase_worker;
 610	wl_wrk->e = e;
 611	wl_wrk->vol_id = vol_id;
 612	wl_wrk->lnum = lnum;
 613	wl_wrk->torture = torture;
 614
 615	if (nested)
 616		__schedule_ubi_work(ubi, wl_wrk);
 617	else
 618		schedule_ubi_work(ubi, wl_wrk);
 619	return 0;
 620}
 621
 622static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
 623/**
 624 * do_sync_erase - run the erase worker synchronously.
 625 * @ubi: UBI device description object
 626 * @e: the WL entry of the physical eraseblock to erase
 627 * @vol_id: the volume ID that last used this PEB
 628 * @lnum: the last used logical eraseblock number for the PEB
 629 * @torture: if the physical eraseblock has to be tortured
 630 *
 631 */
 632static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 633			 int vol_id, int lnum, int torture)
 634{
 635	struct ubi_work wl_wrk;
 636
 637	dbg_wl("sync erase of PEB %i", e->pnum);
 638
 639	wl_wrk.e = e;
 640	wl_wrk.vol_id = vol_id;
 641	wl_wrk.lnum = lnum;
 642	wl_wrk.torture = torture;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643
 644	return __erase_worker(ubi, &wl_wrk);
 
 645}
 
 646
 647static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
 648/**
 649 * wear_leveling_worker - wear-leveling worker function.
 650 * @ubi: UBI device description object
 651 * @wrk: the work object
 652 * @shutdown: non-zero if the worker has to free memory and exit
 653 * because the WL-subsystem is shutting down
 654 *
 655 * This function copies a more worn out physical eraseblock to a less worn out
 656 * one. Returns zero in case of success and a negative error code in case of
 657 * failure.
 658 */
 659static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
 660				int shutdown)
 661{
 662	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
 663	int erase = 0, keep = 0, vol_id = -1, lnum = -1;
 
 
 
 664	struct ubi_wl_entry *e1, *e2;
 665	struct ubi_vid_io_buf *vidb;
 666	struct ubi_vid_hdr *vid_hdr;
 667	int dst_leb_clean = 0;
 668
 669	kfree(wrk);
 670	if (shutdown)
 671		return 0;
 672
 673	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
 674	if (!vidb)
 675		return -ENOMEM;
 676
 677	vid_hdr = ubi_get_vid_hdr(vidb);
 678
 679	down_read(&ubi->fm_eba_sem);
 680	mutex_lock(&ubi->move_mutex);
 681	spin_lock(&ubi->wl_lock);
 682	ubi_assert(!ubi->move_from && !ubi->move_to);
 683	ubi_assert(!ubi->move_to_put);
 684
 685#ifdef CONFIG_MTD_UBI_FASTMAP
 686	if (!next_peb_for_wl(ubi) ||
 687#else
 688	if (!ubi->free.rb_node ||
 689#endif
 690	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
 691		/*
 692		 * No free physical eraseblocks? Well, they must be waiting in
 693		 * the queue to be erased. Cancel movement - it will be
 694		 * triggered again when a free physical eraseblock appears.
 695		 *
 696		 * No used physical eraseblocks? They must be temporarily
 697		 * protected from being moved. They will be moved to the
 698		 * @ubi->used tree later and the wear-leveling will be
 699		 * triggered again.
 700		 */
 701		dbg_wl("cancel WL, a list is empty: free %d, used %d",
 702		       !ubi->free.rb_node, !ubi->used.rb_node);
 703		goto out_cancel;
 704	}
 705
 706#ifdef CONFIG_MTD_UBI_FASTMAP
 707	e1 = find_anchor_wl_entry(&ubi->used);
 708	if (e1 && ubi->fm_anchor &&
 709	    (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) {
 710		ubi->fm_do_produce_anchor = 1;
 711		/*
 712		 * fm_anchor is no longer considered a good anchor.
 713		 * NULL assignment also prevents multiple wear level checks
 714		 * of this PEB.
 715		 */
 716		wl_tree_add(ubi->fm_anchor, &ubi->free);
 717		ubi->fm_anchor = NULL;
 718		ubi->free_count++;
 719	}
 720
 721	if (ubi->fm_do_produce_anchor) {
 
 722		if (!e1)
 723			goto out_cancel;
 724		e2 = get_peb_for_wl(ubi);
 725		if (!e2)
 726			goto out_cancel;
 727
 728		self_check_in_wl_tree(ubi, e1, &ubi->used);
 729		rb_erase(&e1->u.rb, &ubi->used);
 730		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
 731		ubi->fm_do_produce_anchor = 0;
 732	} else if (!ubi->scrub.rb_node) {
 733#else
 734	if (!ubi->scrub.rb_node) {
 735#endif
 736		/*
 737		 * Now pick the least worn-out used physical eraseblock and a
 738		 * highly worn-out free physical eraseblock. If the erase
 739		 * counters differ much enough, start wear-leveling.
 740		 */
 741		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
 742		e2 = get_peb_for_wl(ubi);
 743		if (!e2)
 744			goto out_cancel;
 745
 746		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
 747			dbg_wl("no WL needed: min used EC %d, max free EC %d",
 748			       e1->ec, e2->ec);
 749
 750			/* Give the unused PEB back */
 751			wl_tree_add(e2, &ubi->free);
 752			ubi->free_count++;
 753			goto out_cancel;
 754		}
 755		self_check_in_wl_tree(ubi, e1, &ubi->used);
 756		rb_erase(&e1->u.rb, &ubi->used);
 757		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
 758		       e1->pnum, e1->ec, e2->pnum, e2->ec);
 759	} else {
 760		/* Perform scrubbing */
 761		scrubbing = 1;
 762		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
 763		e2 = get_peb_for_wl(ubi);
 764		if (!e2)
 765			goto out_cancel;
 766
 767		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
 768		rb_erase(&e1->u.rb, &ubi->scrub);
 769		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
 770	}
 771
 772	ubi->move_from = e1;
 773	ubi->move_to = e2;
 774	spin_unlock(&ubi->wl_lock);
 775
 776	/*
 777	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
 778	 * We so far do not know which logical eraseblock our physical
 779	 * eraseblock (@e1) belongs to. We have to read the volume identifier
 780	 * header first.
 781	 *
 782	 * Note, we are protected from this PEB being unmapped and erased. The
 783	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
 784	 * which is being moved was unmapped.
 785	 */
 786
 787	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
 788	if (err && err != UBI_IO_BITFLIPS) {
 789		dst_leb_clean = 1;
 790		if (err == UBI_IO_FF) {
 791			/*
 792			 * We are trying to move PEB without a VID header. UBI
 793			 * always write VID headers shortly after the PEB was
 794			 * given, so we have a situation when it has not yet
 795			 * had a chance to write it, because it was preempted.
 796			 * So add this PEB to the protection queue so far,
 797			 * because presumably more data will be written there
 798			 * (including the missing VID header), and then we'll
 799			 * move it.
 800			 */
 801			dbg_wl("PEB %d has no VID header", e1->pnum);
 802			protect = 1;
 803			goto out_not_moved;
 804		} else if (err == UBI_IO_FF_BITFLIPS) {
 805			/*
 806			 * The same situation as %UBI_IO_FF, but bit-flips were
 807			 * detected. It is better to schedule this PEB for
 808			 * scrubbing.
 809			 */
 810			dbg_wl("PEB %d has no VID header but has bit-flips",
 811			       e1->pnum);
 812			scrubbing = 1;
 813			goto out_not_moved;
 814		} else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
 815			/*
 816			 * While a full scan would detect interrupted erasures
 817			 * at attach time we can face them here when attached from
 818			 * Fastmap.
 819			 */
 820			dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
 821			       e1->pnum);
 822			erase = 1;
 823			goto out_not_moved;
 824		}
 825
 826		ubi_err(ubi, "error %d while reading VID header from PEB %d",
 827			err, e1->pnum);
 828		goto out_error;
 829	}
 830
 831	vol_id = be32_to_cpu(vid_hdr->vol_id);
 832	lnum = be32_to_cpu(vid_hdr->lnum);
 833
 834	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
 835	if (err) {
 836		if (err == MOVE_CANCEL_RACE) {
 837			/*
 838			 * The LEB has not been moved because the volume is
 839			 * being deleted or the PEB has been put meanwhile. We
 840			 * should prevent this PEB from being selected for
 841			 * wear-leveling movement again, so put it to the
 842			 * protection queue.
 843			 */
 844			protect = 1;
 845			dst_leb_clean = 1;
 846			goto out_not_moved;
 847		}
 848		if (err == MOVE_RETRY) {
 849			scrubbing = 1;
 850			dst_leb_clean = 1;
 851			goto out_not_moved;
 852		}
 853		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
 854		    err == MOVE_TARGET_RD_ERR) {
 855			/*
 856			 * Target PEB had bit-flips or write error - torture it.
 857			 */
 858			torture = 1;
 859			keep = 1;
 860			goto out_not_moved;
 861		}
 862
 863		if (err == MOVE_SOURCE_RD_ERR) {
 864			/*
 865			 * An error happened while reading the source PEB. Do
 866			 * not switch to R/O mode in this case, and give the
 867			 * upper layers a possibility to recover from this,
 868			 * e.g. by unmapping corresponding LEB. Instead, just
 869			 * put this PEB to the @ubi->erroneous list to prevent
 870			 * UBI from trying to move it over and over again.
 871			 */
 872			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
 873				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
 874					ubi->erroneous_peb_count);
 875				goto out_error;
 876			}
 877			dst_leb_clean = 1;
 878			erroneous = 1;
 879			goto out_not_moved;
 880		}
 881
 882		if (err < 0)
 883			goto out_error;
 884
 885		ubi_assert(0);
 886	}
 887
 888	/* The PEB has been successfully moved */
 889	if (scrubbing)
 890		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
 891			e1->pnum, vol_id, lnum, e2->pnum);
 892	ubi_free_vid_buf(vidb);
 893
 894	spin_lock(&ubi->wl_lock);
 895	if (!ubi->move_to_put) {
 896		wl_tree_add(e2, &ubi->used);
 897		e2 = NULL;
 898	}
 899	ubi->move_from = ubi->move_to = NULL;
 900	ubi->move_to_put = ubi->wl_scheduled = 0;
 901	spin_unlock(&ubi->wl_lock);
 902
 903	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
 904	if (err) {
 905		if (e2) {
 906			spin_lock(&ubi->wl_lock);
 907			wl_entry_destroy(ubi, e2);
 908			spin_unlock(&ubi->wl_lock);
 909		}
 910		goto out_ro;
 911	}
 912
 913	if (e2) {
 914		/*
 915		 * Well, the target PEB was put meanwhile, schedule it for
 916		 * erasure.
 917		 */
 918		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
 919		       e2->pnum, vol_id, lnum);
 920		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
 921		if (err)
 
 922			goto out_ro;
 
 923	}
 924
 925	dbg_wl("done");
 926	mutex_unlock(&ubi->move_mutex);
 927	up_read(&ubi->fm_eba_sem);
 928	return 0;
 929
 930	/*
 931	 * For some reasons the LEB was not moved, might be an error, might be
 932	 * something else. @e1 was not changed, so return it back. @e2 might
 933	 * have been changed, schedule it for erasure.
 934	 */
 935out_not_moved:
 936	if (vol_id != -1)
 937		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
 938		       e1->pnum, vol_id, lnum, e2->pnum, err);
 939	else
 940		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
 941		       e1->pnum, e2->pnum, err);
 942	spin_lock(&ubi->wl_lock);
 943	if (protect)
 944		prot_queue_add(ubi, e1);
 945	else if (erroneous) {
 946		wl_tree_add(e1, &ubi->erroneous);
 947		ubi->erroneous_peb_count += 1;
 948	} else if (scrubbing)
 949		wl_tree_add(e1, &ubi->scrub);
 950	else if (keep)
 951		wl_tree_add(e1, &ubi->used);
 952	if (dst_leb_clean) {
 953		wl_tree_add(e2, &ubi->free);
 954		ubi->free_count++;
 955	}
 956
 957	ubi_assert(!ubi->move_to_put);
 958	ubi->move_from = ubi->move_to = NULL;
 959	ubi->wl_scheduled = 0;
 960	spin_unlock(&ubi->wl_lock);
 961
 962	ubi_free_vid_buf(vidb);
 963	if (dst_leb_clean) {
 964		ensure_wear_leveling(ubi, 1);
 965	} else {
 966		err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
 967		if (err)
 968			goto out_ro;
 969	}
 970
 971	if (erase) {
 972		err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
 973		if (err)
 974			goto out_ro;
 975	}
 976
 977	mutex_unlock(&ubi->move_mutex);
 978	up_read(&ubi->fm_eba_sem);
 979	return 0;
 980
 981out_error:
 982	if (vol_id != -1)
 983		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
 984			err, e1->pnum, e2->pnum);
 985	else
 986		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
 987			err, e1->pnum, vol_id, lnum, e2->pnum);
 988	spin_lock(&ubi->wl_lock);
 989	ubi->move_from = ubi->move_to = NULL;
 990	ubi->move_to_put = ubi->wl_scheduled = 0;
 991	wl_entry_destroy(ubi, e1);
 992	wl_entry_destroy(ubi, e2);
 993	spin_unlock(&ubi->wl_lock);
 994
 995	ubi_free_vid_buf(vidb);
 
 
 996
 997out_ro:
 998	ubi_ro_mode(ubi);
 999	mutex_unlock(&ubi->move_mutex);
1000	up_read(&ubi->fm_eba_sem);
1001	ubi_assert(err != 0);
1002	return err < 0 ? err : -EIO;
1003
1004out_cancel:
1005	ubi->wl_scheduled = 0;
1006	spin_unlock(&ubi->wl_lock);
1007	mutex_unlock(&ubi->move_mutex);
1008	up_read(&ubi->fm_eba_sem);
1009	ubi_free_vid_buf(vidb);
1010	return 0;
1011}
1012
1013/**
1014 * ensure_wear_leveling - schedule wear-leveling if it is needed.
1015 * @ubi: UBI device description object
1016 * @nested: set to non-zero if this function is called from UBI worker
1017 *
1018 * This function checks if it is time to start wear-leveling and schedules it
1019 * if yes. This function returns zero in case of success and a negative error
1020 * code in case of failure.
1021 */
1022static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1023{
1024	int err = 0;
 
 
1025	struct ubi_work *wrk;
1026
1027	spin_lock(&ubi->wl_lock);
1028	if (ubi->wl_scheduled)
1029		/* Wear-leveling is already in the work queue */
1030		goto out_unlock;
1031
1032	/*
1033	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1034	 * WL worker has to be scheduled anyway.
1035	 */
1036	if (!ubi->scrub.rb_node) {
1037#ifdef CONFIG_MTD_UBI_FASTMAP
1038		if (!need_wear_leveling(ubi))
1039			goto out_unlock;
1040#else
1041		struct ubi_wl_entry *e1;
1042		struct ubi_wl_entry *e2;
1043
1044		if (!ubi->used.rb_node || !ubi->free.rb_node)
1045			/* No physical eraseblocks - no deal */
1046			goto out_unlock;
1047
1048		/*
1049		 * We schedule wear-leveling only if the difference between the
1050		 * lowest erase counter of used physical eraseblocks and a high
1051		 * erase counter of free physical eraseblocks is greater than
1052		 * %UBI_WL_THRESHOLD.
1053		 */
1054		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1055		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF, 0);
1056
1057		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1058			goto out_unlock;
1059#endif
1060		dbg_wl("schedule wear-leveling");
1061	} else
1062		dbg_wl("schedule scrubbing");
1063
1064	ubi->wl_scheduled = 1;
1065	spin_unlock(&ubi->wl_lock);
1066
1067	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1068	if (!wrk) {
1069		err = -ENOMEM;
1070		goto out_cancel;
1071	}
1072
 
1073	wrk->func = &wear_leveling_worker;
1074	if (nested)
1075		__schedule_ubi_work(ubi, wrk);
1076	else
1077		schedule_ubi_work(ubi, wrk);
1078	return err;
1079
1080out_cancel:
1081	spin_lock(&ubi->wl_lock);
1082	ubi->wl_scheduled = 0;
1083out_unlock:
1084	spin_unlock(&ubi->wl_lock);
1085	return err;
1086}
1087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088/**
1089 * __erase_worker - physical eraseblock erase worker function.
1090 * @ubi: UBI device description object
1091 * @wl_wrk: the work object
 
1092 *
1093 * This function erases a physical eraseblock and perform torture testing if
1094 * needed. It also takes care about marking the physical eraseblock bad if
1095 * needed. Returns zero in case of success and a negative error code in case of
1096 * failure.
1097 */
1098static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
 
1099{
1100	struct ubi_wl_entry *e = wl_wrk->e;
1101	int pnum = e->pnum;
1102	int vol_id = wl_wrk->vol_id;
1103	int lnum = wl_wrk->lnum;
1104	int err, available_consumed = 0;
1105
 
 
 
 
 
 
 
1106	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1107	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1108
1109	err = ubi_sync_erase(ubi, e, wl_wrk->torture);
1110	if (!err) {
1111		spin_lock(&ubi->wl_lock);
1112
1113		if (!ubi->fm_disabled && !ubi->fm_anchor &&
1114		    e->pnum < UBI_FM_MAX_START) {
1115			/*
1116			 * Abort anchor production, if needed it will be
1117			 * enabled again in the wear leveling started below.
1118			 */
1119			ubi->fm_anchor = e;
1120			ubi->fm_do_produce_anchor = 0;
1121		} else {
1122			wl_tree_add(e, &ubi->free);
1123			ubi->free_count++;
1124		}
1125
 
 
 
1126		spin_unlock(&ubi->wl_lock);
1127
1128		/*
1129		 * One more erase operation has happened, take care about
1130		 * protected physical eraseblocks.
1131		 */
1132		serve_prot_queue(ubi);
1133
1134		/* And take care about wear-leveling */
1135		err = ensure_wear_leveling(ubi, 1);
1136		return err;
1137	}
1138
1139	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
 
1140
1141	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1142	    err == -EBUSY) {
1143		int err1;
1144
1145		/* Re-schedule the LEB for erasure */
1146		err1 = schedule_erase(ubi, e, vol_id, lnum, 0, true);
1147		if (err1) {
1148			spin_lock(&ubi->wl_lock);
1149			wl_entry_destroy(ubi, e);
1150			spin_unlock(&ubi->wl_lock);
1151			err = err1;
1152			goto out_ro;
1153		}
1154		return err;
1155	}
1156
1157	spin_lock(&ubi->wl_lock);
1158	wl_entry_destroy(ubi, e);
1159	spin_unlock(&ubi->wl_lock);
1160	if (err != -EIO)
1161		/*
1162		 * If this is not %-EIO, we have no idea what to do. Scheduling
1163		 * this physical eraseblock for erasure again would cause
1164		 * errors again and again. Well, lets switch to R/O mode.
1165		 */
1166		goto out_ro;
1167
1168	/* It is %-EIO, the PEB went bad */
1169
1170	if (!ubi->bad_allowed) {
1171		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1172		goto out_ro;
1173	}
1174
1175	spin_lock(&ubi->volumes_lock);
1176	if (ubi->beb_rsvd_pebs == 0) {
1177		if (ubi->avail_pebs == 0) {
1178			spin_unlock(&ubi->volumes_lock);
1179			ubi_err(ubi, "no reserved/available physical eraseblocks");
1180			goto out_ro;
1181		}
1182		ubi->avail_pebs -= 1;
1183		available_consumed = 1;
1184	}
1185	spin_unlock(&ubi->volumes_lock);
1186
1187	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1188	err = ubi_io_mark_bad(ubi, pnum);
1189	if (err)
1190		goto out_ro;
1191
1192	spin_lock(&ubi->volumes_lock);
1193	if (ubi->beb_rsvd_pebs > 0) {
1194		if (available_consumed) {
1195			/*
1196			 * The amount of reserved PEBs increased since we last
1197			 * checked.
1198			 */
1199			ubi->avail_pebs += 1;
1200			available_consumed = 0;
1201		}
1202		ubi->beb_rsvd_pebs -= 1;
1203	}
1204	ubi->bad_peb_count += 1;
1205	ubi->good_peb_count -= 1;
1206	ubi_calculate_reserved(ubi);
1207	if (available_consumed)
1208		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1209	else if (ubi->beb_rsvd_pebs)
1210		ubi_msg(ubi, "%d PEBs left in the reserve",
1211			ubi->beb_rsvd_pebs);
1212	else
1213		ubi_warn(ubi, "last PEB from the reserve was used");
1214	spin_unlock(&ubi->volumes_lock);
1215
1216	return err;
1217
1218out_ro:
1219	if (available_consumed) {
1220		spin_lock(&ubi->volumes_lock);
1221		ubi->avail_pebs += 1;
1222		spin_unlock(&ubi->volumes_lock);
1223	}
1224	ubi_ro_mode(ubi);
1225	return err;
1226}
1227
1228static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1229			  int shutdown)
1230{
1231	int ret;
1232
1233	if (shutdown) {
1234		struct ubi_wl_entry *e = wl_wrk->e;
1235
1236		dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1237		kfree(wl_wrk);
1238		wl_entry_destroy(ubi, e);
1239		return 0;
1240	}
1241
1242	ret = __erase_worker(ubi, wl_wrk);
1243	kfree(wl_wrk);
1244	return ret;
1245}
1246
1247/**
1248 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1249 * @ubi: UBI device description object
1250 * @vol_id: the volume ID that last used this PEB
1251 * @lnum: the last used logical eraseblock number for the PEB
1252 * @pnum: physical eraseblock to return
1253 * @torture: if this physical eraseblock has to be tortured
1254 *
1255 * This function is called to return physical eraseblock @pnum to the pool of
1256 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1257 * occurred to this @pnum and it has to be tested. This function returns zero
1258 * in case of success, and a negative error code in case of failure.
1259 */
1260int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1261		   int pnum, int torture)
1262{
1263	int err;
1264	struct ubi_wl_entry *e;
1265
1266	dbg_wl("PEB %d", pnum);
1267	ubi_assert(pnum >= 0);
1268	ubi_assert(pnum < ubi->peb_count);
1269
1270	down_read(&ubi->fm_protect);
1271
1272retry:
1273	spin_lock(&ubi->wl_lock);
1274	e = ubi->lookuptbl[pnum];
1275	if (!e) {
1276		/*
1277		 * This wl entry has been removed for some errors by other
1278		 * process (eg. wear leveling worker), corresponding process
1279		 * (except __erase_worker, which cannot concurrent with
1280		 * ubi_wl_put_peb) will set ubi ro_mode at the same time,
1281		 * just ignore this wl entry.
1282		 */
1283		spin_unlock(&ubi->wl_lock);
1284		up_read(&ubi->fm_protect);
1285		return 0;
1286	}
1287	if (e == ubi->move_from) {
1288		/*
1289		 * User is putting the physical eraseblock which was selected to
1290		 * be moved. It will be scheduled for erasure in the
1291		 * wear-leveling worker.
1292		 */
1293		dbg_wl("PEB %d is being moved, wait", pnum);
1294		spin_unlock(&ubi->wl_lock);
1295
1296		/* Wait for the WL worker by taking the @ubi->move_mutex */
1297		mutex_lock(&ubi->move_mutex);
1298		mutex_unlock(&ubi->move_mutex);
1299		goto retry;
1300	} else if (e == ubi->move_to) {
1301		/*
1302		 * User is putting the physical eraseblock which was selected
1303		 * as the target the data is moved to. It may happen if the EBA
1304		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1305		 * but the WL sub-system has not put the PEB to the "used" tree
1306		 * yet, but it is about to do this. So we just set a flag which
1307		 * will tell the WL worker that the PEB is not needed anymore
1308		 * and should be scheduled for erasure.
1309		 */
1310		dbg_wl("PEB %d is the target of data moving", pnum);
1311		ubi_assert(!ubi->move_to_put);
1312		ubi->move_to_put = 1;
1313		spin_unlock(&ubi->wl_lock);
1314		up_read(&ubi->fm_protect);
1315		return 0;
1316	} else {
1317		if (in_wl_tree(e, &ubi->used)) {
1318			self_check_in_wl_tree(ubi, e, &ubi->used);
1319			rb_erase(&e->u.rb, &ubi->used);
1320		} else if (in_wl_tree(e, &ubi->scrub)) {
1321			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1322			rb_erase(&e->u.rb, &ubi->scrub);
1323		} else if (in_wl_tree(e, &ubi->erroneous)) {
1324			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1325			rb_erase(&e->u.rb, &ubi->erroneous);
1326			ubi->erroneous_peb_count -= 1;
1327			ubi_assert(ubi->erroneous_peb_count >= 0);
1328			/* Erroneous PEBs should be tortured */
1329			torture = 1;
1330		} else {
1331			err = prot_queue_del(ubi, e->pnum);
1332			if (err) {
1333				ubi_err(ubi, "PEB %d not found", pnum);
1334				ubi_ro_mode(ubi);
1335				spin_unlock(&ubi->wl_lock);
1336				up_read(&ubi->fm_protect);
1337				return err;
1338			}
1339		}
1340	}
1341	spin_unlock(&ubi->wl_lock);
1342
1343	err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1344	if (err) {
1345		spin_lock(&ubi->wl_lock);
1346		wl_tree_add(e, &ubi->used);
1347		spin_unlock(&ubi->wl_lock);
1348	}
1349
1350	up_read(&ubi->fm_protect);
1351	return err;
1352}
1353
1354/**
1355 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1356 * @ubi: UBI device description object
1357 * @pnum: the physical eraseblock to schedule
1358 *
1359 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1360 * needs scrubbing. This function schedules a physical eraseblock for
1361 * scrubbing which is done in background. This function returns zero in case of
1362 * success and a negative error code in case of failure.
1363 */
1364int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1365{
1366	struct ubi_wl_entry *e;
1367
1368	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1369
1370retry:
1371	spin_lock(&ubi->wl_lock);
1372	e = ubi->lookuptbl[pnum];
1373	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1374				   in_wl_tree(e, &ubi->erroneous)) {
1375		spin_unlock(&ubi->wl_lock);
1376		return 0;
1377	}
1378
1379	if (e == ubi->move_to) {
1380		/*
1381		 * This physical eraseblock was used to move data to. The data
1382		 * was moved but the PEB was not yet inserted to the proper
1383		 * tree. We should just wait a little and let the WL worker
1384		 * proceed.
1385		 */
1386		spin_unlock(&ubi->wl_lock);
1387		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1388		yield();
1389		goto retry;
1390	}
1391
1392	if (in_wl_tree(e, &ubi->used)) {
1393		self_check_in_wl_tree(ubi, e, &ubi->used);
1394		rb_erase(&e->u.rb, &ubi->used);
1395	} else {
1396		int err;
1397
1398		err = prot_queue_del(ubi, e->pnum);
1399		if (err) {
1400			ubi_err(ubi, "PEB %d not found", pnum);
1401			ubi_ro_mode(ubi);
1402			spin_unlock(&ubi->wl_lock);
1403			return err;
1404		}
1405	}
1406
1407	wl_tree_add(e, &ubi->scrub);
1408	spin_unlock(&ubi->wl_lock);
1409
1410	/*
1411	 * Technically scrubbing is the same as wear-leveling, so it is done
1412	 * by the WL worker.
1413	 */
1414	return ensure_wear_leveling(ubi, 0);
1415}
1416
1417/**
1418 * ubi_wl_flush - flush all pending works.
1419 * @ubi: UBI device description object
1420 * @vol_id: the volume id to flush for
1421 * @lnum: the logical eraseblock number to flush for
1422 *
1423 * This function executes all pending works for a particular volume id /
1424 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1425 * acts as a wildcard for all of the corresponding volume numbers or logical
1426 * eraseblock numbers. It returns zero in case of success and a negative error
1427 * code in case of failure.
1428 */
1429int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1430{
1431	int err = 0;
1432	int found = 1;
1433
1434	/*
1435	 * Erase while the pending works queue is not empty, but not more than
1436	 * the number of currently pending works.
1437	 */
1438	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1439	       vol_id, lnum, ubi->works_count);
1440
1441	while (found) {
1442		struct ubi_work *wrk, *tmp;
1443		found = 0;
1444
1445		down_read(&ubi->work_sem);
1446		spin_lock(&ubi->wl_lock);
1447		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1448			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1449			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1450				list_del(&wrk->list);
1451				ubi->works_count -= 1;
1452				ubi_assert(ubi->works_count >= 0);
1453				spin_unlock(&ubi->wl_lock);
1454
1455				err = wrk->func(ubi, wrk, 0);
1456				if (err) {
1457					up_read(&ubi->work_sem);
1458					return err;
1459				}
1460
1461				spin_lock(&ubi->wl_lock);
1462				found = 1;
1463				break;
1464			}
1465		}
1466		spin_unlock(&ubi->wl_lock);
1467		up_read(&ubi->work_sem);
1468	}
1469
1470	/*
1471	 * Make sure all the works which have been done in parallel are
1472	 * finished.
1473	 */
1474	down_write(&ubi->work_sem);
1475	up_write(&ubi->work_sem);
1476
1477	return err;
1478}
1479
1480static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1481{
1482	if (in_wl_tree(e, &ubi->scrub))
1483		return false;
1484	else if (in_wl_tree(e, &ubi->erroneous))
1485		return false;
1486	else if (ubi->move_from == e)
1487		return false;
1488	else if (ubi->move_to == e)
1489		return false;
1490
1491	return true;
1492}
1493
1494/**
1495 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1496 * @ubi: UBI device description object
1497 * @pnum: the physical eraseblock to schedule
1498 * @force: don't read the block, assume bitflips happened and take action.
1499 *
1500 * This function reads the given eraseblock and checks if bitflips occured.
1501 * In case of bitflips, the eraseblock is scheduled for scrubbing.
1502 * If scrubbing is forced with @force, the eraseblock is not read,
1503 * but scheduled for scrubbing right away.
1504 *
1505 * Returns:
1506 * %EINVAL, PEB is out of range
1507 * %ENOENT, PEB is no longer used by UBI
1508 * %EBUSY, PEB cannot be checked now or a check is currently running on it
1509 * %EAGAIN, bit flips happened but scrubbing is currently not possible
1510 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1511 * %0, no bit flips detected
1512 */
1513int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1514{
1515	int err = 0;
1516	struct ubi_wl_entry *e;
1517
1518	if (pnum < 0 || pnum >= ubi->peb_count) {
1519		err = -EINVAL;
1520		goto out;
1521	}
1522
1523	/*
1524	 * Pause all parallel work, otherwise it can happen that the
1525	 * erase worker frees a wl entry under us.
1526	 */
1527	down_write(&ubi->work_sem);
1528
1529	/*
1530	 * Make sure that the wl entry does not change state while
1531	 * inspecting it.
1532	 */
1533	spin_lock(&ubi->wl_lock);
1534	e = ubi->lookuptbl[pnum];
1535	if (!e) {
1536		spin_unlock(&ubi->wl_lock);
1537		err = -ENOENT;
1538		goto out_resume;
1539	}
1540
1541	/*
1542	 * Does it make sense to check this PEB?
1543	 */
1544	if (!scrub_possible(ubi, e)) {
1545		spin_unlock(&ubi->wl_lock);
1546		err = -EBUSY;
1547		goto out_resume;
1548	}
1549	spin_unlock(&ubi->wl_lock);
1550
1551	if (!force) {
1552		mutex_lock(&ubi->buf_mutex);
1553		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1554		mutex_unlock(&ubi->buf_mutex);
1555	}
1556
1557	if (force || err == UBI_IO_BITFLIPS) {
1558		/*
1559		 * Okay, bit flip happened, let's figure out what we can do.
1560		 */
1561		spin_lock(&ubi->wl_lock);
1562
1563		/*
1564		 * Recheck. We released wl_lock, UBI might have killed the
1565		 * wl entry under us.
1566		 */
1567		e = ubi->lookuptbl[pnum];
1568		if (!e) {
1569			spin_unlock(&ubi->wl_lock);
1570			err = -ENOENT;
1571			goto out_resume;
1572		}
1573
1574		/*
1575		 * Need to re-check state
1576		 */
1577		if (!scrub_possible(ubi, e)) {
1578			spin_unlock(&ubi->wl_lock);
1579			err = -EBUSY;
1580			goto out_resume;
1581		}
1582
1583		if (in_pq(ubi, e)) {
1584			prot_queue_del(ubi, e->pnum);
1585			wl_tree_add(e, &ubi->scrub);
1586			spin_unlock(&ubi->wl_lock);
1587
1588			err = ensure_wear_leveling(ubi, 1);
1589		} else if (in_wl_tree(e, &ubi->used)) {
1590			rb_erase(&e->u.rb, &ubi->used);
1591			wl_tree_add(e, &ubi->scrub);
1592			spin_unlock(&ubi->wl_lock);
1593
1594			err = ensure_wear_leveling(ubi, 1);
1595		} else if (in_wl_tree(e, &ubi->free)) {
1596			rb_erase(&e->u.rb, &ubi->free);
1597			ubi->free_count--;
1598			spin_unlock(&ubi->wl_lock);
1599
1600			/*
1601			 * This PEB is empty we can schedule it for
1602			 * erasure right away. No wear leveling needed.
1603			 */
1604			err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1605					     force ? 0 : 1, true);
1606		} else {
1607			spin_unlock(&ubi->wl_lock);
1608			err = -EAGAIN;
1609		}
1610
1611		if (!err && !force)
1612			err = -EUCLEAN;
1613	} else {
1614		err = 0;
1615	}
1616
1617out_resume:
1618	up_write(&ubi->work_sem);
1619out:
1620
1621	return err;
1622}
1623
1624/**
1625 * tree_destroy - destroy an RB-tree.
1626 * @ubi: UBI device description object
1627 * @root: the root of the tree to destroy
1628 */
1629static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1630{
1631	struct rb_node *rb;
1632	struct ubi_wl_entry *e;
1633
1634	rb = root->rb_node;
1635	while (rb) {
1636		if (rb->rb_left)
1637			rb = rb->rb_left;
1638		else if (rb->rb_right)
1639			rb = rb->rb_right;
1640		else {
1641			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1642
1643			rb = rb_parent(rb);
1644			if (rb) {
1645				if (rb->rb_left == &e->u.rb)
1646					rb->rb_left = NULL;
1647				else
1648					rb->rb_right = NULL;
1649			}
1650
1651			wl_entry_destroy(ubi, e);
1652		}
1653	}
1654}
1655
1656/**
1657 * ubi_thread - UBI background thread.
1658 * @u: the UBI device description object pointer
1659 */
1660int ubi_thread(void *u)
1661{
1662	int failures = 0;
1663	struct ubi_device *ubi = u;
1664
1665	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1666		ubi->bgt_name, task_pid_nr(current));
1667
1668	set_freezable();
1669	for (;;) {
1670		int err;
1671
1672		if (kthread_should_stop())
1673			break;
1674
1675		if (try_to_freeze())
1676			continue;
1677
1678		spin_lock(&ubi->wl_lock);
1679		if (list_empty(&ubi->works) || ubi->ro_mode ||
1680		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1681			set_current_state(TASK_INTERRUPTIBLE);
1682			spin_unlock(&ubi->wl_lock);
1683
1684			/*
1685			 * Check kthread_should_stop() after we set the task
1686			 * state to guarantee that we either see the stop bit
1687			 * and exit or the task state is reset to runnable such
1688			 * that it's not scheduled out indefinitely and detects
1689			 * the stop bit at kthread_should_stop().
1690			 */
1691			if (kthread_should_stop()) {
1692				set_current_state(TASK_RUNNING);
1693				break;
1694			}
1695
1696			schedule();
1697			continue;
1698		}
1699		spin_unlock(&ubi->wl_lock);
1700
1701		err = do_work(ubi, NULL);
1702		if (err) {
1703			ubi_err(ubi, "%s: work failed with error code %d",
1704				ubi->bgt_name, err);
1705			if (failures++ > WL_MAX_FAILURES) {
1706				/*
1707				 * Too many failures, disable the thread and
1708				 * switch to read-only mode.
1709				 */
1710				ubi_msg(ubi, "%s: %d consecutive failures",
1711					ubi->bgt_name, WL_MAX_FAILURES);
1712				ubi_ro_mode(ubi);
1713				ubi->thread_enabled = 0;
1714				continue;
1715			}
1716		} else
1717			failures = 0;
1718
1719		cond_resched();
1720	}
1721
1722	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1723	ubi->thread_enabled = 0;
1724	return 0;
1725}
1726
1727/**
1728 * shutdown_work - shutdown all pending works.
1729 * @ubi: UBI device description object
1730 */
1731static void shutdown_work(struct ubi_device *ubi)
1732{
1733	while (!list_empty(&ubi->works)) {
1734		struct ubi_work *wrk;
1735
1736		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1737		list_del(&wrk->list);
1738		wrk->func(ubi, wrk, 1);
1739		ubi->works_count -= 1;
1740		ubi_assert(ubi->works_count >= 0);
1741	}
1742}
1743
1744/**
1745 * erase_aeb - erase a PEB given in UBI attach info PEB
1746 * @ubi: UBI device description object
1747 * @aeb: UBI attach info PEB
1748 * @sync: If true, erase synchronously. Otherwise schedule for erasure
1749 */
1750static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1751{
1752	struct ubi_wl_entry *e;
1753	int err;
1754
1755	e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1756	if (!e)
1757		return -ENOMEM;
1758
1759	e->pnum = aeb->pnum;
1760	e->ec = aeb->ec;
1761	ubi->lookuptbl[e->pnum] = e;
1762
1763	if (sync) {
1764		err = ubi_sync_erase(ubi, e, false);
1765		if (err)
1766			goto out_free;
1767
1768		wl_tree_add(e, &ubi->free);
1769		ubi->free_count++;
1770	} else {
1771		err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1772		if (err)
1773			goto out_free;
1774	}
1775
1776	return 0;
1777
1778out_free:
1779	wl_entry_destroy(ubi, e);
1780
1781	return err;
1782}
1783
1784/**
1785 * ubi_wl_init - initialize the WL sub-system using attaching information.
1786 * @ubi: UBI device description object
1787 * @ai: attaching information
1788 *
1789 * This function returns zero in case of success, and a negative error code in
1790 * case of failure.
1791 */
1792int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1793{
1794	int err, i, reserved_pebs, found_pebs = 0;
1795	struct rb_node *rb1, *rb2;
1796	struct ubi_ainf_volume *av;
1797	struct ubi_ainf_peb *aeb, *tmp;
1798	struct ubi_wl_entry *e;
1799
1800	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1801	spin_lock_init(&ubi->wl_lock);
1802	mutex_init(&ubi->move_mutex);
1803	init_rwsem(&ubi->work_sem);
1804	ubi->max_ec = ai->max_ec;
1805	INIT_LIST_HEAD(&ubi->works);
 
 
 
1806
1807	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1808
1809	err = -ENOMEM;
1810	ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1811	if (!ubi->lookuptbl)
1812		return err;
1813
1814	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1815		INIT_LIST_HEAD(&ubi->pq[i]);
1816	ubi->pq_head = 0;
1817
1818	ubi->free_count = 0;
1819	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1820		cond_resched();
1821
1822		err = erase_aeb(ubi, aeb, false);
1823		if (err)
 
 
 
 
 
 
 
 
1824			goto out_free;
 
1825
1826		found_pebs++;
1827	}
1828
 
1829	list_for_each_entry(aeb, &ai->free, u.list) {
1830		cond_resched();
1831
1832		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1833		if (!e) {
1834			err = -ENOMEM;
1835			goto out_free;
1836		}
1837
1838		e->pnum = aeb->pnum;
1839		e->ec = aeb->ec;
1840		ubi_assert(e->ec >= 0);
 
1841
1842		wl_tree_add(e, &ubi->free);
1843		ubi->free_count++;
1844
1845		ubi->lookuptbl[e->pnum] = e;
1846
1847		found_pebs++;
1848	}
1849
1850	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1851		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1852			cond_resched();
1853
1854			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1855			if (!e) {
1856				err = -ENOMEM;
1857				goto out_free;
1858			}
1859
1860			e->pnum = aeb->pnum;
1861			e->ec = aeb->ec;
1862			ubi->lookuptbl[e->pnum] = e;
1863
1864			if (!aeb->scrub) {
1865				dbg_wl("add PEB %d EC %d to the used tree",
1866				       e->pnum, e->ec);
1867				wl_tree_add(e, &ubi->used);
1868			} else {
1869				dbg_wl("add PEB %d EC %d to the scrub tree",
1870				       e->pnum, e->ec);
1871				wl_tree_add(e, &ubi->scrub);
1872			}
1873
1874			found_pebs++;
1875		}
1876	}
1877
1878	list_for_each_entry(aeb, &ai->fastmap, u.list) {
1879		cond_resched();
1880
1881		e = ubi_find_fm_block(ubi, aeb->pnum);
1882
1883		if (e) {
1884			ubi_assert(!ubi->lookuptbl[e->pnum]);
1885			ubi->lookuptbl[e->pnum] = e;
1886		} else {
1887			bool sync = false;
1888
1889			/*
1890			 * Usually old Fastmap PEBs are scheduled for erasure
1891			 * and we don't have to care about them but if we face
1892			 * an power cut before scheduling them we need to
1893			 * take care of them here.
1894			 */
1895			if (ubi->lookuptbl[aeb->pnum])
1896				continue;
1897
1898			/*
1899			 * The fastmap update code might not find a free PEB for
1900			 * writing the fastmap anchor to and then reuses the
1901			 * current fastmap anchor PEB. When this PEB gets erased
1902			 * and a power cut happens before it is written again we
1903			 * must make sure that the fastmap attach code doesn't
1904			 * find any outdated fastmap anchors, hence we erase the
1905			 * outdated fastmap anchor PEBs synchronously here.
1906			 */
1907			if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1908				sync = true;
1909
1910			err = erase_aeb(ubi, aeb, sync);
1911			if (err)
1912				goto out_free;
1913		}
1914
1915		found_pebs++;
1916	}
1917
1918	dbg_wl("found %i PEBs", found_pebs);
1919
1920	ubi_assert(ubi->good_peb_count == found_pebs);
 
 
 
 
1921
1922	reserved_pebs = WL_RESERVED_PEBS;
1923	ubi_fastmap_init(ubi, &reserved_pebs);
 
 
 
1924
1925	if (ubi->avail_pebs < reserved_pebs) {
1926		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1927			ubi->avail_pebs, reserved_pebs);
1928		if (ubi->corr_peb_count)
1929			ubi_err(ubi, "%d PEBs are corrupted and not used",
1930				ubi->corr_peb_count);
1931		err = -ENOSPC;
1932		goto out_free;
1933	}
1934	ubi->avail_pebs -= reserved_pebs;
1935	ubi->rsvd_pebs += reserved_pebs;
1936
1937	/* Schedule wear-leveling if needed */
1938	err = ensure_wear_leveling(ubi, 0);
1939	if (err)
1940		goto out_free;
1941
1942#ifdef CONFIG_MTD_UBI_FASTMAP
1943	if (!ubi->ro_mode && !ubi->fm_disabled)
1944		ubi_ensure_anchor_pebs(ubi);
1945#endif
1946	return 0;
1947
1948out_free:
1949	shutdown_work(ubi);
1950	tree_destroy(ubi, &ubi->used);
1951	tree_destroy(ubi, &ubi->free);
1952	tree_destroy(ubi, &ubi->scrub);
1953	kfree(ubi->lookuptbl);
1954	return err;
1955}
1956
1957/**
1958 * protection_queue_destroy - destroy the protection queue.
1959 * @ubi: UBI device description object
1960 */
1961static void protection_queue_destroy(struct ubi_device *ubi)
1962{
1963	int i;
1964	struct ubi_wl_entry *e, *tmp;
1965
1966	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1967		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1968			list_del(&e->u.list);
1969			wl_entry_destroy(ubi, e);
1970		}
1971	}
1972}
1973
1974/**
1975 * ubi_wl_close - close the wear-leveling sub-system.
1976 * @ubi: UBI device description object
1977 */
1978void ubi_wl_close(struct ubi_device *ubi)
1979{
1980	dbg_wl("close the WL sub-system");
1981	ubi_fastmap_close(ubi);
1982	shutdown_work(ubi);
1983	protection_queue_destroy(ubi);
1984	tree_destroy(ubi, &ubi->used);
1985	tree_destroy(ubi, &ubi->erroneous);
1986	tree_destroy(ubi, &ubi->free);
1987	tree_destroy(ubi, &ubi->scrub);
1988	kfree(ubi->lookuptbl);
1989}
1990
1991/**
1992 * self_check_ec - make sure that the erase counter of a PEB is correct.
1993 * @ubi: UBI device description object
1994 * @pnum: the physical eraseblock number to check
1995 * @ec: the erase counter to check
1996 *
1997 * This function returns zero if the erase counter of physical eraseblock @pnum
1998 * is equivalent to @ec, and a negative error code if not or if an error
1999 * occurred.
2000 */
2001static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2002{
2003	int err;
2004	long long read_ec;
2005	struct ubi_ec_hdr *ec_hdr;
2006
2007	if (!ubi_dbg_chk_gen(ubi))
2008		return 0;
2009
2010	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2011	if (!ec_hdr)
2012		return -ENOMEM;
2013
2014	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2015	if (err && err != UBI_IO_BITFLIPS) {
2016		/* The header does not have to exist */
2017		err = 0;
2018		goto out_free;
2019	}
2020
2021	read_ec = be64_to_cpu(ec_hdr->ec);
2022	if (ec != read_ec && read_ec - ec > 1) {
2023		ubi_err(ubi, "self-check failed for PEB %d", pnum);
2024		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
2025		dump_stack();
2026		err = 1;
2027	} else
2028		err = 0;
2029
2030out_free:
2031	kfree(ec_hdr);
2032	return err;
2033}
2034
2035/**
2036 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2037 * @ubi: UBI device description object
2038 * @e: the wear-leveling entry to check
2039 * @root: the root of the tree
2040 *
2041 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2042 * is not.
2043 */
2044static int self_check_in_wl_tree(const struct ubi_device *ubi,
2045				 struct ubi_wl_entry *e, struct rb_root *root)
2046{
2047	if (!ubi_dbg_chk_gen(ubi))
2048		return 0;
2049
2050	if (in_wl_tree(e, root))
2051		return 0;
2052
2053	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2054		e->pnum, e->ec, root);
2055	dump_stack();
2056	return -EINVAL;
2057}
2058
2059/**
2060 * self_check_in_pq - check if wear-leveling entry is in the protection
2061 *                        queue.
2062 * @ubi: UBI device description object
2063 * @e: the wear-leveling entry to check
2064 *
2065 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2066 */
2067static int self_check_in_pq(const struct ubi_device *ubi,
2068			    struct ubi_wl_entry *e)
2069{
 
 
 
2070	if (!ubi_dbg_chk_gen(ubi))
2071		return 0;
2072
2073	if (in_pq(ubi, e))
2074		return 0;
 
 
2075
2076	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2077		e->pnum, e->ec);
2078	dump_stack();
2079	return -EINVAL;
2080}
2081#ifndef CONFIG_MTD_UBI_FASTMAP
2082static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2083{
2084	struct ubi_wl_entry *e;
2085
2086	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF, 0);
2087	self_check_in_wl_tree(ubi, e, &ubi->free);
2088	ubi->free_count--;
2089	ubi_assert(ubi->free_count >= 0);
2090	rb_erase(&e->u.rb, &ubi->free);
2091
2092	return e;
2093}
2094
2095/**
2096 * produce_free_peb - produce a free physical eraseblock.
2097 * @ubi: UBI device description object
2098 *
2099 * This function tries to make a free PEB by means of synchronous execution of
2100 * pending works. This may be needed if, for example the background thread is
2101 * disabled. Returns zero in case of success and a negative error code in case
2102 * of failure.
2103 */
2104static int produce_free_peb(struct ubi_device *ubi)
2105{
2106	int err;
2107
2108	while (!ubi->free.rb_node && ubi->works_count) {
2109		spin_unlock(&ubi->wl_lock);
2110
2111		dbg_wl("do one work synchronously");
2112		err = do_work(ubi, NULL);
2113
2114		spin_lock(&ubi->wl_lock);
2115		if (err)
2116			return err;
2117	}
2118
2119	return 0;
2120}
2121
2122/**
2123 * ubi_wl_get_peb - get a physical eraseblock.
2124 * @ubi: UBI device description object
2125 *
2126 * This function returns a physical eraseblock in case of success and a
2127 * negative error code in case of failure.
2128 * Returns with ubi->fm_eba_sem held in read mode!
2129 */
2130int ubi_wl_get_peb(struct ubi_device *ubi)
2131{
2132	int err;
2133	struct ubi_wl_entry *e;
2134
2135retry:
2136	down_read(&ubi->fm_eba_sem);
2137	spin_lock(&ubi->wl_lock);
2138	if (!ubi->free.rb_node) {
2139		if (ubi->works_count == 0) {
2140			ubi_err(ubi, "no free eraseblocks");
2141			ubi_assert(list_empty(&ubi->works));
2142			spin_unlock(&ubi->wl_lock);
2143			return -ENOSPC;
2144		}
2145
2146		err = produce_free_peb(ubi);
2147		if (err < 0) {
2148			spin_unlock(&ubi->wl_lock);
2149			return err;
2150		}
2151		spin_unlock(&ubi->wl_lock);
2152		up_read(&ubi->fm_eba_sem);
2153		goto retry;
2154
2155	}
2156	e = wl_get_wle(ubi);
2157	prot_queue_add(ubi, e);
2158	spin_unlock(&ubi->wl_lock);
2159
2160	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2161				    ubi->peb_size - ubi->vid_hdr_aloffset);
2162	if (err) {
2163		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2164		return err;
2165	}
2166
2167	return e->pnum;
2168}
2169#else
2170#include "fastmap-wl.c"
2171#endif
v3.15
 
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12 * the GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17 *
  18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
  19 */
  20
  21/*
  22 * UBI wear-leveling sub-system.
  23 *
  24 * This sub-system is responsible for wear-leveling. It works in terms of
  25 * physical eraseblocks and erase counters and knows nothing about logical
  26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
  27 * eraseblocks are of two types - used and free. Used physical eraseblocks are
  28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
  29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
  30 *
  31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
  32 * header. The rest of the physical eraseblock contains only %0xFF bytes.
  33 *
  34 * When physical eraseblocks are returned to the WL sub-system by means of the
  35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
  36 * done asynchronously in context of the per-UBI device background thread,
  37 * which is also managed by the WL sub-system.
  38 *
  39 * The wear-leveling is ensured by means of moving the contents of used
  40 * physical eraseblocks with low erase counter to free physical eraseblocks
  41 * with high erase counter.
  42 *
  43 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
  44 * bad.
  45 *
  46 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
  47 * in a physical eraseblock, it has to be moved. Technically this is the same
  48 * as moving it for wear-leveling reasons.
  49 *
  50 * As it was said, for the UBI sub-system all physical eraseblocks are either
  51 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
  52 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
  53 * RB-trees, as well as (temporarily) in the @wl->pq queue.
  54 *
  55 * When the WL sub-system returns a physical eraseblock, the physical
  56 * eraseblock is protected from being moved for some "time". For this reason,
  57 * the physical eraseblock is not directly moved from the @wl->free tree to the
  58 * @wl->used tree. There is a protection queue in between where this
  59 * physical eraseblock is temporarily stored (@wl->pq).
  60 *
  61 * All this protection stuff is needed because:
  62 *  o we don't want to move physical eraseblocks just after we have given them
  63 *    to the user; instead, we first want to let users fill them up with data;
  64 *
  65 *  o there is a chance that the user will put the physical eraseblock very
  66 *    soon, so it makes sense not to move it for some time, but wait.
  67 *
  68 * Physical eraseblocks stay protected only for limited time. But the "time" is
  69 * measured in erase cycles in this case. This is implemented with help of the
  70 * protection queue. Eraseblocks are put to the tail of this queue when they
  71 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
  72 * head of the queue on each erase operation (for any eraseblock). So the
  73 * length of the queue defines how may (global) erase cycles PEBs are protected.
  74 *
  75 * To put it differently, each physical eraseblock has 2 main states: free and
  76 * used. The former state corresponds to the @wl->free tree. The latter state
  77 * is split up on several sub-states:
  78 * o the WL movement is allowed (@wl->used tree);
  79 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
  80 *   erroneous - e.g., there was a read error;
  81 * o the WL movement is temporarily prohibited (@wl->pq queue);
  82 * o scrubbing is needed (@wl->scrub tree).
  83 *
  84 * Depending on the sub-state, wear-leveling entries of the used physical
  85 * eraseblocks may be kept in one of those structures.
  86 *
  87 * Note, in this implementation, we keep a small in-RAM object for each physical
  88 * eraseblock. This is surely not a scalable solution. But it appears to be good
  89 * enough for moderately large flashes and it is simple. In future, one may
  90 * re-work this sub-system and make it more scalable.
  91 *
  92 * At the moment this sub-system does not utilize the sequence number, which
  93 * was introduced relatively recently. But it would be wise to do this because
  94 * the sequence number of a logical eraseblock characterizes how old is it. For
  95 * example, when we move a PEB with low erase counter, and we need to pick the
  96 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
  97 * pick target PEB with an average EC if our PEB is not very "old". This is a
  98 * room for future re-works of the WL sub-system.
  99 */
 100
 101#include <linux/slab.h>
 102#include <linux/crc32.h>
 103#include <linux/freezer.h>
 104#include <linux/kthread.h>
 105#include "ubi.h"
 
 106
 107/* Number of physical eraseblocks reserved for wear-leveling purposes */
 108#define WL_RESERVED_PEBS 1
 109
 110/*
 111 * Maximum difference between two erase counters. If this threshold is
 112 * exceeded, the WL sub-system starts moving data from used physical
 113 * eraseblocks with low erase counter to free physical eraseblocks with high
 114 * erase counter.
 115 */
 116#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
 117
 118/*
 119 * When a physical eraseblock is moved, the WL sub-system has to pick the target
 120 * physical eraseblock to move to. The simplest way would be just to pick the
 121 * one with the highest erase counter. But in certain workloads this could lead
 122 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
 123 * situation when the picked physical eraseblock is constantly erased after the
 124 * data is written to it. So, we have a constant which limits the highest erase
 125 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
 126 * does not pick eraseblocks with erase counter greater than the lowest erase
 127 * counter plus %WL_FREE_MAX_DIFF.
 128 */
 129#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
 130
 131/*
 132 * Maximum number of consecutive background thread failures which is enough to
 133 * switch to read-only mode.
 134 */
 135#define WL_MAX_FAILURES 32
 136
 137static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
 138static int self_check_in_wl_tree(const struct ubi_device *ubi,
 139				 struct ubi_wl_entry *e, struct rb_root *root);
 140static int self_check_in_pq(const struct ubi_device *ubi,
 141			    struct ubi_wl_entry *e);
 142
 143#ifdef CONFIG_MTD_UBI_FASTMAP
 144/**
 145 * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
 146 * @wrk: the work description object
 147 */
 148static void update_fastmap_work_fn(struct work_struct *wrk)
 149{
 150	struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
 151	ubi_update_fastmap(ubi);
 152}
 153
 154/**
 155 *  ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
 156 *  @ubi: UBI device description object
 157 *  @pnum: the to be checked PEB
 158 */
 159static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
 160{
 161	int i;
 162
 163	if (!ubi->fm)
 164		return 0;
 165
 166	for (i = 0; i < ubi->fm->used_blocks; i++)
 167		if (ubi->fm->e[i]->pnum == pnum)
 168			return 1;
 169
 170	return 0;
 171}
 172#else
 173static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
 174{
 175	return 0;
 176}
 177#endif
 178
 179/**
 180 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
 181 * @e: the wear-leveling entry to add
 182 * @root: the root of the tree
 183 *
 184 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
 185 * the @ubi->used and @ubi->free RB-trees.
 186 */
 187static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
 188{
 189	struct rb_node **p, *parent = NULL;
 190
 191	p = &root->rb_node;
 192	while (*p) {
 193		struct ubi_wl_entry *e1;
 194
 195		parent = *p;
 196		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
 197
 198		if (e->ec < e1->ec)
 199			p = &(*p)->rb_left;
 200		else if (e->ec > e1->ec)
 201			p = &(*p)->rb_right;
 202		else {
 203			ubi_assert(e->pnum != e1->pnum);
 204			if (e->pnum < e1->pnum)
 205				p = &(*p)->rb_left;
 206			else
 207				p = &(*p)->rb_right;
 208		}
 209	}
 210
 211	rb_link_node(&e->u.rb, parent, p);
 212	rb_insert_color(&e->u.rb, root);
 213}
 214
 215/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 216 * do_work - do one pending work.
 217 * @ubi: UBI device description object
 
 218 *
 219 * This function returns zero in case of success and a negative error code in
 220 * case of failure.
 
 221 */
 222static int do_work(struct ubi_device *ubi)
 223{
 224	int err;
 225	struct ubi_work *wrk;
 226
 227	cond_resched();
 228
 229	/*
 230	 * @ubi->work_sem is used to synchronize with the workers. Workers take
 231	 * it in read mode, so many of them may be doing works at a time. But
 232	 * the queue flush code has to be sure the whole queue of works is
 233	 * done, and it takes the mutex in write mode.
 234	 */
 235	down_read(&ubi->work_sem);
 236	spin_lock(&ubi->wl_lock);
 237	if (list_empty(&ubi->works)) {
 238		spin_unlock(&ubi->wl_lock);
 239		up_read(&ubi->work_sem);
 
 
 240		return 0;
 241	}
 242
 
 
 243	wrk = list_entry(ubi->works.next, struct ubi_work, list);
 244	list_del(&wrk->list);
 245	ubi->works_count -= 1;
 246	ubi_assert(ubi->works_count >= 0);
 247	spin_unlock(&ubi->wl_lock);
 248
 249	/*
 250	 * Call the worker function. Do not touch the work structure
 251	 * after this call as it will have been freed or reused by that
 252	 * time by the worker function.
 253	 */
 254	err = wrk->func(ubi, wrk, 0);
 255	if (err)
 256		ubi_err("work failed with error code %d", err);
 257	up_read(&ubi->work_sem);
 258
 259	return err;
 260}
 261
 262/**
 263 * produce_free_peb - produce a free physical eraseblock.
 264 * @ubi: UBI device description object
 265 *
 266 * This function tries to make a free PEB by means of synchronous execution of
 267 * pending works. This may be needed if, for example the background thread is
 268 * disabled. Returns zero in case of success and a negative error code in case
 269 * of failure.
 270 */
 271static int produce_free_peb(struct ubi_device *ubi)
 272{
 273	int err;
 274
 275	while (!ubi->free.rb_node) {
 276		spin_unlock(&ubi->wl_lock);
 277
 278		dbg_wl("do one work synchronously");
 279		err = do_work(ubi);
 280
 281		spin_lock(&ubi->wl_lock);
 282		if (err)
 283			return err;
 284	}
 285
 286	return 0;
 287}
 288
 289/**
 290 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
 291 * @e: the wear-leveling entry to check
 292 * @root: the root of the tree
 293 *
 294 * This function returns non-zero if @e is in the @root RB-tree and zero if it
 295 * is not.
 296 */
 297static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
 298{
 299	struct rb_node *p;
 300
 301	p = root->rb_node;
 302	while (p) {
 303		struct ubi_wl_entry *e1;
 304
 305		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 306
 307		if (e->pnum == e1->pnum) {
 308			ubi_assert(e == e1);
 309			return 1;
 310		}
 311
 312		if (e->ec < e1->ec)
 313			p = p->rb_left;
 314		else if (e->ec > e1->ec)
 315			p = p->rb_right;
 316		else {
 317			ubi_assert(e->pnum != e1->pnum);
 318			if (e->pnum < e1->pnum)
 319				p = p->rb_left;
 320			else
 321				p = p->rb_right;
 322		}
 323	}
 324
 325	return 0;
 326}
 327
 328/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 329 * prot_queue_add - add physical eraseblock to the protection queue.
 330 * @ubi: UBI device description object
 331 * @e: the physical eraseblock to add
 332 *
 333 * This function adds @e to the tail of the protection queue @ubi->pq, where
 334 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
 335 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
 336 * be locked.
 337 */
 338static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
 339{
 340	int pq_tail = ubi->pq_head - 1;
 341
 342	if (pq_tail < 0)
 343		pq_tail = UBI_PROT_QUEUE_LEN - 1;
 344	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
 345	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
 346	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
 347}
 348
 349/**
 350 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
 351 * @ubi: UBI device description object
 352 * @root: the RB-tree where to look for
 353 * @diff: maximum possible difference from the smallest erase counter
 
 354 *
 355 * This function looks for a wear leveling entry with erase counter closest to
 356 * min + @diff, where min is the smallest erase counter.
 357 */
 358static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
 359					  struct rb_root *root, int diff)
 
 360{
 361	struct rb_node *p;
 362	struct ubi_wl_entry *e, *prev_e = NULL;
 363	int max;
 364
 365	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
 366	max = e->ec + diff;
 367
 368	p = root->rb_node;
 369	while (p) {
 370		struct ubi_wl_entry *e1;
 371
 372		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 373		if (e1->ec >= max)
 
 
 374			p = p->rb_left;
 375		else {
 376			p = p->rb_right;
 377			prev_e = e;
 378			e = e1;
 379		}
 380	}
 381
 382	/* If no fastmap has been written and this WL entry can be used
 383	 * as anchor PEB, hold it back and return the second best WL entry
 384	 * such that fastmap can use the anchor PEB later. */
 385	if (prev_e && !ubi->fm_disabled &&
 386	    !ubi->fm && e->pnum < UBI_FM_MAX_START)
 387		return prev_e;
 388
 389	return e;
 390}
 391
 392/**
 393 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
 394 * @ubi: UBI device description object
 395 * @root: the RB-tree where to look for
 396 *
 397 * This function looks for a wear leveling entry with medium erase counter,
 398 * but not greater or equivalent than the lowest erase counter plus
 399 * %WL_FREE_MAX_DIFF/2.
 400 */
 401static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
 402					       struct rb_root *root)
 403{
 404	struct ubi_wl_entry *e, *first, *last;
 405
 406	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
 407	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
 408
 409	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
 410		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
 411
 412#ifdef CONFIG_MTD_UBI_FASTMAP
 413		/* If no fastmap has been written and this WL entry can be used
 414		 * as anchor PEB, hold it back and return the second best
 415		 * WL entry such that fastmap can use the anchor PEB later. */
 416		if (e && !ubi->fm_disabled && !ubi->fm &&
 417		    e->pnum < UBI_FM_MAX_START)
 418			e = rb_entry(rb_next(root->rb_node),
 419				     struct ubi_wl_entry, u.rb);
 420#endif
 421	} else
 422		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
 423
 424	return e;
 425}
 426
 427#ifdef CONFIG_MTD_UBI_FASTMAP
 428/**
 429 * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
 430 * @root: the RB-tree where to look for
 431 */
 432static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
 433{
 434	struct rb_node *p;
 435	struct ubi_wl_entry *e, *victim = NULL;
 436	int max_ec = UBI_MAX_ERASECOUNTER;
 437
 438	ubi_rb_for_each_entry(p, e, root, u.rb) {
 439		if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
 440			victim = e;
 441			max_ec = e->ec;
 442		}
 443	}
 444
 445	return victim;
 446}
 447
 448static int anchor_pebs_avalible(struct rb_root *root)
 449{
 450	struct rb_node *p;
 451	struct ubi_wl_entry *e;
 452
 453	ubi_rb_for_each_entry(p, e, root, u.rb)
 454		if (e->pnum < UBI_FM_MAX_START)
 455			return 1;
 456
 457	return 0;
 458}
 459
 460/**
 461 * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
 462 * @ubi: UBI device description object
 463 * @anchor: This PEB will be used as anchor PEB by fastmap
 464 *
 465 * The function returns a physical erase block with a given maximal number
 466 * and removes it from the wl subsystem.
 467 * Must be called with wl_lock held!
 468 */
 469struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
 470{
 471	struct ubi_wl_entry *e = NULL;
 472
 473	if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
 474		goto out;
 475
 476	if (anchor)
 477		e = find_anchor_wl_entry(&ubi->free);
 478	else
 479		e = find_mean_wl_entry(ubi, &ubi->free);
 480
 481	if (!e)
 482		goto out;
 483
 484	self_check_in_wl_tree(ubi, e, &ubi->free);
 485
 486	/* remove it from the free list,
 487	 * the wl subsystem does no longer know this erase block */
 488	rb_erase(&e->u.rb, &ubi->free);
 489	ubi->free_count--;
 490out:
 491	return e;
 492}
 493#endif
 494
 495/**
 496 * __wl_get_peb - get a physical eraseblock.
 
 497 * @ubi: UBI device description object
 498 *
 499 * This function returns a physical eraseblock in case of success and a
 500 * negative error code in case of failure.
 501 */
 502static int __wl_get_peb(struct ubi_device *ubi)
 503{
 504	int err;
 505	struct ubi_wl_entry *e;
 506
 507retry:
 508	if (!ubi->free.rb_node) {
 509		if (ubi->works_count == 0) {
 510			ubi_err("no free eraseblocks");
 511			ubi_assert(list_empty(&ubi->works));
 512			return -ENOSPC;
 513		}
 514
 515		err = produce_free_peb(ubi);
 516		if (err < 0)
 517			return err;
 518		goto retry;
 519	}
 520
 521	e = find_mean_wl_entry(ubi, &ubi->free);
 522	if (!e) {
 523		ubi_err("no free eraseblocks");
 524		return -ENOSPC;
 525	}
 526
 527	self_check_in_wl_tree(ubi, e, &ubi->free);
 528
 529	/*
 530	 * Move the physical eraseblock to the protection queue where it will
 531	 * be protected from being moved for some time.
 532	 */
 533	rb_erase(&e->u.rb, &ubi->free);
 534	ubi->free_count--;
 535	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
 536#ifndef CONFIG_MTD_UBI_FASTMAP
 537	/* We have to enqueue e only if fastmap is disabled,
 538	 * is fastmap enabled prot_queue_add() will be called by
 539	 * ubi_wl_get_peb() after removing e from the pool. */
 540	prot_queue_add(ubi, e);
 541#endif
 542	return e->pnum;
 543}
 544
 545#ifdef CONFIG_MTD_UBI_FASTMAP
 546/**
 547 * return_unused_pool_pebs - returns unused PEB to the free tree.
 548 * @ubi: UBI device description object
 549 * @pool: fastmap pool description object
 550 */
 551static void return_unused_pool_pebs(struct ubi_device *ubi,
 552				    struct ubi_fm_pool *pool)
 553{
 554	int i;
 555	struct ubi_wl_entry *e;
 556
 557	for (i = pool->used; i < pool->size; i++) {
 558		e = ubi->lookuptbl[pool->pebs[i]];
 559		wl_tree_add(e, &ubi->free);
 560		ubi->free_count++;
 561	}
 562}
 563
 564/**
 565 * refill_wl_pool - refills all the fastmap pool used by the
 566 * WL sub-system.
 567 * @ubi: UBI device description object
 568 */
 569static void refill_wl_pool(struct ubi_device *ubi)
 570{
 571	struct ubi_wl_entry *e;
 572	struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
 573
 574	return_unused_pool_pebs(ubi, pool);
 575
 576	for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
 577		if (!ubi->free.rb_node ||
 578		   (ubi->free_count - ubi->beb_rsvd_pebs < 5))
 579			break;
 580
 581		e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
 582		self_check_in_wl_tree(ubi, e, &ubi->free);
 583		rb_erase(&e->u.rb, &ubi->free);
 584		ubi->free_count--;
 585
 586		pool->pebs[pool->size] = e->pnum;
 587	}
 588	pool->used = 0;
 589}
 590
 591/**
 592 * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
 593 * @ubi: UBI device description object
 594 */
 595static void refill_wl_user_pool(struct ubi_device *ubi)
 596{
 597	struct ubi_fm_pool *pool = &ubi->fm_pool;
 598
 599	return_unused_pool_pebs(ubi, pool);
 600
 601	for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
 602		pool->pebs[pool->size] = __wl_get_peb(ubi);
 603		if (pool->pebs[pool->size] < 0)
 604			break;
 605	}
 606	pool->used = 0;
 607}
 608
 609/**
 610 * ubi_refill_pools - refills all fastmap PEB pools.
 611 * @ubi: UBI device description object
 612 */
 613void ubi_refill_pools(struct ubi_device *ubi)
 614{
 615	spin_lock(&ubi->wl_lock);
 616	refill_wl_pool(ubi);
 617	refill_wl_user_pool(ubi);
 618	spin_unlock(&ubi->wl_lock);
 619}
 620
 621/* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
 622 * the fastmap pool.
 623 */
 624int ubi_wl_get_peb(struct ubi_device *ubi)
 625{
 626	int ret;
 627	struct ubi_fm_pool *pool = &ubi->fm_pool;
 628	struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
 629
 630	if (!pool->size || !wl_pool->size || pool->used == pool->size ||
 631	    wl_pool->used == wl_pool->size)
 632		ubi_update_fastmap(ubi);
 633
 634	/* we got not a single free PEB */
 635	if (!pool->size)
 636		ret = -ENOSPC;
 637	else {
 638		spin_lock(&ubi->wl_lock);
 639		ret = pool->pebs[pool->used++];
 640		prot_queue_add(ubi, ubi->lookuptbl[ret]);
 641		spin_unlock(&ubi->wl_lock);
 642	}
 643
 644	return ret;
 645}
 646
 647/* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
 648 *
 649 * @ubi: UBI device description object
 650 */
 651static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
 652{
 653	struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
 654	int pnum;
 655
 656	if (pool->used == pool->size || !pool->size) {
 657		/* We cannot update the fastmap here because this
 658		 * function is called in atomic context.
 659		 * Let's fail here and refill/update it as soon as possible. */
 660		schedule_work(&ubi->fm_work);
 661		return NULL;
 662	} else {
 663		pnum = pool->pebs[pool->used++];
 664		return ubi->lookuptbl[pnum];
 665	}
 666}
 667#else
 668static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
 669{
 670	struct ubi_wl_entry *e;
 671
 672	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
 673	self_check_in_wl_tree(ubi, e, &ubi->free);
 674	ubi->free_count--;
 675	ubi_assert(ubi->free_count >= 0);
 676	rb_erase(&e->u.rb, &ubi->free);
 677
 678	return e;
 679}
 680
 681int ubi_wl_get_peb(struct ubi_device *ubi)
 682{
 683	int peb, err;
 684
 685	spin_lock(&ubi->wl_lock);
 686	peb = __wl_get_peb(ubi);
 687	spin_unlock(&ubi->wl_lock);
 688
 689	if (peb < 0)
 690		return peb;
 691
 692	err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
 693				    ubi->peb_size - ubi->vid_hdr_aloffset);
 694	if (err) {
 695		ubi_err("new PEB %d does not contain all 0xFF bytes", peb);
 696		return err;
 697	}
 698
 699	return peb;
 700}
 701#endif
 702
 703/**
 704 * prot_queue_del - remove a physical eraseblock from the protection queue.
 705 * @ubi: UBI device description object
 706 * @pnum: the physical eraseblock to remove
 707 *
 708 * This function deletes PEB @pnum from the protection queue and returns zero
 709 * in case of success and %-ENODEV if the PEB was not found.
 710 */
 711static int prot_queue_del(struct ubi_device *ubi, int pnum)
 712{
 713	struct ubi_wl_entry *e;
 714
 715	e = ubi->lookuptbl[pnum];
 716	if (!e)
 717		return -ENODEV;
 718
 719	if (self_check_in_pq(ubi, e))
 720		return -ENODEV;
 721
 722	list_del(&e->u.list);
 723	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
 724	return 0;
 725}
 726
 727/**
 728 * sync_erase - synchronously erase a physical eraseblock.
 729 * @ubi: UBI device description object
 730 * @e: the the physical eraseblock to erase
 731 * @torture: if the physical eraseblock has to be tortured
 732 *
 733 * This function returns zero in case of success and a negative error code in
 734 * case of failure.
 735 */
 736static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 737		      int torture)
 738{
 739	int err;
 740	struct ubi_ec_hdr *ec_hdr;
 741	unsigned long long ec = e->ec;
 742
 743	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
 744
 745	err = self_check_ec(ubi, e->pnum, e->ec);
 746	if (err)
 747		return -EINVAL;
 748
 749	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
 750	if (!ec_hdr)
 751		return -ENOMEM;
 752
 753	err = ubi_io_sync_erase(ubi, e->pnum, torture);
 754	if (err < 0)
 755		goto out_free;
 756
 757	ec += err;
 758	if (ec > UBI_MAX_ERASECOUNTER) {
 759		/*
 760		 * Erase counter overflow. Upgrade UBI and use 64-bit
 761		 * erase counters internally.
 762		 */
 763		ubi_err("erase counter overflow at PEB %d, EC %llu",
 764			e->pnum, ec);
 765		err = -EINVAL;
 766		goto out_free;
 767	}
 768
 769	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
 770
 771	ec_hdr->ec = cpu_to_be64(ec);
 772
 773	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
 774	if (err)
 775		goto out_free;
 776
 777	e->ec = ec;
 778	spin_lock(&ubi->wl_lock);
 779	if (e->ec > ubi->max_ec)
 780		ubi->max_ec = e->ec;
 781	spin_unlock(&ubi->wl_lock);
 782
 783out_free:
 784	kfree(ec_hdr);
 785	return err;
 786}
 787
 788/**
 789 * serve_prot_queue - check if it is time to stop protecting PEBs.
 790 * @ubi: UBI device description object
 791 *
 792 * This function is called after each erase operation and removes PEBs from the
 793 * tail of the protection queue. These PEBs have been protected for long enough
 794 * and should be moved to the used tree.
 795 */
 796static void serve_prot_queue(struct ubi_device *ubi)
 797{
 798	struct ubi_wl_entry *e, *tmp;
 799	int count;
 800
 801	/*
 802	 * There may be several protected physical eraseblock to remove,
 803	 * process them all.
 804	 */
 805repeat:
 806	count = 0;
 807	spin_lock(&ubi->wl_lock);
 808	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
 809		dbg_wl("PEB %d EC %d protection over, move to used tree",
 810			e->pnum, e->ec);
 811
 812		list_del(&e->u.list);
 813		wl_tree_add(e, &ubi->used);
 814		if (count++ > 32) {
 815			/*
 816			 * Let's be nice and avoid holding the spinlock for
 817			 * too long.
 818			 */
 819			spin_unlock(&ubi->wl_lock);
 820			cond_resched();
 821			goto repeat;
 822		}
 823	}
 824
 825	ubi->pq_head += 1;
 826	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
 827		ubi->pq_head = 0;
 828	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
 829	spin_unlock(&ubi->wl_lock);
 830}
 831
 832/**
 833 * __schedule_ubi_work - schedule a work.
 834 * @ubi: UBI device description object
 835 * @wrk: the work to schedule
 836 *
 837 * This function adds a work defined by @wrk to the tail of the pending works
 838 * list. Can only be used of ubi->work_sem is already held in read mode!
 839 */
 840static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
 841{
 842	spin_lock(&ubi->wl_lock);
 843	list_add_tail(&wrk->list, &ubi->works);
 844	ubi_assert(ubi->works_count >= 0);
 845	ubi->works_count += 1;
 846	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
 847		wake_up_process(ubi->bgt_thread);
 848	spin_unlock(&ubi->wl_lock);
 849}
 850
 851/**
 852 * schedule_ubi_work - schedule a work.
 853 * @ubi: UBI device description object
 854 * @wrk: the work to schedule
 855 *
 856 * This function adds a work defined by @wrk to the tail of the pending works
 857 * list.
 858 */
 859static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
 860{
 861	down_read(&ubi->work_sem);
 862	__schedule_ubi_work(ubi, wrk);
 863	up_read(&ubi->work_sem);
 864}
 865
 866static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
 867			int cancel);
 868
 869#ifdef CONFIG_MTD_UBI_FASTMAP
 870/**
 871 * ubi_is_erase_work - checks whether a work is erase work.
 872 * @wrk: The work object to be checked
 873 */
 874int ubi_is_erase_work(struct ubi_work *wrk)
 875{
 876	return wrk->func == erase_worker;
 877}
 878#endif
 879
 880/**
 881 * schedule_erase - schedule an erase work.
 882 * @ubi: UBI device description object
 883 * @e: the WL entry of the physical eraseblock to erase
 884 * @vol_id: the volume ID that last used this PEB
 885 * @lnum: the last used logical eraseblock number for the PEB
 886 * @torture: if the physical eraseblock has to be tortured
 
 887 *
 888 * This function returns zero in case of success and a %-ENOMEM in case of
 889 * failure.
 890 */
 891static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 892			  int vol_id, int lnum, int torture)
 893{
 894	struct ubi_work *wl_wrk;
 895
 896	ubi_assert(e);
 897	ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
 898
 899	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
 900	       e->pnum, e->ec, torture);
 901
 902	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
 903	if (!wl_wrk)
 904		return -ENOMEM;
 905
 906	wl_wrk->func = &erase_worker;
 907	wl_wrk->e = e;
 908	wl_wrk->vol_id = vol_id;
 909	wl_wrk->lnum = lnum;
 910	wl_wrk->torture = torture;
 911
 912	schedule_ubi_work(ubi, wl_wrk);
 
 
 
 913	return 0;
 914}
 915
 
 916/**
 917 * do_sync_erase - run the erase worker synchronously.
 918 * @ubi: UBI device description object
 919 * @e: the WL entry of the physical eraseblock to erase
 920 * @vol_id: the volume ID that last used this PEB
 921 * @lnum: the last used logical eraseblock number for the PEB
 922 * @torture: if the physical eraseblock has to be tortured
 923 *
 924 */
 925static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 926			 int vol_id, int lnum, int torture)
 927{
 928	struct ubi_work *wl_wrk;
 929
 930	dbg_wl("sync erase of PEB %i", e->pnum);
 931
 932	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
 933	if (!wl_wrk)
 934		return -ENOMEM;
 935
 936	wl_wrk->e = e;
 937	wl_wrk->vol_id = vol_id;
 938	wl_wrk->lnum = lnum;
 939	wl_wrk->torture = torture;
 940
 941	return erase_worker(ubi, wl_wrk, 0);
 942}
 943
 944#ifdef CONFIG_MTD_UBI_FASTMAP
 945/**
 946 * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
 947 * sub-system.
 948 * see: ubi_wl_put_peb()
 949 *
 950 * @ubi: UBI device description object
 951 * @fm_e: physical eraseblock to return
 952 * @lnum: the last used logical eraseblock number for the PEB
 953 * @torture: if this physical eraseblock has to be tortured
 954 */
 955int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
 956		      int lnum, int torture)
 957{
 958	struct ubi_wl_entry *e;
 959	int vol_id, pnum = fm_e->pnum;
 960
 961	dbg_wl("PEB %d", pnum);
 962
 963	ubi_assert(pnum >= 0);
 964	ubi_assert(pnum < ubi->peb_count);
 965
 966	spin_lock(&ubi->wl_lock);
 967	e = ubi->lookuptbl[pnum];
 968
 969	/* This can happen if we recovered from a fastmap the very
 970	 * first time and writing now a new one. In this case the wl system
 971	 * has never seen any PEB used by the original fastmap.
 972	 */
 973	if (!e) {
 974		e = fm_e;
 975		ubi_assert(e->ec >= 0);
 976		ubi->lookuptbl[pnum] = e;
 977	} else {
 978		e->ec = fm_e->ec;
 979		kfree(fm_e);
 980	}
 981
 982	spin_unlock(&ubi->wl_lock);
 983
 984	vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
 985	return schedule_erase(ubi, e, vol_id, lnum, torture);
 986}
 987#endif
 988
 
 989/**
 990 * wear_leveling_worker - wear-leveling worker function.
 991 * @ubi: UBI device description object
 992 * @wrk: the work object
 993 * @cancel: non-zero if the worker has to free memory and exit
 
 994 *
 995 * This function copies a more worn out physical eraseblock to a less worn out
 996 * one. Returns zero in case of success and a negative error code in case of
 997 * failure.
 998 */
 999static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
1000				int cancel)
1001{
1002	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
1003	int vol_id = -1, uninitialized_var(lnum);
1004#ifdef CONFIG_MTD_UBI_FASTMAP
1005	int anchor = wrk->anchor;
1006#endif
1007	struct ubi_wl_entry *e1, *e2;
 
1008	struct ubi_vid_hdr *vid_hdr;
 
1009
1010	kfree(wrk);
1011	if (cancel)
1012		return 0;
1013
1014	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1015	if (!vid_hdr)
1016		return -ENOMEM;
1017
 
 
 
1018	mutex_lock(&ubi->move_mutex);
1019	spin_lock(&ubi->wl_lock);
1020	ubi_assert(!ubi->move_from && !ubi->move_to);
1021	ubi_assert(!ubi->move_to_put);
1022
 
 
 
1023	if (!ubi->free.rb_node ||
 
1024	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1025		/*
1026		 * No free physical eraseblocks? Well, they must be waiting in
1027		 * the queue to be erased. Cancel movement - it will be
1028		 * triggered again when a free physical eraseblock appears.
1029		 *
1030		 * No used physical eraseblocks? They must be temporarily
1031		 * protected from being moved. They will be moved to the
1032		 * @ubi->used tree later and the wear-leveling will be
1033		 * triggered again.
1034		 */
1035		dbg_wl("cancel WL, a list is empty: free %d, used %d",
1036		       !ubi->free.rb_node, !ubi->used.rb_node);
1037		goto out_cancel;
1038	}
1039
1040#ifdef CONFIG_MTD_UBI_FASTMAP
1041	/* Check whether we need to produce an anchor PEB */
1042	if (!anchor)
1043		anchor = !anchor_pebs_avalible(&ubi->free);
 
 
 
 
 
 
 
 
 
 
1044
1045	if (anchor) {
1046		e1 = find_anchor_wl_entry(&ubi->used);
1047		if (!e1)
1048			goto out_cancel;
1049		e2 = get_peb_for_wl(ubi);
1050		if (!e2)
1051			goto out_cancel;
1052
1053		self_check_in_wl_tree(ubi, e1, &ubi->used);
1054		rb_erase(&e1->u.rb, &ubi->used);
1055		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
 
1056	} else if (!ubi->scrub.rb_node) {
1057#else
1058	if (!ubi->scrub.rb_node) {
1059#endif
1060		/*
1061		 * Now pick the least worn-out used physical eraseblock and a
1062		 * highly worn-out free physical eraseblock. If the erase
1063		 * counters differ much enough, start wear-leveling.
1064		 */
1065		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1066		e2 = get_peb_for_wl(ubi);
1067		if (!e2)
1068			goto out_cancel;
1069
1070		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1071			dbg_wl("no WL needed: min used EC %d, max free EC %d",
1072			       e1->ec, e2->ec);
1073
1074			/* Give the unused PEB back */
1075			wl_tree_add(e2, &ubi->free);
1076			ubi->free_count++;
1077			goto out_cancel;
1078		}
1079		self_check_in_wl_tree(ubi, e1, &ubi->used);
1080		rb_erase(&e1->u.rb, &ubi->used);
1081		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1082		       e1->pnum, e1->ec, e2->pnum, e2->ec);
1083	} else {
1084		/* Perform scrubbing */
1085		scrubbing = 1;
1086		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1087		e2 = get_peb_for_wl(ubi);
1088		if (!e2)
1089			goto out_cancel;
1090
1091		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1092		rb_erase(&e1->u.rb, &ubi->scrub);
1093		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1094	}
1095
1096	ubi->move_from = e1;
1097	ubi->move_to = e2;
1098	spin_unlock(&ubi->wl_lock);
1099
1100	/*
1101	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1102	 * We so far do not know which logical eraseblock our physical
1103	 * eraseblock (@e1) belongs to. We have to read the volume identifier
1104	 * header first.
1105	 *
1106	 * Note, we are protected from this PEB being unmapped and erased. The
1107	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1108	 * which is being moved was unmapped.
1109	 */
1110
1111	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1112	if (err && err != UBI_IO_BITFLIPS) {
 
1113		if (err == UBI_IO_FF) {
1114			/*
1115			 * We are trying to move PEB without a VID header. UBI
1116			 * always write VID headers shortly after the PEB was
1117			 * given, so we have a situation when it has not yet
1118			 * had a chance to write it, because it was preempted.
1119			 * So add this PEB to the protection queue so far,
1120			 * because presumably more data will be written there
1121			 * (including the missing VID header), and then we'll
1122			 * move it.
1123			 */
1124			dbg_wl("PEB %d has no VID header", e1->pnum);
1125			protect = 1;
1126			goto out_not_moved;
1127		} else if (err == UBI_IO_FF_BITFLIPS) {
1128			/*
1129			 * The same situation as %UBI_IO_FF, but bit-flips were
1130			 * detected. It is better to schedule this PEB for
1131			 * scrubbing.
1132			 */
1133			dbg_wl("PEB %d has no VID header but has bit-flips",
1134			       e1->pnum);
1135			scrubbing = 1;
1136			goto out_not_moved;
 
 
 
 
 
 
 
 
 
 
1137		}
1138
1139		ubi_err("error %d while reading VID header from PEB %d",
1140			err, e1->pnum);
1141		goto out_error;
1142	}
1143
1144	vol_id = be32_to_cpu(vid_hdr->vol_id);
1145	lnum = be32_to_cpu(vid_hdr->lnum);
1146
1147	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1148	if (err) {
1149		if (err == MOVE_CANCEL_RACE) {
1150			/*
1151			 * The LEB has not been moved because the volume is
1152			 * being deleted or the PEB has been put meanwhile. We
1153			 * should prevent this PEB from being selected for
1154			 * wear-leveling movement again, so put it to the
1155			 * protection queue.
1156			 */
1157			protect = 1;
 
1158			goto out_not_moved;
1159		}
1160		if (err == MOVE_RETRY) {
1161			scrubbing = 1;
 
1162			goto out_not_moved;
1163		}
1164		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1165		    err == MOVE_TARGET_RD_ERR) {
1166			/*
1167			 * Target PEB had bit-flips or write error - torture it.
1168			 */
1169			torture = 1;
 
1170			goto out_not_moved;
1171		}
1172
1173		if (err == MOVE_SOURCE_RD_ERR) {
1174			/*
1175			 * An error happened while reading the source PEB. Do
1176			 * not switch to R/O mode in this case, and give the
1177			 * upper layers a possibility to recover from this,
1178			 * e.g. by unmapping corresponding LEB. Instead, just
1179			 * put this PEB to the @ubi->erroneous list to prevent
1180			 * UBI from trying to move it over and over again.
1181			 */
1182			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1183				ubi_err("too many erroneous eraseblocks (%d)",
1184					ubi->erroneous_peb_count);
1185				goto out_error;
1186			}
 
1187			erroneous = 1;
1188			goto out_not_moved;
1189		}
1190
1191		if (err < 0)
1192			goto out_error;
1193
1194		ubi_assert(0);
1195	}
1196
1197	/* The PEB has been successfully moved */
1198	if (scrubbing)
1199		ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1200			e1->pnum, vol_id, lnum, e2->pnum);
1201	ubi_free_vid_hdr(ubi, vid_hdr);
1202
1203	spin_lock(&ubi->wl_lock);
1204	if (!ubi->move_to_put) {
1205		wl_tree_add(e2, &ubi->used);
1206		e2 = NULL;
1207	}
1208	ubi->move_from = ubi->move_to = NULL;
1209	ubi->move_to_put = ubi->wl_scheduled = 0;
1210	spin_unlock(&ubi->wl_lock);
1211
1212	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1213	if (err) {
1214		kmem_cache_free(ubi_wl_entry_slab, e1);
1215		if (e2)
1216			kmem_cache_free(ubi_wl_entry_slab, e2);
 
 
1217		goto out_ro;
1218	}
1219
1220	if (e2) {
1221		/*
1222		 * Well, the target PEB was put meanwhile, schedule it for
1223		 * erasure.
1224		 */
1225		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1226		       e2->pnum, vol_id, lnum);
1227		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1228		if (err) {
1229			kmem_cache_free(ubi_wl_entry_slab, e2);
1230			goto out_ro;
1231		}
1232	}
1233
1234	dbg_wl("done");
1235	mutex_unlock(&ubi->move_mutex);
 
1236	return 0;
1237
1238	/*
1239	 * For some reasons the LEB was not moved, might be an error, might be
1240	 * something else. @e1 was not changed, so return it back. @e2 might
1241	 * have been changed, schedule it for erasure.
1242	 */
1243out_not_moved:
1244	if (vol_id != -1)
1245		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1246		       e1->pnum, vol_id, lnum, e2->pnum, err);
1247	else
1248		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1249		       e1->pnum, e2->pnum, err);
1250	spin_lock(&ubi->wl_lock);
1251	if (protect)
1252		prot_queue_add(ubi, e1);
1253	else if (erroneous) {
1254		wl_tree_add(e1, &ubi->erroneous);
1255		ubi->erroneous_peb_count += 1;
1256	} else if (scrubbing)
1257		wl_tree_add(e1, &ubi->scrub);
1258	else
1259		wl_tree_add(e1, &ubi->used);
 
 
 
 
 
1260	ubi_assert(!ubi->move_to_put);
1261	ubi->move_from = ubi->move_to = NULL;
1262	ubi->wl_scheduled = 0;
1263	spin_unlock(&ubi->wl_lock);
1264
1265	ubi_free_vid_hdr(ubi, vid_hdr);
1266	err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1267	if (err) {
1268		kmem_cache_free(ubi_wl_entry_slab, e2);
1269		goto out_ro;
 
 
 
 
 
 
 
 
1270	}
 
1271	mutex_unlock(&ubi->move_mutex);
 
1272	return 0;
1273
1274out_error:
1275	if (vol_id != -1)
1276		ubi_err("error %d while moving PEB %d to PEB %d",
1277			err, e1->pnum, e2->pnum);
1278	else
1279		ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1280			err, e1->pnum, vol_id, lnum, e2->pnum);
1281	spin_lock(&ubi->wl_lock);
1282	ubi->move_from = ubi->move_to = NULL;
1283	ubi->move_to_put = ubi->wl_scheduled = 0;
 
 
1284	spin_unlock(&ubi->wl_lock);
1285
1286	ubi_free_vid_hdr(ubi, vid_hdr);
1287	kmem_cache_free(ubi_wl_entry_slab, e1);
1288	kmem_cache_free(ubi_wl_entry_slab, e2);
1289
1290out_ro:
1291	ubi_ro_mode(ubi);
1292	mutex_unlock(&ubi->move_mutex);
 
1293	ubi_assert(err != 0);
1294	return err < 0 ? err : -EIO;
1295
1296out_cancel:
1297	ubi->wl_scheduled = 0;
1298	spin_unlock(&ubi->wl_lock);
1299	mutex_unlock(&ubi->move_mutex);
1300	ubi_free_vid_hdr(ubi, vid_hdr);
 
1301	return 0;
1302}
1303
1304/**
1305 * ensure_wear_leveling - schedule wear-leveling if it is needed.
1306 * @ubi: UBI device description object
1307 * @nested: set to non-zero if this function is called from UBI worker
1308 *
1309 * This function checks if it is time to start wear-leveling and schedules it
1310 * if yes. This function returns zero in case of success and a negative error
1311 * code in case of failure.
1312 */
1313static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1314{
1315	int err = 0;
1316	struct ubi_wl_entry *e1;
1317	struct ubi_wl_entry *e2;
1318	struct ubi_work *wrk;
1319
1320	spin_lock(&ubi->wl_lock);
1321	if (ubi->wl_scheduled)
1322		/* Wear-leveling is already in the work queue */
1323		goto out_unlock;
1324
1325	/*
1326	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1327	 * the WL worker has to be scheduled anyway.
1328	 */
1329	if (!ubi->scrub.rb_node) {
 
 
 
 
 
 
 
1330		if (!ubi->used.rb_node || !ubi->free.rb_node)
1331			/* No physical eraseblocks - no deal */
1332			goto out_unlock;
1333
1334		/*
1335		 * We schedule wear-leveling only if the difference between the
1336		 * lowest erase counter of used physical eraseblocks and a high
1337		 * erase counter of free physical eraseblocks is greater than
1338		 * %UBI_WL_THRESHOLD.
1339		 */
1340		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1341		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1342
1343		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1344			goto out_unlock;
 
1345		dbg_wl("schedule wear-leveling");
1346	} else
1347		dbg_wl("schedule scrubbing");
1348
1349	ubi->wl_scheduled = 1;
1350	spin_unlock(&ubi->wl_lock);
1351
1352	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1353	if (!wrk) {
1354		err = -ENOMEM;
1355		goto out_cancel;
1356	}
1357
1358	wrk->anchor = 0;
1359	wrk->func = &wear_leveling_worker;
1360	if (nested)
1361		__schedule_ubi_work(ubi, wrk);
1362	else
1363		schedule_ubi_work(ubi, wrk);
1364	return err;
1365
1366out_cancel:
1367	spin_lock(&ubi->wl_lock);
1368	ubi->wl_scheduled = 0;
1369out_unlock:
1370	spin_unlock(&ubi->wl_lock);
1371	return err;
1372}
1373
1374#ifdef CONFIG_MTD_UBI_FASTMAP
1375/**
1376 * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1377 * @ubi: UBI device description object
1378 */
1379int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1380{
1381	struct ubi_work *wrk;
1382
1383	spin_lock(&ubi->wl_lock);
1384	if (ubi->wl_scheduled) {
1385		spin_unlock(&ubi->wl_lock);
1386		return 0;
1387	}
1388	ubi->wl_scheduled = 1;
1389	spin_unlock(&ubi->wl_lock);
1390
1391	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1392	if (!wrk) {
1393		spin_lock(&ubi->wl_lock);
1394		ubi->wl_scheduled = 0;
1395		spin_unlock(&ubi->wl_lock);
1396		return -ENOMEM;
1397	}
1398
1399	wrk->anchor = 1;
1400	wrk->func = &wear_leveling_worker;
1401	schedule_ubi_work(ubi, wrk);
1402	return 0;
1403}
1404#endif
1405
1406/**
1407 * erase_worker - physical eraseblock erase worker function.
1408 * @ubi: UBI device description object
1409 * @wl_wrk: the work object
1410 * @cancel: non-zero if the worker has to free memory and exit
1411 *
1412 * This function erases a physical eraseblock and perform torture testing if
1413 * needed. It also takes care about marking the physical eraseblock bad if
1414 * needed. Returns zero in case of success and a negative error code in case of
1415 * failure.
1416 */
1417static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1418			int cancel)
1419{
1420	struct ubi_wl_entry *e = wl_wrk->e;
1421	int pnum = e->pnum;
1422	int vol_id = wl_wrk->vol_id;
1423	int lnum = wl_wrk->lnum;
1424	int err, available_consumed = 0;
1425
1426	if (cancel) {
1427		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1428		kfree(wl_wrk);
1429		kmem_cache_free(ubi_wl_entry_slab, e);
1430		return 0;
1431	}
1432
1433	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1434	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1435
1436	ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
 
 
1437
1438	err = sync_erase(ubi, e, wl_wrk->torture);
1439	if (!err) {
1440		/* Fine, we've erased it successfully */
1441		kfree(wl_wrk);
 
 
 
 
 
 
 
 
1442
1443		spin_lock(&ubi->wl_lock);
1444		wl_tree_add(e, &ubi->free);
1445		ubi->free_count++;
1446		spin_unlock(&ubi->wl_lock);
1447
1448		/*
1449		 * One more erase operation has happened, take care about
1450		 * protected physical eraseblocks.
1451		 */
1452		serve_prot_queue(ubi);
1453
1454		/* And take care about wear-leveling */
1455		err = ensure_wear_leveling(ubi, 1);
1456		return err;
1457	}
1458
1459	ubi_err("failed to erase PEB %d, error %d", pnum, err);
1460	kfree(wl_wrk);
1461
1462	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1463	    err == -EBUSY) {
1464		int err1;
1465
1466		/* Re-schedule the LEB for erasure */
1467		err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1468		if (err1) {
 
 
 
1469			err = err1;
1470			goto out_ro;
1471		}
1472		return err;
1473	}
1474
1475	kmem_cache_free(ubi_wl_entry_slab, e);
 
 
1476	if (err != -EIO)
1477		/*
1478		 * If this is not %-EIO, we have no idea what to do. Scheduling
1479		 * this physical eraseblock for erasure again would cause
1480		 * errors again and again. Well, lets switch to R/O mode.
1481		 */
1482		goto out_ro;
1483
1484	/* It is %-EIO, the PEB went bad */
1485
1486	if (!ubi->bad_allowed) {
1487		ubi_err("bad physical eraseblock %d detected", pnum);
1488		goto out_ro;
1489	}
1490
1491	spin_lock(&ubi->volumes_lock);
1492	if (ubi->beb_rsvd_pebs == 0) {
1493		if (ubi->avail_pebs == 0) {
1494			spin_unlock(&ubi->volumes_lock);
1495			ubi_err("no reserved/available physical eraseblocks");
1496			goto out_ro;
1497		}
1498		ubi->avail_pebs -= 1;
1499		available_consumed = 1;
1500	}
1501	spin_unlock(&ubi->volumes_lock);
1502
1503	ubi_msg("mark PEB %d as bad", pnum);
1504	err = ubi_io_mark_bad(ubi, pnum);
1505	if (err)
1506		goto out_ro;
1507
1508	spin_lock(&ubi->volumes_lock);
1509	if (ubi->beb_rsvd_pebs > 0) {
1510		if (available_consumed) {
1511			/*
1512			 * The amount of reserved PEBs increased since we last
1513			 * checked.
1514			 */
1515			ubi->avail_pebs += 1;
1516			available_consumed = 0;
1517		}
1518		ubi->beb_rsvd_pebs -= 1;
1519	}
1520	ubi->bad_peb_count += 1;
1521	ubi->good_peb_count -= 1;
1522	ubi_calculate_reserved(ubi);
1523	if (available_consumed)
1524		ubi_warn("no PEBs in the reserved pool, used an available PEB");
1525	else if (ubi->beb_rsvd_pebs)
1526		ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
 
1527	else
1528		ubi_warn("last PEB from the reserve was used");
1529	spin_unlock(&ubi->volumes_lock);
1530
1531	return err;
1532
1533out_ro:
1534	if (available_consumed) {
1535		spin_lock(&ubi->volumes_lock);
1536		ubi->avail_pebs += 1;
1537		spin_unlock(&ubi->volumes_lock);
1538	}
1539	ubi_ro_mode(ubi);
1540	return err;
1541}
1542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1543/**
1544 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1545 * @ubi: UBI device description object
1546 * @vol_id: the volume ID that last used this PEB
1547 * @lnum: the last used logical eraseblock number for the PEB
1548 * @pnum: physical eraseblock to return
1549 * @torture: if this physical eraseblock has to be tortured
1550 *
1551 * This function is called to return physical eraseblock @pnum to the pool of
1552 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1553 * occurred to this @pnum and it has to be tested. This function returns zero
1554 * in case of success, and a negative error code in case of failure.
1555 */
1556int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1557		   int pnum, int torture)
1558{
1559	int err;
1560	struct ubi_wl_entry *e;
1561
1562	dbg_wl("PEB %d", pnum);
1563	ubi_assert(pnum >= 0);
1564	ubi_assert(pnum < ubi->peb_count);
1565
 
 
1566retry:
1567	spin_lock(&ubi->wl_lock);
1568	e = ubi->lookuptbl[pnum];
 
 
 
 
 
 
 
 
 
 
 
 
1569	if (e == ubi->move_from) {
1570		/*
1571		 * User is putting the physical eraseblock which was selected to
1572		 * be moved. It will be scheduled for erasure in the
1573		 * wear-leveling worker.
1574		 */
1575		dbg_wl("PEB %d is being moved, wait", pnum);
1576		spin_unlock(&ubi->wl_lock);
1577
1578		/* Wait for the WL worker by taking the @ubi->move_mutex */
1579		mutex_lock(&ubi->move_mutex);
1580		mutex_unlock(&ubi->move_mutex);
1581		goto retry;
1582	} else if (e == ubi->move_to) {
1583		/*
1584		 * User is putting the physical eraseblock which was selected
1585		 * as the target the data is moved to. It may happen if the EBA
1586		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1587		 * but the WL sub-system has not put the PEB to the "used" tree
1588		 * yet, but it is about to do this. So we just set a flag which
1589		 * will tell the WL worker that the PEB is not needed anymore
1590		 * and should be scheduled for erasure.
1591		 */
1592		dbg_wl("PEB %d is the target of data moving", pnum);
1593		ubi_assert(!ubi->move_to_put);
1594		ubi->move_to_put = 1;
1595		spin_unlock(&ubi->wl_lock);
 
1596		return 0;
1597	} else {
1598		if (in_wl_tree(e, &ubi->used)) {
1599			self_check_in_wl_tree(ubi, e, &ubi->used);
1600			rb_erase(&e->u.rb, &ubi->used);
1601		} else if (in_wl_tree(e, &ubi->scrub)) {
1602			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1603			rb_erase(&e->u.rb, &ubi->scrub);
1604		} else if (in_wl_tree(e, &ubi->erroneous)) {
1605			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1606			rb_erase(&e->u.rb, &ubi->erroneous);
1607			ubi->erroneous_peb_count -= 1;
1608			ubi_assert(ubi->erroneous_peb_count >= 0);
1609			/* Erroneous PEBs should be tortured */
1610			torture = 1;
1611		} else {
1612			err = prot_queue_del(ubi, e->pnum);
1613			if (err) {
1614				ubi_err("PEB %d not found", pnum);
1615				ubi_ro_mode(ubi);
1616				spin_unlock(&ubi->wl_lock);
 
1617				return err;
1618			}
1619		}
1620	}
1621	spin_unlock(&ubi->wl_lock);
1622
1623	err = schedule_erase(ubi, e, vol_id, lnum, torture);
1624	if (err) {
1625		spin_lock(&ubi->wl_lock);
1626		wl_tree_add(e, &ubi->used);
1627		spin_unlock(&ubi->wl_lock);
1628	}
1629
 
1630	return err;
1631}
1632
1633/**
1634 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1635 * @ubi: UBI device description object
1636 * @pnum: the physical eraseblock to schedule
1637 *
1638 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1639 * needs scrubbing. This function schedules a physical eraseblock for
1640 * scrubbing which is done in background. This function returns zero in case of
1641 * success and a negative error code in case of failure.
1642 */
1643int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1644{
1645	struct ubi_wl_entry *e;
1646
1647	ubi_msg("schedule PEB %d for scrubbing", pnum);
1648
1649retry:
1650	spin_lock(&ubi->wl_lock);
1651	e = ubi->lookuptbl[pnum];
1652	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1653				   in_wl_tree(e, &ubi->erroneous)) {
1654		spin_unlock(&ubi->wl_lock);
1655		return 0;
1656	}
1657
1658	if (e == ubi->move_to) {
1659		/*
1660		 * This physical eraseblock was used to move data to. The data
1661		 * was moved but the PEB was not yet inserted to the proper
1662		 * tree. We should just wait a little and let the WL worker
1663		 * proceed.
1664		 */
1665		spin_unlock(&ubi->wl_lock);
1666		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1667		yield();
1668		goto retry;
1669	}
1670
1671	if (in_wl_tree(e, &ubi->used)) {
1672		self_check_in_wl_tree(ubi, e, &ubi->used);
1673		rb_erase(&e->u.rb, &ubi->used);
1674	} else {
1675		int err;
1676
1677		err = prot_queue_del(ubi, e->pnum);
1678		if (err) {
1679			ubi_err("PEB %d not found", pnum);
1680			ubi_ro_mode(ubi);
1681			spin_unlock(&ubi->wl_lock);
1682			return err;
1683		}
1684	}
1685
1686	wl_tree_add(e, &ubi->scrub);
1687	spin_unlock(&ubi->wl_lock);
1688
1689	/*
1690	 * Technically scrubbing is the same as wear-leveling, so it is done
1691	 * by the WL worker.
1692	 */
1693	return ensure_wear_leveling(ubi, 0);
1694}
1695
1696/**
1697 * ubi_wl_flush - flush all pending works.
1698 * @ubi: UBI device description object
1699 * @vol_id: the volume id to flush for
1700 * @lnum: the logical eraseblock number to flush for
1701 *
1702 * This function executes all pending works for a particular volume id /
1703 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1704 * acts as a wildcard for all of the corresponding volume numbers or logical
1705 * eraseblock numbers. It returns zero in case of success and a negative error
1706 * code in case of failure.
1707 */
1708int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1709{
1710	int err = 0;
1711	int found = 1;
1712
1713	/*
1714	 * Erase while the pending works queue is not empty, but not more than
1715	 * the number of currently pending works.
1716	 */
1717	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1718	       vol_id, lnum, ubi->works_count);
1719
1720	while (found) {
1721		struct ubi_work *wrk;
1722		found = 0;
1723
1724		down_read(&ubi->work_sem);
1725		spin_lock(&ubi->wl_lock);
1726		list_for_each_entry(wrk, &ubi->works, list) {
1727			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1728			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1729				list_del(&wrk->list);
1730				ubi->works_count -= 1;
1731				ubi_assert(ubi->works_count >= 0);
1732				spin_unlock(&ubi->wl_lock);
1733
1734				err = wrk->func(ubi, wrk, 0);
1735				if (err) {
1736					up_read(&ubi->work_sem);
1737					return err;
1738				}
1739
1740				spin_lock(&ubi->wl_lock);
1741				found = 1;
1742				break;
1743			}
1744		}
1745		spin_unlock(&ubi->wl_lock);
1746		up_read(&ubi->work_sem);
1747	}
1748
1749	/*
1750	 * Make sure all the works which have been done in parallel are
1751	 * finished.
1752	 */
1753	down_write(&ubi->work_sem);
1754	up_write(&ubi->work_sem);
1755
1756	return err;
1757}
1758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1759/**
1760 * tree_destroy - destroy an RB-tree.
 
1761 * @root: the root of the tree to destroy
1762 */
1763static void tree_destroy(struct rb_root *root)
1764{
1765	struct rb_node *rb;
1766	struct ubi_wl_entry *e;
1767
1768	rb = root->rb_node;
1769	while (rb) {
1770		if (rb->rb_left)
1771			rb = rb->rb_left;
1772		else if (rb->rb_right)
1773			rb = rb->rb_right;
1774		else {
1775			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1776
1777			rb = rb_parent(rb);
1778			if (rb) {
1779				if (rb->rb_left == &e->u.rb)
1780					rb->rb_left = NULL;
1781				else
1782					rb->rb_right = NULL;
1783			}
1784
1785			kmem_cache_free(ubi_wl_entry_slab, e);
1786		}
1787	}
1788}
1789
1790/**
1791 * ubi_thread - UBI background thread.
1792 * @u: the UBI device description object pointer
1793 */
1794int ubi_thread(void *u)
1795{
1796	int failures = 0;
1797	struct ubi_device *ubi = u;
1798
1799	ubi_msg("background thread \"%s\" started, PID %d",
1800		ubi->bgt_name, task_pid_nr(current));
1801
1802	set_freezable();
1803	for (;;) {
1804		int err;
1805
1806		if (kthread_should_stop())
1807			break;
1808
1809		if (try_to_freeze())
1810			continue;
1811
1812		spin_lock(&ubi->wl_lock);
1813		if (list_empty(&ubi->works) || ubi->ro_mode ||
1814		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1815			set_current_state(TASK_INTERRUPTIBLE);
1816			spin_unlock(&ubi->wl_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
1817			schedule();
1818			continue;
1819		}
1820		spin_unlock(&ubi->wl_lock);
1821
1822		err = do_work(ubi);
1823		if (err) {
1824			ubi_err("%s: work failed with error code %d",
1825				ubi->bgt_name, err);
1826			if (failures++ > WL_MAX_FAILURES) {
1827				/*
1828				 * Too many failures, disable the thread and
1829				 * switch to read-only mode.
1830				 */
1831				ubi_msg("%s: %d consecutive failures",
1832					ubi->bgt_name, WL_MAX_FAILURES);
1833				ubi_ro_mode(ubi);
1834				ubi->thread_enabled = 0;
1835				continue;
1836			}
1837		} else
1838			failures = 0;
1839
1840		cond_resched();
1841	}
1842
1843	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
 
1844	return 0;
1845}
1846
1847/**
1848 * cancel_pending - cancel all pending works.
1849 * @ubi: UBI device description object
1850 */
1851static void cancel_pending(struct ubi_device *ubi)
1852{
1853	while (!list_empty(&ubi->works)) {
1854		struct ubi_work *wrk;
1855
1856		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1857		list_del(&wrk->list);
1858		wrk->func(ubi, wrk, 1);
1859		ubi->works_count -= 1;
1860		ubi_assert(ubi->works_count >= 0);
1861	}
1862}
1863
1864/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1865 * ubi_wl_init - initialize the WL sub-system using attaching information.
1866 * @ubi: UBI device description object
1867 * @ai: attaching information
1868 *
1869 * This function returns zero in case of success, and a negative error code in
1870 * case of failure.
1871 */
1872int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1873{
1874	int err, i, reserved_pebs, found_pebs = 0;
1875	struct rb_node *rb1, *rb2;
1876	struct ubi_ainf_volume *av;
1877	struct ubi_ainf_peb *aeb, *tmp;
1878	struct ubi_wl_entry *e;
1879
1880	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1881	spin_lock_init(&ubi->wl_lock);
1882	mutex_init(&ubi->move_mutex);
1883	init_rwsem(&ubi->work_sem);
1884	ubi->max_ec = ai->max_ec;
1885	INIT_LIST_HEAD(&ubi->works);
1886#ifdef CONFIG_MTD_UBI_FASTMAP
1887	INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1888#endif
1889
1890	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1891
1892	err = -ENOMEM;
1893	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1894	if (!ubi->lookuptbl)
1895		return err;
1896
1897	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1898		INIT_LIST_HEAD(&ubi->pq[i]);
1899	ubi->pq_head = 0;
1900
 
1901	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1902		cond_resched();
1903
1904		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1905		if (!e)
1906			goto out_free;
1907
1908		e->pnum = aeb->pnum;
1909		e->ec = aeb->ec;
1910		ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1911		ubi->lookuptbl[e->pnum] = e;
1912		if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1913			kmem_cache_free(ubi_wl_entry_slab, e);
1914			goto out_free;
1915		}
1916
1917		found_pebs++;
1918	}
1919
1920	ubi->free_count = 0;
1921	list_for_each_entry(aeb, &ai->free, u.list) {
1922		cond_resched();
1923
1924		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1925		if (!e)
 
1926			goto out_free;
 
1927
1928		e->pnum = aeb->pnum;
1929		e->ec = aeb->ec;
1930		ubi_assert(e->ec >= 0);
1931		ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1932
1933		wl_tree_add(e, &ubi->free);
1934		ubi->free_count++;
1935
1936		ubi->lookuptbl[e->pnum] = e;
1937
1938		found_pebs++;
1939	}
1940
1941	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1942		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1943			cond_resched();
1944
1945			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1946			if (!e)
 
1947				goto out_free;
 
1948
1949			e->pnum = aeb->pnum;
1950			e->ec = aeb->ec;
1951			ubi->lookuptbl[e->pnum] = e;
1952
1953			if (!aeb->scrub) {
1954				dbg_wl("add PEB %d EC %d to the used tree",
1955				       e->pnum, e->ec);
1956				wl_tree_add(e, &ubi->used);
1957			} else {
1958				dbg_wl("add PEB %d EC %d to the scrub tree",
1959				       e->pnum, e->ec);
1960				wl_tree_add(e, &ubi->scrub);
1961			}
1962
1963			found_pebs++;
1964		}
1965	}
1966
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1967	dbg_wl("found %i PEBs", found_pebs);
1968
1969	if (ubi->fm)
1970		ubi_assert(ubi->good_peb_count == \
1971			   found_pebs + ubi->fm->used_blocks);
1972	else
1973		ubi_assert(ubi->good_peb_count == found_pebs);
1974
1975	reserved_pebs = WL_RESERVED_PEBS;
1976#ifdef CONFIG_MTD_UBI_FASTMAP
1977	/* Reserve enough LEBs to store two fastmaps. */
1978	reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
1979#endif
1980
1981	if (ubi->avail_pebs < reserved_pebs) {
1982		ubi_err("no enough physical eraseblocks (%d, need %d)",
1983			ubi->avail_pebs, reserved_pebs);
1984		if (ubi->corr_peb_count)
1985			ubi_err("%d PEBs are corrupted and not used",
1986				ubi->corr_peb_count);
 
1987		goto out_free;
1988	}
1989	ubi->avail_pebs -= reserved_pebs;
1990	ubi->rsvd_pebs += reserved_pebs;
1991
1992	/* Schedule wear-leveling if needed */
1993	err = ensure_wear_leveling(ubi, 0);
1994	if (err)
1995		goto out_free;
1996
 
 
 
 
1997	return 0;
1998
1999out_free:
2000	cancel_pending(ubi);
2001	tree_destroy(&ubi->used);
2002	tree_destroy(&ubi->free);
2003	tree_destroy(&ubi->scrub);
2004	kfree(ubi->lookuptbl);
2005	return err;
2006}
2007
2008/**
2009 * protection_queue_destroy - destroy the protection queue.
2010 * @ubi: UBI device description object
2011 */
2012static void protection_queue_destroy(struct ubi_device *ubi)
2013{
2014	int i;
2015	struct ubi_wl_entry *e, *tmp;
2016
2017	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2018		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2019			list_del(&e->u.list);
2020			kmem_cache_free(ubi_wl_entry_slab, e);
2021		}
2022	}
2023}
2024
2025/**
2026 * ubi_wl_close - close the wear-leveling sub-system.
2027 * @ubi: UBI device description object
2028 */
2029void ubi_wl_close(struct ubi_device *ubi)
2030{
2031	dbg_wl("close the WL sub-system");
2032	cancel_pending(ubi);
 
2033	protection_queue_destroy(ubi);
2034	tree_destroy(&ubi->used);
2035	tree_destroy(&ubi->erroneous);
2036	tree_destroy(&ubi->free);
2037	tree_destroy(&ubi->scrub);
2038	kfree(ubi->lookuptbl);
2039}
2040
2041/**
2042 * self_check_ec - make sure that the erase counter of a PEB is correct.
2043 * @ubi: UBI device description object
2044 * @pnum: the physical eraseblock number to check
2045 * @ec: the erase counter to check
2046 *
2047 * This function returns zero if the erase counter of physical eraseblock @pnum
2048 * is equivalent to @ec, and a negative error code if not or if an error
2049 * occurred.
2050 */
2051static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2052{
2053	int err;
2054	long long read_ec;
2055	struct ubi_ec_hdr *ec_hdr;
2056
2057	if (!ubi_dbg_chk_gen(ubi))
2058		return 0;
2059
2060	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2061	if (!ec_hdr)
2062		return -ENOMEM;
2063
2064	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2065	if (err && err != UBI_IO_BITFLIPS) {
2066		/* The header does not have to exist */
2067		err = 0;
2068		goto out_free;
2069	}
2070
2071	read_ec = be64_to_cpu(ec_hdr->ec);
2072	if (ec != read_ec && read_ec - ec > 1) {
2073		ubi_err("self-check failed for PEB %d", pnum);
2074		ubi_err("read EC is %lld, should be %d", read_ec, ec);
2075		dump_stack();
2076		err = 1;
2077	} else
2078		err = 0;
2079
2080out_free:
2081	kfree(ec_hdr);
2082	return err;
2083}
2084
2085/**
2086 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2087 * @ubi: UBI device description object
2088 * @e: the wear-leveling entry to check
2089 * @root: the root of the tree
2090 *
2091 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2092 * is not.
2093 */
2094static int self_check_in_wl_tree(const struct ubi_device *ubi,
2095				 struct ubi_wl_entry *e, struct rb_root *root)
2096{
2097	if (!ubi_dbg_chk_gen(ubi))
2098		return 0;
2099
2100	if (in_wl_tree(e, root))
2101		return 0;
2102
2103	ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
2104		e->pnum, e->ec, root);
2105	dump_stack();
2106	return -EINVAL;
2107}
2108
2109/**
2110 * self_check_in_pq - check if wear-leveling entry is in the protection
2111 *                        queue.
2112 * @ubi: UBI device description object
2113 * @e: the wear-leveling entry to check
2114 *
2115 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2116 */
2117static int self_check_in_pq(const struct ubi_device *ubi,
2118			    struct ubi_wl_entry *e)
2119{
2120	struct ubi_wl_entry *p;
2121	int i;
2122
2123	if (!ubi_dbg_chk_gen(ubi))
2124		return 0;
2125
2126	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2127		list_for_each_entry(p, &ubi->pq[i], u.list)
2128			if (p == e)
2129				return 0;
2130
2131	ubi_err("self-check failed for PEB %d, EC %d, Protect queue",
2132		e->pnum, e->ec);
2133	dump_stack();
2134	return -EINVAL;
2135}